seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
โŒ€
dataset
stringclasses
1 value
pt
stringclasses
1 value
23230602110
import ui from PIL import Image as ImageP import io import random mainWindow = ui.View() mainWindow.name = 'Image Conversion' mainWindow.background_color = 'white' mainWindow.width = 700 #ui.get_screen_size().width mainWindow.height = 700 #ui.get_screen_size().height def pil2ui(pil_img): with io.BytesIO() as buffer: pil_img.save(buffer, format='PNG') return ui.Image.from_data(buffer.getvalue()) path = "../Images/" quarter = pil2ui(ImageP.open(path + "quarter.png").resize((70,70), ImageP.ANTIALIAS)) dime = pil2ui(ImageP.open(path + "dime.png").resize((50,50), ImageP.ANTIALIAS)) nickel = pil2ui(ImageP.open(path + "nickel.png").resize((60,60), ImageP.ANTIALIAS)) penny = pil2ui(ImageP.open(path + "penny.png").resize((55,55), ImageP.ANTIALIAS)) picture1 = ui.ImageView() picture1.width = 70 picture1.height = 70 picture1.image = quarter mainWindow.add_subview(picture1) #mainWindow.present('fullscreen') mainWindow.present('sheet')
WhittlinRich/python
ImageConversion.py
ImageConversion.py
py
955
python
en
code
0
github-code
6
71935407547
import os import numpy as np from sklearn.metrics import confusion_matrix import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from glob import glob import ffmpeg import warnings warnings.filterwarnings('ignore') classes = {'ะฟั€ะพัั‚ะพะน': 0, 'ะฒั‹ะฝัƒะถะดะตะฝะฝะฐั': 1, 'ัะฒะฐั€ะบะฐ': 2} df_nine_left = pd.read_csv('nine_hour_left.csv') df_nine_right = pd.read_csv('nine_hour_right.csv') df_five_left = pd.read_csv('five_hour_left.csv') df_five_right = pd.read_csv('five_hour_right.csv') ann_train = [] ann_test = [] for _, r in tqdm(df_nine_left.iterrows()): file_result = f'train_5s/{r["fname"]}' line = file_result + ' ' + str(classes[r['label']]) + '\n' if r['time'] > 7200: ann_train.append(line) else: ann_test.append(line) for _, r in tqdm(df_nine_right.iterrows()): file_result = f'train_5s/{r["fname"]}' line = file_result + ' ' + str(classes[r['label']]) + '\n' if r['time'] > 7200: ann_train.append(line) else: ann_test.append(line) for _, r in tqdm(df_five_left.iterrows()): file_result = f'train_5s/{r["fname"]}' line = file_result + ' ' + str(classes[r['label']]) + '\n' if r['time'] < 13845: ann_train.append(line) else: ann_test.append(line) for _, r in tqdm(df_five_right.iterrows()): file_result = f'train_5s/{r["fname"]}' line = file_result + ' ' + str(classes[r['label']]) + '\n' if r['time'] < 13845: ann_train.append(line) else: ann_test.append(line) with open('ann_train.txt', 'w') as train_file, open('ann_test.txt', 'w') as test_file: train_file.writelines(ann_train) test_file.writelines(ann_test)
vitalymegabyte/koblik_family
train_scripts/split_train_val.py
split_train_val.py
py
1,745
python
en
code
0
github-code
6
25987362528
import argparse import dataclasses import subprocess import sys from datetime import datetime from typing import List from testcase import get_cli_base_cmd from testcase import Result base_cmd = get_cli_base_cmd() @dataclasses.dataclass class CleanupItem: name: str list_cmd: str del_cmd: str items: List = dataclasses.field(default_factory=list) def parse_args(*args) -> argparse.Namespace: parser = argparse.ArgumentParser(description="Cleanup the CloudTruth environment") parser.add_argument( dest="needles", nargs="*", default=["Windows", "Linux", "macOS", "ci-cli", "testcli"], help="Search strings to look for", ) parser.add_argument( "-q", "--quiet", dest="quiet", action="store_true", help="Do not show what the script is doing", ) parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="Detailed output") parser.add_argument("--confirm", "--yes", dest="confirm", action="store_true", help="Skip confirmation prompt") return parser.parse_args(*args) def cli(cmd: str) -> Result: updated = base_cmd + cmd.replace("'", '"') # allows this to work on Windows start = datetime.now() process = subprocess.run(updated, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) delta = datetime.now() - start return Result( return_value=process.returncode, stdout=process.stdout.decode("us-ascii", errors="ignore").replace("\r", "").split("\n"), stderr=process.stderr.decode("us-ascii", errors="ignore").replace("\r", "").split("\n"), timediff=delta, command=updated, ) def yes_or_no(question: str) -> bool: reply = str(input(question + " (y/n): ")).lower().strip() if reply[0] == "y": return True if reply[0] == "n": return False else: return yes_or_no("Please enter ") def cloudtruth_cleanup(*args): args = parse_args(*args) if not args.needles: print("No search strings provided") return -1 # reset verbosity flags if they conflict with each other if args.quiet and args.verbose: args.quiet = False args.verbose = False result = cli("config curr -x") print(result.command) print(result.out()) # define a set of elements to cleanup elements = [ CleanupItem(name="projects", list_cmd="proj tree", del_cmd="proj del -y"), CleanupItem(name="environments", list_cmd="env tree", del_cmd="env del -y"), CleanupItem(name="users", list_cmd="user ls", del_cmd="user del -y"), CleanupItem(name="groups", list_cmd="group ls", del_cmd="group del -y"), CleanupItem(name="invitations", list_cmd="user invite ls", del_cmd="user invite del -y"), CleanupItem(name="types", list_cmd="types tree", del_cmd="types del -y"), CleanupItem(name="pushes", list_cmd="action push ls", del_cmd="action push del -y"), CleanupItem(name="imports", list_cmd="action import ls", del_cmd="action import del -y"), ] for elem in elements: if not args.quiet: print(f"Looking for matching {elem.name}...") result = cli(elem.list_cmd) # use reverse order to accommodate the ordering `tree` commands for line in reversed(result.stdout): item = line.strip() if any([needle for needle in args.needles if needle in item]): elem.items.append(line.strip()) if not (any([x for x in elements if x.items])): types = [x.name for x in elements] type_list = ", ".join(types[:-1]) type_list += f", or {types[-1]}" search_list = ", ".join(args.needles) print(f"No {type_list} items found matching: {search_list}") return 0 if not (args.confirm and args.quiet): print("\n\nFound matches: ") for elem in elements: if not elem.items: print(f" {elem.name}: None") else: print(f" {elem.name}:") for item in elem.items: print(f" {item}") print("") if not args.confirm and not yes_or_no("Delete the above items"): print("No items deleted") return 0 all_deleted = True for elem in elements: if not elem.items: continue for item in elem.items: result = cli(elem.del_cmd + f" '{item}'") if args.verbose: print(result.command) if result.return_value != 0: all_deleted = False print(f"Failed to delete {elem.name} {item}") if args.verbose: print(result.err()) if all_deleted: print("Deleted all items") return 0 if __name__ == "__main__": sys.exit(cloudtruth_cleanup(sys.argv[1:]))
cloudtruth/cloudtruth-cli
integration-tests/cleanup.py
cleanup.py
py
4,892
python
en
code
4
github-code
6
22432578680
import pandas as pd from openpyxl.styles import PatternFill def rgb_to_hex(rgb): return '%02x%02x%02x' % rgb def darken(hex_code, shade): shade = shade/10 #add something to convert shade number ie 9 actually equals 10% darker RGB = tuple(int(hex_code[i:i + 2], 16) for i in (0, 2, 4)) r = RGB[0] g = RGB[1] b = RGB[2] # darken by 10% darken_R = int(round(r * shade)) darken_G = int(round(g * shade)) darken_B = int(round(b * shade)) rgbTuple = (darken_R, darken_G, darken_B) #tuple of RGB values to convert to Hex return rgb_to_hex(rgbTuple) def lighten(hex_code, shade): shade = shade/10 RGB = tuple(int(hex_code[i:i + 2], 16) for i in (0, 2, 4)) r = RGB[0] g = RGB[1] b = RGB[2] # lighten by 10% lighten_R = int(round(r + ((255 - r) * shade), 0)) lighten_G = int(round(g + ((255 - g) * shade), 0)) lighten_B = int(round(b + ((255 - b) * shade), 0)) rgbTuple = (lighten_R, lighten_G, lighten_B) #tuple of RGB values to convert to Hex return rgb_to_hex(rgbTuple) def create_lighten_df(colorList): empty_df_list = [] df = pd.DataFrame(columns=['Original Color Hex', 'Change %', 'Color Hex', 'Direction', 'Color']) for item in colorList: for num in range(11): original_color = "#" + item change_percent = str(num) + '0%' color_hex = "#" + lighten(hex_code=item, shade=num) direction = 'Lighter' df = pd.concat([df, pd.DataFrame.from_dict({'Original Color Hex': [original_color], 'Change %': [change_percent], 'Color Hex': [color_hex], 'Direction': [direction], 'Color' : ""})], ignore_index=True) return df def create_darken_df(colorList): empty_df_list = [] df = pd.DataFrame(columns=['Original Color Hex', 'Change %', 'Color Hex', 'Direction', 'Color']) for item in colorList: for num in range(11): original_color = "#" + item change_percent = str(num) + '0%' color_hex = "#" + darken(hex_code=item, shade=num) direction = 'Darken' df = pd.concat([df, pd.DataFrame.from_dict({'Original Color Hex': [original_color], 'Change %': [change_percent], 'Color Hex': [color_hex], 'Direction': [direction], 'Color' : ""})], ignore_index=True) print(df) percDict = { '100%': "00%", '90%': "10%", '80%': "20%", '70%': "30%", '60%': "40%", '50%': "50%", '40%': "60%", '30%': "70%", '20%': "80%", '10%': "90%", '00%': "100%" } df['Change %'] = df['Change %'].apply(lambda x: percDict[x]) df['Original Color Hex'] = df['Original Color Hex'].astype('category') df = df.sort_index(ascending=False).reset_index(drop=True) df['Sorting'] = df.index sorter = ['#' + str(x) for x in colorList] df['Original Color Hex'] = df['Original Color Hex'].cat.set_categories(sorter) df = df.sort_values(by=['Original Color Hex', 'Sorting']).drop(columns='Sorting') return df ###############start of work################### # colorList is the list of hex codes that will be used to generate the report colorList = ['CC0000', #red '000000', #black '4d4d4f', #dark gray '969697', #medium gray 'dddddd', # light gray 'f3f3f3', # ultra light gray 'f58025', # ada compliant orange 'fdb913', # ada compliant yellow '97ca3e', # ada compliant green '479cd6', # ada compliant blue '1d3c6d', # ada compliant navy '751c59' # ada compliant purple ] lighten_df = create_lighten_df(colorList) #create a dataframe of lightened colors darken_df = create_darken_df(colorList) # create a dataframe of darkened colors with pd.ExcelWriter("ColorShadeReferenceWorkbook.xlsx", engine="openpyxl") as writer: # create the "Lighten" worksheet sheet_name = "Lighten" # Export DataFrame content lighten_df.to_excel(writer, sheet_name=sheet_name, index=False) # Set column width dimensions sheet = writer.sheets[sheet_name]# open sheet sheet.column_dimensions['A'].width = 18 sheet.column_dimensions['B'].width = 10 sheet.column_dimensions['C'].width = 10 sheet.column_dimensions['D'].width = 10 sheet.column_dimensions['E'].width = 9 # Set background colors depending on cell values for cell, in sheet[f'E2:E{len(lighten_df) + 1}']: # Skip header row, process as many rows as there are DataFrames value = lighten_df["Color Hex"].iloc[cell.row - 2] #set color value to row['Color Hex'] value value = value.strip("#") cell.fill = PatternFill(start_color=value, end_color=value, fill_type='solid') #create the "Darken" worksheet sheet_name = "Darken" # Export DataFrame content darken_df.to_excel(writer, sheet_name=sheet_name, index=False) sheet = writer.sheets[sheet_name] # Set column width dimensions sheet.column_dimensions['A'].width = 18 sheet.column_dimensions['B'].width = 10 sheet.column_dimensions['C'].width = 10 sheet.column_dimensions['D'].width = 10 sheet.column_dimensions['E'].width = 9 # Set background colors depending on cell values for cell, in sheet[f'E2:E{len(darken_df) + 1}']: # Skip header row, process as many rows as there are DataFrames value = darken_df["Color Hex"].iloc[cell.row - 2] #set color value to row['Color Hex'] value value = value.strip("#") #strip # cell.fill = PatternFill(start_color=value, end_color=value, fill_type='solid') #fill cell colid color
mbgoodin/ColorShadeGenerator
main.py
main.py
py
6,351
python
en
code
0
github-code
6
10929065262
from os import system system('clear') lista_membros = list() familia = dict() # familia = [{'nome': 'Joemar', 'idade': 60, 'cor dos olhos': 'Castanhos'}, # {'nome': 'Alessandra', 'idade': 50, 'cor dos olhos': 'Pretos'}, # {'nome': 'Jean', 'idade': 26, 'cor dos olhos': 'Pretos'}, # {'nome': 'Lara', 'idade': 22, 'cor dos olhos': 'Castanhos'}, # {'nome': 'Thalles', 'idade': 19, 'cor dos olhos': 'Castanhos'}] for i in range(1, 6): print('\033[1;34mMembros e caracterรญsticas da famรญlia\033[m') familia.clear() familia['nome'] = input(f'\033[1;34mPessoa {i}: \033[m') familia['idade'] = int(input(f'\033[1;34mIdade do(a) {familia["nome"]}: \033[m')) familia['cor dos olhos'] = input(f'\033[1;34mCor dos olhos do(a) {familia["nome"]}: \033[m') lista_membros.append(familia) familia = familia.copy() system('clear') print(f'\n\033[1;34mOs membros da famรญlia sรฃo: \033[m\033[31m{lista_membros}\033[m')
ThallesCansi/Programacao-para-Web
1ยบ Bimestre/Capรญtulo 01 - Fundamentos da Linguagem/Exercรญcio 1.29.py
Exercรญcio 1.29.py
py
999
python
pt
code
0
github-code
6
21397176119
import os import statistics import sys import httpx from dotenv import load_dotenv load_dotenv(sys.argv[1]) url = os.environ['url'] attempts = int(os.environ.get('attempts', 100)) payload = os.environ.get('payload') auth_header = os.environ.get('auth_header', 'X-Racetrack-Auth') auth_token = os.environ.get('auth_token', '') reuse_connection: bool = os.environ.get('reuse_connection', 'true').lower() in {'true', '1'} print(f'Testing URL {url}') print(f'attempts: {attempts}, reuse_connection (connection pool): {reuse_connection}, payload: {payload}') durations = [] headers = { 'User-Agent': 'curl/7.81.0', 'Accept': 'application/json', 'Content-Type': 'application/json', auth_header: auth_token, } client = httpx.Client() try: for i in range(attempts): if reuse_connection: response = client.post(url, timeout=30, headers=headers, content=payload) else: response = httpx.post(url, timeout=30, headers=headers, content=payload) duration = response.elapsed.total_seconds() try: response.raise_for_status() except httpx.HTTPStatusError: print(f'Response error: {response.content}') raise durations.append(duration) print(f'Attempt #{i+1} - request duration: {duration*1000:.2f} ms') except KeyboardInterrupt: pass finally: client.close() average = sum(durations) / len(durations) min_duration = min(durations) max_duration = max(durations) median = statistics.median(durations) print(f'----------') print(f'Requests: {len(durations)}') print(f'Median: {median*1000:.2f} ms') print(f'Average: {average*1000:.2f} ms') print(f'Min: {min_duration*1000:.2f} ms') print(f'Max: {max_duration*1000:.2f} ms')
TheRacetrack/racetrack
tests/performance/response_time_test.py
response_time_test.py
py
1,757
python
en
code
27
github-code
6
73502078587
#from threading import Thread from bs4 import BeautifulSoup import pandas as pd #import os #import sys from selenium import webdriver #from selenium.webdriver.common.proxy import * from time import gmtime, strftime, sleep #import sqlite3 #from queue import Queue #import re import requests cities_frame = pd.read_html('https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population') cities = cities_frame[4] print(cities) abbrs = { 'Alaska': 'AK', 'Alabama': 'AL', 'Arkansas': 'AR', 'Arizona': 'AZ', 'California': 'CA', 'Colorado': 'CO', 'Connecticut': 'CT', 'District of Columbia': 'DC', 'Delaware': 'DE', 'Florida': 'FL', 'Georgia': 'GA', 'Iowa': 'IA', 'Idaho': 'ID', 'Illinois': 'IL', 'Indiana': 'IN', 'Kansas': 'KS', 'Kentucky': 'KY', 'Louisiana': 'LA', 'Massachusetts': 'MA', 'Maryland': 'MD', 'Maine': 'ME', 'Michigan': 'MI', 'Minnesota': 'MN', 'Missouri': 'MO', 'Mississippi': 'MS', 'Montana': 'MT', 'North Carolina': 'NC', 'North Dakota': 'ND', 'Nebraska': 'NE', 'New Hampshire': 'NH', 'New Jersey': 'NJ', 'New Mexico': 'NM', 'Nevada': 'NV', 'New York': 'NY', 'Ohio': 'OH', 'Oklahoma': 'OK', 'Oregon': 'OR', 'Pennsylvania': 'PA', 'Rhode Island': 'RI', 'South Carolina': 'SC', 'South Dakota': 'SD', 'Tennessee': 'TN', 'Texas': 'TX', 'Utah': 'UT', 'Virginia': 'VA', 'Vermont': 'VT', 'Washington': 'WA', 'Wisconsin': 'WI', 'West Virginia': 'WV', 'Wyoming': 'WY'} states = pd.read_csv('/home/val/coding/USA-states-cities.csv') #print(cities) cities_list = pd.DataFrame() def crawling(search_url, file_name): options = webdriver.ChromeOptions() options.add_argument('headless') driver = webdriver.Chrome(executable_path = './chromedriver', options = options) links = open(file_name, 'a') driver.get(search_url) print(search_url) for i in range(20): soup = BeautifulSoup(driver.page_source, 'lxml') for each in soup.find_all(class_='iUh30 bc'): try: print(each.text.split(' ')[0]) links.write(each.text.split(' ')[0]+'\n') except Exception: print(each.text) links.write(each.text+'\n') try: driver.find_element_by_class_name('pn').click() except Exception: return print('--------') i += 1 sleep(3) links.close() #print(cities_list) websites_frame = pd.DataFrame(columns=['state', 'city', 'link']) #states = states.drop_duplicates(zip('City', 'Abbreviation')) for i in range(len(cities)): # print(states.loc[i]['City']) # print(states.loc[i]['City']) try: city = cities.loc[i]['City'].split('[')[0] except Exception: city = cities.loc[i]['City'] try: state = abbrs[str(cities.loc[i]['State[c]'])] except Exception: continue search_url = f'https://www.google.com/search?q=File+a+complaint+{state}+{city}' #print('-----', search_url, '-----') try: state = str(cities.loc[i]['State[c]']).strip() except Exception: continue crawling(search_url, 'file_companies_sites.csv') search_url = f'https://www.google.com/search?q=File+a+complaint+{state}+{city}+attorney+general' crawling(search_url, 'file_companies_sites.csv') search_url = f'https://www.google.com/search?q=local+state+agencies+{state}+{city}' crawling(search_url, 'local_agencies.csv') search_url = f'https://www.google.com/search?q=consumer+protection+{state}+{city}' crawling(search_url, 'file_companies_sites.csv')
erelin6613/crawler
file_companies.py
file_companies.py
py
3,325
python
en
code
0
github-code
6
24301910796
import os import re from glob import glob import pandas as pd import numpy as np import matplotlib.pyplot as plt from IPython import get_ipython POSSIBLE_LABELS = 'yes no up down left right on off stop go silence unknown'.split() id2name = {i: name for i, name in enumerate(POSSIBLE_LABELS)} name2id = {name: i for i, name in id2name.items()} len(id2name) def load_data(data_dir): """ Return 2 lists of tuples: [(class_id, user_id, path), ...] for train [(class_id, user_id, path), ...] for validation """ # Just a simple regexp for paths with three groups: # prefix, label, user_id pattern = re.compile("(.+\/)?(\w+)\/([^_]+)_.+wav") all_files = glob(os.path.join(data_dir, 'train/audio/*/*wav')) with open(os.path.join(data_dir, 'train/validation_list.txt'), 'r') as fin: validation_files = fin.readlines() valset = set() for entry in validation_files: r = re.match(pattern, entry) if r: valset.add(r.group(3)) possible = set(POSSIBLE_LABELS) train, val = [], [] for entry in all_files: r = re.match(pattern, entry) if r: label, uid = r.group(2), r.group(3) if label == '_background_noise_': label = 'silence' if label not in possible: label = 'unknown' label_id = name2id[label] sample = (label, label_id, uid, entry) if uid in valset: val.append(sample) else: train.append(sample) print('There are {} train and {} val samples'.format(len(train), len(val))) columns_list = ['label', 'label_id', 'user_id', 'wav_file'] train_df = pd.DataFrame(train, columns = columns_list) valid_df = pd.DataFrame(val, columns = columns_list) return train_df, valid_df def process_wav_file(fname): wav = read_wav_file(fname) L = 16000 # 1 sec if len(wav) > L: i = np.random.randint(0, len(wav) - L) wav = wav[i:(i+L)] elif len(wav) < L: rem_len = L - len(wav) i = np.random.randint(0, len(silence_data) - rem_len) silence_part = silence_data[i:(i+L)] j = np.random.randint(0, rem_len) silence_part_left = silence_part[0:j] silence_part_right = silence_part[j:rem_len] wav = np.concatenate([silence_part_left, wav, silence_part_right]) specgram = stft(wav, 16000, nperseg = 400, noverlap = 240, nfft = 512, padded = False, boundary = None) phase = np.angle(specgram[2]) / np.pi amp = np.log1p(np.abs(specgram[2])) return np.stack([phase, amp], axis = 2) train_df, valid_df = load_data('./train/') train_df.head() train_df.label.value_counts() silence_files = train_df[train_df.label == 'silence'] train_df = train_df[train_df.label != 'silence'] from scipy.io import wavfile from scipy.signal import stft def read_wav_file(fname): _, wav = wavfile.read(fname) wav = wav.astype(np.float32) / np.iinfo(np.int16).max return wav silence_data = np.concatenate([read_wav_file(x) for x in silence_files.wav_file.values]) # last batch will contain padding, so remove duplicates submission = dict() for i in range(0, 10500): fname, label = os.path.basename(test_paths[i]), id2name[classes[i]] submission[fname] = label with open('106368019_submission.csv', 'w') as fout: fout.write('fname,label\n') for fname, label in submission.items(): fout.write('{},{}\n'.format(fname, label))
105318102/Eric-Liu
test.py
test.py
py
3,536
python
en
code
0
github-code
6
13818867772
""" Demo of custom tick-labels with user-defined rotation. """ import math import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np from matplotlib.widgets import Slider, Button, RadioButtons z = int(input("how long you wanna go? ")) n1 = 2 n2 = int(input("another number ")) xcor = [] ycor =[] lcor=[] x = 0 i = 0 for j in range(0,z): lcor.append(j*(math.log(2,math.e)/math.log(3,math.e))) def pycode(x): n = math.ceil(x*(math.log(n2,math.e)/math.log(n1,math.e))-1)#a1 return n while x <= z: x += 1 ycor.append((n2**x/n1**pycode(x))) ycor.append((n1**(pycode(x)+1)/n2**x)) while i <= z*2+1: #math done to allign x and y coordinates i+=1 xcor.append(i) labels = [] #plt.subplot(111,polar=True) plt.plot(xcor[0:z:2], ycor[0:z:2], 'co') plt.plot(xcor[1:z:2], ycor[1:z:2], 'ro') plt.plot((n2**x/n1**pycode(x)),'k') #plt.plot(xcor,ycor,'k') # You can specify a rotation for the tick labels in degrees or with keywords. #plt.xticks(lor, labels, rotation='vertical') plt.xticks(xcor, labels, rotation='vertical') # Pad margins so that markers don't get clipped by the axes plt.margins(0.2) # Tweak spacing to prevent clipping of tick-labels plt.subplots_adjust(bottom=0.15) plt.show()
fastaro/FFimages
polar.py
polar.py
py
1,243
python
en
code
0
github-code
6
28806070886
from __future__ import annotations import copy import datetime import importlib.util import json import logging import os import random import statistics from abc import ABCMeta from abc import abstractmethod from typing import IO from typing import TYPE_CHECKING from typing import Any from typing import Callable from typing import Dict from typing import Iterator from typing import List from typing import Optional from typing import Type from weakref import proxy import keyring import portion from jira import JIRA from rich.console import Console from rich.progress import TaskID from safdie import BaseCommand as SafdieBaseCommand from safdie import get_entrypoints from urllib3 import disable_warnings from .constants import APP_NAME from .constants import FORMATTER_ENTRYPOINT from .constants import FUNCTION_ENTRYPOINT from .constants import SOURCE_ENTRYPOINT from .exceptions import ConfigurationError from .types import ConfigDict from .types import InstanceDefinition from .types import SchemaRow from .types import SelectFieldDefinition from .utils import get_custom_function_dir from .utils import get_functions_for_module from .utils import save_config if TYPE_CHECKING: from .query import CounterChannel from .query import Executor from .query import Query logger = logging.getLogger(__name__) BUILTIN_FUNCTIONS: Dict[str, Callable] = { # Built-ins "abs": abs, "all": all, "any": any, "bin": bin, "bool": bool, "hex": hex, "int": int, "len": len, "max": max, "min": min, "oct": oct, "ord": ord, "pow": pow, "range": range, "reversed": reversed, "round": round, "set": set, "sorted": sorted, "str": str, "sum": sum, "tuple": tuple, "map": map, "filter": filter, "type": lambda x: str(type(x)), # Statistics **get_functions_for_module( statistics, [ "fmean", "geometric_mean", "harmonic_mean", "mean", "median", "median_grouped", "median_high", "median_low", "mode", "multimode", "pstdev", "pvariance", "quantiles", "stdev", "variance", ], ), # Random **get_functions_for_module( random, ["random", "randrange", "randint", "choice"], ), # JSON "json_loads": json.loads, "empty_interval": portion.empty, "closed_interval": portion.closed, "open_interval": portion.open, "openclosed_interval": portion.openclosed, "closedopen_interval": portion.closedopen, "datetime": datetime.datetime, "timedelta": datetime.timedelta, } REGISTERED_FUNCTIONS: Dict[str, Callable] = {} class BaseCommand(SafdieBaseCommand): _jira: Optional[JIRA] = None def __init__(self, *, config: ConfigDict, **kwargs): self._config: ConfigDict = config self._console = Console(highlight=False) super().__init__(**kwargs) @property def config(self) -> ConfigDict: """Provides the configuration dictionary.""" return self._config def save_config(self) -> None: """Saves the existing configuration dictionary.""" save_config(self.config, self.options.config) @property def console(self) -> Console: """Provides access to the console (see `rich.console.Console`.""" return self._console @property def jira(self) -> JIRA: """Provides access to the configured Jira instance.""" if self._jira is None: instance = self.config.instances.get( self.options.instance_name, InstanceDefinition() ) instance_url = self.options.instance_url or instance.url if not instance_url: raise ConfigurationError( "instance_url not set; please run `jira-select configure`." ) username = self.options.username or instance.username if not username: raise ConfigurationError( "username not set; please run `jira-select configure`." ) password = self.options.password or instance.password if not password: password = keyring.get_password(APP_NAME, instance_url + username) if not password: raise ConfigurationError( f"Password not stored for {instance_url} user {username}; " "use the 'store-password' command to store the password " "for this user account in your system keyring or use " "`jira-select configure`." ) verify = self.options.disable_certificate_verification or instance.verify if verify is None: verify = True if verify is False: disable_warnings() self._jira = JIRA( options={ "agile_rest_path": "agile", "server": instance_url, "verify": verify, }, basic_auth=(username, password), validate=False, get_server_info=False, ) return self._jira def get_installed_formatters() -> Dict[str, Type[BaseFormatter]]: return get_entrypoints(FORMATTER_ENTRYPOINT, BaseFormatter) class BaseFormatter(metaclass=ABCMeta): def __init__(self, executor: Executor, stream: IO[bytes]): self._executor = proxy(executor) self._stream = stream @classmethod @abstractmethod def get_file_extension(cls) -> str: ... @property def executor(self): return self._executor @property def stream(self): return self._stream def __enter__(self): self.open() return self def __exit__(self, type, value, traceback): # Exception handling here self.close() def open(self): return def close(self): return @abstractmethod def writerow(self, row: Dict[str, Any]): ... def register_function(fn: Callable): """Register a callable to be a function available in queries.""" REGISTERED_FUNCTIONS[fn.__name__] = fn def get_installed_functions( jira: JIRA = None, executor: Executor = None ) -> Dict[str, Callable]: possible_commands: Dict[str, Callable] = copy.copy(BUILTIN_FUNCTIONS) # Import any modules in the custom functions directory; as a # side-effect of this, the functions will become listed within # REGISTERED_FUNCTIONS function_dir = get_custom_function_dir() for dirname, subdirlist, filelist in os.walk(function_dir): for filename in filelist: if filename.endswith(".py"): module_path_parts = ["user_scripts"] if dirname != function_dir: module_path_parts.append( dirname[len(function_dir) + 1 :] .replace("/", ".") .replace("\\", ".") ) module_path_parts.append(os.path.splitext(filename)[0]) module_path = ".".join(module_path_parts) full_path = os.path.join(function_dir, dirname, filename) try: spec = importlib.util.spec_from_file_location( module_path, full_path ) if not spec: continue user_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(user_module) # type: ignore except Exception as e: logger.error("Could not import user script at %s: %s", full_path, e) possible_commands.update(REGISTERED_FUNCTIONS) for fn_name, fn in get_entrypoints(FUNCTION_ENTRYPOINT, BaseFunction).items(): possible_commands[fn_name] = fn(jira, executor=executor) return possible_commands class BaseFunction(metaclass=ABCMeta): def __init__(self, jira: Optional[JIRA], executor: Optional[Executor]): self._jira = jira self._executor = executor @property def query(self) -> Optional[Query]: return self.executor.query if self.executor else None @property def executor(self) -> Optional[Executor]: return self._executor @property def jira(self): assert self._jira return self._jira @abstractmethod def __call__(self, *args, **kwargs) -> Optional[Any]: ... def get_installed_sources() -> Dict[str, Type[BaseSource]]: return get_entrypoints(SOURCE_ENTRYPOINT, BaseSource) class BaseSource(metaclass=ABCMeta): SCHEMA: List[SchemaRow] = [] def __init__(self, executor: Executor, task: TaskID, out_channel: CounterChannel): self._executor = executor self._task = task self._out_channel = out_channel super().__init__() @classmethod def get_schema(cls, jira: JIRA) -> List[SchemaRow]: return copy.deepcopy(cls.SCHEMA) @classmethod def get_all_fields(cls, jira: JIRA) -> List[SelectFieldDefinition]: fields: List[SelectFieldDefinition] = [] for entry in cls.get_schema(jira): fields.append( SelectFieldDefinition( expression=entry.id, column=entry.id, ) ) return fields def remove_progress(self): self._executor.progress.remove_task(self._task) def update_progress(self, *args, **kwargs): self._executor.progress.update(self._task, *args, **kwargs) def update_count(self, value: int): self._out_channel.set(value) @property def query(self) -> Query: return self._executor.query @property def jira(self) -> JIRA: return self._executor.jira @abstractmethod def rehydrate(self, value: Any) -> Any: ... @abstractmethod def __iter__(self) -> Iterator[Any]: ...
