state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
G' : Subgraph G
s : Set V
⊢ deleteVerts G' (s ∩ G'.verts) = deleteVerts G' s
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
exact h
#align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj
namespace Subgraph
variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V}
protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj :=
fun v h ↦ G.loopless v (G'.adj_sub h)
#align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless
theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v :=
⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩
#align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm
@[symm]
theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm
protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm
protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v :=
H.adj_sub h
#align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub
protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts :=
H.edge_vert h
#align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem
protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts :=
h.symm.fst_mem
#align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem
protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v :=
h.adj_sub.ne
#align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne
/-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/
@[simps]
protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where
Adj v w := G'.Adj v w
symm _ _ h := G'.symm h
loopless v h := loopless G v (G'.adj_sub h)
#align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe
@[simp]
theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub
-- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`.
protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) :
H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h
#align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe
/-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/
def IsSpanning (G' : Subgraph G) : Prop :=
∀ v : V, v ∈ G'.verts
#align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning
theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ :=
Set.eq_univ_iff_forall.symm
#align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff
/-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning
subgraph, then `G'.spanningCoe` yields an isomorphic graph.
In general, this adds in all vertices from `V` as isolated vertices. -/
@[simps]
protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where
Adj := G'.Adj
symm := G'.symm
loopless v hv := G.loopless v (G'.adj_sub hv)
#align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe
@[simp]
theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) :
G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe
theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by
simp [Subgraph.spanningCoe]
#align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj
/-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/
@[simps]
def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe
where
toFun v := ⟨v, h v⟩
invFun v := v
left_inv _ := rfl
right_inv _ := rfl
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning
/-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if
they are adjacent in `G`. -/
def IsInduced (G' : Subgraph G) : Prop :=
∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w
#align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced
/-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/
def support (H : Subgraph G) : Set V := Rel.dom H.Adj
#align simple_graph.subgraph.support SimpleGraph.Subgraph.support
theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support
theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts :=
fun _ ⟨_, h⟩ ↦ H.edge_vert h
#align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts
/-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/
def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w}
#align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet
theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v :=
fun _ ↦ G'.adj_sub
#align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset
theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts :=
fun _ h ↦ G'.edge_vert (adj_symm G' h)
#align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts
@[simp]
theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet
/-- A subgraph as a graph has equivalent neighbor sets. -/
def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v
where
toFun w := ⟨w, w.2⟩
invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩
left_inv _ := rfl
right_inv _ := rfl
#align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv
/-- The edge set of `G'` consists of a subset of edges of `G`. -/
def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm
#align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet
theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet :=
Sym2.ind (fun _ _ ↦ G'.adj_sub)
#align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset
@[simp]
theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet)
(hv : v ∈ e) : v ∈ G'.verts := by
revert hv
refine' Sym2.ind (fun v w he ↦ _) e he
intro hv
rcases Sym2.mem_iff.mp hv with (rfl | rfl)
· exact G'.edge_vert he
· exact G'.edge_vert (G'.symm he)
#align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge
/-- The `incidenceSet` is the set of edges incident to a given vertex. -/
def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e}
#align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet
theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) :
G'.incidenceSet v ⊆ G.incidenceSet v :=
fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩
#align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet
theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet :=
fun _ h ↦ h.1
#align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset
/-- Give a vertex as an element of the subgraph's vertex type. -/
@[reducible]
def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩
#align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert
/--
Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities.
See Note [range copy pattern].
-/
def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts)
(adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where
verts := V''
Adj := adj'
adj_sub := hadj.symm ▸ G'.adj_sub
edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert
symm := hadj.symm ▸ G'.symm
#align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy
theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts)
(adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' :=
Subgraph.ext _ _ hV hadj
#align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq
/-- The union of two subgraphs. -/
instance : Sup G.Subgraph where
sup G₁ G₂ :=
{ verts := G₁.verts ∪ G₂.verts
Adj := G₁.Adj ⊔ G₂.Adj
adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h
edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h
symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm }
/-- The intersection of two subgraphs. -/
instance : Inf G.Subgraph where
inf G₁ G₂ :=
{ verts := G₁.verts ∩ G₂.verts
Adj := G₁.Adj ⊓ G₂.Adj
adj_sub := fun hab => G₁.adj_sub hab.1
edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h
symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm }
/-- The `top` subgraph is `G` as a subgraph of itself. -/
instance : Top G.Subgraph where
top :=
{ verts := Set.univ
Adj := G.Adj
adj_sub := id
edge_vert := @fun v _ _ => Set.mem_univ v
symm := G.symm }
/-- The `bot` subgraph is the subgraph with no vertices or edges. -/
instance : Bot G.Subgraph where
bot :=
{ verts := ∅
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm := fun _ _ => id }
instance : SupSet G.Subgraph where
sSup s :=
{ verts := ⋃ G' ∈ s, verts G'
Adj := fun a b => ∃ G' ∈ s, Adj G' a b
adj_sub := by
rintro a b ⟨G', -, hab⟩
exact G'.adj_sub hab
edge_vert := by
rintro a b ⟨G', hG', hab⟩
exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab)
symm := fun a b h => by simpa [adj_comm] using h }
instance : InfSet G.Subgraph where
sInf s :=
{ verts := ⋂ G' ∈ s, verts G'
Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b
adj_sub := And.right
edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG'
symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm }
@[simp]
theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj
@[simp]
theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj
@[simp]
theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj
@[simp]
theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b :=
not_false
#align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj
@[simp]
theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts :=
rfl
#align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup
@[simp]
theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts :=
rfl
#align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf
@[simp]
theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ :=
rfl
#align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top
@[simp]
theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ :=
rfl
#align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot
@[simp]
theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b :=
Iff.rfl
#align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj
@[simp]
theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj
@[simp]
theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by
simp [iSup]
#align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj
@[simp]
theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by
simp [iInf]
#align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj
theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) :
(sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b :=
sInf_adj.trans <|
and_iff_left_of_imp <| by
obtain ⟨G', hG'⟩ := hs
exact fun h => G'.adj_sub (h _ hG')
#align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty
theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} :
(⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by
rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)]
simp
#align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty
@[simp]
theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' :=
rfl
#align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup
@[simp]
theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' :=
rfl
#align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf
@[simp]
theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup]
#align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup
@[simp]
theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf]
#align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf
theorem verts_spanningCoe_injective :
(fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by
intro G₁ G₂ h
rw [Prod.ext_iff] at h
exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2)
/-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and
`∀ a b, G₁.adj a b → G₂.adj a b`. -/
instance distribLattice : DistribLattice G.Subgraph :=
{ show DistribLattice G.Subgraph from
verts_spanningCoe_injective.distribLattice _
(fun _ _ => rfl) fun _ _ => rfl with
le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w }
instance : BoundedOrder (Subgraph G) where
top := ⊤
bot := ⊥
le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩
bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩
-- Note that subgraphs do not form a Boolean algebra, because of `verts`.
instance : CompletelyDistribLattice G.Subgraph :=
{ Subgraph.distribLattice with
le := (· ≤ ·)
sup := (· ⊔ ·)
inf := (· ⊓ ·)
top := ⊤
bot := ⊥
le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩
bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩
sSup := sSup
-- porting note: needed `apply` here to modify elaboration; previously the term itself was fine.
le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩
sSup_le := fun s G' hG' =>
⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by
rintro a b ⟨H, hH, hab⟩
exact (hG' _ hH).2 hab⟩
sInf := sInf
sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩
le_sInf := fun s G' hG' =>
⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab =>
⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩
iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq)
(by ext; simp [Classical.skolem]) }
@[simps]
instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩
#align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited
@[simp]
theorem neighborSet_sup {H H' : G.Subgraph} (v : V) :
(H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup
@[simp]
theorem neighborSet_inf {H H' : G.Subgraph} (v : V) :
(H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf
@[simp]
theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top
@[simp]
theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl
#align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot
@[simp]
theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) :
(sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by
ext
simp
#align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup
@[simp]
theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) :
(sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by
ext
simp
#align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf
@[simp]
theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) :
(⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup]
#align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup
@[simp]
theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) :
(⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf]
#align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf
@[simp]
theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl
#align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top
@[simp]
theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot
@[simp]
theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf
@[simp]
theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup
@[simp]
theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by
ext e
induction e using Sym2.ind
simp
#align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup
@[simp]
theorem edgeSet_sInf (s : Set G.Subgraph) :
(sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by
ext e
induction e using Sym2.ind
simp
#align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf
@[simp]
theorem edgeSet_iSup (f : ι → G.Subgraph) :
(⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup]
#align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup
@[simp]
theorem edgeSet_iInf (f : ι → G.Subgraph) :
(⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by
simp [iInf]
#align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf
@[simp]
theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl
#align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top
@[simp]
theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl
#align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot
/-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/
@[simps]
def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where
verts := Set.univ
Adj := H.Adj
adj_sub e := h e
edge_vert _ := Set.mem_univ _
symm := H.symm
#align simple_graph.to_subgraph SimpleGraph.toSubgraph
theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support :=
Rel.dom_mono h.2
#align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono
theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) :
(toSubgraph H h).IsSpanning :=
Set.mem_univ
#align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning
theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe :=
h.2
#align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le
/-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/
def topEquiv : (⊤ : Subgraph G).coe ≃g G where
toFun v := ↑v
invFun v := ⟨v, trivial⟩
left_inv _ := rfl
right_inv _ := rfl
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv
/-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty
vertex type. -/
def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where
toFun v := v.property.elim
invFun v := v.elim
left_inv := fun ⟨_, h⟩ ↦ h.elim
right_inv v := v.elim
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv
theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet :=
Sym2.ind h.2
#align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono
theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) :
Disjoint H₁.edgeSet H₂.edgeSet :=
disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot
#align disjoint.edge_set Disjoint.edgeSet
/-- Graph homomorphisms induce a covariant function on subgraphs. -/
@[simps]
protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where
verts := f '' H.verts
Adj := Relation.Map H.Adj f f
adj_sub := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact f.map_rel (H.adj_sub h)
edge_vert := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact Set.mem_image_of_mem _ (H.edge_vert h)
symm := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact ⟨v, u, H.symm h, rfl, rfl⟩
#align simple_graph.subgraph.map SimpleGraph.Subgraph.map
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by
intro H H' h
constructor
· intro
simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro v hv rfl
exact ⟨_, h.1 hv, rfl⟩
· rintro _ _ ⟨u, v, ha, rfl, rfl⟩
exact ⟨_, _, h.2 ha, rfl, rfl⟩
#align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} :
(H ⊔ H').map f = H.map f ⊔ H'.map f := by
ext1
· simp only [Set.image_union, map_verts, verts_sup]
· ext
simp only [Relation.Map, map_adj, sup_adj]
constructor
· rintro ⟨a, b, h | h, rfl, rfl⟩
· exact Or.inl ⟨_, _, h, rfl, rfl⟩
· exact Or.inr ⟨_, _, h, rfl, rfl⟩
· rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩)
· exact ⟨_, _, Or.inl h, rfl, rfl⟩
· exact ⟨_, _, Or.inr h, rfl, rfl⟩
#align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup
/-- Graph homomorphisms induce a contravariant function on subgraphs. -/
@[simps]
protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where
verts := f ⁻¹' H.verts
Adj u v := G.Adj u v ∧ H.Adj (f u) (f v)
adj_sub h := h.1
edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2)
symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩
#align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by
intro H H' h
constructor
· intro
simp only [comap_verts, Set.mem_preimage]
apply h.1
· intro v w
simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff]
intro
apply h.2
#align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) :
H.map f ≤ H' ↔ H ≤ H'.comap f := by
refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩
· simp only [comap_verts, Set.mem_preimage]
exact h.1 ⟨v, hv, rfl⟩
· simp only [H.adj_sub hvw, comap_adj, true_and_iff]
exact h.2 ⟨v, w, hvw, rfl, rfl⟩
· simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro w hw rfl
exact h.1 hw
· simp only [Relation.Map, map_adj, forall_exists_index, and_imp]
rintro u u' hu rfl rfl
exact (h.2 hu).2
#align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap
/-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of
the subgraphs as graphs. -/
@[simps]
def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where
toFun v := ⟨↑v, And.left h v.property⟩
map_rel' hvw := h.2 hvw
#align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by
intro v w h
rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h
exact Subtype.ext h
#align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective
/-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/
@[simps]
protected def hom (x : Subgraph G) : x.coe →g G where
toFun v := v
map_rel' := x.adj_sub
#align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom
@[simp] lemma coe_hom (x : Subgraph G) :
(x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl
theorem hom.injective {x : Subgraph G} : Function.Injective x.hom :=
fun _ _ ↦ Subtype.ext
#align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective
/-- There is an induced injective homomorphism of a subgraph of `G` as
a spanning subgraph into `G`. -/
@[simps]
def spanningHom (x : Subgraph G) : x.spanningCoe →g G where
toFun := id
map_rel' := x.adj_sub
#align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom
theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom :=
fun _ _ ↦ id
#align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective
theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) :
x.neighborSet v ⊆ y.neighborSet v :=
fun _ h' ↦ h.2 h'
#align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph
instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) :
DecidablePred (· ∈ G'.neighborSet v) :=
h v
#align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred
/-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/
instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj]
[Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) :=
Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v)
#align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt
/-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph.
This is not an instance because `G''` cannot be inferred. -/
def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts)
[Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) :=
Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v)
#align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph
instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] :
Fintype (G'.neighborSet v) :=
Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v)
instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] :
Fintype (G'.coe.neighborSet v) :=
Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm
#align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt
theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) :
G'.verts.toFinset.card = Fintype.card V := by
simp only [isSpanning_iff.1 h, Set.toFinset_univ]
congr
#align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts
/-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/
def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ :=
Fintype.card (G'.neighborSet v)
#align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree
theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] :
(G'.neighborSet v).toFinset.card = G'.degree v := by
rw [degree, Set.toFinset_card]
#align simple_graph.subgraph.finset_card_neighbor_set_eq_degree SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree
theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by
rw [← card_neighborSet_eq_degree]
exact Set.card_le_of_subset (G'.neighborSet_subset v)
#align simple_graph.subgraph.degree_le SimpleGraph.Subgraph.degree_le
theorem degree_le' (G' G'' : Subgraph G) (h : G' ≤ G'') (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G''.neighborSet v)] : G'.degree v ≤ G''.degree v :=
Set.card_le_of_subset (neighborSet_subset_of_subgraph h v)
#align simple_graph.subgraph.degree_le' SimpleGraph.Subgraph.degree_le'
@[simp]
theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)]
[Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v := by
rw [← card_neighborSet_eq_degree]
exact Fintype.card_congr (coeNeighborSetEquiv v)
#align simple_graph.subgraph.coe_degree SimpleGraph.Subgraph.coe_degree
@[simp]
theorem degree_spanningCoe {G' : G.Subgraph} (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G'.spanningCoe.neighborSet v)] : G'.spanningCoe.degree v = G'.degree v := by
rw [← card_neighborSet_eq_degree, Subgraph.degree]
congr!
#align simple_graph.subgraph.degree_spanning_coe SimpleGraph.Subgraph.degree_spanningCoe
theorem degree_eq_one_iff_unique_adj {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] :
G'.degree v = 1 ↔ ∃! w : V, G'.Adj v w := by
rw [← finset_card_neighborSet_eq_degree, Finset.card_eq_one, Finset.singleton_iff_unique_mem]
simp only [Set.mem_toFinset, mem_neighborSet]
#align simple_graph.subgraph.degree_eq_one_iff_unique_adj SimpleGraph.Subgraph.degree_eq_one_iff_unique_adj
end Subgraph
section MkProperties
/-! ### Properties of `singletonSubgraph` and `subgraphOfAdj` -/
variable {G : SimpleGraph V} {G' : SimpleGraph W}
instance nonempty_singletonSubgraph_verts (v : V) : Nonempty (G.singletonSubgraph v).verts :=
⟨⟨v, Set.mem_singleton v⟩⟩
#align simple_graph.nonempty_singleton_subgraph_verts SimpleGraph.nonempty_singletonSubgraph_verts
@[simp]
theorem singletonSubgraph_le_iff (v : V) (H : G.Subgraph) :
G.singletonSubgraph v ≤ H ↔ v ∈ H.verts := by
refine' ⟨fun h ↦ h.1 (Set.mem_singleton v), _⟩
intro h
constructor
· rwa [singletonSubgraph_verts, Set.singleton_subset_iff]
· exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_le_iff SimpleGraph.singletonSubgraph_le_iff
@[simp]
theorem map_singletonSubgraph (f : G →g G') {v : V} :
Subgraph.map f (G.singletonSubgraph v) = G'.singletonSubgraph (f v) := by
ext <;> simp only [Relation.Map, Subgraph.map_adj, singletonSubgraph_adj, Pi.bot_apply,
exists_and_left, and_iff_left_iff_imp, IsEmpty.forall_iff, Subgraph.map_verts,
singletonSubgraph_verts, Set.image_singleton]
exact False.elim
#align simple_graph.map_singleton_subgraph SimpleGraph.map_singletonSubgraph
@[simp]
theorem neighborSet_singletonSubgraph (v w : V) : (G.singletonSubgraph v).neighborSet w = ∅ :=
rfl
#align simple_graph.neighbor_set_singleton_subgraph SimpleGraph.neighborSet_singletonSubgraph
@[simp]
theorem edgeSet_singletonSubgraph (v : V) : (G.singletonSubgraph v).edgeSet = ∅ :=
Sym2.fromRel_bot
#align simple_graph.edge_set_singleton_subgraph SimpleGraph.edgeSet_singletonSubgraph
theorem eq_singletonSubgraph_iff_verts_eq (H : G.Subgraph) {v : V} :
H = G.singletonSubgraph v ↔ H.verts = {v} := by
refine' ⟨fun h ↦ by rw [h, singletonSubgraph_verts], fun h ↦ _⟩
ext
· rw [h, singletonSubgraph_verts]
· simp only [Prop.bot_eq_false, singletonSubgraph_adj, Pi.bot_apply, iff_false_iff]
intro ha
have ha1 := ha.fst_mem
have ha2 := ha.snd_mem
rw [h, Set.mem_singleton_iff] at ha1 ha2
subst_vars
exact ha.ne rfl
#align simple_graph.eq_singleton_subgraph_iff_verts_eq SimpleGraph.eq_singletonSubgraph_iff_verts_eq
instance nonempty_subgraphOfAdj_verts {v w : V} (hvw : G.Adj v w) :
Nonempty (G.subgraphOfAdj hvw).verts :=
⟨⟨v, by simp⟩⟩
#align simple_graph.nonempty_subgraph_of_adj_verts SimpleGraph.nonempty_subgraphOfAdj_verts
@[simp]
theorem edgeSet_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).edgeSet = {⟦(v, w)⟧} := by
ext e
refine' e.ind _
simp only [eq_comm, Set.mem_singleton_iff, Subgraph.mem_edgeSet, subgraphOfAdj_adj, iff_self_iff,
forall₂_true_iff]
#align simple_graph.edge_set_subgraph_of_adj SimpleGraph.edgeSet_subgraphOfAdj
set_option autoImplicit true in
lemma subgraphOfAdj_le_of_adj (H : G.Subgraph) (h : H.Adj v w) :
G.subgraphOfAdj (H.adj_sub h) ≤ H := by
constructor
· intro x
rintro (rfl | rfl) <;> simp [H.edge_vert h, H.edge_vert h.symm]
· simp only [subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff]
rintro _ _ (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) <;> simp [h, h.symm]
theorem subgraphOfAdj_symm {v w : V} (hvw : G.Adj v w) :
G.subgraphOfAdj hvw.symm = G.subgraphOfAdj hvw := by
ext <;> simp [or_comm, and_comm]
#align simple_graph.subgraph_of_adj_symm SimpleGraph.subgraphOfAdj_symm
@[simp]
theorem map_subgraphOfAdj (f : G →g G') {v w : V} (hvw : G.Adj v w) :
Subgraph.map f (G.subgraphOfAdj hvw) = G'.subgraphOfAdj (f.map_adj hvw) := by
ext
· simp only [Subgraph.map_verts, subgraphOfAdj_verts, Set.mem_image, Set.mem_insert_iff,
Set.mem_singleton_iff]
constructor
· rintro ⟨u, rfl | rfl, rfl⟩ <;> simp
· rintro (rfl | rfl)
· use v
simp
· use w
simp
· simp only [Relation.Map, Subgraph.map_adj, subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff]
constructor
· rintro ⟨a, b, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl, rfl⟩ <;> simp
· rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩)
· use v, w
simp
· use w, v
simp
#align simple_graph.map_subgraph_of_adj SimpleGraph.map_subgraphOfAdj
theorem neighborSet_subgraphOfAdj_subset {u v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet u ⊆ {v, w} :=
(G.subgraphOfAdj hvw).neighborSet_subset_verts _
#align simple_graph.neighbor_set_subgraph_of_adj_subset SimpleGraph.neighborSet_subgraphOfAdj_subset
@[simp]
theorem neighborSet_fst_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet v = {w} := by
ext u
suffices w = u ↔ u = w by simpa [hvw.ne.symm] using this
rw [eq_comm]
#align simple_graph.neighbor_set_fst_subgraph_of_adj SimpleGraph.neighborSet_fst_subgraphOfAdj
@[simp]
theorem neighborSet_snd_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet w = {v} := by
rw [subgraphOfAdj_symm hvw.symm]
exact neighborSet_fst_subgraphOfAdj hvw.symm
#align simple_graph.neighbor_set_snd_subgraph_of_adj SimpleGraph.neighborSet_snd_subgraphOfAdj
@[simp]
theorem neighborSet_subgraphOfAdj_of_ne_of_ne {u v w : V} (hvw : G.Adj v w) (hv : u ≠ v)
(hw : u ≠ w) : (G.subgraphOfAdj hvw).neighborSet u = ∅ := by
ext
simp [hv.symm, hw.symm]
#align simple_graph.neighbor_set_subgraph_of_adj_of_ne_of_ne SimpleGraph.neighborSet_subgraphOfAdj_of_ne_of_ne
theorem neighborSet_subgraphOfAdj [DecidableEq V] {u v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet u = (if u = v then {w} else ∅) ∪ if u = w then {v} else ∅ :=
by split_ifs <;> subst_vars <;> simp [*]
#align simple_graph.neighbor_set_subgraph_of_adj SimpleGraph.neighborSet_subgraphOfAdj
theorem singletonSubgraph_fst_le_subgraphOfAdj {u v : V} {h : G.Adj u v} :
G.singletonSubgraph u ≤ G.subgraphOfAdj h := by
constructor <;> simp [-Set.bot_eq_empty]
exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_fst_le_subgraph_of_adj SimpleGraph.singletonSubgraph_fst_le_subgraphOfAdj
theorem singletonSubgraph_snd_le_subgraphOfAdj {u v : V} {h : G.Adj u v} :
G.singletonSubgraph v ≤ G.subgraphOfAdj h := by
constructor <;> simp [-Set.bot_eq_empty]
exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_snd_le_subgraph_of_adj SimpleGraph.singletonSubgraph_snd_le_subgraphOfAdj
end MkProperties
namespace Subgraph
variable {G : SimpleGraph V}
/-! ### Subgraphs of subgraphs -/
/-- Given a subgraph of a subgraph of `G`, construct a subgraph of `G`. -/
@[reducible]
protected def coeSubgraph {G' : G.Subgraph} : G'.coe.Subgraph → G.Subgraph :=
Subgraph.map G'.hom
#align simple_graph.subgraph.coe_subgraph SimpleGraph.Subgraph.coeSubgraph
/-- Given a subgraph of `G`, restrict it to being a subgraph of another subgraph `G'` by
taking the portion of `G` that intersects `G'`. -/
@[reducible]
protected def restrict {G' : G.Subgraph} : G.Subgraph → G'.coe.Subgraph :=
Subgraph.comap G'.hom
#align simple_graph.subgraph.restrict SimpleGraph.Subgraph.restrict
lemma coeSubgraph_adj {G' : G.Subgraph} (G'' : G'.coe.Subgraph) (v w : V) :
(G'.coeSubgraph G'').Adj v w ↔
∃ (hv : v ∈ G'.verts) (hw : w ∈ G'.verts), G''.Adj ⟨v, hv⟩ ⟨w, hw⟩ := by
simp [Relation.Map]
lemma restrict_adj {G' G'' : G.Subgraph} (v w : G'.verts) :
(G'.restrict G'').Adj v w ↔ G'.Adj v w ∧ G''.Adj v w := Iff.rfl
theorem restrict_coeSubgraph {G' : G.Subgraph} (G'' : G'.coe.Subgraph) :
Subgraph.restrict (Subgraph.coeSubgraph G'') = G'' := by
ext
· simp
· rw [restrict_adj, coeSubgraph_adj]
simpa using G''.adj_sub
#align simple_graph.subgraph.restrict_coe_subgraph SimpleGraph.Subgraph.restrict_coeSubgraph
theorem coeSubgraph_injective (G' : G.Subgraph) :
Function.Injective (Subgraph.coeSubgraph : G'.coe.Subgraph → G.Subgraph) :=
Function.LeftInverse.injective restrict_coeSubgraph
#align simple_graph.subgraph.coe_subgraph_injective SimpleGraph.Subgraph.coeSubgraph_injective
lemma coeSubgraph_le {H : G.Subgraph} (H' : H.coe.Subgraph) :
Subgraph.coeSubgraph H' ≤ H := by
constructor
· simp
· rintro v w ⟨_, _, h, rfl, rfl⟩
exact H'.adj_sub h
lemma coeSubgraph_restrict_eq {H : G.Subgraph} (H' : G.Subgraph) :
Subgraph.coeSubgraph (H.restrict H') = H ⊓ H' := by
ext
· simp [and_comm]
· simp_rw [coeSubgraph_adj, restrict_adj]
simp only [exists_and_left, exists_prop, ge_iff_le, inf_adj, and_congr_right_iff]
intro h
simp [H.edge_vert h, H.edge_vert h.symm]
/-! ### Edge deletion -/
/-- Given a subgraph `G'` and a set of vertex pairs, remove all of the corresponding edges
from its edge set, if present.
