state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case zero α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β g : β → γ f : α → α ⊢ preimage f^[Nat.zero] = (preimage f)^[Nat.zero]
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; ·
simp
theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; ·
Mathlib.Data.Set.Image.171_0.IJFiTzmYGOCpPSd
theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n]
Mathlib_Data_Set_Image
case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β g : β → γ f : α → α n : ℕ ih : preimage f^[n] = (preimage f)^[n] ⊢ preimage f^[Nat.succ n] = (preimage f)^[Nat.succ n]
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp
rw [iterate_succ, iterate_succ', preimage_comp_eq, ih]
theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp
Mathlib.Data.Set.Image.171_0.IJFiTzmYGOCpPSd
theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n]
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ p : α → Prop s : Set (Subtype p) t : Set α s_eq : s = Subtype.val ⁻¹' t x : α h : p x ⊢ { val := x, property := h } ∈ s ↔ x ∈ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by
rw [s_eq]
theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by
Mathlib.Data.Set.Image.181_0.IJFiTzmYGOCpPSd
theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ p : α → Prop s : Set (Subtype p) t : Set α s_eq : s = Subtype.val ⁻¹' t x : α h : p x ⊢ { val := x, property := h } ∈ Subtype.val ⁻¹' t ↔ x ∈ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq]
simp
theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq]
Mathlib.Data.Set.Image.181_0.IJFiTzmYGOCpPSd
theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ p : α → Prop s : Set (Subtype p) t : Set α h : ∀ (x : α) (h : p x), { val := x, property := h } ∈ s ↔ x ∈ t x✝ : Subtype p x : α hx : p x ⊢ { val := x, property := hx } ∈ s ↔ { val := x, property := hx } ∈ Subtype.val ⁻¹' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by
simp [h]
theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by
Mathlib.Data.Set.Image.181_0.IJFiTzmYGOCpPSd
theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ p : α → Prop ⊢ p ⁻¹' {True} = {a | p a}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by
ext
@[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by
Mathlib.Data.Set.Image.194_0.IJFiTzmYGOCpPSd
@[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a}
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ p : α → Prop x✝ : α ⊢ x✝ ∈ p ⁻¹' {True} ↔ x✝ ∈ {a | p a}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext;
simp
@[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext;
Mathlib.Data.Set.Image.194_0.IJFiTzmYGOCpPSd
@[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a}
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ p : α → Prop ⊢ p ⁻¹' {False} = {a | ¬p a}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by
ext
@[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by
Mathlib.Data.Set.Image.197_0.IJFiTzmYGOCpPSd
@[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a}
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ p : α → Prop x✝ : α ⊢ x✝ ∈ p ⁻¹' {False} ↔ x✝ ∈ {a | ¬p a}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext;
simp
@[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext;
Mathlib.Data.Set.Image.197_0.IJFiTzmYGOCpPSd
@[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a}
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ s u v : Set α hsuv : s ⊆ u ∪ v H : s ∩ (u ∩ v) = ∅ ⊢ Subtype.val ⁻¹' u = (Subtype.val ⁻¹' v)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by
ext ⟨x, x_in_s⟩
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by
Mathlib.Data.Set.Image.200_0.IJFiTzmYGOCpPSd
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ
Mathlib_Data_Set_Image
case h.mk α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ s u v : Set α hsuv : s ⊆ u ∪ v H : s ∩ (u ∩ v) = ∅ x : α x_in_s : x ∈ s ⊢ { val := x, property := x_in_s } ∈ Subtype.val ⁻¹' u ↔ { val := x, property := x_in_s } ∈ (Subtype.val ⁻¹' v)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩
constructor
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩
Mathlib.Data.Set.Image.200_0.IJFiTzmYGOCpPSd
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ
Mathlib_Data_Set_Image
case h.mk.mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ s u v : Set α hsuv : s ⊆ u ∪ v H : s ∩ (u ∩ v) = ∅ x : α x_in_s : x ∈ s ⊢ { val := x, property := x_in_s } ∈ Subtype.val ⁻¹' u → { val := x, property := x_in_s } ∈ (Subtype.val ⁻¹' v)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor ·
intro x_in_u x_in_v
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor ·
Mathlib.Data.Set.Image.200_0.IJFiTzmYGOCpPSd
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ
Mathlib_Data_Set_Image
case h.mk.mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ s u v : Set α hsuv : s ⊆ u ∪ v H : s ∩ (u ∩ v) = ∅ x : α x_in_s : x ∈ s x_in_u : { val := x, property := x_in_s } ∈ Subtype.val ⁻¹' u x_in_v : { val := x, property := x_in_s } ∈ Subtype.val ⁻¹' v ⊢ False
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v
exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v
Mathlib.Data.Set.Image.200_0.IJFiTzmYGOCpPSd
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ
Mathlib_Data_Set_Image
case h.mk.mpr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ s u v : Set α hsuv : s ⊆ u ∪ v H : s ∩ (u ∩ v) = ∅ x : α x_in_s : x ∈ s ⊢ { val := x, property := x_in_s } ∈ (Subtype.val ⁻¹' v)ᶜ → { val := x, property := x_in_s } ∈ Subtype.val ⁻¹' u
