seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
30293188969
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path("new", views.create, name='new'), path('list', views.list, name='list'), path('edit/<int:task_id>', views.edit, name='edit'), ]
drazisil/task-zero
tasks/urls.py
urls.py
py
252
python
en
code
0
github-code
6
5308350680
# from math import sqrt # def prime_list(n): # sieve = [True] * n # m = int(sqrt(n)) # for i in range(2, m+1): # if sieve[i] == True: # for j in range(2*i, n, i): # sieve[j] = False # return [i for i in range(2,n) if sieve[i] == True] # # def prime_num(n): # li = prime_list(n) # idx = max([i for i in range(len(li)) if li[i] <= n/2]) # for i in range(idx, -1, -1): # for j in range(i, len(li)): # if li[i] + li[j] == n: # return [li[i], li[j]] # for _ in range(int(input())): # n = int(input()) # print(" ".join(map(str,prime_num(n)))) prime_list = [True for i in range(10001)] for i in range(2, 10001): if prime_list[i]: for j in range(2*i, 10001, i): prime_list[j] = False T = int(input()) for _ in range(T): n = int(input()) a = n // 2 b = a while a > 0: if prime_list[a] and prime_list[b]: print(a, b) break else: a-=1 b+=1 # prime_num = [0 for i in range(10001)] # prime_num[1] = 1 # for i in range(2, 98): # for j in range(i*2, 10001, i): # prime_num[j] = 1 # t = int(input()) # # for _ in range(t): # a = int(input()) # b = a // 2 # for j in range(b, 1, -1): # if prime_num[a - j] == 0 and prime_num[j] == 0: # print(j, a-j) # break # import math # T = int(input()) # lis = list() # for _ in range(T): # lis.append(int(input())) # # def is_prime(num): # if num == 1: # return False # for i in range(2, int(math.sqrt(num))+1): # if num % i == 0: # return False # return True # # for i in lis: # lis2 = [] # for j in range(2, i+1): # if is_prime(j): # lis2.append(j) # for _ in range(len(lis)-1): # for l in range(len(lis)-1):
louisuss/Algorithms-Code-Upload
Python/Baekjoon/Math/9020.py
9020.py
py
1,897
python
en
code
0
github-code
6
43281391404
# -*- coding: utf-8 -*- """ Created on Tue May 23 22:30:25 2023 @author: user """ import numpy as np import sys print("\n-------------GAUSS ELIMINATION--------------\n") n = int(input("Enter number of unknowns : ")) # for storing augmented matrix a = np.zeros((n,n+1)) # for storing solution vector x = np.zeros(n) # Reading augmented matrix coefficients print('\nEnter Augmented Matrix Coefficients :') for i in range(n): for j in range(n+1): a[i][j] = float(input( 'a['+str(i)+']['+ str(j)+']=')) # Applying Gauss Elimination for i in range(n): if a[i][i] == 0.0: sys.exit('Divide by zero detected!') for j in range(i+1, n): ratio = a[j][i]/a[i][i] for k in range(n+1): a[j][k] = a[j][k] - ratio * a[i][k] # Back Substitution x[n-1] = a[n-1][n]/a[n-1][n-1] for i in range(n-2,-1,-1): x[i] = a[i][n] for j in range(i+1,n): x[i] = x[i] - a[i][j]*x[j] x[i] = x[i]/a[i][i] print('\nRequired solution is : \n') for i in range(n): print('X%d = %0.2f' %(i,x[i]), end = '\t')
AksA1210/Numerical-Methods-Lab
Final/Gauss_elimination.py
Gauss_elimination.py
py
1,142
python
en
code
0
github-code
6
7007626301
def fib(n): if n == 1: return 1 return n + fib(n-1) def main(): n = 0 m = 1 result = 0 while n < 4000000: tmp = n n = n + m m = tmp if n % 2 == 0: result += n # print(n, n % 2) # print(n, result) print("Problem 2:", result)
minuq/project-euler
problems/problem_2.py
problem_2.py
py
318
python
en
code
0
github-code
6
73017766588
import json from typing import Dict, List, Tuple from flask import Flask, jsonify, request from rb.complexity.complexity_index import compute_indices from rb.complexity.index_category import IndexCategory from rb.core.document import Document from rb.core.lang import Lang from rb.core.text_element import TextElement from rb.core.word import Word from rb.processings.keywords.keywords_extractor import KeywordExtractor from rb.similarity.vector_model import (CorporaEnum, VectorModel, VectorModelType) from rb.similarity.vector_model_factory import VECTOR_MODELS, get_default_model from rb.utils.utils import str_to_lang from nltk.corpus import wordnet as wn import networkx as nx import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import logging app = Flask(__name__) def keywordsOption(): return "" def transform_for_visualization(dataName, JsonName, textType, keywords: List[Tuple[int, Word]], keywordsWithmax: List[Tuple[int, Word]], lang: Lang) -> Dict: log = logging.getLogger("my-logger") vector_model: VectorModel = get_default_model(lang) edge_list, node_list = [], [] edge_list2, node_list2 = [], [] #sort the keywords G = nx.Graph() edge_labels={} from_node = [] to_node = [] value= [] node_size = [] for kw in keywords: node_list.append({ "type": "Word", "uri": kw[1], "displayName": kw[1], "active": True, "degree": str(max(0, float(kw[0]))) }) for kw in keywordsWithmax: node_list2.append({ "type": "Word", "uri": kw[1], "displayName": kw[1], "active": True, "degree": str(max(0, float(kw[0]))) }) G.add_node(kw[1],weight=max(0, float(kw[0]))) node_size.append(int(max(0, float(kw[0]))*1000)) for i, kw1 in enumerate(keywords): for j, kw2 in enumerate(keywords): try: sim = vector_model.similarity(vector_model.get_vector(kw1[1]), vector_model.get_vector(kw2[1])) if i != j and sim >= 0.3: edge_list.append({ "edgeType": "SemanticDistance", "score": str(max(sim, 0)), "sourceUri": kw1[1], "targetUri": kw2[1] }) except: print("Problem with " + kw1[1] + " or " + kw2[1]) for i, kw1 in enumerate(keywordsWithmax): for j, kw2 in enumerate(keywordsWithmax): try: sim = vector_model.similarity(vector_model.get_vector(kw1[1]), vector_model.get_vector(kw2[1])) if i != j and sim >= 0.3: edge_list2.append({ "edgeType": "SemanticDistance", "score": str(max(sim, 0)), "sourceUri": kw1[1], "targetUri": kw2[1] }) print("Problem with ****************************************") from_node.append(kw1[1]) to_node.append(kw2[1]) if not G.has_edge(str(kw1[1]), str(kw2[1])): G.add_edge(str(kw1[1]), str(kw2[1])) value.append(int(max(sim, 0)*10)) except: print("Problem with " + kw1[1] + " or " + kw2[1]) #pos = nx.nx_agraph.graphviz_layout(G, prog="twopi") #nx.draw(G, with_labels = True, node_size=1500, node_color="skyblue", pos=pos) #nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) # Build a dataframe with your connections #df = pd.DataFrame({ 'from':from_node, 'to':to_node, 'value':value}) # Build your graph #G=nx.from_pandas_edgelist(df, 'from', 'to', create_using=nx.Graph() ) #G = nx.star_graph(30) plt.clf() pos = nx.spring_layout(G, k=1, iterations=20, scale=6) options = { "node_color": "#A0CBE2", "edge_color": value, "width": 2, "edge_cmap": plt.cm.Blues, "with_labels": True, "node_size":node_size } plt.figure(figsize=(8, 5)) nx.draw(G, pos, **options) # Custom the nodes: #nx.draw(G, with_labels=True, node_color='skyblue', node_size=1500, edge_color=df['value'], width=10.0, edge_cmap=plt.cm.Blues) plt.savefig('rb_api/pandoc_filters/images/'+ dataName +'.png', dpi=300) plt.clf() data = getJson('rb_api/pandoc_filters/'+JsonName+'.json') data.update({textType : 'rb_api/pandoc_filters/images/'+dataName+'.png'}) data.update({dataName : node_list}) with open('rb_api/pandoc_filters/'+JsonName+'.json', 'w', encoding='utf-8') as f: json.dump(data, f, ensure_ascii=False, indent=4) return { "data": { "edgeList": edge_list, "nodeList": node_list }, "success": True, "errorMsg": "" } def getJson(url): varData= {} if os.path.isfile(url): # checks if file exists print ("File exists ") with open(url, encoding='UTF-8') as f: varData = json.load(f) return varData def keywordsPost(): """TODO, not working""" params = json.loads(request.get_data()) posTagging = params.get('pos-tagging') bigrams = params.get('bigrams') text = params.get('text') languageString = params.get('language') lang = str_to_lang(languageString) threshold = params.get('threshold') plotName = "wordnet" #plotName = params.get('saveAs') # if lang is Lang.RO: # vector_model = VECTOR_MODELS[lang][CorporaEnum.README][VectorModelType.WORD2VEC]( # name=CorporaEnum.README.value, lang=lang) # elif lang is Lang.EN: # vector_model = VECTOR_MODELS[lang][CorporaEnum.COCA][VectorModelType.WORD2VEC]( # name=CorporaEnum.COCA.value, lang=lang) # elif lang is Lang.ES: # vector_model = VECTOR_MODELS[lang][CorporaEnum.JOSE_ANTONIO][VectorModelType.WORD2VEC]( # name=CorporaEnum.JOSE_ANTONIO.value, lang=lang) # lsa = params.get('lsa') # lda = params.get('lda') # w2v = params.get('w2v') # threshold = params.get('threshold') # textElement = Document(lang=lang, text=text, vector_model=vector_model) # print(textElement.keywords) dataName = params.get('saveAs') textType = params.get('type') JsonName = params.get('topicName') keywords = KeywordExtractor.extract_keywords(True, text=text, lang=lang) keywordsWithmax = KeywordExtractor.extract_keywords(True, text=text, lang=lang, max_keywords=15) return jsonify(transform_for_visualization(dataName, JsonName, textType, keywords=keywords, keywordsWithmax=keywordsWithmax, lang=lang))
rwth-acis/readerbenchpyapi
rb_api/keywords/keywords.py
keywords.py
py
6,881
python
en
code
1
github-code
6
44793179363