See also: `SimpleGraph.deleteEdges`. -/
def deleteEdges (G' : G.Subgraph) (s : Set (Sym2 V)) : G.Subgraph where
verts := G'.verts
Adj := G'.Adj \ Sym2.ToRel s
adj_sub h' := G'.adj_sub h'.1
edge_vert h' := G'.edge_vert h'.1
symm a b := by simp [G'.adj_comm, Sym2.eq_swap]
#align simple_graph.subgraph.delete_edges SimpleGraph.Subgraph.deleteEdges
section DeleteEdges
variable {G' : G.Subgraph} (s : Set (Sym2 V))
@[simp]
theorem deleteEdges_verts : (G'.deleteEdges s).verts = G'.verts :=
rfl
#align simple_graph.subgraph.delete_edges_verts SimpleGraph.Subgraph.deleteEdges_verts
@[simp]
theorem deleteEdges_adj (v w : V) : (G'.deleteEdges s).Adj v w ↔ G'.Adj v w ∧ ¬⟦(v, w)⟧ ∈ s :=
Iff.rfl
#align simple_graph.subgraph.delete_edges_adj SimpleGraph.Subgraph.deleteEdges_adj
@[simp]
theorem deleteEdges_deleteEdges (s s' : Set (Sym2 V)) :
(G'.deleteEdges s).deleteEdges s' = G'.deleteEdges (s ∪ s') := by
ext <;> simp [and_assoc, not_or]
#align simple_graph.subgraph.delete_edges_delete_edges SimpleGraph.Subgraph.deleteEdges_deleteEdges
@[simp]
theorem deleteEdges_empty_eq : G'.deleteEdges ∅ = G' := by
ext <;> simp
#align simple_graph.subgraph.delete_edges_empty_eq SimpleGraph.Subgraph.deleteEdges_empty_eq
@[simp]
theorem deleteEdges_spanningCoe_eq :
G'.spanningCoe.deleteEdges s = (G'.deleteEdges s).spanningCoe := by
ext
simp
#align simple_graph.subgraph.delete_edges_spanning_coe_eq SimpleGraph.Subgraph.deleteEdges_spanningCoe_eq
theorem deleteEdges_coe_eq (s : Set (Sym2 G'.verts)) :
G'.coe.deleteEdges s = (G'.deleteEdges (Sym2.map (↑) '' s)).coe := by
ext ⟨v, hv⟩ ⟨w, hw⟩
simp only [SimpleGraph.deleteEdges_adj, coe_adj, deleteEdges_adj, Set.mem_image, not_exists,
not_and, and_congr_right_iff]
intro
constructor
· intro hs
refine' Sym2.ind _
rintro ⟨v', hv'⟩ ⟨w', hw'⟩
simp only [Sym2.map_pair_eq, Quotient.eq]
contrapose!
rintro (_ | _) <;> simpa only [Sym2.eq_swap]
· intro h' hs
exact h' _ hs rfl
#align simple_graph.subgraph.delete_edges_coe_eq SimpleGraph.Subgraph.deleteEdges_coe_eq
theorem coe_deleteEdges_eq (s : Set (Sym2 V)) :
(G'.deleteEdges s).coe = G'.coe.deleteEdges (Sym2.map (↑) ⁻¹' s) := by
ext ⟨v, hv⟩ ⟨w, hw⟩
simp
#align simple_graph.subgraph.coe_delete_edges_eq SimpleGraph.Subgraph.coe_deleteEdges_eq
theorem deleteEdges_le : G'.deleteEdges s ≤ G' := by
constructor <;> simp (config := { contextual := true }) [subset_rfl]
#align simple_graph.subgraph.delete_edges_le SimpleGraph.Subgraph.deleteEdges_le
theorem deleteEdges_le_of_le {s s' : Set (Sym2 V)} (h : s ⊆ s') :
G'.deleteEdges s' ≤ G'.deleteEdges s := by
constructor <;> simp (config := { contextual := true }) only [deleteEdges_verts, deleteEdges_adj,
true_and_iff, and_imp, subset_rfl]
exact fun _ _ _ hs' hs ↦ hs' (h hs)
#align simple_graph.subgraph.delete_edges_le_of_le SimpleGraph.Subgraph.deleteEdges_le_of_le
@[simp]
theorem deleteEdges_inter_edgeSet_left_eq :
G'.deleteEdges (G'.edgeSet ∩ s) = G'.deleteEdges s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_edges_inter_edge_set_left_eq SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_left_eq
@[simp]
theorem deleteEdges_inter_edgeSet_right_eq :
G'.deleteEdges (s ∩ G'.edgeSet) = G'.deleteEdges s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_edges_inter_edge_set_right_eq SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_right_eq
theorem coe_deleteEdges_le : (G'.deleteEdges s).coe ≤ (G'.coe : SimpleGraph G'.verts) := by
intro v w
simp (config := { contextual := true })
#align simple_graph.subgraph.coe_delete_edges_le SimpleGraph.Subgraph.coe_deleteEdges_le
theorem spanningCoe_deleteEdges_le (G' : G.Subgraph) (s : Set (Sym2 V)) :
(G'.deleteEdges s).spanningCoe ≤ G'.spanningCoe :=
spanningCoe_le_of_le (deleteEdges_le s)
#align simple_graph.subgraph.spanning_coe_delete_edges_le SimpleGraph.Subgraph.spanningCoe_deleteEdges_le
end DeleteEdges
/-! ### Induced subgraphs -/
/- Given a subgraph, we can change its vertex set while removing any invalid edges, which
gives induced subgraphs. See also `SimpleGraph.induce` for the `SimpleGraph` version, which,
unlike for subgraphs, results in a graph with a different vertex type. -/
/-- The induced subgraph of a subgraph. The expectation is that `s ⊆ G'.verts` for the usual
notion of an induced subgraph, but, in general, `s` is taken to be the new vertex set and edges
are induced from the subgraph `G'`. -/
@[simps]
def induce (G' : G.Subgraph) (s : Set V) : G.Subgraph where
verts := s
Adj u v := u ∈ s ∧ v ∈ s ∧ G'.Adj u v
adj_sub h := G'.adj_sub h.2.2
edge_vert h := h.1
symm _ _ h := ⟨h.2.1, h.1, G'.symm h.2.2⟩
#align simple_graph.subgraph.induce SimpleGraph.Subgraph.induce
theorem _root_.SimpleGraph.induce_eq_coe_induce_top (s : Set V) :
G.induce s = ((⊤ : G.Subgraph).induce s).coe := by
ext
simp
#align simple_graph.induce_eq_coe_induce_top SimpleGraph.induce_eq_coe_induce_top
section Induce
variable {G' G'' : G.Subgraph} {s s' : Set V}
theorem induce_mono (hg : G' ≤ G'') (hs : s ⊆ s') : G'.induce s ≤ G''.induce s' := by
constructor
· simp [hs]
· simp (config := { contextual := true }) only [induce_adj, true_and_iff, and_imp]
intro v w hv hw ha
exact ⟨hs hv, hs hw, hg.2 ha⟩
#align simple_graph.subgraph.induce_mono SimpleGraph.Subgraph.induce_mono
@[mono]
theorem induce_mono_left (hg : G' ≤ G'') : G'.induce s ≤ G''.induce s :=
induce_mono hg subset_rfl
#align simple_graph.subgraph.induce_mono_left SimpleGraph.Subgraph.induce_mono_left
@[mono]
theorem induce_mono_right (hs : s ⊆ s') : G'.induce s ≤ G'.induce s' :=
induce_mono le_rfl hs
#align simple_graph.subgraph.induce_mono_right SimpleGraph.Subgraph.induce_mono_right
@[simp]
theorem induce_empty : G'.induce ∅ = ⊥ := by
ext <;> simp
#align simple_graph.subgraph.induce_empty SimpleGraph.Subgraph.induce_empty
@[simp]
theorem induce_self_verts : G'.induce G'.verts = G' := by
ext
· simp
· constructor <;>
simp (config := { contextual := true }) only [induce_adj, imp_true_iff, and_true_iff]
exact fun ha ↦ ⟨G'.edge_vert ha, G'.edge_vert ha.symm⟩
#align simple_graph.subgraph.induce_self_verts SimpleGraph.Subgraph.induce_self_verts
lemma le_induce_top_verts : G' ≤ (⊤ : G.Subgraph).induce G'.verts :=
calc G' = G'.induce G'.verts := Subgraph.induce_self_verts.symm
_ ≤ (⊤ : G.Subgraph).induce G'.verts := Subgraph.induce_mono_left le_top
lemma le_induce_union : G'.induce s ⊔ G'.induce s' ≤ G'.induce (s ∪ s') := by
constructor
· simp only [verts_sup, induce_verts, Set.Subset.rfl]
· simp only [sup_adj, induce_adj, Set.mem_union]
rintro v w (h | h) <;> simp [h]
lemma le_induce_union_left : G'.induce s ≤ G'.induce (s ∪ s') := by
exact (sup_le_iff.mp le_induce_union).1
lemma le_induce_union_right : G'.induce s' ≤ G'.induce (s ∪ s') := by
exact (sup_le_iff.mp le_induce_union).2
theorem singletonSubgraph_eq_induce {v : V} : G.singletonSubgraph v = (⊤ : G.Subgraph).induce {v} :=
by ext <;> simp (config := { contextual := true }) [-Set.bot_eq_empty, Prop.bot_eq_false]
#align simple_graph.subgraph.singleton_subgraph_eq_induce SimpleGraph.Subgraph.singletonSubgraph_eq_induce
theorem subgraphOfAdj_eq_induce {v w : V} (hvw : G.Adj v w) :
G.subgraphOfAdj hvw = (⊤ : G.Subgraph).induce {v, w} := by
ext
· simp
· constructor
· intro h
simp only [subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff] at h
obtain ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩ := h <;> simp [hvw, hvw.symm]
· intro h
simp only [induce_adj, Set.mem_insert_iff, Set.mem_singleton_iff, top_adj] at h
obtain ⟨rfl | rfl, rfl | rfl, ha⟩ := h <;> first |exact (ha.ne rfl).elim|simp
#align simple_graph.subgraph.subgraph_of_adj_eq_induce SimpleGraph.Subgraph.subgraphOfAdj_eq_induce
end Induce
/-- Given a subgraph and a set of vertices, delete all the vertices from the subgraph,
if present. Any edges incident to the deleted vertices are deleted as well. -/
@[reducible]
def deleteVerts (G' : G.Subgraph) (s : Set V) : G.Subgraph :=
G'.induce (G'.verts \ s)
#align simple_graph.subgraph.delete_verts SimpleGraph.Subgraph.deleteVerts
section DeleteVerts
variable {G' : G.Subgraph} {s : Set V}
theorem deleteVerts_verts : (G'.deleteVerts s).verts = G'.verts \ s :=
rfl
#align simple_graph.subgraph.delete_verts_verts SimpleGraph.Subgraph.deleteVerts_verts
theorem deleteVerts_adj {u v : V} :
(G'.deleteVerts s).Adj u v ↔ u ∈ G'.verts ∧ ¬u ∈ s ∧ v ∈ G'.verts ∧ ¬v ∈ s ∧ G'.Adj u v := by
simp [and_assoc]
#align simple_graph.subgraph.delete_verts_adj SimpleGraph.Subgraph.deleteVerts_adj
@[simp]
theorem deleteVerts_deleteVerts (s s' : Set V) :
(G'.deleteVerts s).deleteVerts s' = G'.deleteVerts (s ∪ s') := by
ext <;> simp (config := { contextual := true }) [not_or, and_assoc]
#align simple_graph.subgraph.delete_verts_delete_verts SimpleGraph.Subgraph.deleteVerts_deleteVerts
@[simp]
theorem deleteVerts_empty : G'.deleteVerts ∅ = G' := by
simp [deleteVerts]
#align simple_graph.subgraph.delete_verts_empty SimpleGraph.Subgraph.deleteVerts_empty
theorem deleteVerts_le : G'.deleteVerts s ≤ G' := by
constructor <;> simp [Set.diff_subset]
#align simple_graph.subgraph.delete_verts_le SimpleGraph.Subgraph.deleteVerts_le
@[mono]
theorem deleteVerts_mono {G' G'' : G.Subgraph} (h : G' ≤ G'') :
G'.deleteVerts s ≤ G''.deleteVerts s :=
induce_mono h (Set.diff_subset_diff_left h.1)
#align simple_graph.subgraph.delete_verts_mono SimpleGraph.Subgraph.deleteVerts_mono
@[mono]
theorem deleteVerts_anti {s s' : Set V} (h : s ⊆ s') : G'.deleteVerts s' ≤ G'.deleteVerts s :=
induce_mono (le_refl _) (Set.diff_subset_diff_right h)
#align simple_graph.subgraph.delete_verts_anti SimpleGraph.Subgraph.deleteVerts_anti
@[simp]
theorem deleteVerts_inter_verts_left_eq : G'.deleteVerts (G'.verts ∩ s) = G'.deleteVerts s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_verts_inter_verts_left_eq SimpleGraph.Subgraph.deleteVerts_inter_verts_left_eq
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s :=
by
|
ext
|
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s :=
by
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.1294_0.BlhiAiIDADcXv8t
|
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
case verts.h
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
G' : Subgraph G
s : Set V
x✝ : V
⊢ x✝ ∈ (deleteVerts G' (s ∩ G'.verts)).verts ↔ x✝ ∈ (deleteVerts G' s).verts
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
exact h
#align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj
namespace Subgraph
variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V}
protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj :=
fun v h ↦ G.loopless v (G'.adj_sub h)
#align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless
theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v :=
⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩
#align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm
@[symm]
theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm
protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm
protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v :=
H.adj_sub h
#align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub
protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts :=
H.edge_vert h
#align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem
protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts :=
h.symm.fst_mem
#align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem
protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v :=
h.adj_sub.ne
#align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne
/-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/
@[simps]
protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where
Adj v w := G'.Adj v w
symm _ _ h := G'.symm h
loopless v h := loopless G v (G'.adj_sub h)
#align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe
@[simp]
theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub
-- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`.
protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) :
H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h
#align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe
/-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/
def IsSpanning (G' : Subgraph G) : Prop :=
∀ v : V, v ∈ G'.verts
#align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning
theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ :=
Set.eq_univ_iff_forall.symm
#align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff
/-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning
subgraph, then `G'.spanningCoe` yields an isomorphic graph.
In general, this adds in all vertices from `V` as isolated vertices. -/
@[simps]
protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where
Adj := G'.Adj
symm := G'.symm
loopless v hv := G.loopless v (G'.adj_sub hv)
#align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe
@[simp]
theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) :
G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe
theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by
simp [Subgraph.spanningCoe]
#align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj
/-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/
@[simps]
def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe
where
toFun v := ⟨v, h v⟩
invFun v := v
left_inv _ := rfl
right_inv _ := rfl
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning
/-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if
they are adjacent in `G`. -/
def IsInduced (G' : Subgraph G) : Prop :=
∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w
#align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced
/-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/
def support (H : Subgraph G) : Set V := Rel.dom H.Adj
#align simple_graph.subgraph.support SimpleGraph.Subgraph.support
theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support
theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts :=
fun _ ⟨_, h⟩ ↦ H.edge_vert h
#align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts
/-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/
def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w}
#align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet
theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v :=
fun _ ↦ G'.adj_sub
#align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset
theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts :=
fun _ h ↦ G'.edge_vert (adj_symm G' h)
#align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts
@[simp]
theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet
/-- A subgraph as a graph has equivalent neighbor sets. -/
def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v
where
toFun w := ⟨w, w.2⟩
invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩
left_inv _ := rfl
right_inv _ := rfl
#align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv
/-- The edge set of `G'` consists of a subset of edges of `G`. -/
def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm
#align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet
theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet :=
Sym2.ind (fun _ _ ↦ G'.adj_sub)
#align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset
@[simp]
theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet)
(hv : v ∈ e) : v ∈ G'.verts := by
revert hv
refine' Sym2.ind (fun v w he ↦ _) e he
intro hv
rcases Sym2.mem_iff.mp hv with (rfl | rfl)
· exact G'.edge_vert he
· exact G'.edge_vert (G'.symm he)
#align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge
/-- The `incidenceSet` is the set of edges incident to a given vertex. -/
def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e}
#align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet
theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) :
G'.incidenceSet v ⊆ G.incidenceSet v :=
fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩
#align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet
theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet :=
fun _ h ↦ h.1
#align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset
/-- Give a vertex as an element of the subgraph's vertex type. -/
@[reducible]
def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩
#align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert
/--
Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities.
See Note [range copy pattern].
-/
def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts)
(adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where
verts := V''
Adj := adj'
adj_sub := hadj.symm ▸ G'.adj_sub
edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert
symm := hadj.symm ▸ G'.symm
#align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy
theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts)
(adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' :=
Subgraph.ext _ _ hV hadj
#align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq
/-- The union of two subgraphs. -/
instance : Sup G.Subgraph where
sup G₁ G₂ :=
{ verts := G₁.verts ∪ G₂.verts
Adj := G₁.Adj ⊔ G₂.Adj
adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h
edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h
symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm }
/-- The intersection of two subgraphs. -/
instance : Inf G.Subgraph where
inf G₁ G₂ :=
{ verts := G₁.verts ∩ G₂.verts
Adj := G₁.Adj ⊓ G₂.Adj
adj_sub := fun hab => G₁.adj_sub hab.1
edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h
symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm }
/-- The `top` subgraph is `G` as a subgraph of itself. -/
instance : Top G.Subgraph where
top :=
{ verts := Set.univ
Adj := G.Adj
adj_sub := id
edge_vert := @fun v _ _ => Set.mem_univ v
symm := G.symm }
/-- The `bot` subgraph is the subgraph with no vertices or edges. -/
instance : Bot G.Subgraph where
bot :=
{ verts := ∅
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm := fun _ _ => id }
instance : SupSet G.Subgraph where
sSup s :=
{ verts := ⋃ G' ∈ s, verts G'
Adj := fun a b => ∃ G' ∈ s, Adj G' a b
adj_sub := by
rintro a b ⟨G', -, hab⟩
exact G'.adj_sub hab
edge_vert := by
rintro a b ⟨G', hG', hab⟩
exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab)
symm := fun a b h => by simpa [adj_comm] using h }
instance : InfSet G.Subgraph where
sInf s :=
{ verts := ⋂ G' ∈ s, verts G'
Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b
adj_sub := And.right
edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG'
symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm }
@[simp]
theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj
@[simp]
theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj
@[simp]
theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj
@[simp]
theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b :=
not_false
#align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj
@[simp]
theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts :=
rfl
#align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup
@[simp]
theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts :=
rfl
#align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf
@[simp]
theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ :=
rfl
#align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top
@[simp]
theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ :=
rfl
#align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot
@[simp]
theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b :=
Iff.rfl
#align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj
@[simp]
theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj
@[simp]
theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by
simp [iSup]
#align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj
@[simp]
theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by
simp [iInf]
#align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj
theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) :
(sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b :=
sInf_adj.trans <|
and_iff_left_of_imp <| by
obtain ⟨G', hG'⟩ := hs
exact fun h => G'.adj_sub (h _ hG')
#align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty
theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} :
(⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by
rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)]
simp
#align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty
@[simp]
theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' :=
rfl
#align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup
@[simp]
theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' :=
rfl
#align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf
@[simp]
theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup]
#align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup
@[simp]
theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf]
#align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf
theorem verts_spanningCoe_injective :
(fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by
intro G₁ G₂ h
rw [Prod.ext_iff] at h
exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2)
/-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and
`∀ a b, G₁.adj a b → G₂.adj a b`. -/
instance distribLattice : DistribLattice G.Subgraph :=
{ show DistribLattice G.Subgraph from
verts_spanningCoe_injective.distribLattice _
(fun _ _ => rfl) fun _ _ => rfl with
le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w }
instance : BoundedOrder (Subgraph G) where
top := ⊤
bot := ⊥
le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩
bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩
-- Note that subgraphs do not form a Boolean algebra, because of `verts`.
instance : CompletelyDistribLattice G.Subgraph :=
{ Subgraph.distribLattice with
le := (· ≤ ·)
sup := (· ⊔ ·)
inf := (· ⊓ ·)
top := ⊤
bot := ⊥
le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩
bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩
sSup := sSup
-- porting note: needed `apply` here to modify elaboration; previously the term itself was fine.
le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩
sSup_le := fun s G' hG' =>
⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by
rintro a b ⟨H, hH, hab⟩
exact (hG' _ hH).2 hab⟩
sInf := sInf
sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩
le_sInf := fun s G' hG' =>
⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab =>
⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩
iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq)
(by ext; simp [Classical.skolem]) }
@[simps]
instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩
#align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited
@[simp]
theorem neighborSet_sup {H H' : G.Subgraph} (v : V) :
(H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup
@[simp]
theorem neighborSet_inf {H H' : G.Subgraph} (v : V) :
(H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf
@[simp]
theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top
@[simp]
theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl
#align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot
@[simp]
theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) :
(sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by
ext
simp
#align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup
@[simp]
theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) :
(sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by
ext
simp
#align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf
@[simp]
theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) :
(⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup]
#align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup
@[simp]
theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) :
(⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf]
#align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf
@[simp]
theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl
#align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top
@[simp]
theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot
@[simp]
theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf
@[simp]
theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup
@[simp]
theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by
ext e
induction e using Sym2.ind
simp
#align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup
@[simp]
theorem edgeSet_sInf (s : Set G.Subgraph) :
(sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by
ext e
induction e using Sym2.ind
simp
#align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf
@[simp]
theorem edgeSet_iSup (f : ι → G.Subgraph) :
(⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup]
#align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup
@[simp]
theorem edgeSet_iInf (f : ι → G.Subgraph) :
(⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by
simp [iInf]
#align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf
@[simp]
theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl
#align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top
@[simp]
theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl
#align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot
/-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/
@[simps]
def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where
verts := Set.univ
Adj := H.Adj
adj_sub e := h e
edge_vert _ := Set.mem_univ _
symm := H.symm
#align simple_graph.to_subgraph SimpleGraph.toSubgraph
theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support :=
Rel.dom_mono h.2
#align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono
theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) :
(toSubgraph H h).IsSpanning :=
Set.mem_univ
#align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning
theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe :=
h.2
#align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le
/-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/
def topEquiv : (⊤ : Subgraph G).coe ≃g G where
toFun v := ↑v
invFun v := ⟨v, trivial⟩
left_inv _ := rfl
right_inv _ := rfl
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv
/-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty
vertex type. -/
def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where
toFun v := v.property.elim
invFun v := v.elim
left_inv := fun ⟨_, h⟩ ↦ h.elim
right_inv v := v.elim
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv
theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet :=
Sym2.ind h.2
#align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono
theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) :
Disjoint H₁.edgeSet H₂.edgeSet :=
disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot
#align disjoint.edge_set Disjoint.edgeSet
/-- Graph homomorphisms induce a covariant function on subgraphs. -/
@[simps]
protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where
verts := f '' H.verts
Adj := Relation.Map H.Adj f f
adj_sub := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact f.map_rel (H.adj_sub h)
edge_vert := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact Set.mem_image_of_mem _ (H.edge_vert h)
symm := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact ⟨v, u, H.symm h, rfl, rfl⟩
#align simple_graph.subgraph.map SimpleGraph.Subgraph.map
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by
intro H H' h
constructor
· intro
simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro v hv rfl
exact ⟨_, h.1 hv, rfl⟩
· rintro _ _ ⟨u, v, ha, rfl, rfl⟩
exact ⟨_, _, h.2 ha, rfl, rfl⟩
#align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} :
(H ⊔ H').map f = H.map f ⊔ H'.map f := by
ext1
· simp only [Set.image_union, map_verts, verts_sup]
· ext
simp only [Relation.Map, map_adj, sup_adj]
constructor
· rintro ⟨a, b, h | h, rfl, rfl⟩
· exact Or.inl ⟨_, _, h, rfl, rfl⟩
· exact Or.inr ⟨_, _, h, rfl, rfl⟩
· rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩)
· exact ⟨_, _, Or.inl h, rfl, rfl⟩
· exact ⟨_, _, Or.inr h, rfl, rfl⟩
#align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup
/-- Graph homomorphisms induce a contravariant function on subgraphs. -/
@[simps]
protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where
verts := f ⁻¹' H.verts
Adj u v := G.Adj u v ∧ H.Adj (f u) (f v)
adj_sub h := h.1
edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2)
symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩
#align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by
intro H H' h
constructor
· intro
simp only [comap_verts, Set.mem_preimage]
apply h.1
· intro v w
simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff]
intro
apply h.2
#align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) :
H.map f ≤ H' ↔ H ≤ H'.comap f := by
refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩
· simp only [comap_verts, Set.mem_preimage]
exact h.1 ⟨v, hv, rfl⟩
· simp only [H.adj_sub hvw, comap_adj, true_and_iff]
exact h.2 ⟨v, w, hvw, rfl, rfl⟩
· simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro w hw rfl
exact h.1 hw
· simp only [Relation.Map, map_adj, forall_exists_index, and_imp]
rintro u u' hu rfl rfl
exact (h.2 hu).2
#align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap
/-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of
the subgraphs as graphs. -/
@[simps]
def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where
toFun v := ⟨↑v, And.left h v.property⟩
map_rel' hvw := h.2 hvw
#align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by
intro v w h
rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h
exact Subtype.ext h
#align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective
/-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/
@[simps]
protected def hom (x : Subgraph G) : x.coe →g G where
toFun v := v
map_rel' := x.adj_sub
#align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom
@[simp] lemma coe_hom (x : Subgraph G) :
(x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl
theorem hom.injective {x : Subgraph G} : Function.Injective x.hom :=
fun _ _ ↦ Subtype.ext
#align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective
/-- There is an induced injective homomorphism of a subgraph of `G` as
a spanning subgraph into `G`. -/
@[simps]
def spanningHom (x : Subgraph G) : x.spanningCoe →g G where
toFun := id
map_rel' := x.adj_sub
#align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom
theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom :=
fun _ _ ↦ id
#align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective
theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) :
x.neighborSet v ⊆ y.neighborSet v :=
fun _ h' ↦ h.2 h'
#align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph
instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) :
DecidablePred (· ∈ G'.neighborSet v) :=
h v
#align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred
/-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/
instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj]
[Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) :=
Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v)
#align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt
/-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph.