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ ·
intro hx
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ ·
Mathlib.Data.Set.Image.200_0.IJFiTzmYGOCpPSd
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ
Mathlib_Data_Set_Image
case h.mk.mpr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β g : β → γ s u v : Set α hsuv : s ⊆ u ∪ v H : s ∩ (u ∩ v) = ∅ x : α x_in_s : x ∈ s hx : { val := x, property := x_in_s } ∈ (Subtype.val ⁻¹' v)ᶜ ⊢ { val := x, property := x_in_s } ∈ Subtype.val ⁻¹' u
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx
exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx'
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx
Mathlib.Data.Set.Image.200_0.IJFiTzmYGOCpPSd
theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β s : Set α p : β → Prop ⊢ (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by
simp
theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by
Mathlib.Data.Set.Image.249_0.IJFiTzmYGOCpPSd
theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β s : Set α p : β → Prop ⊢ (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by
simp
theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by
Mathlib.Data.Set.Image.258_0.IJFiTzmYGOCpPSd
theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f g : α → β s : Set α h : ∀ a ∈ s, f a = g a ⊢ f '' s = g '' s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by
ext x
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by
Mathlib.Data.Set.Image.273_0.IJFiTzmYGOCpPSd
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f g : α → β s : Set α h : ∀ a ∈ s, f a = g a x : β ⊢ x ∈ f '' s ↔ x ∈ g '' s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x
rw [mem_image, mem_image]
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x
Mathlib.Data.Set.Image.273_0.IJFiTzmYGOCpPSd
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f g : α → β s : Set α h : ∀ a ∈ s, f a = g a x : β ⊢ (∃ x_1 ∈ s, f x_1 = x) ↔ ∃ x_1 ∈ s, g x_1 = x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image]
exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ }
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image]
Mathlib.Data.Set.Image.273_0.IJFiTzmYGOCpPSd
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f g : α → β s : Set α h : ∀ a ∈ s, f a = g a x : β ⊢ (∃ x_1 ∈ s, f x_1 = x) → ∃ x_1 ∈ s, g x_1 = x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by
rintro ⟨a, ha1, ha2⟩
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by
Mathlib.Data.Set.Image.273_0.IJFiTzmYGOCpPSd
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s
Mathlib_Data_Set_Image
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f g : α → β s : Set α h : ∀ a ∈ s, f a = g a x : β a : α ha1 : a ∈ s ha2 : f a = x ⊢ ∃ x_1 ∈ s, g x_1 = x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩
exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩
Mathlib.Data.Set.Image.273_0.IJFiTzmYGOCpPSd
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f g : α → β s : Set α h : ∀ a ∈ s, f a = g a x : β ⊢ (∃ x_1 ∈ s, g x_1 = x) → ∃ x_1 ∈ s, f x_1 = x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by
rintro ⟨a, ha1, ha2⟩
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by
Mathlib.Data.Set.Image.273_0.IJFiTzmYGOCpPSd
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s
Mathlib_Data_Set_Image
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f g : α → β s : Set α h : ∀ a ∈ s, f a = g a x : β a : α ha1 : a ∈ s ha2 : g a = x ⊢ ∃ x_1 ∈ s, f x_1 = x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩
exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩
Mathlib.Data.Set.Image.273_0.IJFiTzmYGOCpPSd
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t : Set α h : s ⊆ t ⊢ f '' s ⊆ f '' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by
rintro - ⟨a, ha, rfl⟩
@[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by
Mathlib.Data.Set.Image.293_0.IJFiTzmYGOCpPSd
@[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t
Mathlib_Data_Set_Image
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t : Set α h : s ⊆ t a : α ha : a ∈ s ⊢ f a ∈ f '' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩;
exact mem_image_of_mem f (h ha)
@[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩;
Mathlib.Data.Set.Image.293_0.IJFiTzmYGOCpPSd
@[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t : Set α g : β → γ ⊢ image (g ∘ f) = image g ∘ image f
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by
ext
theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by
Mathlib.Data.Set.Image.302_0.IJFiTzmYGOCpPSd
theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f
Mathlib_Data_Set_Image
case h.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t : Set α g : β → γ x✝¹ : Set α x✝ : γ ⊢ x✝ ∈ g ∘ f '' x✝¹ ↔ x✝ ∈ (image g ∘ image f) x✝¹
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext;
simp
theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext;
Mathlib.Data.Set.Image.302_0.IJFiTzmYGOCpPSd
theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α β' : Type u_6 f : β → γ g : α → β f' : α → β' g' : β' → γ h_comm : ∀ (a : α), f (g a) = g' (f' a) ⊢ f '' (g '' s) = g' '' (f' '' s)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by
simp_rw [image_image, h_comm]
theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by
