state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G e : Sym2 V v : V he : e ∈ edgeSet G' ⊢ v ∈ e → v ∈ G'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv
refine' Sym2.ind (fun v w he ↦ _) e he
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv
Mathlib.Combinatorics.SimpleGraph.Subgraph.245_0.BlhiAiIDADcXv8t
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G e : Sym2 V v✝ : V he✝ : e ∈ edgeSet G' v w : V he : ⟦(v, w)⟧ ∈ edgeSet G' ⊢ v✝ ∈ ⟦(v, w)⟧ → v✝ ∈ G'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he
intro hv
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he
Mathlib.Combinatorics.SimpleGraph.Subgraph.245_0.BlhiAiIDADcXv8t
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G e : Sym2 V v✝ : V he✝ : e ∈ edgeSet G' v w : V he : ⟦(v, w)⟧ ∈ edgeSet G' hv : v✝ ∈ ⟦(v, w)⟧ ⊢ v✝ ∈ G'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv
rcases Sym2.mem_iff.mp hv with (rfl | rfl)
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv
Mathlib.Combinatorics.SimpleGraph.Subgraph.245_0.BlhiAiIDADcXv8t
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
case inl ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G e : Sym2 V v : V he✝ : e ∈ edgeSet G' w : V he : ⟦(v, w)⟧ ∈ edgeSet G' hv : v ∈ ⟦(v, w)⟧ ⊢ v ∈ G'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) ·
exact G'.edge_vert he
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.245_0.BlhiAiIDADcXv8t
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
case inr ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G e : Sym2 V v✝ : V he✝ : e ∈ edgeSet G' v : V he : ⟦(v, v✝)⟧ ∈ edgeSet G' hv : v✝ ∈ ⟦(v, v✝)⟧ ⊢ v✝ ∈ G'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he ·
exact G'.edge_vert (G'.symm he)
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.245_0.BlhiAiIDADcXv8t
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) ⊢ ∀ {v w : V}, (fun a b => ∃ G' ∈ s, Adj G' a b) v w → SimpleGraph.Adj G v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by
rintro a b ⟨G', -, hab⟩
instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.327_0.BlhiAiIDADcXv8t
instance : SupSet G.Subgraph where sSup s
Mathlib_Combinatorics_SimpleGraph_Subgraph
case intro.intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a✝ b✝ : V s : Set (Subgraph G) a b : V G' : Subgraph G hab : Adj G' a b ⊢ SimpleGraph.Adj G a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩
exact G'.adj_sub hab
instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩
Mathlib.Combinatorics.SimpleGraph.Subgraph.327_0.BlhiAiIDADcXv8t
instance : SupSet G.Subgraph where sSup s
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) ⊢ ∀ {v w : V}, (fun a b => ∃ G' ∈ s, Adj G' a b) v w → v ∈ ⋃ G' ∈ s, G'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by
rintro a b ⟨G', hG', hab⟩
instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.327_0.BlhiAiIDADcXv8t
instance : SupSet G.Subgraph where sSup s
Mathlib_Combinatorics_SimpleGraph_Subgraph
case intro.intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a✝ b✝ : V s : Set (Subgraph G) a b : V G' : Subgraph G hG' : G' ∈ s hab : Adj G' a b ⊢ a ∈ ⋃ G' ∈ s, G'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩
exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab)
instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩
Mathlib.Combinatorics.SimpleGraph.Subgraph.327_0.BlhiAiIDADcXv8t
instance : SupSet G.Subgraph where sSup s
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a✝ b✝ : V s : Set (Subgraph G) a b : V h : (fun a b => ∃ G' ∈ s, Adj G' a b) a b ⊢ (fun a b => ∃ G' ∈ s, Adj G' a b) b a
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by
simpa [adj_comm] using h
instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by
Mathlib.Combinatorics.SimpleGraph.Subgraph.327_0.BlhiAiIDADcXv8t
instance : SupSet G.Subgraph where sSup s
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G ⊢ Adj (⨆ i, f i) a b ↔ ∃ i, Adj (f i) a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by
simp [iSup]
@[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.397_0.BlhiAiIDADcXv8t
@[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G ⊢ Adj (⨅ i, f i) a b ↔ (∀ (i : ι), Adj (f i) a b) ∧ SimpleGraph.Adj G a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by
simp [iInf]
@[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.402_0.BlhiAiIDADcXv8t
@[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) hs : Set.Nonempty s ⊢ (∀ G' ∈ s, Adj G' a b) → SimpleGraph.Adj G a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by
obtain ⟨G', hG'⟩ := hs
theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by
Mathlib.Combinatorics.SimpleGraph.Subgraph.407_0.BlhiAiIDADcXv8t
theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b
Mathlib_Combinatorics_SimpleGraph_Subgraph
case intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) G' : Subgraph G hG' : G' ∈ s ⊢ (∀ G' ∈ s, Adj G' a b) → SimpleGraph.Adj G a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs
exact fun h => G'.adj_sub (h _ hG')
theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs
Mathlib.Combinatorics.SimpleGraph.Subgraph.407_0.BlhiAiIDADcXv8t
theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V inst✝ : Nonempty ι f : ι → Subgraph G ⊢ Adj (⨅ i, f i) a b ↔ ∀ (i : ι), Adj (f i) a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by
rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)]
theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.415_0.BlhiAiIDADcXv8t
theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V inst✝ : Nonempty ι f : ι → Subgraph G ⊢ (∀ G' ∈ Set.range fun i => f i, Adj G' a b) ↔ ∀ (i : ι), Adj (f i) a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)]
simp
theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)]
Mathlib.Combinatorics.SimpleGraph.Subgraph.415_0.BlhiAiIDADcXv8t
theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G ⊢ (⨆ i, f i).verts = ⋃ i, (f i).verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by
simp [iSup]
@[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.431_0.BlhiAiIDADcXv8t
@[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G ⊢ (⨅ i, f i).verts = ⋂ i, (f i).verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by
simp [iInf]
@[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.435_0.BlhiAiIDADcXv8t
@[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V ⊢ Function.Injective fun G' => (G'.verts, Subgraph.spanningCoe G')
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by
intro G₁ G₂ h
theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.439_0.BlhiAiIDADcXv8t
theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁✝ G₂✝ : Subgraph G a b : V G₁ G₂ : Subgraph G h : (fun G' => (G'.verts, Subgraph.spanningCoe G')) G₁ = (fun G' => (G'.verts, Subgraph.spanningCoe G')) G₂ ⊢ G₁ = G₂
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h
rw [Prod.ext_iff] at h
theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h
Mathlib.Combinatorics.SimpleGraph.Subgraph.439_0.BlhiAiIDADcXv8t
theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁✝ G₂✝ : Subgraph G a b : V G₁ G₂ : Subgraph G h : ((fun G' => (G'.verts, Subgraph.spanningCoe G')) G₁).1 = ((fun G' => (G'.verts, Subgraph.spanningCoe G')) G₂).1 ∧ ((fun G' => (G'.verts, Subgraph.spanningCoe G')) G₁).2 = ((fun G' => (G'.verts, Subgraph.spanningCoe G')) G₂).2 ⊢ G₁ = G₂
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h
exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2)
theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h
Mathlib.Combinatorics.SimpleGraph.Subgraph.439_0.BlhiAiIDADcXv8t
theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V src✝ : DistribLattice (Subgraph G) := distribLattice s : Set (Subgraph G) G' : Subgraph G hG' : G' ∈ s ⊢ G'.verts ⊆ (sSup s).verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by
apply Set.subset_iUnion₂ G' hG'
instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by
Mathlib.Combinatorics.SimpleGraph.Subgraph.460_0.BlhiAiIDADcXv8t
instance : CompletelyDistribLattice G.Subgraph
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V src✝ : DistribLattice (Subgraph G) := distribLattice s : Set (Subgraph G) G' : Subgraph G hG' : ∀ b ∈ s, b ≤ G' ⊢ ∀ ⦃v w : V⦄, Adj (sSup s) v w → Adj G' v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by
rintro a b ⟨H, hH, hab⟩
instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by
Mathlib.Combinatorics.SimpleGraph.Subgraph.460_0.BlhiAiIDADcXv8t
instance : CompletelyDistribLattice G.Subgraph
Mathlib_Combinatorics_SimpleGraph_Subgraph
case intro.intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a✝ b✝ : V src✝ : DistribLattice (Subgraph G) := distribLattice s : Set (Subgraph G) G' : Subgraph G hG' : ∀ b ∈ s, b ≤ G' a b : V H : Subgraph G hH : H ∈ s hab : Adj H a b ⊢ Adj G' a b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩
exact (hG' _ hH).2 hab
instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩
Mathlib.Combinatorics.SimpleGraph.Subgraph.460_0.BlhiAiIDADcXv8t