This is not an instance because `G''` cannot be inferred. -/
def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts)
[Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) :=
Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v)
#align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph
instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] :
Fintype (G'.neighborSet v) :=
Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v)
instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] :
Fintype (G'.coe.neighborSet v) :=
Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm
#align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt
theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) :
G'.verts.toFinset.card = Fintype.card V := by
simp only [isSpanning_iff.1 h, Set.toFinset_univ]
congr
#align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts
/-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/
def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ :=
Fintype.card (G'.neighborSet v)
#align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree
theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] :
(G'.neighborSet v).toFinset.card = G'.degree v := by
rw [degree, Set.toFinset_card]
#align simple_graph.subgraph.finset_card_neighbor_set_eq_degree SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree
theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by
rw [← card_neighborSet_eq_degree]
exact Set.card_le_of_subset (G'.neighborSet_subset v)
#align simple_graph.subgraph.degree_le SimpleGraph.Subgraph.degree_le
theorem degree_le' (G' G'' : Subgraph G) (h : G' ≤ G'') (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G''.neighborSet v)] : G'.degree v ≤ G''.degree v :=
Set.card_le_of_subset (neighborSet_subset_of_subgraph h v)
#align simple_graph.subgraph.degree_le' SimpleGraph.Subgraph.degree_le'
@[simp]
theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)]
[Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v := by
rw [← card_neighborSet_eq_degree]
exact Fintype.card_congr (coeNeighborSetEquiv v)
#align simple_graph.subgraph.coe_degree SimpleGraph.Subgraph.coe_degree
@[simp]
theorem degree_spanningCoe {G' : G.Subgraph} (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G'.spanningCoe.neighborSet v)] : G'.spanningCoe.degree v = G'.degree v := by
rw [← card_neighborSet_eq_degree, Subgraph.degree]
congr!
#align simple_graph.subgraph.degree_spanning_coe SimpleGraph.Subgraph.degree_spanningCoe
theorem degree_eq_one_iff_unique_adj {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] :
G'.degree v = 1 ↔ ∃! w : V, G'.Adj v w := by
rw [← finset_card_neighborSet_eq_degree, Finset.card_eq_one, Finset.singleton_iff_unique_mem]
simp only [Set.mem_toFinset, mem_neighborSet]
#align simple_graph.subgraph.degree_eq_one_iff_unique_adj SimpleGraph.Subgraph.degree_eq_one_iff_unique_adj
end Subgraph
section MkProperties
/-! ### Properties of `singletonSubgraph` and `subgraphOfAdj` -/
variable {G : SimpleGraph V} {G' : SimpleGraph W}
instance nonempty_singletonSubgraph_verts (v : V) : Nonempty (G.singletonSubgraph v).verts :=
⟨⟨v, Set.mem_singleton v⟩⟩
#align simple_graph.nonempty_singleton_subgraph_verts SimpleGraph.nonempty_singletonSubgraph_verts
@[simp]
theorem singletonSubgraph_le_iff (v : V) (H : G.Subgraph) :
G.singletonSubgraph v ≤ H ↔ v ∈ H.verts := by
refine' ⟨fun h ↦ h.1 (Set.mem_singleton v), _⟩
intro h
constructor
· rwa [singletonSubgraph_verts, Set.singleton_subset_iff]
· exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_le_iff SimpleGraph.singletonSubgraph_le_iff
@[simp]
theorem map_singletonSubgraph (f : G →g G') {v : V} :
Subgraph.map f (G.singletonSubgraph v) = G'.singletonSubgraph (f v) := by
ext <;> simp only [Relation.Map, Subgraph.map_adj, singletonSubgraph_adj, Pi.bot_apply,
exists_and_left, and_iff_left_iff_imp, IsEmpty.forall_iff, Subgraph.map_verts,
singletonSubgraph_verts, Set.image_singleton]
exact False.elim
#align simple_graph.map_singleton_subgraph SimpleGraph.map_singletonSubgraph
@[simp]
theorem neighborSet_singletonSubgraph (v w : V) : (G.singletonSubgraph v).neighborSet w = ∅ :=
rfl
#align simple_graph.neighbor_set_singleton_subgraph SimpleGraph.neighborSet_singletonSubgraph
@[simp]
theorem edgeSet_singletonSubgraph (v : V) : (G.singletonSubgraph v).edgeSet = ∅ :=
Sym2.fromRel_bot
#align simple_graph.edge_set_singleton_subgraph SimpleGraph.edgeSet_singletonSubgraph
theorem eq_singletonSubgraph_iff_verts_eq (H : G.Subgraph) {v : V} :
H = G.singletonSubgraph v ↔ H.verts = {v} := by
refine' ⟨fun h ↦ by rw [h, singletonSubgraph_verts], fun h ↦ _⟩
ext
· rw [h, singletonSubgraph_verts]
· simp only [Prop.bot_eq_false, singletonSubgraph_adj, Pi.bot_apply, iff_false_iff]
intro ha
have ha1 := ha.fst_mem
have ha2 := ha.snd_mem
rw [h, Set.mem_singleton_iff] at ha1 ha2
subst_vars
exact ha.ne rfl
#align simple_graph.eq_singleton_subgraph_iff_verts_eq SimpleGraph.eq_singletonSubgraph_iff_verts_eq
instance nonempty_subgraphOfAdj_verts {v w : V} (hvw : G.Adj v w) :
Nonempty (G.subgraphOfAdj hvw).verts :=
⟨⟨v, by simp⟩⟩
#align simple_graph.nonempty_subgraph_of_adj_verts SimpleGraph.nonempty_subgraphOfAdj_verts
@[simp]
theorem edgeSet_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).edgeSet = {⟦(v, w)⟧} := by
ext e
refine' e.ind _
simp only [eq_comm, Set.mem_singleton_iff, Subgraph.mem_edgeSet, subgraphOfAdj_adj, iff_self_iff,
forall₂_true_iff]
#align simple_graph.edge_set_subgraph_of_adj SimpleGraph.edgeSet_subgraphOfAdj
set_option autoImplicit true in
lemma subgraphOfAdj_le_of_adj (H : G.Subgraph) (h : H.Adj v w) :
G.subgraphOfAdj (H.adj_sub h) ≤ H := by
constructor
· intro x
rintro (rfl | rfl) <;> simp [H.edge_vert h, H.edge_vert h.symm]
· simp only [subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff]
rintro _ _ (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) <;> simp [h, h.symm]
theorem subgraphOfAdj_symm {v w : V} (hvw : G.Adj v w) :
G.subgraphOfAdj hvw.symm = G.subgraphOfAdj hvw := by
ext <;> simp [or_comm, and_comm]
#align simple_graph.subgraph_of_adj_symm SimpleGraph.subgraphOfAdj_symm
@[simp]
theorem map_subgraphOfAdj (f : G →g G') {v w : V} (hvw : G.Adj v w) :
Subgraph.map f (G.subgraphOfAdj hvw) = G'.subgraphOfAdj (f.map_adj hvw) := by
ext
· simp only [Subgraph.map_verts, subgraphOfAdj_verts, Set.mem_image, Set.mem_insert_iff,
Set.mem_singleton_iff]
constructor
· rintro ⟨u, rfl | rfl, rfl⟩ <;> simp
· rintro (rfl | rfl)
· use v
simp
· use w
simp
· simp only [Relation.Map, Subgraph.map_adj, subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff]
constructor
· rintro ⟨a, b, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl, rfl⟩ <;> simp
· rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩)
· use v, w
simp
· use w, v
simp
#align simple_graph.map_subgraph_of_adj SimpleGraph.map_subgraphOfAdj
theorem neighborSet_subgraphOfAdj_subset {u v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet u ⊆ {v, w} :=
(G.subgraphOfAdj hvw).neighborSet_subset_verts _
#align simple_graph.neighbor_set_subgraph_of_adj_subset SimpleGraph.neighborSet_subgraphOfAdj_subset
@[simp]
theorem neighborSet_fst_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet v = {w} := by
ext u
suffices w = u ↔ u = w by simpa [hvw.ne.symm] using this
rw [eq_comm]
#align simple_graph.neighbor_set_fst_subgraph_of_adj SimpleGraph.neighborSet_fst_subgraphOfAdj
@[simp]
theorem neighborSet_snd_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet w = {v} := by
rw [subgraphOfAdj_symm hvw.symm]
exact neighborSet_fst_subgraphOfAdj hvw.symm
#align simple_graph.neighbor_set_snd_subgraph_of_adj SimpleGraph.neighborSet_snd_subgraphOfAdj
@[simp]
theorem neighborSet_subgraphOfAdj_of_ne_of_ne {u v w : V} (hvw : G.Adj v w) (hv : u ≠ v)
(hw : u ≠ w) : (G.subgraphOfAdj hvw).neighborSet u = ∅ := by
ext
simp [hv.symm, hw.symm]
#align simple_graph.neighbor_set_subgraph_of_adj_of_ne_of_ne SimpleGraph.neighborSet_subgraphOfAdj_of_ne_of_ne
theorem neighborSet_subgraphOfAdj [DecidableEq V] {u v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet u = (if u = v then {w} else ∅) ∪ if u = w then {v} else ∅ :=
by split_ifs <;> subst_vars <;> simp [*]
#align simple_graph.neighbor_set_subgraph_of_adj SimpleGraph.neighborSet_subgraphOfAdj
theorem singletonSubgraph_fst_le_subgraphOfAdj {u v : V} {h : G.Adj u v} :
G.singletonSubgraph u ≤ G.subgraphOfAdj h := by
constructor <;> simp [-Set.bot_eq_empty]
exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_fst_le_subgraph_of_adj SimpleGraph.singletonSubgraph_fst_le_subgraphOfAdj
theorem singletonSubgraph_snd_le_subgraphOfAdj {u v : V} {h : G.Adj u v} :
G.singletonSubgraph v ≤ G.subgraphOfAdj h := by
constructor <;> simp [-Set.bot_eq_empty]
exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_snd_le_subgraph_of_adj SimpleGraph.singletonSubgraph_snd_le_subgraphOfAdj
end MkProperties
namespace Subgraph
variable {G : SimpleGraph V}
/-! ### Subgraphs of subgraphs -/
/-- Given a subgraph of a subgraph of `G`, construct a subgraph of `G`. -/
@[reducible]
protected def coeSubgraph {G' : G.Subgraph} : G'.coe.Subgraph → G.Subgraph :=
Subgraph.map G'.hom
#align simple_graph.subgraph.coe_subgraph SimpleGraph.Subgraph.coeSubgraph
/-- Given a subgraph of `G`, restrict it to being a subgraph of another subgraph `G'` by
taking the portion of `G` that intersects `G'`. -/
@[reducible]
protected def restrict {G' : G.Subgraph} : G.Subgraph → G'.coe.Subgraph :=
Subgraph.comap G'.hom
#align simple_graph.subgraph.restrict SimpleGraph.Subgraph.restrict
lemma coeSubgraph_adj {G' : G.Subgraph} (G'' : G'.coe.Subgraph) (v w : V) :
(G'.coeSubgraph G'').Adj v w ↔
∃ (hv : v ∈ G'.verts) (hw : w ∈ G'.verts), G''.Adj ⟨v, hv⟩ ⟨w, hw⟩ := by
simp [Relation.Map]
lemma restrict_adj {G' G'' : G.Subgraph} (v w : G'.verts) :
(G'.restrict G'').Adj v w ↔ G'.Adj v w ∧ G''.Adj v w := Iff.rfl
theorem restrict_coeSubgraph {G' : G.Subgraph} (G'' : G'.coe.Subgraph) :
Subgraph.restrict (Subgraph.coeSubgraph G'') = G'' := by
ext
· simp
· rw [restrict_adj, coeSubgraph_adj]
simpa using G''.adj_sub
#align simple_graph.subgraph.restrict_coe_subgraph SimpleGraph.Subgraph.restrict_coeSubgraph
theorem coeSubgraph_injective (G' : G.Subgraph) :
Function.Injective (Subgraph.coeSubgraph : G'.coe.Subgraph → G.Subgraph) :=
Function.LeftInverse.injective restrict_coeSubgraph
#align simple_graph.subgraph.coe_subgraph_injective SimpleGraph.Subgraph.coeSubgraph_injective
lemma coeSubgraph_le {H : G.Subgraph} (H' : H.coe.Subgraph) :
Subgraph.coeSubgraph H' ≤ H := by
constructor
· simp
· rintro v w ⟨_, _, h, rfl, rfl⟩
exact H'.adj_sub h
lemma coeSubgraph_restrict_eq {H : G.Subgraph} (H' : G.Subgraph) :
Subgraph.coeSubgraph (H.restrict H') = H ⊓ H' := by
ext
· simp [and_comm]
· simp_rw [coeSubgraph_adj, restrict_adj]
simp only [exists_and_left, exists_prop, ge_iff_le, inf_adj, and_congr_right_iff]
intro h
simp [H.edge_vert h, H.edge_vert h.symm]
/-! ### Edge deletion -/
/-- Given a subgraph `G'` and a set of vertex pairs, remove all of the corresponding edges
from its edge set, if present.
See also: `SimpleGraph.deleteEdges`. -/
def deleteEdges (G' : G.Subgraph) (s : Set (Sym2 V)) : G.Subgraph where
verts := G'.verts
Adj := G'.Adj \ Sym2.ToRel s
adj_sub h' := G'.adj_sub h'.1
edge_vert h' := G'.edge_vert h'.1
symm a b := by simp [G'.adj_comm, Sym2.eq_swap]
#align simple_graph.subgraph.delete_edges SimpleGraph.Subgraph.deleteEdges
section DeleteEdges
variable {G' : G.Subgraph} (s : Set (Sym2 V))
@[simp]
theorem deleteEdges_verts : (G'.deleteEdges s).verts = G'.verts :=
rfl
#align simple_graph.subgraph.delete_edges_verts SimpleGraph.Subgraph.deleteEdges_verts
@[simp]
theorem deleteEdges_adj (v w : V) : (G'.deleteEdges s).Adj v w ↔ G'.Adj v w ∧ ¬⟦(v, w)⟧ ∈ s :=
Iff.rfl
#align simple_graph.subgraph.delete_edges_adj SimpleGraph.Subgraph.deleteEdges_adj
@[simp]
theorem deleteEdges_deleteEdges (s s' : Set (Sym2 V)) :
(G'.deleteEdges s).deleteEdges s' = G'.deleteEdges (s ∪ s') := by
ext <;> simp [and_assoc, not_or]
#align simple_graph.subgraph.delete_edges_delete_edges SimpleGraph.Subgraph.deleteEdges_deleteEdges
@[simp]
theorem deleteEdges_empty_eq : G'.deleteEdges ∅ = G' := by
ext <;> simp
#align simple_graph.subgraph.delete_edges_empty_eq SimpleGraph.Subgraph.deleteEdges_empty_eq
@[simp]
theorem deleteEdges_spanningCoe_eq :
G'.spanningCoe.deleteEdges s = (G'.deleteEdges s).spanningCoe := by
ext
simp
#align simple_graph.subgraph.delete_edges_spanning_coe_eq SimpleGraph.Subgraph.deleteEdges_spanningCoe_eq
theorem deleteEdges_coe_eq (s : Set (Sym2 G'.verts)) :
G'.coe.deleteEdges s = (G'.deleteEdges (Sym2.map (↑) '' s)).coe := by
ext ⟨v, hv⟩ ⟨w, hw⟩
simp only [SimpleGraph.deleteEdges_adj, coe_adj, deleteEdges_adj, Set.mem_image, not_exists,
not_and, and_congr_right_iff]
intro
constructor
· intro hs
refine' Sym2.ind _
rintro ⟨v', hv'⟩ ⟨w', hw'⟩
simp only [Sym2.map_pair_eq, Quotient.eq]
contrapose!
rintro (_ | _) <;> simpa only [Sym2.eq_swap]
· intro h' hs
exact h' _ hs rfl
#align simple_graph.subgraph.delete_edges_coe_eq SimpleGraph.Subgraph.deleteEdges_coe_eq
theorem coe_deleteEdges_eq (s : Set (Sym2 V)) :
(G'.deleteEdges s).coe = G'.coe.deleteEdges (Sym2.map (↑) ⁻¹' s) := by
ext ⟨v, hv⟩ ⟨w, hw⟩
simp
#align simple_graph.subgraph.coe_delete_edges_eq SimpleGraph.Subgraph.coe_deleteEdges_eq
theorem deleteEdges_le : G'.deleteEdges s ≤ G' := by
constructor <;> simp (config := { contextual := true }) [subset_rfl]
#align simple_graph.subgraph.delete_edges_le SimpleGraph.Subgraph.deleteEdges_le
theorem deleteEdges_le_of_le {s s' : Set (Sym2 V)} (h : s ⊆ s') :
G'.deleteEdges s' ≤ G'.deleteEdges s := by
constructor <;> simp (config := { contextual := true }) only [deleteEdges_verts, deleteEdges_adj,
true_and_iff, and_imp, subset_rfl]
exact fun _ _ _ hs' hs ↦ hs' (h hs)
#align simple_graph.subgraph.delete_edges_le_of_le SimpleGraph.Subgraph.deleteEdges_le_of_le
@[simp]
theorem deleteEdges_inter_edgeSet_left_eq :
G'.deleteEdges (G'.edgeSet ∩ s) = G'.deleteEdges s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_edges_inter_edge_set_left_eq SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_left_eq
@[simp]
theorem deleteEdges_inter_edgeSet_right_eq :
G'.deleteEdges (s ∩ G'.edgeSet) = G'.deleteEdges s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_edges_inter_edge_set_right_eq SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_right_eq
theorem coe_deleteEdges_le : (G'.deleteEdges s).coe ≤ (G'.coe : SimpleGraph G'.verts) := by
intro v w
simp (config := { contextual := true })
#align simple_graph.subgraph.coe_delete_edges_le SimpleGraph.Subgraph.coe_deleteEdges_le
theorem spanningCoe_deleteEdges_le (G' : G.Subgraph) (s : Set (Sym2 V)) :
(G'.deleteEdges s).spanningCoe ≤ G'.spanningCoe :=
spanningCoe_le_of_le (deleteEdges_le s)
#align simple_graph.subgraph.spanning_coe_delete_edges_le SimpleGraph.Subgraph.spanningCoe_deleteEdges_le
end DeleteEdges
/-! ### Induced subgraphs -/
/- Given a subgraph, we can change its vertex set while removing any invalid edges, which
gives induced subgraphs. See also `SimpleGraph.induce` for the `SimpleGraph` version, which,
unlike for subgraphs, results in a graph with a different vertex type. -/
/-- The induced subgraph of a subgraph. The expectation is that `s ⊆ G'.verts` for the usual
notion of an induced subgraph, but, in general, `s` is taken to be the new vertex set and edges
are induced from the subgraph `G'`. -/
@[simps]
def induce (G' : G.Subgraph) (s : Set V) : G.Subgraph where
verts := s
Adj u v := u ∈ s ∧ v ∈ s ∧ G'.Adj u v
adj_sub h := G'.adj_sub h.2.2
edge_vert h := h.1
symm _ _ h := ⟨h.2.1, h.1, G'.symm h.2.2⟩
#align simple_graph.subgraph.induce SimpleGraph.Subgraph.induce
theorem _root_.SimpleGraph.induce_eq_coe_induce_top (s : Set V) :
G.induce s = ((⊤ : G.Subgraph).induce s).coe := by
ext
simp
#align simple_graph.induce_eq_coe_induce_top SimpleGraph.induce_eq_coe_induce_top
section Induce
variable {G' G'' : G.Subgraph} {s s' : Set V}
theorem induce_mono (hg : G' ≤ G'') (hs : s ⊆ s') : G'.induce s ≤ G''.induce s' := by
constructor
· simp [hs]
· simp (config := { contextual := true }) only [induce_adj, true_and_iff, and_imp]
intro v w hv hw ha
exact ⟨hs hv, hs hw, hg.2 ha⟩
#align simple_graph.subgraph.induce_mono SimpleGraph.Subgraph.induce_mono
@[mono]
theorem induce_mono_left (hg : G' ≤ G'') : G'.induce s ≤ G''.induce s :=
induce_mono hg subset_rfl
#align simple_graph.subgraph.induce_mono_left SimpleGraph.Subgraph.induce_mono_left
@[mono]
theorem induce_mono_right (hs : s ⊆ s') : G'.induce s ≤ G'.induce s' :=
induce_mono le_rfl hs
#align simple_graph.subgraph.induce_mono_right SimpleGraph.Subgraph.induce_mono_right
@[simp]
theorem induce_empty : G'.induce ∅ = ⊥ := by
ext <;> simp
#align simple_graph.subgraph.induce_empty SimpleGraph.Subgraph.induce_empty
@[simp]
theorem induce_self_verts : G'.induce G'.verts = G' := by
ext
· simp
· constructor <;>
simp (config := { contextual := true }) only [induce_adj, imp_true_iff, and_true_iff]
exact fun ha ↦ ⟨G'.edge_vert ha, G'.edge_vert ha.symm⟩
#align simple_graph.subgraph.induce_self_verts SimpleGraph.Subgraph.induce_self_verts
lemma le_induce_top_verts : G' ≤ (⊤ : G.Subgraph).induce G'.verts :=
calc G' = G'.induce G'.verts := Subgraph.induce_self_verts.symm
_ ≤ (⊤ : G.Subgraph).induce G'.verts := Subgraph.induce_mono_left le_top
lemma le_induce_union : G'.induce s ⊔ G'.induce s' ≤ G'.induce (s ∪ s') := by
constructor
· simp only [verts_sup, induce_verts, Set.Subset.rfl]
· simp only [sup_adj, induce_adj, Set.mem_union]
rintro v w (h | h) <;> simp [h]
lemma le_induce_union_left : G'.induce s ≤ G'.induce (s ∪ s') := by
exact (sup_le_iff.mp le_induce_union).1
lemma le_induce_union_right : G'.induce s' ≤ G'.induce (s ∪ s') := by
exact (sup_le_iff.mp le_induce_union).2
theorem singletonSubgraph_eq_induce {v : V} : G.singletonSubgraph v = (⊤ : G.Subgraph).induce {v} :=
by ext <;> simp (config := { contextual := true }) [-Set.bot_eq_empty, Prop.bot_eq_false]
#align simple_graph.subgraph.singleton_subgraph_eq_induce SimpleGraph.Subgraph.singletonSubgraph_eq_induce
theorem subgraphOfAdj_eq_induce {v w : V} (hvw : G.Adj v w) :
G.subgraphOfAdj hvw = (⊤ : G.Subgraph).induce {v, w} := by
ext
· simp
· constructor
· intro h
simp only [subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff] at h
obtain ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩ := h <;> simp [hvw, hvw.symm]
· intro h
simp only [induce_adj, Set.mem_insert_iff, Set.mem_singleton_iff, top_adj] at h
obtain ⟨rfl | rfl, rfl | rfl, ha⟩ := h <;> first |exact (ha.ne rfl).elim|simp
#align simple_graph.subgraph.subgraph_of_adj_eq_induce SimpleGraph.Subgraph.subgraphOfAdj_eq_induce
end Induce
/-- Given a subgraph and a set of vertices, delete all the vertices from the subgraph,
if present. Any edges incident to the deleted vertices are deleted as well. -/
@[reducible]
def deleteVerts (G' : G.Subgraph) (s : Set V) : G.Subgraph :=
G'.induce (G'.verts \ s)
#align simple_graph.subgraph.delete_verts SimpleGraph.Subgraph.deleteVerts
section DeleteVerts
variable {G' : G.Subgraph} {s : Set V}
theorem deleteVerts_verts : (G'.deleteVerts s).verts = G'.verts \ s :=
rfl
#align simple_graph.subgraph.delete_verts_verts SimpleGraph.Subgraph.deleteVerts_verts
theorem deleteVerts_adj {u v : V} :
(G'.deleteVerts s).Adj u v ↔ u ∈ G'.verts ∧ ¬u ∈ s ∧ v ∈ G'.verts ∧ ¬v ∈ s ∧ G'.Adj u v := by
simp [and_assoc]
#align simple_graph.subgraph.delete_verts_adj SimpleGraph.Subgraph.deleteVerts_adj
@[simp]
theorem deleteVerts_deleteVerts (s s' : Set V) :
(G'.deleteVerts s).deleteVerts s' = G'.deleteVerts (s ∪ s') := by
ext <;> simp (config := { contextual := true }) [not_or, and_assoc]
#align simple_graph.subgraph.delete_verts_delete_verts SimpleGraph.Subgraph.deleteVerts_deleteVerts
@[simp]
theorem deleteVerts_empty : G'.deleteVerts ∅ = G' := by
simp [deleteVerts]
#align simple_graph.subgraph.delete_verts_empty SimpleGraph.Subgraph.deleteVerts_empty
theorem deleteVerts_le : G'.deleteVerts s ≤ G' := by
constructor <;> simp [Set.diff_subset]
#align simple_graph.subgraph.delete_verts_le SimpleGraph.Subgraph.deleteVerts_le
@[mono]
theorem deleteVerts_mono {G' G'' : G.Subgraph} (h : G' ≤ G'') :
G'.deleteVerts s ≤ G''.deleteVerts s :=
induce_mono h (Set.diff_subset_diff_left h.1)
#align simple_graph.subgraph.delete_verts_mono SimpleGraph.Subgraph.deleteVerts_mono
@[mono]
theorem deleteVerts_anti {s s' : Set V} (h : s ⊆ s') : G'.deleteVerts s' ≤ G'.deleteVerts s :=
induce_mono (le_refl _) (Set.diff_subset_diff_right h)
#align simple_graph.subgraph.delete_verts_anti SimpleGraph.Subgraph.deleteVerts_anti
@[simp]
theorem deleteVerts_inter_verts_left_eq : G'.deleteVerts (G'.verts ∩ s) = G'.deleteVerts s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_verts_inter_verts_left_eq SimpleGraph.Subgraph.deleteVerts_inter_verts_left_eq
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s :=
by ext <;>
|
simp (config := { contextual := true }) [imp_false]
|
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s :=
by ext <;>
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.1294_0.BlhiAiIDADcXv8t
|
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
case Adj.h.h.a
ι : Sort u_1
V : Type u
W : Type v
G : SimpleGraph V
G' : Subgraph G
s : Set V
x✝¹ x✝ : V
⊢ Adj (deleteVerts G' (s ∩ G'.verts)) x✝¹ x✝ ↔ Adj (deleteVerts G' s) x✝¹ x✝
|
/-
Copyright (c) 2021 Hunter Monroe. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hunter Monroe, Kyle Miller, Alena Gusakov
-/
import Mathlib.Combinatorics.SimpleGraph.Basic
#align_import combinatorics.simple_graph.subgraph from "leanprover-community/mathlib"@"c6ef6387ede9983aee397d442974e61f89dfd87b"
/-!