coddingtonbear/jira-select
jira_select/plugin.py
plugin.py
py
10,204
python
en
code
22
github-code
6
18016139374
from scapy.all import * MAC_A = "02:42:0a:09:00:05" IP_B = "192.168.60.5" def spoof_pkt(pkt): newpkt = IP(bytes(pkt[IP])) del(newpkt.chksum) del(newpkt[TCP].payload) del(newpkt[TCP].chksum) if pkt[TCP].payload: data = pkt[TCP].payload.load newdata = data.replace(b'seedlabs', b'AAAAAAAA') send(newpkt/newdata) else: send(newpkt) f = 'tcp and ether src {A} and ip dst {B}'.format(A=MAC_A, B=IP_B) pkt = sniff(iface='eth0', filter=f, prn=spoof_pkt)
kimnamhyeon0112/2023-2_Information_Security
Week4_Prac02_Malicious_Router.py
Week4_Prac02_Malicious_Router.py
py
518
python
en
code
0
github-code
6
16543533799
from durable.lang import * from flask import request from scripts import REDataHeader as Header from scripts import REResponseCode as ResponseCode from scripts.QuestionDomain.QuestionTree import QuestionTree import json STAGE_INIT = "1" STAGE_VALIDATION = "2" STAGE_VERIFICATION = "3" STAGE_PROCESS = "4" STAGE_TERMINATE = "5" responseJSON = { Header.RESPONSE_CODE : ResponseCode.NOT_PROCESS, Header.RESPONSE_DATA : 'Not process' } with ruleset('question'): @when_all(m.data.Stage == STAGE_INIT) def init(c): c.m.data.Stage = STAGE_VALIDATION c.assert_fact(c.m) @when_all(m.data.Stage == STAGE_VALIDATION) def validation(c): print('QnA - Validation') c.m.data.Stage = STAGE_PROCESS c.assert_fact(c.m) @when_all(m.data.Stage == STAGE_PROCESS) def process(c): print('QnA - Process') try: tree = QuestionTree() tree.loadTree() answer = tree.searchfor(c.m.data[Header.QUESTION]) responseJSON = { Header.RESPONSE_CODE: ResponseCode.SUCESS_QUESTION, Header.RESPONSE_DATA: answer } c.m.data[Header.RESPONSE_HEAD] = responseJSON c.m.data[Header.RESPONSE_HEAD] = responseJSON request.data = str(c.m.data).replace("'",'"') c.m.data.Stage = STAGE_TERMINATE c.assert_fact(c.m) except: responseJSON = { Header.RESPONSE_CODE: ResponseCode.QUESTION_NOTFOUND, Header.RESPONSE_DATA: 'error' } c.m.data[Header.RESPONSE_HEAD] = responseJSON request.data = str(c.m.data).replace("'", '"') c.m.data.Stage = STAGE_TERMINATE c.assert_fact(c.m) @when_all( m.data.Stage == STAGE_TERMINATE) def finalize(c): print('QnA - finalize') c.assert_fact(c.m)
Grimmii/TrainChatBot
src/scripts/RE_flow_QnA.py
RE_flow_QnA.py
py
1,923
python
en
code
0
github-code
6
5092362437
# For taking space seperated integer variable inputs. def invr(): return(map(int, input().split())) def sum_of_digits(n): s = 0 while n > 0: s += n % 10 n = n // 10 return s N, A, B = invr() S = 0 for i in range(1, N+1): s = sum_of_digits(i) if s >= A and s <= B: S += i print(S)
sudiptob2/atcoder-training
Easy 100/51.some sums.py
51.some sums.py
py
333
python
en
code
2
github-code
6
27595046406
from PyQt5.QtGui import QFont from PyQt5.QtWidgets import ( QHBoxLayout, QListWidgetItem, QCheckBox, QGridLayout, QWidget, QComboBox, QListWidget, ) from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib import matplotlib.pyplot as plt from code_SRC.composantes import Time from datetime import date class Save_plot_app(QWidget): """Plot app that shows a plot chart of a specific leaderboard. ##################################################### # # # # # # # # # # # # # # Plot # # DATA # CHART # # LIST # # # # # # # # # # # # # # ##################################################### """ def __init__(self, data): def list_widget() -> QListWidget: self.listwidget = QListWidget() self.listwidget.setFixedWidth(450) for rank, entry in enumerate(runs_times, start=1): delta = Time(entry - runs_times[0]) string = f"{rank:4} {Time(entry)} {str(delta):>10} (-{(runs_times[0] - entry) / runs_times[0]:>6.2%})" one_line = QListWidgetItem(string) one_line.setFont(QFont("Lucida Sans Typewriter", 10)) self.listwidget.addItem(one_line) # self.listwidget.clicked.connect(self.list_clicked) return self.listwidget def plot_widget() -> FigureCanvas: self.canvas = FigureCanvas(plt.Figure(tight_layout=True)) matplotlib.rc("font", **{"weight": "normal", "size": 16}) self.update_plot() return self.canvas runs_times, pb, WR_time = data super().__init__() self.data = runs_times self.pb = pb.seconds self.WR = WR_time self.setMinimumSize(1400, 600) self.layout = QGridLayout() self.setLayout(self.layout) self.layout.addWidget(list_widget(), 0, 0) self.layout.addWidget(plot_widget(), 0, 1) def plot(self): self.canvas.figure.clf() self.ax = self.canvas.figure.subplots() self.ax.plot([x for x in range(1, len(self.data) + 1)], self.data) self.ax.axhline(self.WR, color="goldenrod") self.ax.set_yticks(self.ax.get_yticks()) self.ax.set_yticklabels([str(Time(x)) for x in self.ax.get_yticks()]) self.canvas.draw() def update_plot(self): self.plot()
GB127/SRC-statistics
plots/save_plot.py
save_plot.py
py
2,948
python
en
code
0
github-code
6
41666390681
names = [] with open('employees.txt', 'r') as file: for line in file: name = line.strip() names.append(name) with open('template.txt', 'r') as file: template = file.read() import os if not os.path.exists('christmasCards'): os.mkdir('christmasCards') for name in names: card_content = template.replace('NAME', name) with open(f'christmasCards/{name}.txt', 'w') as file: file.write(card_content)
milanasokolova/christmasCards
christmas.py
christmas.py
py
442
python
en
code
0
github-code
6
1584215151
from django.contrib import admin from django.core.urlresolvers import reverse from django.http import (HttpResponseRedirect, HttpResponseBadRequest, HttpResponseNotAllowed, HttpResponse, HttpResponseForbidden) from django.shortcuts import render_to_response from django.template.context import RequestContext from django.utils.translation import ugettext_lazy as _ from minitrue.forms import SearchAndReplaceForm, ReplaceForm, ReplaceSingleForm from minitrue.models import SearchAndReplace class NewSearchAdmin(admin.ModelAdmin): def get_urls(self): from django.conf.urls.defaults import patterns, url info = "%s_%s" % (self.model._meta.app_label, self.model._meta.module_name) pat = lambda regex, fn: url(regex, self.admin_site.admin_view(fn), name='%s_%s' % (info, fn.__name__)) url_patterns = patterns('', pat(r'replace/$', self.replace), pat(r'replace-all/$', self.replace_all), ) return url_patterns + super(NewSearchAdmin, self).get_urls() def add_view(self, request): return HttpResponseRedirect(reverse('admin:minitrue_searchandreplace_changelist')) def has_change_permission(self, *args, **kwargs): return False has_delete_permission = has_change_permission def changelist_view(self, request, extra_context=None): if not self.has_add_permission(request): return HttpResponseForbidden() results = [] term = '' replacement = '' form = SearchAndReplaceForm(request.GET) if form.is_valid(): term = form.cleaned_data['term'] replacement = form.cleaned_data['replacement'] results = form.get_results() else: form = SearchAndReplaceForm() data = RequestContext(request) data['form'] = form data['results'] = results data['term'] = term data['replacement'] = replacement data['title'] = _("Search and Replace") return render_to_response('minitrue/search_and_replace.html', data) def replace(self, request): if not self.has_add_permission(request): return HttpResponseForbidden() if request.method != 'POST': return HttpResponseNotAllowed(['POST']) form = ReplaceSingleForm(request.POST) if form.is_valid(): form.replace() return HttpResponse() return HttpResponseBadRequest(form.errors.as_text()) def replace_all(self, request): if not self.has_add_permission(request): return HttpResponseForbidden() if request.method != 'POST': return HttpResponseNotAllowed(['POST']) form = ReplaceForm(request.POST) if form.is_valid(): form.replace() return HttpResponse() return HttpResponseBadRequest(form.errors.as_text()) admin.site.register(SearchAndReplace, NewSearchAdmin)
beniwohli/django-minitrue
minitrue/admin.py
admin.py
py
2,968
python
en
code
4
github-code
6
11654464179
import numpy as np import matplotlib.pyplot as plt import sys import datetime import time import os from scipy import optimize import yaml from matplotlib import rcParams import matplotlib.patches as mpatches from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import matplotlib as mpl ############################# def kappafunc(Lambda,alpha,r0): return alpha*np.exp(- r0/Lambda)*(1 + r0/Lambda) def sigmafunc(Lambda,alpha,r0): return alpha*np.exp(- r0/Lambda)*(2 + 2*r0/Lambda + r0**2/Lambda**2) def Deltakappa(LambdaLog,alpha,r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0): Lambda = 10**LambdaLog kappa = kappafunc(Lambda,alpha,r0) return 1/(np.sqrt(Mes)*gNewt)*(1/np.sqrt((muc**2*np.exp(4*r) + np.sinh(2*r)**2/2)))*np.sqrt(2*hbar*omegam**5/Mprobe)*(1/(8*np.pi*n*g0))*(1/kappa)-1 def Deltasigma(LambdaLog,alpha,r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0): Lambda = 10**LambdaLog sigma = sigmafunc(Lambda,alpha,r0) return 1/(np.sqrt(Mes)*gNewt)*(1/np.sqrt((muc**2*np.exp(4*r) + np.sinh(2*r)**2/2)))*np.sqrt(2*hbar*omegam**5/Mprobe)*(1/(4*np.pi*n*g0*epsilon))*(1/sigma)-1 def Deltakappares(LambdaLog,alpha,r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0): Lambda = 10**LambdaLog kappa = kappafunc(Lambda,alpha,r0) FN = gNewt*Mprobe return gNewt*Mprobe*kappa/FN def Deltasigmares(Lambda,alpha,r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0): sigma = sigmafunc(Lambda,alpha,r0) FN = gNewt*Mprobe return gNewt*epsilon*Mprobe*sigma/FN # Function to find all zeros, given a meshgrid: def findAllZeros(func,X,Y,Z,r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0,bound,logX=True,logY=False): zeroList = [] # If the x-values are in exponential form, convert to log if logX: Xuse = np.log10(X) else: Xuse = X if logY: Yuse = np.log10(Y) else: Yuse = Y for k in range(0,len(X)): rowList = [] for l in range(0,len(X[0])-1): if Z[k,l]*Z[k,l+1] < 0 and np.isfinite(Z[k,l]) and np.isfinite(Z[k, l+1]): # Found a zero: xroot = optimize.brentq(func,Xuse[k,l],Xuse[k,l+1],args=(Yuse[k,l],r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0,bound)) yroot = Yuse[k,l] rowList.append((xroot,yroot)) zeroList.append(rowList) return zeroList def extractZerosLine(zeroList,line=1): zerox = np.zeros(len(zeroList)) zeroy = np.zeros(len(zeroList)) for k in range(0,len(zerox)): if len(zeroList[k]) > line - 1: zerox[k] = zeroList[k][line-1][0] zeroy[k] = zeroList[k][line-1][1] haveZeros = np.where(zerox != 0)[0] return [zerox[haveZeros],zeroy[haveZeros]] ################################### config = 'config.yaml' # Load arguments from yaml file args = {} if type(config) == str: with open(config) as cfile: args.update(yaml.load(cfile)) elif type(config) == dict: args.update(config) else: print("Failed to load config arguments") hbar = float(args['hbar']) G = float(args['G']) c = float(args['c']) e = float(args['e']) muc = float(args['muc']) g0 = float(args['g0']) omegam = float(args['omegam']) r0 = float(args['r0']) epsilon = float(args['epsilon']) r = float(args['r']) n = float(args['n']) Ms = float(args['Ms']) Mes = float(args['Mes']) Ms = float(args['Ms']) rhos = float(args['rhos']) rhop = float(args['rhop']) Mprobe = float(args['Mprobe']) rhobg = float(args['rhobg']) Lambdamin = float(args['Lambdamin']) Lambdamax = float(args['Lambdamax']) alphamin = float(args['alphamin']) alphamax = float(args['alphamax']) lmin = float(args['lmin']) lmax = float(args['lmax']) nSample = int(args['nSample']) gNewt = G*Ms/r0**2 alpharange = 10**(np.linspace(alphamin,alphamax,nSample)) lambdarange = 10**(np.linspace(lmin,lmax,nSample)) LambdaGrid, alphaGrid = np.meshgrid(lambdarange,alpharange) # Plot the functions rcParams.update({'figure.autolayout': True}) plt.rcParams['xtick.minor.size'] = 0 plt.rcParams['xtick.minor.width'] = 0 fig, ax = plt.subplots(figsize = (7, 6)) plt.xlabel('$\\lambda \, (\\mathrm{m})$', fontfamily = 'serif', fontsize = 15) plt.ylabel('$|\\alpha|$', fontfamily = 'serif', fontsize = 15) plt.xticks(fontsize=14) plt.yticks(fontsize=14) ax.set_ylim(1e-8,1e8) ax.set_xlim(1e-5,1) # Start loop that prints each bound in bounds DeltakappaGrid = np.log10(Deltakappares(LambdaGrid,alphaGrid,r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0)) DeltasigmaGrid = np.log10(Deltasigmares(LambdaGrid,alphaGrid,r0,gNewt,muc,r,hbar,omegam,Mprobe,n,g0)) #plt.loglog(10**zerox1sigmares, zeroy1sigmares, alpha = 1, color = 'black', label = str(bound)) viridis = cm.get_cmap('viridis', 8) #loglevels = [1e-20,1e-18,1e-16,1e-14,1e-12,1e-10,1e-1] #levels = [-20, -18, -16, -14, -12, -10, -8, -6] levels = [-8, -6, -4, -2, 0, 2, 4, 6, 8] CS = ax.contourf(LambdaGrid, alphaGrid, DeltasigmaGrid, levels = levels, colors = viridis.colors) plt.xscale('log') plt.yscale('log') clb = fig.colorbar(CS, extend = 'both') clb.ax.tick_params(labelsize=12) clb.set_label('$\\log_{10}(\\Delta F)$', labelpad=-40, y=1.05, rotation=0, fontsize = 12) #ax.legend(loc = 'lower left', labelspacing = 0.4, fontsize = 12) #ax.clabel(CS, inline=True, fontsize=10) plt.savefig('alphalambdaforceplot.pdf') plt.show()
sqvarfort/modified-gravity-optomech
force_plot_alpha_lambda.py
force_plot_alpha_lambda.py
py
5,239
python
en
code
0
github-code
6
16974087058
#!/usr/bin/python3 from pwn import * # Telnet sh = remote("ip", 30888) # SSH: # sh = ssh('user', 'ip', password='pass', port=22) # Exec # process('./exec') # conn.sendlineafter(b"> ", b"1") sh.sendline(b'ls') flag = sh.recvline(timeout=5) log.success(flag) sh.interactive() sh.close()
sawyerf/HackSheet
scripts/pwn-connect.py
pwn-connect.py
py
289
python
en
code
30
github-code
6
71379589627
#ContinuousQuantumWalkSearch from numpy import * from matplotlib.pyplot import * import matplotlib from scipy import linalg import sys from numpy import kron from numpy.core.umath import absolute matplotlib.rcParams.update({'font.size': 15}) rcParams['figure.figsize'] = 11, 8 def init(N): psi0 = ones((N,1))/ sqrt(N) return psi0 def adjMatrix(N): adjM = ones((N,N)) - eye(N) return adjM def adjMatrixList(N): adjM=[] for n in N: adjM.append(ones((n,n)) - eye(n)) return adjM def gammaList(N): gamma = [] for n in N: gamma.append(1/n) return gamma def hamiltonean(N,adjM,marked,gamma): H = -(gamma*adjM) H[marked][marked] = -1 return H def hamiltoneanList(N,adjM,marked,gammaList): H = [] for (adjMatrix,gamma) in zip(adjM,gammaList): H.append(-(gamma*adjMatrix)) for ham in H: ham[marked][marked] = -1 return H def evo(H,t): U = linalg.expm(-1j*H*t) return U def fin(N,evo): psiN = init(N) psiN = evo.dot(psiN) return psiN def ampToProb(N,psiN,marked): prob = zeros((N,1)) probMarked = zeros((N,1)) for x in range(N): prob[x] += (absolute(psiN[x])**2) probMarked[x] += (absolute(psiN[marked])**2) return prob,probMarked def spaceGen(N,numOfSamples): stepVec = [] tVec = [] for n in N: stepVec.append((pi/2) * sqrt(n)) for step in stepVec: tVec.append(linspace(0,step,num=numOfSamples)) return tVec def plotSearch(N,probT,tSpace,configVec): plotName = "" for T,walk,config,n in zip(tSpace,probT,configVec,N): #print(config) plot(T,walk,color=config[0],linestyle=config[1],label="N=%s"%n) vlines(max(T),0,1,color=config[0],linestyle=config[2]) legend() xlabel("Number of steps") ylabel("Probability of the marked element") for n in N: plotName+=str(n) savefig(r'/home/jaime/Programming/Jaime-Santos-Dissertation/Results/Simulations/ContQuantumWalk/Search/'+str(plotName)) clf() def valueOfGamma(N,H,gamma): x = [] y = [] plotName="" for h,gamma in zip(hamList2,gammaList2): eigValues = (linalg.eig(h)) maxEig = max((absolute(eigValues[0]))) sndMaxEig = second_largest(absolute(eigValues[0])) x.append(gamma*N[0]) y.append(maxEig-sndMaxEig) plot(x,y) xlabel("ฮณN") ylabel("ฮ”E") plotName=N[0] savefig(r'/home/jaime/Programming/Jaime-Santos-Dissertation/Results/Simulations/ContQuantumWalk/Search/gamma'+str(plotName)) clf() def runSearch(N,marked,tSpace,configVec,hamList): prob = [] probT = [] for (n,T,ham) in zip(N,tSpace,hamList): for t in T: evol = evo(ham,t) psiN = fin(n,evol) prob += [(absolute(psiN[marked][0])**2)] #print(prob) # print("Sqrt(N):%s\tprob:%s\n"%(1/n,prob[0])) probT.append(prob) prob = [] return probT def second_smallest(numbers): m1, m2 = float('inf'), float('inf') for x in numbers: if x <= m1: m1, m2 = x, m1 elif x < m2: m2 = x return m2 def second_largest(numbers): count = 0 m1 = m2 = float('-inf') for x in numbers: count += 1 if x > m2: if x >= m1: m1, m2 = x, m1 else: m2 = x return m2 if count >= 2 else None NVec= [16,32,64] marked = 0 gammaList = gammaList(NVec) adjList = adjMatrixList(NVec) hamList = hamiltoneanList(NVec,adjList,marked,gammaList) #print("Ideal Ham:%s\n\n\n"%hamList) nSamples = 100 TVec = spaceGen(NVec,nSamples) colors = ['r','b','g','k'] lines = ['-','-','-','-'] lines2 = ['--','--','--','--'] configVec = zip(colors,lines,lines2) contQWalk=runSearch(NVec,marked,TVec,configVec,hamList) plotSearch(NVec,contQWalk,TVec,configVec) Samples = 100 NVec2 = [512]*Samples gammaList2 = linspace(0,2/NVec2[0],Samples) adjList2 = adjMatrixList(NVec2) hamList2 = hamiltoneanList(NVec2,adjList2,marked,gammaList2) valueOfGamma(NVec2,hamList2,gammaList2) # for h in hamList2: # print("%s\n"%h) # print(gamma2) # x=[] # y=[] # # E1 -> 2 menor VP E0 -> menor # for h,gamma in zip(hamList2,gammaList2): # eigValues = (linalg.eig(h)) # maxEig = max((absolute(eigValues[0]))) # # print(maxEig) # sndMaxEig = second_largest(absolute(eigValues[0])) # # print(sndMaxEig) # # print("Hamiltonian:%s \n Eigenvalues:%s \t\t MaxEigen:%s\t\t SndMaxEigen:%s\n\n"%(h,eigValues[0],maxEig,sndMaxEig)) # # print(sndMaxEig - maxEig) # # print(maxEig - sndMaxEig) # # x.append(sndMaxEig - maxEig) # x.append(gamma*NVec2[0]) # y.append(maxEig - sndMaxEig) # print(gamma*NVec2[0]) # print(gamma) # plot(x,y) # show()
JaimePSantos/Dissertation-Tex-Code
Coding/Python Simulations/ContinuousQW/Search/runSearch.py
runSearch.py
py
4,819
python
en
code
0
github-code
6
23231610787
from rest_framework import generics from rest_framework.permissions import IsAuthenticated from nav_client.serializers import ( DeviceSerializer, GeozoneSerializer, NavMtIdSerializer) from nav_client.models import (Device, SyncDate, GeoZone, NavMtId) from nav_client.filter import GeozoneFilter, NavMtIdFilter from datetime import datetime from rest_framework.response import Response try: last_sync_date = SyncDate.objects.last() except Exception: last_sync_date = SyncDate.objects.all() class DeviceListView(generics.ListAPIView): """ ะกะฟะธัะพะบ ะผะฐัˆะธะฝ """ # queryset = Device.objects.filter(sync_date=last_sync_date) serializer_class = DeviceSerializer permission_classes = (IsAuthenticated,) def list(self, request, *args, **kwargs): if request.query_params.get("date", None): dt = datetime.strptime( request.query_params["date"], "%Y-%m-%d") sync_date = SyncDate.objects.filter(datetime__year=dt.year, datetime__month=dt.month, datetime__day=dt.day).first() queryset = Device.objects.filter(sync_date=sync_date) else: sync_date = last_sync_date.datetime queryset = Device.objects.filter(sync_date=last_sync_date) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.paginator.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) class GeozoneListView(generics.ListAPIView): """ ะกะฟะธัะพะบ ะฟะปะพั‰ะฐะดะพะบ(ะผัƒะฝะธั†ะธะฟะฐะปัŒะฝั‹ั… ะพะฑั€ะฐะทะพะฒะฐะฝะธะน) """ # queryset = GeoZone.objects.all(sync_date=last_sync_date) serializer_class = GeozoneSerializer filterset_class = GeozoneFilter permission_classes = (IsAuthenticated,) def list(self, request, *args, **kwargs): if request.query_params["date"]: dt = datetime.strptime( request.query_params["date"], "%Y-%m-%d") sync_date = SyncDate.objects.filter(datetime__year=dt.year, datetime__month=dt.month, datetime__day=dt.day).first() queryset = GeoZone.objects.filter(sync_date=sync_date) else: queryset = GeoZone.objects.filter(sync_date=last_sync_date) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.paginator.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) class NavMtIdListView(generics.ListAPIView): """ ะกะฟะธัะพะบ ะฟะปะพั‰ะฐะดะพะบ ะธะท ะœะข """ # queryset = NavMtId.objects.filter(sync_date=last_sync_date) serializer_class = NavMtIdSerializer filterset_class = NavMtIdFilter permission_classes = (IsAuthenticated,) def list(self, request, *args, **kwargs): if request.query_params["date"]: dt = datetime.strptime( request.query_params["date"], "%Y-%m-%d") sync_date = SyncDate.objects.filter(datetime__year=dt.year, datetime__month=dt.month, datetime__day=dt.day).first() queryset = NavMtId.objects.filter(sync_date=sync_date) else: queryset = NavMtId.objects.filter(sync_date=last_sync_date) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.paginator.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data)
alldevic/route-log
nav_client/views.py
views.py
py
4,160
python
en
code
0
github-code
6
25418145080
from sys import stdin from itertools import permutations line = list(map(int, stdin.readline().split())) N = line[0] M = line[1] arr = [x for x in range(1, N + 1)] per = list(permutations(arr, M)) for p in per: print(" ".join(map(str, p)))
jaehui327/Algo
๋ฐฑ์ค€/Silver/15649.โ€…N๊ณผโ€…Mโ€…๏ผˆ1๏ผ‰/N๊ณผโ€…Mโ€…๏ผˆ1๏ผ‰.py
N๊ณผโ€…Mโ€…๏ผˆ1๏ผ‰.py
py
245
python
en
code
0
github-code
6
32097638349
# -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at http://mozilla.org/MPL/2.0/. import ctypes import logging import os import pathlib import sys from ..common.pool import PoolConfigLoader from ..common.workflow import Workflow logger = logging.getLogger() class PoolLauncher(Workflow): """Launcher for a fuzzing pool, using docker parameters from a private repo.""" def __init__(self, command, pool_name, preprocess=False): super().__init__() self.command = command.copy() self.environment = os.environ.copy() if pool_name is not None and "/" in pool_name: self.apply, self.pool_name = pool_name.split("/") else: self.pool_name = pool_name self.apply = None self.preprocess = preprocess self.log_dir = pathlib.Path("/logs") def clone(self, config): """Clone remote repositories according to current setup""" super().clone(config) # Clone fuzzing & community configuration repos self.fuzzing_config_dir = self.git_clone(**config["fuzzing_config"]) def load_params(self): path = self.fuzzing_config_dir / f"{self.pool_name}.yml" assert path.exists(), f"Missing pool {self.pool_name}" # Build tasks needed for a specific pool pool_config = PoolConfigLoader.from_file(path) if self.preprocess: pool_config = pool_config.create_preprocess() assert pool_config is not None, "preprocess given, but could not be loaded" if self.apply is not None: pool_config = pool_config.apply(self.apply) if pool_config.command: assert not self.command, "Specify command-line args XOR pool.command" self.command = pool_config.command.copy() self.environment.update(pool_config.macros) def exec(self): assert self.command if self.in_taskcluster: logging.info(f"Creating private logs directory '{self.log_dir}/'") if self.log_dir.is_dir(): self.log_dir.chmod(0o777) else: self.log_dir.mkdir(mode=0o777) logging.info(f"Redirecting stdout/stderr to {self.log_dir}/live.log") sys.stdout.flush() sys.stderr.flush() # redirect stdout/stderr to a log file # not sure if the assertions would print with (self.log_dir / "live.log").open("w") as log: result = os.dup2(log.fileno(), 1) assert result != -1, "dup2 failed: " + os.strerror(ctypes.get_errno()) result = os.dup2(log.fileno(), 2) assert result != -1, "dup2 failed: " + os.strerror(ctypes.get_errno()) else: sys.stdout.flush() sys.stderr.flush() os.execvpe(self.command[0], self.command, self.environment)
MozillaSecurity/fuzzing-tc
fuzzing_tc/pool_launch/launcher.py
launcher.py
py
3,020
python
en
code
2
github-code
6
21353899395
from typing import List, Optional from copy import deepcopy class Solution: def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]: n = len(wordList) slen = len(wordList[0]) wordList = set(wordList) if endWord not in wordList: return [] wd2dist = dict() wd2dist[beginWord] = 0 def ff(): curr = beginWord que = [curr] while len(que): node = que[0] del que[0] curr_wd = node for i in range(slen): for j in range(ord('a'), ord('z')+1): new_wd = curr_wd[:i] + chr(j) + curr_wd[i+1:] if new_wd in wordList and new_wd not in wd2dist: wd2dist[new_wd] = wd2dist[curr_wd] + 1 if new_wd == endWord: return que.append(new_wd) ff() ans = [] t_path = [endWord] def dfs(node): curr = node if curr == beginWord: ans.append(t_path[::-1]) que = [curr] while len(que): node = que[0] del que[0] curr_wd = node for i in range(slen): for j in range(ord('a'), ord('z')+1): new_wd = curr_wd[:i] + chr(j) + curr_wd[i+1:] if new_wd in wd2dist and wd2dist[new_wd]+1 == wd2dist[curr_wd]: t_path.append(new_wd) dfs(new_wd) t_path.pop() dfs(endWord) return ans s = Solution() r = s.findLadders( # "hit", "cog", ["hot","dot","dog","lot","log","cog"] # "hit", "cog", ["hot","dot","dog","lot","log"] # "hot", "dog", ["hot","dog"] "red", "tax", ["ted","tex","red","tax","tad","den","rex","pee"] ) print(r) # [["red","ted","tad","tax"], # ["red","ted","tex","tax"], # ["red","rex","tex","tax"]]
Alex-Beng/ojs
FuckLeetcode/126. ๅ•่ฏๆŽฅ้พ™ II.py
126. ๅ•่ฏๆŽฅ้พ™ II.py
py
2,135
python
en
code
0
github-code
6
8337411728
import os import sys, shutil def setup_run(rundir, inflow, outflow, update1, initial1, update2, initial2): os.chdir(rundir) shutil.copy('avida.cfg', 'avida.cfg.bak') shutil.copy('environment.cfg', 'environment.cfg.bak') shutil.copy('events.cfg', 'events.cfg.bak') # modify environment.cfg fp = open('environment.cfg', 'a') fp.write(''' RESOURCE Echose:inflow=%s:outflow=%s REACTION ECHO echo process:resource=Echose:value=1.0:type=pow ''' % (inflow, outflow)) fp.close() # modify events.cfg fp = open('events.cfg', 'a') fp.write(''' u %s SetResourceInflow Echose initial=%s u %s SetResourceInflow Echose initial=%s ''' % (update1, initial1, update2, initial2)) fp.close() ### shutil.rmtree('/mnt/run.1') shutil.copytree('/root/run.template', '/mnt/run.1') setup_run('/mnt/run.1', 100, .01, 500, 1, 1000, 1000)
ctb/beacon
ltee/yuanjie-create-runs.py
yuanjie-create-runs.py
py
867
python
en
code
2
github-code
6
42493961152
#!/usr/bin/env python3 """Program for testing constrained sequence alignm""" import subprocess from pprint import pprint import json import argparse import sys import string import random import datetime from constrain_align import run_blast AMINO_ACIDS = "GAVLIPFYWSTCMNQKRHDE" NUM_PRINT = 50 def main(): """Main function""" args = parse_arguments() if (args.random is None): seqs = args.specific elif (args.specific is None): seqs = args.random elif (args.random is None and args.specific is None): raise ValueError("Please use either -r or -s") else: raise ValueError("Pleae only use one of -r or -s") weights = args.w or [random.randrange(1,20) for _ in seqs] if weights and len(weights) != len(seqs): raise ValueError('Number of weights and number of sequences must be of same length') aminos = args.aminos if aminos: if not all(x in AMINO_ACIDS for x in aminos): raise ValueError('One of your amino acids is funny. Please choose amino acids from "{}"'.format(AMINO_ACIDS)) outfile = open(args.out, 'w') if args.out else sys.stdout if (args.random): test_seqs = [make_seqs(s, amino_acids=aminos)for s in seqs] else: test_seqs = seqs print('Sequences are:', file=outfile) print(test_seqs, file=outfile) combined_seq = "" for x in test_seqs: combined_seq += x print("Combined sequence for BLAST:", file=outfile) print(combined_seq + '\n',file=outfile) #Only print top NUM_PRINT results blast_items = run_blast(combined_seq) print('The blast says:', file=outfile) bresults = len(blast_items) #if NUM_PRINT < bresults: # bresults = NUM_PRINT if len(blast_items) > 0: [print(blast_items[x], file=outfile) for x in range(0, bresults)] #prints all blast results #[print(x, file=outfile) for x in blast_items] # Only print top NUM_PRINT results #want top 10 distinct scored our_program = subprocess.run(['python3', 'constrain_align.py', '-s'] + [x + ':{}'.format(w) for x, w in zip(test_seqs, weights)], stdout=subprocess.PIPE) print('\nOur program says:', file=outfile) our_items = our_program.stdout.decode('utf-8').split('\n') oresults = int(len(our_items)/4) #if NUM_PRINT < oresults: # oresults = NUM_PRINT if len(our_items) > 0: idx = 0 limit = oresults*4 while idx < limit: print(our_items[idx], file=outfile) idx += 4 #prints all our programs results #[print(x, file=outfile) for x in our_program.stdout.decode('utf-8').split('\n')] print('-'*80, file=outfile) def make_seqs (seq_len, amino_acids=None): amino_acids = amino_acids or AMINO_ACIDS return ''.join(random.choice(amino_acids) for x in range(seq_len)) def parse_arguments(): """Parse command line arguments to the program""" parser = argparse.ArgumentParser() parser.add_argument('-s', "--specific", help="Specify a specific amino acid sequence to test", nargs="*", default=None) parser.add_argument('-r', "--random", help="Specify the length of random sequnece you want to test", nargs='*', type=int, default=None) parser.add_argument('-w', "-weight", help="Specify the weight you want to use for the constrained alignment", nargs='*', type=int, default=None) parser.add_argument('-o', '--out', default=None, help='Specify output filename.') parser.add_argument('-a', '--aminos', default=None, type=str, help='Specify amino acids.') args = parser.parse_args() return args if __name__ == '__main__': main()
westelizabeth/conSequences
test_script.py
test_script.py
py
3,714
python
en
code
0
github-code
6
18603320645