instance : CompletelyDistribLattice G.Subgraph
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V src✝ : DistribLattice (Subgraph G) := distribLattice ι✝ : Type u κ✝ : ι✝ → Type u f : (a : ι✝) → κ✝ a → Subgraph G ⊢ (⨅ a, ⨆ b, f a b).verts = (⨆ g, ⨅ a, f a (g a)).verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by
simpa using iInf_iSup_eq
instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by
Mathlib.Combinatorics.SimpleGraph.Subgraph.460_0.BlhiAiIDADcXv8t
instance : CompletelyDistribLattice G.Subgraph
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V src✝ : DistribLattice (Subgraph G) := distribLattice ι✝ : Type u κ✝ : ι✝ → Type u f : (a : ι✝) → κ✝ a → Subgraph G ⊢ (⨅ a, ⨆ b, f a b).Adj = (⨆ g, ⨅ a, f a (g a)).Adj
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by
ext
instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by
Mathlib.Combinatorics.SimpleGraph.Subgraph.460_0.BlhiAiIDADcXv8t
instance : CompletelyDistribLattice G.Subgraph
Mathlib_Combinatorics_SimpleGraph_Subgraph
case h.h.a ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V src✝ : DistribLattice (Subgraph G) := distribLattice ι✝ : Type u κ✝ : ι✝ → Type u f : (a : ι✝) → κ✝ a → Subgraph G x✝¹ x✝ : V ⊢ Adj (⨅ a, ⨆ b, f a b) x✝¹ x✝ ↔ Adj (⨆ g, ⨅ a, f a (g a)) x✝¹ x✝
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext;
simp [Classical.skolem]
instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext;
Mathlib.Combinatorics.SimpleGraph.Subgraph.460_0.BlhiAiIDADcXv8t
instance : CompletelyDistribLattice G.Subgraph
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) v : V ⊢ neighborSet (sSup s) v = ⋃ G' ∈ s, neighborSet G' v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by
ext
@[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.506_0.BlhiAiIDADcXv8t
@[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v
Mathlib_Combinatorics_SimpleGraph_Subgraph
case h ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) v x✝ : V ⊢ x✝ ∈ neighborSet (sSup s) v ↔ x✝ ∈ ⋃ G' ∈ s, neighborSet G' v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext
simp
@[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext
Mathlib.Combinatorics.SimpleGraph.Subgraph.506_0.BlhiAiIDADcXv8t
@[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) v : V ⊢ neighborSet (sInf s) v = (⋂ G' ∈ s, neighborSet G' v) ∩ SimpleGraph.neighborSet G v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by
ext
@[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.513_0.BlhiAiIDADcXv8t
@[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v
Mathlib_Combinatorics_SimpleGraph_Subgraph
case h ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) v x✝ : V ⊢ x✝ ∈ neighborSet (sInf s) v ↔ x✝ ∈ (⋂ G' ∈ s, neighborSet G' v) ∩ SimpleGraph.neighborSet G v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext
simp
@[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext
Mathlib.Combinatorics.SimpleGraph.Subgraph.513_0.BlhiAiIDADcXv8t
@[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G v : V ⊢ neighborSet (⨆ i, f i) v = ⋃ i, neighborSet (f i) v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by
simp [iSup]
@[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.520_0.BlhiAiIDADcXv8t
@[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G v : V ⊢ neighborSet (⨅ i, f i) v = (⋂ i, neighborSet (f i) v) ∩ SimpleGraph.neighborSet G v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by
simp [iInf]
@[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.525_0.BlhiAiIDADcXv8t
@[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V ⊢ ∀ (x y : V), ⟦(x, y)⟧ ∈ edgeSet ⊥ ↔ ⟦(x, y)⟧ ∈ ∅
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by
simp
@[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by
Mathlib.Combinatorics.SimpleGraph.Subgraph.534_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V H₁ H₂ : Subgraph G ⊢ ∀ (x y : V), ⟦(x, y)⟧ ∈ edgeSet (H₁ ⊓ H₂) ↔ ⟦(x, y)⟧ ∈ edgeSet H₁ ∩ edgeSet H₂
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by
simp
@[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by
Mathlib.Combinatorics.SimpleGraph.Subgraph.539_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V H₁ H₂ : Subgraph G ⊢ ∀ (x y : V), ⟦(x, y)⟧ ∈ edgeSet (H₁ ⊔ H₂) ↔ ⟦(x, y)⟧ ∈ edgeSet H₁ ∪ edgeSet H₂
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by
simp
@[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by
Mathlib.Combinatorics.SimpleGraph.Subgraph.544_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) ⊢ edgeSet (sSup s) = ⋃ G' ∈ s, edgeSet G'
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by
ext e
@[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.549_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G'
Mathlib_Combinatorics_SimpleGraph_Subgraph
case h ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) e : Sym2 V ⊢ e ∈ edgeSet (sSup s) ↔ e ∈ ⋃ G' ∈ s, edgeSet G'
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e
induction e using Sym2.ind
@[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e
Mathlib.Combinatorics.SimpleGraph.Subgraph.549_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G'
Mathlib_Combinatorics_SimpleGraph_Subgraph
case h.h ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) x✝ y✝ : V ⊢ ⟦(x✝, y✝)⟧ ∈ edgeSet (sSup s) ↔ ⟦(x✝, y✝)⟧ ∈ ⋃ G' ∈ s, edgeSet G'
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind
simp
@[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind
Mathlib.Combinatorics.SimpleGraph.Subgraph.549_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G'
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) ⊢ edgeSet (sInf s) = (⋂ G' ∈ s, edgeSet G') ∩ SimpleGraph.edgeSet G
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by
ext e
@[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.556_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
case h ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) e : Sym2 V ⊢ e ∈ edgeSet (sInf s) ↔ e ∈ (⋂ G' ∈ s, edgeSet G') ∩ SimpleGraph.edgeSet G
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e
induction e using Sym2.ind
@[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e
Mathlib.Combinatorics.SimpleGraph.Subgraph.556_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
case h.h ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V s : Set (Subgraph G) x✝ y✝ : V ⊢ ⟦(x✝, y✝)⟧ ∈ edgeSet (sInf s) ↔ ⟦(x✝, y✝)⟧ ∈ (⋂ G' ∈ s, edgeSet G') ∩ SimpleGraph.edgeSet G
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind
simp
@[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind
Mathlib.Combinatorics.SimpleGraph.Subgraph.556_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G ⊢ edgeSet (⨆ i, f i) = ⋃ i, edgeSet (f i)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by
simp [iSup]
@[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.564_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V f : ι → Subgraph G ⊢ edgeSet (⨅ i, f i) = (⋂ i, edgeSet (f i)) ∩ SimpleGraph.edgeSet G
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by
simp [iInf]
@[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.569_0.BlhiAiIDADcXv8t
@[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V H₁ H₂ : Subgraph G h : Disjoint H₁ H₂ ⊢ SimpleGraph.Subgraph.edgeSet H₁ ⊓ SimpleGraph.Subgraph.edgeSet H₂ ≤ ⊥
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by
simpa using edgeSet_mono h.le_bot
theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by
Mathlib.Combinatorics.SimpleGraph.Subgraph.629_0.BlhiAiIDADcXv8t
theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G ⊢ ∀ {v w : W}, Relation.Map H.Adj (⇑f) (⇑f) v w → SimpleGraph.Adj G' v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.634_0.BlhiAiIDADcXv8t
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
case intro.intro.intro.intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G u v : V h : Adj H u v ⊢ SimpleGraph.Adj G' (f u) (f v)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact f.map_rel (H.adj_sub h)
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩
Mathlib.Combinatorics.SimpleGraph.Subgraph.634_0.BlhiAiIDADcXv8t
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G ⊢ ∀ {v w : W}, Relation.Map H.Adj (⇑f) (⇑f) v w → v ∈ ⇑f '' H.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.634_0.BlhiAiIDADcXv8t
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
case intro.intro.intro.intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G u v : V h : Adj H u v ⊢ f u ∈ ⇑f '' H.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact Set.mem_image_of_mem _ (H.edge_vert h)
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩
Mathlib.Combinatorics.SimpleGraph.Subgraph.634_0.BlhiAiIDADcXv8t
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G ⊢ Symmetric (Relation.Map H.Adj ⇑f ⇑f)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.634_0.BlhiAiIDADcXv8t
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
case intro.intro.intro.intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G u v : V h : Adj H u v ⊢ Relation.Map H.Adj (⇑f) (⇑f) (f v) (f u)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact ⟨v, u, H.symm h, rfl, rfl⟩