# Subgraphs of a simple graph
A subgraph of a simple graph consists of subsets of the graph's vertices and edges such that the
endpoints of each edge are present in the vertex subset. The edge subset is formalized as a
sub-relation of the adjacency relation of the simple graph.
## Main definitions
* `Subgraph G` is the type of subgraphs of a `G : SimpleGraph V`.
* `Subgraph.neighborSet`, `Subgraph.incidenceSet`, and `Subgraph.degree` are like their
`SimpleGraph` counterparts, but they refer to vertices from `G` to avoid subtype coercions.
* `Subgraph.coe` is the coercion from a `G' : Subgraph G` to a `SimpleGraph G'.verts`.
(In Lean 3 this could not be a `Coe` instance since the destination type depends on `G'`.)
* `Subgraph.IsSpanning` for whether a subgraph is a spanning subgraph and
`Subgraph.IsInduced` for whether a subgraph is an induced subgraph.
* Instances for `Lattice (Subgraph G)` and `BoundedOrder (Subgraph G)`.
* `SimpleGraph.toSubgraph`: If a `SimpleGraph` is a subgraph of another, then you can turn it
into a member of the larger graph's `SimpleGraph.Subgraph` type.
* Graph homomorphisms from a subgraph to a graph (`Subgraph.map_top`) and between subgraphs
(`Subgraph.map`).
## Implementation notes
* Recall that subgraphs are not determined by their vertex sets, so `SetLike` does not apply to
this kind of subobject.
## Todo
* Images of graph homomorphisms as subgraphs.
-/
universe u v
namespace SimpleGraph
/-- A subgraph of a `SimpleGraph` is a subset of vertices along with a restriction of the adjacency
relation that is symmetric and is supported by the vertex subset. They also form a bounded lattice.
Thinking of `V → V → Prop` as `Set (V × V)`, a set of darts (i.e., half-edges), then
`Subgraph.adj_sub` is that the darts of a subgraph are a subset of the darts of `G`. -/
@[ext]
structure Subgraph {V : Type u} (G : SimpleGraph V) where
verts : Set V
Adj : V → V → Prop
adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w
edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts
symm : Symmetric Adj := by aesop_graph -- Porting note: Originally `by obviously`
#align simple_graph.subgraph SimpleGraph.Subgraph
initialize_simps_projections SimpleGraph.Subgraph (Adj → adj)
variable {ι : Sort*} {V : Type u} {W : Type v}
/-- The one-vertex subgraph. -/
@[simps]
protected def singletonSubgraph (G : SimpleGraph V) (v : V) : G.Subgraph where
verts := {v}
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm _ _ := False.elim
#align simple_graph.singleton_subgraph SimpleGraph.singletonSubgraph
/-- The one-edge subgraph. -/
@[simps]
def subgraphOfAdj (G : SimpleGraph V) {v w : V} (hvw : G.Adj v w) : G.Subgraph where
verts := {v, w}
Adj a b := ⟦(v, w)⟧ = ⟦(a, b)⟧
adj_sub h := by
rw [← G.mem_edgeSet, ← h]
exact hvw
edge_vert {a b} h := by
apply_fun fun e ↦ a ∈ e at h
simp only [Sym2.mem_iff, true_or, eq_iff_iff, iff_true] at h
exact h
#align simple_graph.subgraph_of_adj SimpleGraph.subgraphOfAdj
namespace Subgraph
variable {G : SimpleGraph V} {G₁ G₂ : G.Subgraph} {a b : V}
protected theorem loopless (G' : Subgraph G) : Irreflexive G'.Adj :=
fun v h ↦ G.loopless v (G'.adj_sub h)
#align simple_graph.subgraph.loopless SimpleGraph.Subgraph.loopless
theorem adj_comm (G' : Subgraph G) (v w : V) : G'.Adj v w ↔ G'.Adj w v :=
⟨fun x ↦ G'.symm x, fun x ↦ G'.symm x⟩
#align simple_graph.subgraph.adj_comm SimpleGraph.Subgraph.adj_comm
@[symm]
theorem adj_symm (G' : Subgraph G) {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj_symm SimpleGraph.Subgraph.adj_symm
protected theorem Adj.symm {G' : Subgraph G} {u v : V} (h : G'.Adj u v) : G'.Adj v u :=
G'.symm h
#align simple_graph.subgraph.adj.symm SimpleGraph.Subgraph.Adj.symm
protected theorem Adj.adj_sub {H : G.Subgraph} {u v : V} (h : H.Adj u v) : G.Adj u v :=
H.adj_sub h
#align simple_graph.subgraph.adj.adj_sub SimpleGraph.Subgraph.Adj.adj_sub
protected theorem Adj.fst_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ∈ H.verts :=
H.edge_vert h
#align simple_graph.subgraph.adj.fst_mem SimpleGraph.Subgraph.Adj.fst_mem
protected theorem Adj.snd_mem {H : G.Subgraph} {u v : V} (h : H.Adj u v) : v ∈ H.verts :=
h.symm.fst_mem
#align simple_graph.subgraph.adj.snd_mem SimpleGraph.Subgraph.Adj.snd_mem
protected theorem Adj.ne {H : G.Subgraph} {u v : V} (h : H.Adj u v) : u ≠ v :=
h.adj_sub.ne
#align simple_graph.subgraph.adj.ne SimpleGraph.Subgraph.Adj.ne
/-- Coercion from `G' : Subgraph G` to a `SimpleGraph G'.verts`. -/
@[simps]
protected def coe (G' : Subgraph G) : SimpleGraph G'.verts where
Adj v w := G'.Adj v w
symm _ _ h := G'.symm h
loopless v h := loopless G v (G'.adj_sub h)
#align simple_graph.subgraph.coe SimpleGraph.Subgraph.coe
@[simp]
theorem coe_adj_sub (G' : Subgraph G) (u v : G'.verts) (h : G'.coe.Adj u v) : G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.coe_adj_sub SimpleGraph.Subgraph.coe_adj_sub
-- Given `h : H.Adj u v`, then `h.coe : H.coe.Adj ⟨u, _⟩ ⟨v, _⟩`.
protected theorem Adj.coe {H : G.Subgraph} {u v : V} (h : H.Adj u v) :
H.coe.Adj ⟨u, H.edge_vert h⟩ ⟨v, H.edge_vert h.symm⟩ := h
#align simple_graph.subgraph.adj.coe SimpleGraph.Subgraph.Adj.coe
/-- A subgraph is called a *spanning subgraph* if it contains all the vertices of `G`. -/
def IsSpanning (G' : Subgraph G) : Prop :=
∀ v : V, v ∈ G'.verts
#align simple_graph.subgraph.is_spanning SimpleGraph.Subgraph.IsSpanning
theorem isSpanning_iff {G' : Subgraph G} : G'.IsSpanning ↔ G'.verts = Set.univ :=
Set.eq_univ_iff_forall.symm
#align simple_graph.subgraph.is_spanning_iff SimpleGraph.Subgraph.isSpanning_iff
/-- Coercion from `Subgraph G` to `SimpleGraph V`. If `G'` is a spanning
subgraph, then `G'.spanningCoe` yields an isomorphic graph.
In general, this adds in all vertices from `V` as isolated vertices. -/
@[simps]
protected def spanningCoe (G' : Subgraph G) : SimpleGraph V where
Adj := G'.Adj
symm := G'.symm
loopless v hv := G.loopless v (G'.adj_sub hv)
#align simple_graph.subgraph.spanning_coe SimpleGraph.Subgraph.spanningCoe
@[simp]
theorem Adj.of_spanningCoe {G' : Subgraph G} {u v : G'.verts} (h : G'.spanningCoe.Adj u v) :
G.Adj u v :=
G'.adj_sub h
#align simple_graph.subgraph.adj.of_spanning_coe SimpleGraph.Subgraph.Adj.of_spanningCoe
theorem spanningCoe_inj : G₁.spanningCoe = G₂.spanningCoe ↔ G₁.Adj = G₂.Adj := by
simp [Subgraph.spanningCoe]
#align simple_graph.subgraph.spanning_coe_inj SimpleGraph.Subgraph.spanningCoe_inj
/-- `spanningCoe` is equivalent to `coe` for a subgraph that `IsSpanning`. -/
@[simps]
def spanningCoeEquivCoeOfSpanning (G' : Subgraph G) (h : G'.IsSpanning) : G'.spanningCoe ≃g G'.coe
where
toFun v := ⟨v, h v⟩
invFun v := v
left_inv _ := rfl
right_inv _ := rfl
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.spanning_coe_equiv_coe_of_spanning SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning
/-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if
they are adjacent in `G`. -/
def IsInduced (G' : Subgraph G) : Prop :=
∀ {v w : V}, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w
#align simple_graph.subgraph.is_induced SimpleGraph.Subgraph.IsInduced
/-- `H.support` is the set of vertices that form edges in the subgraph `H`. -/
def support (H : Subgraph G) : Set V := Rel.dom H.Adj
#align simple_graph.subgraph.support SimpleGraph.Subgraph.support
theorem mem_support (H : Subgraph G) {v : V} : v ∈ H.support ↔ ∃ w, H.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_support SimpleGraph.Subgraph.mem_support
theorem support_subset_verts (H : Subgraph G) : H.support ⊆ H.verts :=
fun _ ⟨_, h⟩ ↦ H.edge_vert h
#align simple_graph.subgraph.support_subset_verts SimpleGraph.Subgraph.support_subset_verts
/-- `G'.neighborSet v` is the set of vertices adjacent to `v` in `G'`. -/
def neighborSet (G' : Subgraph G) (v : V) : Set V := {w | G'.Adj v w}
#align simple_graph.subgraph.neighbor_set SimpleGraph.Subgraph.neighborSet
theorem neighborSet_subset (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G.neighborSet v :=
fun _ ↦ G'.adj_sub
#align simple_graph.subgraph.neighbor_set_subset SimpleGraph.Subgraph.neighborSet_subset
theorem neighborSet_subset_verts (G' : Subgraph G) (v : V) : G'.neighborSet v ⊆ G'.verts :=
fun _ h ↦ G'.edge_vert (adj_symm G' h)
#align simple_graph.subgraph.neighbor_set_subset_verts SimpleGraph.Subgraph.neighborSet_subset_verts
@[simp]
theorem mem_neighborSet (G' : Subgraph G) (v w : V) : w ∈ G'.neighborSet v ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_neighbor_set SimpleGraph.Subgraph.mem_neighborSet
/-- A subgraph as a graph has equivalent neighbor sets. -/
def coeNeighborSetEquiv {G' : Subgraph G} (v : G'.verts) : G'.coe.neighborSet v ≃ G'.neighborSet v
where
toFun w := ⟨w, w.2⟩
invFun w := ⟨⟨w, G'.edge_vert (G'.adj_symm w.2)⟩, w.2⟩
left_inv _ := rfl
right_inv _ := rfl
#align simple_graph.subgraph.coe_neighbor_set_equiv SimpleGraph.Subgraph.coeNeighborSetEquiv
/-- The edge set of `G'` consists of a subset of edges of `G`. -/
def edgeSet (G' : Subgraph G) : Set (Sym2 V) := Sym2.fromRel G'.symm
#align simple_graph.subgraph.edge_set SimpleGraph.Subgraph.edgeSet
theorem edgeSet_subset (G' : Subgraph G) : G'.edgeSet ⊆ G.edgeSet :=
Sym2.ind (fun _ _ ↦ G'.adj_sub)
#align simple_graph.subgraph.edge_set_subset SimpleGraph.Subgraph.edgeSet_subset
@[simp]
theorem mem_edgeSet {G' : Subgraph G} {v w : V} : ⟦(v, w)⟧ ∈ G'.edgeSet ↔ G'.Adj v w := Iff.rfl
#align simple_graph.subgraph.mem_edge_set SimpleGraph.Subgraph.mem_edgeSet
theorem mem_verts_if_mem_edge {G' : Subgraph G} {e : Sym2 V} {v : V} (he : e ∈ G'.edgeSet)
(hv : v ∈ e) : v ∈ G'.verts := by
revert hv
refine' Sym2.ind (fun v w he ↦ _) e he
intro hv
rcases Sym2.mem_iff.mp hv with (rfl | rfl)
· exact G'.edge_vert he
· exact G'.edge_vert (G'.symm he)
#align simple_graph.subgraph.mem_verts_if_mem_edge SimpleGraph.Subgraph.mem_verts_if_mem_edge
/-- The `incidenceSet` is the set of edges incident to a given vertex. -/
def incidenceSet (G' : Subgraph G) (v : V) : Set (Sym2 V) := {e ∈ G'.edgeSet | v ∈ e}
#align simple_graph.subgraph.incidence_set SimpleGraph.Subgraph.incidenceSet
theorem incidenceSet_subset_incidenceSet (G' : Subgraph G) (v : V) :
G'.incidenceSet v ⊆ G.incidenceSet v :=
fun _ h ↦ ⟨G'.edgeSet_subset h.1, h.2⟩
#align simple_graph.subgraph.incidence_set_subset_incidence_set SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet
theorem incidenceSet_subset (G' : Subgraph G) (v : V) : G'.incidenceSet v ⊆ G'.edgeSet :=
fun _ h ↦ h.1
#align simple_graph.subgraph.incidence_set_subset SimpleGraph.Subgraph.incidenceSet_subset
/-- Give a vertex as an element of the subgraph's vertex type. -/
@[reducible]
def vert (G' : Subgraph G) (v : V) (h : v ∈ G'.verts) : G'.verts := ⟨v, h⟩
#align simple_graph.subgraph.vert SimpleGraph.Subgraph.vert
/--
Create an equal copy of a subgraph (see `copy_eq`) with possibly different definitional equalities.
See Note [range copy pattern].
-/
def copy (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts)
(adj' : V → V → Prop) (hadj : adj' = G'.Adj) : Subgraph G where
verts := V''
Adj := adj'
adj_sub := hadj.symm ▸ G'.adj_sub
edge_vert := hV.symm ▸ hadj.symm ▸ G'.edge_vert
symm := hadj.symm ▸ G'.symm
#align simple_graph.subgraph.copy SimpleGraph.Subgraph.copy
theorem copy_eq (G' : Subgraph G) (V'' : Set V) (hV : V'' = G'.verts)
(adj' : V → V → Prop) (hadj : adj' = G'.Adj) : G'.copy V'' hV adj' hadj = G' :=
Subgraph.ext _ _ hV hadj
#align simple_graph.subgraph.copy_eq SimpleGraph.Subgraph.copy_eq
/-- The union of two subgraphs. -/
instance : Sup G.Subgraph where
sup G₁ G₂ :=
{ verts := G₁.verts ∪ G₂.verts
Adj := G₁.Adj ⊔ G₂.Adj
adj_sub := fun hab => Or.elim hab (fun h => G₁.adj_sub h) fun h => G₂.adj_sub h
edge_vert := Or.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h
symm := fun _ _ => Or.imp G₁.adj_symm G₂.adj_symm }
/-- The intersection of two subgraphs. -/
instance : Inf G.Subgraph where
inf G₁ G₂ :=
{ verts := G₁.verts ∩ G₂.verts
Adj := G₁.Adj ⊓ G₂.Adj
adj_sub := fun hab => G₁.adj_sub hab.1
edge_vert := And.imp (fun h => G₁.edge_vert h) fun h => G₂.edge_vert h
symm := fun _ _ => And.imp G₁.adj_symm G₂.adj_symm }
/-- The `top` subgraph is `G` as a subgraph of itself. -/
instance : Top G.Subgraph where
top :=
{ verts := Set.univ
Adj := G.Adj
adj_sub := id
edge_vert := @fun v _ _ => Set.mem_univ v
symm := G.symm }
/-- The `bot` subgraph is the subgraph with no vertices or edges. -/
instance : Bot G.Subgraph where
bot :=
{ verts := ∅
Adj := ⊥
adj_sub := False.elim
edge_vert := False.elim
symm := fun _ _ => id }
instance : SupSet G.Subgraph where
sSup s :=
{ verts := ⋃ G' ∈ s, verts G'
Adj := fun a b => ∃ G' ∈ s, Adj G' a b
adj_sub := by
rintro a b ⟨G', -, hab⟩
exact G'.adj_sub hab
edge_vert := by
rintro a b ⟨G', hG', hab⟩
exact Set.mem_iUnion₂_of_mem hG' (G'.edge_vert hab)
symm := fun a b h => by simpa [adj_comm] using h }
instance : InfSet G.Subgraph where
sInf s :=
{ verts := ⋂ G' ∈ s, verts G'
Adj := fun a b => (∀ ⦃G'⦄, G' ∈ s → Adj G' a b) ∧ G.Adj a b
adj_sub := And.right
edge_vert := fun hab => Set.mem_iInter₂_of_mem fun G' hG' => G'.edge_vert <| hab.1 hG'
symm := fun _ _ => And.imp (forall₂_imp fun _ _ => Adj.symm) G.adj_symm }
@[simp]
theorem sup_adj : (G₁ ⊔ G₂).Adj a b ↔ G₁.Adj a b ∨ G₂.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.sup_adj SimpleGraph.Subgraph.sup_adj
@[simp]
theorem inf_adj : (G₁ ⊓ G₂).Adj a b ↔ G₁.Adj a b ∧ G₂.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.inf_adj SimpleGraph.Subgraph.inf_adj
@[simp]
theorem top_adj : (⊤ : Subgraph G).Adj a b ↔ G.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.top_adj SimpleGraph.Subgraph.top_adj
@[simp]
theorem not_bot_adj : ¬ (⊥ : Subgraph G).Adj a b :=
not_false
#align simple_graph.subgraph.not_bot_adj SimpleGraph.Subgraph.not_bot_adj
@[simp]
theorem verts_sup (G₁ G₂ : G.Subgraph) : (G₁ ⊔ G₂).verts = G₁.verts ∪ G₂.verts :=
rfl
#align simple_graph.subgraph.verts_sup SimpleGraph.Subgraph.verts_sup
@[simp]
theorem verts_inf (G₁ G₂ : G.Subgraph) : (G₁ ⊓ G₂).verts = G₁.verts ∩ G₂.verts :=
rfl
#align simple_graph.subgraph.verts_inf SimpleGraph.Subgraph.verts_inf
@[simp]
theorem verts_top : (⊤ : G.Subgraph).verts = Set.univ :=
rfl
#align simple_graph.subgraph.verts_top SimpleGraph.Subgraph.verts_top
@[simp]
theorem verts_bot : (⊥ : G.Subgraph).verts = ∅ :=
rfl
#align simple_graph.subgraph.verts_bot SimpleGraph.Subgraph.verts_bot
@[simp]
theorem sSup_adj {s : Set G.Subgraph} : (sSup s).Adj a b ↔ ∃ G ∈ s, Adj G a b :=
Iff.rfl
#align simple_graph.subgraph.Sup_adj SimpleGraph.Subgraph.sSup_adj
@[simp]
theorem sInf_adj {s : Set G.Subgraph} : (sInf s).Adj a b ↔ (∀ G' ∈ s, Adj G' a b) ∧ G.Adj a b :=
Iff.rfl
#align simple_graph.subgraph.Inf_adj SimpleGraph.Subgraph.sInf_adj
@[simp]
theorem iSup_adj {f : ι → G.Subgraph} : (⨆ i, f i).Adj a b ↔ ∃ i, (f i).Adj a b := by
simp [iSup]
#align simple_graph.subgraph.supr_adj SimpleGraph.Subgraph.iSup_adj
@[simp]
theorem iInf_adj {f : ι → G.Subgraph} : (⨅ i, f i).Adj a b ↔ (∀ i, (f i).Adj a b) ∧ G.Adj a b := by
simp [iInf]
#align simple_graph.subgraph.infi_adj SimpleGraph.Subgraph.iInf_adj
theorem sInf_adj_of_nonempty {s : Set G.Subgraph} (hs : s.Nonempty) :
(sInf s).Adj a b ↔ ∀ G' ∈ s, Adj G' a b :=
sInf_adj.trans <|
and_iff_left_of_imp <| by
obtain ⟨G', hG'⟩ := hs
exact fun h => G'.adj_sub (h _ hG')
#align simple_graph.subgraph.Inf_adj_of_nonempty SimpleGraph.Subgraph.sInf_adj_of_nonempty
theorem iInf_adj_of_nonempty [Nonempty ι] {f : ι → G.Subgraph} :
(⨅ i, f i).Adj a b ↔ ∀ i, (f i).Adj a b := by
rw [iInf, sInf_adj_of_nonempty (Set.range_nonempty _)]
simp
#align simple_graph.subgraph.infi_adj_of_nonempty SimpleGraph.Subgraph.iInf_adj_of_nonempty
@[simp]
theorem verts_sSup (s : Set G.Subgraph) : (sSup s).verts = ⋃ G' ∈ s, verts G' :=
rfl
#align simple_graph.subgraph.verts_Sup SimpleGraph.Subgraph.verts_sSup
@[simp]
theorem verts_sInf (s : Set G.Subgraph) : (sInf s).verts = ⋂ G' ∈ s, verts G' :=
rfl
#align simple_graph.subgraph.verts_Inf SimpleGraph.Subgraph.verts_sInf
@[simp]
theorem verts_iSup {f : ι → G.Subgraph} : (⨆ i, f i).verts = ⋃ i, (f i).verts := by simp [iSup]
#align simple_graph.subgraph.verts_supr SimpleGraph.Subgraph.verts_iSup
@[simp]
theorem verts_iInf {f : ι → G.Subgraph} : (⨅ i, f i).verts = ⋂ i, (f i).verts := by simp [iInf]
#align simple_graph.subgraph.verts_infi SimpleGraph.Subgraph.verts_iInf
theorem verts_spanningCoe_injective :
(fun G' : Subgraph G => (G'.verts, G'.spanningCoe)).Injective := by
intro G₁ G₂ h
rw [Prod.ext_iff] at h
exact Subgraph.ext _ _ h.1 (spanningCoe_inj.1 h.2)
/-- For subgraphs `G₁`, `G₂`, `G₁ ≤ G₂` iff `G₁.verts ⊆ G₂.verts` and
`∀ a b, G₁.adj a b → G₂.adj a b`. -/
instance distribLattice : DistribLattice G.Subgraph :=
{ show DistribLattice G.Subgraph from
verts_spanningCoe_injective.distribLattice _
(fun _ _ => rfl) fun _ _ => rfl with
le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w }
instance : BoundedOrder (Subgraph G) where
top := ⊤
bot := ⊥
le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩
bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩
-- Note that subgraphs do not form a Boolean algebra, because of `verts`.
instance : CompletelyDistribLattice G.Subgraph :=
{ Subgraph.distribLattice with
le := (· ≤ ·)
sup := (· ⊔ ·)
inf := (· ⊓ ·)
top := ⊤
bot := ⊥
le_top := fun G' => ⟨Set.subset_univ _, fun a b => G'.adj_sub⟩
bot_le := fun G' => ⟨Set.empty_subset _, fun a b => False.elim⟩
sSup := sSup
-- porting note: needed `apply` here to modify elaboration; previously the term itself was fine.