from aiogram import Bot, types from aiogram.dispatcher import Dispatcher from aiogram.dispatcher import FSMContext from aiogram.utils import executor from aiogram.dispatcher.filters.state import State, StatesGroup from aiogram.contrib.fsm_storage.memory import MemoryStorage import logging import sqlite3 from aiogram.types import ReplyKeyboardRemove, \ ReplyKeyboardMarkup, KeyboardButton, \ InlineKeyboardMarkup, InlineKeyboardButton from config import TOKEN import text_or_question as text import keaboard as kb import time import datetime import asyncio from db_admin import DateBase from sqlit import reg_user,obnova_members_status,count_member_in_status,info_members,send_status_no_rassilka,cheack_status datebase = DateBase('users.db') bot = Bot(token=TOKEN) db = Dispatcher(bot, storage=MemoryStorage()) logging.basicConfig(level=logging.INFO) class st_reg(StatesGroup): st_name = State() st_fname = State() step_q = State() step_regbutton = State() user_list1 = [] user_list2 = [] user_list3 = [] user_list4 = [] user_list5 = [] user_list6 = [] user_list7 = [] user_list8 = [] class Form(StatesGroup): info_text = State() user_delete = State() ADMIN_ID_1 = 494588959 #Cะฐะฝั ADMIN_ID_2 = 44520977 #ะšะพะปั ADMIN_ID_3 = 678623761 #ะ‘ะตะบะธั€ ADMIN_ID_4 = 941730379 #ะ”ะถะตะนัะพะฝ ADMIN_ID_5 = 807911349 #ะ‘ะฐะนะทะฐั‚ ADMIN_ID_6 = 1045832338 #ะšะพะปั 2 (ะะ˜ะšะžะ›ะ_ะžะ”ะะžะฃะก) ADMIN = [ADMIN_ID_1,ADMIN_ID_2,ADMIN_ID_3,ADMIN_ID_4,ADMIN_ID_5,ADMIN_ID_6] user_1 = '@nikolanext' #ะ”ะ›ะฏ ะขะ•ะฅ, ะšะขะž ะŸะ›ะะขะะซะ™ (1) user02349 = '@NikolaOdnous' #ะ”ะ›ะฏ ะขะ•ะฅ, ะšะขะž ะะ• (1) @db.message_handler(commands=['start']) async def greetings(message: types.Message): user_id = message.chat.id reg_user(user_id,0) #ะ—ะฐะฟะธัั‹ะฒะฐะตะผ ะฒ ะฑะฐะทัƒ ั‡ะตะปะพะฒะตะบะฐ ัะพ ัั‚ะฐั‚ัƒัะพะผ 0 m = await message.answer_photo(text.hi_photo_id, caption=text.hi_text, reply_markup=kb.the_first_go_button) go_new = 'ะ“' for i in range(1,14): go_new+='ะพ' await bot.edit_message_caption(chat_id=user_id,message_id=m.message_id,caption=text.hi_text.format(go_new),reply_markup=kb.the_first_go_button) await asyncio.sleep(0.43) @db.message_handler(commands=['admin']) async def vienw_adminka(message: types.Message): if message.chat.id in ADMIN: button1 = KeyboardButton('๐Ÿ“Šะกั‚ะฐั‚ะธัั‚ะธะบะฐ ะฒัะตั… ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน') button2 = KeyboardButton('๐Ÿ’ฟะ‘ะฐะทะฐ ะดะฐะฝะฝั‹ั…') button3 = KeyboardButton('๐Ÿ”ซะฃะดะฐะปะตะฝะธะต ั‡ะตะปะพะฒ') button4 = KeyboardButton('๐Ÿ†“ะ ะฐััั‹ะปะบะฐ ะฑะตัะฟะปะฐั‚ะฝะธะบะฐะผ') button5 = KeyboardButton('๐Ÿ’ฐะ ะฐััั‹ะปะบะฐ ะฟะปะฐั‚ะฝะธะบะฐะผ') markup3 = ReplyKeyboardMarkup(resize_keyboard=True) markup3 = markup3.add(button1) markup3 = markup3.add(button2,button3) markup3 = markup3.add(button4,button5) await bot.send_message(chat_id=message.chat.id,text='ะžั‚ะบั€ั‹ั‚ะฐ ะฐะดะผะธะฝะบะฐ ๐Ÿ”˜',reply_markup=markup3) @db.message_handler(state=Form.user_delete,content_types=['video','voice','photo','video_note','file','document','text']) async def delete_user(message: types.Message, state: FSMContext): try: user_id = message.forward_from.id send_status_no_rassilka(user_id) except Exception as e: print(e) markup = types.InlineKeyboardMarkup() bat_otmena12 = types.InlineKeyboardButton(text='ะ’ั‹ะนั‚ะธ ะธะท ั€ะตะถะธะผะฐ ัƒะดะฐะปะตะฝะธั',callback_data='exit_del') markup.add(bat_otmena12) await message.answer('ะŸะพะปัŒะทะพะฒะฐั‚ะตะปัŒ ัƒะดะฐะปั‘ะฝ ๐Ÿฉธ',reply_markup=markup) @db.message_handler(state=Form.info_text, content_types=['text', 'photo', 'video_note', 'video', 'voice']) async def send_mailing_text(message: types.Message, state: FSMContext): if message.text == 'ะพั‚ะผะตะฝะฐ': await state.finish() await message.answer('ะžั‚ะผะตะฝะตะฝะพ') if message.text or message.photo or message.video: for user_id in datebase.mailing_user_id(): if message.text and message.photo: await bot.send_photo(user_id[1], message.photo[2].file_id, caption=message.text) elif message.text and message.video: await bot.send_video(user_id[1], message.video.file_id, caption=message.text) elif message.photo: await bot.send_photo(user_id[1], message.photo[2].file_id) elif message.video: await bot.send_video(user_id[1], message.video.file_id) elif message.text: await bot.send_message(user_id[1], message.text) elif message.video_note: for user_id in datebase.mailing_user_id(): await bot.send_video_note(user_id[1], message.video_note.file_id) elif message.voice: for user_id in datebase.mailing_user_id(): await bot.send_voice(user_id[1], message.voice.file_id) await message.answer('ะ ะฐััั‹ะปะบะฐ ะฟั€ะพะธะทะฒะตะดะตะฝะฐ.') await message.answer(f'ะ ะฐััั‹ะปะบัƒ ะฟะพะปัƒั‡ะธะปะธ {datebase.count_string2()} ะธะท {datebase.count_string()}') await state.finish() @db.callback_query_handler(lambda call: True, state = '*') async def answer_push_inline_button(call, state: FSMContext): global user_list1 user_id = call.message.chat.id # ะฎะ—ะ•ะ  ะงะ•ะ›ะ status = (cheack_status(user_id))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if call.data == 'go_button': await state.finish() await bot.send_message(chat_id=call.message.chat.id,text='ะžั‚ะผะตะฝะตะฝะพ. ะ’ะบะปัŽั‡ะตะฝ ะพะฑั‹ั‡ะฝั‹ะน ั€ะตะถะธะผโœ…') if call.data == 'go_button': await call.message.answer_video_note(text.video_note_id, reply_markup=kb.pass_the_five_question) elif call.data == 'five_question': await call.message.answer_animation(text.the_first_question_gif_id, caption=text.the_first_question_text, reply_markup=kb.first_question_buttons) elif call.data == 'first_question': await call.message.delete() await call.message.answer_animation(text.the_second_question_gif_id, caption=text.the_second_question_text, reply_markup=kb.second_question_buttons) elif call.data == 'second_question': await call.message.delete() await call.message.answer_animation(text.the_third_question_gif_id, caption=text.the_third_question_text, reply_markup=kb.third_question_buttons) elif call.data == 'third_question': await call.message.delete() await call.message.answer_animation(text.the_fourth_question_gif_id, caption=text.the_fourth_question_text, reply_markup=kb.fourth_question_buttons) elif call.data[:15] == 'fourth_question': if call.data == 'fourth_question1': # ะงะตะปะพะฒะตะบ ะธะท ั€ะตะบะปะฐะผั‹ ะธะฝัั‚ obnova_members_status(call.message.chat.id, 1) if call.data == 'fourth_question2': # ะงะตะปะพะฒะตะบ ะธะท ะขะธะบะขะพะบะฐ obnova_members_status(call.message.chat.id, 2) if call.data == 'fourth_question3': # ะงะตะปะพะฒะตะบ ะธะท ะ ะธะปัะฐ obnova_members_status(call.message.chat.id, 3) if call.data == 'fourth_question4': # ะ”ั€ัƒะณะพะต obnova_members_status(call.message.chat.id, 4) await call.message.delete() await call.message.answer_animation(text.the_five_question_gif_id, caption=text.the_five_question_text, reply_markup=kb.five_question_buttons) elif call.data == 'five_questions': await call.message.delete() await call.message.answer('๐Ÿ•บ๐Ÿปะ ะฒะพั‚ ะธ ะพะฑะตั‰ะฐะฝะฝั‹ะน ะฑะพะฝัƒั ๐Ÿ•บ๐Ÿป') await call.message.answer_document(text.bonus_dock_file_id) await call.message.answer_photo(text.finished_text_file_id, caption=text.finished_text, reply_markup=kb.finished_text_button) elif call.data == 'go_2': await call.message.answer_video('BAACAgIAAxkBAAMmYV1W4yEZI3tZMuEFt7TzpRXmTtMAAskPAALV8iFKl-Icg7tg87IhBA') # await call.message.answer('ะŸะตั€ะฒะพะต ะฒะธะดะตะพ') await asyncio.sleep(78)#60 await call.message.answer(text='ะ–ะผัะบะฐะน ะบะฝะพะฟะบัƒ ะฟะพะบะฐ ะฝะต ัƒะฑะตะถะฐะปะฐ๐Ÿ‘‡', reply_markup=kb.further_button) elif call.data == 'further': await call.message.answer_video('BAACAgIAAxkBAAMoYV1XarMS_OoOn_Vwr3oJ9liOtPkAAogVAALalClKikrq4brnf-0hBA') # await call.message.answer('ะ’ั‚ะพั€ะพะต ะฒะธะดะตะพ') await asyncio.sleep(136)#136 await call.message.answer(text='ะ–ะผัะบะฐะน ะบะฝะพะฟะบัƒ ะฟะพะบะฐ ะฝะต ัƒะฑะตะถะฐะปะฐ๐Ÿ‘‡', reply_markup=kb.futher2_button) elif call.data == 'further2': await call.message.answer_video(f'BAACAgIAAxkBAAMqYV1XrtFkA-VnlCNrx2scKWuU6pUAAp0TAAKBgcBKIdx8Ive5nrYhBA') # await call.message.answer('ะขั€ะตั‚ัŒะต ะฒะธะดะตะพ') await asyncio.sleep(205)#205 await call.message.answer(text.last_text.format(username_contact)) user_id = call.message.chat.id username = call.message.from_user.username # ะ•ัะปะธ ั€ะฐััั‹ะปะบะฐ ั‡ะตะปะพะฒะตะบ ะฝะต ัะพัั‚ะพะธั‚ ะฝะธ ะฒ ะพะดะฝะพะน ะธะท ะณั€ัƒะฟะฟะต, ั‚ะพ ะดะพะฑะฐะปะฒัะตะผ ะตะณะพ ะฒ ะฟะตั€ะฒัƒัŽ if (user_id not in user_list1) and (user_id not in user_list2) and (user_id not in user_list3) and (user_id not in user_list4) and (user_id not in user_list5) and (user_id not in user_list6) and (user_id not in user_list7) and (user_id not in user_list8): #ะ•ะกะ›ะ˜ ะงะ•ะ›ะ ะะ•ะขะฃ ะะ˜ ะ’ ะžะ”ะะžะ™ ะ˜ะ— ะ“ะ ะฃะŸะŸ ะ”ะ›ะฏ ะŸะ ะžะ“ะ ะ•ะ’ะ, ะขะž: user_list1.append(user_id) try: datebase.records_of_mailing_users(username, user_id) except Exception as e: print(e) @db.message_handler(content_types=['text', 'photo', 'video_note', 'animation', 'document', 'video','file']) async def all_message(message: types.Message, state: FSMContext): # try: # print(message.video.file_id) # except: # pass # # try: # print(message.photo[2].file_id) # except: # pass # # try: # print(message.video_note.file_id) # except: # pass # # try: # print(message.animation.file_id) # except: # pass # # try: # print(message.document.file_id) # except: # pass # if message.chat.id in ADMIN: if message.text == '๐Ÿ“Šะกั‚ะฐั‚ะธัั‚ะธะบะฐ ะฒัะตั… ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน': all = info_members()# ะ’ัะตะณะพ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน s1 = count_member_in_status(1) s2 = count_member_in_status(2) s3 = count_member_in_status(3) s4 = count_member_in_status(4) s0 = count_member_in_status(0) #ะ•ั‰ะต ะฝะต ะฒั‹ะฑั€ะฟะฐะปะธ ะพั‚ะฒะตั‚ await bot.send_message(chat_id=message.chat.id,text=f"""<b>๐Ÿ‘ฅะ’ัะตะณะพ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน: {all}</b> 1๏ธโƒฃะŸะพะปัŒะทะพะฒะฐั‚ะตะปะตะน ะธะท ะธะฝัั‚ั‹: {s1} 2๏ธโƒฃะŸะพะปัŒะทะพะฒะฐั‚ะตะปะตะน ะธะท ะขะธะบะขะพะบะฐ : {s2} 3๏ธโƒฃะŸะพะปัŒะทะพะฒะฐั‚ะตะปะตะน ะธะท ะ ะธะปัะฐ: {s3} 4๏ธโƒฃะŸะพะปัŒะทะพะฒะฐั‚ะตะปะตะน ะธะท ยซะ”ั€ัƒะณะพะณะพยป: {s4} ๐ŸŸกะ•ั‰ะต ะฝะต ะฒั‹ะฑั€ะฐะปะธ ะพั‚ะฒะตั‚: {s0}""",parse_mode='html') if message.text == '๐Ÿ’ฟะ‘ะฐะทะฐ ะดะฐะฝะฝั‹ั…': await message.answer_document(open("server.db", "rb")) if message.text == '๐Ÿ”ซะฃะดะฐะปะตะฝะธะต ั‡ะตะปะพะฒ': await message.answer('๐Ÿ‘บะ’ะบะปัŽั‡ะตะฝ ั€ะตะถะธะผ ัƒะดะฐะปะตะฝะธะต ั‡ะตะปะพะฒ \n' '๐Ÿ”™ะ”ะปั ะฒั‹ั…ะพะดะฐ, ะฝะฐะฟะธัˆะธ "ะพั‚ะผะตะฝะฐ"') await Form.user_delete.set() if message.text == '๐Ÿ†“ะ ะฐััั‹ะปะบะฐ ะฑะตัะฟะปะฐั‚ะฝะธะบะฐะผ': #ะ ะฐััั‹ะปะบะฐ ะฟะพ ะณั€ัƒะฟะฟะต 2,3,4,0 murkap = types.InlineKeyboardMarkup() bat0 = types.InlineKeyboardButton(text='ะžะขะœะ•ะะ', callback_data='otemena') murkap.add(bat0) await bot.send_message(message.chat.id, 'ะŸะตั€ะตัˆะปะธ ะผะฝะต ัƒะถะต ะณะพั‚ะพะฒั‹ะน ะฟะพัั‚ ะธ ั ั€ะฐะทะพัˆะปัŽ ะตะณะพ ะฒัะตะผ ัŽะทะตั€ะฐะผ', reply_markup=murkap) await st_reg.step_q.set() await state.update_data(type_rassilki = 2340) # ะขะ˜ะŸ ั€ะฐััะปั‹ะบะธ ะฟะพ 2,3,4,0 ะณั€ัƒะฟะฟะต if message.text == '๐Ÿ’ฐะ ะฐััั‹ะปะบะฐ ะฟะปะฐั‚ะฝะธะบะฐะผ': #ะ ะฐััั‹ะปะบะฐ ะฟะพ ะณั€ัƒะฟะฟะต 1 murkap = types.InlineKeyboardMarkup() bat0 = types.InlineKeyboardButton(text='ะžะขะœะ•ะะ', callback_data='otemena') murkap.add(bat0) await bot.send_message(message.chat.id, 'ะŸะตั€ะตัˆะปะธ ะผะฝะต ัƒะถะต ะณะพั‚ะพะฒั‹ะน ะฟะพัั‚ ะธ ั ั€ะฐะทะพัˆะปัŽ ะตะณะพ ะฒัะตะผ ัŽะทะตั€ะฐะผ', reply_markup=murkap) await st_reg.step_q.set() await state.update_data(type_rassilki=1) # ะขะ˜ะŸ ั€ะฐััะปั‹ะบะธ ะฟะพ ะฟะตั€ะฒะพะน ะณั€ัƒะฟะฟะต #ะŸะ ะžะ“ะ ะ•ะ’ async def send_to_a_certain_hour(): while True: offset = datetime.timezone(datetime.timedelta(hours=3)) now_time = datetime.datetime.now(offset) if now_time.hour == 16: for user7 in user_list7: status = (cheack_status(user7))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if status != 9: await bot.send_message(user7, text=text.dayly_text7.format(username_contact)) user_list7.remove(user7) user_list8.append(user7) for user6 in user_list6: status = (cheack_status(user6))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if status != 9: await bot.send_photo(user6, photo=text.dayly_photo_id6, caption=text.dayly_text6.format(username_contact)) user_list7.append(user6) user_list6.remove(user6) for user5 in user_list5: status = (cheack_status(user5))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if status != 9: await bot.send_photo(user5, photo=text.dayly_photo_id5, caption=text.dayly_text5.format(username_contact)) user_list6.append(user5) user_list5.remove(user5) for user4 in user_list4: status = (cheack_status(user4))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if status != 9: await bot.send_photo(user4, photo=text.dayly_photo_id4, caption=text.dayly_text4.format(username_contact)) user_list5.append(user4) user_list4.remove(user4) for user3 in user_list3: status = (cheack_status(user3))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if status != 9: await bot.send_photo(user3, photo=text.dayly_photo_id3, caption=text.dayly_text3.format(username_contact)) user_list4.append(user3) user_list3.remove(user3) for user2 in user_list2: status = (cheack_status(user2))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if status != 9: await bot.send_message(user2, text=text.dayly_text2.format(username_contact)) user_list3.append(user2) user_list2.remove(user2) for user1 in user_list1: status = (cheack_status(user1))[0] if status == 1: username_contact = user_1 else: username_contact = user02349 if status != 9: await bot.send_photo(user1, photo=text.dayly_photo_id1, caption=text.dayly_text1.format(username_contact)) user_list2.append(user1) user_list1.remove(user1) await asyncio.sleep(3600) async def shutdown(dispatcher: Dispatcher): await dispatcher.storage.close() await dispatcher.storage.wait_closed() @db.callback_query_handler(text='otemena',state='*') async def otmena_12(call: types.callback_query, state: FSMContext): await bot.send_message(call.message.chat.id, 'ะžั‚ะผะตะฝะตะฝะพ') await state.finish() try: await bot.delete_message(call.message.chat.id,message_id=call.message.message_id) except: pass @db.message_handler(state=st_reg.step_q,content_types=['text','photo','video','video_note','animation','voice','sticker']) # ะŸั€ะตะดะพัะผะพั‚ั€ ะฟะพัั‚ะฐ async def redarkt_post(message: types.Message, state: FSMContext): await st_reg.st_name.set() murkap = types.InlineKeyboardMarkup() bat0 = types.InlineKeyboardButton(text='ะžะขะœะ•ะะ', callback_data='otemena') bat1 = types.InlineKeyboardButton(text='ะ ะะ—ะžะกะ›ะะขะฌ', callback_data='send_ras') bat2 = types.InlineKeyboardButton(text='ะ”ะพะฑะฐะฒะธั‚ัŒ ะบะฝะพะฟะบะธ', callback_data='add_but') murkap.add(bat1) murkap.add(bat2) murkap.add(bat0) await message.copy_to(chat_id=message.chat.id) q = message await state.update_data(q=q) await bot.send_message(chat_id=message.chat.id,text='ะŸะพัั‚ ัะตะนั‡ะฐั ะฒั‹ะณะปัะดะธั‚ ั‚ะฐะบ ๐Ÿ‘†',reply_markup=murkap) # ะะะกะขะ ะžะ™ะšะ ะšะะžะŸะžะš @db.callback_query_handler(text='add_but',state=st_reg.st_name) # ะ”ะพะฑะฐะฒะปะตะฝะธะต ะบะฝะพะฟะพะบ async def addbutton(call: types.callback_query, state: FSMContext): await bot.delete_message(chat_id=call.message.chat.id,message_id=call.message.message_id) await bot.send_message(call.message.chat.id,text='ะžั‚ะฟั€ะฐะฒะปัะน ะผะฝะต ะบะฝะพะฟะบะธ ะฟะพ ะฟั€ะธะฝั†ะธะฟัƒ Controller Bot\n\n' 'ะŸะพะบะฐ ะผะพะถะฝะพ ะดะพะฑะฐะฒะธั‚ัŒ ั‚ะพะปัŒะบะพ ะพะดะฝัƒ ะบะฝะพะฟะบัƒ') await st_reg.step_regbutton.set() @db.message_handler(state=st_reg.step_regbutton,content_types=['text']) # ะขะตะบัั‚ ะบะฝะพะฟะพะบ ะฒ ะฝะตั„ะพั€ะผะฐั‚ะต async def redarkt_button(message: types.Message, state: FSMContext): arr2 = message.text.split('-') k = -1 # ะฃะฑะธั€ะฐะตะผ ะฟั€ะพะฑะตะปั‹ ะธะท ะบะฝะพะฟะพะบ for i in arr2: k+=1 if i[0] == ' ': if i[-1] == ' ': arr2[k] = (i[1:-1]) else: arr2[k] = (i[1:]) else: if i[-1] == ' ': arr2[0] = (i[:-1]) else: pass # arr2 - ะœะฐััะธะฒ ั ะดะฐะฝะฝั‹ะผะธ try: murkap = types.InlineKeyboardMarkup() #ะšะปะฐะฒะธะฐั‚ัƒั€ะฐ ั ะบะฝะพะฟะบะฐะผะธ bat = types.InlineKeyboardButton(text= arr2[0], url=arr2[1]) murkap.add(bat) data = await state.get_data() mess = data['q'] # ID ัะพะพะฑั‰ะตะฝะธั ะดะปั ั€ะฐััั‹ะปะบะธ await bot.copy_message(chat_id=message.chat.id, from_chat_id=message.chat.id,message_id=mess.message_id,reply_markup=murkap) await state.update_data(text_but =arr2[0]) # ะžะฑะฝะพะฒะปะตะฝะธะต ะกะตั‚ะฐ await state.update_data(url_but=arr2[1]) # ะžะฑะฝะพะฒะปะตะฝะธะต ะกะตั‚ะฐ murkap2 = types.InlineKeyboardMarkup() # ะšะปะฐะฒะธะฐั‚ัƒั€ะฐ - ะผะตะฝัŽ bat0 = types.InlineKeyboardButton(text='ะžะขะœะ•ะะ', callback_data='otemena') bat1 = types.InlineKeyboardButton(text='ะ ะะ—ะžะกะ›ะะขะฌ', callback_data='send_ras') murkap2.add(bat1) murkap2.add(bat0) await bot.send_message(chat_id=message.chat.id,text='ะขะตะฟะตั€ัŒ ั‚ะฒะพะน ะฟะพัั‚ ะฒั‹ะณะปัะดะธั‚ ั‚ะฐะบโ˜',reply_markup=murkap2) except: await bot.send_message(chat_id=message.chat.id,text='ะžัˆะธะฑะบะฐ. ะžั‚ะผะตะฝะตะฝะพ') await state.finish() # ะšะžะะ•ะฆ ะะะกะขะ ะžะ™ะšะ˜ ะšะะžะŸะžะš @db.callback_query_handler(text='send_ras',state="*") # ะ ะฐััั‹ะปะบะฐ async def fname_step(call: types.callback_query, state: FSMContext): await bot.delete_message(chat_id=call.message.chat.id,message_id=call.message.message_id) data = await state.get_data() mess = data['q'] # ะกะพะพะฑั‰ะตะฝะธั ะดะปั ั€ะฐััั‹ะปะบะธ type_rass = data['type_rassilki'] murkap = types.InlineKeyboardMarkup() # ะšะปะฐะฒะธะฐั‚ัƒั€ะฐ ั ะบะฝะพะฟะบะฐะผะธ try: #ะŸั‹ั‚ะฐะตะผัั ะดะพะฑะฐะฒะธั‚ัŒ ะบะฝะพะฟะบะธ. ะ•ัะปะธ ะธั… ะฝะตั‚ัƒ ะพัั‚ะฐะฒะปัะตะผ ะบะปะฐะฒัƒ ะฟัƒัั‚ะพะน text_but = data['text_but'] url_but = data['url_but'] bat = types.InlineKeyboardButton(text=text_but, url=url_but) murkap.add(bat) except: pass db = sqlite3.connect('server.db') sql = db.cursor() await state.finish() if type_rass == 1: users = sql.execute(f"SELECT id FROM user_time WHERE status_active = 1").fetchall() else: users = sql.execute(f"SELECT id FROM user_time WHERE status_active = 0 or status_active = 2 or status_active = 3 or status_active =4").fetchall() bad = 0 good = 0 await bot.send_message(call.message.chat.id, f"<b>ะ’ัะตะณะพ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน: <code>{len(users)}</code></b>\n\n<b>ะ ะฐััะปั‹ะบะฐ ะฝะฐั‡ะฐั‚ะฐ!</b>", parse_mode="html") for i in users: await asyncio.sleep(1) try: await mess.copy_to(i[0],reply_markup=murkap) good += 1 except: bad += 1 await bot.send_message( call.message.chat.id, "<u>ะ ะฐััั‹ะปะบะฐ ะพะบะพะฝั‡ะตะฝะฐ\n\n</u>" f"<b>ะ’ัะตะณะพ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน:</b> <code>{len(users)}</code>\n" f"<b>ะžั‚ะฟั€ะฐะฒะปะตะฝะพ:</b> <code>{good}</code>\n" f"<b>ะะต ัƒะดะฐะปะพััŒ ะพั‚ะฟั€ะฐะฒะธั‚ัŒ:</b> <code>{bad}</code>", parse_mode="html" ) ######################################################### if __name__ == '__main__': loop = asyncio.get_event_loop() loop.create_task(send_to_a_certain_hour()) executor.start_polling(db, on_shutdown=shutdown,skip_updates=True)
pytera895143242/nasar3rep
nasar3bot.py
nasar3bot.py
py
23,352
python
ru
code
0
github-code
6
1363896081
import datetime from typing import TYPE_CHECKING, Any, Dict, List, Type, TypeVar, Union from attrs import define as _attrs_define from attrs import field as _attrs_field from dateutil.parser import isoparse from ..types import UNSET, Unset if TYPE_CHECKING: from ..models.actor_v2_response_body import ActorV2ResponseBody from ..models.incident_status_v2_response_body import IncidentStatusV2ResponseBody from ..models.severity_v2_response_body import SeverityV2ResponseBody T = TypeVar("T", bound="IncidentUpdateV2ResponseBody") @_attrs_define class IncidentUpdateV2ResponseBody: """ Example: {'created_at': '2021-08-17T13:28:57.801578Z', 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'incident_id': '01FCNDV6P870EA6S7TK1DSYDG0', 'message': "We're working on a fix, hoping to ship in the next 30 minutes", 'new_incident_status': {'category': 'triage', 'created_at': '2021-08-17T13:28:57.801578Z', 'description': "Impact has been **fully mitigated**, and we're ready to learn from this incident.", 'id': '01FCNDV6P870EA6S7TK1DSYD5H', 'name': 'Closed', 'rank': 4, 'updated_at': '2021-08-17T13:28:57.801578Z'}, 'new_severity': {'created_at': '2021-08-17T13:28:57.801578Z', 'description': 'Issues with **low impact**.', 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Minor', 'rank': 1, 'updated_at': '2021-08-17T13:28:57.801578Z'}, 'updater': {'api_key': {'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'My test API key'}, 'user': {'email': '[email protected]', 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Lisa Karlin Curtis', 'role': 'viewer', 'slack_user_id': 'U02AYNF2XJM'}}} Attributes: created_at (datetime.datetime): When the update was created Example: 2021-08-17T13:28:57.801578Z. id (str): Unique identifier for this incident update Example: 01FCNDV6P870EA6S7TK1DSYDG0. incident_id (str): The incident this update relates to Example: 01FCNDV6P870EA6S7TK1DSYDG0. new_incident_status (IncidentStatusV2ResponseBody): Example: {'category': 'triage', 'created_at': '2021-08-17T13:28:57.801578Z', 'description': "Impact has been **fully mitigated**, and we're ready to learn from this incident.", 'id': '01FCNDV6P870EA6S7TK1DSYD5H', 'name': 'Closed', 'rank': 4, 'updated_at': '2021-08-17T13:28:57.801578Z'}. updater (ActorV2ResponseBody): Example: {'api_key': {'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'My test API key'}, 'user': {'email': '[email protected]', 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Lisa Karlin Curtis', 'role': 'viewer', 'slack_user_id': 'U02AYNF2XJM'}}. message (Union[Unset, str]): Message that explains the context behind the update Example: We're working on a fix, hoping to ship in the next 30 minutes. new_severity (Union[Unset, SeverityV2ResponseBody]): Example: {'created_at': '2021-08-17T13:28:57.801578Z', 'description': 'Issues with **low impact**.', 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Minor', 'rank': 1, 'updated_at': '2021-08-17T13:28:57.801578Z'}. """ created_at: datetime.datetime id: str incident_id: str new_incident_status: "IncidentStatusV2ResponseBody" updater: "ActorV2ResponseBody" message: Union[Unset, str] = UNSET new_severity: Union[Unset, "SeverityV2ResponseBody"] = UNSET additional_properties: Dict[str, Any] = _attrs_field(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: created_at = self.created_at.isoformat() id = self.id incident_id = self.incident_id new_incident_status = self.new_incident_status.to_dict() updater = self.updater.to_dict() message = self.message new_severity: Union[Unset, Dict[str, Any]] = UNSET if not isinstance(self.new_severity, Unset): new_severity = self.new_severity.to_dict() field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update( { "created_at": created_at, "id": id, "incident_id": incident_id, "new_incident_status": new_incident_status, "updater": updater, } ) if message is not UNSET: field_dict["message"] = message if new_severity is not UNSET: field_dict["new_severity"] = new_severity return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: from ..models.actor_v2_response_body import ActorV2ResponseBody from ..models.incident_status_v2_response_body import ( IncidentStatusV2ResponseBody, ) from ..models.severity_v2_response_body import SeverityV2ResponseBody d = src_dict.copy() created_at = isoparse(d.pop("created_at")) id = d.pop("id") incident_id = d.pop("incident_id") new_incident_status = IncidentStatusV2ResponseBody.from_dict(d.pop("new_incident_status")) updater = ActorV2ResponseBody.from_dict(d.pop("updater")) message = d.pop("message", UNSET) _new_severity = d.pop("new_severity", UNSET) new_severity: Union[Unset, SeverityV2ResponseBody] if isinstance(_new_severity, Unset): new_severity = UNSET else: new_severity = SeverityV2ResponseBody.from_dict(_new_severity) incident_update_v2_response_body = cls( created_at=created_at, id=id, incident_id=incident_id, new_incident_status=new_incident_status, updater=updater, message=message, new_severity=new_severity, ) incident_update_v2_response_body.additional_properties = d return incident_update_v2_response_body @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> Any: return self.additional_properties[key] def __setitem__(self, key: str, value: Any) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
expobrain/python-incidentio-client
incident_io_client/models/incident_update_v2_response_body.py
incident_update_v2_response_body.py
py
6,464
python
en
code
4
github-code
6
16119646284
# ์–ธ์–ด : Python, (์„ฑ๊ณต/์‹คํŒจ) : 1/1, ๋ฉ”๋ชจ๋ฆฌ : 30840KB, ์‹œ๊ฐ„ : 72ms C = int(input()) for i in range(C): N = list(map(int, input().split())) avg = sum(N[1:]) / N[0] count = 0 for i in N[1:]: if (avg < i): count += 1 print("{:.3f}%".format((count / N[0]) * 100))
sujeong11/Algorithm
๊ธฐ์ดˆ/1์ฐจ์› ๋ฐฐ์—ด/4344_ํ‰๊ท ์€ ๋„˜๊ฒ ์ง€.py
4344_ํ‰๊ท ์€ ๋„˜๊ฒ ์ง€.py
py
315
python
ko
code
0
github-code
6
10381696055
''' Question 8.2 ''' import math import numpy as np import matplotlib.pyplot as plt ## set up for initial parameters k1 = 100 k2 = 600 k3 = 150 ## define four functions of rate of changes of E, S ES and P def fun_E (E, S, ES, P): return -k1*E*S + (k2+k3)*ES def fun_S (E, S, ES, P): return -k1*E*S + k2*ES def fun_ES (E, S, ES, P): return k1*E*S - (k2+k3)*ES def fun_P (E, S, ES, P): return k3*ES ## Solve funtions using RK4 method: def rk4_function (E, S, ES, P, n): E_list = [E] S_list = [S] ES_list = [ES] P_list = [P] L = [0] h = 0.0001 t = 0 while t < n: t = t + h L.append(t) ## first step: E1 = fun_E(E, S, ES, P) S1 = fun_S(E, S, ES, P) P1 = fun_P(E, S, ES, P) ES1 = fun_ES(E, S, ES, P) ## second step: e2 = E + E1*h/2 s2 = S + S1*h/2 es2 = ES + ES1*h/2 p2 = P + P1*h/2 E2 = fun_E(e2, s2, es2, p2) S2 = fun_S(e2, s2, es2, p2) ES2 = fun_ES(e2, s2, es2, p2) P2 = fun_P(e2, s2, es2, p2) ## third step: e3 = E + E2*h/2 s3 = S + S2*h/2 es3 = ES + ES2*h/2 p3 = P + P2*h/2 E3 = fun_E(e3, s3, es3, p3) S3 = fun_S(e3, s3, es3, p3) ES3 = fun_ES(e3, s3, es3, p3) P3 = fun_P(e3, s3, es3, p3) ## forth step: e4 = E + E3*h/2 s4 = S + S3*h/2 es4 = ES + ES3*h/2 p4 = P + P3*h/2 E4 = fun_E(e4, s4, es4, p4) S4 = fun_S(e4, s4, es4, p4) ES4 = fun_ES(e4, s4, es4, p4) P4 = fun_P(e4, s4, es4, p4) E = E + (E1 + 2*E2 + 2*E3 + E4)* h/6 S = S + (S1 + 2*S2 + 2*S3 + S4)* h/6 ES = ES + (ES1 + 2*ES2 + 2*ES3 + ES4)* h/6 P = P + (P1 + 2*P2 + 2*P3 + P4)* h/6 E_list.append(E) S_list.append(S) ES_list.append(ES) P_list.append(P) return (E_list, S_list, ES_list, P_list, L) ## the inital parameters are given following: E0 = 1 S0 = 10 ES0 = 0 P0 = 0 n = 0.35 ## we can get the result as following: results = rk4_function (E0, S0, ES0, P0, n) ## Plot the result: E_result = results[0] S_result = results[1] ES_result = results[2] P_result = results[3] T = results[4] plt.figure() plt.plot(T, E_result, label = "[E]") plt.plot(T, S_result, label = "[S]") plt.plot(T, ES_result, label = "[ES]") plt.plot(T, P_result, label = "[P]") plt.title("Rate of Changes of E, S, ES, and P") plt.legend() plt.xlabel("Time") plt.ylabel("Concentration") plt.show() ''' Question 8.3 ''' ## The velocity of the enzymatic reaction V = [] k3 = 150 for i in ES_result: v = i*k3 V.append (v) S = S_result ## To show the result of Vmax print(max(V)) ## Plot the result plt.figure() plt.plot(S, V) plt.xlabel("Concentration of S") plt.ylabel("Velocity V") plt.show()
Sguwj/NTU-Test-Question
Answer to Question 2/Code for Question 2.py
Code for Question 2.py
py
3,042
python
en
code
0
github-code
6
71969383869
from kfp.components import InputPath, OutputPath def SchemaGen( statistics_path: InputPath('ExampleStatistics'), schema_path: OutputPath('Schema'), infer_feature_shape: bool = None, # ? False ): """Constructs a SchemaGen component. Args: statistics: A Channel of `ExampleStatistics` type (required if spec is not passed). This should contain at least a `train` split. Other splits are currently ignored. _required_ infer_feature_shape: Boolean value indicating whether or not to infer the shape of features. If the feature shape is not inferred, downstream Tensorflow Transform component using the schema will parse input as tf.SparseTensor. Returns: output: Output `Schema` channel for schema result. """ from tfx.components.schema_gen.component import SchemaGen as component_class #Generated code import json import os import tensorflow from google.protobuf import json_format, message from tfx.types import Artifact, channel_utils, artifact_utils arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value_obj = argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments[name + '_path'] if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path + '/' # ? if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()} output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()} exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments[name + '_path'] # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) #executor = component_class.EXECUTOR_SPEC.executor_class() # Same executor = component_class_instance.executor_spec.executor_class() executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) #return (output_path,) if __name__ == '__main__': import kfp kfp.components.func_to_container_op( SchemaGen, base_image='tensorflow/tfx:0.21.4', output_component_file='component.yaml' )
kubeflow/kfp-tekton-backend
components/tfx/SchemaGen/component.py
component.py
py
3,687
python
en
code
8
github-code
6
24957689753
class Solution(object): def canFinish(self, numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: bool """ adjList = [list() for _ in range(numCourses)] degree = [0] * numCourses for i in range(len(prerequisites)): adjList[prerequisites[i][1]].append(prerequisites[i][0]) degree[prerequisites[i][0]] += 1 count = 0 queue = [] for i in range(len(degree)): if degree[i] == 0: queue.append(i) while queue: d = queue.pop(0) count += 1 for j in adjList[d]: degree[j] -= 1 if degree[j] == 0: queue.append(j) return count == numCourses
MrBmikhael/LeetCodeProblems
207-course-schedule/207-course-schedule.py
207-course-schedule.py
py
867
python
en
code
0
github-code
6
41935110854
import sys input = sys.stdin.readline def promising(row): # ๊ฐ™์€ ์—ด์ด๋ฉด ์•ˆ ๋˜๊ณ , ๋Œ€๊ฐ์„ ์ƒ์— ์žˆ์–ด๋„ ์•ˆ ๋œ๋‹ค. for i in range(row): if board[row] == board[i] or row - i == abs(board[row] - board[i]): return 0 return 1 def dfs(row): global ans # ๋งˆ์ง€๋ง‰ ํ–‰๊นŒ์ง€ ์ˆ˜ํ–‰ํ•˜๊ณ  ์—ฌ๊ธฐ๊นŒ์ง€ ์˜ค๋ฉด ์ฐพ๊ธฐ ์™„๋ฃŒ if row == N: ans += 1 return for i in range(N): board[row] = i if promising(row): dfs(row + 1) N = int(input()) ans = 0 board = [0] * N dfs(0) print(ans)
hyungJinn/pythonStudy
BAEKJOON/Backtracking/9663_N-Queen.py
9663_N-Queen.py
py
609
python
ko
code
0
github-code
6
73816206588
def int_trapezoidal(function, a, b, m): '''Trapezna formula za rjesavanje odredenog intervala.''' h = (b - a)/m #korak integracija f_a = function(a) #vrijednost funkcije u pocetnoj tocki f_b = function(b) #vrijednost funkcije u krajnjoj tocki rez = (f_a + f_b)/2 k = 1 while k < m: rez += function(a + k*h) #suma k += 1 return rez*h def int_Simpson(function, a, b, m): '''Simpsonova metoda rjesavanja odredenog integrala.''' h = (b - a)/m #korak integracija f_a = function(a) #vrijednost funkcije u pocetnoj tocki f_b = function(b) #vrijednost funkcije u krajnjoj tocki rez = f_a + f_b k = 1 while k < m: if k % 2 == 0: rez += 2*function(a + k*h) #za parne k else: rez += 4*function(a + k*h) #za neparne k k += 1 return rez*h/3
FabjanJozic/MMF3
Predavanje8_integracija/integral.py
integral.py
py
868
python
hr
code
0
github-code
6
15365101221
import io # For Data Lake from hdfs import InsecureClient # For Data Warehouse from pyhive import hive import pandas as pd df_source = pd.read_csv(r'output/news.csv') df_source['News'] = df_source['News'].str.replace(r',', '') # Define HDFS interface hdfs_interface = InsecureClient('http://localhost:50070') hdfs_interface.list('/') # Delete old data hdfs_interface.delete('/wqd7005/raw_news', recursive=True, skip_trash=True) # Create hdfs directories to store data hdfs_interface.makedirs('/wqd7005') hdfs_interface.makedirs('/wqd7005/raw_news') hdfs_interface.list('/wqd7005') # Write data to raw_news directory # text buffer s_buf = io.StringIO() # saving a data frame to a buffer (same as with a regular file): df_source.to_csv(s_buf, index=False, header=False) hdfs_interface.write('/wqd7005/raw_news/000000_0', data=s_buf.getvalue(), overwrite=True, encoding = 'utf-8') # Check if file has been written correctly with hdfs_interface.read('/wqd7005/raw_news/000000_0', length=1024) as reader: content = reader.read() content # Create Hive Cursor host_name = "localhost" port = 10000 conn = hive.Connection(host=host_name, port=port, auth='NOSASL') cur = conn.cursor() # DATE # Create External table for raw_news cur.execute("DROP TABLE IF EXISTS raw_news") cur.execute("CREATE EXTERNAL TABLE IF NOT EXISTS \ raw_news (tdate STRING, \ news STRING) \ ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' \ STORED AS TEXTFILE LOCATION '/wqd7005/raw_news'") # Check if warehousing successful: cur.execute("SELECT * FROM raw_news LIMIT 10") check=cur.fetchall() df_check=pd.DataFrame(data=check)
Danesh-WQD180067/WQD7005-Group
data_mining/warehousing_news.py
warehousing_news.py
py
1,754
python
en
code
0
github-code
6
14065976550
from django.db import models # Create your models here. PRIORITY = (('danger', 'high'),('info','normal'),('success','low')) # (ไฟๅญ˜ใ•ใ‚Œใ‚‹ใƒ‡ใƒผใ‚ฟ, ่กจ็คบใƒ‡ใƒผใ‚ฟ) class TodoModel(models.Model): title = models.CharField(max_length=100) memo = models.TextField() priority = models.CharField( max_length=50, choices = PRIORITY ) duedate = models.DateField() def __str__(self): # objectใซๅๅ‰ใ‚’ใคใ‘ใ‚‹(object1ใจใ‹ใงใฏใชใ„) return self.title # titleๅใ‚’objectๅใซใ™ใ‚‹
takuya2816/Todo
todoapp/models.py
models.py
py
540
python
en
code
0
github-code
6
38967021451
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html from scrapy.pipelines.images import ImagesPipeline import sqlite3 import scrapy import re from scrapy.exceptions import DropItem class DeskZolPipeline(object): def process_item(self, item, spider): conn = sqlite3.connect('bizhi.db') c = conn.cursor() cursor = c.execute("SELECT * from bizhi where name = \'"+item['name']+'\'') if cursor.fetchone(): #ๅŽป้‡ raise DropItem('duplicate item : %s' % item['name']) else: img_urls = ';'.join(item['image_urls']) name = item['name'] url =item['url'] insert_sql = 'INSERT INTO bizhi VALUES ( '+ \ '\'' + name + '\',' + \ '\'' +url+ '\',' + \ '\'' +img_urls+ '\')' c.execute(insert_sql) #ๅ†™ๅ…ฅๆ•ฐๆฎๅบ“ conn.commit() conn.close() return item class MyImagesPipeline(ImagesPipeline): def get_media_requests(self, item, info): for image_url in item['image_urls']: yield scrapy.Request(image_url,meta={'item': item}) def item_completed(self, results, item, info): image_paths = [x['path'] for ok, x in results if ok] if not image_paths: raise DropItem("Item contains no images") item['image_paths'] = image_paths return item def file_path(self, request, response=None, info=None): """ :param request: ๆฏไธ€ไธชๅ›พ็‰‡ไธ‹่ฝฝ็ฎก้“่ฏทๆฑ‚ :param response: :param info: :param strip :ๆธ…ๆด—Windows็ณป็ปŸ็š„ๆ–‡ไปถๅคน้žๆณ•ๅญ—็ฌฆ๏ผŒ้ฟๅ…ๆ— ๆณ•ๅˆ›ๅปบ็›ฎๅฝ• :return: ๆฏๅฅ—ๅ›พ็š„ๅˆ†็ฑป็›ฎๅฝ• """ item = request.meta['item'] folder = item['name'] folder_strip = strip(folder) image_guid = request.url.split('/')[-1] return u'full/{0}/{1}'.format(folder_strip, image_guid) def strip(path): """ :param path: ้œ€่ฆๆธ…ๆด—็š„ๆ–‡ไปถๅคนๅๅญ— :return: ๆธ…ๆด—ๆމWindows็ณป็ปŸ้žๆณ•ๆ–‡ไปถๅคนๅๅญ—็š„ๅญ—็ฌฆไธฒ """ path = re.sub(r'[๏ผŸ\\*|โ€œ<>:/]', '', str(path)) return path
zaoyubo/desk_zol
desk_zol/pipelines.py
pipelines.py
py
2,321
python
en
code
0
github-code
6
17403072234
#https://pyformat.info/ "Hello {}, my name is {}".format('john', 'mike') #'Hello john, my name is mike'. "{1}, {0}".format('world', 'Hello') #'Hello, world' "{greeting}, {}".format('world', greeting='Hello') #'Hello, world' data = {'first': 'Hodor', 'last': 'Hodor!'} '{first} {last}'.format(**data) #'Hodor Hodor!' '{first} {last}'.format(first='Hodor', last='Hodor!') #'Hodor Hodor!' 'hello there %(5)s' % {'5': 'you'} #'hello there you'
vdatasci/Python
ETL/Format.py
Format.py
py
447
python
en
code
1
github-code
6
11615085313
import os def detector(file): with open(file,'r') as f: filecontent=f.read() if 'binod' in filecontent.lower(): print(f"Binod is here in file {file}") if __name__ == '__main__': for i in os.listdir(): if i.endswith('py'): detector(i)
Coder-X27/Python-CWH
CWH Playlist Problems/07-A particular word detector.py
07-A particular word detector.py
py
282
python
en
code
1
github-code
6
16592394886
import cv2 import numpy as np import importlib from ProcessImage import PreProcessImages if __name__ == '__main__': filename = '../assets/models/Rectangle.png' dim = (600, 600) img = cv2.resize(cv2.imread(filename), dim) # prepare main algorithm algo = PreProcessImages() # wrapped image wrapped = algo.fourPointTransform(img) # rect, wrapped = algo.getCorner(img) cv2.imshow('Original Image', img) cv2.imshow('wrapped', wrapped) if cv2.waitKey(0) & 0xff == 27: cv2.destroyAllWindows()
DesaleF/TRDP_AR
src/test-algo.py
test-algo.py
py
544
python
en
code
0