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩
Mathlib.Combinatorics.SimpleGraph.Subgraph.634_0.BlhiAiIDADcXv8t
/-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' ⊢ Monotone (Subgraph.map f)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by
intro H H' h
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G h : H ≤ H' ⊢ Subgraph.map f H ≤ Subgraph.map f H'
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h
constructor
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case left ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G h : H ≤ H' ⊢ (Subgraph.map f H).verts ⊆ (Subgraph.map f H').verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor ·
intro
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case left ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G h : H ≤ H' a✝ : W ⊢ a✝ ∈ (Subgraph.map f H).verts → a✝ ∈ (Subgraph.map f H').verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro
simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case left ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G h : H ≤ H' a✝ : W ⊢ ∀ x ∈ H.verts, f x = a✝ → ∃ x ∈ H'.verts, f x = a✝
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro v hv rfl
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case left ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G h : H ≤ H' v : V hv : v ∈ H.verts ⊢ ∃ x ∈ H'.verts, f x = f v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl
exact ⟨_, h.1 hv, rfl⟩
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case right ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G h : H ≤ H' ⊢ ∀ ⦃v w : W⦄, Adj (Subgraph.map f H) v w → Adj (Subgraph.map f H') v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ ·
rintro _ _ ⟨u, v, ha, rfl, rfl⟩
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case right.intro.intro.intro.intro ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G h : H ≤ H' u v : V ha : Adj H u v ⊢ Adj (Subgraph.map f H') (f u) (f v)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩
exact ⟨_, _, h.2 ha, rfl, rfl⟩
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩
Mathlib.Combinatorics.SimpleGraph.Subgraph.650_0.BlhiAiIDADcXv8t
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a b : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G ⊢ Subgraph.map f (H ⊔ H') = Subgraph.map f H ⊔ Subgraph.map f H'
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by
ext1
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case verts ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a b : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G ⊢ (Subgraph.map f (H ⊔ H')).verts = (Subgraph.map f H ⊔ Subgraph.map f H').verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 ·
simp only [Set.image_union, map_verts, verts_sup]
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a b : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G ⊢ (Subgraph.map f (H ⊔ H')).Adj = (Subgraph.map f H ⊔ Subgraph.map f H').Adj
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] ·
ext
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a b : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G x✝¹ x✝ : W ⊢ Adj (Subgraph.map f (H ⊔ H')) x✝¹ x✝ ↔ Adj (Subgraph.map f H ⊔ Subgraph.map f H') x✝¹ x✝
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext
simp only [Relation.Map, map_adj, sup_adj]
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a b : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G x✝¹ x✝ : W ⊢ (∃ a b, (Adj H a b ∨ Adj H' a b) ∧ f a = x✝¹ ∧ f b = x✝) ↔ (∃ a b, Adj H a b ∧ f a = x✝¹ ∧ f b = x✝) ∨ ∃ a b, Adj H' a b ∧ f a = x✝¹ ∧ f b = x✝
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj]
constructor
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj]
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a.mp ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a b : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G x✝¹ x✝ : W ⊢ (∃ a b, (Adj H a b ∨ Adj H' a b) ∧ f a = x✝¹ ∧ f b = x✝) → (∃ a b, Adj H a b ∧ f a = x✝¹ ∧ f b = x✝) ∨ ∃ a b, Adj H' a b ∧ f a = x✝¹ ∧ f b = x✝
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor ·
rintro ⟨a, b, h | h, rfl, rfl⟩
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a.mp.intro.intro.intro.inl.intro ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a✝ b✝ : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G a b : V h : Adj H a b ⊢ (∃ a_1 b_1, Adj H a_1 b_1 ∧ f a_1 = f a ∧ f b_1 = f b) ∨ ∃ a_1 b_1, Adj H' a_1 b_1 ∧ f a_1 = f a ∧ f b_1 = f b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ ·
exact Or.inl ⟨_, _, h, rfl, rfl⟩
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a.mp.intro.intro.intro.inr.intro ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a✝ b✝ : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G a b : V h : Adj H' a b ⊢ (∃ a_1 b_1, Adj H a_1 b_1 ∧ f a_1 = f a ∧ f b_1 = f b) ∨ ∃ a_1 b_1, Adj H' a_1 b_1 ∧ f a_1 = f a ∧ f b_1 = f b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ ·
exact Or.inr ⟨_, _, h, rfl, rfl⟩
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a.mpr ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a b : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G x✝¹ x✝ : W ⊢ ((∃ a b, Adj H a b ∧ f a = x✝¹ ∧ f b = x✝) ∨ ∃ a b, Adj H' a b ∧ f a = x✝¹ ∧ f b = x✝) → ∃ a b, (Adj H a b ∨ Adj H' a b) ∧ f a = x✝¹ ∧ f b = x✝
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ ·
rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩)
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a.mpr.inl.intro.intro.intro.intro ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a✝ b✝ : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G a b : V h : Adj H a b ⊢ ∃ a_1 b_1, (Adj H a_1 b_1 ∨ Adj H' a_1 b_1) ∧ f a_1 = f a ∧ f b_1 = f b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) ·
exact ⟨_, _, Or.inl h, rfl, rfl⟩
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case Adj.h.h.a.mpr.inr.intro.intro.intro.intro ι : Sort u_1 V : Type u W : Type v G✝ : SimpleGraph V G₁ G₂ : Subgraph G✝ a✝ b✝ : V G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : Subgraph G a b : V h : Adj H' a b ⊢ ∃ a_1 b_1, (Adj H a_1 b_1 ∨ Adj H' a_1 b_1) ∧ f a_1 = f a ∧ f b_1 = f b
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ ·
exact ⟨_, _, Or.inr h, rfl, rfl⟩
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.661_0.BlhiAiIDADcXv8t
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' ⊢ Monotone (Subgraph.comap f)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by
intro H H' h
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' ⊢ Subgraph.comap f H ≤ Subgraph.comap f H'
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h
constructor
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case left ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' ⊢ (Subgraph.comap f H).verts ⊆ (Subgraph.comap f H').verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor ·
intro
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case left ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' a✝ : V ⊢ a✝ ∈ (Subgraph.comap f H).verts → a✝ ∈ (Subgraph.comap f H').verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro
simp only [comap_verts, Set.mem_preimage]
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case left ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' a✝ : V ⊢ f a✝ ∈ H.verts → f a✝ ∈ H'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage]
apply h.1
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage]
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case right ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' ⊢ ∀ ⦃v w : V⦄, Adj (Subgraph.comap f H) v w → Adj (Subgraph.comap f H') v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 ·
intro v w
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case right ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' v w : V ⊢ Adj (Subgraph.comap f H) v w → Adj (Subgraph.comap f H') v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w
simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff]
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case right ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' v w : V ⊢ SimpleGraph.Adj G v w → Adj H (f v) (f w) → Adj H' (f v) (f w)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff]
intro
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff]
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
case right ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H H' : Subgraph G' h : H ≤ H' v w : V a✝ : SimpleGraph.Adj G v w ⊢ Adj H (f v) (f w) → Adj H' (f v) (f w)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro
apply h.2
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro
Mathlib.Combinatorics.SimpleGraph.Subgraph.686_0.BlhiAiIDADcXv8t
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' ⊢ Subgraph.map f H ≤ H' ↔ H ≤ Subgraph.comap f H'
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by
refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_1 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : Subgraph.map f H ≤ H' v : V hv : v ∈ H.verts ⊢ v ∈ (Subgraph.comap f H').verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ ·
simp only [comap_verts, Set.mem_preimage]
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_1 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : Subgraph.map f H ≤ H' v : V hv : v ∈ H.verts ⊢ f v ∈ H'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage]
exact h.1 ⟨v, hv, rfl⟩
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage]
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_2 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : Subgraph.map f H ≤ H' v w : V hvw : Adj H v w ⊢ Adj (Subgraph.comap f H') v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ ·
simp only [H.adj_sub hvw, comap_adj, true_and_iff]
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_2 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : Subgraph.map f H ≤ H' v w : V hvw : Adj H v w ⊢ Adj H' (f v) (f w)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff]
exact h.2 ⟨v, w, hvw, rfl, rfl⟩
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff]
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_3 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : H ≤ Subgraph.comap f H' v : W ⊢ v ∈ (Subgraph.map f H).verts → v ∈ H'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ ·
simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_3 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : H ≤ Subgraph.comap f H' v : W ⊢ ∀ x ∈ H.verts, f x = v → v ∈ H'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro w hw rfl
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_3 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : H ≤ Subgraph.comap f H' w : V hw : w ∈ H.verts ⊢ f w ∈ H'.verts
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl
exact h.1 hw
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_4 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : H ≤ Subgraph.comap f H' v w : W ⊢ Adj (Subgraph.map f H) v w → Adj H' v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw ·
simp only [Relation.Map, map_adj, forall_exists_index, and_imp]
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw ·
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_4 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : H ≤ Subgraph.comap f H' v w : W ⊢ ∀ (x x_1 : V), Adj H x x_1 → f x = v → f x_1 = w → Adj H' v w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp]
rintro u u' hu rfl rfl
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp]
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
case refine'_4 ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : SimpleGraph W f : G →g G' H : Subgraph G H' : Subgraph G' h : H ≤ Subgraph.comap f H' u u' : V hu : Adj H u u' ⊢ Adj H' (f u) (f u')
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl
exact (h.2 hu).2
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl
Mathlib.Combinatorics.SimpleGraph.Subgraph.698_0.BlhiAiIDADcXv8t
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V x y : Subgraph G h : x ≤ y ⊢ Function.Injective ⇑(inclusion h)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by
intro v w h
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.721_0.BlhiAiIDADcXv8t
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h)
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V x y : Subgraph G h✝ : x ≤ y v w : ↑x.verts h : (inclusion h✝) v = (inclusion h✝) w ⊢ v = w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h
rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h
Mathlib.Combinatorics.SimpleGraph.Subgraph.721_0.BlhiAiIDADcXv8t
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h)
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V x y : Subgraph G h✝ : x ≤ y v w : ↑x.verts h : ↑(RelHomClass.toFunLike.1 { toFun := fun v => { val := ↑v, property := (_ : ↑v ∈ y.verts) }, map_rel' := (_ : ∀ {a b : ↑x.verts}, SimpleGraph.Adj (Subgraph.coe x) a b → Adj y ↑((fun v => { val := ↑v, property := (_ : ↑v ∈ y.verts) }) a) ↑((fun v => { val := ↑v, property := (_ : ↑v ∈ y.verts) }) b)) } v) = ↑(RelHomClass.toFunLike.1 { toFun := fun v => { val := ↑v, property := (_ : ↑v ∈ y.verts) }, map_rel' := (_ : ∀ {a b : ↑x.verts}, SimpleGraph.Adj (Subgraph.coe x) a b → Adj y ↑((fun v => { val := ↑v, property := (_ : ↑v ∈ y.verts) }) a) ↑((fun v => { val := ↑v, property := (_ : ↑v ∈ y.verts) }) b)) } w) ⊢ v = w
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h
exact Subtype.ext h
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h
Mathlib.Combinatorics.SimpleGraph.Subgraph.721_0.BlhiAiIDADcXv8t
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h)
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V inst✝¹ : Fintype V G' : Subgraph G inst✝ : Fintype ↑G'.verts h : IsSpanning G' ⊢ Finset.card (Set.toFinset G'.verts) = Fintype.card V
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h exact Subtype.ext h #align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective /-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/ @[simps] protected def hom (x : Subgraph G) : x.coe →g G where toFun v := v map_rel' := x.adj_sub #align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom @[simp] lemma coe_hom (x : Subgraph G) : (x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl theorem hom.injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext #align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective /-- There is an induced injective homomorphism of a subgraph of `G` as a spanning subgraph into `G`. -/ @[simps] def spanningHom (x : Subgraph G) : x.spanningCoe →g G where toFun := id map_rel' := x.adj_sub #align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id #align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' #align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) : DecidablePred (· ∈ G'.neighborSet v) := h v #align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred /-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/ instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj] [Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v) #align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt /-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph. This is not an instance because `G''` cannot be inferred. -/ def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts) [Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v) instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] : Fintype (G'.coe.neighborSet v) := Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm #align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by
simp only [isSpanning_iff.1 h, Set.toFinset_univ]
theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.786_0.BlhiAiIDADcXv8t
theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V inst✝¹ : Fintype V G' : Subgraph G inst✝ : Fintype ↑G'.verts h : IsSpanning G' ⊢ Finset.card Finset.univ = Fintype.card V
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h exact Subtype.ext h #align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective /-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/ @[simps] protected def hom (x : Subgraph G) : x.coe →g G where toFun v := v map_rel' := x.adj_sub #align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom @[simp] lemma coe_hom (x : Subgraph G) : (x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl theorem hom.injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext #align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective /-- There is an induced injective homomorphism of a subgraph of `G` as a spanning subgraph into `G`. -/ @[simps] def spanningHom (x : Subgraph G) : x.spanningCoe →g G where toFun := id map_rel' := x.adj_sub #align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id #align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' #align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) : DecidablePred (· ∈ G'.neighborSet v) := h v #align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred /-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/ instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj] [Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v) #align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt /-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph. This is not an instance because `G''` cannot be inferred. -/ def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts) [Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v) instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] : Fintype (G'.coe.neighborSet v) := Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm #align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by simp only [isSpanning_iff.1 h, Set.toFinset_univ]
congr
theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by simp only [isSpanning_iff.1 h, Set.toFinset_univ]