# Solution 179 Inorder using Loop and Recursion class Node: def __init__(self, value): self.data = value self.left = None self.right = None def __str__(self): return str(self.data) def inorderR(root): if root is None: return inorderR(root.left) print(root.data, end=' ') inorderR(root.right) def inorderL(root): st = [] current = root while True: if current is not None: st.append(current) current = current.left elif st: temp = st.pop() print(temp.data, end=' ') current = temp.right del temp else: break node1 = Node(1) node2 = Node(2) node3 = Node(3) node4 = Node(4) node5 = Node(5) node1.left = node2 node1.right = node3 node2.left = node4 node2.right = node5 inorderL(node1) inorderR(node1)
Shwaubh/LoveBabbarSolution
Binary Trees/Solution179InorderOrderTravesalLoop.py
Solution179InorderOrderTravesalLoop.py
py
911
python
en
code
2
github-code
6
4406135371
class TreeNode(): def __init__(self, val): self.val = val self.left = None self.right = None self.parent = None class BST(): def __init__(self, root=None): self.root = root def insert_recursive(self, val): def recursive(node, val): if not node: return TreeNode(val) if val < node.val: node.left = recursive(node.left, val) node.left.parent = node elif val > node.val: node.right = recursive(node.right, val) node.right.parent = node return node self.root = recursive(self.root, val) def inorder_traversal_recursive(self): def recursive(node): if node: recursive(node.left) result.append(node.val) recursive(node.right) result = [] recursive(self.root) return result def preorder_traversal_recursive(self): def recursive(node): if node: result.append(node.val) recursive(node.left) recursive(node.right) result = [] recursive(self.root) return result def postorder_traversal_recursive(self): def recursive(node): if node: recursive(node.left) recursive(node.right) result.append(node.val) result = [] recursive(self.root) return result def get_left_most_node(self, node): if node is None: return node while node.left is not None: node = node.left return node def successor(self, node): if node is None: return node if node.right is not None: return self.get_left_most_node(node.right) else: parent = node.parent while parent is not None and parent.left != node: node = parent parent = node.parent return parent
guzhoudiaoke/data_structure_and_algorithms
coding_interview_guide/3_binary_tree/17_find_successor/bst.py
bst.py
py
2,083
python
en
code
0
github-code
6
8410504339
#! /usr/bin/python import logging import os from pathlib import Path import coloredlogs from dotenv import load_dotenv PROJECT_ROOT = Path(__file__).parent.resolve() ##################### # CONFIGURE LOGGING # ##################### LOG_PATH = str(PROJECT_ROOT / "worker.log") logging.basicConfig( filename=LOG_PATH, filemode="a+", format="%(asctime)s,%(msecs)d [%(name)s] %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) coloredlogs.install(fmt="%(asctime)s [%(programname)s] %(levelname)s %(message)s") ################# # ENV VARIABLES # ################# ENV_PATH = str(PROJECT_ROOT / ".env") ENV_LOCAL_PATH = str(PROJECT_ROOT / ".env.local") # load default variables load_dotenv(ENV_PATH) # overide variables with .env.local load_dotenv(ENV_LOCAL_PATH, override=True) ####### # AWS # ####### AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") AWS_REGION_NAME = os.getenv("AWS_REGION_NAME") AWS_BUCKET_NAME = os.getenv("AWS_BUCKET_NAME") ######### # MYSQL # ######### MYSQL_HOST = os.getenv("MYSQL_HOST") MYSQL_USER = os.getenv("MYSQL_USER") MYSQL_PASSWORD = os.getenv("MYSQL_PASSWORD") MYSQL_DB = os.getenv("MYSQL_DB")
darwin403/translate-transcribe-videos
settings.py
settings.py
py
1,222
python
en
code
1
github-code
6
25033983488
from django.urls import path from . import views urlpatterns = [ # UI & API hybrid routes path("", views.index, name="index"), path("posts/<int:page>", views.posts, name="posts"), path("following/<int:page>", views.following, name="following"), path("profile/<str:username>/<int:page>", views.profile, name="profile"), path("login", views.login_view, name="login"), path("logout", views.logout_view, name="logout"), path("register", views.register, name="register"), # API routes path("post-edit/<int:post_id>", views.post_edit, name="post_edit"), path("toggle-like/<int:post_id>", views.toggle_like, name="toggle_like"), path("toggle-follow/<int:user_id>", views.toggle_follow, name="toggle_follow"), ]
csloan29/HES-e-33a-web-django
network/network/urls.py
urls.py
py
773
python
en
code
0
github-code
6
40299141620