github-code
6
4685056088
import argparse import configparser import importlib import logging import pathlib import time import telegram from telegram.ext import Updater from telegram.utils.helpers import escape_markdown from handlers.message_handlers import UploadNewTorrent from helpers import format_speed PARSER = argparse.ArgumentParser( description='Torrent downloading progress on Telegram') PARSER.add_argument( '--config', action='store', default='tdpt.ini.', help='Path to configuration file', metavar='PATH', type=pathlib.Path, ) ARGS = PARSER.parse_args() CONFIG = configparser.ConfigParser() CONFIG.read(ARGS.config) BOT = telegram.Bot(CONFIG['Telegram']['bot_token']) class TorrentStatusMessage: text = ("""{} ``` Progress: {:.0%} Speed: {} ETA: {} Peers: {} ```""") def __init__(self, bot, chat_id): self.bot = bot self.chat_id = chat_id self.message_id = None self.message_content = None def create_or_update(self, torrents): if not self.message_id: self._create(torrents) else: self._update(torrents) def delete(self): logging.info('Deleting message') self.bot.delete_message(chat_id=self.chat_id, message_id=self.message_id) self.message_id = None def _create(self, torrents): logging.info('Creating new download message') self.message_content = self._get_new_text(torrents) try: self.message_id = self.bot.send_message( self.chat_id, self.message_content, disable_notification=True, parse_mode='markdown').message_id except telegram.error.TimedOut: logging.warning("Timeout when creating a new download message") def _update(self, torrents): logging.info('Updating download message') new_message_content = self._get_new_text(torrents) if new_message_content == self.message_content: logging.info('Message the same, skipping update') return self.message_content = new_message_content try: self.bot.edit_message_text(self.message_content, chat_id=self.chat_id, message_id=self.message_id, parse_mode="markdown") except telegram.error.BadRequest as bad_request: if bad_request.message == 'Message to edit not found': self.message_id = None self._create(torrents) logging.warning(bad_request) except telegram.error.TimedOut: logging.warning('Timeout when editing message') def _get_new_text(self, torrents): msg = "" for torrent in torrents: name = escape_markdown(torrent.name) msg += self.text.format(name, torrent.percent_done, format_speed(torrent.download_rate), torrent.eta, torrent.peers_connected) return msg def init_polling(client): updater = Updater(token=CONFIG['Telegram']['bot_token'], use_context=True) dispatcher = updater.dispatcher dispatcher.add_handler(UploadNewTorrent(client)) updater.start_polling() def main(): logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) backend_name = CONFIG.get('General', 'backend') backend = importlib.import_module('backends.' + backend_name.lower()) client = backend.Client(CONFIG[backend_name]) init_polling(client) message = TorrentStatusMessage(BOT, CONFIG['Telegram']['chat_id']) prev_torrents_count = 0 while True: torrents = [] for torrent in client.get_torrents(): if torrent.is_downloading(): torrents.append(torrent) torrents_count = len(torrents) if torrents_count > prev_torrents_count: if message.message_id: message.delete() if torrents_count > 0: message.create_or_update(torrents) else: if message.message_id: message.delete() prev_torrents_count = len(torrents) time.sleep(3) if __name__ == '__main__': main()
dolohow/tdpt
tdpt/__main__.py
__main__.py
py
4,387
python
en
code
33
github-code
6
17883527707
import json import os from click.testing import CliRunner from demisto_sdk.__main__ import main from demisto_sdk.tests.test_files.validate_integration_test_valid_types import ( DASHBOARD, GENERIC_MODULE, UNIFIED_GENERIC_MODULE) from TestSuite.test_tools import ChangeCWD UNIFY_CMD = "unify" class TestGenericModuleUnifier: def test_unify_generic_module(self, mocker, repo): """ Given - A pack with a valid generic module, and a dashboard that it's id matches a dashboard in the generic module. When - Running unify on it. Then - Ensure the module was unified successfully (i.e contains the dashboard's content) and saved successfully in the output path. """ pack = repo.create_pack('PackName') pack.create_generic_module("generic-module", GENERIC_MODULE) generic_module_path = pack.generic_modules[0].path dashboard_copy = DASHBOARD.copy() dashboard_copy['id'] = 'asset_dashboard' pack.create_dashboard('dashboard_1', dashboard_copy) saving_path = os.path.join(pack._generic_modules_path, f'{pack.generic_modules[0].name.rstrip(".json")}_unified.json') with ChangeCWD(pack.repo_path): runner = CliRunner(mix_stderr=False) result = runner.invoke(main, [UNIFY_CMD, '-i', generic_module_path], catch_exceptions=False) assert result.exit_code == 0 assert os.path.isfile(saving_path) with open(saving_path) as f: saved_generic_module = json.load(f) assert saved_generic_module == UNIFIED_GENERIC_MODULE
AdouniH/demisto-sdk
demisto_sdk/tests/integration_tests/unify_integration_test.py
unify_integration_test.py
py
1,653
python
en
code
null
github-code
6
71576261627
import os import numpy as np import pandas as pd import torch from ...StableDiffuser import StableDiffuser def edit_output(activation, name): activation[:] = 0.0 return activation def main(inpath, outpath, device): diffuser = StableDiffuser(scheduler='LMS').to(torch.device(device)).half() layers = set([module_name for module_name, module in diffuser.named_modules() if module_name.endswith('attn2')]) generator = torch.manual_seed(42) os.makedirs(outpath, exist_ok=True) prompt = "Van Gogh" nsteps = 50 images = diffuser( prompt, generator=generator, n_steps=nsteps, ) images[0][0].save(os.path.join(outpath, f"orig.png")) for layer in layers: generator = torch.manual_seed(42) images, trace_steps = diffuser( prompt, generator=generator, n_steps=nsteps, trace_args={'layers' : [layer], 'edit_output': edit_output} ) images[0][0].save(os.path.join(outpath, f"{layer}.png")) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('inpath') parser.add_argument('outpath') parser.add_argument('--device', default='cuda:0') main(**vars(parser.parse_args()))
JadenFiotto-Kaufman/thesis
thesis/experiments/cr/cr.py
cr.py
py
1,304
python
en
code
0
github-code
6
18322570607
# coding: utf-8 import pprint import six class ExchangeRateModel(object): field_types = { 'from': 'str', 'to': 'str', 'rate': 'float' } attribute_map = { 'from_str': 'from', 'to': 'to', 'rate': 'rate' } def __init__(self, from_str=None, to=None, rate=None): # noqa: E501 self._from_str = None self._to = None self._rate = None self.discriminator = None if from_str is not None: self.from_str = from_str if to is not None: self.to = to if rate is not None: self.rate = rate @property def from_str(self): return self._from_str @from_str.setter def from_str(self, from_str): self._from_str = from_str @property def to(self): return self._to @to.setter def to(self, to): self._to = to @property def rate(self): return self._rate @rate.setter def rate(self, rate): self._rate = rate def to_dict(self): result = {} for attr, _ in six.iteritems(self.field_types): if attr == 'from': value = getattr(self, 'from_str') else: value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ExchangeRateModel, dict): for key, value in self.items(): result[key] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str() def __eq__(self, other): if not isinstance(other, ExchangeRateModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
UniCryptoLab/UniPaymentClient.Python
UniPaymentClient/unipayment/models/exchange_rate_model.py
exchange_rate_model.py
py
2,391
python
en
code
0
github-code
6
32791878864
#!/usr/bin/python3 from dataclasses import dataclass import csv import json from operator import itemgetter class ViaFile: def __init__(self, filename, object_type, image_filename = "", has_header = True): header = has_header if len(image_filename) > 0: filter_image = True else: filter_image = False self.entries = 0 self.object_type = object_type self.column_headings = [] self.data_rows = [] max_row_len = 0 with open(filename, 'r') as f: csv_reader = csv.reader(f) for row in csv_reader: if header: column_headings = row header = False continue if filter_image: if row[0] != image_filename: continue max_row_len = max(max_row_len, len(row)) self.entries += 1 self.data_rows.append(ViaEntry(row, object_type, True)) f.close() if len(self.column_headings) == 0 and len(self.data_rows) > 0: self.column_headings = ['Col' + str(i) for i in range(max_row_len)] def get_headings(self): return self.column_headings def get_row(self, row_id): return self.data_rows[row_id] class ViaEntry: def __init__(self, entry_row, object_type, simplify=False): self.region_id = entry_row[4] self.shape_attributes = json.loads(entry_row[5]) self.object_type = object_type if simplify: self.simplify_line() def get_shape(self): return self.shape_attributes def simplify_line(self): if self.shape_attributes["name"] == "polyline": this_x = self.shape_attributes["all_points_x"] this_y = self.shape_attributes["all_points_y"] new_x = [min(this_x), max(this_x)] new_y = [min(this_y), min(this_y)] self.shape_attributes["all_points_x"] = new_x self.shape_attributes["all_points_y"] = new_y if __name__ == '__main__': V = ViaFile("../VIA/via_annotations_c54_18_10d_full - text lines.csv", "C 54-18 10d - tidy.jpg") print(V.get_headings()) sorting_list = [] for i in range(V.entries): print(V.get_row(i).shape_attributes) sorting_list.append([i, min(V.get_row(i).shape_attributes["all_points_y"])]) sorting_list.sort(key=itemgetter(1))
mark-bell-tna/QSR
read_via.py
read_via.py
py
2,662
python
en
code
0
github-code
6
24643551555
import mcpi.minecraft as minecraft import mcpi.block as block mc = minecraft.Minecraft.create() mc.postToChat("Go find the block") from random import randint p = mc.player.getTilePos() x = p.x + randint(-20, 20) y = p.y + randint(-5, 5) z = p.z + randint(-20, 20) mc.setBlock(x, y, z, block.GOLD_BLOCK.id) from gpiozero import LED, Buzzer from time import sleep led = LED(24) buzz = Buzzer(17) led.on() buzz.on() sleep(1) led.off() buzz.off() from math import sqrt dist = 0 gameover = False while gameover == False: p = mc.player.getTilePos() xd = p.x - x yd = p.y - y zd = p.z - z dist_now = sqrt((xd*xd) + (yd*yd) + (zd*zd)) if dist_now > dist: buzz.on() else: buzz.off() dist = dist_now mc.postToChat(dist) if dist_now < 5: led.on() else: led.off() if dist_now <1.5: gameover = True() mc.postToChat("You got Gold") led.off() buzz.off()
fpizzardo/physicalComputing
findablock.py
findablock.py
py
960
python
en
code
0
github-code
6
25261775377
import json import mimetypes import re from dataclasses import dataclass from datetime import datetime from os import walk from os.path import exists, join, splitext from typing import Dict, Optional from urllib.parse import urlparse import requests from bs4 import BeautifulSoup from dataclasses_json import dataclass_json # Extension: ^(?:[^?]*\/)(?:[^/:?]+)(\.[^/:?]+)(?:\?.*)?$ # Domain: ^(?:https?:\/\/)?(?:www\.)?([^:\/?]+) # Slug: ^(?:https?:\/\/)?(?:www\.)?([^:?]+) HEADERS = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36" } @dataclass_json @dataclass class LinkPreview: updated: datetime url: str title: Optional[str] = None domain: Optional[str] = None description: Optional[str] = None thumbnailFile: Optional[str] = None thumbnailUrl: Optional[str] = None siteName: Optional[str] = None def process_existing(link_data: Dict[str, LinkPreview], url: str): print(f'- Existing url "{url}"') def process_new(link_data: Dict[str, LinkPreview], url: str): print(f'- New url "{url}"') domain = urlparse(url).hostname.removeprefix("www.") # Get meta tags with the property attribute try: r = requests.get(url, headers=HEADERS) except: link_data[url] = LinkPreview( datetime.now(), url, domain=domain, ) return soup = BeautifulSoup(r.text, "html.parser") metas = soup.select("meta[property]") meta = {v["property"]: v["content"] for v in metas if v.has_attr("content")} print(meta) # Extract metadata # TODO: Add twitter fallbacks? May not be necessary if "og:title" in meta: title = meta["og:title"] else: title = soup.title.text if soup.title is not None else None description = meta["og:description"] if "og:description" in meta else None site_name = meta["og:site_name"] if "og:site_name" in meta else None # Download image thumbnail_file = None thumbnail_url = None if "og:image" in meta: thumbnail_url = meta["og:image"] image_url_path = "".join(urlparse(thumbnail_url)[1:3]) image_name, _ = splitext(image_url_path) response = requests.get(thumbnail_url, headers=HEADERS) image_data = response.content content_type = response.headers["content-type"] image_ext = mimetypes.guess_extension(content_type, strict=False) or "" thumbnail_file = ( re.sub(r'[<>:"/\\|?*]', "_", image_name).strip(". ") + image_ext ) with open(join(link_thumb_dir, thumbnail_file), "wb") as f: f.write(image_data) link_data[url] = LinkPreview( datetime.now(), url, title=title, domain=domain, description=description, thumbnailFile=thumbnail_file, thumbnailUrl=thumbnail_url, siteName=site_name, ) if __name__ == "__main__": content_dir = join("content") link_data_dir = join("data", "links") link_data_file = join(link_data_dir, "linkData.json") link_thumb_dir = join("assets", "images", "links") filetypes = ("md",) # Restore from existing json link_data: Dict[str, LinkPreview] = {} if exists(link_data_file): with open(link_data_file, "r", encoding="utf-8") as f: data = json.load(f) previews = [ LinkPreview.from_json(json.dumps(preview_d)) for preview_d in data.values() ] link_data = {preview.url: preview for preview in previews} url_regex = re.compile( "((https?:\/\/)([A-Z]|[a-z]|[0-9]|[-._~:/?#[\]@!$&'*+,;%=])+)" ) # Find all urls in source (content) files and process them for root, dirs, files in walk(content_dir): for file in files: if not file.lower().endswith(filetypes): continue filepath = join(root, file) with open(filepath) as f: matches = url_regex.findall(f.read()) if len(matches): print(f"Found in {filepath}") for url, *_ in matches: if url in link_data: process_existing(link_data, url) else: process_new(link_data, url) # Save to json data = { preview.url: json.loads(preview.to_json()) for preview in link_data.values() } with open(link_data_file, "w", encoding="utf-8") as f: json.dump(data, f)
evoth/blog
scripts/get_link_preview_data.py
get_link_preview_data.py
py
4,523
python
en
code
0
github-code
6
5290873792
from gi.repository import Gtk, GObject from .gi_composites import GtkTemplate from .KanbanListView import KanbanListView @GtkTemplate(ui='/org/gnome/kanban/ui/board.ui') class BoardView(Gtk.Box): __gtype_name__ = 'BoardView' __gsignals__ = { "signal-task-move-up": (GObject.SIGNAL_ACTION, None, ()), "signal-task-move-down": (GObject.SIGNAL_ACTION, None, ()), "signal-task-move-top": (GObject.SIGNAL_ACTION, None, ()), "signal-task-move-bottom": (GObject.SIGNAL_ACTION, None, ()), "signal-task-move-left-top": (GObject.SIGNAL_ACTION, None, ()), "signal-task-move-right-top": (GObject.SIGNAL_ACTION, None, ()), "signal-exit": (GObject.SIGNAL_ACTION, None, ()), "task-move-up": (GObject.SIGNAL_RUN_FIRST, None, (str,)), "task-move-down": (GObject.SIGNAL_RUN_FIRST, None, (str,)), "task-move-top": (GObject.SIGNAL_RUN_FIRST, None, (str,)), "task-move-bottom": (GObject.SIGNAL_RUN_FIRST, None, (str,)), "task-move-left-top": (GObject.SIGNAL_RUN_FIRST, None, (str,)), "task-move-right-top": (GObject.SIGNAL_RUN_FIRST, None, (str,)) } headerbar, \ returnbutton = GtkTemplate.Child().widgets(2) def __init__(self, board, window): super().__init__( orientation=Gtk.Orientation.HORIZONTAL, spacing=6) self.init_template() self.board = board self.window = window self.window.bind_accelerator(self, "<Alt>Up", "signal-task-move-up") self.window.bind_accelerator( self, "<Alt>Down", "signal-task-move-down") self.window.bind_accelerator( self, "<Alt><Shift>Up", "signal-task-move-top") self.window.bind_accelerator( self, "<Alt><Shift>Down", "signal-task-move-bottom") self.window.bind_accelerator( self, "<Alt>Left", "signal-task-move-left-top") self.window.bind_accelerator( self, "<Alt>Right", "signal-task-move-right-top") self.add_noneditable_accelerators() self.connect("signal-task-move-up", lambda w: self.emit("task-move-up", self.get_focus_list_name())) self.connect("signal-task-move-down", lambda w: self.emit("task-move-down", self.get_focus_list_name())) self.connect("signal-task-move-top", lambda w: self.emit("task-move-top", self.get_focus_list_name())) self.connect("signal-task-move-bottom", lambda w: self.emit("task-move-bottom", self.get_focus_list_name())) self.connect("signal-task-move-left-top", lambda w: self.emit("task-move-left-top", self.get_focus_list_name())) self.connect("signal-task-move-right-top", lambda w: self.emit("task-move-right-top", self.get_focus_list_name())) self.connect("signal-exit", self.on_back_clicked) self.headerbar.props.title = self.window.appname + " \u2013 " + self.board.title self.window.set_titlebar(self.headerbar) self.returnbutton.connect("clicked", self.on_back_clicked) self.refresh() def add_noneditable_accelerators(self): self.window.bind_accelerator(self, "Escape", "signal-exit") def remove_noneditable_accelerators(self): self.window.remove_accelerator(self, "Escape") def get_focus_list_name(self): return self.get_focus_child().get_tasklist().get_title() def add_tasklist_view(self, tasklist): l = KanbanListView(tasklist, self) l.get_tasklist().connect("modified", lambda w: self.window.user_settings.save()) self.lists.append(l) self.pack_start(l, True, True, 0) def get_list(self, index): return self.lists[index] def get_list_index(self, name): for i, l in enumerate(self.lists): if l.get_tasklist().get_title() == name: return i return None def on_back_clicked(self, button): self.window.draw_boards_list() def get_title(self): return self.board.title def clear(self): for child in self.get_children(): child.destroy() self.lists = [] def refresh(self): self.clear() for l in self.board.tasklists: self.add_tasklist_view(l) if len(self.board.tasklists) > 0: first_list = self.get_children()[0].get_tasklist() first_elem = first_list.get_row_at_index(0) first_list.select_row(first_elem) first_elem.grab_focus()
pawel-jakubowski/kanban
src/view/BoardView.py
BoardView.py
py
4,582
python
en
code
6
github-code
6
34170958465
#Alejandro_Reyes_InClassExercise6 #Alejandro Reyes #3/9/15 #This program will emulate a vendng machine #It will provide the user with a menu from which to make a selection def main(): # Initializing variables selection = "" cost = 0.0 payment = 0.0 change = 0.0 menu () # User will make a selection userChoice = input("Enter your selection: ") print() # This will prompt the user to re enter it entry is invalid while not determineChoice (userChoice): print ("Invalid Entry, wrong code or multiple codes entered!") userChoice = input("Please re-enter ONE item: ") # Cost & user selection values will be returned from the function cost, selection = determineChoice(userChoice) # Payment from the user will be entered print () print ("You selected ", selection, ".", sep = "") print ("Total due: $", format(cost, '.2f'), ".", sep = "") payment = float(input("Please enter payment, only $1 bills accepted :")) print () # Will prompt user to re enter payment if input is too high or low while not calcChange (payment, cost): print ("Invalid Entry, Do Not Enter More Than $4, no less than $1!") payment = float(input("Please re-enter payment: ")) # Change for the user will be returned from the function change = calcChange (payment, cost) # End message will print if payment entered is valid if calcChange (payment, cost): endmes (change, selection) #This func will print out the menu def menu (): print ("Please select the code for the item you wish. (One item only Please)\n") print("-----------------MENU------------------") print ("Snickers\tM&Ms\t\tKitKat") print ("$0.28\t\t$1.39\t\t$1.39") print ("A1\t\tA2\t\tA3") print () print ("Lays\t\tDoritos\t\tCheetos") print ("$0.50\t\t$0.50\t\t$1.49") print ("B1\t\tB2\t\tB3") print () print ("TicTac\t\tStarburst\tSkittles") print ("$1.04\t\t$0.79\t\t$2.49") print ("C1\t\tC2\t\tC3") print () #This will determine the user's choice and reutrn cost and item info def determineChoice (userChoice): if userChoice == "A1" or userChoice == "a1": cost = 0.89 item = "Snickers" return cost, item elif userChoice == "A2" or userChoice == "a2": cost = 1.39 item = "M&Ms" return cost, item elif userChoice == "A3" or userChoice == "a3": cost = 1.39 item = "KitKat" return cost, item elif userChoice == "B1" or userChoice == "b1": cost = 0.50 item = "Lays" return cost, item elif userChoice == "B2" or userChoice == "b2": cost = 0.50 item = "Doritos" return cost, item elif userChoice == "B3" or userChoice == "b3": cost = 1.49 item = "Cheetos" return cost, item elif userChoice == "C1" or userChoice == "c1": cost = 1.04 item = "TicTac" return cost, item elif userChoice == "C2" or userChoice == "c2": cost = 0.79 item = "Starbust" return cost, item elif userChoice == "C3" or userChoice == "c3": cost = 2.49 item = "Skittles" return cost, item #This will validate user input and #calculate the amount of change and return change due to user def calcChange (payment, cost): if payment >= 1 and payment <= 4: change = payment - cost return change # End message def endmes (change, selection): print () print ("Thank you! Your change is $", format(change, '.2f'), sep = "") print ("Enjoy your", selection, "!") main()
alejandroereyes/vending_machine_py
vending_machine.py
vending_machine.py
py
3,652
python
en
code
0
github-code
6
34012996402
import argparse import scipy from scipy import ndimage import cv2 import numpy as np import sys import json import torch from torch.autograd import Variable import torchvision.models as models import torch.nn.functional as F import torch.backends.cudnn as cudnn from torch.utils import data # from networks.unet2D import UNet from networks.efficient import EfficientSegBackbone from dataset.MyoPSDataset import MyoPSDataSet, MyoPSDataSetVal from collections import OrderedDict import os import scipy.ndimage as nd from math import ceil from PIL import Image as PILImage import nibabel as nib from utils.ParaFlop import print_model_parm_nums, print_model_parm_flops, torch_summarize_df import matplotlib.pyplot as plt # from utils.encoding import DataParallelModel, DataParallelCriterion import torch.nn as nn from engine import Engine def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="W-like Network for 3D Medical Image Segmentation.") # paths parser.add_argument("--data_dir", type=str, default='dataset/') parser.add_argument("--val_list", type=str, default='list/MyoPS2020/val5f_5.txt') parser.add_argument("--output_path", type=str, default='output/MyoPS2020/tmp/') parser.add_argument("--restore_from", type=str, default='snapshots/MyoPS2020/all_r1_EB3_4GPU_bs32_FP16/MyoPS2020_all_r1_EB3_4GPU_bs32_FP16_final.pth') # training details parser.add_argument("--input_size", type=str, default='288,288') parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--num_gpus", type=int, default=1) parser.add_argument('--local_rank', type=int, default=0) parser.add_argument("--FP16", type=bool, default=False) parser.add_argument("--num_epochs", type=int, default=500) parser.add_argument("--patience", type=int, default=3) parser.add_argument("--start_epoch", type=int, default=0) parser.add_argument("--save_pred_every", type=int, default=10) parser.add_argument("--learning_rate", type=float, default=1e-3) parser.add_argument("--num_classes", type=int, default=5 + 1) parser.add_argument("--compound_coef", type=int, default=3) # B0-B7 parser.add_argument("--num_workers", type=int, default=4) parser.add_argument("--weight_std", type=bool, default=True) parser.add_argument("--momentum", type=float, default=0.9) parser.add_argument("--power", type=float, default=0.9) parser.add_argument("--weight_decay", type=float, default=0.0005) parser.add_argument("--ignore_label", type=int, default=255) parser.add_argument("--is_training", action="store_true") parser.add_argument("--not_restore_last", action="store_true") parser.add_argument("--save_num_images", type=int, default=2) # data aug. parser.add_argument("--random_mirror", type=bool, default=True, ) parser.add_argument("--random_scale", type=bool, default=True) parser.add_argument("--random_seed", type=int, default=1234) # others parser.add_argument("--gpu", type=str, default='None') parser.add_argument("--recurrence", type=int, default=1) parser.add_argument("--ft", type=bool, default=False) return parser def get_palette(num_cls): """ Returns the color map for visualizing the segmentation mask. Args: num_cls: Number of classes Returns: The color map """ n = num_cls palette = [0] * (n * 3) for j in range(0, n): lab = j palette[j * 3 + 0] = 0 palette[j * 3 + 1] = 0 palette[j * 3 + 2] = 0 i = 0 while lab: palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) i += 1 lab >>= 3 return palette def pad_image(img, target_size): """Pad an image up to the target size.""" deps_missing = target_size[0] - img.shape[2] rows_missing = target_size[1] - img.shape[3] cols_missing = target_size[2] - img.shape[4] padded_img = np.pad(img, ((0, 0), (0, 0),(0, deps_missing), (0, rows_missing), (0, cols_missing)), 'constant') return padded_img def multi_net(net_list, img): img = torch.from_numpy(img).cuda() padded_prediction = net_list[0](img) padded_prediction = torch.softmax(padded_prediction, 1) for i in range(1, len(net_list)): padded_prediction_i = net_list[i](img) padded_prediction_i = torch.softmax(padded_prediction_i, 1) padded_prediction += padded_prediction_i padded_prediction /= len(net_list) return padded_prediction.cpu().numpy() # for 2D def predict_sliding(net, image, tile_size, classes): # image: 1,3,5,256,256, tile_size:256x256 image_size = image.shape overlap = 1 / 3 strideHW = ceil(tile_size[0] * (1 - overlap)) tile_rows = int(ceil((image_size[3] - tile_size[0]) / strideHW) + 1) # strided convolution formula tile_cols = int(ceil((image_size[4] - tile_size[1]) / strideHW) + 1) # print("Need %i x %i x %i prediction tiles @ stride %i x %i px" % (tile_deps, tile_cols, tile_rows, strideD, strideHW)) full_probs = np.zeros((image_size[0], classes, image_size[2], image_size[3], image_size[4])).astype(np.float32) # 1x4x155x240x240 count_predictions = np.zeros((image_size[0], classes, image_size[2], image_size[3], image_size[4])).astype(np.float32) full_probs = torch.from_numpy(full_probs).cuda() count_predictions = torch.from_numpy(count_predictions).cuda() tile_counter = 0 for dep in range(image_size[2]): for row in range(tile_rows): for col in range(tile_cols): x1 = int(col * strideHW) y1 = int(row * strideHW) x2 = min(x1 + tile_size[1], image_size[4]) y2 = min(y1 + tile_size[0], image_size[3]) x1 = max(int(x2 - tile_size[1]), 0) # for portrait images the x1 underflows sometimes y1 = max(int(y2 - tile_size[0]), 0) # for very few rows y1 underflows d1 = dep d2 = dep+1 img = torch.squeeze(image[:, :, d1:d2, y1:y2, x1:x2], 2) img = img.numpy() tile_counter += 1 prediction1 = multi_net([net], img) prediction2 = multi_net([net], img[:, :, :, ::-1].copy())[:, :, :, ::-1] prediction3 = multi_net([net], img[:, :, ::-1, :].copy())[:, :, ::-1, :] prediction = (prediction1 + prediction2 + prediction3) / 3. prediction = torch.unsqueeze(torch.from_numpy(prediction).cuda(), 2) if isinstance(prediction, list): shape = np.array(prediction[0].shape) shape[0] = prediction[0].shape[0] * len(prediction) shape = tuple(shape) preds = torch.zeros(shape).cuda() bs_singlegpu = prediction[0].shape[0] for i in range(len(prediction)): preds[i * bs_singlegpu: (i + 1) * bs_singlegpu] = prediction[i] count_predictions[:, :, d1:d2, y1:y2, x1:x2] += 1 full_probs[:, :, d1:d2, y1:y2, x1:x2] += preds else: count_predictions[:, :, d1:d2, y1:y2, x1:x2] += 1 full_probs[:, :, d1:d2, y1:y2, x1:x2] += prediction # average the predictions in the overlapping regions full_probs /= count_predictions return full_probs.cpu().data.numpy() def get_confusion_matrix(gt_label, pred_label, class_num): """ Calcute the confusion matrix by given label and pred :param gt_label: the ground truth label :param pred_label: the pred label :param class_num: the nunber of class :return: the confusion matrix """ index = (gt_label * class_num + pred_label).astype('int32') label_count = np.bincount(index) confusion_matrix = np.zeros((class_num, class_num)) for i_label in range(class_num): for i_pred_label in range(class_num): cur_index = i_label * class_num + i_pred_label if cur_index < len(label_count): confusion_matrix[i_label, i_pred_label] = label_count[cur_index] return confusion_matrix def dice_score(preds, labels): assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match" predict = preds.view().reshape(preds.shape[0], -1) target = labels.view().reshape(labels.shape[0], -1) num = np.sum(np.multiply(predict, target), axis=1) den = np.sum(predict, axis=1) + np.sum(target, axis=1) +1 dice = 2*num / den return dice.mean() def main(): """Create the model and start the evaluation process.""" parser= get_arguments() #os.environ["CUDA_VISIBLE_DEVICES"] = '0' with Engine(custom_parser=parser) as engine: args = parser.parse_args() torch.cuda.set_device(args.local_rank) h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.benchmark = True seed = args.random_seed if engine.distributed: seed = args.local_rank torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) model = EfficientSegBackbone(num_classes=args.num_classes, compound_coef=args.compound_coef, load_weights=True) print_model_parm_nums(model) # print_model_parm_flops(model) # model = nn.DataParallel(model) print('loading from checkpoint: {}'.format(args.restore_from)) if os.path.exists(args.restore_from): model.load_state_dict(torch.load(args.restore_from, map_location=torch.device('cpu'))) #model.load_state_dict(torch.load(args.restore_from, map_location=torch.device(args.local_rank))) else: print('File not exists in the reload path: {}'.format(args.restore_from)) model.eval() model.cuda() testloader = data.DataLoader( MyoPSDataSetVal(args.data_dir, args.val_list), batch_size=1, shuffle=False, pin_memory=True) if not os.path.exists(args.output_path): os.makedirs(args.output_path) dice_LV = 0 dice_RV = 0 dice_MY = 0 dice_edema = 0 dice_scars = 0 for index, batch in enumerate(testloader): # print('%d processd'%(index)) image, label, name, affine = batch affine = affine[0].numpy() with torch.no_grad(): output = predict_sliding(model, image, input_size, args.num_classes) seg_pred = np.asarray(np.argmax(output, axis=1), dtype=np.uint8) seg_pred = np.where(seg_pred == 1, 500, seg_pred) seg_pred = np.where(seg_pred == 2, 600, seg_pred) seg_pred = np.where(seg_pred == 3, 200, seg_pred) seg_pred = np.where(seg_pred == 4, 1220, seg_pred) seg_pred = np.where(seg_pred == 5, 2221, seg_pred) seg_pred_background = (seg_pred == 0) seg_pred_LV = (seg_pred == 500) seg_pred_RV = (seg_pred == 600) seg_pred_MY = (seg_pred == 200) seg_pred_edema = (seg_pred == 1220) seg_pred_scars = (seg_pred == 2221) seg_gt = np.asarray(np.argmax(label.cpu().numpy(), axis=1), dtype=np.uint8) seg_gt = np.where(seg_gt == 1, 500, seg_gt) seg_gt = np.where(seg_gt == 2, 600, seg_gt) seg_gt = np.where(seg_gt == 3, 200, seg_gt) seg_gt = np.where(seg_gt == 4, 1220, seg_gt) seg_gt = np.where(seg_gt == 5, 2221, seg_gt) seg_gt_background = (seg_gt == 0) seg_gt_LV = (seg_gt == 500) seg_gt_RV = (seg_gt == 600) seg_gt_MY = (seg_gt == 200) seg_gt_edema = (seg_gt == 1220) seg_gt_scars = (seg_gt == 2221) dice_LV_i = dice_score(seg_pred_LV, seg_gt_LV) dice_RV_i = dice_score(seg_pred_RV, seg_gt_RV) dice_MY_i = dice_score(seg_pred_MY, seg_gt_MY) dice_edema_i = dice_score(seg_pred_edema, seg_gt_edema) dice_scars_i = dice_score(seg_pred_scars, seg_gt_scars) print('Processing {}: LV = {:.4}, RV = {:.4}, MY = {:.4}, edema = {:.4}, scars = {:.4}'.format(name, dice_LV_i, dice_RV_i, dice_MY_i, dice_edema_i, dice_scars_i)) dice_LV += dice_LV_i dice_RV += dice_RV_i dice_MY += dice_MY_i dice_edema += dice_edema_i dice_scars += dice_scars_i seg_pred = seg_pred[0].transpose((1,2,0)) #240x240x155 seg_gt = seg_gt[0].transpose((1,2,0)) seg_pred = nib.Nifti1Image(seg_pred, affine=affine) seg_gt = nib.Nifti1Image(seg_gt, affine=affine) # seg_name = name[0].replace("volume", "segmentation") seg_name = name[0] seg_save_p = os.path.join(args.output_path+'/%s.nii.gz' % (seg_name)) gt_save_p = os.path.join(args.output_path + '/%s_gt.nii.gz' % (seg_name)) nib.save(seg_pred, seg_save_p) nib.save(seg_gt, gt_save_p) dice_LV_avg = dice_LV / (index + 1) dice_RV_avg = dice_RV / (index + 1) dice_MY_avg = dice_MY / (index + 1) dice_edema_avg = dice_edema / (index + 1) dice_scanrs_avg = dice_scars / (index + 1) print('Average score: LV = {:.4}, RV = {:.4}, MY = {:.4}, edema = {:.4}, scars = {:.4}'.format(dice_LV_avg, dice_RV_avg, dice_MY_avg, dice_edema_avg, dice_scanrs_avg)) if __name__ == '__main__': main()
jianpengz/EfficientSeg
evaluate.py
evaluate.py
py
14,181
python
en
code
3
github-code
6
18642608045