Mathlib.Combinatorics.SimpleGraph.Subgraph.786_0.BlhiAiIDADcXv8t
theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G v : V inst✝ : Fintype ↑(neighborSet G' v) ⊢ Finset.card (Set.toFinset (neighborSet G' v)) = degree G' v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h exact Subtype.ext h #align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective /-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/ @[simps] protected def hom (x : Subgraph G) : x.coe →g G where toFun v := v map_rel' := x.adj_sub #align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom @[simp] lemma coe_hom (x : Subgraph G) : (x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl theorem hom.injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext #align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective /-- There is an induced injective homomorphism of a subgraph of `G` as a spanning subgraph into `G`. -/ @[simps] def spanningHom (x : Subgraph G) : x.spanningCoe →g G where toFun := id map_rel' := x.adj_sub #align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id #align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' #align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) : DecidablePred (· ∈ G'.neighborSet v) := h v #align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred /-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/ instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj] [Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v) #align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt /-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph. This is not an instance because `G''` cannot be inferred. -/ def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts) [Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v) instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] : Fintype (G'.coe.neighborSet v) := Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm #align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by simp only [isSpanning_iff.1 h, Set.toFinset_univ] congr #align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts /-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/ def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ := Fintype.card (G'.neighborSet v) #align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] : (G'.neighborSet v).toFinset.card = G'.degree v := by
rw [degree, Set.toFinset_card]
theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] : (G'.neighborSet v).toFinset.card = G'.degree v := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.797_0.BlhiAiIDADcXv8t
theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] : (G'.neighborSet v).toFinset.card = G'.degree v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G v : V inst✝¹ : Fintype ↑(neighborSet G' v) inst✝ : Fintype ↑(SimpleGraph.neighborSet G v) ⊢ degree G' v ≤ SimpleGraph.degree G v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h exact Subtype.ext h #align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective /-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/ @[simps] protected def hom (x : Subgraph G) : x.coe →g G where toFun v := v map_rel' := x.adj_sub #align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom @[simp] lemma coe_hom (x : Subgraph G) : (x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl theorem hom.injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext #align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective /-- There is an induced injective homomorphism of a subgraph of `G` as a spanning subgraph into `G`. -/ @[simps] def spanningHom (x : Subgraph G) : x.spanningCoe →g G where toFun := id map_rel' := x.adj_sub #align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id #align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' #align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) : DecidablePred (· ∈ G'.neighborSet v) := h v #align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred /-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/ instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj] [Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v) #align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt /-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph. This is not an instance because `G''` cannot be inferred. -/ def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts) [Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v) instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] : Fintype (G'.coe.neighborSet v) := Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm #align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by simp only [isSpanning_iff.1 h, Set.toFinset_univ] congr #align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts /-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/ def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ := Fintype.card (G'.neighborSet v) #align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] : (G'.neighborSet v).toFinset.card = G'.degree v := by rw [degree, Set.toFinset_card] #align simple_graph.subgraph.finset_card_neighbor_set_eq_degree SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by
rw [← card_neighborSet_eq_degree]
theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.802_0.BlhiAiIDADcXv8t
theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G v : V inst✝¹ : Fintype ↑(neighborSet G' v) inst✝ : Fintype ↑(SimpleGraph.neighborSet G v) ⊢ degree G' v ≤ Fintype.card ↑(SimpleGraph.neighborSet G v)
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h exact Subtype.ext h #align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective /-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/ @[simps] protected def hom (x : Subgraph G) : x.coe →g G where toFun v := v map_rel' := x.adj_sub #align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom @[simp] lemma coe_hom (x : Subgraph G) : (x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl theorem hom.injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext #align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective /-- There is an induced injective homomorphism of a subgraph of `G` as a spanning subgraph into `G`. -/ @[simps] def spanningHom (x : Subgraph G) : x.spanningCoe →g G where toFun := id map_rel' := x.adj_sub #align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id #align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' #align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) : DecidablePred (· ∈ G'.neighborSet v) := h v #align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred /-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/ instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj] [Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v) #align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt /-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph. This is not an instance because `G''` cannot be inferred. -/ def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts) [Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v) instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] : Fintype (G'.coe.neighborSet v) := Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm #align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by simp only [isSpanning_iff.1 h, Set.toFinset_univ] congr #align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts /-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/ def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ := Fintype.card (G'.neighborSet v) #align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] : (G'.neighborSet v).toFinset.card = G'.degree v := by rw [degree, Set.toFinset_card] #align simple_graph.subgraph.finset_card_neighbor_set_eq_degree SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by rw [← card_neighborSet_eq_degree]
exact Set.card_le_of_subset (G'.neighborSet_subset v)
theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by rw [← card_neighborSet_eq_degree]
Mathlib.Combinatorics.SimpleGraph.Subgraph.802_0.BlhiAiIDADcXv8t
theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G v : ↑G'.verts inst✝¹ : Fintype ↑(SimpleGraph.neighborSet (Subgraph.coe G') v) inst✝ : Fintype ↑(neighborSet G' ↑v) ⊢ SimpleGraph.degree (Subgraph.coe G') v = degree G' ↑v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h exact Subtype.ext h #align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective /-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/ @[simps] protected def hom (x : Subgraph G) : x.coe →g G where toFun v := v map_rel' := x.adj_sub #align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom @[simp] lemma coe_hom (x : Subgraph G) : (x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl theorem hom.injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext #align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective /-- There is an induced injective homomorphism of a subgraph of `G` as a spanning subgraph into `G`. -/ @[simps] def spanningHom (x : Subgraph G) : x.spanningCoe →g G where toFun := id map_rel' := x.adj_sub #align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id #align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' #align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) : DecidablePred (· ∈ G'.neighborSet v) := h v #align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred /-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/ instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj] [Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v) #align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt /-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph. This is not an instance because `G''` cannot be inferred. -/ def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts) [Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v) instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] : Fintype (G'.coe.neighborSet v) := Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm #align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by simp only [isSpanning_iff.1 h, Set.toFinset_univ] congr #align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts /-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/ def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ := Fintype.card (G'.neighborSet v) #align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] : (G'.neighborSet v).toFinset.card = G'.degree v := by rw [degree, Set.toFinset_card] #align simple_graph.subgraph.finset_card_neighbor_set_eq_degree SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by rw [← card_neighborSet_eq_degree] exact Set.card_le_of_subset (G'.neighborSet_subset v) #align simple_graph.subgraph.degree_le SimpleGraph.Subgraph.degree_le theorem degree_le' (G' G'' : Subgraph G) (h : G' ≤ G'') (v : V) [Fintype (G'.neighborSet v)] [Fintype (G''.neighborSet v)] : G'.degree v ≤ G''.degree v := Set.card_le_of_subset (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.degree_le' SimpleGraph.Subgraph.degree_le' @[simp] theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)] [Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v := by
rw [← card_neighborSet_eq_degree]
@[simp] theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)] [Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v := by
Mathlib.Combinatorics.SimpleGraph.Subgraph.813_0.BlhiAiIDADcXv8t
@[simp] theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)] [Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v
Mathlib_Combinatorics_SimpleGraph_Subgraph
ι : Sort u_1 V : Type u W : Type v G : SimpleGraph V G₁ G₂ : Subgraph G a b : V G' : Subgraph G v : ↑G'.verts inst✝¹ : Fintype ↑(SimpleGraph.neighborSet (Subgraph.coe G') v) inst✝ : Fintype ↑(neighborSet G' ↑v) ⊢ Fintype.card ↑(SimpleGraph.neighborSet (Subgraph.coe G') v) = degree G' ↑v
/- Copyright (c) 2021 Hunter Monroe. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Hunter Monroe, Kyle Miller, Alena Gusakov -/ import Mathlib.Combinatorics.SimpleGraph.Basic #align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b" /-! # Subgraphs of a simple graph A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the endpoints of each edge are present in the vertex subset. The edge subset is formalized as a sub-relation of the adjacency relation of the simple graph. ## Main definitions * `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`. * `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their `SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions. * `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`. (In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.) * `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and `Subgraph.IsInduced` for whether a subgraph is an induced subgraph. * Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`. * `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it into a member of the larger graph's `SimpleGraph.Subgraph` type. * Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs (`Subgraph.map`). ## Implementation notes * Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to this kind of subobject. ## Todo * Images of graph homomorphisms as subgraphs. -/ universe u v namespace SimpleGraph /-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice. Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then `Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/ @[ext] structure Subgraph {V : Type u} (G : SimpleGraph V) where verts : Set V Adj : V → V → Prop adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously` #align simple_graph.subgraph SimpleGraph.Subgraph initialize_simps_projections SimpleGraph.Subgraph (Adj → adj) variable {ι : Sort*} {V : Type u} {W : Type v} /-- The one-vertex subgraph. -/ @[simps] protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where verts := {v} Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm _ _ := False.elim #align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph /-- The one-edge subgraph. -/ @[simps] def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where verts := {v, w} Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧ adj_sub h := by rw [← G.mem_edgeSet, ← h] exact hvw edge_vert {a b} h := by apply_fun fun e ↦ a ∈ e at h simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h exact h #align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj namespace Subgraph variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V} protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj := fun v h ↦ G.loopless v (G'.adj_sub h) #align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v := ⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩ #align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm @[symm] theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u := G'.symm h #align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v := H.adj_sub h #align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts := H.edge_vert h #align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts := h.symm.fst_mem #align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v := h.adj_sub.ne #align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne /-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/ @[simps] protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where Adj v w := G'.Adj v w symm _ _ h := G'.symm h loopless v h := loopless G v (G'.adj_sub h) #align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe @[simp] theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub -- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`. protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) : H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h #align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe /-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/ def IsSpanning (G' : Subgraph G) : Prop := ∀ v : V, v ∈ G'.verts #align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ := Set.eq_univ_iff_forall.symm #align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff /-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning subgraph, then `G'.spanningCoe` yields an isomorphic graph. In general, this adds in all vertices from `V` as isolated vertices. -/ @[simps] protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where Adj := G'.Adj symm := G'.symm loopless v hv := G.loopless v (G'.adj_sub hv) #align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe @[simp] theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) : G.Adj u v := G'.adj_sub h #align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by simp [Subgraph.spanningCoe] #align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj /-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/ @[simps] def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe where toFun v := ⟨v, h v⟩ invFun v := v left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning /-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent in `G`. -/ def IsInduced (G' : Subgraph G) : Prop := ∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w #align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced /-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/ def support (H : Subgraph G) : Set V := Rel.dom H.Adj #align simple_graph.subgraph.support SimpleGraph.Subgraph.support theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts := fun _ ⟨_, h⟩ ↦ H.edge_vert h #align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts /-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/ def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w} #align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v := fun _ ↦ G'.adj_sub #align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts := fun _ h ↦ G'.edge_vert (adj_symm G' h) #align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts @[simp] theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet /-- A subgraph as a graph has equivalent neighbor sets. -/ def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v where toFun w := ⟨w, w.2⟩ invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩ left_inv _ := rfl right_inv _ := rfl #align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv /-- The edge set of `G'` consists of a subset of edges of `G`. -/ def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm #align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet := Sym2.ind (fun _ _ ↦ G'.adj_sub) #align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset @[simp] theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl #align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet) (hv : v ∈ e) : v ∈ G'.verts := by revert hv refine' Sym2.ind (fun v w he ↦ _) e he intro hv rcases Sym2.mem_iff.mp hv with (rfl | rfl) · exact G'.edge_vert he · exact G'.edge_vert (G'.symm he) #align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge /-- The `incidenceSet` is the set of edges incident to a given vertex. -/ def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e} #align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G.incidenceSet v := fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩ #align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet := fun _ h ↦ h.1 #align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset /-- Give a vertex as an element of the subgraph's vertex type. -/ @[reducible] def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩ #align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert /-- Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities. See Note [range copy pattern]. -/ def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where verts := V'' Adj := adj' adj_sub := hadj.symm ▸ G'.adj_sub edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert symm := hadj.symm ▸ G'.symm #align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts) (adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' := Subgraph.ext _ _ hV hadj #align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq /-- The union of two subgraphs. -/ instance : Sup G.Subgraph where sup G₁ G₂ := { verts := G₁.verts ∪ G₂.verts Adj := G₁.Adj ⊔ G₂.Adj adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm } /-- The intersection of two subgraphs. -/ instance : Inf G.Subgraph where inf G₁ G₂ := { verts := G₁.verts ∩ G₂.verts Adj := G₁.Adj ⊓ G₂.Adj adj_sub := fun hab => G₁.adj_sub hab.1 edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm } /-- The `top` subgraph is `G` as a subgraph of itself. -/ instance : Top G.Subgraph where top := { verts := Set.univ Adj := G.Adj adj_sub := id edge_vert := @fun v _ _ => Set.mem_univ v symm := G.symm } /-- The `bot` subgraph is the subgraph with no vertices or edges. -/ instance : Bot G.Subgraph where bot := { verts := ∅ Adj := ⊥ adj_sub := False.elim edge_vert := False.elim symm := fun _ _ => id } instance : SupSet G.Subgraph where sSup s := { verts := ⋃ G' ∈ s, verts G' Adj := fun a b => ∃ G' ∈ s, Adj G' a b adj_sub := by rintro a b ⟨G', -, hab⟩ exact G'.adj_sub hab edge_vert := by rintro a b ⟨G', hG', hab⟩ exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab) symm := fun a b h => by simpa [adj_comm] using h } instance : InfSet G.Subgraph where sInf s := { verts := ⋂ G' ∈ s, verts G' Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b adj_sub := And.right edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG' symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm } @[simp] theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj @[simp] theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b := Iff.rfl #align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj @[simp] theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b := Iff.rfl #align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj @[simp] theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b := not_false #align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj @[simp] theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts := rfl #align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup @[simp] theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts := rfl #align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf @[simp] theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ := rfl #align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top @[simp] theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ := rfl #align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot @[simp] theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b := Iff.rfl #align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj @[simp] theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b := Iff.rfl #align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj @[simp] theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by simp [iSup] #align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj @[simp] theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by simp [iInf] #align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) : (sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b := sInf_adj.trans <| and_iff_left_of_imp <| by obtain ⟨G', hG'⟩ := hs exact fun h => G'.adj_sub (h _ hG') #align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)] simp #align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty @[simp] theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup @[simp] theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' := rfl #align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf @[simp] theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup] #align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup @[simp] theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf] #align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf theorem verts_spanningCoe_injective : (fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by intro G₁ G₂ h rw [Prod.ext_iff] at h exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2) /-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and `∀ a b, G₁.adj a b → G₂.adj a b`. -/ instance distribLattice : DistribLattice G.Subgraph := { show DistribLattice G.Subgraph from verts_spanningCoe_injective.distribLattice _ (fun _ _ => rfl) fun _ _ => rfl with le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w } instance : BoundedOrder (Subgraph G) where top := ⊤ bot := ⊥ le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩ -- Note that subgraphs do not form a Boolean algebra, because of `verts`. instance : CompletelyDistribLattice G.Subgraph := { Subgraph.distribLattice with le := (· ≤ ·) sup := (· ⊔ ·) inf := (· ⊓ ·) top := ⊤ bot := ⊥ le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩ bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩ sSup := sSup -- porting note: needed `apply` here to modify elaboration; previously the term itself was fine. le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩ sSup_le := fun s G' hG' => ⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by rintro a b ⟨H, hH, hab⟩ exact (hG' _ hH).2 hab⟩ sInf := sInf sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩ le_sInf := fun s G' hG' => ⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab => ⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩ iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq) (by ext; simp [Classical.skolem]) } @[simps] instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩ #align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited @[simp] theorem neighborSet_sup {H H' : G.Subgraph} (v : V) : (H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup @[simp] theorem neighborSet_inf {H H' : G.Subgraph} (v : V) : (H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf @[simp] theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl #align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top @[simp] theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl #align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot @[simp] theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) : (sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by ext simp #align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup @[simp] theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) : (sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by ext simp #align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf @[simp] theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) : (⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup] #align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup @[simp] theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) : (⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf] #align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf @[simp] theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl #align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top @[simp] theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot @[simp] theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf @[simp] theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet := Set.ext <| Sym2.ind (by simp) #align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup @[simp] theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup @[simp] theorem edgeSet_sInf (s : Set G.Subgraph) : (sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by ext e induction e using Sym2.ind simp #align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf @[simp] theorem edgeSet_iSup (f : ι → G.Subgraph) : (⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup] #align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup @[simp] theorem edgeSet_iInf (f : ι → G.Subgraph) : (⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by simp [iInf] #align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf @[simp] theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl #align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top @[simp] theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl #align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot /-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/ @[simps] def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where verts := Set.univ Adj := H.Adj adj_sub e := h e edge_vert _ := Set.mem_univ _ symm := H.symm #align simple_graph.to_subgraph SimpleGraph.toSubgraph theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support := Rel.dom_mono h.2 #align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) : (toSubgraph H h).IsSpanning := Set.mem_univ #align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe := h.2 #align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le /-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/ def topEquiv : (⊤ : Subgraph G).coe ≃g G where toFun v := ↑v invFun v := ⟨v, trivial⟩ left_inv _ := rfl right_inv _ := rfl map_rel_iff' := Iff.rfl #align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv /-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty vertex type. -/ def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where toFun v := v.property.elim invFun v := v.elim left_inv := fun ⟨_, h⟩ ↦ h.elim right_inv v := v.elim map_rel_iff' := Iff.rfl #align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet := Sym2.ind h.2 #align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) : Disjoint H₁.edgeSet H₂.edgeSet := disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot #align disjoint.edge_set Disjoint.edgeSet /-- Graph homomorphisms induce a covariant function on subgraphs. -/ @[simps] protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where verts := f '' H.verts Adj := Relation.Map H.Adj f f adj_sub := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact f.map_rel (H.adj_sub h) edge_vert := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact Set.mem_image_of_mem _ (H.edge_vert h) symm := by rintro _ _ ⟨u, v, h, rfl, rfl⟩ exact ⟨v, u, H.symm h, rfl, rfl⟩ #align simple_graph.subgraph.map SimpleGraph.Subgraph.map theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by intro H H' h constructor · intro simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro v hv rfl exact ⟨_, h.1 hv, rfl⟩ · rintro _ _ ⟨u, v, ha, rfl, rfl⟩ exact ⟨_, _, h.2 ha, rfl, rfl⟩ #align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} : (H ⊔ H').map f = H.map f ⊔ H'.map f := by ext1 · simp only [Set.image_union, map_verts, verts_sup] · ext simp only [Relation.Map, map_adj, sup_adj] constructor · rintro ⟨a, b, h | h, rfl, rfl⟩ · exact Or.inl ⟨_, _, h, rfl, rfl⟩ · exact Or.inr ⟨_, _, h, rfl, rfl⟩ · rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩) · exact ⟨_, _, Or.inl h, rfl, rfl⟩ · exact ⟨_, _, Or.inr h, rfl, rfl⟩ #align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup /-- Graph homomorphisms induce a contravariant function on subgraphs. -/ @[simps] protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where verts := f ⁻¹' H.verts Adj u v := G.Adj u v ∧ H.Adj (f u) (f v) adj_sub h := h.1 edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2) symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩ #align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by intro H H' h constructor · intro simp only [comap_verts, Set.mem_preimage] apply h.1 · intro v w simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff] intro apply h.2 #align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) : H.map f ≤ H' ↔ H ≤ H'.comap f := by refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩ · simp only [comap_verts, Set.mem_preimage] exact h.1 ⟨v, hv, rfl⟩ · simp only [H.adj_sub hvw, comap_adj, true_and_iff] exact h.2 ⟨v, w, hvw, rfl, rfl⟩ · simp only [map_verts, Set.mem_image, forall_exists_index, and_imp] rintro w hw rfl exact h.1 hw · simp only [Relation.Map, map_adj, forall_exists_index, and_imp] rintro u u' hu rfl rfl exact (h.2 hu).2 #align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap /-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of the subgraphs as graphs. -/ @[simps] def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where toFun v := ⟨↑v, And.left h v.property⟩ map_rel' hvw := h.2 hvw #align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by intro v w h rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h exact Subtype.ext h #align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective /-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/ @[simps] protected def hom (x : Subgraph G) : x.coe →g G where toFun v := v map_rel' := x.adj_sub #align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom @[simp] lemma coe_hom (x : Subgraph G) : (x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl theorem hom.injective {x : Subgraph G} : Function.Injective x.hom := fun _ _ ↦ Subtype.ext #align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective /-- There is an induced injective homomorphism of a subgraph of `G` as a spanning subgraph into `G`. -/ @[simps] def spanningHom (x : Subgraph G) : x.spanningCoe →g G where toFun := id map_rel' := x.adj_sub #align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom := fun _ _ ↦ id #align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) : x.neighborSet v ⊆ y.neighborSet v := fun _ h' ↦ h.2 h' #align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) : DecidablePred (· ∈ G'.neighborSet v) := h v #align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred /-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/ instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj] [Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v) #align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt /-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph. This is not an instance because `G''` cannot be inferred. -/ def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts) [Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] : Fintype (G'.neighborSet v) := Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v) instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] : Fintype (G'.coe.neighborSet v) := Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm #align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) : G'.verts.toFinset.card = Fintype.card V := by simp only [isSpanning_iff.1 h, Set.toFinset_univ] congr #align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts /-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/ def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ := Fintype.card (G'.neighborSet v) #align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] : (G'.neighborSet v).toFinset.card = G'.degree v := by rw [degree, Set.toFinset_card] #align simple_graph.subgraph.finset_card_neighbor_set_eq_degree SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] [Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by rw [← card_neighborSet_eq_degree] exact Set.card_le_of_subset (G'.neighborSet_subset v) #align simple_graph.subgraph.degree_le SimpleGraph.Subgraph.degree_le theorem degree_le' (G' G'' : Subgraph G) (h : G' ≤ G'') (v : V) [Fintype (G'.neighborSet v)] [Fintype (G''.neighborSet v)] : G'.degree v ≤ G''.degree v := Set.card_le_of_subset (neighborSet_subset_of_subgraph h v) #align simple_graph.subgraph.degree_le' SimpleGraph.Subgraph.degree_le' @[simp] theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)] [Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v := by rw [← card_neighborSet_eq_degree]
exact Fintype.card_congr (coeNeighborSetEquiv v)
@[simp] theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)] [Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v := by rw [← card_neighborSet_eq_degree]
Mathlib.Combinatorics.SimpleGraph.Subgraph.813_0.BlhiAiIDADcXv8t
@[simp] theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)] [Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v
Mathlib_Combinatorics_SimpleGraph_Subgraph