import numpy as np from typing import List, Optional, Tuple from collections import defaultdict from kaggle_environments.envs.halite.helpers import Ship from .board import MyBoard, ALL_SHIP_ACTIONS from .logger import logger def ship_converts(board: MyBoard): """ Convert our ships into shipyards """ if board.step == 0 or board.moves_left < 20: return if not board.num_my_shipyards: is_final_part = board.moves_left <= 40 _create_shipyard(board, is_final_part) for ship in board.free_ships: # CHECK if in danger without escape, convert if h > 500 if ship.halite <= board.configuration.convert_cost: continue avoid_moves = board.avoid_moves(ship) if ALL_SHIP_ACTIONS - avoid_moves: continue logger.warning( f"Ship {ship.id} at {ship.position}: Can't run away, converting." ) board.create_shipyard(ship) # Generate a shipyard from the best ship min_score = 1000 if board.num_my_shipyards < 2: min_score = 400 if ( board.num_my_shipyards <= 3 and board.num_my_ships > 10 + board.num_my_shipyards * 5 and board.moves_left > 100 ): available_ships = [x for x in board.free_ships if _can_convert_ship(board, x)] if available_ships: ship, score = _choice_ship_to_convert(board, available_ships) if ship is not None and score > min_score: logger.info( f"Ship {ship.id} at {ship.position}: Create a shipyard, cell score = {score}." ) board.create_shipyard(ship) def _can_convert_ship(board: MyBoard, ship: Ship) -> bool: """ Is this the good place for a shipyard? """ pos = ship.position if pos in board.position_to_shipyard: return False if ( ship.halite + board.my_halite < board.configuration.convert_cost or board.is_danger_position(pos, ship) ): return False num_my_shipyards = sum( 1 for x in board.my_shipyards if board.distance(x.position, pos) <= 2 ) if num_my_shipyards > 0: return False num_my_ships = sum( 1 for x in board.my_ships if board.distance(x.position, pos) <= 1 ) if num_my_ships < 1: return False min_distance_to_enemy_ship = min( board.distance(x.position, pos) for x in board.ships.values() if x.player_id != board.me.id ) if min_distance_to_enemy_ship <= 2: return False return True def _create_shipyard(board: MyBoard, is_final_part: bool = False): """ What we do if we haven't shipyards """ if is_final_part: # the end of the game, convert one ship if it makes sense ship_to_halite = defaultdict(int) available_ships = [ x for x in board.my_ships if x.halite + board.my_halite >= board.configuration.convert_cost ] for ship in available_ships: distance_to_enemy_ship = board.distance_to_enemy_ship(ship.position, board.me) distance_to_enemy_ship = distance_to_enemy_ship or board.size if distance_to_enemy_ship < 3: # an enemy vessel nearby, can't convert continue max_my_ship_distance = min(distance_to_enemy_ship, board.moves_left) for other_ship in board.my_ships: if board.distance(ship.position, other_ship.position) < max_my_ship_distance: ship_to_halite[ship] += other_ship.halite if not ship_to_halite: return max_halite = max(ship_to_halite.values()) if max_halite > board.configuration.convert_cost: # it makes sense to convert, choose one ship = [s for s, h in ship_to_halite.items() if h == max_halite][0] board.create_shipyard(ship) else: # meddle of the game, we have to create a shipyard logger.warning("No shipyards! We must create at least one!") available_ships = [ x for x in board.my_ships if x.halite + board.my_halite >= board.configuration.convert_cost ] if not available_ships: logger.warning("Can't create a shipyard, not enough halite! Keep mining.") return if ( len(available_ships) == 1 and board.my_halite + available_ships[0].halite < board.configuration.convert_cost + board.configuration.spawn_cost ): logger.warning("Can't create a shipyard, not enough halite! Keep mining.") return ship, _ = _choice_ship_to_convert(board, available_ships) if ship: board.create_shipyard(ship) def _choice_ship_to_convert( board: MyBoard, ships: List[Ship] ) -> Tuple[Optional[Ship], float]: assert len(ships) > 0 ship, score = None, -np.inf for _ship in ships: pos = _ship.position if pos in board.position_to_shipyard: # shipyard here continue _score = board.environment_reserves(pos) _score -= board.position_to_halite[pos] if _score > score: ship, score = _ship, _score return ship, score
w9PcJLyb/HaliteIV-bot
halite/ship_converts.py
ship_converts.py
py
5,297
python
en
code
0
github-code
6
8630223604