import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #่งฃๅ†ณไธญๆ–‡ไนฑ็  plt.figure(figsize=(6,9)) #่ฐƒ่Š‚ๅ›พๅฝขๅคงๅฐ labels = ['XL','L','M','S'] #ๅฎšไน‰ๆ ‡็ญพ sizes = [461,253,789,660] #ๆฏๅ—ๅ€ผ colors = ['red','yellowgreen','cyan','yellow'] #ๆฏๅ—้ขœ่‰ฒๅฎšไน‰ explode = (0,0,0,0.1) #ๅฐ†ๆŸไธ€ๅ—ๅˆ†ๅ‰ฒๅ‡บๆฅ๏ผŒๅ€ผ่ถŠๅคงๅˆ†ๅ‰ฒๅ‡บ็š„้—ด้š™่ถŠๅคง patches,text1,text2 = plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct = '%3.2f%%', #ๆ•ฐๅ€ผไฟ็•™ๅ›บๅฎšๅฐๆ•ฐไฝ startangle =90, #้€†ๆ—ถ้’ˆ่ตทๅง‹่ง’ๅบฆ่ฎพ็ฝฎ pctdistance = 0.6) #ๆ•ฐๅ€ผ่ทๅœ†ๅฟƒๅŠๅพ„ๅ€ๆ•ฐ่ท็ฆป for t in text1: t.set_size(20) plt.title('ๆœ่ฃ…่ฎพ่ฎก',fontsize=30) plt.axis('equal') plt.show()
RiddMa/ScrapyTest
Visualization2/LXY/hw/b.py
b.py
py
879
python
en
code
0
github-code
6
2361991036
from googleapiclient.discovery import build import os import pickle from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from googleapiclient.discovery import build from datetime import date # To use application: # - must add email address for testing in Google developer console # - requires client_screts.json - downloaded from Google OAuth, this should be kept secret # - token.pickle may need to be deleted if this script was used a long time ago def main(): credentials = None # load credentials from previous successful logins if os.path.exists("token.pickle"): print("Loading Credentials From File...") with open("token.pickle", "rb") as token: credentials = pickle.load(token) # no credentials or invalid if not credentials or not credentials.valid: if credentials and credentials.expired and credentials.refresh_token: print("Refreshing Access Token...") credentials.refresh(Request()) # refresh invalid token else: print("Fetching New Tokens...") scopes = ["https://www.googleapis.com/auth/youtube.readonly"] flow = InstalledAppFlow.from_client_secrets_file( "client_secrets.json", scopes) # loading credentials # ask to consent with built in server host flow.run_local_server(port=8080, promt="consent") credentials = flow.credentials # save the credentials for the next run with open("token.pickle", "wb") as f: print("Saving Credentials for Future Use...") pickle.dump(credentials, f) youtube = build("youtube", "v3", credentials=credentials) request = youtube.playlists().list(part="snippet,contentDetails", mine=True, maxResults=50) # maxResult default is 5, can be 0 to 50 (per page) response = request.execute() # study / troubleshoot purposes # print("RESPONSE") # print(response) # writing a text file # some characters that cannot be read will return as errors file = open(str(date.today()) + " Videos.txt", "w", errors="ignore") # for each playlist, retrieve title for item in response["items"]: file.write("******************\n") file.write("Playlist: " + item["snippet"]["title"] + "\n") videoCount = 1 nextToken = None # playlist can only send a max of 50 videos. Next videos will be stored in the next token for request while True: # find videos from playlistId videoRequest = youtube.playlistItems().list(part="snippet,contentDetails", playlistId=item["id"], maxResults=50, pageToken=nextToken) # maxResult default is 5, can be 0 to 50 (per page) videoResponse = videoRequest.execute() nextToken = videoResponse.get("nextPageToken") # study / troubleshoot purposes # print("VIDEORESPONSE") # print(videoResponse) # write each video's title for video in videoResponse["items"]: file.write(str(videoCount) + ": " + video["snippet"]["title"] + "\n") videoCount += 1 if not nextToken: break file.write("\n") # close files and objects youtube.close() file.close() if __name__ == "__main__": main()
KentV12/playlistSaver
main.py
main.py
py
3,487
python
en
code
0
github-code
6
551185141
import numpy as np import pandas as pd from datetime import datetime import matplotlib.pyplot as plt def convtime(year,doy,hour,min): d = datetime.strptime(str(doy),'%j') month = d.month day = d.day dt = datetime(int(year),int(month),int(day),int(hour),int(min)) return dt df = pd.read_csv('./Output/test1_2005_RSL_60.txt',delim_whitespace=True) datex = [] for ind in df.index: datex.append(convtime(df.at[ind,'Year'],df.at[ind,'DOY'],df.at[ind,'Hour'],df.at[ind,'Min'])) df['datetime'] = datex df.set_index('datetime',inplace=True) print(df) plt.figure(figsize=(12,5)) plt.pcolormesh(df.index,np.arange(0.1,3.1,0.1),df.iloc[:,5:35].T,cmap='YlGnBu',vmin=0,vmax=5) plt.xlabel('Month-day hour') plt.ylabel('$z/z_H$ [-]') plt.colorbar(label='U [m s$^{-1}$]') plt.draw() plt.figure() colormap = plt.cm.YlGnBu plt.gca().set_color_cycle([colormap(i) for i in np.linspace(0, 0.9, 30)]) for x in np.arange(len(df.index)/4): plt.plot(df.iloc[x,5:35], np.arange(0.1,3.1,0.1)) plt.xlabel('U [m s$^{-1}$]') plt.ylabel('$z/z_H$ [-]') plt.show()
Urban-Meteorology-Reading/SUEWS
Test/BaseRun/2018a/test.py
test.py
py
1,072
python
en
code
6
github-code
6
38453486962
from itertools import combinations from collections import deque n = int(input()) ppl = list(map(int,input().split())) totalPpl = sum(ppl) graph = [[] for _ in range(n+1)] for i in range(n): graph[i+1] = list(map(int,input().split()))[1:] def bfs(L): picked = [0]*(n+1) for i in L: picked[i] = 1 visited = [0]*(n+1) visited[L[0]] = 1 dq = deque([L[0]]) while dq: p = dq.popleft() for i in graph[p]: if picked[i] == 1 and visited[i] == 0: visited[i] = 1 dq.append(i) for i in L: if visited[i] == 0: return False return True def getPpl(L): s = 0 for i in L: s += ppl[i-1] another = totalPpl - s return abs(another - s) ans = int(1e8) N = list(range(1,n+1)) for i in range(1,n): comb = combinations(N,i) for A in comb: B = list(set(N) - set(A)) if bfs(A) and bfs(B): ans = min(ans,getPpl(A)) if ans == int(1e8): print(-1) else: print(ans)
LightPotato99/baekjoon
math/combination/gerymander.py
gerymander.py
py
1,036
python
en
code
0
github-code
6
34861920007
from dataclasses import dataclass from typing import Optional import django_tables2 as tables from django.conf import settings from django.contrib.auth.models import AnonymousUser from django.db.models import DateField, DateTimeField from django.template import Context, Template from django.urls import reverse from django.utils.encoding import escape_uri_path from django.utils.formats import date_format from django.utils.safestring import mark_safe from django_tables2.columns import library from utilities.utils import get_viewname, content_type_name, content_type_identifier __all__ = ( 'ActionsColumn', 'BooleanColumn', 'ChoiceFieldColumn', 'ColorColumn', 'ColoredLabelColumn', 'LinkedCountColumn', 'ManyToManyColumn', 'TagColumn', 'TemplateColumn', 'ToggleColumn', 'UtilizationColumn', 'TruncatedTextColumn', 'ContentTypeColumn', 'ContentTypesColumn', ) # # Django-tables2 overrides # @library.register class DateColumn(tables.DateColumn): """ Overrides the default implementation of DateColumn to better handle null values, returning a default value for tables and null when exporting data. It is registered in the tables library to use this class instead of the default, making this behavior consistent in all fields of type DateField. """ def value(self, value): return value @classmethod def from_field(cls, field, **kwargs): if isinstance(field, DateField): return cls(**kwargs) @library.register class DateTimeColumn(tables.DateTimeColumn): """ Overrides the default implementation of DateTimeColumn to better handle null values, returning a default value for tables and null when exporting data. It is registered in the tables library to use this class instead of the default, making this behavior consistent in all fields of type DateTimeField. """ def value(self, value): if value: return date_format(value, format="SHORT_DATETIME_FORMAT") return None @classmethod def from_field(cls, field, **kwargs): if isinstance(field, DateTimeField): return cls(**kwargs) class ManyToManyColumn(tables.ManyToManyColumn): """ Overrides django-tables2's stock ManyToManyColumn to ensure that value() returns only plaintext data. """ def value(self, value): items = [self.transform(item) for item in self.filter(value)] return self.separator.join(items) class TemplateColumn(tables.TemplateColumn): """ Overrides django-tables2's stock TemplateColumn class to render a placeholder symbol if the returned value is an empty string. """ PLACEHOLDER = mark_safe('&mdash;') def __init__(self, export_raw=False, **kwargs): """ Args: export_raw: If true, data export returns the raw field value rather than the rendered template. (Default: False) """ super().__init__(**kwargs) self.export_raw = export_raw def render(self, *args, **kwargs): ret = super().render(*args, **kwargs) if not ret.strip(): return self.PLACEHOLDER return ret def value(self, **kwargs): if self.export_raw: # Skip template rendering and export raw value return kwargs.get('value') ret = super().value(**kwargs) if ret == self.PLACEHOLDER: return '' return ret # # Custom columns # class ToggleColumn(tables.CheckBoxColumn): """ Extend CheckBoxColumn to add a "toggle all" checkbox in the column header. """ def __init__(self, *args, **kwargs): default = kwargs.pop('default', '') visible = kwargs.pop('visible', False) if 'attrs' not in kwargs: kwargs['attrs'] = { 'td': { 'class': 'whitespace-nowrap px-3 py-4 text-gray-500', }, 'input': { 'class': 'h-4 w-4 rounded border-gray-300 text-indigo-600' } } super().__init__(*args, default=default, visible=visible, **kwargs) @property def header(self): return mark_safe('<input type="checkbox" class="toggle h-4 w-4 rounded border-gray-300 text-indigo-600" title="Toggle All" />') class BooleanColumn(tables.Column): """ Custom implementation of BooleanColumn to render a nicely-formatted checkmark or X icon instead of a Unicode character. """ def render(self, value): if value: rendered = '<span class="text-green-500"><i class="mdi mdi-check-bold"></i></span>' elif value is None: rendered = '<span class="text-gray-500">&mdash;</span>' else: rendered = '<span class="text-red-500"><i class="mdi mdi-close-thick"></i></span>' return mark_safe(rendered) def value(self, value): return str(value) @dataclass class ActionsItem: title: str icon: str permission: Optional[str] = None css_class: Optional[str] = 'bg-zinc-500 hover:bg-zinc-400' class ActionsColumn(tables.Column): """ A dropdown menu which provides edit, delete, and changelog links for an object. Can optionally include additional buttons rendered from a template string. :param actions: The ordered list of dropdown menu items to include :param extra_buttons: A Django template string which renders additional buttons preceding the actions dropdown :param split_actions: When True, converts the actions dropdown menu into a split button with first action as the direct button link and icon (default: True) """ attrs = {'td': {'class': 'whitespace-nowrap px-3 py-4 text-right text-black dark:text-gray-200 print:hidden'}} empty_values = () actions = { 'edit': ActionsItem('Edit', 'pencil', 'change', 'bg-yellow-500 hover:bg-yellow-400'), 'delete': ActionsItem('Delete', 'trash-can-outline', 'delete', 'bg-red-500 hover:bg-red-400'), 'changelog': ActionsItem('Changelog', 'history'), } def __init__(self, *args, actions=('edit', 'delete', 'changelog'), extra_buttons='', split_actions=True, **kwargs): super().__init__(*args, **kwargs) self.extra_buttons = extra_buttons self.split_actions = split_actions # Determine which actions to enable self.actions = { name: self.actions[name] for name in actions } def header(self): return '' def render(self, record, table, **kwargs): # Skip dummy records (e.g. available VLANs) or those with no actions if not getattr(record, 'pk', None) or (not self.actions and not self.extra_buttons): return '' model = table.Meta.model request = getattr(table, 'context', {}).get('request') url_appendix = f'?return_url={escape_uri_path(request.get_full_path())}' if request else '' html = '' buttons = [] user = getattr(request, 'user', AnonymousUser()) for idx, (action, attrs) in enumerate(self.actions.items()): permission = f'{model._meta.app_label}.{attrs.permission}_{model._meta.model_name}' if attrs.permission is None or user.has_perm(permission): url = reverse(get_viewname(model, action), kwargs={'pk': record.pk}) buttons.append( f'<a class="px-2 py-1 rounded-md {attrs.css_class}" href="{url}{url_appendix}" type="button">' f'<i class="mdi mdi-{attrs.icon}"></i></a>' ) rendered_extra_buttons = '' # Render any extra buttons from template code if self.extra_buttons: template = Template(self.extra_buttons) context = getattr(table, "context", Context()) context.update({'record': record}) rendered_extra_buttons = template.render(context) + html html += ( f'<div class="flex flex-row space-x-2 justify-end">' f' {rendered_extra_buttons}' f' {"".join(buttons)}' f'</div>' ) return mark_safe(html) class ChoiceFieldColumn(tables.Column): """ Render a model's static ChoiceField with its value from `get_FOO_display()` as a colored badge. Background color is set by the instance's get_FOO_color() method, if defined. """ DEFAULT_BG_COLOR = 'bg-gray-500' def render(self, record, bound_column, value): if value in self.empty_values: return self.default # Determine the background color to use (try calling object.get_FOO_color()) try: bg_color = getattr(record, f'get_{bound_column.name}_color')() or self.DEFAULT_BG_COLOR except AttributeError: bg_color = self.DEFAULT_BG_COLOR return mark_safe(f'<span class="inline-flex items-center rounded-full px-3 py-0.5 text-sm text-white font-medium {bg_color}">{value}</span>') def value(self, value): return value class ContentTypeColumn(tables.Column): """ Display a ContentType instance. """ def render(self, value): if value is None: return None return content_type_name(value) def value(self, value): if value is None: return None return content_type_identifier(value) class ContentTypesColumn(tables.ManyToManyColumn): """ Display a list of ContentType instances. """ def __init__(self, separator=None, *args, **kwargs): # Use a line break as the default separator if separator is None: separator = mark_safe('<br />') super().__init__(separator=separator, *args, **kwargs) def transform(self, obj): return content_type_name(obj, include_app=False) def value(self, value): return ','.join([ content_type_identifier(ct) for ct in self.filter(value) ]) class ColorColumn(tables.Column): """ Display an arbitrary color value, specified in RRGGBB format. """ def render(self, value): return mark_safe( f'<span class="color-label" style="background-color: #{value}">&nbsp;</span>' ) def value(self, value): return f'#{value}' class ColoredLabelColumn(tables.TemplateColumn): """ Render a related object as a colored label. The related object must have a `color` attribute (specifying an RRGGBB value) and a `get_absolute_url()` method. """ template_code = """ {% load helpers %} {% if value %} <span class="badge" style="color: {{ value.color|fgcolor }}; background-color: #{{ value.color }}"> <a href="{{ value.get_absolute_url }}">{{ value }}</a> </span> {% else %} &mdash; {% endif %} """ def __init__(self, *args, **kwargs): super().__init__(template_code=self.template_code, *args, **kwargs) def value(self, value): return str(value) class LinkedCountColumn(tables.Column): """ Render a count of related objects linked to a filtered URL. :param viewname: The view name to use for URL resolution :param view_kwargs: Additional kwargs to pass for URL resolution (optional) :param url_params: A dict of query parameters to append to the URL (e.g. ?foo=bar) (optional) """ def __init__(self, viewname, *args, view_kwargs=None, url_params=None, default=0, **kwargs): self.viewname = viewname self.view_kwargs = view_kwargs or {} self.url_params = url_params super().__init__(*args, default=default, **kwargs) def render(self, record, value): if value: url = reverse(self.viewname, kwargs=self.view_kwargs) if self.url_params: url += '?' + '&'.join([ f'{k}={getattr(record, v) or settings.FILTERS_NULL_CHOICE_VALUE}' for k, v in self.url_params.items() ]) return mark_safe(f'<a href="{url}">{value}</a>') return value def value(self, value): return value class TagColumn(tables.TemplateColumn): """ Display a list of Tags assigned to the object. """ template_code = """ {% load helpers %} {% for tag in value.all %} {% tag tag url_name %} {% empty %} <span class="text-gray-400">&mdash;</span> {% endfor %} """ def __init__(self, url_name=None): super().__init__( orderable=False, template_code=self.template_code, extra_context={'url_name': url_name} ) def value(self, value): return ",".join([tag.name for tag in value.all()]) class UtilizationColumn(tables.TemplateColumn): """ Display a colored utilization bar graph. """ template_code = """{% load helpers %}{% if record.pk %}{% utilization_graph value %}{% endif %}""" def __init__(self, *args, **kwargs): super().__init__(template_code=self.template_code, *args, **kwargs) def value(self, value): return f'{value}%' class MarkdownColumn(tables.TemplateColumn): """ Render a Markdown string. """ template_code = """ {% if value %} {{ value|markdown }} {% else %} &mdash; {% endif %} """ def __init__(self): super().__init__( template_code=self.template_code ) def value(self, value): return value class TruncatedTextColumn(tables.Column): """A Column to limit to 100 characters and add an ellipsis""" def render(self, value): if len(value) > 52: return value[0:49] + '...' return str(value)
Status-Page/Status-Page
statuspage/statuspage/tables/columns.py
columns.py
py
13,718
python
en
code
45
github-code
6
5694311921
import torch import torch.nn as nn from Model2.BottomUp import Encoder from Model2.TopDown import Decoder import torchsummary class FeaturePyramidNetwork(nn.Module): def __init__(self, n_classes=2): super(FeaturePyramidNetwork, self).__init__() self.encoder = Encoder() self.decoder = Decoder() self.output = nn.Conv2d(512, n_classes, kernel_size=(3, 3), stride=1, padding=1) def _up_size(self, x): return nn.functional.upsample(x, size=(224, 224), mode='nearest') def forward(self, x): c2, c3, c4, c5 = self.encoder(x) m5, m4, m3, m2 = self.decoder(c2, c3, c4, c5) p5 = self._up_size(m5) p4 = self._up_size(m4) p3 = self._up_size(m3) p2 = self._up_size(m2) p_cat = torch.cat([p5, p4, p3, p2], dim=1) out = self.output(p_cat) return out model = FeaturePyramidNetwork() torchsummary.summary(model, (3, 224, 224), device='cpu')
dmdm2002/FPN
Model/FPN.py
FPN.py
py
995
python
en
code
2
github-code
6
18023144134
import subprocess import os def collect_logs(start_time, end_time): # 'log show' ๋ช…๋ น์–ด๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋กœ๊ทธ ์ˆ˜์ง‘ command = [ 'log', 'show', '--start', start_time, '--end', end_time ] result = subprocess.run(command, capture_output=True, text=True) if result.returncode == 0: return result.stdout else: print(f"Error collecting logs: {result.stderr}") return None def main(): # 'mac_result' ํด๋” ์ƒ์„ฑ ํ˜น์€ ํ™•์ธ results_folder = 'mac_result' if not os.path.exists(results_folder): os.makedirs(results_folder) start_time = input("Enter the start time for log collection (format: 'yyyy-mm-dd hh:mm:ss'): ") end_time = input("Enter the end time for log collection (format: 'yyyy-mm-dd hh:mm:ss'): ") logs = collect_logs(start_time, end_time) if logs: # ๊ฒฐ๊ณผ๊ฐ’ ์ €์žฅ ๊ฒฝ๋กœ๋ฅผ 'mac_result' ํด๋” ๋‚ด๋กœ ์ง€์ • result_file_path = os.path.join(results_folder, "collected_logs.txt") with open(result_file_path, 'w') as file: file.write(logs) print(f"Logs collected and saved to {result_file_path}.") if __name__ == "__main__": main()
KIMJOONSIG/Reboot3
Mac/Eventlog.py
Eventlog.py
py
1,232
python
en
code
0
github-code
6
6518786122
#!/usr/bin/env python import datetime from elasticsearch import Elasticsearch from jobs.lib import Configuration from jobs.lib import Send_Alert local_config = { "minutes": 30, "index": ["workstations-*", "servers-*"], "max_results": 1000, "severity": "medium" } # Query goes here search_query = { "query": { "bool": { "must": [], "filter": [ { "range": { "@timestamp": { "format": "strict_date_optional_time", "gte": datetime.datetime.utcnow() - datetime.timedelta(minutes=local_config["minutes"]), "lte": datetime.datetime.utcnow() } } }, { "match_phrase": { "winlog.channel": "Microsoft-Windows-Sysmon/Operational" } }, { "match_phrase": { "winlog.event_id": "11" } }, { "match_phrase": { "process.name": "powershell.exe" } } ], } }, } def init(): config = Configuration.readconfig() connection = str(config["elasticsearch"]["connection"]) es = Elasticsearch([connection], verify_certs=False, ssl_show_warn=False) res = es.search(index=local_config["index"], body=search_query, size=local_config["max_results"]) # Iterate through results for doc in res['hits']['hits']: if doc['_source']['file']['path'].startswith('C:\\example\\exclude_dir\\'): continue Send_Alert.send("Powershell on " + doc['_source']['host']['name'] + " wrote " + doc['_source']['file']['path'], local_config["severity"])
0xbcf/elasticsearch_siem
jobs/PowershellFileWrite.py
PowershellFileWrite.py
py
1,669
python
en
code
0
github-code
6
9293795541
# Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param root, a tree node # @return a list of integers def preorderTraversal(self, root): if not root: return [] stack, result = [root], [] while stack: node = stack.pop() if node.right: stack.append(node.right) if node.left: stack.append(node.left) result.append(node.val) return result def preorderTraversal(self, root): if not root: return [] result = [] result.append(root.val) result += self.preorderTraversal(root.left) result += self.preorderTraversal(root.right) return result
rioshen/Problems
leetcode/python/binary_tree_preorder_traversal.py
binary_tree_preorder_traversal.py
py
865
python
en
code
1
github-code
6
9434899492
""" ๅœจ่ฟ™้‡ŒๆทปๅŠ ๅ„็ง่‡ชๅฎšไน‰็š„ๆ–ญ่จ€๏ผŒๆ–ญ่จ€ๅคฑ่ดฅๆŠ›ๅ‡บAssertionErrorๅฐฑOKใ€‚ ๅœจassertion.pyไธญไฝ ๅฏไปฅๆทปๅŠ ๆ›ดๅคšๆ›ดไธฐๅฏŒ็š„ๆ–ญ่จ€๏ผŒๅ“ๅบ”ๆ–ญ่จ€ใ€ๆ—ฅๅฟ—ๆ–ญ่จ€ใ€ๆ•ฐๆฎๅบ“ๆ–ญ่จ€็ญ‰็ญ‰๏ผŒ่ฏท่‡ช่กŒๅฐ่ฃ…ใ€‚ """ def assertHTTPCode(response, code_list=None): res_code = response.status_code if not code_list: code_list = [200] if res_code not in code_list: raise AssertionError('ๅ“ๅบ”codeไธๅœจๅˆ—่กจไธญ๏ผ') # ๆŠ›ๅ‡บAssertionError๏ผŒunittestไผš่‡ชๅŠจๅˆคๅˆซไธบ็”จไพ‹Failure๏ผŒไธๆ˜ฏError
XiaoDjan/Test_framework
Test_framework/utils/assertion.py
assertion.py
py
543
python
zh
code
1
github-code
6
71233413949
# -*- coding: utf-8 -*- """ Created on Fri Mar 1 11:14:40 2019 @author: AndrewW """ # A block cipher transforms a fixed-sized block (usually 8 or 16 bytes) of # plaintext into ciphertext. But we almost never want to transform a single # block; we encrypt irregularly-sized messages. # One way we account for irregularly-sized messages is by padding, creating # a plaintext that is an even multiple of the blocksize. The most popular # padding scheme is called PKCS#7. # So: pad any block to a specific block length, by appending the number of # bytes of padding to the end of the block. For instance, # "YELLOW SUBMARINE" # ... padded to 20 bytes would be: # "YELLOW SUBMARINE\x04\x04\x04\x04" irregular = "YELLOW SUBMARINE" length = int(input("How long should the block be? ")) padding = length - len(irregular) padding_hex = hex(padding) padding_str = str(padding_hex) if len(str(padding_hex))==3: padding_bin = "\\" + "x0" + padding_str[2::] else: padding_bin = "\\" + "x" + padding_str[2::] for j in range (0,int(padding)): irregular += str(padding_bin) print(irregular) print(len(irregular))
drewadwade/CTFs
Matasano Crypto Challenge/Set 2/Implement PKCS#7 padding.py
Implement PKCS#7 padding.py
py
1,173
python
en
code
1
github-code
6
8910492018
import pytest, subprocess, os from pathlib import Path COMMAND = ['python', 'framextract', 'tests/FT.mp4'] def capture(command): proc = subprocess.run(command, capture_output=True) return proc.stdout, proc.stderr, proc.returncode def test_framextract_no_param(): _, err, exitcode = capture(COMMAND[:-1]) assert exitcode != 0 assert err.startswith(b'usage: framextract [-h] [--version]') def test_framextract(tmp_path): pwd = Path.cwd() command = [COMMAND[0], pwd/COMMAND[1], pwd/COMMAND[-1]] os.chdir(tmp_path) out, _, exitcode = capture(command) os.chdir(pwd) assert exitcode == 0 assert out.endswith(b'104 frames were extracted to "FT"\n') def test_framextract_invalid_input_video(): command = COMMAND[:-1] + ['FT.mp4'] out, _, exitcode = capture(command) assert exitcode == 0 assert out.endswith(b'Couldn\'t read video stream from file "FT.mp4"\n') def test_framextract_output_framerate(tmp_path): command = COMMAND + ['-o', tmp_path/'FT', '-f', '4'] out, _, exitcode = capture(command) assert exitcode == 0 assert out.endswith(f'2 frames were extracted to "{tmp_path}/FT"\n' .encode('utf-8')) def test_framextract_get_info(tmp_path): command = COMMAND + ['--get-info-only'] out, _, exitcode = capture(command) assert exitcode == 0 assert out.endswith(b'Frame size: 960 X 540\n') def test_framextract_small_framerate(tmp_path): command = COMMAND + ['-o', tmp_path/'FT', '-f', '.01'] out, _, exitcode = capture(command) assert exitcode == 0 assert out.endswith(f'104 frames were extracted to "{tmp_path}/FT"\n' .encode('utf-8'))
FirmaTechnologies/framextract
tests/test_cli.py
test_cli.py
py
1,699
python
en
code
1
github-code
6
6323481356
from typing import * import asyncio import logging from datetime import datetime, timedelta, time, date import traceback import lightbulb from lightbulb.commands.base import OptionModifier as OM import hikari import apscheduler from apscheduler.triggers.interval import IntervalTrigger from humanize import naturaldelta from core import Table, getLogger, Inu, stopwatch from utils import Reddit, AnimeCornerAPI, AnimeCornerPaginator2 log = getLogger(__name__) METHOD_SYNC_TIME: int = 60*60*6 SYNCING = False TARGET_TIME = time(16,00) TRIGGER_NAME = "Anime Corner Trigger" bot: Inu plugin = lightbulb.Plugin("poll loader", "loads polls from database") @plugin.listener(hikari.StartedEvent) async def load_tasks(event: hikari.ShardReadyEvent): global SYNCING if SYNCING: return SYNCING = True await asyncio.sleep(3) await method() logging.getLogger('apscheduler.executors.default').setLevel(logging.WARNING) await init_method() await defer_trigger_to_time() async def defer_trigger_to_time(target_time: time | None = TARGET_TIME): target_datetime = None if target_time is not None: current_time = datetime.now().time() target_datetime = datetime.combine(date.today(), target_time) if target_datetime.time() < current_time: target_datetime += timedelta(days=1) wait_time = (target_datetime - datetime.now()).total_seconds() log.info(f"Waiting for {naturaldelta(timedelta(seconds=wait_time))} to shedule the {TRIGGER_NAME}") trigger = IntervalTrigger(seconds=METHOD_SYNC_TIME, start_date=target_datetime) plugin.bot.scheduler.add_job(method, trigger) async def init_method(): pass @stopwatch( note=f"Task: Fetching and caching Anime Corner Ranking (Reddit + Anime Corner)", cache_threshold=timedelta(microseconds=1) ) async def method(): try: submission = await Reddit.get_anime_of_the_week_post() pag = AnimeCornerPaginator2() pag.submission = submission pag.title = submission.title url = pag.anime_corner_url api = AnimeCornerAPI() await api.fetch_ranking(url) except Exception as e: log.error( f"Error while fetching Anime Corner ranking with URL `{url}`\n" f"{traceback.format_exc()}" ) def load(inu: Inu): global bot bot = inu global METHOD_SYNC_TIME METHOD_SYNC_TIME = inu.conf.commands.anime_corner_sync_time * 60 * 60 inu.add_plugin(plugin)
zp33dy/inu
inu/ext/tasks/anime_corner.py
anime_corner.py
py
2,507
python
en
code
1
github-code
6
41932079330
import numpy as np from scipy import misc import pandas as pd import os # 1) Examen ## 2) Crear un vector de ceros de tamaรฑo 10 vector_zeros_2 = np.zeros(10) print('2) --> ', vector_zeros_2) ## 3) Crear un vector de ceros de tamaรฑo 10 y el de la posicion 5 sea igual a 1 vector_zeros_3 = np.zeros(10) vector_zeros_3[5] = 1 print('3) --> ', vector_zeros_3) ## 4) Cambiar el orden de un vector de 50 elementos, el de la posicion 1 es el de la 50 etc. vector_zeros_4 = np.arange(50) vector_zeros_4 = vector_zeros_4[::-1] print('4) --> ', vector_zeros_4) ## 5) Crear una matriz de 3 x 3 con valores del cero al 8 matriz = np.arange(9) matriz = matriz.reshape((3,3)) print('5) --> ', matriz) ## 6) Encontrar los indices que no sean cero en un arreglo arreglo_indices = [1,2,0,0,4,0] arreglo_indices = np.array(arreglo_indices) resultado = np.where(arreglo_indices != 0)[0] print('6) --> ', resultado) ## 7) Crear una matriz de identidad 3 x 3 matriz_identidad = np.eye(3) print('7) --> ', matriz_identidad) ## 8) Crear una matriz 3 x 3 x 3 con valores randomicos matriz_randomica = np.random.randint(27, size=27).reshape(3,3,3) print('8) --> ', matriz_randomica) ## 9) Crear una matriz 10 x 10 y encontrar el mayor y el menor matriz_diez = np.arange(100).reshape(10,10) menor_valor = matriz_diez.min() mayor_valor = matriz_diez.max() print('9) menor --> ', menor_valor) print('9) mayor --> ', mayor_valor) ## 10) Sacar los colores RGB unicos en una imagen (cuales rgb existen ej: 0, 0, 0 - 255,255,255 -> 2 colores) imagen = misc.face() resultado = len(np.unique(imagen, axis=0)) print('10) --> ', resultado) ## 11) ยฟComo crear una serie de una lista, diccionario o arreglo? mylist = list('abcdefghijklmnsopqrstuvwxyz') myarr = np.arange(26) mydict = dict(zip(mylist, myarr)) serie = pd.Series(mylist) serie_diccionario = pd.Series(mydict) serie_arreglo = pd.Series(myarr) print('11) --> Serie de lista: ', serie, '\n') print('11) --> Serie de diccionario: ', serie_diccionario, '\n') print('11) --> Serie de arreglo ', serie_arreglo, '\n') ## 12) ยฟComo convertir el indice de una serie en una columna de un DataFrame? mylist = list('abcedfghijklmnopqrstuvwxyz') myarr = np.arange(26) mydict = dict(zip(mylist, myarr)) ser = pd.Series(mydict) df = pd.DataFrame(ser).reset_index() # Transformar la serie en dataframe y hacer una columna indice df1 = pd.DataFrame(ser, index=['a']) ## 13) ยฟComo combinar varias series para hacer un DataFrame? ser1 = pd.Series(list('abcedfghijklmnopqrstuvwxyz')) ser2 = pd.Series(np.arange(26)) df_combinado = pd.concat([ser1, ser2], axis = 1) df_combinado = pd.DataFrame(df_combinado) print('13) --> ', df_combinado) ## 14) ยฟComo obtener los items que esten en una serie A y no en una serie B? ser1 = pd.Series([1, 2, 3, 4, 5]) ser2 = pd.Series([4, 5, 6, 7, 8]) items_diferencia = np.setdiff1d(ser1, ser2) print('14) --> ', items_diferencia) ## 15) ยฟComo obtener los items que no son comunes en una serie A y serie B? ser1 = pd.Series([1, 2, 3, 4, 5]) ser2 = pd.Series([4, 5, 6, 7, 8]) items_conjuncion = set(ser1) ^ set(ser2) items_conjuncion = list(items_conjuncion) items_conjuncion = pd.Series(items_conjuncion) print('15) --> ', items_conjuncion, '\n') ## 16) ยฟComo obtener el numero de veces que se repite un valor en una serie? ser = pd.Series(np.take(list('abcdefgh'), np.random.randint(8, size=30))) repeticiones, contador = np.unique(ser, return_counts=True) repeticiones = dict(zip(repeticiones, contador)) print(repeticiones) print(contador) print('16) --> ', repeticiones, '\n') ## 17) ยฟComo mantener los 2 valores mas repetidos de una serie, y a los demas valores cambiarles por 0 ? np.random.RandomState(100) ser = pd.Series(np.random.randint(1, 5, [12])) valores_repetidos, contador = np.unique(ser, return_counts=True) print('serie --> ', ser) print('contador --> ', ser) indice = np.argsort(-contador) print('indice --> ', indice) valores_repetidos = valores_repetidos[indice] valores_repetidos[2:] = 0 print('17) --> Valores repetidos', valores_repetidos) ## 18) ยฟComo transformar una serie de un arreglo de numpy a un DataFrame con un `shape` definido? ser = pd.Series(np.random.randint(1, 10, 35)) df_shape = pd.DataFrame(ser.values.reshape(7,5)) print('18) --> ', df_shape) ## 19) ยฟObtener los valores de una serie conociendo la posicion por indice? ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz')) pos = [0, 4, 8, 14, 20] # a e i o u resultado = ser[pos] print('19) --> ', resultado) ## 20) ยฟComo anadir series vertical u horizontalmente a un DataFrame? ser1 = pd.Series(range(5)) ser2 = pd.Series(list('abcde')) #Verical df1 = pd.concat([pd.DataFrame(),ser2], ignore_index = True) #Horizontal df2 = pd.DataFrame().append(ser1, ignore_index=True) print('20) Vertical --> ', df1) print('21) Horizontal --> ', df2) ## 21)ยฟObtener la media de una serie agrupada por otra serie? #`groupby` tambien esta disponible en series. frutas = pd.Series(np.random.choice(['manzana', 'banana', 'zanahoria'], 10)) pesos = pd.Series(np.linspace(1, 10, 10)) print(pesos.tolist()) print(frutas.tolist()) #> [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] #> ['banana', 'carrot', 'apple', 'carrot', 'carrot', 'apple', 'banana', 'carrot', 'apple', 'carrot'] # Los valores van a cambiar por ser random # apple 6.0 # banana 4.0 # carrot 5.8 # dtype: float64 media_agrupada = pd.concat([frutas, pesos], axis = 1) media_agrupada = media_agrupada.groupby(media_agrupada[0], as_index=False)[1].mean() print('21) --> \n', media_agrupada) ## 22)ยฟComo importar solo columnas especificas de un archivo csv? #https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv. path = "./archivo.csv" data_csv = pd.read_csv( path, nrows = 10) columnas = ['crim', 'zn', 'indus'] data_tres_columnas = pd.read_csv(path, nrows=10, usecols=columnas) print('22) --> ', data_tres_columnas)