le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun a b hab => ⟨G', hG', hab⟩⟩
sSup_le := fun s G' hG' =>
⟨Set.iUnion₂_subset fun H hH => (hG' _ hH).1, by
rintro a b ⟨H, hH, hab⟩
exact (hG' _ hH).2 hab⟩
sInf := sInf
sInf_le := fun s G' hG' => ⟨Set.iInter₂_subset G' hG', fun a b hab => hab.1 hG'⟩
le_sInf := fun s G' hG' =>
⟨Set.subset_iInter₂ fun H hH => (hG' _ hH).1, fun a b hab =>
⟨fun H hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩
iInf_iSup_eq := fun f => Subgraph.ext _ _ (by simpa using iInf_iSup_eq)
(by ext; simp [Classical.skolem]) }
@[simps]
instance subgraphInhabited : Inhabited (Subgraph G) := ⟨⊥⟩
#align simple_graph.subgraph.subgraph_inhabited SimpleGraph.Subgraph.subgraphInhabited
@[simp]
theorem neighborSet_sup {H H' : G.Subgraph} (v : V) :
(H ⊔ H').neighborSet v = H.neighborSet v ∪ H'.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_sup SimpleGraph.Subgraph.neighborSet_sup
@[simp]
theorem neighborSet_inf {H H' : G.Subgraph} (v : V) :
(H ⊓ H').neighborSet v = H.neighborSet v ∩ H'.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_inf SimpleGraph.Subgraph.neighborSet_inf
@[simp]
theorem neighborSet_top (v : V) : (⊤ : G.Subgraph).neighborSet v = G.neighborSet v := rfl
#align simple_graph.subgraph.neighbor_set_top SimpleGraph.Subgraph.neighborSet_top
@[simp]
theorem neighborSet_bot (v : V) : (⊥ : G.Subgraph).neighborSet v = ∅ := rfl
#align simple_graph.subgraph.neighbor_set_bot SimpleGraph.Subgraph.neighborSet_bot
@[simp]
theorem neighborSet_sSup (s : Set G.Subgraph) (v : V) :
(sSup s).neighborSet v = ⋃ G' ∈ s, neighborSet G' v := by
ext
simp
#align simple_graph.subgraph.neighbor_set_Sup SimpleGraph.Subgraph.neighborSet_sSup
@[simp]
theorem neighborSet_sInf (s : Set G.Subgraph) (v : V) :
(sInf s).neighborSet v = (⋂ G' ∈ s, neighborSet G' v) ∩ G.neighborSet v := by
ext
simp
#align simple_graph.subgraph.neighbor_set_Inf SimpleGraph.Subgraph.neighborSet_sInf
@[simp]
theorem neighborSet_iSup (f : ι → G.Subgraph) (v : V) :
(⨆ i, f i).neighborSet v = ⋃ i, (f i).neighborSet v := by simp [iSup]
#align simple_graph.subgraph.neighbor_set_supr SimpleGraph.Subgraph.neighborSet_iSup
@[simp]
theorem neighborSet_iInf (f : ι → G.Subgraph) (v : V) :
(⨅ i, f i).neighborSet v = (⋂ i, (f i).neighborSet v) ∩ G.neighborSet v := by simp [iInf]
#align simple_graph.subgraph.neighbor_set_infi SimpleGraph.Subgraph.neighborSet_iInf
@[simp]
theorem edgeSet_top : (⊤ : Subgraph G).edgeSet = G.edgeSet := rfl
#align simple_graph.subgraph.edge_set_top SimpleGraph.Subgraph.edgeSet_top
@[simp]
theorem edgeSet_bot : (⊥ : Subgraph G).edgeSet = ∅ :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_bot SimpleGraph.Subgraph.edgeSet_bot
@[simp]
theorem edgeSet_inf {H₁ H₂ : Subgraph G} : (H₁ ⊓ H₂).edgeSet = H₁.edgeSet ∩ H₂.edgeSet :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_inf SimpleGraph.Subgraph.edgeSet_inf
@[simp]
theorem edgeSet_sup {H₁ H₂ : Subgraph G} : (H₁ ⊔ H₂).edgeSet = H₁.edgeSet ∪ H₂.edgeSet :=
Set.ext <| Sym2.ind (by simp)
#align simple_graph.subgraph.edge_set_sup SimpleGraph.Subgraph.edgeSet_sup
@[simp]
theorem edgeSet_sSup (s : Set G.Subgraph) : (sSup s).edgeSet = ⋃ G' ∈ s, edgeSet G' := by
ext e
induction e using Sym2.ind
simp
#align simple_graph.subgraph.edge_set_Sup SimpleGraph.Subgraph.edgeSet_sSup
@[simp]
theorem edgeSet_sInf (s : Set G.Subgraph) :
(sInf s).edgeSet = (⋂ G' ∈ s, edgeSet G') ∩ G.edgeSet := by
ext e
induction e using Sym2.ind
simp
#align simple_graph.subgraph.edge_set_Inf SimpleGraph.Subgraph.edgeSet_sInf
@[simp]
theorem edgeSet_iSup (f : ι → G.Subgraph) :
(⨆ i, f i).edgeSet = ⋃ i, (f i).edgeSet := by simp [iSup]
#align simple_graph.subgraph.edge_set_supr SimpleGraph.Subgraph.edgeSet_iSup
@[simp]
theorem edgeSet_iInf (f : ι → G.Subgraph) :
(⨅ i, f i).edgeSet = (⋂ i, (f i).edgeSet) ∩ G.edgeSet := by
simp [iInf]
#align simple_graph.subgraph.edge_set_infi SimpleGraph.Subgraph.edgeSet_iInf
@[simp]
theorem spanningCoe_top : (⊤ : Subgraph G).spanningCoe = G := rfl
#align simple_graph.subgraph.spanning_coe_top SimpleGraph.Subgraph.spanningCoe_top
@[simp]
theorem spanningCoe_bot : (⊥ : Subgraph G).spanningCoe = ⊥ := rfl
#align simple_graph.subgraph.spanning_coe_bot SimpleGraph.Subgraph.spanningCoe_bot
/-- Turn a subgraph of a `SimpleGraph` into a member of its subgraph type. -/
@[simps]
def _root_.SimpleGraph.toSubgraph (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where
verts := Set.univ
Adj := H.Adj
adj_sub e := h e
edge_vert _ := Set.mem_univ _
symm := H.symm
#align simple_graph.to_subgraph SimpleGraph.toSubgraph
theorem support_mono {H H' : Subgraph G} (h : H ≤ H') : H.support ⊆ H'.support :=
Rel.dom_mono h.2
#align simple_graph.subgraph.support_mono SimpleGraph.Subgraph.support_mono
theorem _root_.SimpleGraph.toSubgraph.isSpanning (H : SimpleGraph V) (h : H ≤ G) :
(toSubgraph H h).IsSpanning :=
Set.mem_univ
#align simple_graph.to_subgraph.is_spanning SimpleGraph.toSubgraph.isSpanning
theorem spanningCoe_le_of_le {H H' : Subgraph G} (h : H ≤ H') : H.spanningCoe ≤ H'.spanningCoe :=
h.2
#align simple_graph.subgraph.spanning_coe_le_of_le SimpleGraph.Subgraph.spanningCoe_le_of_le
/-- The top of the `Subgraph G` lattice is equivalent to the graph itself. -/
def topEquiv : (⊤ : Subgraph G).coe ≃g G where
toFun v := ↑v
invFun v := ⟨v, trivial⟩
left_inv _ := rfl
right_inv _ := rfl
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.top_equiv SimpleGraph.Subgraph.topEquiv
/-- The bottom of the `Subgraph G` lattice is equivalent to the empty graph on the empty
vertex type. -/
def botEquiv : (⊥ : Subgraph G).coe ≃g (⊥ : SimpleGraph Empty) where
toFun v := v.property.elim
invFun v := v.elim
left_inv := fun ⟨_, h⟩ ↦ h.elim
right_inv v := v.elim
map_rel_iff' := Iff.rfl
#align simple_graph.subgraph.bot_equiv SimpleGraph.Subgraph.botEquiv
theorem edgeSet_mono {H₁ H₂ : Subgraph G} (h : H₁ ≤ H₂) : H₁.edgeSet ≤ H₂.edgeSet :=
Sym2.ind h.2
#align simple_graph.subgraph.edge_set_mono SimpleGraph.Subgraph.edgeSet_mono
theorem _root_.Disjoint.edgeSet {H₁ H₂ : Subgraph G} (h : Disjoint H₁ H₂) :
Disjoint H₁.edgeSet H₂.edgeSet :=
disjoint_iff_inf_le.mpr <| by simpa using edgeSet_mono h.le_bot
#align disjoint.edge_set Disjoint.edgeSet
/-- Graph homomorphisms induce a covariant function on subgraphs. -/
@[simps]
protected def map {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) : G'.Subgraph where
verts := f '' H.verts
Adj := Relation.Map H.Adj f f
adj_sub := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact f.map_rel (H.adj_sub h)
edge_vert := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact Set.mem_image_of_mem _ (H.edge_vert h)
symm := by
rintro _ _ ⟨u, v, h, rfl, rfl⟩
exact ⟨v, u, H.symm h, rfl, rfl⟩
#align simple_graph.subgraph.map SimpleGraph.Subgraph.map
theorem map_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.map f) := by
intro H H' h
constructor
· intro
simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro v hv rfl
exact ⟨_, h.1 hv, rfl⟩
· rintro _ _ ⟨u, v, ha, rfl, rfl⟩
exact ⟨_, _, h.2 ha, rfl, rfl⟩
#align simple_graph.subgraph.map_monotone SimpleGraph.Subgraph.map_monotone
theorem map_sup {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {H H' : G.Subgraph} :
(H ⊔ H').map f = H.map f ⊔ H'.map f := by
ext1
· simp only [Set.image_union, map_verts, verts_sup]
· ext
simp only [Relation.Map, map_adj, sup_adj]
constructor
· rintro ⟨a, b, h | h, rfl, rfl⟩
· exact Or.inl ⟨_, _, h, rfl, rfl⟩
· exact Or.inr ⟨_, _, h, rfl, rfl⟩
· rintro (⟨a, b, h, rfl, rfl⟩ | ⟨a, b, h, rfl, rfl⟩)
· exact ⟨_, _, Or.inl h, rfl, rfl⟩
· exact ⟨_, _, Or.inr h, rfl, rfl⟩
#align simple_graph.subgraph.map_sup SimpleGraph.Subgraph.map_sup
/-- Graph homomorphisms induce a contravariant function on subgraphs. -/
@[simps]
protected def comap {G' : SimpleGraph W} (f : G →g G') (H : G'.Subgraph) : G.Subgraph where
verts := f ⁻¹' H.verts
Adj u v := G.Adj u v ∧ H.Adj (f u) (f v)
adj_sub h := h.1
edge_vert h := Set.mem_preimage.1 (H.edge_vert h.2)
symm _ _ h := ⟨G.symm h.1, H.symm h.2⟩
#align simple_graph.subgraph.comap SimpleGraph.Subgraph.comap
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f) := by
intro H H' h
constructor
· intro
simp only [comap_verts, Set.mem_preimage]
apply h.1
· intro v w
simp (config := { contextual := true }) only [comap_adj, and_imp, true_and_iff]
intro
apply h.2
#align simple_graph.subgraph.comap_monotone SimpleGraph.Subgraph.comap_monotone
theorem map_le_iff_le_comap {G' : SimpleGraph W} (f : G →g G') (H : G.Subgraph) (H' : G'.Subgraph) :
H.map f ≤ H' ↔ H ≤ H'.comap f := by
refine' ⟨fun h ↦ ⟨fun v hv ↦ _, fun v w hvw ↦ _⟩, fun h ↦ ⟨fun v ↦ _, fun v w ↦ _⟩⟩
· simp only [comap_verts, Set.mem_preimage]
exact h.1 ⟨v, hv, rfl⟩
· simp only [H.adj_sub hvw, comap_adj, true_and_iff]
exact h.2 ⟨v, w, hvw, rfl, rfl⟩
· simp only [map_verts, Set.mem_image, forall_exists_index, and_imp]
rintro w hw rfl
exact h.1 hw
· simp only [Relation.Map, map_adj, forall_exists_index, and_imp]
rintro u u' hu rfl rfl
exact (h.2 hu).2
#align simple_graph.subgraph.map_le_iff_le_comap SimpleGraph.Subgraph.map_le_iff_le_comap
/-- Given two subgraphs, one a subgraph of the other, there is an induced injective homomorphism of
the subgraphs as graphs. -/
@[simps]
def inclusion {x y : Subgraph G} (h : x ≤ y) : x.coe →g y.coe where
toFun v := ⟨↑v, And.left h v.property⟩
map_rel' hvw := h.2 hvw
#align simple_graph.subgraph.inclusion SimpleGraph.Subgraph.inclusion
theorem inclusion.injective {x y : Subgraph G} (h : x ≤ y) : Function.Injective (inclusion h) := by
intro v w h
rw [inclusion, FunLike.coe, Subtype.mk_eq_mk] at h
exact Subtype.ext h
#align simple_graph.subgraph.inclusion.injective SimpleGraph.Subgraph.inclusion.injective
/-- There is an induced injective homomorphism of a subgraph of `G` into `G`. -/
@[simps]
protected def hom (x : Subgraph G) : x.coe →g G where
toFun v := v
map_rel' := x.adj_sub
#align simple_graph.subgraph.hom SimpleGraph.Subgraph.hom
@[simp] lemma coe_hom (x : Subgraph G) :
(x.hom : x.verts → V) = (fun (v : x.verts) => (v : V)) := rfl
theorem hom.injective {x : Subgraph G} : Function.Injective x.hom :=
fun _ _ ↦ Subtype.ext
#align simple_graph.subgraph.hom.injective SimpleGraph.Subgraph.hom.injective
/-- There is an induced injective homomorphism of a subgraph of `G` as
a spanning subgraph into `G`. -/
@[simps]
def spanningHom (x : Subgraph G) : x.spanningCoe →g G where
toFun := id
map_rel' := x.adj_sub
#align simple_graph.subgraph.spanning_hom SimpleGraph.Subgraph.spanningHom
theorem spanningHom.injective {x : Subgraph G} : Function.Injective x.spanningHom :=
fun _ _ ↦ id
#align simple_graph.subgraph.spanning_hom.injective SimpleGraph.Subgraph.spanningHom.injective
theorem neighborSet_subset_of_subgraph {x y : Subgraph G} (h : x ≤ y) (v : V) :
x.neighborSet v ⊆ y.neighborSet v :=
fun _ h' ↦ h.2 h'
#align simple_graph.subgraph.neighbor_set_subset_of_subgraph SimpleGraph.Subgraph.neighborSet_subset_of_subgraph
instance neighborSet.decidablePred (G' : Subgraph G) [h : DecidableRel G'.Adj] (v : V) :
DecidablePred (· ∈ G'.neighborSet v) :=
h v
#align simple_graph.subgraph.neighbor_set.decidable_pred SimpleGraph.Subgraph.neighborSet.decidablePred
/-- If a graph is locally finite at a vertex, then so is a subgraph of that graph. -/
instance finiteAt {G' : Subgraph G} (v : G'.verts) [DecidableRel G'.Adj]
[Fintype (G.neighborSet v)] : Fintype (G'.neighborSet v) :=
Set.fintypeSubset (G.neighborSet v) (G'.neighborSet_subset v)
#align simple_graph.subgraph.finite_at SimpleGraph.Subgraph.finiteAt
/-- If a subgraph is locally finite at a vertex, then so are subgraphs of that subgraph.
This is not an instance because `G''` cannot be inferred. -/
def finiteAtOfSubgraph {G' G'' : Subgraph G} [DecidableRel G'.Adj] (h : G' ≤ G'') (v : G'.verts)
[Fintype (G''.neighborSet v)] : Fintype (G'.neighborSet v) :=
Set.fintypeSubset (G''.neighborSet v) (neighborSet_subset_of_subgraph h v)
#align simple_graph.subgraph.finite_at_of_subgraph SimpleGraph.Subgraph.finiteAtOfSubgraph
instance (G' : Subgraph G) [Fintype G'.verts] (v : V) [DecidablePred (· ∈ G'.neighborSet v)] :
Fintype (G'.neighborSet v) :=
Set.fintypeSubset G'.verts (neighborSet_subset_verts G' v)
instance coeFiniteAt {G' : Subgraph G} (v : G'.verts) [Fintype (G'.neighborSet v)] :
Fintype (G'.coe.neighborSet v) :=
Fintype.ofEquiv _ (coeNeighborSetEquiv v).symm
#align simple_graph.subgraph.coe_finite_at SimpleGraph.Subgraph.coeFiniteAt
theorem IsSpanning.card_verts [Fintype V] {G' : Subgraph G} [Fintype G'.verts] (h : G'.IsSpanning) :
G'.verts.toFinset.card = Fintype.card V := by
simp only [isSpanning_iff.1 h, Set.toFinset_univ]
congr
#align simple_graph.subgraph.is_spanning.card_verts SimpleGraph.Subgraph.IsSpanning.card_verts
/-- The degree of a vertex in a subgraph. It's zero for vertices outside the subgraph. -/
def degree (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)] : ℕ :=
Fintype.card (G'.neighborSet v)
#align simple_graph.subgraph.degree SimpleGraph.Subgraph.degree
theorem finset_card_neighborSet_eq_degree {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] :
(G'.neighborSet v).toFinset.card = G'.degree v := by
rw [degree, Set.toFinset_card]
#align simple_graph.subgraph.finset_card_neighbor_set_eq_degree SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree
theorem degree_le (G' : Subgraph G) (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G.neighborSet v)] : G'.degree v ≤ G.degree v := by
rw [← card_neighborSet_eq_degree]
exact Set.card_le_of_subset (G'.neighborSet_subset v)
#align simple_graph.subgraph.degree_le SimpleGraph.Subgraph.degree_le
theorem degree_le' (G' G'' : Subgraph G) (h : G' ≤ G'') (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G''.neighborSet v)] : G'.degree v ≤ G''.degree v :=
Set.card_le_of_subset (neighborSet_subset_of_subgraph h v)
#align simple_graph.subgraph.degree_le' SimpleGraph.Subgraph.degree_le'
@[simp]
theorem coe_degree (G' : Subgraph G) (v : G'.verts) [Fintype (G'.coe.neighborSet v)]
[Fintype (G'.neighborSet v)] : G'.coe.degree v = G'.degree v := by
rw [← card_neighborSet_eq_degree]
exact Fintype.card_congr (coeNeighborSetEquiv v)
#align simple_graph.subgraph.coe_degree SimpleGraph.Subgraph.coe_degree
@[simp]
theorem degree_spanningCoe {G' : G.Subgraph} (v : V) [Fintype (G'.neighborSet v)]
[Fintype (G'.spanningCoe.neighborSet v)] : G'.spanningCoe.degree v = G'.degree v := by
rw [← card_neighborSet_eq_degree, Subgraph.degree]
congr!
#align simple_graph.subgraph.degree_spanning_coe SimpleGraph.Subgraph.degree_spanningCoe
theorem degree_eq_one_iff_unique_adj {G' : Subgraph G} {v : V} [Fintype (G'.neighborSet v)] :
G'.degree v = 1 ↔ ∃! w : V, G'.Adj v w := by
rw [← finset_card_neighborSet_eq_degree, Finset.card_eq_one, Finset.singleton_iff_unique_mem]
simp only [Set.mem_toFinset, mem_neighborSet]
#align simple_graph.subgraph.degree_eq_one_iff_unique_adj SimpleGraph.Subgraph.degree_eq_one_iff_unique_adj
end Subgraph
section MkProperties
/-! ### Properties of `singletonSubgraph` and `subgraphOfAdj` -/
variable {G : SimpleGraph V} {G' : SimpleGraph W}
instance nonempty_singletonSubgraph_verts (v : V) : Nonempty (G.singletonSubgraph v).verts :=
⟨⟨v, Set.mem_singleton v⟩⟩
#align simple_graph.nonempty_singleton_subgraph_verts SimpleGraph.nonempty_singletonSubgraph_verts
@[simp]
theorem singletonSubgraph_le_iff (v : V) (H : G.Subgraph) :
G.singletonSubgraph v ≤ H ↔ v ∈ H.verts := by
refine' ⟨fun h ↦ h.1 (Set.mem_singleton v), _⟩
intro h
constructor
· rwa [singletonSubgraph_verts, Set.singleton_subset_iff]
· exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_le_iff SimpleGraph.singletonSubgraph_le_iff
@[simp]
theorem map_singletonSubgraph (f : G →g G') {v : V} :
Subgraph.map f (G.singletonSubgraph v) = G'.singletonSubgraph (f v) := by
ext <;> simp only [Relation.Map, Subgraph.map_adj, singletonSubgraph_adj, Pi.bot_apply,
exists_and_left, and_iff_left_iff_imp, IsEmpty.forall_iff, Subgraph.map_verts,
singletonSubgraph_verts, Set.image_singleton]
exact False.elim
#align simple_graph.map_singleton_subgraph SimpleGraph.map_singletonSubgraph
@[simp]
theorem neighborSet_singletonSubgraph (v w : V) : (G.singletonSubgraph v).neighborSet w = ∅ :=
rfl
#align simple_graph.neighbor_set_singleton_subgraph SimpleGraph.neighborSet_singletonSubgraph
@[simp]
theorem edgeSet_singletonSubgraph (v : V) : (G.singletonSubgraph v).edgeSet = ∅ :=
Sym2.fromRel_bot
#align simple_graph.edge_set_singleton_subgraph SimpleGraph.edgeSet_singletonSubgraph
theorem eq_singletonSubgraph_iff_verts_eq (H : G.Subgraph) {v : V} :
H = G.singletonSubgraph v ↔ H.verts = {v} := by
refine' ⟨fun h ↦ by rw [h, singletonSubgraph_verts], fun h ↦ _⟩
ext
· rw [h, singletonSubgraph_verts]
· simp only [Prop.bot_eq_false, singletonSubgraph_adj, Pi.bot_apply, iff_false_iff]
intro ha
have ha1 := ha.fst_mem
have ha2 := ha.snd_mem
rw [h, Set.mem_singleton_iff] at ha1 ha2
subst_vars
exact ha.ne rfl
#align simple_graph.eq_singleton_subgraph_iff_verts_eq SimpleGraph.eq_singletonSubgraph_iff_verts_eq
instance nonempty_subgraphOfAdj_verts {v w : V} (hvw : G.Adj v w) :
Nonempty (G.subgraphOfAdj hvw).verts :=
⟨⟨v, by simp⟩⟩
#align simple_graph.nonempty_subgraph_of_adj_verts SimpleGraph.nonempty_subgraphOfAdj_verts
@[simp]
theorem edgeSet_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).edgeSet = {⟦(v, w)⟧} := by
ext e
refine' e.ind _
simp only [eq_comm, Set.mem_singleton_iff, Subgraph.mem_edgeSet, subgraphOfAdj_adj, iff_self_iff,
forall₂_true_iff]
#align simple_graph.edge_set_subgraph_of_adj SimpleGraph.edgeSet_subgraphOfAdj
set_option autoImplicit true in
lemma subgraphOfAdj_le_of_adj (H : G.Subgraph) (h : H.Adj v w) :
G.subgraphOfAdj (H.adj_sub h) ≤ H := by
constructor
· intro x
rintro (rfl | rfl) <;> simp [H.edge_vert h, H.edge_vert h.symm]
· simp only [subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff]
rintro _ _ (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) <;> simp [h, h.symm]
theorem subgraphOfAdj_symm {v w : V} (hvw : G.Adj v w) :
G.subgraphOfAdj hvw.symm = G.subgraphOfAdj hvw := by
ext <;> simp [or_comm, and_comm]
#align simple_graph.subgraph_of_adj_symm SimpleGraph.subgraphOfAdj_symm
@[simp]
theorem map_subgraphOfAdj (f : G →g G') {v w : V} (hvw : G.Adj v w) :
Subgraph.map f (G.subgraphOfAdj hvw) = G'.subgraphOfAdj (f.map_adj hvw) := by
ext
· simp only [Subgraph.map_verts, subgraphOfAdj_verts, Set.mem_image, Set.mem_insert_iff,
Set.mem_singleton_iff]
constructor
· rintro ⟨u, rfl | rfl, rfl⟩ <;> simp
· rintro (rfl | rfl)
· use v
simp
· use w
simp
· simp only [Relation.Map, Subgraph.map_adj, subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff]
constructor
· rintro ⟨a, b, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl, rfl⟩ <;> simp
· rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩)
· use v, w
simp
· use w, v
simp
#align simple_graph.map_subgraph_of_adj SimpleGraph.map_subgraphOfAdj
theorem neighborSet_subgraphOfAdj_subset {u v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet u ⊆ {v, w} :=
(G.subgraphOfAdj hvw).neighborSet_subset_verts _
#align simple_graph.neighbor_set_subgraph_of_adj_subset SimpleGraph.neighborSet_subgraphOfAdj_subset
@[simp]
theorem neighborSet_fst_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet v = {w} := by
ext u
suffices w = u ↔ u = w by simpa [hvw.ne.symm] using this
rw [eq_comm]
#align simple_graph.neighbor_set_fst_subgraph_of_adj SimpleGraph.neighborSet_fst_subgraphOfAdj
@[simp]
theorem neighborSet_snd_subgraphOfAdj {v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet w = {v} := by
rw [subgraphOfAdj_symm hvw.symm]
exact neighborSet_fst_subgraphOfAdj hvw.symm
#align simple_graph.neighbor_set_snd_subgraph_of_adj SimpleGraph.neighborSet_snd_subgraphOfAdj
@[simp]
theorem neighborSet_subgraphOfAdj_of_ne_of_ne {u v w : V} (hvw : G.Adj v w) (hv : u ≠ v)
(hw : u ≠ w) : (G.subgraphOfAdj hvw).neighborSet u = ∅ := by
ext
simp [hv.symm, hw.symm]
#align simple_graph.neighbor_set_subgraph_of_adj_of_ne_of_ne SimpleGraph.neighborSet_subgraphOfAdj_of_ne_of_ne
theorem neighborSet_subgraphOfAdj [DecidableEq V] {u v w : V} (hvw : G.Adj v w) :
(G.subgraphOfAdj hvw).neighborSet u = (if u = v then {w} else ∅) ∪ if u = w then {v} else ∅ :=
by split_ifs <;> subst_vars <;> simp [*]
#align simple_graph.neighbor_set_subgraph_of_adj SimpleGraph.neighborSet_subgraphOfAdj
theorem singletonSubgraph_fst_le_subgraphOfAdj {u v : V} {h : G.Adj u v} :
G.singletonSubgraph u ≤ G.subgraphOfAdj h := by
constructor <;> simp [-Set.bot_eq_empty]
exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_fst_le_subgraph_of_adj SimpleGraph.singletonSubgraph_fst_le_subgraphOfAdj
theorem singletonSubgraph_snd_le_subgraphOfAdj {u v : V} {h : G.Adj u v} :
G.singletonSubgraph v ≤ G.subgraphOfAdj h := by
constructor <;> simp [-Set.bot_eq_empty]
exact fun _ _ ↦ False.elim
#align simple_graph.singleton_subgraph_snd_le_subgraph_of_adj SimpleGraph.singletonSubgraph_snd_le_subgraphOfAdj
end MkProperties
namespace Subgraph
variable {G : SimpleGraph V}
/-! ### Subgraphs of subgraphs -/
/-- Given a subgraph of a subgraph of `G`, construct a subgraph of `G`. -/
@[reducible]
protected def coeSubgraph {G' : G.Subgraph} : G'.coe.Subgraph → G.Subgraph :=
Subgraph.map G'.hom
#align simple_graph.subgraph.coe_subgraph SimpleGraph.Subgraph.coeSubgraph
/-- Given a subgraph of `G`, restrict it to being a subgraph of another subgraph `G'` by
taking the portion of `G` that intersects `G'`. -/
@[reducible]
protected def restrict {G' : G.Subgraph} : G.Subgraph → G'.coe.Subgraph :=
Subgraph.comap G'.hom
#align simple_graph.subgraph.restrict SimpleGraph.Subgraph.restrict
lemma coeSubgraph_adj {G' : G.Subgraph} (G'' : G'.coe.Subgraph) (v w : V) :
(G'.coeSubgraph G'').Adj v w ↔
∃ (hv : v ∈ G'.verts) (hw : w ∈ G'.verts), G''.Adj ⟨v, hv⟩ ⟨w, hw⟩ := by
simp [Relation.Map]
lemma restrict_adj {G' G'' : G.Subgraph} (v w : G'.verts) :
(G'.restrict G'').Adj v w ↔ G'.Adj v w ∧ G''.Adj v w := Iff.rfl
theorem restrict_coeSubgraph {G' : G.Subgraph} (G'' : G'.coe.Subgraph) :
Subgraph.restrict (Subgraph.coeSubgraph G'') = G'' := by
ext
· simp
· rw [restrict_adj, coeSubgraph_adj]
simpa using G''.adj_sub
#align simple_graph.subgraph.restrict_coe_subgraph SimpleGraph.Subgraph.restrict_coeSubgraph
theorem coeSubgraph_injective (G' : G.Subgraph) :
Function.Injective (Subgraph.coeSubgraph : G'.coe.Subgraph → G.Subgraph) :=
Function.LeftInverse.injective restrict_coeSubgraph
#align simple_graph.subgraph.coe_subgraph_injective SimpleGraph.Subgraph.coeSubgraph_injective
lemma coeSubgraph_le {H : G.Subgraph} (H' : H.coe.Subgraph) :
Subgraph.coeSubgraph H' ≤ H := by
constructor
· simp
· rintro v w ⟨_, _, h, rfl, rfl⟩
exact H'.adj_sub h
lemma coeSubgraph_restrict_eq {H : G.Subgraph} (H' : G.Subgraph) :
Subgraph.coeSubgraph (H.restrict H') = H ⊓ H' := by
ext
· simp [and_comm]
· simp_rw [coeSubgraph_adj, restrict_adj]
simp only [exists_and_left, exists_prop, ge_iff_le, inf_adj, and_congr_right_iff]
intro h
simp [H.edge_vert h, H.edge_vert h.symm]
/-! ### Edge deletion -/
/-- Given a subgraph `G'` and a set of vertex pairs, remove all of the corresponding edges
from its edge set, if present.