# exceptions.py # # This module is part of linux_commands/commands module and is released under # the GNU Public License: https://en.wikipedia.org/wiki/GNU_General_Public_License """ Module containing all exceptions thrown throughout the cmd package, """ from commands.utils.cmd_utils import safe_decode class QuietError(): """ Error class that will just be Quiet """ pass class CmdError(Exception): """ Base class for all package exceptions """ class NoSuchPathError(CmdError, OSError): """ Thrown if a path could not be access by the system. """ class MultipleCommandError(CmdError): """ Thrown if there are Multiple paths for a command """ def __init__(self, command, paths, status=None, stderr=None, stdout=None): if not isinstance(path, (tuple, list)): path = path.split() self.path = path def __str__(self): return (self.msg + f"\n cmdline {self._cmd}") class CommandError(CmdError): """ Base class for exceptions thrown at every stage of `Popen()` execution. :param command: A non-empty list of argv comprising the command-line. """ #: A unicode print-format with 2 `%s for `<cmdline>` and the rest, #: e.g. #: "'%s' failed%s" _msg = "Cmd('%s') failed%s" def __init__(self, command, status=None, stderr=None, stdout=None): if not isinstance(command, (tuple, list)): command = command.split() self.command = command self.status = status if status: if isinstance(status, Exception): status = "%s('%s')" % (type(status).__name__, safe_decode(str(status))) else: try: status = 'exit code(%s)' % int(status) except (ValueError, TypeError): s = safe_decode(str(status)) status = "'%s'" % s if isinstance(status, str) else s self._cmd = safe_decode(command[0]) self._cmdline = ' '.join(safe_decode(i) for i in command) self._cause = status and " due to: %s" % status or "!" self.stdout = stdout and "\n stdout: '%s'" % safe_decode(stdout) or '' self.stderr = stderr and "\n stderr: '%s'" % safe_decode(stderr) or '' def __str__(self): return (self._msg + "\n cmdline: %s%s%s") % ( self._cmd, self._cause, self._cmdline, self.stdout, self.stderr) class CommandNotFound(CommandError): """Thrown if we cannot find the `cmd` executable in the PATH or at the path given by the GIT_PYTHON_GIT_EXECUTABLE environment variable""" def __init__(self, command, cause): super(CmdCommandNotFound, self).__init__(command, cause) self._msg = "Cmd('%s') not found%s" class CmdCommandError(CommandError): """ Thrown if execution of the cmd command fails with non-zero status code. """ def __init__(self, command, status, stderr=None, stdout=None): super(CmdCommandError, self).__init__(command, status, stderr, stdout) class CacheError(CmdError): """Base for all errors related to the cmd index, which is called cache internally"""
avitko001c/python_linux_command_module
exceptions.py
exceptions.py
py
3,139
python
en
code
0
github-code
6
16543689747
import csv import sys from nuitka.__past__ import StringIO from nuitka.Tracing import my_print from nuitka.utils.Execution import check_output def main(): # many cases, pylint: disable=too-many-branches my_print("Querying openSUSE build service status of Nuitka packages.") # spell-checker: ignore kayhayen osc_cmd = ["osc", "pr", "-c", "home:kayhayen"] stdout_osc = check_output(args=osc_cmd) if str is not bytes: stdout_osc = stdout_osc.decode("utf8") # Response is really a CSV file, so use that for parsing. csv_file = StringIO(stdout_osc) osc_reader = csv.reader(csv_file, delimiter=";") osc_reader = iter(osc_reader) bad = ("failed", "unresolvable", "broken", "blocked") titles = next(osc_reader)[1:] # Nuitka (follow git main branch) row1 = next(osc_reader) # Nuitka-Unstable (follow git develop branch) row2 = next(osc_reader) # Nuitka-Experimental (follow git factory branch) row3 = next(osc_reader) problems = [] def decideConsideration(title, status): # Ignore other arch builds, they might to not even boot at times. # spell-checker: ignore aarch if "ppc" in title or "aarch" in title or "arm" in title: return False # This fails for other reasons often, and is not critical to Nuitka. if "openSUSE_Tumbleweed" in title: return False # Ignore old Fedora and RHEL6 32 bit being blocked. if status == "blocked": if ( "Fedora_2" in title or "RedHat_RHEL-6/i586" in title or "CentOS_CentOS-6/i586" in title ): return False # It makes building visible now, that's not an error of course. if status == "building": return False # It makes need to build visible as well, that too is not an error # really. if status == "outdated": return False return True for count, title in enumerate(titles): status = row1[count + 1] if not decideConsideration(title, status): continue if status in bad: problems.append((row1[0], title, status)) for count, title in enumerate(titles): status = row2[count + 1] if not decideConsideration(title, status): continue if status in bad: problems.append((row2[0], title, status)) for count, title in enumerate(titles): status = row3[count + 1] if not decideConsideration(title, status): continue if status in bad: problems.append((row3[0], title, status)) if problems: my_print("There are problems with:", style="yellow") my_print( "\n".join("%s: %s (%s)" % problem for problem in problems), style="yellow" ) if any(problem[0] == "Nuitka" for problem in problems): my_print( "Check here: https://build.opensuse.org/package/show/home:kayhayen/Nuitka" ) if any(problem[0] == "Nuitka-Unstable" for problem in problems): my_print( "Check here: https://build.opensuse.org/package/show/home:kayhayen/Nuitka-Unstable" ) if any(problem[0] == "Nuitka-experimental" for problem in problems): my_print( "Check here: https://build.opensuse.org/package/show/home:kayhayen/Nuitka-experimental" ) sys.exit(1) else: my_print("Looks good.", style="blue") sys.exit(0) if __name__ == "__main__": main()