2020-A-JS-GR1/py-velasquez-revelo-jefferson-david
examen/examen.py
examen.py
py
5,945
python
es
code
0
github-code
6
70056771389
# week 8, binary search # today's plan # 1: binary_search # 2: ex 6 (solution) # 3: quiz 3 (solution) def binary_search(L, s): '''(list of int, int) -> bool Return True iff s is an element of L, otherwise False REQ: L must be sorted in increasing order >>> binary_search([-5, 3, 4, 5, 7], 4) True >>> binary_search([], 3) False >>> binary_search([1, 2, 4, 5], 5) True >>> binary_search([4, 10, 11], 5) False ''' # BASE CASE: If L is empty, it's not in the list if L == []: result = False # RECURSIVE DECOMP: Pick the middle element, if we found # what we're looking for, great. If not, then we've at # least cut the list in half else: # get the middle element of the list midpoint = len(L) // 2 median = L[midpoint] # if we found it, then we can stop if s == median: result = True # if we didn't find it, then see whether we need to continue searching # in the left side of the list, or the right elif s < median: result = binary_search(L[:midpoint], s) else: result = binary_search(L[midpoint+1:], s) return result # restore internal comments def binary_search2(L, s): '''(list of int, int) -> int Return the index of s in the list L, or -1 if s is not in L REQ: L must be sorted in increasing order ''' # if L == []: result = -1 else: # midpoint = len(L) // 2 median = L[midpoint] if s == median: # result = midpoint elif s < median: # result = binary_search2(L[:midpoint], s) else: # result = binary_search2(L[midpoint+1:], s) # if result != -1: result += midpoint + 1 return result def binary_search2(L, s): '''(list of int, int) -> int Return the index of s in the list L, or -1 if s is not in L REQ: L must be sorted in increasing order ''' # BASE CASE: If L is empty, return -1 if L == []: result = -1 else: # GENERAL CASE # Get the middle value of L, if it's larger than s, then s must be in # the first half of the list, so call binary_search on the first half, # otherwise, call it on the second half of L, if it's equal to s, then # we've found s and we can stop midpoint = len(L) // 2 median = L[midpoint] if s == median: # found it. return its index result = midpoint elif s < median: # if s is in L, it must be in the first half of the list # so just perform a binary search on the first half of the list # and return that search's result result = binary_search2(L[:midpoint], s) else: # if s is in L, it must be in the latter half of the list # so perform a binary search on the latter half of the list, # however, this time, if we do get a result, we have to return # its offset from our current midpoint result = binary_search2(L[midpoint+1:], s) # if we didn't find it, just pass on the -1, but if we did # we have to add the index in the right list to the index of # our middle element to get its index in our list if result != -1: result += midpoint + 1 return result def binary_search3(L, s): '''(list of int, int) -> int Return the index of s in the list L, or -1 if s is not in L REQ: L must be sorted in increasing order ''' if L == []: result = -1 else: result = binary_search3_helper(L, s, 0, len(L)-1) return result def binary_search3_helper(L, s, start, end): # Base Case: One item list, start=0, end=0 # If that element is the one we're looking for return its index otherwise return -1 if start == end: if s == L[start]: result = start else: result = -1 # recursive decomposition: else: midpoint = (start + end) // 2 median = L[midpoint] # 3 cases, the element in the middle is the one we're looking for if s == median: result = midpoint # the middle element is greater than the value for which we're # searching, so look to the left elif s < median: result = binary_search3_helper(L, s, start, midpoint) # the middle element is smaller than the value for which were # searching, so look to the right else: result = binary_search3_helper(L, s, midpoint+1, end) return result def binary_search4(L, s): '''(list of float) -> int Return the index of s in the list L, or -1 if s is not in L REQ: L must be a sorted list ''' start = 0 end = len(L) - 1 found = False result = -1 while not found and start <= end: midpoint = (start + end) // 2 median = L[midpoint] # the element in the middle is the one we're looking for if s == median: found = True result = midpoint else: # the middle element is greater than the value for which we're # searching, so look to the left if s < median: end = midpoint - 1 # the middle element is smaller than the value for which were # searching, so look to the right else: start = midpoint + 1 return result if(__name__ == "__main__"): L = [1, 2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 20, 25] print(binary_search([], 3)) print(binary_search(L, 3)) print(binary_search(L, 15)) print(binary_search2([], 3)) print(binary_search2(L, 3)) print(binary_search2(L, 15)) print(binary_search3([], 3)) print(binary_search3(L, 3)) print(binary_search3(L, 15)) print(binary_search4([], 3)) print(binary_search4(L, 3)) print(binary_search4(L, 15))
BoZhaoUT/Teaching
Winter_2016_CSCA48_Intro_to_Computer_Science_II/Week_8_Binary_Search/week_8.py
week_8.py
py
6,132
python
en
code
2
github-code
6
20233659704
# Importamos las dependencias del cรกlculo de las similitudes from metric.PearsonCorrelation import PearsonCorrelation from metric.CosineDistance import CosineDistance from metric.EuclideanDistance import EuclideanDistance # Importamos las dependencias del cรกlculo de la predicciรณn from prediction.SimplePrediction import SimplePrediction from prediction.DifferenceAverage import DifferenceAverage # Importamos la clase recomendadora from Recommender import Recommender # Importamos import argparse import sys import time if len(sys.argv) != 1: parser = argparse.ArgumentParser() parser.add_argument("-f", "--filename", required=True, help="entering the name of the file you want to analyze") parser.add_argument("-m", "--metric", required=True, help="introduction of the type of chosen metric --> [0] Pearson Correlation [1] Euclidean Distance [2] Cosine Distance") parser.add_argument("-p", "--prediction", required=True, help="introduction of the type of chosen prediction --> [0] Simple Prediction [1] Difference Average") parser.add_argument("-n", "--num_neighbors", required=True, help="introduction of the number of neighbors for the analysis of the recommendation") args = parser.parse_args() metric = int(args.metric) prediction = int(args.prediction) num_neighbors = int(args.num_neighbors) # Leemos el fichero de entrada de datos file_name = f"./data/{str(args.filename)}" # Controlamos el caso en el que los vecinos son menores que 1 if (num_neighbors < 1): print("The value of the number of neighbors must not be less than 1") sys.exit(1) # Controlamos el caso en el que se introduce incorrectamente el รญndice de la mรฉtrica if (metric < 0 or metric > 2): print("\nThe values of the metric must be between 0 and 2") print("The possible values are : \n") print("[0] Pearson Correlation") print("[1] Euclidean Distance") print("[2] Cosine Distance\n") sys.exit(1) # Controlamos el caso en el que se introduce incorrectamente el รญndice de la predicciรณn if (prediction < 0 or prediction > 1): print("\nThe values of the prediction must be between 0 and 1") print("The possible values are : \n") print("[0] Simple Prediction") print("[1] Difference Avarage") sys.exit(1) else: metric = -1 prediction = -1 num_neighbors = -1 dimension_examples = [(10,25), (100,1000), (25,100), (5,10), (50,250)] for index, dimension in enumerate(dimension_examples): print(f"[{index}] - {dimension}") option_dimension_example = -1 while not (-1 < option_dimension_example < 5): option_dimension_example = int(input("Enter the dimension of the matrix you want to run\n>> ")) option_dimension_example = dimension_examples[option_dimension_example] number_dataset_dimension = 0 while not (0 < number_dataset_dimension < 11): number_dataset_dimension = int(input("Enter the number of dataset you want to use [1-10]\n>> ")) file_name = f"./data/utility-matrix-{option_dimension_example[0]}-{option_dimension_example[1]}-{number_dataset_dimension}.txt" while num_neighbors < 1: num_neighbors = int(input("Indicates a number of neighbors, at least one\n>> ")) while metric < 0 or metric > 2: print("Indicates the metric you want to use") print("The possible values are : \n") print("[0] Pearson Correlation") print("[1] Euclidean Distance") print("[2] Cosine Distance") metric = int(input(">> ")) while prediction < 0 or prediction > 1: print("Indicates the type of prediction you want to use") print("The possible values are : \n") print("[0] Simple Prediction") print("[1] Difference Avarage") prediction = int(input(">> ")) # Elecciรณn de la mรฉtrica if metric == 0: metric_function = PearsonCorrelation.similarity elif metric == 1: metric_function = EuclideanDistance.similarity elif metric == 2: metric_function = CosineDistance.similarity # Elecciรณn de la predicciรณn if prediction == 0: prediction_function = SimplePrediction.predict elif prediction == 1: prediction_function = DifferenceAverage.predict # Guardamos el tiempo de inicio de ejecuciรณn start_time = time.time() recommender = Recommender(file_name, num_neighbors, metric_function) result = recommender.run(prediction_function) print("\n\nMatrices resultantes #########################################################\n") recommender.print_matrix(recommender.matrix) recommender.print_matrix(recommender.unnormalized_matrix) print() # guardamos el tiempo de finalizaciรณn de nuestra ejecuciรณn end_time = time.time() print(f"EL TIEMPO DE CALCULO TOTAL HA SIDO\nEN SEGUNDOS --> {end_time - start_time}\nEN MINUTOS --> {(end_time - start_time) / 60}")
facu2002/RecommenderSystem
src/main.py
main.py
py
4,738
python
en
code
0
github-code
6
36684709665
import pickle import numpy as np import os with open('data/sst2-sentence/neg_db', 'rb') as f: negation_database = pickle.load(f) class Dataset(object): def __init__(self, dir, filename, rev_vocab): self.dir = dir self.filename = filename self.rev_vocab = rev_vocab with open(os.path.join(dr, filename), 'rb') as f: data = pickle.load(f) self.sentences = \ [' '.join([rev_vocab[x] for x in sent['sentence'] if x != 0]) for sent in data] def stats(self): text = self.filename print("=" * (len(text) + 4)) print("| %s |" % text) print("=" * (len(text) + 4)) print("total sentences :- %d" % len(self.sentences)) length = [len(sent.split()) for sent in self.sentences] print("average length :- %.4f +/- %.4f" % (np.mean(length), np.std(length))) a_but_b = [sent for sent in self.sentences if has_but(sent) is True] print("total A-but-B :- %d" % len(a_but_b)) length = [len(sent.split()) for sent in a_but_b] print("average A-but-B length :- %.4f +/- %.4f" % (np.mean(length), np.std(length))) length = [sent.split().index('but') for sent in a_but_b] print("average A length :- %.4f +/- %.4f" % (np.mean(length), np.std(length))) length = [len(sent.split()) - sent.split().index('but') - 1 for sent in a_but_b] print("average B length :- %.4f +/- %.4f" % (np.mean(length), np.std(length))) negation = [sent for sent in self.sentences if has_negation(sent) is True] print("total negation :- %d" % len(negation)) length = [len(sent.split()) for sent in negation] print("average negation length :- %.4f +/- %.4f" % (np.mean(length), np.std(length))) discourse = [sent for sent in self.sentences if has_discourse(sent) is True] print("total discourse :- %d" % len(discourse)) length = [len(sent.split()) for sent in discourse] print("average discourse length :- %.4f +/- %.4f" % (np.mean(length), np.std(length))) with open('analysis/discourse_%s.tsv' % self.filename, 'w') as f: f.write('\n'.join(discourse)) def has_but(sentence): return ' but ' in sentence def has_negation(sentence): return sentence in negation_database def has_discourse(sentence): return has_but(sentence) or has_negation(sentence) def load_vocab(vocab_file): with open(vocab_file, 'r') as f: rev_vocab = f.read().split('\n') vocab = {v: i for i, v in enumerate(rev_vocab)} return vocab, rev_vocab dirs = ['data/sst2/'] files = ['train.pickle', 'dev.pickle', 'test.pickle'] for dr in dirs: print("=" * (len(dr) + 4)) print("| %s |" % dr) print("=" * (len(dr) + 4)) vocab, rev_vocab = load_vocab(os.path.join(dr, 'vocab')) for file in files: dataset = Dataset(dr, file, rev_vocab) dataset.stats()
martiansideofthemoon/logic-rules-sentiment
code/analysis/data-stats.py
data-stats.py
py
2,928
python
en
code
32
github-code
6
73993683069
from django.urls import path from django.contrib.auth.decorators import login_required from . import views urlpatterns = [ path('all_lessons/', views.AllLessonsView.as_view(), name='all_lessons'), path('video_player/<int:id>', views.VideoPlayer.as_view(), name='video_player'), path('subscribe/', login_required(views.SubscriptionOptionsView.as_view()), name='subscribe'), path('create_checkout_session/<int:subscription_id>', login_required(views.CreateStripeCheckoutSessionView.as_view()), name='create_subscription_checkout_session'), path('subscription_success/', views.SubscriptionSuccessView.as_view(), name='subscription_success'), ]
johnrearden/strings_attached
video_lessons/urls.py
urls.py
py
720
python
en
code
0
github-code
6
15767420313
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, classification_report, confusion_matrix # ะ—ะฐะฒะฐะฝั‚ะฐะถะตะฝะฝั ะดะฐะฝะธั… data = pd.read_csv("data_multivar_nb.txt", header=None, names=["Feature1", "Feature2", "Class"]) # ะ ะพะทะดั–ะปะตะฝะฝั ะฝะฐ ะพะทะฝะฐะบะธ ั‚ะฐ ะผั–ั‚ะบะธ ะบะปะฐัั–ะฒ X = data[["Feature1", "Feature2"]] y = data["Class"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) svm_model = SVC(kernel='linear', C=1.0, random_state=42) svm_model.fit(X_train, y_train) y_pred = svm_model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred) class_report = classification_report(y_test, y_pred) print(f"Accuracy: {accuracy}") print("Confusion Matrix:\n", conf_matrix) print("Classification Report:\n", class_report)
IvanPaliy/A.I.-Lab-1-IPZ-Palii
LR_1_task_6.py
LR_1_task_6.py
py
946
python
en
code
0
github-code
6
17365595109
import tkinter as tk from tkinter import messagebox def print_board(board): for row in board: print(" | ".join(row)) print("-" * 9) def check_winner(board, player): for row in board: if all(cell == player for cell in row): return True for col in range(3): if all(board[row][col] == player for row in range(3)): return True if all(board[i][i] == player for i in range(3)) or all(board[i][2 - i] == player for i in range(3)): return True return False def is_draw(board): return all(cell != " " for row in board for cell in row) def minmax(board, depth, is_maximizing): if check_winner(board, "X"): return -10 + depth elif check_winner(board, "O"): return 10 - depth elif is_draw(board): return 0 if is_maximizing: max_eval = -float("inf") for row in range(3): for col in range(3): if board[row][col] == " ": board[row][col] = "O" eval = minmax(board, depth + 1, False) board[row][col] = " " max_eval = max(max_eval, eval) return max_eval else: min_eval = float("inf") for row in range(3): for col in range(3): if board[row][col] == " ": board[row][col] = "X" eval = minmax(board, depth + 1, True) board[row][col] = " " min_eval = min(min_eval, eval) return min_eval def best_move(board): best_eval = -float("inf") best_move = None for row in range(3): for col in range(3): if board[row][col] == " ": board[row][col] = "O" eval = minmax(board, 0, False) board[row][col] = " " if eval > best_eval: best_eval = eval best_move = (row, col) return best_move def make_move(row, col): global board, player_turn if board[row][col] == " " and player_turn: board[row][col] = "X" buttons[row][col].config(text="X", state="disabled") player_turn = not player_turn if check_winner(board, "X"): end_game("Human wins!") elif is_draw(board): end_game("It's a draw!") else: bot_row, bot_col = best_move(board) board[bot_row][bot_col] = "O" buttons[bot_row][bot_col].config(text="O", state="disabled") player_turn = not player_turn if check_winner(board, "O"): end_game("Bot wins!") elif is_draw(board): end_game("It's a draw!") def end_game(message): global player_turn player_turn = False messagebox.showinfo("Game Over", message) reset_board() def reset_board(): global board, player_turn board = [[" " for _ in range(3)] for _ in range(3)] player_turn = True for row in range(3): for col in range(3): buttons[row][col].config(text=" ", state="normal") def main(): global buttons, board, player_turn window = tk.Tk() window.title("Tic-Tac-Toe") menu_bar = tk.Menu(window) window.config(menu=menu_bar) file_menu = tk.Menu(menu_bar, tearoff=0) menu_bar.add_cascade(label="File", menu=file_menu) file_menu.add_command(label="New Game", command=reset_board) file_menu.add_separator() file_menu.add_command(label="Exit", command=window.quit) board = [[" " for _ in range(3)] for _ in range(3)] player_turn = True buttons = [] for row in range(3): row_buttons = [] for col in range(3): button = tk.Button(window, text=" ", font=("Helvetica", 24), width=5, height=2, command=lambda r=row, c=col: make_move(r, c)) button.grid(row=row, column=col, padx=5, pady=5) row_buttons.append(button) buttons.append(row_buttons) window.mainloop() if __name__ == "__main__": main()
lag25/SmartTTT-MinMax-Bot
tic_tac_toe_gui.py
tic_tac_toe_gui.py
py
4,097
python
en
code
0
github-code
6
36703125478
from django.shortcuts import get_object_or_404 from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework import status from .models import Client, Mailing, Message from .serializers import MailingSerializer, ClientSerializer, MailingMessagesSerializer from .service import check_mailing from .tasks import send_message from drf_yasg import openapi from drf_yasg.utils import swagger_auto_schema response_400 = openapi.Response('BAD_REQUEST') client_response_get = openapi.Response('Client list', ClientSerializer(many=True)) client_response_post = openapi.Response('New Client', ClientSerializer) client_response_detail_get = openapi.Response('Client object', ClientSerializer) mailing_response_get = openapi.Response('Mailing list', MailingSerializer(many=True)) mailing_response_post = openapi.Response('New Mailing', MailingSerializer) mailing_response_detail_get = openapi.Response('Mailing object', MailingSerializer) mailing_statistics_response_get = openapi.Response('New Mailing', MailingMessagesSerializer(many=True)) @swagger_auto_schema(method='get', responses={200: client_response_get}) @swagger_auto_schema(method='post', request_body=ClientSerializer) @api_view(['GET', 'POST']) def api_client(request): if request.method == 'GET': clients = Client.objects.all() serializer = ClientSerializer(clients, many=True) return Response(serializer.data) if request.method == 'POST': serializer = ClientSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @swagger_auto_schema(method='get', responses={200: client_response_detail_get}) @swagger_auto_schema(methods=['put', 'patch'], request_body=ClientSerializer) @api_view(['GET', 'PUT', 'PATCH', 'DELETE']) def api_client_detail(request, pk): client = get_object_or_404(Client, pk=pk) if request.method == 'GET': serializer = ClientSerializer(client) return Response(serializer.data) elif request.method == 'PUT' or request.method == 'PATCH': serializer = ClientSerializer(client, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': client.delete() return Response(status=status.HTTP_204_NO_CONTENT) @swagger_auto_schema(method='get', responses={200: mailing_response_get}) @swagger_auto_schema(method='post', request_body=MailingSerializer) @api_view(['GET', 'POST']) def api_mailing(request): if request.method == 'GET': mailing = Mailing.objects.all() serializer = MailingSerializer(mailing, many=True) return Response(serializer.data) if request.method == 'POST': serializer = MailingSerializer(data=request.data) if serializer.is_valid(): serializer.save() check_mailing(serializer.data['id']) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @swagger_auto_schema(method='get', responses={200: mailing_response_detail_get}) @swagger_auto_schema(methods=['put', 'patch'], request_body=MailingSerializer) @api_view(['GET', 'PUT', 'PATCH', 'DELETE']) def api_mailing_detail(request, pk): mailing = get_object_or_404(Mailing, pk=pk) if request.method == 'GET': return Response(MailingMessagesSerializer(mailing).data) elif request.method == 'PUT' or request.method == 'PATCH': serializer = MailingSerializer(mailing, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': mailing.delete() return Response(status=status.HTTP_204_NO_CONTENT) @swagger_auto_schema(method='get', responses={200: mailing_statistics_response_get}) @api_view(['GET']) def api_mailing_statistics(request): context = [] mailings = Mailing.objects.all() for mailing in mailings: context.append(MailingMessagesSerializer(instance=mailing).data) return Response(context) @api_view(['GET']) def api_test(request): if request.method == 'GET': mailing = Mailing.objects.get(pk=10) clients = mailing.get_clients() serializer = ClientSerializer(clients, many=True) return Response(serializer.data) @api_view(['GET']) def api_send_created_messages(request): messages = Message.objects.filter(status=Message.Status.CREATED) for i in messages: send_message.delay(i.id,) return Response([], status=status.HTTP_200_OK)
novelsk/notification_service
app/service/views.py
views.py
py
4,985
python
en
code
0
github-code
6
2636855121
from codigo import Email, borrar, limpiar_inbox def test_los_atributos_se_guardan_correctamente(): m = Email("espada nueva!", "hay una espada nueva") assert m.asunto == "espada nueva!" assert m.texto == "hay una espada nueva" def test_mail_sano_no_genera_valor_de_spam(): m = Email("espada nueva!", "hay una espada nueva") assert m.medir_spam() == 0 def test_mail_con_asunto_spamoso_es_detectado(): m = Email("espada en oferta!", "hay una espada nueva") assert m.medir_spam() == 10 def test_mail_con_texto_spamoso_es_detectado(): m = Email("espada nueva!", "hay una espada nueva en oferta") assert m.medir_spam() == 2 def test_modo_rapido_deja_pasar_textos_spamosos(): m = Email("espada nueva!", "hay una espada nueva en oferta") assert m.medir_spam(modo_rapido=True) == 0 def test_spamosidad_final_es_resultado_de_spamosidad_de_texto_y_asunto(): m = Email("espada nueva oferta oferta!", "hay una espada nueva en oferta oferta") assert m.medir_spam() == 24 def test_limpiar_inbox_borra_mails_spamosos(mocker): fake_borrar = mocker.patch("codigo.borrar", return_value="borrado!") m_spam1 = Email("espada nueva oferta!", "hay una espada nueva") m_spam2 = Email("espada nueva oferta!", "hay una espada nueva") m_bien1 = Email("espada nueva!", "hay una espada nueva") m_bien2 = Email("espada nueva!", "hay una espada nueva") inbox = [m_spam1, m_bien1, m_spam2, m_bien2] inbox_limpio, emails_borrados, resultados_borrados = limpiar_inbox(inbox) assert inbox_limpio == [m_bien1, m_bien2] assert emails_borrados == [m_spam1, m_spam2] assert resultados_borrados == ["borrado!", "borrado!"] # fake_borrar.assert_called_once_with(m_spam1) fake_borrar.assert_has_calls([ mocker.call(m_spam1), mocker.call(m_spam2), ]) assert fake_borrar.call_count == 2
ucseiw-team/catedra
ejemplo_testing_2022/test_codigo.py
test_codigo.py
py
1,891
python
es
code
5
github-code
6
28074571183
import string ''' This program takes a text file and gives the total length of the character in the file along with the frequency of each alphabet and as well as most and least common 10 alphabets''' """Character frequency""" '''Total number of characters''' def character_analysis(filename): hist = {} file = open(filename) # process file object listOfWords = [] # converts the file to the list for i in file: someword = i.strip() # removes the whitespace and extra lines listOfWords.append(someword) wordDict = {} for word in listOfWords: for letter in word: if letter in wordDict: # checks to see if the letter is already in the dictionary wordDict[letter] += 1 # add one if does otherwise create a new key and value else: wordDict[letter] = 1 return wordDict def sumOfCharacters(aDict): sum = 0 for i in aDict.values(): #sums all the values in the dictionary sum = sum + i return sum def most_common(aDict): t = [] for key, value in aDict.items(): t.append((value, key)) t.sort(reverse=True) g = [] for i, value in enumerate(t): g.append((t[i][1], t[i][0])) # to swap the value tuples return g[:10] def least_common(aDict): t = [] for key, value in aDict.items(): t.append((value, key)) t.sort() g = [] for i, value in enumerate(t): g.append((t[i][1], t[i][0])) return g[:10] allCharacters = character_analysis('words.txt') print('All Characters in the words.txt: ', allCharacters) print('Sum of all characters in the text:', sumOfCharacters(allCharacters)) print('The ten most common characters: ', most_common(allCharacters)) print('The ten least common characters: ', least_common(allCharacters))
asifbux/Python-Course-ENSF-592
A03_1_char_frequency.py
A03_1_char_frequency.py
py
1,829
python
en
code
0
github-code
6
4461100140
# Licensed under a MIT style license - see LICENSE.txt """MUSE-PHANGS plotting routines """ __authors__ = "Eric Emsellem" __copyright__ = "(c) 2017, ESO + CRAL" __license__ = "MIT License" __contact__ = " <[email protected]>" # This module provides some functions to plot and check the data reduction # # Eric Emsellem adapted a March 2018 version, provided by Rebecca # and adapted it to the pymusepipe package # Importing modules import numpy as np # Standard modules from os.path import join as joinpath # Plotting routines import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import matplotlib.gridspec as gridspec from .mpdaf_pipe import MuseSetImages, MuseSetSpectra from .util_image import my_linear_model, get_flux_range __version__ = '0.0.1 (23 March 2018)' ############################################################ # BEGIN # The following parameters can be adjusted for the need of # the specific pipeline to be used ############################################################ ############################################################ # END ############################################################ PLOT = '\033[1;35;20m' ENDC = '\033[0m' def print_fig(text) : print(PLOT + "# GraphPipeInfo " + ENDC + text) def open_new_wcs_figure(nfig, mywcs=None): """Open a new figure (with number nfig) with given wcs. If not WCS is provided, just opens a subplot in that figure. Input ----- nfig : int Figure number to consider mywcs : astropy.wcs.WCS Input WCS to open a new figure (Default value = None) Returns ------- fig, subplot Figure itself with the subplots using the wcs projection """ # get the figure fig = plt.figure(nfig) # Clean the figure plt.clf() # Adding axes with WCS if mywcs is None: return fig, fig.add_subplot(1, 1, 1) else: return fig, fig.add_subplot(1, 1, 1, projection=mywcs) def plot_compare_contours(data1, data2, plotwcs=None, labels=('Data1', 'Data2'), levels=None, nlevels=10, fignum=1, namefig='dummy_contours.png', figfolder="", savefig=False, **kwargs): """Creates a plot with the contours of two input datasets for comparison Input ----- data1 data2: 2d np.arrays Input arrays to compare plotwcs: WCS WCS used to set the plot if provided labels: tuple/list of 2 str Labels for the plot levels: list of floats Levels to be used for the contours. Calculated if None. fignum: int Number for the figure namefig: str Name of the figure to be saved (if savefig is True) figfolder: str Name of the folder for the figure savefig: bool If True, will save the figure as namefig Creates ------- Plot with contours of the two input dataset """ np.seterr(divide='ignore', invalid='ignore') # Getting the range of relevant fluxes lowlevel_d1, highlevel_d1 = get_flux_range(data1) fig, ax = open_new_wcs_figure(fignum, plotwcs) # Defining the levels for MUSE if levels is not None: levels_d1 = levels else: levels_d1 = np.linspace(np.log10(lowlevel_d1), np.log10(highlevel_d1), nlevels) # Plot contours for MUSE cdata1 = ax.contour(np.log10(data1), levels_d1, colors='k', origin='lower', linestyles='solid') levels_d2 = cdata1.levels # Plot contours for Ref cdata2 = ax.contour(np.log10(data2), levels=levels_d2, colors='r', origin='lower', alpha=0.5, linestyles='solid') ax.set_aspect('equal') h1, _ = cdata1.legend_elements() h2, _ = cdata2.legend_elements() ax.legend([h1[0], h2[0]], [labels[0], labels[1]]) if "title" in kwargs: plt.title(kwargs.pop('title')) plt.tight_layout() if savefig: plt.savefig(joinpath(figfolder, namefig)) np.seterr(divide='warn', invalid='warn') def plot_compare_diff(data1, data2, plotwcs=None, figfolder="", percentage=5, fignum=1, namefig="dummy_diff.ong", savefig=False, **kwargs): """ Parameters ---------- data1 data2 figfolder fignum namefig savefig kwargs Returns ------- """ fig, ax = open_new_wcs_figure(fignum, plotwcs) ratio = 100. * (data2 - data1) / (data1 + 1.e-12) im = ax.imshow(ratio, vmin=-percentage, vmax=percentage) cbar = fig.colorbar(im, shrink=0.8) if "title" in kwargs: plt.title(kwargs.pop('title')) plt.tight_layout() if savefig: plt.savefig(joinpath(figfolder, namefig)) def plot_compare_cuts(data1, data2, labels=('X', 'Y'), figfolder="", fignum=1, namefig="dummy_polypar.png", ncuts=11, savefig=False, **kwargs): """ Input ----- data1 data2 label1 label2 figfolder fignum namefig savefig kwargs Creates ------- Plot with a comparison of the two data arrays using regular X and Y cuts """ fig, ax = open_new_wcs_figure(fignum) # Getting the range of relevant fluxes lowlevel_d1, highlevel_d1 = get_flux_range(data1) diffima = (data2 - data1) * 200. / (lowlevel_d1 + highlevel_d1) chunk_x = data1.shape[0] // (ncuts + 1) chunk_y = data1.shape[1] // (ncuts + 1) c1 = ax.plot(diffima[np.arange(ncuts) * chunk_x, :].T, 'k-', label=labels[0]) c2 = ax.plot(diffima[:, np.arange(ncuts) * chunk_y], 'r-', label=labels[1]) ax.legend(handles=[c1[0], c2[0]], loc=0) ax.set_ylim(-20, 20) ax.set_xlabel("[pixels]", fontsize=20) ax.set_ylabel("[%]", fontsize=20) if "title" in kwargs: plt.title(kwargs.pop('title')) plt.tight_layout() if savefig: plt.savefig(joinpath(figfolder, namefig)) def plot_polypar(polypar, labels=("Data 1","Data 2"), figfolder="", fignum=1, namefig="dummy_polypar.png", savefig=False, **kwargs): """Creating a plot showing the normalisation arising from a polypar object Parameters ---------- polypar label1 label2 foldfig namefig Returns ------- """ # Opening the figure fig, ax = open_new_wcs_figure(fignum) # Getting the x, y to plot (x, y) = (polypar.med[0][polypar.selection], polypar.med[1][polypar.selection]) ax.plot(x, y, '.') ax.set_xlabel(labels[0]) ax.set_ylabel(labels[1]) ax.plot(x, my_linear_model(polypar.beta, x), 'k') if "title" in kwargs: plt.title(kwargs.pop('title')) plt.tight_layout() if savefig: plt.savefig(joinpath(figfolder, namefig)) ######################################################################### # Main class # GraphMuse ######################################################################### class GraphMuse(object): """Graphic output to check MUSE data reduction products """ def __init__(self, pdf_name='drs_check.pdf', figsize=(10,14), rect_layout=[0, 0.03, 1, 0.95], verbose=True): """Initialise the class for plotting the outcome results """ self.verbose = verbose self.pdf_name = pdf_name self.pp = PdfPages(pdf_name) self.figsize = figsize self.rect_layout = rect_layout self.npages = 0 def close(self): self.pp.close() def savepage(self): self.pp.savefig() plt.close() self.npages += 1 def start_page(self): """Start the page """ if self.verbose : print_fig("Starting page {0}".format(self.npages+1)) plt.figure(figsize=self.figsize) def plot_page(self, list_data): """Plot a set of blocks, each made of a set of spectra or images. This is for 1 page It first counts the number of lines needed according to the separation for images (default is 2 per line, each image taking 2 lines) and spectra (1 spectrum per line over 2 columns) """ if len(list_data) == 0 : print_fig("WARNING: datalist is empty, no plots will be created") return self.start_page() nspectra_blocks, nimages_blocks = 0, 0 nlines = 0 if isinstance(list_data, MuseSetSpectra) | isinstance(list_data, MuseSetImages): plt.suptitle(list_data.subtitle) list_data = [list_data] for data in list_data : if isinstance(data, MuseSetSpectra): nspectra_blocks += 1 nlines += data.__len__() elif isinstance(data, MuseSetImages): nimages_blocks += 1 nlines += 2 * data.__len__() self.gs = gridspec.GridSpec(nlines, 2) self.list_ax = [] self.count_lines = 0 for data in list_data : if isinstance(data, MuseSetSpectra): self.plot_set_spectra(data) elif isinstance(data, MuseSetImages): self.plot_set_images(data) self.savepage() def plot_set_spectra(self, set_of_spectra=None): """Plotting a set of spectra Skipping the ones that are 'None' """ # Set of sky lines to plot when relevant - add_sky_lines to True sky_lines = [5577., 6300., 6864., 7914., 8344., 8827.] if set_of_spectra is None: print_fig("ERROR: list of spectra is empty") return for spec in set_of_spectra: self.list_ax.append(plt.subplot(self.gs[self.count_lines,:])) self.count_lines += 1 if spec is not None: spec.plot(title=spec.title, ax=self.list_ax[-1]) if spec.add_sky_lines: for line in sky_lines: plt.axvline(x=line, color=spec.color_sky, linestyle=spec.linestyle_sky, alpha=spec.alpha_sky) plt.tight_layout(rect=self.rect_layout) def plot_set_images(self, set_of_images=None): """Plotting a set of images Skipping the ones that are 'None' """ if set_of_images is None : print_fig("ERROR: list of images is empty") return for i in range(set_of_images.__len__()): image = set_of_images[i] count_cols = i%2 if image is not None: self.list_ax.append(plt.subplot(self.gs[self.count_lines: self.count_lines + 2, count_cols])) image.plot(scale=image.scale, vmin=image.vmin, colorbar=image.colorbar, title=image.title, ax=self.list_ax[-1]) self.count_lines += count_cols * 2 plt.tight_layout(rect=self.rect_layout)
emsellem/pymusepipe