Mathlib.Data.Set.Image.309_0.IJFiTzmYGOCpPSd
theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g'
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t a b : Set α f : α → β h : a ⊆ b ⊢ f '' a ⊆ f '' b
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by
simp only [subset_def, mem_image]
/-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by
Mathlib.Data.Set.Image.324_0.IJFiTzmYGOCpPSd
/-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t a b : Set α f : α → β h : a ⊆ b ⊢ ∀ (x : β), (∃ x_1 ∈ a, f x_1 = x) → ∃ x_1 ∈ b, f x_1 = x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image]
exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩
/-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image]
Mathlib.Data.Set.Image.324_0.IJFiTzmYGOCpPSd
/-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α x : β ⊢ x ∈ f '' (s ∪ t) → x ∈ f '' s ∪ f '' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by
rintro ⟨a, h | h, rfl⟩ <;> [left; right]
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α x : β ⊢ x ∈ f '' (s ∪ t) → x ∈ f '' s ∪ f '' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by
rintro ⟨a, h | h, rfl⟩
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case intro.intro.inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ s ⊢ f a ∈ f '' s ∪ f '' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [
left
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case intro.intro.inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ t ⊢ f a ∈ f '' s ∪ f '' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left;
right
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left;
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case intro.intro.inl.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ s ⊢ f a ∈ f '' s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;>
exact ⟨_, h, rfl⟩
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;>
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case intro.intro.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ t ⊢ f a ∈ f '' t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;>
exact ⟨_, h, rfl⟩
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;>
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α x : β ⊢ x ∈ f '' s ∪ f '' t → x ∈ f '' (s ∪ t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by
rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right]
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α x : β ⊢ x ∈ f '' s ∪ f '' t → x ∈ f '' (s ∪ t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by
rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩)
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ s ⊢ f a ∈ f '' (s ∪ t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;>
refine' ⟨_, _, rfl⟩
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;>
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ t ⊢ f a ∈ f '' (s ∪ t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;>
refine' ⟨_, _, rfl⟩
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;>
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ s ⊢ a ∈ s ∪ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [
left
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ t ⊢ a ∈ s ∪ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left;
right
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left;
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case inl.intro.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ s ⊢ a ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;>
exact h
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;>
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
case inr.intro.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α a : α h : a ∈ t ⊢ a ∈ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;>
exact h
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;>
Mathlib.Data.Set.Image.336_0.IJFiTzmYGOCpPSd
theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β ⊢ f '' ∅ = ∅
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by
ext
@[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by
Mathlib.Data.Set.Image.342_0.IJFiTzmYGOCpPSd
@[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β x✝ : β ⊢ x✝ ∈ f '' ∅ ↔ x✝ ∈ ∅
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext
simp
@[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext
Mathlib.Data.Set.Image.342_0.IJFiTzmYGOCpPSd
@[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y b : β x✝ : b ∈ f '' s ∩ f '' t a₁ : α ha₁ : a₁ ∈ s h₁ : f a₁ = b a₂ : α ha₂ : a₂ ∈ t h₂ : f a₂ = b ⊢ f a₂ = f a₁
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by
simp [*]
theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by
Mathlib.Data.Set.Image.352_0.IJFiTzmYGOCpPSd
theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α ι : Type u_6 f : ι → β H : Surjective f ⊢ ∀ (x : β), x ∈ f '' univ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by
simpa [image]
theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by
Mathlib.Data.Set.Image.364_0.IJFiTzmYGOCpPSd
theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β a : α ⊢ f '' {a} = {f a}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by
ext
@[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by
Mathlib.Data.Set.Image.368_0.IJFiTzmYGOCpPSd
@[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a}