Nuitka/Nuitka
nuitka/tools/release/osc_check/__main__.py
__main__.py
py
3,651
python
en
code
10,019
github-code
6
14654879415
""" OWASP Maryam! This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import re class main: def __init__(self, framework, q, count=30): """ searchencrypt.com search engine framework : core attribute q : query for search count : count of links """ self.framework = framework self.q = q self.count = count self._pages = '' self._json = {} self._links = [] self._links_with_title = {} self.searchencrypt = 'searchencrypt.com' def run_crawl(self, policy='webpages'): policies = {'webpages': 'web', 'images': 'web,image', 'news': 'news'} policy = policy.lower() if policy not in policies: search_type = policies['webpages'] else: search_type = policies[policy] url = f"https://spapi.{self.searchencrypt}/api/search?q={self.q}&types={search_type}&limit={self.count}" self.framework.verbose('Opening the searchencrypt.com domain...', end='\r') try: req = self.framework.request(url=url) except: self.framework.error('[SEARCHENCRYPT] ConnectionError') self.framework.error('Searchencrypt is missed!') return pages = req.text self._json = req.json() @property def pages(self): return self._pages @property def json(self): return self._json @property def links(self): results = self.json.get('Results') self._links = [x.get('ClickUrl') for x in results] return self._links @property def links_with_title(self): results = self.json.get('Results') if not results: return {} self._links_with_title = {x.get('Title'): x.get('ClickUrl') for x in results} return self._links_with_title @property def dns(self): return self.framework.page_parse(self._pages).get_dns(self.q, self.links) @property def emails(self): return self.framework.page_parse(self._pages).get_emails(self.q) @property def docs(self): return self.framework.page_parse(self._pages).get_docs(self.q, self.links)
callforpapers-source/maryam-deb
core/util/searchencrypt.py
searchencrypt.py
py
2,452
python
en
code
0
github-code
6
31963159871
from sys import stdin import re input = stdin.readline pmon, q = map(int, input().split()) pmons = {} for i in range(1, pmon+1): pmons[i] = input().strip() is_numb = re.compile('[0-9]') reversed_pmons = {v: k for k, v in pmons.items()} for _ in range(q): res = input().strip() res_int_valid = is_numb.search(res) if res_int_valid: print(pmons[int(res)]) else: print(reversed_pmons[res])
yongwoo-jeong/Algorithm
백준/Silver/1620. 나는야 포켓몬 마스터 이다솜/나는야 포켓몬 마스터 이다솜.py
나는야 포켓몬 마스터 이다솜.py
py
441
python
en
code
0
github-code
6
6148825082
from selenium import webdriver from time import sleep import selenium from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.select import Select import pandas as pd if __name__ == '__main__': # option=webdriver.ChromeOptions() # option.add_argument("--user-data-dir="+r"C:\\Users\\20142266\\AppData\\Local\\Google\\Chrome\\User Data") # driver = webdriver.Chrome(chrome_options=option) # sleep(2) driver = webdriver.Ie() #driver.get('chrome-extension://hehijbfgiekmjfkfjpbkbammjbdenadd/nhc.htm#url=http://tec.cqccms.com.cn/') driver.get('http://tec.cqccms.com.cn/') sleep(1) js = 'document.getElementById("submitButton").click()' driver.execute_script(js) sleep(1) #driver.find_element_by_id("submitButton").send_keys(Keys.ENTER) #testck.input_windows("核对数字证书口令","") ratio = driver.find_elements_by_tag_name("input") for a in ratio: if a.get_attribute('value') == '4005919': a.click() if a.get_attribute("type") == "submit": a.click() sleep(2) #str = driver.get_cookies() #print(str) #cookie1 = str[0]['value'] #driver.add_cookie({'name': 'JSESSIONID', 'value': cookie1}) URL = "http://tec.cqccms.com.cn/cocComplete!cocCompleteCreate.action?" \ "id=201709291432251U8205&carType=HFC5181XXYP3K1A57S2QV&carCellCode" \ "=2017011101011956&carTypeSeqCode=N36N&carCellId=5636338&collection" \ "=A013551N36NZM95ZZEZ420000901@null@20201105173042786997%3B1@@1@0@5254506@1" driver.get(URL) myselect=driver.find_elements_by_tag_name("select") for i in myselect: if i.get_property("name")=="f3": try: Select(i).select_by_visible_text("5700") except selenium.common.exceptions.NoSuchElementException: Select(i).select_by_index(1) if i.get_property("name")=="f7": try: Select(i).select_by_visible_text("5700") except selenium.common.exceptions.NoSuchElementException: Select(i).select_by_index(1)