src/pymusepipe/graph_pipe.py
graph_pipe.py
py
10,892
python
en
code
7
github-code
6
70322602108
from src.admin.repository import AdminRepo from src.admin.schemas import AdminUserData from src.user.constants import SubscriptionType class AdminService: def __init__(self, admin_repo: AdminRepo): self.admin_repo = admin_repo async def get_users( self, subscription_type: SubscriptionType | None = None, is_active: bool | None = None, is_activated: bool | None = None, search_keyword: str | None = None, ) -> list[AdminUserData]: return await self.admin_repo.get_users( search_keyword=search_keyword, subscription_type=subscription_type, is_active=is_active, is_activated=is_activated, )
ttq186/DressUp
src/admin/service.py
service.py
py
716
python
en
code
0
github-code
6
17216033842
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name='wutools', version='0.0.3', author='Jason Yunger', author_email='[email protected]', description='Testing installation of Package', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/jyunger/wutest', project_urls = { "Bug Tracker": "https://github.com/jyunger/wutest/issues" }, license='MIT', packages=setuptools.find_packages(), install_requires=['numpy', 'pandas', 'psutil', 'pyathena', 'graphviz', 'sqlalchemy', 'sqlparse'], )
jyunger/wutest
setup.py
setup.py
py
679
python
en
code
0
github-code
6
40128878134
#!/usr/bin/env python3 import sys sys.setrecursionlimit(10**6) INF = 10 ** 9 + 1 # sys.maxsize # float("inf") MOD = 10 ** 9 + 7 def debug(*x): print(*x, file=sys.stderr) def solve(SOLVE_PARAMS): pass def main(): N, M = map(int, input().split()) is_head = [True] * N from collections import defaultdict edges = defaultdict(list) for q in range(M): a, b = map(int, input().split()) a -= 1 b -= 1 is_head[b] = False edges[a].append(b) to_tail = [-1] * N visited = [False] * N def dfs(x): buf = [0] visited[x] = True for v in edges[x]: if visited[v]: continue ret = to_tail[v] if ret == -1: ret = dfs(v) to_tail[v] = ret buf.append(ret) return max(buf) + 1 buf = [1] for i in range(N): visited = [False] * N buf.append(dfs(i)) # debug(": to_tail", to_tail) print(max(buf)) # tests T1 = """ 5 3 1 2 3 4 5 1 """ TEST_T1 = """ >>> as_input(T1) >>> main() 3 """ T2 = """ 4 10 1 2 2 1 1 2 2 1 1 2 1 3 1 4 2 3 2 4 3 4 """ TEST_T2 = """ >>> as_input(T2) >>> main() 4 """ T3 = """ 10 4 3 1 4 1 5 9 2 6 """ TEST_T3 = """ >>> as_input(T3) >>> main() 3 """ def _test(): import doctest doctest.testmod() g = globals() for k in sorted(g): if k.startswith("TEST_"): doctest.run_docstring_examples(g[k], g, name=k) def as_input(s): "use in test, use given string as input file" import io f = io.StringIO(s.strip()) g = globals() g["input"] = lambda: bytes(f.readline(), "ascii") g["read"] = lambda: bytes(f.read(), "ascii") input = sys.stdin.buffer.readline read = sys.stdin.buffer.read if sys.argv[-1] == "-t": print("testing") _test() sys.exit() main()
nishio/atcoder
abc177/d2.py
d2.py
py
1,871
python
en
code
1
github-code
6
19054038098
import sys import time import os import tempfile import shutil import contextlib import numpy as np import h5py from . import __version__ as tool_version import stag.align as align def load_genome_DB(database, tool_version, verbose): dirpath = tempfile.mkdtemp() shutil.unpack_archive(database, dirpath, "gztar") list_files = [f for f in os.listdir(dirpath) if os.path.isfile(os.path.join(dirpath, f))] for f in ("threshold_file.tsv", "hmm_lengths_file.tsv", "concatenated_genes_STAG_database.HDF5"): if f not in list_files: raise ValueError(f"[E::align] Error: {f} is missing.") with open(os.path.join(dirpath, "threshold_file.tsv")) as threshold_in: gene_thresholds = dict(line.rstrip().split("\t") for line in threshold_in) gene_order = list(gene_thresholds.keys()) with open(os.path.join(dirpath, "hmm_lengths_file.tsv")) as hmm_lengths_in: ali_lengths = dict(line.rstrip().split("\t") for line in hmm_lengths_in) list_files.remove("threshold_file.tsv") list_files.remove("hmm_lengths_file.tsv") list_files.remove("concatenated_genes_STAG_database.HDF5") return list_files, dirpath, gene_thresholds, gene_order, ali_lengths, os.path.join(dirpath, "concatenated_genes_STAG_database.HDF5") def load_db(hdf5_DB_path, protein_fasta_input=None, aligned_sequences=None, dir_output=None): with h5py.File(hdf5_DB_path, 'r') as db_in: params_out = open(os.path.join(dir_output, "parameters.tsv"), "w") if dir_output else contextlib.nullcontext() with params_out: # zero: tool version ------------------------------------------------------- db_tool_version = db_in['tool_version'][0] use_proteins = db_in['align_protein'][0] # bool use_cmalign = db_in['use_cmalign'][0] # bool if dir_output: params_out.write("Tool version: "+str(db_tool_version)+"\n") params_out.write("Use proteins for the alignment: "+str(use_proteins)+"\n") params_out.write("Use cmalign instead of hmmalign: "+str(use_cmalign)+"\n") # check that it is the correct database, for 'classify', we need a single # gene if db_in['db_type'][0] != "single_gene": sys.stderr.write("[E::main] Error: this database is not designed to run with stag classify\n") sys.exit(1) # check if we used proteins if not aligned_sequences and not dir_output: if protein_fasta_input and not db_in['align_protein'][0]: # some proteins are provided in the classify but the db was constructed without using the proteins raise ValueError("Protein provided, but the database was constructed on genes.\n") elif not protein_fasta_input and db_in['align_protein'][0]: # the classify do not have proteins but the db was constructed WITH the proteins raise ValueError("Missing protein file (the database was constructed aligning proteins).\n") # first, we save a temporary file with the hmm file ------------------------ hmm_file = tempfile.NamedTemporaryFile(delete=False, mode="w") with hmm_file: os.chmod(hmm_file.name, 0o644) hmm_file.write(db_in['hmm_file'][0]) hmm_file.flush() os.fsync(hmm_file.fileno()) if dir_output: shutil.move(hmm_file.name, os.path.join(dir_output, "hmmfile.hmm")) # second if we need to use cm_align ---------------------------------------- use_cmalign = db_in['use_cmalign'][0] # bool # third: taxonomy ---------------------------------------------------------- taxonomy = {key: list(db_in['taxonomy/{}'.format(key)]) for key in db_in['taxonomy']} if dir_output: tax_out = open(os.path.join(dir_output, "node_hierarchy.tsv"), "w") with tax_out: print("Node", "Children", sep="\t", file=tax_out) for key, values in taxonomy.items(): print(key, *map(str, values), sep="\t", file=tax_out) # fourth: tax_function ----------------------------------------------------- tax_function = {str(key): np.array(db_in['tax_function/{}'.format(key)], dtype=np.float64) for key in db_in['tax_function']} if dir_output: tax_func_out = open(os.path.join(dir_output, "taxonomy_function.tsv"), "w") with tax_func_out: for key, value in tax_function.items(): print(key, value, sep="\t", file=tax_func_out) # fifth: the classifiers --------------------------------------------------- classifiers = dict() class_out = open(os.path.join(dir_output, "classifiers_weights.tsv"), "w") if dir_output else contextlib.nullcontext() with class_out: for key in db_in['classifiers']: classifier = db_in['classifiers/{}'.format(key)] if not isinstance(classifier[0], str): classifiers[key] = np.array(classifier, dtype=np.float64) else: classifiers[key] = "no_negative_examples" if dir_output: print(key, *classifiers[key], sep="\t", file=class_out) return hmm_file.name, use_cmalign, taxonomy, tax_function, classifiers, db_tool_version def save_to_file(classifiers, full_taxonomy, tax_function, use_cmalign, output, hmm_file_path=None, protein_fasta_input=None): string_dt = h5py.special_dtype(vlen=str) with h5py.File(output, "w") as h5p_out: # zero: tool version ------------------------------------------------------- h5p_out.create_dataset('tool_version', data=np.array([str(tool_version)], "S100"), dtype=string_dt) # and type of database h5p_out.create_dataset('db_type', data=np.array(["single_gene"], "S100"), dtype=string_dt) # was the alignment done at the protein level? h5p_out.create_dataset('align_protein', data=np.array([bool(protein_fasta_input)]), dtype=bool) # first we save the hmm file ----------------------------------------------- hmm_string = "".join(line for line in open(hmm_file_path)) if hmm_file_path else "NA" h5p_out.create_dataset('hmm_file', data=np.array([hmm_string], "S" + str(len(hmm_string) + 100)), dtype=string_dt, compression="gzip") # second, save the use_cmalign info ---------------------------------------- h5p_out.create_dataset('use_cmalign', data=np.array([use_cmalign]), dtype=bool) # third, we save the taxonomy --------------------------------------------- h5p_out.create_group("taxonomy") for node, _ in full_taxonomy.get_all_nodes(get_root=True): h5p_out.create_dataset(f"taxonomy/{node}", data=np.array(list(full_taxonomy[node].children.keys()), "S10000"), dtype=string_dt, compression="gzip") # fourth, the taxonomy function -------------------------------------------- h5p_out.create_group("tax_function") for c in tax_function: # we append the intercept at the head (will have position 0) vals = np.append(tax_function[c].intercept_, tax_function[c].coef_) h5p_out.create_dataset("tax_function/" + str(c), data=vals, dtype=np.float64, compression="gzip") # fifth, save the classifiers ---------------------------------------------- h5p_out.create_group("classifiers") for c in classifiers: if classifiers[c] != "no_negative_examples": vals = np.append(classifiers[c].intercept_, classifiers[c].coef_) h5p_out.create_dataset("classifiers/" + c, data=vals, dtype=np.float64, compression="gzip", compression_opts=8) else: # in this case, it always predict 1, we save it as an array of # with the string "no_negative_examples" h5p_out.create_dataset("classifiers/" + c, data=np.array(["no_negative_examples"], "S40"), dtype=string_dt, compression="gzip") h5p_out.flush()
zellerlab/stag
stag/databases.py
databases.py
py
8,159
python
en
code
7
github-code
6
73510567227
class Solution: def largestLocal(self, grid: List[List[int]]) -> List[List[int]]: ans = [] row = len(grid) col = len(grid[0]) for i in range(row-2): temp = [] for j in range(col-2): maxi = 0 for k in range(i,i+3): for z in range(j,j+3): maxi = max(maxi,grid[k][z]) temp.append(maxi) ans.append(temp) # count = 0 # for i in range(row-2): # temp = [] # for j in range(col-2): # temp.append(arr[count]) # count += 1 # ans.append(temp) return ans
yonaSisay/a2sv-competitive-programming
2373-largest-local-values-in-a-matrix/2373-largest-local-values-in-a-matrix.py
2373-largest-local-values-in-a-matrix.py
py
721
python
en
code
0
github-code
6
11250679083
#%% import numpy as np import os from sklearn.feature_extraction.text import CountVectorizer from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix import numba as nb import time import cupy as cp #%% ่ฎ€ๅ–ๆช”ๆกˆ queriesPath ='C:\\Users\\User\\Desktop\\NTUST\\IR\\data\\ntust-ir-2020_hw4_v2\\queries' docsPath = 'C:\\Users\\User\\Desktop\\NTUST\\IR\\data\\ntust-ir-2020_hw4_v2\\docs' queriesList = os.listdir(queriesPath) queriesList.sort() docsList = os.listdir(docsPath) docsList.sort() queriesContext = [] docsContext = [] for query in queriesList: path = os.path.join(queriesPath,query) f = open(path) context = f.read() queriesContext.append(context) for doc in docsList: path = os.path.join(docsPath,doc) f = open(path) context = f.read() docsContext.append(context) #%% ่จˆ็ฎ—ๅ„็ฏ‡ๆ–‡็ซ ้•ทๅบฆ ๏ผŒ ๅพŒ้ข่ฆ็”จๅˆฐ doc_len = np.zeros(len(docsContext)) for doc_id ,doc in enumerate(docsContext): words = doc.split() doc_len[doc_id] = len(words) #%% tf matrix & get sparse matrix vectorizer = CountVectorizer(stop_words=None, token_pattern="(?u)\\b\\w+\\b") #get tf-matrix X = vectorizer.fit_transform(docsContext) #ๅพ—ๅˆฐๆ–‡็ซ ๅฐๆ–ผๆ‰€ๆœ‰word็š„ tf - matrix print(X.shape) #%% #@nb.jit() # axis = 0 ไฟ็•™่กŒ # axis = 1 ไฟ็•™ๅˆ— def PLSA_sparseMatrix(matrix , iteration , numOfTopic): sparse = coo_matrix(matrix) sparse_data = sparse.data sparse_row = sparse.row sparse_col = sparse.col sparse_size = sparse_data.shape[0] p_tk_wi_dj = cp.zeros((sparse_size , numOfTopic)) p_tk_dj = cp.zeros((numOfTopic , matrix.shape[0])) p_wi_tk = cp.zeros(( matrix.shape[1] , numOfTopic)) print ("Initializing...") # randomly assign values p_tk_dj = cp.random.random(size = (numOfTopic , matrix.shape[0])) doc_toic_sum = cp.sum(p_tk_dj,axis = 0) p_tk_dj = p_tk_dj / doc_toic_sum p_wi_tk = cp.random.random(size = (matrix.shape[1] , numOfTopic)) term_topic_sum = cp.sum(p_wi_tk , axis = 0) p_wi_tk = p_wi_tk / term_topic_sum for loop in range(iteration): # E_step print('iter : ' + str(loop)) s1 = time.time() print('E step') for index in range(len(sparse_data)): p_tk_wi_dj[index,:] = p_wi_tk[sparse_col[index] , :] * p_tk_dj[ : , sparse_row[index]] topic_normal = cp.sum(p_tk_wi_dj , axis = 1) for topic in range(numOfTopic): p_tk_wi_dj [:,topic] = p_tk_wi_dj [:,topic] / topic_normal print('end E step') # M step print('M step') M_step_molecular = sparse_data[:,np.newaxis] * p_tk_wi_dj for index in range(len(sparse_data)): #if index % 10000 == 0: #print(index) p_wi_tk[sparse_col[index],:] += M_step_molecular[index,:] m_step_normalize = cp.sum(p_wi_tk, axis = 0)[np.newaxis,:] print(cp.sum(p_wi_tk, axis = 0)[cp.newaxis,:].shape) p_wi_tk /= m_step_normalize print('end M step') # update p(tk|dj) print('update p(tk|dj)') for index in range(len(sparse_data)): doc_index = sparse_row[index] p_tk_dj[:,doc_index] += M_step_molecular[index,:] tk_dj_normalize = cp.sum(p_tk_dj, axis = 0)[cp.newaxis,:] print(np.sum(p_tk_dj, axis = 0)[cp.newaxis,:].shape) p_tk_dj /= tk_dj_normalize print('end p(tk|dj)') s2 = time.time() print(str(loop) + ' time : ' , str(s2 - s1) + 's') return p_tk_dj,p_wi_tk #%% p_tk_dj,p_wi_tk = PLSA_sparseMatrix(X,45,128) #%% queryword = [] for query in queriesContext: words = query.split() print(words) for word in words: if word not in queryword: queryword.append(word) #%% cal_p(wi|dj) p_wi_dj = np.zeros([14955,len(queryword)]) print(p_wi_dj[:,0].shape) for i ,name in enumerate(queryword): index = vectorizer.get_feature_names().index(name) # ๅพ—ๅˆฐquery_word_index p_wi_dj[:,i] = X[:,index].toarray().reshape(14955) p_wi_dj[:,i] /= doc_len #%% cal_ p(wi | BG) p_wi_BG = np.zeros(len(queryword)) totalword = np.sum(doc_len) for i,name in enumerate(queryword): index = vectorizer.get_feature_names().index(name) p_wi_BG[i] = np.sum(X[:,index].toarray()) / totalword #%% p(q|dj) p_q_dj = np.zeros([len(docsContext),len(queriesContext)]) alpha =0.7 #่‡ช่จ‚็š„ๅฏ่ชฟๅƒๆ•ธalpha beta = 0.2 for num , query in enumerate(queriesContext): words = query.split() #้€™็ฏ‡queryๅนพๅ€‹ๅ–ฎๅญ— out_arr = np.zeros(len(docsContext)) for index , word in enumerate (words): w_index = vectorizer.get_feature_names().index(word) em = p_wi_tk[w_index,:].reshape(p_wi_tk.shape[1],-1) * p_tk_dj # sumation p(wi|tk) * p(tk|dj) #all_topic em = np.sum(em, axis = 0) middle = beta * em front = alpha * p_wi_dj[:, queryword.index(word)] back = (1 - alpha - beta) * p_wi_BG[queryword.index(word)] prob = front + middle + back if index == 0: out_arr = prob else: out_arr = out_arr * prob p_q_dj[: , num] = out_arr #%% res = {} save_file_name = 'C:\\Users\\ipprlab\\Desktop\\2020-information-retrieval-and-applications-hw4-v2\\sparse_test2.txt' fp = open(save_file_name, "w") fp.seek(0) fp.write("Query,RetrievedDocuments\n") for loop in range (len(queriesList)): write_string = queriesList[loop][0:-4] + "," for i,j in zip(docsList,p_q_dj[:,loop]): res[i[0:-4]] = j sorted_x = sorted(res.items(), key=lambda kv: kv[1],reverse = True) for iteration , doc in enumerate(sorted_x): if iteration >= 1000: break write_string += doc[0] + " " write_string += "\n" fp.write(write_string) res.clear() sorted_x.clear() fp.truncate() fp.close()
ericdddddd/NTUST_Information-Retrieval
Hw4/Hw4-sparse_matrix.py
Hw4-sparse_matrix.py
py
5,824
python
en
code
0
github-code
6
25009122511
from osv import fields,osv from osv import orm import pooler def test_prof(self, cr, uid, prof_id, pid, answers_ids): #return True if the partner pid fetch the profile rule prof_id ids_to_check = pooler.get_pool(cr.dbname).get('segmentation.profile').get_parents(cr, uid, [prof_id]) [yes_answers, no_answers] = pooler.get_pool(cr.dbname).get('segmentation.profile').get_answers(cr, uid, ids_to_check) temp = True for y_ans in yes_answers: if y_ans not in answers_ids: temp = False break if temp: for ans in answers_ids: if ans in no_answers: temp = False break if temp: return True return False def _recompute_profiles(self, cr, uid, pid, answers_ids): ok = [] cr.execute(''' select id from segmentation_profile order by id''') for prof_id in cr.fetchall(): if test_prof(self, cr, uid, prof_id[0], pid, answers_ids): ok.append(prof_id[0]) return ok class question(osv.osv): _name="segmentation.question" _description= "Question" _columns={ 'name': fields.char("Question",size=128, required=True), 'answers_ids': fields.one2many("segmentation.answer","question_id","Avalaible answers",), } question() class answer(osv.osv): _name="segmentation.answer" _description="Answer" _columns={ "name": fields.char("Answer",size=128, required=True), "question_id": fields.many2one('segmentation.question',"Question"), } answer() class questionnaire(osv.osv): _name="segmentation.questionnaire" _description= "Questionnaire" _columns={ 'name': fields.char("Questionnaire",size=128, required=True), 'description':fields.text("Description", required=True), 'questions_ids': fields.many2many('segmentation.question','profile_questionnaire_quest_rel','questionnaire', 'question', "Questions"), } questionnaire() class profile(osv.osv): def get_answers(self, cr, uid, ids): query = """ select distinct(answer) from profile_question_yes_rel where profile in (%s)"""% ','.join([str(i) for i in ids ]) cr.execute(query) ans_yes = [x[0] for x in cr.fetchall()] query = """ select distinct(answer) from profile_question_no_rel where profile in (%s)"""% ','.join([str(i) for i in ids ]) cr.execute(query) ans_no = [x[0] for x in cr.fetchall()] return [ans_yes, ans_no] def get_parents(self, cr, uid, ids): ids_to_check = ids cr.execute(""" select distinct(parent_id) from segmentation_profile where parent_id is not null and id in (%s)""" % ','.join([str(i) for i in ids ])) parent_ids = [x[0] for x in cr.fetchall()] trigger = False for x in parent_ids: if x not in ids_to_check: ids_to_check.append(x) trigger = True if trigger: ids_to_check = pooler.get_pool(cr.dbname).get('segmentation.profile').get_parents(cr, uid, ids_to_check) return ids_to_check def process_continue(self, cr, uid, ids, state=False): cr.execute('delete from partner_profile_rel where profile_id=%s', (ids[0],)) cr.execute('select id from res_partner order by id ') partners = [x[0] for x in cr.fetchall()] to_remove_list=[] for pid in partners: cr.execute('select distinct(answer) from partner_question_rel where partner=%s' % pid) answers_ids = [x[0] for x in cr.fetchall()] if (not test_prof(self, cr, uid, ids[0], pid, answers_ids)): to_remove_list.append(pid) for pid in to_remove_list: partners.remove(pid) for partner_id in partners: cr.execute('insert into partner_profile_rel (profile_id,partner_id) values (%s,%s)', (ids[0],partner_id)) cr.commit() cr.commit() return True _name="segmentation.profile" _description="Profile" _columns={ "name": fields.char("Description",size=128, required=True), "answer_yes": fields.many2many("segmentation.answer","profile_question_yes_rel","profile","answer","Inclued Answers"), "answer_no": fields.many2many("segmentation.answer","profile_question_no_rel","profile","answer","Excluded Answers"), 'parent_id': fields.many2one('segmentation.profile', 'Parent Profile'), 'child_ids': fields.one2many('segmentation.profile', 'parent_id', 'Children Profile'), } _constraints = [ (orm.orm.check_recursion, 'Error ! You can not create recursive profiles.', ['parent_id']) ] profile() class partner(osv.osv): def write(self, cr, uid, ids, vals, context=None): if not context: context={} if 'answers_ids' in vals: vals['profiles_ids']=[[6, 0, _recompute_profiles(self, cr, uid, ids[0],vals['answers_ids'][0][2])]] return super(partner, self).write(cr, uid, ids, vals, context=context) _inherit="res.partner" _columns={ "answers_ids": fields.many2many("segmentation.answer","partner_question_rel","partner","answer","Answers"), "profiles_ids":fields.many2many("segmentation.profile","partner_profile_rel","partner_id","profile_id","Matching Profiles", readonly=True, select="2"), } partner() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
factorlibre/openerp-extra-6.1
segmentation/segmentation.py
segmentation.py
py
5,561
python
en
code
9
github-code
6
33833694339
from db.dbconnect import connection from flask import jsonify def querydb(data, operation, check=None, user2flower_id=None): try: c, conn = connection() if c == {'msg': 'Circuit breaker is open, reconnection in porgress'}: return c, 500 if operation == 'POST': executeQuery(c, conn, data) return {"msg": "New user2flower added to DB."}, 201 if operation == 'GET': c.execute(data) if check == 'list': data = c.fetchall() payload = [] if data is not None and c.rowcount != 0: for userflower in data: date = userflower[3] date = date.strftime('%Y-%m-%d') content = {"user2flower_id": str(userflower[0]), "user_id": str(userflower[1]), "flower_id": str(userflower[2]), "date_of_inception": date, "email": userflower[4]} payload.append(content) c.close() conn.close() return jsonify(payload) else: c.close() conn.close() return {'msg': 'No data to return.'} if check == 'tuple': data = c.fetchone() if data is not None and c.rowcount != 0: date = data[3] date = date.strftime('%Y-%m-%d') content = {"user2flower_id": str(data[0]), "user_id": str(data[1]), "flower_id": str(data[2]), "date_of_inception": date, "email": data[4]} c.close() conn.close() return content else: c.close() conn.close() return "No data to return." if operation == 'PUT': executeQuery(c, conn, data) return {"msg": "User2flower with user2flower_id " + str(user2flower_id) + " is updated."} if operation == 'DELETE': executeQuery(c, conn, data) return {"msg": "User2flower with user2flower_id " + str(user2flower_id) + " is deleted from DB."} except Exception as e: c.close() conn.close() print(e) return {'msg': 'Something went wrong while executing ' + operation + ' operation on users2flowers.'}, 500 def executeQuery(c, conn, data): c.execute(data) conn.commit() c.close() conn.close()
markocrnic/user2flower
app/db/dbquery.py
dbquery.py
py
2,656
python
en
code
0
github-code
6
15159066053
import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/ones a= tf.ones((4,3)) b = tf.ones((2,3)) with tf.Session(): result = a.eval() rb = b.eval() tf.assert_negative (a) print(result,rb )
sofiathefirst/AIcode
04TensorflowAPI/ones.py
ones.py
py
281
python
en
code
0
github-code
6
31331765759
import torch from game import DataGenArena from torch.autograd import Variable from torch.utils.data import DataLoader import os # criterion = torch.nn.SmoothL1Loss() # optimizer = torch.optim.SGD(model.parameters(), lr=0.001) class AITrainer: # TODO: concurrent usage of self.model and player.network makes me nervous # TODO: add name? hmmm # also unsure about loss and optimizer params # TODO: remove gen parameter (?) def __init__(self, player, model_name=None, model_dir=None, matches=100, batch_size=8, loss=torch.nn.SmoothL1Loss, optimizer=torch.optim.SGD, lr=0.001, gen=0): self.player = player self.matches = matches self.batch_size = batch_size self.epochs = 2 self.model_dir = model_dir self.gen = gen # TODO: fix use of preexisting model self.model_path = model_name if self.model_path is not None: print("Hi") self.player.load_model(self.model_path) # TODO: figure out how to get gen from somewhere self.gen = gen else: self.gen = 0 self.model_path = self.full_path() self.player.save_model(self.model_path) # self.model = player.network self.loss = loss() self.optimizer = optimizer(self.player.network.parameters(), lr=lr) self.generations() def generation(self): print(self.gen) path = self.full_path() self.player.load_model(path) model = self.player.network data = DataGenArena(self.player, matches=self.matches) train_loader = DataLoader(dataset=data, batch_size=self.batch_size, shuffle=True, num_workers=2) for epoch in range(self.epochs): for i, data in enumerate(train_loader, 0): # get the inputs inputs, labels = data # wrap them in Variable inputs, labels = Variable(inputs), Variable(labels) # Forward pass: Compute predicted y by passing x to the model y_pred = model(inputs.float()) # Compute and print loss loss = self.loss(y_pred, labels) print(epoch, i, loss.data.item()) # Zero gradients, perform a backward pass, and update the weights. self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.gen += 1 path = self.full_path() model.save_model(path) def generations(self): while True: self.generation() def full_path(self): # if not os.path.exists(file_path): # os.makedirs(file_path) # TODO: implement player __repr__? file_name = f'{self.player.name}{self.player.shape}_gen{self.gen}.pt' if self.model_dir is not None: path = os.path.join(self.model_dir, file_name) else: path = file_name return path if __name__ == '__main__': from players.nn_ai import NNAI shape = 7, 7 gen = 4 ai = NNAI("nnai", *shape, exploration_turns=5, explore_chance=0.15) file_name = f'{ai.name}{ai.shape}_gen{gen}.pt' trainer = AITrainer(ai, model_name=file_name, gen=gen)
messej/dots_and_boxes
game/ai_trainer.py
ai_trainer.py
py
3,391
python
en
code
null
github-code
6
74212739388
import sqlite3 def create_table(): sqlstr = "create table user (sid int(5) primary key, \ name varchar(10), email varchar(25))" conn.execute(sqlstr) print("create table successfully") conn.close() def initiate_table(): cur = conn.cursor() sqlstr1 = "insert into user(sid, name, email) values(1001, 'ๅผ ๅคงๅฑฑ', '[email protected]') " cur.execute(sqlstr1) sqlstr2 = "insert into user(sid, name, email) values(1002, 'ๆŽๆ™“ไธฝ', '[email protected]') " cur.execute(sqlstr2) sqlstr3 = "insert into user(sid, name, email) values(1003, '่ตตๅ››ๆ–น', '[email protected]') " cur.execute(sqlstr3) conn.commit() print("Records created successfully") conn.close() def get_data(): cur = conn.cursor() sqlstr = "select * from user" s = cur.execute(sqlstr) for row in s: #ๅพ—ๅˆฐ็š„่ต‹ๅ€ผ็ป™s print("sid=", row[0]) print("name=", row[1]) print("email=", row[2], '\n') conn.close() def updata_data(): cur = conn.cursor() sql_update = "update user set email='[email protected]' where sid=1003" cur.execute(sql_update) conn.commit() sql_select = "select * from user where sid=1003" s = cur.execute(sql_select) for row in s: print("sid=", row[0]) print("name=", row[1]) print("email=", row[2], '\n') conn.close() def delete_data(): cur = conn.cursor() sql_update = "delete from user where sid=1002" cur.execute(sql_update) conn.commit() sql_select = "select * from user" s = cur.execute(sql_select) for row in s: print("sid=", row[0]) print("name=", row[1]) print("email=", row[2], '\n') conn.close() if __name__=="__main__": conn = sqlite3.connect("d:/groupdatabase.db") get_data() # conn = sqlite3.connect("d:/groupdatabase.db") # updata_data() # conn = sqlite3.connect("d:/groupdatabase.db") # delete_data()
lhqiao/python_project
kaohexinagmu/main.py
main.py
py
2,235
python
en
code
0
github-code
6
7874968494
""" Yonan Abraha Lab 5 """ def main(): #encodedWord = "WBLARF8TTS" #encodedWord = "L8KAOUL" #encodedWord = "E8N8N8" #encodedWord = "8TRA8DY T8LA" #encodedWord = "8TT LHA TILLTA LIMAS" #encodedWord = "LHA GRAAN FIATD GTA8MS IN LHA W8RM SUNEABMS" encodedWord = "TONG T8E T8CKS L8SLY L8CO LIMA 8L TA8SL T8LATY" #encodedWord = "UUHO" #Used for Bonus #encodedWord = "EOUUUUOUU" #Used for Bonus print(DecodeWord(encodedWord)) #Your code goes here. def DecodeWord(encodword): #creating a function decodedWord = "" # needed a variable to exist for the next line of codes for i in encodword: # checking each letter in the encodedword if i=="L": # if the letter is "L" decodedWord += "T" # REPLACE IT WITH "T" elif i=="T": # if the letter is "T" decodedWord += "L"# REPLACE IT WITH "L" elif i=="8": #if the letter is "8" decodedWord += "A"# REPLACE IT WITH "A" elif i=="B": #if the letter is "B" decodedWord += "A"# REPLACE IT WITH "A" elif i=="A":#if the letter is "A" decodedWord += "E"# REPLACE IT WITH "E" elif i=="E":#if the letter is "E" decodedWord += "B"# REPLACE IT WITH "B" else: decodedWord += i return decodedWord #This code triggers the main to run #we'll talk about this more in chapters 6,7, & 8. if __name__ == "__main__": main()
yonanma/CIS121
lab_5.py
lab_5.py
py
1,361
python
en
code
0
github-code
6
15207383827
""" https://www.algoexpert.io/questions/common-characters """ def commonCharacters(strings): # Write your code here. result = [] first = strings.pop(0) size = len(strings) for char in first: count = 0 for arr in strings: if char not in arr: continue count += 1 if count == size: if char not in result: result.append(char) return result
koizo/algoexpert
strings/common_characters.py
common_characters.py
py
478
python
en
code
0
github-code
6
29482823780
import raw_read import subprocess as sp from matplotlib import pyplot import numpy as np from files import * from sklearn.metrics import mean_squared_error [arrs1,plots]=raw_read.rawread('output/rawfile.raw') # time stime = arrs1[0] res_out = arrs1[1:-1] x=res_out.T temp = np.linalg.pinv(x) vref=np.load("output/ref.npy") vref=vref.T w_out = np.load("output/w_out.npy") outlayer=1 readout=np.zeros((res_out.shape[1],outlayer)) for t in range(0, res_out.shape[1]): # readout[t]=np.dot(res[:,:,t],w_out) readout[t] = np.dot(res_out[:, t], w_out) # error = abs(readout - vref) error = abs(readout[1:] - vref[1:]) error1= mean_squared_error(readout[1:], vref[1:],squared=False) print(error1) pyplot.figure(figsize=(10,6)) pyplot.subplots_adjust(wspace =0, hspace =0.2) pyplot.plot(stime[1:],vref[1:],'r') pyplot.plot(stime[1:],readout[1:],'mediumspringgreen') pyplot.xlabel("Time (s)",fontsize=15) pyplot.show() ###################################plot######################################## # stime = arrs1[0] # current = arrs1[1:19] # memstate=arrs1[21:39] # # current1=arrs1[1] # state1=arrs1[21] # # # pyplot.figure(figsize=(10,3)) # pyplot.subplots_adjust(wspace =0, hspace =0.2) # # pyplot.plot(stime[1:],current1[1:],'r') # pyplot.plot(stime[1:],state1[1:],'mediumspringgreen') # # pyplot.xlabel("Time (s)",fontsize=15) # pyplot.show() # # pyplot.figure(figsize=(10,3)) # pyplot.subplots_adjust(wspace =0, hspace =0.2) # pyplot.plot(stime[1:],current1[1:],'r') # # pyplot.plot(stime[1:],state1[1:],'mediumspringgreen') # pyplot.xlabel("Time (s)",fontsize=15) # pyplot.show()
embeddedsky/ExplainableMRC
Plot_file.py
Plot_file.py
py
1,665
python
en
code
0
github-code
6
29800628522
from django.urls import path from cart.views import cart_add, cart_remove, cart_details, cart_clear, cart_update urlpatterns = [ path('cart_details/', cart_details, name='cart_details'), path('cart_add/', cart_add, name='cart_add'), path('cart_update/', cart_update, name='cart_update'), path('cart_remove/', cart_remove, name='cart_remove'), path('cart_clear/', cart_clear, name='cart_clear'), ]
Aliaksei-Hrazhynski/DP
cart/urls.py
urls.py
py
420
python
en
code
0
github-code
6
10424789791
#-*- coding: utf-8 -*- u""" .. moduleauthor:: Martรญ Congost <[email protected]> """ import cherrypy from cocktail.pkgutils import resolve from woost.controllers.basecmscontroller import BaseCMSController from woost.extensions.payments.paymentgateway import PaymentGateway class PaymentRootController(BaseCMSController): """Root controller for all payment related requests. This controller does nothing by itself, it merely identifies the payment gateway that should handle an incomming request and forwards the request to the gateway's controller (an instance of L{PaymentGatewayController}). """ def resolve(self, path): if not path: raise cherrypy.NotFound() # Identify the gateway involved in the payment gateway_id = path.pop(0) try: gateway_id = int(gateway_id) except: raise cherrypy.HTTPError(400) gateway = PaymentGateway.get_instance(gateway_id) if gateway is None: raise cherrypy.NotFound() # Forward the request to the gateway's controller controller_class = resolve(gateway.payment_gateway_controller_class) return controller_class(gateway)
marticongost/woost
woost/extensions/payments/paymentrootcontroller.py