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β a : α x✝ : β ⊢ x✝ ∈ f '' {a} ↔ x✝ ∈ {f a}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext
simp [image, eq_comm]
@[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext
Mathlib.Data.Set.Image.368_0.IJFiTzmYGOCpPSd
@[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a}
Mathlib_Data_Set_Image
α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α✝ → β✝ s✝ t : Set α✝ α : Type u_6 β : Type u_7 f : α → β s : Set α ⊢ f '' s = ∅ ↔ s = ∅
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by
simp only [eq_empty_iff_forall_not_mem]
@[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by
Mathlib.Data.Set.Image.381_0.IJFiTzmYGOCpPSd
@[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅
Mathlib_Data_Set_Image
α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α✝ → β✝ s✝ t : Set α✝ α : Type u_6 β : Type u_7 f : α → β s : Set α ⊢ (∀ (x : β), x ∉ f '' s) ↔ ∀ (x : α), x ∉ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem]
exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩
@[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem]
Mathlib.Data.Set.Image.381_0.IJFiTzmYGOCpPSd
@[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t✝ : Set α inst✝ : BooleanAlgebra α t : α S : Set α ⊢ t ∈ compl '' S ↔ tᶜ ∈ S
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by
simp [← preimage_compl_eq_image_compl]
theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by
Mathlib.Data.Set.Image.395_0.IJFiTzmYGOCpPSd
theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t : Set α ⊢ image id = id
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by
ext
@[simp] theorem image_id_eq : image (id : α → α) = id := by
Mathlib.Data.Set.Image.400_0.IJFiTzmYGOCpPSd
@[simp] theorem image_id_eq : image (id : α → α) = id
Mathlib_Data_Set_Image
case h.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t x✝¹ : Set α x✝ : α ⊢ x✝ ∈ id '' x✝¹ ↔ x✝ ∈ id x✝¹
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext;
simp
@[simp] theorem image_id_eq : image (id : α → α) = id := by ext;
Mathlib.Data.Set.Image.400_0.IJFiTzmYGOCpPSd
@[simp] theorem image_id_eq : image (id : α → α) = id
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α ⊢ (fun x => x) '' s = s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by
ext
/-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by
Mathlib.Data.Set.Image.403_0.IJFiTzmYGOCpPSd
/-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α x✝ : α ⊢ x✝ ∈ (fun x => x) '' s ↔ x✝ ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext
simp
/-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext
Mathlib.Data.Set.Image.403_0.IJFiTzmYGOCpPSd
/-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α ⊢ id '' s = s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by
simp
theorem image_id (s : Set α) : id '' s = s := by
Mathlib.Data.Set.Image.410_0.IJFiTzmYGOCpPSd
theorem image_id (s : Set α) : id '' s = s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → α n : ℕ ⊢ image f^[n] = (image f)^[n]
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by
induction' n with n ih
lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by
Mathlib.Data.Set.Image.413_0.IJFiTzmYGOCpPSd
lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n]
Mathlib_Data_Set_Image
case zero α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → α ⊢ image f^[Nat.zero] = (image f)^[Nat.zero]
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; ·
simp
lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; ·
Mathlib.Data.Set.Image.413_0.IJFiTzmYGOCpPSd
lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n]
Mathlib_Data_Set_Image
case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → α n : ℕ ih : image f^[n] = (image f)^[n] ⊢ image f^[Nat.succ n] = (image f)^[Nat.succ n]
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp
rw [iterate_succ', iterate_succ',← ih, image_comp_eq]
lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp
Mathlib.Data.Set.Image.413_0.IJFiTzmYGOCpPSd
lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n]
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s t : Set α inst✝ : BooleanAlgebra α S : Set α ⊢ compl '' (compl '' S) = S
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by
rw [← image_comp, compl_comp_compl, image_id]
theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by
Mathlib.Data.Set.Image.417_0.IJFiTzmYGOCpPSd
theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β a : α s : Set α ⊢ f '' insert a s = insert (f a) (f '' s)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by
ext
theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by
Mathlib.Data.Set.Image.422_0.IJFiTzmYGOCpPSd
theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s)
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β a : α s : Set α x✝ : β ⊢ x✝ ∈ f '' insert a s ↔ x✝ ∈ insert (f a) (f '' s)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext
simp [and_or_left, exists_or, eq_comm, or_comm, and_comm]
theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext
Mathlib.Data.Set.Image.422_0.IJFiTzmYGOCpPSd
theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β a b : α ⊢ f '' {a, b} = {f a, f b}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by
simp only [image_insert_eq, image_singleton]
theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by
Mathlib.Data.Set.Image.428_0.IJFiTzmYGOCpPSd
theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b}