YN3359/runoob-git-test
PythonScripts/自动备案COC.py
自动备案COC.py
py
2,122
python
en
code
0
github-code
6
519381337
from openmdao.core.driver import Driver, RecordingDebugging from openmdao.api import SimpleGADriver, Problem, LatinHypercubeGenerator, DOEDriver from dataclasses import dataclass from copy import deepcopy import random import numpy as np from itertools import chain from deap import algorithms, base, tools from deap.benchmarks import rosenbrock class DeapDriver(Driver): def _declare_options(self): self.options.declare("container_class") def _get_name(self): return "DeapDriver" def _setup_driver(self, problem): super()._setup_driver(problem) self.container = self.options["container_class"](driver=self) def run(self): final_population = self.container.run_algorithm() # Evaluates a point in the middle of the pareto front to have one of # the optimal points as the final values in the model # self.container.evaluate(pareto_front[len(pareto_front) // 2]) # print(pareto_front) return False class Individual(list): def __init__(self, *args, fitness_class, **kwargs): super().__init__(*args, **kwargs) self.fitness = fitness_class() def __repr__(self): return f"Individual({super().__repr__()})" @dataclass(frozen=True) class DeapContainer: """ An abstract class for containing the algorithm-specific logic. This is instantiated in the Driver's _setup_driver() function with the driver itself passed in as an argument. This object in itself should be fully stateless. The motivation for having this in a dedicated object is mainly that the Driver class is already heavily bloated. """ driver: DeapDriver def __post_init__(self): # FIXME: this API is inflexible self.fitness_class = type( "Fitness", (base.Fitness,), {"weights": (-1,) * len(self.problem.model.get_objectives())}, ) self.design_var_shapes = { name: np.shape(value) for (name, value) in self.driver.get_design_var_values().items() } self.objective_shapes = { name: np.shape(value) for (name, value) in self.driver.get_objective_values().items() } self.constraint_shapes = { name: np.shape(value) for (name, value) in self.driver.get_constraint_values().items() } self.individual_bounds = self._individual_bounds() @property def problem(self): return self.driver._problem def individual_factory(self, *args, **kwargs): individual = self.individual_class(fitness_class=self.fitness_class, *args, **kwargs) return individual def _individual_bounds(self): design_vars = self.problem.model.get_design_vars() lower, upper = chain.from_iterable( (design_vars[key]["lower"].flat, design_vars[key]["upper"].flat) for key in self.design_var_shapes.keys() ) return tuple(lower), tuple(upper) def convert_design_vars_to_individual(self, design_vars): """ Converts a dict of OpenMDAO design variables into a DEAP individual. """ individual = Individual( chain.from_iterable( design_vars[key].flat for key in self.design_var_shapes.keys() ), fitness_class=self.fitness_class, ) return individual def convert_individual_to_design_vars(self, individual): """ Converts a DEAP individual into a dict of OpenMDAO design variables. """ ind = deepcopy(individual) design_vars = {} for name, shape in self.design_var_shapes.items(): ind_items = np.product(shape) design_vars[name] = np.reshape(ind[:ind_items], shape) ind = ind[ind_items:] return design_vars def get_population_generator(self, count): return LatinHypercubeGenerator( samples=count, criterion="correlation", iterations=count // 10 ) def init_population(self, count): return [ self.convert_design_vars_to_individual(dict(case)) for case in self.get_population_generator(count)( self.problem.model.get_design_vars() ) ] def evaluate(self, individual): pre = id(individual.fitness) for (name, value) in self.convert_individual_to_design_vars(individual).items(): self.driver.set_design_var(name, value) assert id(individual.fitness) == pre with RecordingDebugging( self.driver._get_name(), self.driver.iter_count, self.driver ): failure_flag, abs_error, rel_error = self.problem.model._solve_nonlinear() self.driver.iter_count += 1 # print(tuple(float(x) for x in self.driver.get_objective_values().values())) return tuple( chain.from_iterable( x.flat for x in self.driver.get_objective_values().values() ) ) def run_algorithm(self): raise NotImplemented("run_algorithm() method not implemented.")