paymentrootcontroller.py
py
1,224
python
en
code
0
github-code
6
30063385074
import veri import logs class uartClass(logs.driverClass): def __init__(self,Path,Monitors,rxd='rxd',txd='txd'): logs.driverClass.__init__(self,Path,Monitors) self.rxd = rxd self.txd = txd self.baudRate = 100*32 self.txQueue = [] self.txWaiting=0 self.rxState = 'idle' self.rxQueue = [] self.rxWaiting=0 self.rxByte='' self.force(self.rxd,1) self.RxStr = '' self.Silence = 100 self.silentCounter = 0 def busy(self,Why=False): Busy0 = self.silentCounter < (self.Silence * self.baudRate) if Why: logs.log_info("UART BUSY busy0=%s tx=%s rx=%s wtx=%s wrx=%s" % (Busy0,len(self.txQueue),len(self.rxQueue),(self.txWaiting>0),(self.rxWaiting>0))) return Busy0 or (self.rxState!='idle') or (self.txQueue != []) or (self.rxQueue != []) or (self.txWaiting>0) or (self.rxWaiting>0) def run(self): self.runTx() self.runRx() Rxd = self.peek(self.txd) if Rxd == 0: self.silentCounter = 0 else: self.silentCounter += 1 def action(self,Str,Origs=[]): Wrds = Str.split() if Wrds[0]=='txfile': Fname = Wrds[1] File = open(Fname) Str = File.read() File.close() Words = Str.split() for Wrd in Words: self.send(Wrd) self.send('\x0a') elif Wrds[0]=='tx': for Wrd in Wrds[1:]: self.send(Wrd) logs.log_info("TXUART %s %s" % (self.txd,str(Wrds[1:])),'fpga') self.send('\x0a') elif Wrds[0]=='baudrate': self.baudRate = eval(Wrds[1]) elif Wrds[0]=='rx': logs.log_info('UART RX "%s" '%(self.RxStr)) else: logs.log_error('action by uart is not : %s'%(Str)) def send(self,Byte): if type(Byte) is str: if len(Byte)==1: Byte = ord(Byte) self.send(Byte) return elif Byte == 'CRLF': self.send(10) return else: for Chr in Byte: self.send(Chr) return self.txQueue.append(0) for II in range(0,8): Val = (Byte>>II)&1 self.txQueue.append(Val) logs.log_info('txQueue %02x %d' % (Byte,self.baudRate)) self.txQueue.append(1) self.txQueue.append(1) self.txQueue.append(1) def runTx(self): if self.txWaiting>0: self.txWaiting -= 1 return if self.txQueue==[]: self.force(self.rxd,1) return Bit = self.txQueue.pop(0) self.force(self.rxd,Bit) self.txWaiting = self.baudRate def runRx(self): if self.rxWaiting>0: self.rxWaiting -= 1 veri.force('tb.midbit','0') # if (self.rxWaiting == 1): # logs.log_info("rxwait %s %s " % (self.rxState,self.rxByte)) return if self.rxState in ['bitx','bit0','stop']: veri.force('tb.midbit','1') else: veri.force('tb.midbit','0') if self.rxState=='idle': Rxd = self.peek(self.txd) if Rxd==0: self.rxState='bit0' self.rxWaiting = self.baudRate/2 return elif self.rxState=='bit0': self.rxState='bitx' self.rxWaiting = self.baudRate Rxd = self.peek(self.txd) if Rxd!=0: logs.log_error('ilia rxd start bit isnt there') self.rxState='idle' return elif self.rxState=='bitx': Rxd = self.peek(self.txd) self.rxByte = str(Rxd) + self.rxByte if len(self.rxByte)==8: self.rxState = 'stop' # self.rxQueue.append(self.rxByte) Int = logs.intx(self.rxByte) if ((Int>=0)and(Int<256)): Chr = chr(logs.intx(self.rxByte)) else: Chr = '(ERR%s)'%self.rxByte self.RxStr += Chr # logs.log_info('uart rxByte %s "%s" '%(self.rxByte,self.RxStr)) try: if ord(Chr) <= 10: logs.log_info('UART RX "%s" '%(self.RxStr[:-1])) self.RxStr = '' except: logs.log_error('UART RX ERROR |%s| "%s" '%(Chr,self.RxStr)) self.RxStr = '' # veri.force('tb.marker','0b'+self.rxByte) self.rxByte='' self.rxWaiting = self.baudRate elif self.rxState=='stop': Rxd = self.peek(self.txd) if Rxd==0: logs.log_error('ilia rxd stop bit isnt there') self.rxState='idle' def onFinish(self): return
greenblat/vlsistuff
verification_libs3/uartClass.py
uartClass.py
py
5,084
python
en
code
41
github-code
6
19109871856
#!/usr/bin/env python3 # # graph timing from timing file import sys import pylab import numpy import matplotlib.pyplot as plot from argparse import ArgumentParser from collections import defaultdict time_xlabel="Time in seconds" bytes_ylabel="GB processed" def parse_pair(line): h = line[11:13] m = line[14:16] s = line[17:19] time = (int(h) * 60 + int(m)) * 60 + int(s) count = int(line[24:]) return time, count def read_timing(timing_file): time_list = list() total_bytes_list = list() with open(timing_file, 'r') as infile: first = True offset = 0 total = 0 for line in infile: time, count = parse_pair(line) if first: offset = time first = False time_list.append(time - offset) total += count total_bytes_list.append(total/1000000000.0) return (time_list, total_bytes_list) def plot_timing(time_list, total_bytes_list, outfile): plot.plot(time_list, total_bytes_list, '-bo') plot.xlabel(time_xlabel) plot.ylabel(bytes_ylabel) plot.title("Bytes processed over time") plot.savefig(outfile) if __name__=="__main__": parser = ArgumentParser(prog='plot_dots.py', description='Plot timestamp progress') parser.add_argument('timing_file', help= 'timing file') args = parser.parse_args() timing_file = args.timing_file if timing_file[:7] != 'logfile': raise ValueError("Invalid prefix '%s'" % timing_file[:7]) time_list, total_bytes_list = read_timing(timing_file) for time in time_list: print("time: %d\n" % time) for total_bytes in total_bytes_list: print("total bytes: %d\n" % total_bytes) outfile = "out_%s.png" % timing_file plot_timing(time_list, total_bytes_list, outfile)
NPS-DEEP/big_data_test
be_cluster/doc/plot_dots.py
plot_dots.py
py
1,844
python
en
code
1
github-code
6
15191375755
from collections import defaultdict, deque class Solution: def isBipartite(self, graph: List[List[int]]) -> bool: color = defaultdict(int) seen = set() q = deque() for node1 in range(len(graph)): if node1 in seen: continue color[node1] = 1 parent_color = 1 q.extend([n for n in graph[node1] if n not in seen]) seen.add(node1) while q: l = len(q) for _ in range(l): node = q.popleft() must_color = parent_color * -1 #invert color if color[node] == 0: color[node] = must_color seen.add(node) elif color[node] != must_color: #print(node, graph[node], q, color[node], must_color) return False q.extend([n for n in graph[node] if n not in seen]) parent_color = parent_color * -1 #invert color return True
Dumbris/leetcode
medium/785.is-graph-bipartite.py
785.is-graph-bipartite.py
py
1,085
python
en
code
0
github-code
6
2706181917
import rhino_unwrapper.meshUtils.meshLoad as meshLoad import rhino_unwrapper.meshUtils.mesh as mesh import rhino_unwrapper.cutSelection.userCuts as userCuts import rhino_unwrapper.cutSelection.autoCuts as autoCuts import rhino_unwrapper.weight_functions as weight_functions import rhino_unwrapper.unfold as unfold import rhino_unwrapper.distribute as distribute reload(meshLoad) reload(mesh) reload(userCuts) reload(autoCuts) reload(weight_functions) reload(unfold) reload(distribute) #def all_weight_functions(): #return dict([m for m in inspect.getmembers(weight_functions, inspect.isfunction)]) #hardcode a selection for wieght function for now weight_function = weight_functions.edgeAngle # SET UP MESH uMesh = meshLoad.user_select_mesh() jMesh = mesh.Mesh(uMesh) displayer = mesh.MeshDisplayer(jMesh) # SET CUTS user_cuts = userCuts.get_user_cuts(jMesh,displayer) cuts = autoCuts.auto_fill_cuts(jMesh,user_cuts,weight_function) displayer.display_edges(cuts) #NOTE right now this will duplicate-draw user-cuts # UNFOLD unfolder = unfold.UnFolder(jMesh) net = unfolder.unfold() net.display() #DISTRIBUTE distribute.spread_out_islands_horizontally(net)
jlopezbi/rhinoUnfolder
prototype_cutAndUnfold.py
prototype_cutAndUnfold.py
py
1,170
python
en
code
8
github-code
6
41675036380
# ์Šค๋„์ฟ  # # ์Šค๋„์ฟ ๋ฅผ ๋Œ๋ฉด์„œ ๋นˆ์ž๋ฆฌ(-1)๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค # ๋นˆ์ž๋ฆฌ์— 1~9 ๋ฅผ ๋„ฃ์–ด๋ณด๊ณ  ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ์žฌ๊ท€ํ•จ์ˆ˜๋ฅผ ํ˜ธ์ถœํ•œ๋‹ค. # ๋งŒ์•ฝ ๊ฐ€๋Šฅํ•œ ์ผ€์ด์Šค๊ฐ€ ๋ฐœ๊ฒฌ๋˜๋ฉด ์ฆ‰์‹œ ํ•จ์ˆ˜๋ฅผ ์ข…๋ฃŒํ•œ๋‹ค. # ์—ด์‡  -> test ํ•จ์ˆ˜์—์„œ ์ˆœํšŒํ•  ๋•Œ ๋นˆ์ž๋ฆฌ์— ๋ญ๊ฐ€ ๋“ค์–ด๊ฐˆ ์ˆ˜ ์žˆ๋Š”์ง€ ์—…๋ฐ์ดํŠธํ•ด์„œ ์žฌ๊ฒ€์‚ฌ๋ฅผ ๋ฐฉ์ง€ํ•œ๋‹ค. from copy import deepcopy # row,col์— ์ƒˆ๋กœ์šด ๊ฐ’์ด ๋“ค์–ด์™”์„ ๋•Œ, ๊ฐ€๋Šฅํ•œ์ง€ ๊ฒ€์‚ฌํ•˜๋Š” ํ•จ์ˆ˜ def test(s: list[list[int]], row: int, col: int) -> bool: # row ๊ฒ€์‚ฌ cnt = 0 nums = [] # 0์ด ์•„๋‹Œ ๋ชจ๋“  ์ˆ˜๋ฅผ ์ €์žฅ empty = [] # ์ˆซ์ž๊ฐ€ ๋นˆ์ž๋ฆฌ๋ฅผ ์ €์žฅ for i in range(9): if s[row][i] == 0: # 0์ด๋ฉด empty์— ๋„ฃ๊ธฐ empty.append((row, i)) elif i != col: # 0์ด ์•„๋‹ˆ๊ณ  ์ž๊ธฐ์ž์‹ ๋„ ์•„๋‹ˆ๋ฉด nums์— ๋„ฃ๊ธฐ nums.append(s[row][i]) if s[row][i] != s[row][col] and i != col: # ์ˆซ์ž๊ฐ€ ์•ˆ๊ฒน์น˜๋ฉด cnt += 1 if len(empty) > 0: for e in empty: # ๋‹ค์‹œ ๊บผ๋‚ด์„œ nums์— ์žˆ๋Š” ๋ชจ๋“  ์ˆ˜๋ฅผ ์ œ์™ธํ•˜๊ณ  ์ €์žฅ poss_value[e] = [x for x in poss_value[e] if x not in nums] if cnt != 8: return False # col ๊ฒ€์‚ฌ cnt = 0 nums = [] # 0์ด ์•„๋‹Œ ๋ชจ๋“  ์ˆ˜๋ฅผ ์ €์žฅ empty = [] # ์ˆซ์ž๊ฐ€ ๋นˆ์ž๋ฆฌ๋ฅผ ์ €์žฅ for i in range(9): if s[i][col] == 0: empty.append((i, col)) elif i != row: nums.append(s[i][col]) if s[i][col] != s[row][col] and i != row: cnt += 1 if len(empty) > 0: for e in empty: # ๋‹ค์‹œ ๊บผ๋‚ด์„œ nums์— ์žˆ๋Š” ๋ชจ๋“  ์ˆ˜๋ฅผ ์ œ์™ธํ•˜๊ณ  ์ €์žฅ poss_value[e] = [x for x in poss_value[e] if x not in nums] if cnt != 8: return False # ์นธ ๊ฒ€์‚ฌ sections = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] row_section = [] # ์นธ์— ํ•ด๋‹นํ•˜๋Š” ํ–‰๋“ค col_section = [] # ์นธ์— ํ•ด๋‹นํ•˜๋Š” ์—ด๋“ค for section in sections: if row in section: row_section = section break for section in sections: if col in section: col_section = section break cnt = 0 nums = [] # 0์ด ์•„๋‹Œ ๋ชจ๋“  ์ˆ˜๋ฅผ ์ €์žฅ empty = [] # ์ˆซ์ž๊ฐ€ ๋นˆ์ž๋ฆฌ๋ฅผ ์ €์žฅ for r in row_section: for c in col_section: if s[r][c] == 0: empty.append((r, c)) elif (r, c) != (row, col): nums.append(s[r][c]) if s[r][c] != s[row][col] and (r, c) != (row, col): cnt += 1 if len(empty) > 0: for e in empty: # ๋‹ค์‹œ ๊บผ๋‚ด์„œ nums์— ์žˆ๋Š” ๋ชจ๋“  ์ˆ˜๋ฅผ ์ œ์™ธํ•˜๊ณ  ์ €์žฅ poss_value[e] = [x for x in poss_value[e] if x not in nums] if cnt != 8: return False return True # ๋‹ค ํ†ต๊ณผํ•˜๋ฉด ๊ฐ€๋Šฅ sudoku = [list(map(int, input().split())) for _ in range(9)] # ์Šค๋„์ฟ  ํŒ empty_place: list[tuple[int, int]] = [] # ๋นˆ์ž๋ฆฌ [(row,col)] for row in range(9): for col in range(9): if sudoku[row][col] == 0: empty_place.append((row, col)) poss_value = {} # ๊ฐ ๋นˆ์ž๋ฆฌ๋งˆ๋‹ค ๋“ค์–ด๊ฐˆ ์ˆ˜ ์žˆ๋Š” ๊ฐ’์„ ๊ด€๋ฆฌํ•˜๋Š” ๋”•์…”๋„ˆ๋ฆฌ (์ดˆ๊ธฐ๊ฐ’์€ 1~9) for e in empty_place: poss_value[e] = list(range(1, 10)) res = [[]] def dfs(s: list[list[int]], empty_place: list[tuple[int, int]]): if len(empty_place) == 0: global res res = s return True for i in range(len(empty_place)): row = empty_place[i][0] col = empty_place[i][1] for num in poss_value[empty_place[i]]: new_sudoku = deepcopy(s) new_sudoku[row][col] = num new_empty_place = deepcopy(empty_place) del new_empty_place[i] if test(new_sudoku, row, col): # ๊ทธ๊ณณ์— num์„ ๋„ฃ์–ด๋„ ๊ดœ์ฐฎ์€๊ฐ€? flag = dfs(new_sudoku, new_empty_place) if flag == True: return True print() dfs(sudoku, empty_place) # for r in res: # for c in r: # print(c, end=" ") # print() # for p in poss_value.keys(): # print(p, poss_value[p]) result = [ [1, 3, 5, 4, 6, 9, 2, 7, 8], [7, 8, 2, 1, 3, 5, 6, 4, 9], [4, 6, 9, 2, 7, 8, 1, 3, 5], [3, 2, 1, 5, 4, 6, 8, 9, 7], [8, 7, 4, 9, 1, 3, 5, 2, 6], [5, 9, 6, 8, 2, 7, 4, 1, 3], [9, 1, 7, 6, 5, 2, 3, 8, 4], [6, 4, 3, 7, 8, 1, 9, 5, 2], [2, 5, 8, 3, 9, 4, 7, 6, 1], ] print(res == result)
jisupark123/Python-Coding-Test
DFS/2580.py
2580.py
py
4,495
python
ko
code
1
github-code
6
17763725801
#1)list using Array import sys def getListDetails(l): #size = sys.getsizeof(l) #capacity = (size of list - size of empty list) // (size of one block) #size of empty list maens total number of bits for empty list capacity = (sys.getsizeof(l)-64)//8 left_size = ((sys.getsizeof(l)-64)-len(l)*8)//8 #(size-36)//4 for 32bit system #(size-64)//8 for 64bit system print('size of list is ',sys.getsizeof(l)) print('capacity is ',capacity) print('remaining capacity is ',left_size) def insertAtBegin(l,ele): l.insert(0,ele) def insertInBetween(l,index,ele): l.insert(index,ele) def insertAtEnd(l,ele): l.append(ele) def deleteAtBegin(l): l.pop(0) def deleteAtBetween(l,index): l.pop(index) def deleteAtEnd(l): l.pop(-1) l = list() getListDetails(l) #inserting element at begin insertAtBegin(l,1) #inserting element in between insertInBetween(l,1,2) #inserting element at end insertAtEnd(l,3) #deleting at begin deleteAtBegin(l) print(l) getListDetails(l) ''' = RESTART: F:/python/python_programs/5competetive programming/7linear data structures/3.linklinst.py size of list is 64 capacity is 0 remaining capacity is 0 [2, 3] size of list is 96 capacity is 4 remaining capacity is 2 >>> ''' #but implementing link list using dynamic array i.e list have some disadvantages ''' such that even it perform dynamic memory allocation still it having some issues like 1)involes shiftng of elements in insertion and deletion. 2)while insertion when list is full then it increases its capacity by double of its previous capacity, this may cause wastage of memory in the form reserved space Exaple, consider list l of capacity 10, <insert element 1 to 10 #it will insert 1...10 elements in list <insert element 11 # here list is full , so it creates list of size 10*2=20(previous capacity * 2) and shifts the elements this new list and add new element 11 to increased caacity list. when is capacity get reache then it again increase the size by 20*2=40 and perform shifting of elements and insert new element and so on. therefore array list involves shifting of elements and memory wastage. ''' print('------------------------------------------singly link list------------------------------------------') #using classes and objects #class to create node class Node: def __init__(self,data): self.__data = data self.__next = None def getData(self): return self.__data def setData(self,data): self.__data = data def getNext(self): return self.__next def setNext(self,next_node): self.__next = next_node class LinkedList: def __init__(self): self.__head = None def getHead(self): return self.__head def insertAtBegin(self,node): if self.__head == None : self.__head = node else : node.setNext(self.__head) self.__head = node print('insertion done successfully...') def insertInBetween(self,key,node): temp = self.__head while(temp.getNext()!=None and temp.getData()!=key): temp = temp.getNext() if(temp.getData()!=key): print('key not found\nInsertion faild!!!') else: node.setNext(temp.getNext()) temp.setNext(node) print('insertion done successfully...') def insertAtEnd(self,node): if self.__head == None : self.__head = node else : temp = self.__head while(temp.getNext()!=None): temp = temp.getNext() temp.setNext(node) print('insertion done successfully...') def deleteAtBegin(self): self.__head = self.__head.getNext() print('deletion done successfully') def deleteInBetween(self,key): temp = self.__head while(temp.getNext()!=None and temp.getData()!=key): delete_node = temp temp = temp.getNext() if(temp.getData()!=key): print('key not found\nInsertion faild!!!') else: delete_node.setNext((delete_node.getNext()).getNext()) print('deletion done successfully') def deleteAtEnd(self): temp = self.__head while(temp.getNext()!=None ): delete_node = temp temp = temp.getNext() delete_node.setNext(None) print('deletion done successfully') def travelsing(self): if self.__head == None : print('Empty List!!!') else: temp = self.__head #print(temp.getData()) while(temp!=None): print(temp.getData()) temp = temp.getNext() link_list = LinkedList() #it will create empty list while(True): print('\n1.insertion\n2.deletion\n3.display\n4.quit\n Enter your choice') ch = int(input()) if ch == 1: #create node data = int(input('Enter data ')) node = Node(data) #insertion of node in link list print('1.Insert At begining\n 2.Insert In Between\n 3.Insert At End') ch2 = int(input('Enter your choice')) if ch2 == 1: link_list.insertAtBegin(node) elif ch2 == 2: key = int(input('Enter after which you want to insert node')) link_list.insertInBetween(key,node) elif ch2 == 3: link_list.insertAtEnd(node) else : print('Enter correct choice !!!') elif ch == 2: #ask for where to delete if link_list.getHead() == None: print('list is Empty!!!') else : print('1.Delete At begining\n 2.Delete In Between\n 3.Delete At End') ch2 = int(input('Enter your choice')) if ch2 == 1: link_list.deleteAtBegin() elif ch2 == 2: key = int(input('Enter which you want to delete node')) link_list.deleteInBetween(key) elif ch2 == 3: link_list.deleteAtEnd() else : print('Enter correct choice !!!') elif ch == 3: link_list.travelsing() elif ch == 4: break else : print('Enter correct choice !!!') print('------------------------------------------doubly link list------------------------------------------') #class to create node class Node: def __init__(self,data): self.__pre = None self.__data = data self.__next = None def getData(self): return self.__data def setData(self,data): self.__data = data def getNext(self): return self.__next def setNext(self,next_node): self.__next = next_node def getpre(self): return self.__pre def setNext(self,pre_node): self.__pre = pre_node
aparna0/competitive-programs
7Algo and Datastructures/1linear DS/3.linklinst.py
3.linklinst.py
py
7,108
python
en
code
0
github-code
6
39023255902
import pandas as pd from objects_API.StrainJ import StrainJson from objects_API.BacteriumJ import BacteriumJson from objects_API.BacteriophageJ import BacteriophageJson from objects_API.CoupleJ import CoupleJson from configuration.configuration_api import ConfigurationAPI from rest_client.AuthenticationRest import AuthenticationAPI from objects_new.Couples_new import Couple from objects_new.Organisms_new import Organism def readCSVToDF(path_csv): data = pd.read_csv(path_csv) return data def getBacteriophageByACCNEWDB(acc_value:str): bacteriophage_obj_new = BacteriophageJson.getByAccnumber(acc_value) id_bacteriophage_new = bacteriophage_obj_new.id return id_bacteriophage_new def getBacteriumByACCNEWDB(acc_value:str): bacterium_obj_new = BacteriumJson.getByAccnumber(acc_value) id_bacterium_new = bacterium_obj_new.id return id_bacterium_new def obtainBacteriumIdFromOldDBId(id_bacterium_old_db:int): organism_obj = Organism.get_organism_by_id(id_bacterium_old_db) fk_strain_old_db = organism_obj.fk_strain return fk_strain_old_db def obtainBacteriumACCnumberFromOldDBId(id_bacterium_old_db:int): organism_obj = Organism.get_organism_by_id(id_bacterium_old_db) acc_number = organism_obj.acc_num return acc_number def obtainphageACCnumberFromOldDBId(id_bacteriophage_old_db:int): organism_obj = Organism.get_organism_by_id(id_bacteriophage_old_db) acc_number = organism_obj.acc_num return acc_number def getIdStrainNewDBByStrainBactOldDB(strain_id_old:int, dataframe_strains_id): dataframe_line = dataframe_strains_id.loc[dataframe_strains_id['strain_db'] == strain_id_old] new_db_id_strain = int(dataframe_line['strain_api'].values[0]) return new_db_id_strain def getBacteriumListIdsByStrainId(strain_id:int): list_bacterium_ids_treated = [] strain_obj = StrainJson.getByID(strain_id) list_bacterium_ids = strain_obj.bacteria for bacterium in list_bacterium_ids: bacterium = bacterium.replace('http://trex.lan.iict.ch:8080/api/bacterium/','')[:-1] list_bacterium_ids_treated.append(bacterium) return list_bacterium_ids_treated conf_obj = ConfigurationAPI() conf_obj.load_data_from_ini() AuthenticationAPI().createAutenthicationToken() path_csv_strains_correspondence = 'correspondenceIDSStrains2.csv' datafram_csv = readCSVToDF(path_csv_strains_correspondence) list_couples_old_db = Couple.get_all_couples() count_error = 0 count_many = 0 count_pos_list = 0 #list_couples_old_db = list_couples_old_db[9602:] #list_couples_old_db = list_couples_old_db[-2:] dict_convert_phages_id = {} dict_convert_phages_id[4656] = 6265 for couple_element in list_couples_old_db: if couple_element.fk_source_data == 1 and couple_element.fk_level_interact == 3: print('It is the {0} : couple id {1} : pos in list total {2}'.format(count_many, couple_element.id_couple, count_pos_list)) id_bacterium = couple_element.fk_bacteria acc_bacterium = obtainBacteriumACCnumberFromOldDBId(id_bacterium) id_new_bacterium_db = -1 try: id_new_bacterium_db = getBacteriumByACCNEWDB(acc_bacterium) except: id_new_bacterium_db = -1 #If necessary, check if they have the acc for public data for bacterium #strain_id = obtainBacteriumIdFromOldDBId(id_bacterium) #strain_id_new_db = getIdStrainNewDBByStrainBactOldDB(strain_id, datafram_csv) #list_bacterium_id = getBacteriumListIdsByStrainId(strain_id_new_db) # id_phage = couple_element.fk_phage acc_bacteriophage = obtainphageACCnumberFromOldDBId(id_phage) id_new_phage_db = -1 if id_phage in dict_convert_phages_id: id_new_phage_db = dict_convert_phages_id[id_phage] else: try: id_new_phage_db = getBacteriophageByACCNEWDB(acc_bacteriophage) except: id_new_phage_db = -1 if id_new_phage_db != -1 and id_new_bacterium_db != -1: try: couple_obj = CoupleJson.getByBacteriumPhageIds(id_new_bacterium_db, id_new_phage_db) except: count_error += 1 interaction_type_cp = couple_element.interact_pn id_bacterium_cp = id_new_bacterium_db id_phage_cp = id_new_phage_db validity_id_cp = 4 #not validate level_interaction_cp = 2 source_data_cp = 1 person_responsible_cp = 3 couple_obj_json = CoupleJson(interaction_type = interaction_type_cp, bacteriophage = id_phage_cp, bacterium = id_bacterium_cp, level = level_interaction_cp, person_responsible = person_responsible_cp, source_data = source_data_cp, validity = validity_id_cp) couple_obj = couple_obj_json.setCouple() print(couple_obj) print('INSERTEDDD NEW') else: count_error += 1 #print(couple_obj) count_many += 1 count_pos_list += 1 print(len(list_couples_old_db)) print('Hello')
diogo1790/inphinity
CorrectLevelLysis.py
CorrectLevelLysis.py
py
5,366
python
en
code
0
github-code
6
40920994409
from datetime import datetime from models.library_item import LibraryItem from models.rent import Rent from models.user import User from services.handlers.rent_handlers.apply_discount_handler import ApplyDiscountHandler from services.handlers.rent_handlers.calculate_fine_price_handler import ( CalculateFinePriceHandler, ) from services.handlers.rent_handlers.calculate_rent_price_handler import ( CalculateRentPriceHandler, ) from services.handlers.rent_handlers.inspect_item_handlers import InspectItemHandler from services.handlers.rent_handlers.rent_request_payment_handler import ( RentRequestPaymentHandler, ) from services.handlers.rent_handlers.rent_return_payment_handler import ( RentReturnPaymentHandler, ) from services.handlers.rent_handlers.save_rent_handler import SaveRentHandler from services.handlers.rent_handlers.update_book_catalogue_handler import ( UpdateBookCatalogueHandler, ) from services.payment.bank_account_payment_strategy import BankAccountPaymentStrategy from services.payment.card_payment_strategy import CardPaymentStrategy from services.payment.payment_strategy import PaymentStrategy from services.singleton.singleton import singleton @singleton class LibraryManager: @classmethod def rent_library_item( cls, library_item: LibraryItem, user: User, expected_rent_end_date: datetime, payment_type: str, ): rent = cls.__create_rent( library_item=library_item, user=user, expected_rent_end_date=expected_rent_end_date, ) payment_strategy = cls.__get_payment_strategy_from_type(payment_type) handler = cls.__get_rent_request_handlers() handler.handle(rent, payment_strategy) return rent @classmethod def return_library_item( cls, rent: Rent, payment_type: str, ): rent.rent_end_date = datetime.utcnow().date() payment_strategy = cls.__get_payment_strategy_from_type(payment_type) handler = cls.__get_rent_return_handlers() handler.handle(rent, payment_strategy) return rent @staticmethod def __create_rent( library_item: LibraryItem, user: User, expected_rent_end_date: datetime, ) -> Rent: rent = Rent( library_item=library_item, library_user=user, rent_start_date=datetime.utcnow(), expected_rent_end_date=expected_rent_end_date, ) return rent @staticmethod def __get_rent_request_handlers(): handler = CalculateRentPriceHandler() handler.set_next(ApplyDiscountHandler()).set_next( RentRequestPaymentHandler() ).set_next(UpdateBookCatalogueHandler()).set_next(SaveRentHandler()) return handler @staticmethod def __get_rent_return_handlers(): handler = InspectItemHandler() handler.set_next(CalculateFinePriceHandler()).set_next( RentReturnPaymentHandler() ).set_next(UpdateBookCatalogueHandler()).set_next(SaveRentHandler()) return handler @staticmethod def __get_payment_strategy_from_type(payment_type: str) -> PaymentStrategy: if payment_type == "card": payment_strategy = CardPaymentStrategy() else: payment_strategy = BankAccountPaymentStrategy() return payment_strategy
Ari100telll/LibrarySDD
services/library_manager/library_manager.py
library_manager.py
py
3,424
python
en
code
0
github-code
6
70941800508
# a simple client socket import socket # define socket address TCP_IP = 'pip install request' # ip of the server we want to connect to TCP_PORT = 5000 # port used for communicating with the server # create socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print ("Socket created successfully.") # connect to server s.connect((TCP_IP, TCP_PORT)) print ("Established connection with the server." ) message = "I've been sent from the client!" # send message to the server s.send(message) print ("Message sent to server.")
DiegoPython/CS50-NASA-Vending-Machine
Python/testsocket.py
testsocket.py
py
554
python
en
code
1
github-code
6
29848209236
import pygame from random import randint class Enemy(pygame.sprite.Sprite): def __init__(self, x, y, level): super().__init__() self.image_list = [] self.level = level self.frame = 0 for index in range(10): image_name = 'Pic\\Enemy' + str(level) + '\\Enemy' + str(level) + '_' + str(index+1) + '.png' self.image_list.append(pygame.image.load(image_name).convert_alpha()) self.image_order = 0 self.image = self.image_list[self.image_order] # self.image = pygame.image.load('Pic\Enemy1\Enemy1.png').convert_alpha() self.rect = self.image.get_rect(topleft=(x, y)) self.speed = 1 '''speed for each level''' # if self.level%4 >= 0.5: # self.speed = 1*ceil(self.level/4) # elif self.level%4 < 0.5: # self.speed = 1*floor(self.level/4) # print(f'level: {level}') # print(self.speed) self.lasers = pygame.sprite.Group() '''Make it collide perfectly''' self.mask = pygame.mask.from_surface(self.image) '''special enemy''' special_number = randint(0, 10) if special_number == 4: self.special = 'heart' elif special_number == 1: self.special = 'item' else: self.special = 'none' self.check_game_over = True def move(self): '''Movement speed of Enemy1''' if self.rect.x > 0: self.rect.x -= self.speed elif self.rect.x == 0: '''Constraint for enemies pos''' self.check_game_over = False # pygame.quit() # sys.exit() def pic(self): self.frame += 1 if self.frame == 12: self.frame = 0 self.image_order += 1 if self.image_order >= len(self.image_list): self.image_order = 0 self.image = self.image_list[self.image_order] def update(self): self.move() self.pic() if self.check_game_over is False: return False
Karnpitcha-kasemsirinavin/The_Lost_Duck
Enemy.py
Enemy.py
py
2,176
python
en
code
0
github-code
6
24698018564
import numpy as np import torch from torch.utils.data import Dataset import constants as C def _get_existing_group(gb, i): try: group_df = gb.get_group(i) except KeyError: group_df = None return group_df def get_dist_matrix(struct_df): locs = struct_df[['x','y','z']].values n_atoms = len(locs) loc_tile = np.tile(locs.T, (n_atoms,1,1)) dist_mat = np.sqrt(((loc_tile - loc_tile.T)**2).sum(axis=1)) return dist_mat class MoleculeDataset(Dataset): """Dataset returning inputs and targets per molecule.""" def __init__(self, mol_ids, gb_mol_sc, gb_mol_atom, gb_mol_bond, gb_mol_struct, gb_mol_angle_in, gb_mol_angle_out, gb_mol_graph_dist): """Dataset is constructed from dataframes grouped by molecule_id.""" self.n = len(mol_ids) self.mol_ids = mol_ids self.gb_mol_sc = gb_mol_sc self.gb_mol_atom = gb_mol_atom self.gb_mol_bond = gb_mol_bond self.gb_mol_struct = gb_mol_struct self.gb_mol_angle_in = gb_mol_angle_in self.gb_mol_angle_out = gb_mol_angle_out self.gb_mol_graph_dist = gb_mol_graph_dist def __len__(self): return self.n def __getitem__(self, idx): return (self.gb_mol_sc.get_group(self.mol_ids[idx]), self.gb_mol_atom.get_group(self.mol_ids[idx]), self.gb_mol_bond.get_group(self.mol_ids[idx]), self.gb_mol_struct.get_group(self.mol_ids[idx]), self.gb_mol_angle_in.get_group(self.mol_ids[idx]), _get_existing_group(self.gb_mol_angle_out, self.mol_ids[idx]), self.gb_mol_graph_dist.get_group(self.mol_ids[idx])) def arr_lst_to_padded_batch(arr_lst, dtype=torch.float, pad_val=C.BATCH_PAD_VAL): tensor_list = [torch.Tensor(arr).type(dtype) for arr in arr_lst] batch = torch.nn.utils.rnn.pad_sequence( tensor_list, batch_first=True, padding_value=pad_val) return batch.contiguous() def collate_parallel_fn(batch, test=False): """ Transforms input dataframes grouped by molecule into a batch of input and target tensors for a 'batch_size' number of molecules. The first dimension is used as the batch dimension. Returns: - atom_x: features at the atom level - bond_x: features at the chemical bond level - sc_x: features describing the scalar coupling atom_0 and atom_1 pairs - sc_m_x: in addition to the set of features in 'sc_x', includes features at the molecule level. - eucl_dists: 3D euclidean distance matrices - graph_dists: graph distance matrices - angles: cosine angles between all chemical bonds - mask: binary mask of dim=(batch_size, max_n_atoms, max_n_atoms), where max_n_atoms is the largest number of atoms per molecule in 'batch' - bond_idx: tensor of dim=(batch_size, max_n_bonds, 2), containing the indices of atom_0 and atom_1 pairs that form chemical bonds - sc_idx: tensor of dim=(batch_size, max_n_sc, 2), containing the indices of atom_0 and atom_1 pairs that form a scalar coupling pair - angles_idx: tensor of dim=(batch_size, max_n_angles, 1), mapping angles to the chemical bonds in the molecule. - sc_types: scalar coupling types - sc_vals: scalar coupling contributions (first 4 columns) and constant (last column) """ batch_size, n_atom_sum, n_pairs_sum = len(batch), 0, 0 atom_x, bond_x, sc_x, sc_m_x = [], [], [], [] eucl_dists, graph_dists = [], [] angles_in, angles_out = [], [] mask, bond_idx, sc_idx = [], [], [] angles_in_idx, angles_out_idx = [], [] sc_types, sc_vals = [], [] for b in range(batch_size): (sc_df, atom_df, bond_df, struct_df, angle_in_df, angle_out_df, graph_dist_df) = batch[b] n_atoms, n_pairs, n_sc = len(atom_df), len(bond_df), len(sc_df) n_pad = C.MAX_N_ATOMS - n_atoms eucl_dists_ = get_dist_matrix(struct_df) eucl_dists_ = np.pad(eucl_dists_, [(0, 0), (0, n_pad)], 'constant', constant_values=999) atom_x.append(atom_df[C.ATOM_FEATS].values) bond_x.append(bond_df[C.BOND_FEATS].values) sc_x.append(sc_df[C.SC_EDGE_FEATS].values) sc_m_x.append(sc_df[C.SC_MOL_FEATS].values) sc_types.append(sc_df['type'].values) if not test: n_sc_pad = C.MAX_N_SC - n_sc sc_vals_ = sc_df[C.CONTRIB_COLS+[C.TARGET_COL]].values sc_vals.append(np.pad(sc_vals_, [(0, n_sc_pad), (0, 0)], 'constant', constant_values=-999)) eucl_dists.append(eucl_dists_) graph_dists.append(graph_dist_df.values[:,:-1]) angles_in.append(angle_in_df['cos_angle'].values) if angle_out_df is not None: angles_out.append(angle_out_df['cos_angle'].values) else: angles_out.append(np.array([C.BATCH_PAD_VAL])) mask.append(np.pad(np.ones(2 * [n_atoms]), [(0, 0), (0, n_pad)], 'constant')) bond_idx.append(bond_df[['idx_0', 'idx_1']].values) sc_idx.append(sc_df[['atom_index_0', 'atom_index_1']].values) angles_in_idx.append(angle_in_df['b_idx'].values) if angle_out_df is not None: angles_out_idx.append(angle_out_df['b_idx'].values) else: angles_out_idx.append(np.array([0.])) n_atom_sum += n_atoms n_pairs_sum += n_pairs atom_x = arr_lst_to_padded_batch(atom_x, pad_val=0.) bond_x = arr_lst_to_padded_batch(bond_x) max_n_atoms = atom_x.size(1) max_n_bonds = bond_x.size(1) angles_out_idx = [a + max_n_bonds for a in angles_out_idx] sc_x = arr_lst_to_padded_batch(sc_x) sc_m_x =arr_lst_to_padded_batch(sc_m_x) if not test: sc_vals = arr_lst_to_padded_batch(sc_vals) else: sc_vals = torch.tensor([0.] * batch_size) sc_types = arr_lst_to_padded_batch(sc_types, torch.long) mask = arr_lst_to_padded_batch(mask, torch.uint8, 0) mask = mask[:,:,:max_n_atoms].contiguous() bond_idx = arr_lst_to_padded_batch(bond_idx, torch.long, 0) sc_idx = arr_lst_to_padded_batch(sc_idx, torch.long, 0) angles_in_idx = arr_lst_to_padded_batch(angles_in_idx, torch.long, 0) angles_out_idx = arr_lst_to_padded_batch(angles_out_idx, torch.long, 0) angles_idx = torch.cat((angles_in_idx, angles_out_idx), dim=-1).contiguous() eucl_dists = arr_lst_to_padded_batch(eucl_dists, pad_val=999) eucl_dists = eucl_dists[:,:,:max_n_atoms].contiguous() graph_dists = arr_lst_to_padded_batch(graph_dists, torch.long, 10) graph_dists = graph_dists[:,:,:max_n_atoms].contiguous() angles_in = arr_lst_to_padded_batch(angles_in) angles_out = arr_lst_to_padded_batch(angles_out) angles = torch.cat((angles_in, angles_out), dim=-1).contiguous() return (atom_x, bond_x, sc_x, sc_m_x, eucl_dists, graph_dists, angles, mask, bond_idx, sc_idx, angles_idx, sc_types), sc_vals
robinniesert/kaggle-champs
moldataset.py
moldataset.py
py
7,217
python
en
code
48
github-code
6