See also: `SimpleGraph.deleteEdges`. -/
def deleteEdges (G' : G.Subgraph) (s : Set (Sym2 V)) : G.Subgraph where
verts := G'.verts
Adj := G'.Adj \ Sym2.ToRel s
adj_sub h' := G'.adj_sub h'.1
edge_vert h' := G'.edge_vert h'.1
symm a b := by simp [G'.adj_comm, Sym2.eq_swap]
#align simple_graph.subgraph.delete_edges SimpleGraph.Subgraph.deleteEdges
section DeleteEdges
variable {G' : G.Subgraph} (s : Set (Sym2 V))
@[simp]
theorem deleteEdges_verts : (G'.deleteEdges s).verts = G'.verts :=
rfl
#align simple_graph.subgraph.delete_edges_verts SimpleGraph.Subgraph.deleteEdges_verts
@[simp]
theorem deleteEdges_adj (v w : V) : (G'.deleteEdges s).Adj v w ↔ G'.Adj v w ∧ ¬⟦(v, w)⟧ ∈ s :=
Iff.rfl
#align simple_graph.subgraph.delete_edges_adj SimpleGraph.Subgraph.deleteEdges_adj
@[simp]
theorem deleteEdges_deleteEdges (s s' : Set (Sym2 V)) :
(G'.deleteEdges s).deleteEdges s' = G'.deleteEdges (s ∪ s') := by
ext <;> simp [and_assoc, not_or]
#align simple_graph.subgraph.delete_edges_delete_edges SimpleGraph.Subgraph.deleteEdges_deleteEdges
@[simp]
theorem deleteEdges_empty_eq : G'.deleteEdges ∅ = G' := by
ext <;> simp
#align simple_graph.subgraph.delete_edges_empty_eq SimpleGraph.Subgraph.deleteEdges_empty_eq
@[simp]
theorem deleteEdges_spanningCoe_eq :
G'.spanningCoe.deleteEdges s = (G'.deleteEdges s).spanningCoe := by
ext
simp
#align simple_graph.subgraph.delete_edges_spanning_coe_eq SimpleGraph.Subgraph.deleteEdges_spanningCoe_eq
theorem deleteEdges_coe_eq (s : Set (Sym2 G'.verts)) :
G'.coe.deleteEdges s = (G'.deleteEdges (Sym2.map (↑) '' s)).coe := by
ext ⟨v, hv⟩ ⟨w, hw⟩
simp only [SimpleGraph.deleteEdges_adj, coe_adj, deleteEdges_adj, Set.mem_image, not_exists,
not_and, and_congr_right_iff]
intro
constructor
· intro hs
refine' Sym2.ind _
rintro ⟨v', hv'⟩ ⟨w', hw'⟩
simp only [Sym2.map_pair_eq, Quotient.eq]
contrapose!
rintro (_ | _) <;> simpa only [Sym2.eq_swap]
· intro h' hs
exact h' _ hs rfl
#align simple_graph.subgraph.delete_edges_coe_eq SimpleGraph.Subgraph.deleteEdges_coe_eq
theorem coe_deleteEdges_eq (s : Set (Sym2 V)) :
(G'.deleteEdges s).coe = G'.coe.deleteEdges (Sym2.map (↑) ⁻¹' s) := by
ext ⟨v, hv⟩ ⟨w, hw⟩
simp
#align simple_graph.subgraph.coe_delete_edges_eq SimpleGraph.Subgraph.coe_deleteEdges_eq
theorem deleteEdges_le : G'.deleteEdges s ≤ G' := by
constructor <;> simp (config := { contextual := true }) [subset_rfl]
#align simple_graph.subgraph.delete_edges_le SimpleGraph.Subgraph.deleteEdges_le
theorem deleteEdges_le_of_le {s s' : Set (Sym2 V)} (h : s ⊆ s') :
G'.deleteEdges s' ≤ G'.deleteEdges s := by
constructor <;> simp (config := { contextual := true }) only [deleteEdges_verts, deleteEdges_adj,
true_and_iff, and_imp, subset_rfl]
exact fun _ _ _ hs' hs ↦ hs' (h hs)
#align simple_graph.subgraph.delete_edges_le_of_le SimpleGraph.Subgraph.deleteEdges_le_of_le
@[simp]
theorem deleteEdges_inter_edgeSet_left_eq :
G'.deleteEdges (G'.edgeSet ∩ s) = G'.deleteEdges s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_edges_inter_edge_set_left_eq SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_left_eq
@[simp]
theorem deleteEdges_inter_edgeSet_right_eq :
G'.deleteEdges (s ∩ G'.edgeSet) = G'.deleteEdges s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_edges_inter_edge_set_right_eq SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_right_eq
theorem coe_deleteEdges_le : (G'.deleteEdges s).coe ≤ (G'.coe : SimpleGraph G'.verts) := by
intro v w
simp (config := { contextual := true })
#align simple_graph.subgraph.coe_delete_edges_le SimpleGraph.Subgraph.coe_deleteEdges_le
theorem spanningCoe_deleteEdges_le (G' : G.Subgraph) (s : Set (Sym2 V)) :
(G'.deleteEdges s).spanningCoe ≤ G'.spanningCoe :=
spanningCoe_le_of_le (deleteEdges_le s)
#align simple_graph.subgraph.spanning_coe_delete_edges_le SimpleGraph.Subgraph.spanningCoe_deleteEdges_le
end DeleteEdges
/-! ### Induced subgraphs -/
/- Given a subgraph, we can change its vertex set while removing any invalid edges, which
gives induced subgraphs. See also `SimpleGraph.induce` for the `SimpleGraph` version, which,
unlike for subgraphs, results in a graph with a different vertex type. -/
/-- The induced subgraph of a subgraph. The expectation is that `s ⊆ G'.verts` for the usual
notion of an induced subgraph, but, in general, `s` is taken to be the new vertex set and edges
are induced from the subgraph `G'`. -/
@[simps]
def induce (G' : G.Subgraph) (s : Set V) : G.Subgraph where
verts := s
Adj u v := u ∈ s ∧ v ∈ s ∧ G'.Adj u v
adj_sub h := G'.adj_sub h.2.2
edge_vert h := h.1
symm _ _ h := ⟨h.2.1, h.1, G'.symm h.2.2⟩
#align simple_graph.subgraph.induce SimpleGraph.Subgraph.induce
theorem _root_.SimpleGraph.induce_eq_coe_induce_top (s : Set V) :
G.induce s = ((⊤ : G.Subgraph).induce s).coe := by
ext
simp
#align simple_graph.induce_eq_coe_induce_top SimpleGraph.induce_eq_coe_induce_top
section Induce
variable {G' G'' : G.Subgraph} {s s' : Set V}
theorem induce_mono (hg : G' ≤ G'') (hs : s ⊆ s') : G'.induce s ≤ G''.induce s' := by
constructor
· simp [hs]
· simp (config := { contextual := true }) only [induce_adj, true_and_iff, and_imp]
intro v w hv hw ha
exact ⟨hs hv, hs hw, hg.2 ha⟩
#align simple_graph.subgraph.induce_mono SimpleGraph.Subgraph.induce_mono
@[mono]
theorem induce_mono_left (hg : G' ≤ G'') : G'.induce s ≤ G''.induce s :=
induce_mono hg subset_rfl
#align simple_graph.subgraph.induce_mono_left SimpleGraph.Subgraph.induce_mono_left
@[mono]
theorem induce_mono_right (hs : s ⊆ s') : G'.induce s ≤ G'.induce s' :=
induce_mono le_rfl hs
#align simple_graph.subgraph.induce_mono_right SimpleGraph.Subgraph.induce_mono_right
@[simp]
theorem induce_empty : G'.induce ∅ = ⊥ := by
ext <;> simp
#align simple_graph.subgraph.induce_empty SimpleGraph.Subgraph.induce_empty
@[simp]
theorem induce_self_verts : G'.induce G'.verts = G' := by
ext
· simp
· constructor <;>
simp (config := { contextual := true }) only [induce_adj, imp_true_iff, and_true_iff]
exact fun ha ↦ ⟨G'.edge_vert ha, G'.edge_vert ha.symm⟩
#align simple_graph.subgraph.induce_self_verts SimpleGraph.Subgraph.induce_self_verts
lemma le_induce_top_verts : G' ≤ (⊤ : G.Subgraph).induce G'.verts :=
calc G' = G'.induce G'.verts := Subgraph.induce_self_verts.symm
_ ≤ (⊤ : G.Subgraph).induce G'.verts := Subgraph.induce_mono_left le_top
lemma le_induce_union : G'.induce s ⊔ G'.induce s' ≤ G'.induce (s ∪ s') := by
constructor
· simp only [verts_sup, induce_verts, Set.Subset.rfl]
· simp only [sup_adj, induce_adj, Set.mem_union]
rintro v w (h | h) <;> simp [h]
lemma le_induce_union_left : G'.induce s ≤ G'.induce (s ∪ s') := by
exact (sup_le_iff.mp le_induce_union).1
lemma le_induce_union_right : G'.induce s' ≤ G'.induce (s ∪ s') := by
exact (sup_le_iff.mp le_induce_union).2
theorem singletonSubgraph_eq_induce {v : V} : G.singletonSubgraph v = (⊤ : G.Subgraph).induce {v} :=
by ext <;> simp (config := { contextual := true }) [-Set.bot_eq_empty, Prop.bot_eq_false]
#align simple_graph.subgraph.singleton_subgraph_eq_induce SimpleGraph.Subgraph.singletonSubgraph_eq_induce
theorem subgraphOfAdj_eq_induce {v w : V} (hvw : G.Adj v w) :
G.subgraphOfAdj hvw = (⊤ : G.Subgraph).induce {v, w} := by
ext
· simp
· constructor
· intro h
simp only [subgraphOfAdj_adj, Quotient.eq, Sym2.rel_iff] at h
obtain ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩ := h <;> simp [hvw, hvw.symm]
· intro h
simp only [induce_adj, Set.mem_insert_iff, Set.mem_singleton_iff, top_adj] at h
obtain ⟨rfl | rfl, rfl | rfl, ha⟩ := h <;> first |exact (ha.ne rfl).elim|simp
#align simple_graph.subgraph.subgraph_of_adj_eq_induce SimpleGraph.Subgraph.subgraphOfAdj_eq_induce
end Induce
/-- Given a subgraph and a set of vertices, delete all the vertices from the subgraph,
if present. Any edges incident to the deleted vertices are deleted as well. -/
@[reducible]
def deleteVerts (G' : G.Subgraph) (s : Set V) : G.Subgraph :=
G'.induce (G'.verts \ s)
#align simple_graph.subgraph.delete_verts SimpleGraph.Subgraph.deleteVerts
section DeleteVerts
variable {G' : G.Subgraph} {s : Set V}
theorem deleteVerts_verts : (G'.deleteVerts s).verts = G'.verts \ s :=
rfl
#align simple_graph.subgraph.delete_verts_verts SimpleGraph.Subgraph.deleteVerts_verts
theorem deleteVerts_adj {u v : V} :
(G'.deleteVerts s).Adj u v ↔ u ∈ G'.verts ∧ ¬u ∈ s ∧ v ∈ G'.verts ∧ ¬v ∈ s ∧ G'.Adj u v := by
simp [and_assoc]
#align simple_graph.subgraph.delete_verts_adj SimpleGraph.Subgraph.deleteVerts_adj
@[simp]
theorem deleteVerts_deleteVerts (s s' : Set V) :
(G'.deleteVerts s).deleteVerts s' = G'.deleteVerts (s ∪ s') := by
ext <;> simp (config := { contextual := true }) [not_or, and_assoc]
#align simple_graph.subgraph.delete_verts_delete_verts SimpleGraph.Subgraph.deleteVerts_deleteVerts
@[simp]
theorem deleteVerts_empty : G'.deleteVerts ∅ = G' := by
simp [deleteVerts]
#align simple_graph.subgraph.delete_verts_empty SimpleGraph.Subgraph.deleteVerts_empty
theorem deleteVerts_le : G'.deleteVerts s ≤ G' := by
constructor <;> simp [Set.diff_subset]
#align simple_graph.subgraph.delete_verts_le SimpleGraph.Subgraph.deleteVerts_le
@[mono]
theorem deleteVerts_mono {G' G'' : G.Subgraph} (h : G' ≤ G'') :
G'.deleteVerts s ≤ G''.deleteVerts s :=
induce_mono h (Set.diff_subset_diff_left h.1)
#align simple_graph.subgraph.delete_verts_mono SimpleGraph.Subgraph.deleteVerts_mono
@[mono]
theorem deleteVerts_anti {s s' : Set V} (h : s ⊆ s') : G'.deleteVerts s' ≤ G'.deleteVerts s :=
induce_mono (le_refl _) (Set.diff_subset_diff_right h)
#align simple_graph.subgraph.delete_verts_anti SimpleGraph.Subgraph.deleteVerts_anti
@[simp]
theorem deleteVerts_inter_verts_left_eq : G'.deleteVerts (G'.verts ∩ s) = G'.deleteVerts s := by
ext <;> simp (config := { contextual := true }) [imp_false]
#align simple_graph.subgraph.delete_verts_inter_verts_left_eq SimpleGraph.Subgraph.deleteVerts_inter_verts_left_eq
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s :=
by ext <;>
|
simp (config := { contextual := true }) [imp_false]
|
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s :=
by ext <;>
|
Mathlib.Combinatorics.SimpleGraph.Subgraph.1294_0.BlhiAiIDADcXv8t
|
@[simp]
theorem deleteVerts_inter_verts_set_right_eq : G'.deleteVerts (s ∩ G'.verts) = G'.deleteVerts s
|
Mathlib_Combinatorics_SimpleGraph_Subgraph
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H✝ : IsCoprime x y
a b : R
H : a * x + b * y = 1
⊢ b * y + a * x = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by
|
rw [add_comm, H]
|
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by
|
Mathlib.RingTheory.Coprime.Basic.44_0.Ci6BN5Afffbdcdr
|
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
x✝ : IsCoprime x x
a b : R
h : a * x + b * x = 1
⊢ x * (a + b) = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by
|
rwa [mul_comm, add_mul]
|
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by
|
Mathlib.RingTheory.Coprime.Basic.54_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsUnit x
b : R
hb : b * x = 1
⊢ b * x + 0 * x = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by
|
rwa [zero_mul, add_zero]
|
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by
|
Mathlib.RingTheory.Coprime.Basic.54_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
x✝ : IsCoprime 0 x
a b : R
H : a * 0 + b * x = 1
⊢ x * b = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by
|
rwa [mul_zero, zero_add, mul_comm] at H
|
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by
|
Mathlib.RingTheory.Coprime.Basic.60_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsUnit x
b : R
hb : b * x = 1
⊢ 1 * 0 + b * x = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by
|
rwa [one_mul, zero_add]
|
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by
|
Mathlib.RingTheory.Coprime.Basic.60_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x
|
Mathlib_RingTheory_Coprime_Basic
|
R✝ : Type u
inst✝¹ : CommSemiring R✝
x y z : R✝
R : Type u_1
inst✝ : CommRing R
a b : ℤ
h : IsCoprime a b
⊢ IsCoprime ↑a ↑b
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
|
rcases h with ⟨u, v, H⟩
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
|
Mathlib.RingTheory.Coprime.Basic.74_0.Ci6BN5Afffbdcdr
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R)
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro
R✝ : Type u
inst✝¹ : CommSemiring R✝
x y z : R✝
R : Type u_1
inst✝ : CommRing R
a b u v : ℤ
H : u * a + v * b = 1
⊢ IsCoprime ↑a ↑b
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
|
use u, v
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
|
Mathlib.RingTheory.Coprime.Basic.74_0.Ci6BN5Afffbdcdr
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R)
|
Mathlib_RingTheory_Coprime_Basic
|
case h
R✝ : Type u
inst✝¹ : CommSemiring R✝
x y z : R✝
R : Type u_1
inst✝ : CommRing R
a b u v : ℤ
H : u * a + v * b = 1
⊢ ↑u * ↑a + ↑v * ↑b = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
|
rw_mod_cast [H]
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
|
Mathlib.RingTheory.Coprime.Basic.74_0.Ci6BN5Afffbdcdr
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R)
|
Mathlib_RingTheory_Coprime_Basic
|
case h
R✝ : Type u
inst✝¹ : CommSemiring R✝
x y z : R✝
R : Type u_1
inst✝ : CommRing R
a b u v : ℤ
H : u * a + v * b = 1
⊢ ↑1 = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
|
exact Int.cast_one
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
|
Mathlib.RingTheory.Coprime.Basic.74_0.Ci6BN5Afffbdcdr
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝¹ : CommSemiring R
x y z : R
inst✝ : Nontrivial R
p : Fin 2 → R
h : IsCoprime (p 0) (p 1)
⊢ p ≠ 0
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
|
rintro rfl
|
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
|
Mathlib.RingTheory.Coprime.Basic.81_0.Ci6BN5Afffbdcdr
|
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝¹ : CommSemiring R
x y z : R
inst✝ : Nontrivial R
h : IsCoprime (OfNat.ofNat 0 0) (OfNat.ofNat 0 1)
⊢ False
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
|
exact not_isCoprime_zero_zero h
|
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
|
Mathlib.RingTheory.Coprime.Basic.81_0.Ci6BN5Afffbdcdr
|
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝¹ : CommSemiring R
x y z : R
inst✝ : Nontrivial R
h : IsCoprime x y
⊢ x ≠ 0 ∨ y ≠ 0
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
|
apply not_or_of_imp
|
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
|
Mathlib.RingTheory.Coprime.Basic.87_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
case a
R : Type u
inst✝¹ : CommSemiring R
x y z : R
inst✝ : Nontrivial R
h : IsCoprime x y
⊢ x = 0 → y ≠ 0
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
|
rintro rfl rfl
|
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
|
Mathlib.RingTheory.Coprime.Basic.87_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
case a
R : Type u
inst✝¹ : CommSemiring R
z : R
inst✝ : Nontrivial R
h : IsCoprime 0 0
⊢ False
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
|
exact not_isCoprime_zero_zero h
|
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
|
Mathlib.RingTheory.Coprime.Basic.87_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
⊢ 1 * 1 + 0 * x = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by
|
rw [one_mul, zero_mul, add_zero]
|
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by
|
Mathlib.RingTheory.Coprime.Basic.92_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_one_left : IsCoprime 1 x
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
⊢ 0 * x + 1 * 1 = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by
|
rw [one_mul, zero_mul, zero_add]
|
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by
|
Mathlib.RingTheory.Coprime.Basic.96_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_one_right : IsCoprime x 1
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x z
H2 : x ∣ y * z
⊢ x ∣ y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
|
let ⟨a, b, H⟩ := H1
|
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
|
Mathlib.RingTheory.Coprime.Basic.100_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x z
H2 : x ∣ y * z
a b : R
H : a * x + b * z = 1
⊢ x ∣ y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
|
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
|
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
|
Mathlib.RingTheory.Coprime.Basic.100_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x z
H2 : x ∣ y * z
a b : R
H : a * x + b * z = 1
⊢ x ∣ y * a * x + b * (y * z)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
|
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
|
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
|
Mathlib.RingTheory.Coprime.Basic.100_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x y
H2 : x ∣ y * z
⊢ x ∣ z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
|
let ⟨a, b, H⟩ := H1
|
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
|
Mathlib.RingTheory.Coprime.Basic.106_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x y
H2 : x ∣ y * z
a b : R
H : a * x + b * y = 1
⊢ x ∣ z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
|
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
|
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
|
Mathlib.RingTheory.Coprime.Basic.106_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x y
H2 : x ∣ y * z
a b : R
H : a * x + b * y = 1
⊢ x ∣ a * z * x + b * (y * z)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
|
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
|
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
|
Mathlib.RingTheory.Coprime.Basic.106_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x z
H2 : IsCoprime y z
a b : R
h1 : a * x + b * z = 1
c d : R
h2 : c * y + d * z = 1
⊢ a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z = (a * x + b * z) * (c * y + d * z)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by
|
ring
|
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by
|
Mathlib.RingTheory.Coprime.Basic.112_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x z
H2 : IsCoprime y z
a b : R
h1 : a * x + b * z = 1
c d : R
h2 : c * y + d * z = 1
⊢ (a * x + b * z) * (c * y + d * z) = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by
|
rw [h1, h2, mul_one]
|
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by
|
Mathlib.RingTheory.Coprime.Basic.112_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime x y
H2 : IsCoprime x z
⊢ IsCoprime x (y * z)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
|
rw [isCoprime_comm] at H1 H2 ⊢
|
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
|
Mathlib.RingTheory.Coprime.Basic.124_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : IsCoprime y x
H2 : IsCoprime z x
⊢ IsCoprime (y * z) x
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
|
exact H1.mul_left H2
|
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
|
Mathlib.RingTheory.Coprime.Basic.124_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime x y
H1 : x ∣ z
H2 : y ∣ z
⊢ x * y ∣ z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
|
obtain ⟨a, b, h⟩ := H
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
|
Mathlib.RingTheory.Coprime.Basic.129_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : x ∣ z
H2 : y ∣ z
a b : R
h : a * x + b * y = 1
⊢ x * y ∣ z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
|
rw [← mul_one z, ← h, mul_add]
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
|
Mathlib.RingTheory.Coprime.Basic.129_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : x ∣ z
H2 : y ∣ z
a b : R
h : a * x + b * y = 1
⊢ x * y ∣ z * (a * x) + z * (b * y)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
|
apply dvd_add
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
|
Mathlib.RingTheory.Coprime.Basic.129_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro.h₁
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : x ∣ z
H2 : y ∣ z
a b : R
h : a * x + b * y = 1
⊢ x * y ∣ z * (a * x)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
·
|
rw [mul_comm z, mul_assoc]
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
·
|
Mathlib.RingTheory.Coprime.Basic.129_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro.h₁
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : x ∣ z
H2 : y ∣ z
a b : R
h : a * x + b * y = 1
⊢ x * y ∣ a * (x * z)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
|
exact (mul_dvd_mul_left _ H2).mul_left _
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
|
Mathlib.RingTheory.Coprime.Basic.129_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro.h₂
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : x ∣ z
H2 : y ∣ z
a b : R
h : a * x + b * y = 1
⊢ x * y ∣ z * (b * y)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
·
|
rw [mul_comm b, ← mul_assoc]
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
·
|
Mathlib.RingTheory.Coprime.Basic.129_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro.h₂
R : Type u
inst✝ : CommSemiring R
x y z : R
H1 : x ∣ z
H2 : y ∣ z
a b : R
h : a * x + b * y = 1
⊢ x * y ∣ z * y * b
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
|
exact (mul_dvd_mul_right H1 _).mul_right _
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
|
Mathlib.RingTheory.Coprime.Basic.129_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime (x * y) z
a b : R
h : a * (x * y) + b * z = 1
⊢ a * y * x + b * z = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by
|
rwa [mul_right_comm, mul_assoc]
|
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by
|
Mathlib.RingTheory.Coprime.Basic.139_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime (x * y) z
⊢ IsCoprime y z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
|
rw [mul_comm] at H
|
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
|
Mathlib.RingTheory.Coprime.Basic.144_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime (y * x) z
⊢ IsCoprime y z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
|
exact H.of_mul_left_left
|
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
|
Mathlib.RingTheory.Coprime.Basic.144_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime x (y * z)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
|
rw [isCoprime_comm] at H ⊢
|
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.149_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime (y * z) x
⊢ IsCoprime y x
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
|
exact H.of_mul_left_left
|
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
|
Mathlib.RingTheory.Coprime.Basic.149_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime x (y * z)
⊢ IsCoprime x z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
|
rw [mul_comm] at H
|
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
|
Mathlib.RingTheory.Coprime.Basic.154_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
H : IsCoprime x (z * y)
⊢ IsCoprime x z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
|
exact H.of_mul_right_left
|
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
|
Mathlib.RingTheory.Coprime.Basic.154_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
⊢ IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
|
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
|
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
|
Mathlib.RingTheory.Coprime.Basic.163_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime y z
hdvd : x ∣ y
⊢ IsCoprime x z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
|
obtain ⟨d, rfl⟩ := hdvd
|
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
|
Mathlib.RingTheory.Coprime.Basic.167_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z
|
Mathlib_RingTheory_Coprime_Basic
|
case intro
R : Type u
inst✝ : CommSemiring R
x z d : R
h : IsCoprime (x * d) z
⊢ IsCoprime x z
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
|
exact IsCoprime.of_mul_left_left h
|
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
|
Mathlib.RingTheory.Coprime.Basic.167_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝¹ : CommSemiring R
x y z : R
H : IsCoprime x y
S : Type v
inst✝ : CommSemiring S
f : R →+* S
a b : R
h : a * x + b * y = 1
⊢ f a * f x + f b * f y = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by
|
rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]
|
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by
|
Mathlib.RingTheory.Coprime.Basic.186_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (x + y * z) y
a b : R
H : a * (x + y * z) + b * y = 1
⊢ a * x + (a * z + b) * y = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
|
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H
|
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