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β g : β → α b : β s : Set α h₁ : LeftInverse g f h₂ : Function.RightInverse g f ⊢ b ∈ f '' s ↔ g b ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by
rw [image_eq_preimage_of_inverse h₁ h₂]
theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by
Mathlib.Data.Set.Image.446_0.IJFiTzmYGOCpPSd
theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β g : β → α b : β s : Set α h₁ : LeftInverse g f h₂ : Function.RightInverse g f ⊢ b ∈ g ⁻¹' s ↔ g b ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂];
rfl
theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂];
Mathlib.Data.Set.Image.446_0.IJFiTzmYGOCpPSd
theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β s : Set α H : Injective f ⊢ Disjoint (f '' s) (f '' sᶜ)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by
simp [disjoint_iff_inf_le, ← image_inter H]
theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by
Mathlib.Data.Set.Image.451_0.IJFiTzmYGOCpPSd
theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β s : Set α H : Surjective f ⊢ f '' s ∪ f '' sᶜ = univ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by
rw [← image_union]
theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by
Mathlib.Data.Set.Image.455_0.IJFiTzmYGOCpPSd
theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t : Set α f : α → β s : Set α H : Surjective f ⊢ f '' (s ∪ sᶜ) = univ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union]
simp [image_univ_of_surjective H]
theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union]
Mathlib.Data.Set.Image.455_0.IJFiTzmYGOCpPSd
theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α ⊢ f '' s \ f '' t ⊆ f '' (s \ t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by
rw [diff_subset_iff, ← image_union, union_diff_self]
theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by
Mathlib.Data.Set.Image.465_0.IJFiTzmYGOCpPSd
theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s t : Set α ⊢ f '' s ⊆ f '' (t ∪ s)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self]
exact image_subset f (subset_union_right t s)
theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self]
Mathlib.Data.Set.Image.465_0.IJFiTzmYGOCpPSd
theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t✝ : Set α hf : Injective f s t : Set α ⊢ f '' s ∆ t = (f '' s) ∆ (f '' t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by
simp_rw [Set.symmDiff_def, image_union, image_diff hf]
theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by
Mathlib.Data.Set.Image.481_0.IJFiTzmYGOCpPSd
theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : β → α hf : Surjective f eq : f ⁻¹' s = f ⁻¹' t ⊢ s = t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by
rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq]
@[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by
Mathlib.Data.Set.Image.534_0.IJFiTzmYGOCpPSd
@[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s : Set α t : Set β ⊢ f '' (s ∩ f ⁻¹' t) = f '' s ∩ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by
apply Subset.antisymm
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by
Mathlib.Data.Set.Image.541_0.IJFiTzmYGOCpPSd
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t
Mathlib_Data_Set_Image
case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s : Set α t : Set β ⊢ f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm ·
calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t)
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm ·
Mathlib.Data.Set.Image.541_0.IJFiTzmYGOCpPSd
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t
Mathlib_Data_Set_Image
case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s : Set α t : Set β ⊢ f '' s ∩ t ⊆ f '' (s ∩ f ⁻¹' t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) ·
rintro _ ⟨⟨x, h', rfl⟩, h⟩
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) ·
Mathlib.Data.Set.Image.541_0.IJFiTzmYGOCpPSd
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t
Mathlib_Data_Set_Image
case h₂.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s : Set α t : Set β x : α h' : x ∈ s h : f x ∈ t ⊢ f x ∈ f '' (s ∩ f ⁻¹' t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩
exact ⟨x, ⟨h', h⟩, rfl⟩
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩
Mathlib.Data.Set.Image.541_0.IJFiTzmYGOCpPSd
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s : Set α t : Set β ⊢ f '' (f ⁻¹' t ∩ s) = t ∩ f '' s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by
simp only [inter_comm, image_inter_preimage]
theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by
Mathlib.Data.Set.Image.551_0.IJFiTzmYGOCpPSd
theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s : Set α t : Set β ⊢ Set.Nonempty (f '' s ∩ t) ↔ Set.Nonempty (s ∩ f ⁻¹' t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by
rw [← image_inter_preimage, nonempty_image_iff]
@[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by
Mathlib.Data.Set.Image.555_0.IJFiTzmYGOCpPSd
@[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s✝ t✝ : Set α f : α → β s : Set α t : Set β ⊢ f '' (s \ f ⁻¹' t) = f '' s \ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by
simp_rw [diff_eq, ← preimage_compl, image_inter_preimage]
theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by
Mathlib.Data.Set.Image.561_0.IJFiTzmYGOCpPSd
theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β hf : Injective f eq : f '' s = f '' t ⊢ s = t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by
rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq]
theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by
Mathlib.Data.Set.Image.591_0.IJFiTzmYGOCpPSd
theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β hf : Injective f ⊢ f '' s ⊆ f '' t ↔ s ⊆ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by
refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _
theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by
Mathlib.Data.Set.Image.597_0.IJFiTzmYGOCpPSd
theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β hf : Injective f h : f '' s ⊆ f '' t ⊢ s ⊆ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _
rw [← preimage_image_eq s hf, ← preimage_image_eq t hf]
theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _
Mathlib.Data.Set.Image.597_0.IJFiTzmYGOCpPSd
theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f✝ : α → β s t : Set α f : α → β hf : Injective f h : f '' s ⊆ f '' t ⊢ f ⁻¹' (f '' s) ⊆ f ⁻¹' (f '' t)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf]
exact preimage_mono h
theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf]
Mathlib.Data.Set.Image.597_0.IJFiTzmYGOCpPSd
theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s ⊢ ⇑σ '' s = s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by
ext i
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α ⊢ i ∈ ⇑σ '' s ↔ i ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i
obtain hi | hi := eq_or_ne (σ i) i
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h.inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α hi : σ i = i ⊢ i ∈ ⇑σ '' s ↔ i ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i ·
refine' ⟨_, fun h => ⟨i, h, hi⟩⟩
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i ·
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h.inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α hi : σ i = i ⊢ i ∈ ⇑σ '' s → i ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩
rintro ⟨j, hj, h⟩
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h.inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α hi : σ i = i j : α hj : j ∈ s h : σ j = i ⊢ i ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩
rwa [σ.injective (hi.trans h.symm)]
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h.inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α hi : σ i ≠ i ⊢ i ∈ ⇑σ '' s ↔ i ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] ·
refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi)
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] ·
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h.inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α hi : σ i ≠ i h : σ (σ.symm i) = σ.symm i ⊢ σ i = i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi)
convert congr_arg σ h
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi)
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h.e'_2.h.e'_6 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α hi : σ i ≠ i h : σ (σ.symm i) = σ.symm i ⊢ i = σ (σ.symm i)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;>
exact (σ.apply_symm_apply _).symm
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;>
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 f : α → β s✝ t s : Set α σ : Equiv.Perm α hs : {a | σ a ≠ a} ⊆ s i : α hi : σ i ≠ i h : σ (σ.symm i) = σ.symm i ⊢ i = σ (σ.symm i)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;>
exact (σ.apply_symm_apply _).symm
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;>
Mathlib.Data.Set.Image.635_0.IJFiTzmYGOCpPSd
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 s : Set α a : α ⊢ 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by
ext t
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by
Mathlib.Data.Set.Image.651_0.IJFiTzmYGOCpPSd
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 s : Set α a : α t : Set α ⊢ t ∈ 𝒫 insert a s ↔ t ∈ 𝒫 s ∪ insert a '' 𝒫 s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t
simp_rw [mem_union, mem_image, mem_powerset_iff]
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t
Mathlib.Data.Set.Image.651_0.IJFiTzmYGOCpPSd
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s
Mathlib_Data_Set_Image
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 s : Set α a : α t : Set α ⊢ t ⊆ insert a s ↔ t ⊆ s ∨ ∃ x ⊆ s, insert a x = t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff]
constructor
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff]
Mathlib.Data.Set.Image.651_0.IJFiTzmYGOCpPSd
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s
Mathlib_Data_Set_Image
case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 s : Set α a : α t : Set α ⊢ t ⊆ insert a s → t ⊆ s ∨ ∃ x ⊆ s, insert a x = t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor ·
intro h
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor ·
Mathlib.Data.Set.Image.651_0.IJFiTzmYGOCpPSd
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s
Mathlib_Data_Set_Image
case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 s : Set α a : α t : Set α h : t ⊆ insert a s ⊢ t ⊆ s ∨ ∃ x ⊆ s, insert a x = t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor · intro h
by_cases hs : a ∈ t
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor · intro h
Mathlib.Data.Set.Image.651_0.IJFiTzmYGOCpPSd
/-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s
Mathlib_Data_Set_Image