metadata
license: cc-by-nc-nd-4.0
The Git-10M dataset is a global-scale remote sensing image-text pair dataset, consisting of over 10 million image-text pairs with geographical locations and resolution information.
CC-BY-NC-ND-4.0 License: This dataset is not allowed to be modified or distributed without authorization!
Project Page: https://chen-yang-liu.github.io/Text2Earth/

View samples from the dataset
from datasets import load_dataset
import math
def XYZToLonLat(x,y,z):
# Transform tile-location to (longitude,latitude)
n = 2**z*1.0
lon = x / n * 360.0 - 180.0 # longitude
lat = math.atan(math.sinh(math.pi * (1 - 2.0 * y / n)))
lat = math.degrees(lat) # latitude
return lon,lat
# load dataset
save_path = 'xxxxx'
ds = load_dataset.load('lcybuaa/Git-10M', cache_dir=save_path)
train_dataset = ds["train"]
for i, example in enumerate(train_dataset):
# PIL image:
image = example["image"]
# filename of the image:
img_name = example["img_name"]
# visual quality score as shown in Fig. 5 of the paper.
img_quality_score = example['img_quality_score']
# caption of the image
caption = example['caption']
# word length of the caption as shown in Fig. 6 of the paper.
caption_length = example['caption_length']
# image spatial resolution as shown in Fig. 4 of the paper.
resolution = example['resolution']
# image Geolocation as shown in Fig. 3 of the paper.
Google_location = example['Google_location']
Level_TileZ, TileX, TileY = Google_location.split('_')
longitude, latitude = XYZToLonLat(TileX, TileY, Level_TileZ)
# More Tips:
# Resolution = 2 ** (17 - Level_TileZ)
Git-RSCLIP: Remote Sensing Vision-Language Contrastive Pre-training Foundation Model
Git-RSCLIP is pre-trained using the contrastive learning framework on the Git-10M dataset. Git-RSCLIP is here:[Huggingface | Modelscope]
Compare the Top1-Acc of Zero-shot classification on multiple image classification datasets:
Method | OPTIMAL31 | RSC11 | RSICB128 | WHURS19 | RS2800/RSSCN7 | CLRS | Average score |
---|---|---|---|---|---|---|---|
CLIP | 0.6 | 0.45 | 0.25 | 0.77 | 0.52 | 0.56 | 0.52 |
RemoteCLIP | 0.82 | 0.67 | 0.34 | 0.93 | 0.52 | 0.66 | 0.65 |
GeoRSCLIP | 0.83 | 0.67 | 0.35 | 0.89 | 0.63 | 0.69 | 0.68 |
SkyCLIP50 | 0.77 | 0.60 | 0.38 | 0.78 | 0.55 | 0.61 | 0.62 |
(Git-RSCLIP) Ours | 0.95 | 0.67 | 0.52 | 0.94 | 0.64 | 0.65 | 0.73 |
BibTeX entry and citation info
@ARTICLE{Text2Earth,
author={Liu, Chenyang and Chen, Keyan and Zhao, Rui and Zou, Zhengxia and Shi, Zhenwei},
journal={IEEE Geoscience and Remote Sensing Magazine},
title={Text2Earth: Unlocking text-driven remote sensing image generation with a global-scale dataset and a foundation model},
year={2025},
volume={},
number={},
pages={2-23},
doi={10.1109/MGRS.2025.3560455}}