|
Mathlib.RingTheory.Coprime.Basic.192_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (x + z * y) y
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
|
rw [mul_comm] at h
|
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.199_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (x + y * z) y
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
|
exact h.of_add_mul_left_left
|
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
|
Mathlib.RingTheory.Coprime.Basic.199_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime x (y + x * z)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
|
rw [isCoprime_comm] at h ⊢
|
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.204_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (y + x * z) x
⊢ IsCoprime y x
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
|
exact h.of_add_mul_left_left
|
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
|
Mathlib.RingTheory.Coprime.Basic.204_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime x (y + z * x)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
|
rw [mul_comm] at h
|
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.209_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime x (y + x * z)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
|
exact h.of_add_mul_left_right
|
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
|
Mathlib.RingTheory.Coprime.Basic.209_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (y * z + x) y
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
|
rw [add_comm] at h
|
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.214_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (x + y * z) y
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
|
exact h.of_add_mul_left_left
|
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
|
Mathlib.RingTheory.Coprime.Basic.214_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (z * y + x) y
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
|
rw [add_comm] at h
|
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.219_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime (x + z * y) y
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
|
exact h.of_add_mul_right_left
|
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
|
Mathlib.RingTheory.Coprime.Basic.219_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime x (x * z + y)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
|
rw [add_comm] at h
|
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.224_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime x (y + x * z)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
|
exact h.of_add_mul_left_right
|
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
|
Mathlib.RingTheory.Coprime.Basic.224_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime x (z * x + y)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
|
rw [add_comm] at h
|
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
|
Mathlib.RingTheory.Coprime.Basic.229_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommSemiring R
x y z : R
h : IsCoprime x (y + z * x)
⊢ IsCoprime x y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
|
exact h.of_add_mul_right_right
|
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
|
Mathlib.RingTheory.Coprime.Basic.229_0.Ci6BN5Afffbdcdr
|
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : Group G
inst✝² : MulAction G R
inst✝¹ : SMulCommClass G R R
inst✝ : IsScalarTower G R R
x : G
y z : R
x✝ : IsCoprime (x • y) z
a b : R
h : a * x • y + b * z = 1
⊢ x • a * y + b * z = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by
|
rwa [smul_mul_assoc, ← mul_smul_comm]
|
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by
|
Mathlib.RingTheory.Coprime.Basic.241_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : Group G
inst✝² : MulAction G R
inst✝¹ : SMulCommClass G R R
inst✝ : IsScalarTower G R R
x : G
y z : R
x✝ : IsCoprime y z
a b : R
h : a * y + b * z = 1
⊢ x⁻¹ • a * x • y + b * z = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by
|
rwa [smul_mul_smul, inv_mul_self, one_smul]
|
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by
|
Mathlib.RingTheory.Coprime.Basic.241_0.Ci6BN5Afffbdcdr
|
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (x + y * z + y * -z) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by
|
simpa only [mul_neg, add_neg_cancel_right] using h
|
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by
|
Mathlib.RingTheory.Coprime.Basic.294_0.Ci6BN5Afffbdcdr
|
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (x + z * y) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
|
rw [mul_comm]
|
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
|
Mathlib.RingTheory.Coprime.Basic.298_0.Ci6BN5Afffbdcdr
|
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (x + y * z) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
|
exact h.add_mul_left_left z
|
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
|
Mathlib.RingTheory.Coprime.Basic.298_0.Ci6BN5Afffbdcdr
|
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime x (y + x * z)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
|
rw [isCoprime_comm]
|
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
|
Mathlib.RingTheory.Coprime.Basic.303_0.Ci6BN5Afffbdcdr
|
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (y + x * z) x
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
|
exact h.symm.add_mul_left_left z
|
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
|
Mathlib.RingTheory.Coprime.Basic.303_0.Ci6BN5Afffbdcdr
|
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime x (y + z * x)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
|
rw [isCoprime_comm]
|
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
|
Mathlib.RingTheory.Coprime.Basic.308_0.Ci6BN5Afffbdcdr
|
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (y + z * x) x
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
|
exact h.symm.add_mul_right_left z
|
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
|
Mathlib.RingTheory.Coprime.Basic.308_0.Ci6BN5Afffbdcdr
|
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (y * z + x) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
|
rw [add_comm]
|
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
|
Mathlib.RingTheory.Coprime.Basic.313_0.Ci6BN5Afffbdcdr
|
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (x + y * z) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
|
exact h.add_mul_left_left z
|
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
|
Mathlib.RingTheory.Coprime.Basic.313_0.Ci6BN5Afffbdcdr
|
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (z * y + x) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
|
rw [add_comm]
|
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
|
Mathlib.RingTheory.Coprime.Basic.318_0.Ci6BN5Afffbdcdr
|
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime (x + z * y) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
|
exact h.add_mul_right_left z
|
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
|
Mathlib.RingTheory.Coprime.Basic.318_0.Ci6BN5Afffbdcdr
|
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime x (x * z + y)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
|
rw [add_comm]
|
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
|
Mathlib.RingTheory.Coprime.Basic.323_0.Ci6BN5Afffbdcdr
|
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime x (y + x * z)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
|
exact h.add_mul_left_right z
|
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
|
Mathlib.RingTheory.Coprime.Basic.323_0.Ci6BN5Afffbdcdr
|
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime x (z * x + y)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
|
rw [add_comm]
|
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
|
Mathlib.RingTheory.Coprime.Basic.328_0.Ci6BN5Afffbdcdr
|
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
z : R
⊢ IsCoprime x (y + z * x)
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
|
exact h.add_mul_right_right z
|
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
|
Mathlib.RingTheory.Coprime.Basic.328_0.Ci6BN5Afffbdcdr
|
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y)
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u
inst✝ : CommRing R
x y : R
h : IsCoprime x y
⊢ IsCoprime (-x) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
|
obtain ⟨a, b, h⟩ := h
|
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
|
Mathlib.RingTheory.Coprime.Basic.365_0.Ci6BN5Afffbdcdr
|
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y
|
Mathlib_RingTheory_Coprime_Basic
|
case intro.intro
R : Type u
inst✝ : CommRing R
x y a b : R
h : a * x + b * y = 1
⊢ IsCoprime (-x) y
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
|
use -a, b
|
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
|
Mathlib.RingTheory.Coprime.Basic.365_0.Ci6BN5Afffbdcdr
|
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y
|
Mathlib_RingTheory_Coprime_Basic
|
case h
R : Type u
inst✝ : CommRing R
x y a b : R
h : a * x + b * y = 1
⊢ -a * -x + b * y = 1
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
|
rwa [neg_mul_neg]
|
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
|
Mathlib.RingTheory.Coprime.Basic.365_0.Ci6BN5Afffbdcdr
|
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
inst✝ : LinearOrderedCommRing R
a b : R
h : IsCoprime a b
⊢ a ^ 2 + b ^ 2 ≠ 0
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
|
intro h'
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
inst✝ : LinearOrderedCommRing R
a b : R
h : IsCoprime a b
h' : a ^ 2 + b ^ 2 = 0
⊢ False
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
|
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two]; exact mul_self_nonneg _)).mp h'
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
inst✝ : LinearOrderedCommRing R
a b : R
h : IsCoprime a b
h' : a ^ 2 + b ^ 2 = 0
⊢ 0 ≤ a ^ 2
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by
|
rw [pow_two]
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
inst✝ : LinearOrderedCommRing R
a b : R
h : IsCoprime a b
h' : a ^ 2 + b ^ 2 = 0
⊢ 0 ≤ a * a
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two];
|
exact mul_self_nonneg _
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two];
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
inst✝ : LinearOrderedCommRing R
a b : R
h : IsCoprime a b
h' : a ^ 2 + b ^ 2 = 0
⊢ 0 ≤ b ^ 2
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by
|
rw [pow_two]
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
R : Type u_1
inst✝ : LinearOrderedCommRing R
a b : R
h : IsCoprime a b
h' : a ^ 2 + b ^ 2 = 0
⊢ 0 ≤ b * b
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two];
|
exact mul_self_nonneg _
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two];
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
case intro
R : Type u_1
inst✝ : LinearOrderedCommRing R
a b : R
h : IsCoprime a b
h' : a ^ 2 + b ^ 2 = 0
ha : a ^ 2 = 0
hb : b ^ 2 = 0
⊢ False
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two]; exact mul_self_nonneg _)).mp h'
|
obtain rfl := pow_eq_zero ha
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two]; exact mul_self_nonneg _)).mp h'
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
case intro
R : Type u_1
inst✝ : LinearOrderedCommRing R
b : R
hb : b ^ 2 = 0
h : IsCoprime 0 b
h' : 0 ^ 2 + b ^ 2 = 0
ha : 0 ^ 2 = 0
⊢ False
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two]; exact mul_self_nonneg _)).mp h'
obtain rfl := pow_eq_zero ha
|
obtain rfl := pow_eq_zero hb
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two]; exact mul_self_nonneg _)).mp h'
obtain rfl := pow_eq_zero ha
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
case intro
R : Type u_1
inst✝ : LinearOrderedCommRing R
ha hb : 0 ^ 2 = 0
h : IsCoprime 0 0
h' : 0 ^ 2 + 0 ^ 2 = 0
⊢ False
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.Algebra.GroupPower.Ring
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.GroupTheory.GroupAction.Units
import Mathlib.Tactic.Ring
#align_import ring_theory.coprime.basic from "leanprover-community/mathlib"@"a95b16cbade0f938fc24abd05412bde1e84bab9b"
/-!
# Coprime elements of a ring
## Main definitions
* `IsCoprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
See also `RingTheory.Coprime.Lemmas` for further development of coprime elements.
-/
open Classical
universe u v
section CommSemiring
variable {R : Type u} [CommSemiring R] (x y z : R)
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
def IsCoprime : Prop :=
∃ a b, a * x + b * y = 1
#align is_coprime IsCoprime
variable {x y z}
@[symm]
theorem IsCoprime.symm (H : IsCoprime x y) : IsCoprime y x :=
let ⟨a, b, H⟩ := H
⟨b, a, by rw [add_comm, H]⟩
#align is_coprime.symm IsCoprime.symm
theorem isCoprime_comm : IsCoprime x y ↔ IsCoprime y x :=
⟨IsCoprime.symm, IsCoprime.symm⟩
#align is_coprime_comm isCoprime_comm
theorem isCoprime_self : IsCoprime x x ↔ IsUnit x :=
⟨fun ⟨a, b, h⟩ => isUnit_of_mul_eq_one x (a + b) <| by rwa [mul_comm, add_mul], fun h =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 h
⟨b, 0, by rwa [zero_mul, add_zero]⟩⟩
#align is_coprime_self isCoprime_self
theorem isCoprime_zero_left : IsCoprime 0 x ↔ IsUnit x :=
⟨fun ⟨a, b, H⟩ => isUnit_of_mul_eq_one x b <| by rwa [mul_zero, zero_add, mul_comm] at H, fun H =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv'.1 H
⟨1, b, by rwa [one_mul, zero_add]⟩⟩
#align is_coprime_zero_left isCoprime_zero_left
theorem isCoprime_zero_right : IsCoprime x 0 ↔ IsUnit x :=
isCoprime_comm.trans isCoprime_zero_left
#align is_coprime_zero_right isCoprime_zero_right
theorem not_isCoprime_zero_zero [Nontrivial R] : ¬IsCoprime (0 : R) 0 :=
mt isCoprime_zero_right.mp not_isUnit_zero
#align not_coprime_zero_zero not_isCoprime_zero_zero
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R) := by
rcases h with ⟨u, v, H⟩
use u, v
rw_mod_cast [H]
exact Int.cast_one
/-- If a 2-vector `p` satisfies `IsCoprime (p 0) (p 1)`, then `p ≠ 0`. -/
theorem IsCoprime.ne_zero [Nontrivial R] {p : Fin 2 → R} (h : IsCoprime (p 0) (p 1)) : p ≠ 0 := by
rintro rfl
exact not_isCoprime_zero_zero h
#align is_coprime.ne_zero IsCoprime.ne_zero
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0 := by
apply not_or_of_imp
rintro rfl rfl
exact not_isCoprime_zero_zero h
theorem isCoprime_one_left : IsCoprime 1 x :=
⟨1, 0, by rw [one_mul, zero_mul, add_zero]⟩
#align is_coprime_one_left isCoprime_one_left
theorem isCoprime_one_right : IsCoprime x 1 :=
⟨0, 1, by rw [one_mul, zero_mul, zero_add]⟩
#align is_coprime_one_right isCoprime_one_right
theorem IsCoprime.dvd_of_dvd_mul_right (H1 : IsCoprime x z) (H2 : x ∣ y * z) : x ∣ y := by
let ⟨a, b, H⟩ := H1
rw [← mul_one y, ← H, mul_add, ← mul_assoc, mul_left_comm]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_right IsCoprime.dvd_of_dvd_mul_right
theorem IsCoprime.dvd_of_dvd_mul_left (H1 : IsCoprime x y) (H2 : x ∣ y * z) : x ∣ z := by
let ⟨a, b, H⟩ := H1
rw [← one_mul z, ← H, add_mul, mul_right_comm, mul_assoc b]
exact dvd_add (dvd_mul_left _ _) (H2.mul_left _)
#align is_coprime.dvd_of_dvd_mul_left IsCoprime.dvd_of_dvd_mul_left
theorem IsCoprime.mul_left (H1 : IsCoprime x z) (H2 : IsCoprime y z) : IsCoprime (x * y) z :=
let ⟨a, b, h1⟩ := H1
let ⟨c, d, h2⟩ := H2
⟨a * c, a * x * d + b * c * y + b * d * z,
calc
a * c * (x * y) + (a * x * d + b * c * y + b * d * z) * z =
(a * x + b * z) * (c * y + d * z) :=
by ring
_ = 1 := by rw [h1, h2, mul_one]
⟩
#align is_coprime.mul_left IsCoprime.mul_left
theorem IsCoprime.mul_right (H1 : IsCoprime x y) (H2 : IsCoprime x z) : IsCoprime x (y * z) := by
rw [isCoprime_comm] at H1 H2 ⊢
exact H1.mul_left H2
#align is_coprime.mul_right IsCoprime.mul_right
theorem IsCoprime.mul_dvd (H : IsCoprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z := by
obtain ⟨a, b, h⟩ := H
rw [← mul_one z, ← h, mul_add]
apply dvd_add
· rw [mul_comm z, mul_assoc]
exact (mul_dvd_mul_left _ H2).mul_left _
· rw [mul_comm b, ← mul_assoc]
exact (mul_dvd_mul_right H1 _).mul_right _
#align is_coprime.mul_dvd IsCoprime.mul_dvd
theorem IsCoprime.of_mul_left_left (H : IsCoprime (x * y) z) : IsCoprime x z :=
let ⟨a, b, h⟩ := H
⟨a * y, b, by rwa [mul_right_comm, mul_assoc]⟩
#align is_coprime.of_mul_left_left IsCoprime.of_mul_left_left
theorem IsCoprime.of_mul_left_right (H : IsCoprime (x * y) z) : IsCoprime y z := by
rw [mul_comm] at H
exact H.of_mul_left_left
#align is_coprime.of_mul_left_right IsCoprime.of_mul_left_right
theorem IsCoprime.of_mul_right_left (H : IsCoprime x (y * z)) : IsCoprime x y := by
rw [isCoprime_comm] at H ⊢
exact H.of_mul_left_left
#align is_coprime.of_mul_right_left IsCoprime.of_mul_right_left
theorem IsCoprime.of_mul_right_right (H : IsCoprime x (y * z)) : IsCoprime x z := by
rw [mul_comm] at H
exact H.of_mul_right_left
#align is_coprime.of_mul_right_right IsCoprime.of_mul_right_right
theorem IsCoprime.mul_left_iff : IsCoprime (x * y) z ↔ IsCoprime x z ∧ IsCoprime y z :=
⟨fun H => ⟨H.of_mul_left_left, H.of_mul_left_right⟩, fun ⟨H1, H2⟩ => H1.mul_left H2⟩
#align is_coprime.mul_left_iff IsCoprime.mul_left_iff
theorem IsCoprime.mul_right_iff : IsCoprime x (y * z) ↔ IsCoprime x y ∧ IsCoprime x z := by
rw [isCoprime_comm, IsCoprime.mul_left_iff, isCoprime_comm, @isCoprime_comm _ _ z]
#align is_coprime.mul_right_iff IsCoprime.mul_right_iff
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z := by
obtain ⟨d, rfl⟩ := hdvd
exact IsCoprime.of_mul_left_left h
#align is_coprime.of_coprime_of_dvd_left IsCoprime.of_isCoprime_of_dvd_left
theorem IsCoprime.of_isCoprime_of_dvd_right (h : IsCoprime z y) (hdvd : x ∣ y) : IsCoprime z x :=
(h.symm.of_isCoprime_of_dvd_left hdvd).symm
#align is_coprime.of_coprime_of_dvd_right IsCoprime.of_isCoprime_of_dvd_right
theorem IsCoprime.isUnit_of_dvd (H : IsCoprime x y) (d : x ∣ y) : IsUnit x :=
let ⟨k, hk⟩ := d
isCoprime_self.1 <| IsCoprime.of_mul_right_left <| show IsCoprime x (x * k) from hk ▸ H
#align is_coprime.is_unit_of_dvd IsCoprime.isUnit_of_dvd
theorem IsCoprime.isUnit_of_dvd' {a b x : R} (h : IsCoprime a b) (ha : x ∣ a) (hb : x ∣ b) :
IsUnit x :=
(h.of_isCoprime_of_dvd_left ha).isUnit_of_dvd hb
#align is_coprime.is_unit_of_dvd' IsCoprime.isUnit_of_dvd'
theorem IsCoprime.map (H : IsCoprime x y) {S : Type v} [CommSemiring S] (f : R →+* S) :
IsCoprime (f x) (f y) :=
let ⟨a, b, h⟩ := H
⟨f a, f b, by rw [← f.map_mul, ← f.map_mul, ← f.map_add, h, f.map_one]⟩
#align is_coprime.map IsCoprime.map
theorem IsCoprime.of_add_mul_left_left (h : IsCoprime (x + y * z) y) : IsCoprime x y :=
let ⟨a, b, H⟩ := h
⟨a, a * z + b, by
simpa only [add_mul, mul_add, add_assoc, add_comm, add_left_comm, mul_assoc, mul_comm,
mul_left_comm] using H⟩
#align is_coprime.of_add_mul_left_left IsCoprime.of_add_mul_left_left
theorem IsCoprime.of_add_mul_right_left (h : IsCoprime (x + z * y) y) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_right_left IsCoprime.of_add_mul_right_left
theorem IsCoprime.of_add_mul_left_right (h : IsCoprime x (y + x * z)) : IsCoprime x y := by
rw [isCoprime_comm] at h ⊢
exact h.of_add_mul_left_left
#align is_coprime.of_add_mul_left_right IsCoprime.of_add_mul_left_right
theorem IsCoprime.of_add_mul_right_right (h : IsCoprime x (y + z * x)) : IsCoprime x y := by
rw [mul_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_add_mul_right_right IsCoprime.of_add_mul_right_right
theorem IsCoprime.of_mul_add_left_left (h : IsCoprime (y * z + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_left
#align is_coprime.of_mul_add_left_left IsCoprime.of_mul_add_left_left
theorem IsCoprime.of_mul_add_right_left (h : IsCoprime (z * y + x) y) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_left
#align is_coprime.of_mul_add_right_left IsCoprime.of_mul_add_right_left
theorem IsCoprime.of_mul_add_left_right (h : IsCoprime x (x * z + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_left_right
#align is_coprime.of_mul_add_left_right IsCoprime.of_mul_add_left_right
theorem IsCoprime.of_mul_add_right_right (h : IsCoprime x (z * x + y)) : IsCoprime x y := by
rw [add_comm] at h
exact h.of_add_mul_right_right
#align is_coprime.of_mul_add_right_right IsCoprime.of_mul_add_right_right
end CommSemiring
section ScalarTower
variable {R G : Type*} [CommSemiring R] [Group G] [MulAction G R] [SMulCommClass G R R]
[IsScalarTower G R R] (x : G) (y z : R)
theorem isCoprime_group_smul_left : IsCoprime (x • y) z ↔ IsCoprime y z :=
⟨fun ⟨a, b, h⟩ => ⟨x • a, b, by rwa [smul_mul_assoc, ← mul_smul_comm]⟩, fun ⟨a, b, h⟩ =>
⟨x⁻¹ • a, b, by rwa [smul_mul_smul, inv_mul_self, one_smul]⟩⟩
#align is_coprime_group_smul_left isCoprime_group_smul_left
theorem isCoprime_group_smul_right : IsCoprime y (x • z) ↔ IsCoprime y z :=
isCoprime_comm.trans <| (isCoprime_group_smul_left x z y).trans isCoprime_comm
#align is_coprime_group_smul_right isCoprime_group_smul_right
theorem isCoprime_group_smul : IsCoprime (x • y) (x • z) ↔ IsCoprime y z :=
(isCoprime_group_smul_left x y (x • z)).trans (isCoprime_group_smul_right x y z)
#align is_coprime_group_smul isCoprime_group_smul
end ScalarTower
section CommSemiringUnit
variable {R : Type*} [CommSemiring R] {x : R} (hu : IsUnit x) (y z : R)
theorem isCoprime_mul_unit_left_left : IsCoprime (x * y) z ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_left u y z
#align is_coprime_mul_unit_left_left isCoprime_mul_unit_left_left
theorem isCoprime_mul_unit_left_right : IsCoprime y (x * z) ↔ IsCoprime y z :=
let ⟨u, hu⟩ := hu
hu ▸ isCoprime_group_smul_right u y z
#align is_coprime_mul_unit_left_right isCoprime_mul_unit_left_right
theorem isCoprime_mul_unit_left : IsCoprime (x * y) (x * z) ↔ IsCoprime y z :=
(isCoprime_mul_unit_left_left hu y (x * z)).trans (isCoprime_mul_unit_left_right hu y z)
#align is_coprime_mul_unit_left isCoprime_mul_unit_left
theorem isCoprime_mul_unit_right_left : IsCoprime (y * x) z ↔ IsCoprime y z :=
mul_comm x y ▸ isCoprime_mul_unit_left_left hu y z
#align is_coprime_mul_unit_right_left isCoprime_mul_unit_right_left
theorem isCoprime_mul_unit_right_right : IsCoprime y (z * x) ↔ IsCoprime y z :=
mul_comm x z ▸ isCoprime_mul_unit_left_right hu y z
#align is_coprime_mul_unit_right_right isCoprime_mul_unit_right_right
theorem isCoprime_mul_unit_right : IsCoprime (y * x) (z * x) ↔ IsCoprime y z :=
(isCoprime_mul_unit_right_left hu y (z * x)).trans (isCoprime_mul_unit_right_right hu y z)
#align is_coprime_mul_unit_right isCoprime_mul_unit_right
end CommSemiringUnit
namespace IsCoprime
section CommRing
variable {R : Type u} [CommRing R]
theorem add_mul_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + y * z) y :=
@of_add_mul_left_left R _ _ _ (-z) <| by simpa only [mul_neg, add_neg_cancel_right] using h
#align is_coprime.add_mul_left_left IsCoprime.add_mul_left_left
theorem add_mul_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (x + z * y) y := by
rw [mul_comm]
exact h.add_mul_left_left z
#align is_coprime.add_mul_right_left IsCoprime.add_mul_right_left
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z) := by
rw [isCoprime_comm]
exact h.symm.add_mul_left_left z
#align is_coprime.add_mul_left_right IsCoprime.add_mul_left_right
theorem add_mul_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + z * x) := by
rw [isCoprime_comm]
exact h.symm.add_mul_right_left z
#align is_coprime.add_mul_right_right IsCoprime.add_mul_right_right
theorem mul_add_left_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (y * z + x) y := by
rw [add_comm]
exact h.add_mul_left_left z
#align is_coprime.mul_add_left_left IsCoprime.mul_add_left_left
theorem mul_add_right_left {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime (z * y + x) y := by
rw [add_comm]
exact h.add_mul_right_left z
#align is_coprime.mul_add_right_left IsCoprime.mul_add_right_left
theorem mul_add_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (x * z + y) := by
rw [add_comm]
exact h.add_mul_left_right z
#align is_coprime.mul_add_left_right IsCoprime.mul_add_left_right
theorem mul_add_right_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (z * x + y) := by
rw [add_comm]
exact h.add_mul_right_right z
#align is_coprime.mul_add_right_right IsCoprime.mul_add_right_right
theorem add_mul_left_left_iff {x y z : R} : IsCoprime (x + y * z) y ↔ IsCoprime x y :=
⟨of_add_mul_left_left, fun h => h.add_mul_left_left z⟩
#align is_coprime.add_mul_left_left_iff IsCoprime.add_mul_left_left_iff
theorem add_mul_right_left_iff {x y z : R} : IsCoprime (x + z * y) y ↔ IsCoprime x y :=
⟨of_add_mul_right_left, fun h => h.add_mul_right_left z⟩
#align is_coprime.add_mul_right_left_iff IsCoprime.add_mul_right_left_iff
theorem add_mul_left_right_iff {x y z : R} : IsCoprime x (y + x * z) ↔ IsCoprime x y :=
⟨of_add_mul_left_right, fun h => h.add_mul_left_right z⟩
#align is_coprime.add_mul_left_right_iff IsCoprime.add_mul_left_right_iff
theorem add_mul_right_right_iff {x y z : R} : IsCoprime x (y + z * x) ↔ IsCoprime x y :=
⟨of_add_mul_right_right, fun h => h.add_mul_right_right z⟩
#align is_coprime.add_mul_right_right_iff IsCoprime.add_mul_right_right_iff
theorem mul_add_left_left_iff {x y z : R} : IsCoprime (y * z + x) y ↔ IsCoprime x y :=
⟨of_mul_add_left_left, fun h => h.mul_add_left_left z⟩
#align is_coprime.mul_add_left_left_iff IsCoprime.mul_add_left_left_iff
theorem mul_add_right_left_iff {x y z : R} : IsCoprime (z * y + x) y ↔ IsCoprime x y :=
⟨of_mul_add_right_left, fun h => h.mul_add_right_left z⟩
#align is_coprime.mul_add_right_left_iff IsCoprime.mul_add_right_left_iff
theorem mul_add_left_right_iff {x y z : R} : IsCoprime x (x * z + y) ↔ IsCoprime x y :=
⟨of_mul_add_left_right, fun h => h.mul_add_left_right z⟩
#align is_coprime.mul_add_left_right_iff IsCoprime.mul_add_left_right_iff
theorem mul_add_right_right_iff {x y z : R} : IsCoprime x (z * x + y) ↔ IsCoprime x y :=
⟨of_mul_add_right_right, fun h => h.mul_add_right_right z⟩
#align is_coprime.mul_add_right_right_iff IsCoprime.mul_add_right_right_iff
theorem neg_left {x y : R} (h : IsCoprime x y) : IsCoprime (-x) y := by
obtain ⟨a, b, h⟩ := h
use -a, b
rwa [neg_mul_neg]
#align is_coprime.neg_left IsCoprime.neg_left
theorem neg_left_iff (x y : R) : IsCoprime (-x) y ↔ IsCoprime x y :=
⟨fun h => neg_neg x ▸ h.neg_left, neg_left⟩
#align is_coprime.neg_left_iff IsCoprime.neg_left_iff
theorem neg_right {x y : R} (h : IsCoprime x y) : IsCoprime x (-y) :=
h.symm.neg_left.symm
#align is_coprime.neg_right IsCoprime.neg_right
theorem neg_right_iff (x y : R) : IsCoprime x (-y) ↔ IsCoprime x y :=
⟨fun h => neg_neg y ▸ h.neg_right, neg_right⟩
#align is_coprime.neg_right_iff IsCoprime.neg_right_iff
theorem neg_neg {x y : R} (h : IsCoprime x y) : IsCoprime (-x) (-y) :=
h.neg_left.neg_right
#align is_coprime.neg_neg IsCoprime.neg_neg
theorem neg_neg_iff (x y : R) : IsCoprime (-x) (-y) ↔ IsCoprime x y :=
(neg_left_iff _ _).trans (neg_right_iff _ _)
#align is_coprime.neg_neg_iff IsCoprime.neg_neg_iff
end CommRing
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two]; exact mul_self_nonneg _)).mp h'
obtain rfl := pow_eq_zero ha
obtain rfl := pow_eq_zero hb
|
exact not_isCoprime_zero_zero h
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0 := by
intro h'
obtain ⟨ha, hb⟩ := (add_eq_zero_iff'
--Porting TODO: replace with sq_nonneg when that file is ported
(by rw [pow_two]; exact mul_self_nonneg _)
(by rw [pow_two]; exact mul_self_nonneg _)).mp h'
obtain rfl := pow_eq_zero ha
obtain rfl := pow_eq_zero hb
|
Mathlib.RingTheory.Coprime.Basic.393_0.Ci6BN5Afffbdcdr
|
theorem sq_add_sq_ne_zero {R : Type*} [LinearOrderedCommRing R] {a b : R} (h : IsCoprime a b) :
a ^ 2 + b ^ 2 ≠ 0
|
Mathlib_RingTheory_Coprime_Basic
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f✝ : α → β
g✝ : β → γ
f g : α → β
s : Set β
h : ∀ (x : α), f x = g x
⊢ f ⁻¹' s = g ⁻¹' s
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
|
congr with x
|
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
|
Mathlib.Data.Set.Image.68_0.IJFiTzmYGOCpPSd
|
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s
|
Mathlib_Data_Set_Image
|
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f✝ : α → β
g✝ : β → γ
f g : α → β
s : Set β
h : ∀ (x : α), f x = g x
x : α
⊢ x ∈ f ⁻¹' s ↔ x ∈ g ⁻¹' s
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
|
simp [h]
|
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
|
Mathlib.Data.Set.Image.68_0.IJFiTzmYGOCpPSd
|
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s
|
Mathlib_Data_Set_Image
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f : α → β
g : β → γ
b : β
s : Set β
inst✝ : Decidable (b ∈ s)
⊢ (fun x => b) ⁻¹' s = if b ∈ s then univ else ∅
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
simp [h]
#align set.preimage_congr Set.preimage_congr
@[gcongr]
theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx
#align set.preimage_mono Set.preimage_mono
@[simp, mfld_simps]
theorem preimage_univ : f ⁻¹' univ = univ :=
rfl
#align set.preimage_univ Set.preimage_univ
theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ :=
subset_univ _
#align set.subset_preimage_univ Set.subset_preimage_univ
@[simp, mfld_simps]
theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t :=
rfl
#align set.preimage_inter Set.preimage_inter
@[simp]
theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t :=
rfl
#align set.preimage_union Set.preimage_union
@[simp]
theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ :=
rfl
#align set.preimage_compl Set.preimage_compl
@[simp]
theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t :=
rfl
#align set.preimage_diff Set.preimage_diff
@[simp]
lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) :=
rfl
#align set.preimage_symm_diff Set.preimage_symmDiff
@[simp]
theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) :
f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) :=
rfl
#align set.preimage_ite Set.preimage_ite
@[simp]
theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } :=
rfl
#align set.preimage_set_of_eq Set.preimage_setOf_eq
@[simp]
theorem preimage_id_eq : preimage (id : α → α) = id :=
rfl
#align set.preimage_id_eq Set.preimage_id_eq
@[mfld_simps]
theorem preimage_id {s : Set α} : id ⁻¹' s = s :=
rfl
#align set.preimage_id Set.preimage_id
@[simp, mfld_simps]
theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s :=
rfl
#align set.preimage_id' Set.preimage_id'
@[simp]
theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ :=
eq_univ_of_forall fun _ => h
#align set.preimage_const_of_mem Set.preimage_const_of_mem
@[simp]
theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ :=
eq_empty_of_subset_empty fun _ hx => h hx
#align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
|
split_ifs with hb
|
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
|
Mathlib.Data.Set.Image.147_0.IJFiTzmYGOCpPSd
|
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅
|
Mathlib_Data_Set_Image
|
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f : α → β
g : β → γ
b : β
s : Set β
inst✝ : Decidable (b ∈ s)
hb : b ∈ s
⊢ (fun x => b) ⁻¹' s = univ
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f : α → β
g : β → γ
b : β
s : Set β
inst✝ : Decidable (b ∈ s)
hb : b ∉ s
⊢ (fun x => b) ⁻¹' s = ∅
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
simp [h]
#align set.preimage_congr Set.preimage_congr
@[gcongr]
theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx
#align set.preimage_mono Set.preimage_mono
@[simp, mfld_simps]
theorem preimage_univ : f ⁻¹' univ = univ :=
rfl
#align set.preimage_univ Set.preimage_univ
theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ :=
subset_univ _
#align set.subset_preimage_univ Set.subset_preimage_univ
@[simp, mfld_simps]
theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t :=
rfl
#align set.preimage_inter Set.preimage_inter
@[simp]
theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t :=
rfl
#align set.preimage_union Set.preimage_union
@[simp]
theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ :=
rfl
#align set.preimage_compl Set.preimage_compl
@[simp]
theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t :=
rfl
#align set.preimage_diff Set.preimage_diff
@[simp]
lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) :=
rfl
#align set.preimage_symm_diff Set.preimage_symmDiff
@[simp]
theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) :
f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) :=
rfl
#align set.preimage_ite Set.preimage_ite
@[simp]
theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } :=
rfl
#align set.preimage_set_of_eq Set.preimage_setOf_eq
@[simp]
theorem preimage_id_eq : preimage (id : α → α) = id :=
rfl
#align set.preimage_id_eq Set.preimage_id_eq
@[mfld_simps]
theorem preimage_id {s : Set α} : id ⁻¹' s = s :=
rfl
#align set.preimage_id Set.preimage_id
@[simp, mfld_simps]
theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s :=
rfl
#align set.preimage_id' Set.preimage_id'
@[simp]
theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ :=
eq_univ_of_forall fun _ => h
#align set.preimage_const_of_mem Set.preimage_const_of_mem
@[simp]
theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ :=
eq_empty_of_subset_empty fun _ hx => h hx
#align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
split_ifs with hb
|
exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb]
|
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
split_ifs with hb
|
Mathlib.Data.Set.Image.147_0.IJFiTzmYGOCpPSd
|
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅
|
Mathlib_Data_Set_Image
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f✝ : α → β
g : β → γ
inst✝ : Nonempty β
f : α → β
hf : ∀ (b : β), f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ
⊢ ∃ b, f = const α b
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
simp [h]
#align set.preimage_congr Set.preimage_congr
@[gcongr]
theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx
#align set.preimage_mono Set.preimage_mono
@[simp, mfld_simps]
theorem preimage_univ : f ⁻¹' univ = univ :=
rfl
#align set.preimage_univ Set.preimage_univ
theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ :=
subset_univ _
#align set.subset_preimage_univ Set.subset_preimage_univ
@[simp, mfld_simps]
theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t :=
rfl
#align set.preimage_inter Set.preimage_inter
@[simp]
theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t :=
rfl
#align set.preimage_union Set.preimage_union
@[simp]
theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ :=
rfl
#align set.preimage_compl Set.preimage_compl
@[simp]
theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t :=
rfl
#align set.preimage_diff Set.preimage_diff
@[simp]
lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) :=
rfl
#align set.preimage_symm_diff Set.preimage_symmDiff
@[simp]
theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) :
f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) :=
rfl
#align set.preimage_ite Set.preimage_ite
@[simp]
theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } :=
rfl
#align set.preimage_set_of_eq Set.preimage_setOf_eq
@[simp]
theorem preimage_id_eq : preimage (id : α → α) = id :=
rfl
#align set.preimage_id_eq Set.preimage_id_eq
@[mfld_simps]
theorem preimage_id {s : Set α} : id ⁻¹' s = s :=
rfl
#align set.preimage_id Set.preimage_id
@[simp, mfld_simps]
theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s :=
rfl
#align set.preimage_id' Set.preimage_id'
@[simp]
theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ :=
eq_univ_of_forall fun _ => h
#align set.preimage_const_of_mem Set.preimage_const_of_mem
@[simp]
theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ :=
eq_empty_of_subset_empty fun _ hx => h hx
#align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
split_ifs with hb
exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb]
#align set.preimage_const Set.preimage_const
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
|
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
|
Mathlib.Data.Set.Image.153_0.IJFiTzmYGOCpPSd
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b
|
Mathlib_Data_Set_Image
|
case inl.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f✝ : α → β
g : β → γ
inst✝ : Nonempty β
f : α → β
hf : ∀ (b : β), f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ
b : β
hb : f ⁻¹' {b} = univ
⊢ ∃ b, f = const α b
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
simp [h]
#align set.preimage_congr Set.preimage_congr
@[gcongr]
theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx
#align set.preimage_mono Set.preimage_mono
@[simp, mfld_simps]
theorem preimage_univ : f ⁻¹' univ = univ :=
rfl
#align set.preimage_univ Set.preimage_univ
theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ :=
subset_univ _
#align set.subset_preimage_univ Set.subset_preimage_univ
@[simp, mfld_simps]
theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t :=
rfl
#align set.preimage_inter Set.preimage_inter
@[simp]
theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t :=
rfl
#align set.preimage_union Set.preimage_union
@[simp]
theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ :=
rfl
#align set.preimage_compl Set.preimage_compl
@[simp]
theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t :=
rfl
#align set.preimage_diff Set.preimage_diff
@[simp]
lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) :=
rfl
#align set.preimage_symm_diff Set.preimage_symmDiff
@[simp]
theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) :
f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) :=
rfl
#align set.preimage_ite Set.preimage_ite
@[simp]
theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } :=
rfl
#align set.preimage_set_of_eq Set.preimage_setOf_eq
@[simp]
theorem preimage_id_eq : preimage (id : α → α) = id :=
rfl
#align set.preimage_id_eq Set.preimage_id_eq
@[mfld_simps]
theorem preimage_id {s : Set α} : id ⁻¹' s = s :=
rfl
#align set.preimage_id Set.preimage_id
@[simp, mfld_simps]
theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s :=
rfl
#align set.preimage_id' Set.preimage_id'
@[simp]
theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ :=
eq_univ_of_forall fun _ => h
#align set.preimage_const_of_mem Set.preimage_const_of_mem
@[simp]
theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ :=
eq_empty_of_subset_empty fun _ hx => h hx
#align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
split_ifs with hb
exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb]
#align set.preimage_const Set.preimage_const
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
·
|
exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
·
|
Mathlib.Data.Set.Image.153_0.IJFiTzmYGOCpPSd
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b
|
Mathlib_Data_Set_Image
|
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f✝ : α → β
g : β → γ
inst✝ : Nonempty β
f : α → β
hf : ∀ (b : β), f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ
hf' : ¬∃ b, f ⁻¹' {b} = univ
⊢ ∃ b, f = const α b
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
simp [h]
#align set.preimage_congr Set.preimage_congr
@[gcongr]
theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx
#align set.preimage_mono Set.preimage_mono
@[simp, mfld_simps]
theorem preimage_univ : f ⁻¹' univ = univ :=
rfl
#align set.preimage_univ Set.preimage_univ
theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ :=
subset_univ _
#align set.subset_preimage_univ Set.subset_preimage_univ
@[simp, mfld_simps]
theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t :=
rfl
#align set.preimage_inter Set.preimage_inter
@[simp]
theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t :=
rfl
#align set.preimage_union Set.preimage_union
@[simp]
theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ :=
rfl
#align set.preimage_compl Set.preimage_compl
@[simp]
theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t :=
rfl
#align set.preimage_diff Set.preimage_diff
@[simp]
lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) :=
rfl
#align set.preimage_symm_diff Set.preimage_symmDiff
@[simp]
theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) :
f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) :=
rfl
#align set.preimage_ite Set.preimage_ite
@[simp]
theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } :=
rfl
#align set.preimage_set_of_eq Set.preimage_setOf_eq
@[simp]
theorem preimage_id_eq : preimage (id : α → α) = id :=
rfl
#align set.preimage_id_eq Set.preimage_id_eq
@[mfld_simps]
theorem preimage_id {s : Set α} : id ⁻¹' s = s :=
rfl
#align set.preimage_id Set.preimage_id
@[simp, mfld_simps]
theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s :=
rfl
#align set.preimage_id' Set.preimage_id'
@[simp]
theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ :=
eq_univ_of_forall fun _ => h
#align set.preimage_const_of_mem Set.preimage_const_of_mem
@[simp]
theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ :=
eq_empty_of_subset_empty fun _ hx => h hx
#align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
split_ifs with hb
exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb]
#align set.preimage_const Set.preimage_const
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
· exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩
·
|
have : ∀ x b, f x ≠ b := fun x b ↦
eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
· exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩
·
|
Mathlib.Data.Set.Image.153_0.IJFiTzmYGOCpPSd
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b
|
Mathlib_Data_Set_Image
|
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f✝ : α → β
g : β → γ
inst✝ : Nonempty β
f : α → β
hf : ∀ (b : β), f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ
hf' : ¬∃ b, f ⁻¹' {b} = univ
this : ∀ (x : α) (b : β), f x ≠ b
⊢ ∃ b, f = const α b
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
simp [h]
#align set.preimage_congr Set.preimage_congr
@[gcongr]
theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx
#align set.preimage_mono Set.preimage_mono
@[simp, mfld_simps]
theorem preimage_univ : f ⁻¹' univ = univ :=
rfl
#align set.preimage_univ Set.preimage_univ
theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ :=
subset_univ _
#align set.subset_preimage_univ Set.subset_preimage_univ
@[simp, mfld_simps]
theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t :=
rfl
#align set.preimage_inter Set.preimage_inter
@[simp]
theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t :=
rfl
#align set.preimage_union Set.preimage_union
@[simp]
theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ :=
rfl
#align set.preimage_compl Set.preimage_compl
@[simp]
theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t :=
rfl
#align set.preimage_diff Set.preimage_diff
@[simp]
lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) :=
rfl
#align set.preimage_symm_diff Set.preimage_symmDiff
@[simp]
theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) :
f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) :=
rfl
#align set.preimage_ite Set.preimage_ite
@[simp]
theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } :=
rfl
#align set.preimage_set_of_eq Set.preimage_setOf_eq
@[simp]
theorem preimage_id_eq : preimage (id : α → α) = id :=
rfl
#align set.preimage_id_eq Set.preimage_id_eq
@[mfld_simps]
theorem preimage_id {s : Set α} : id ⁻¹' s = s :=
rfl
#align set.preimage_id Set.preimage_id
@[simp, mfld_simps]
theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s :=
rfl
#align set.preimage_id' Set.preimage_id'
@[simp]
theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ :=
eq_univ_of_forall fun _ => h
#align set.preimage_const_of_mem Set.preimage_const_of_mem
@[simp]
theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ :=
eq_empty_of_subset_empty fun _ hx => h hx
#align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
split_ifs with hb
exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb]
#align set.preimage_const Set.preimage_const
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
· exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩
· have : ∀ x b, f x ≠ b := fun x b ↦
eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x
|
exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
· exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩
· have : ∀ x b, f x ≠ b := fun x b ↦
eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x
|
Mathlib.Data.Set.Image.153_0.IJFiTzmYGOCpPSd
|
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b
|
Mathlib_Data_Set_Image
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
f✝ : α → β
g : β → γ
f : α → α
n : ℕ
⊢ preimage f^[n] = (preimage f)^[n]
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import Mathlib.Data.Set.Basic
#align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29"
/-!
# Images and preimages of sets
## Main definitions
* `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β.
* `range f : Set β` : the image of `univ` under `f`.
Also works for `{p : Prop} (f : p → α)` (unlike `image`)
## Notation
* `f ⁻¹' t` for `Set.preimage f t`
* `f '' s` for `Set.image f s`
## Tags
set, sets, image, preimage, pre-image, range
-/
set_option autoImplicit true
universe u v
open Function Set
namespace Set
variable {α β γ : Type*} {ι ι' : Sort*}
/-! ### Inverse image -/
/-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α :=
{ x | f x ∈ s }
#align set.preimage Set.preimage
/-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/
infixl:80 " ⁻¹' " => preimage
section Preimage
variable {f : α → β} {g : β → γ}
@[simp]
theorem preimage_empty : f ⁻¹' ∅ = ∅ :=
rfl
#align set.preimage_empty Set.preimage_empty
@[simp, mfld_simps]
theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s :=
Iff.rfl
#align set.mem_preimage Set.mem_preimage
theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by
congr with x
simp [h]
#align set.preimage_congr Set.preimage_congr
@[gcongr]
theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx
#align set.preimage_mono Set.preimage_mono
@[simp, mfld_simps]
theorem preimage_univ : f ⁻¹' univ = univ :=
rfl
#align set.preimage_univ Set.preimage_univ
theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ :=
subset_univ _
#align set.subset_preimage_univ Set.subset_preimage_univ
@[simp, mfld_simps]
theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t :=
rfl
#align set.preimage_inter Set.preimage_inter
@[simp]
theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t :=
rfl
#align set.preimage_union Set.preimage_union
@[simp]
theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ :=
rfl
#align set.preimage_compl Set.preimage_compl
@[simp]
theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t :=
rfl
#align set.preimage_diff Set.preimage_diff
@[simp]
lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) :=
rfl
#align set.preimage_symm_diff Set.preimage_symmDiff
@[simp]
theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) :
f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) :=
rfl
#align set.preimage_ite Set.preimage_ite
@[simp]
theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } :=
rfl
#align set.preimage_set_of_eq Set.preimage_setOf_eq
@[simp]
theorem preimage_id_eq : preimage (id : α → α) = id :=
rfl
#align set.preimage_id_eq Set.preimage_id_eq
@[mfld_simps]
theorem preimage_id {s : Set α} : id ⁻¹' s = s :=
rfl
#align set.preimage_id Set.preimage_id
@[simp, mfld_simps]
theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s :=
rfl
#align set.preimage_id' Set.preimage_id'
@[simp]
theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ :=
eq_univ_of_forall fun _ => h
#align set.preimage_const_of_mem Set.preimage_const_of_mem
@[simp]
theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ :=
eq_empty_of_subset_empty fun _ hx => h hx
#align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem
theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] :
(fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by
split_ifs with hb
exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb]
#align set.preimage_const Set.preimage_const
/-- If preimage of each singleton under `f : α → β` is either empty or the whole type,
then `f` is a constant. -/
lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β}
(hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by
rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf'
· exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩
· have : ∀ x b, f x ≠ b := fun x b ↦
eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x
exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩
theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) :=
rfl
#align set.preimage_comp Set.preimage_comp
theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g :=
rfl
#align set.preimage_comp_eq Set.preimage_comp_eq
theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by
|
induction' n with n ih
|
theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by
|
Mathlib.Data.Set.Image.171_0.IJFiTzmYGOCpPSd
|
theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n]
|
Mathlib_Data_Set_Image
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.