ovidner/openmdao-deap
openmdao_deap/__init__.py
__init__.py
py
5,155
python
en
code
0
github-code
6
2690012282
import boto3 import os class WasabiUploader: def __init__(self, directory): self.directory = directory self.session = boto3.Session(profile_name="default") self.credentials = self.session.get_credentials() self.aws_access_key_id = self.credentials.access_key self.aws_secret_access_key = self.credentials.secret_key self.s3 = boto3.resource('s3', endpoint_url='https://s3.US-central-1.wasabisys.com', aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key ) self.mpdb = self.s3.Bucket('mpdb') def create_list_of_uploaded_parts(self, directory): print("Working...") UploadedPNsFileLocation = "/".join( directory.split("/", )[:-1]) with open(f'{UploadedPNsFileLocation}/Wasabi_UploadedPNS.txt', 'a+') as f: f.seek(0) existing_contents = f.read() for obj in self.mpdb.objects.all(): item = obj.key.split("/", 1)[1] if item not in existing_contents: f.write(f"{item}\n") f.close() print(f"Wasabi Data processed, PN file created. " f"Available at: {UploadedPNsFileLocation}/Wasabi_UploadedPNS.txt'") def upload_photos(self): recordNumber = 0 recordsAdded = 0 for filename in os.listdir(self.directory): recordNumber += 1 with open(f'{self.directory}/Wasabi_UploadedPNS.txt', 'a+') as f: f.seek(0) existing_contents = f.read() file = os.path.join(self.directory, filename) PN = filename.split(".")[0] if os.path.isfile(file): if PN not in existing_contents: try: self.mpdb.upload_file(file, f"productimages/{filename}") f.write(f"{filename}\n") recordsAdded += 1 if recordNumber % 20 == 0: # only printing every 20th record for confirmation of upload print(f"{PN} successfully uploaded to Wasabi ({recordsAdded} images uploaded)") except Exception as e: print(f"failed to upload {PN} to Wasabi. Error: {e}") f.close() print(f"Complete! Records Added: {recordsAdded}") def count_uploads(self): counting_mpdb = self.s3.Bucket('mpdb') count = 0 print("Counting...") for _ in counting_mpdb.objects.all(): count += 1 print(f"{count} objects found in the library's bucket") def count_items_in_part_list(self): """ Counts the number of items inside the part number upload log created by the Image Uploader. Assumes the log file is located at 'Wasabi_UploadedPNS.txt' in the specified directory. """ directory_parts = self.directory.split("/")[:-1] # Remove the last part (file name) from the path directory = "/".join(directory_parts) with open(f'{directory}/Wasabi_UploadedPNS.txt', 'r') as f: x = len(f.readlines()) print(f"{x} items in the part number log")
evanwmeeks/PersonalProjects
wasabi_interface/wasabi.py
wasabi.py
py
3,414
python
en
code
0
github-code
6
11502963314
with open('./input_day_8.txt') as file: input = file.read().splitlines() input = [i.split(' ') for i in input] unique_len = [2, 4, 3, 7] count = 0 for i in input: for j in i[-4:]: if j != '|': if len(j) in unique_len: count += 1 print('part 1: ' + str(count)) sum = 0 for i in input: map_list = {} digits = i[:-5] map_list[1] = [d for d in digits if len(d) == 2][0] map_list[7] = [d for d in digits if len(d) == 3][0] map_list[4] = [d for d in digits if len(d) == 4][0] map_list[8] = [d for d in digits if len(d) == 7][0] for v in map_list.values(): digits.remove(v) five_bar = [d for d in digits if len(d) == 5] six_bar = [d for d in digits if len(d) == 6] for d in six_bar: if len(list(set(map_list[4]).intersection(d))) == 4: map_list[9] = d elif len(list(set(map_list[4]).intersection(d))) == 3 and len(list(set(map_list[7]).intersection(d))) == 3: map_list[0] = d else : map_list[6] = d for d in five_bar: if len(list(set(map_list[1]).intersection(d))) == 2: map_list[3] = d elif len(list(set(map_list[9]).intersection(d))) == 4: map_list[2] = d else : map_list[5] = d inv_map = {''.join(sorted(v)): k for k, v in map_list.items()} d = i[-4:] digit = '' for i in range(4): digit += str(inv_map[''.join(sorted(d[i]))]) sum += int(digit) print('part 2: ' + str(sum))
Camillemns/advent_of_code
day8.py
day8.py
py
1,522
python
en
code
0
github-code
6
7796950374
# 8min, 239 ms 14.7 MB class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ dict = {} for num in nums: if num in dict.keys(): dict[num] += 1 else: dict[num] = 1 if dict[num] > len(nums) / 2: return num if __name__ == '__main__': nums = [2, 2, 1, 1, 1, 2, 2] sol = Solution() print(sol.majorityElement(nums))
sky77764/Leetcode
Top 100 Liked Questions/easy/169. Majority Element.py
169. Majority Element.py
py
505
python
en
code
0
github-code
6
70939657148
from selenium import webdriver import requests from bs4 import BeautifulSoup from pymongo import MongoClient import time import datetime def get_page(url): header = { "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11" } html = requests.get(url,headers=header) html.encoding = 'utf-8' return html def parse_page(html,addr): #获取网页里面目标信息,以字典的方式储存 dict = {} doc = BeautifulSoup(html,'lxml') title = doc.select('h1') if len(title)==0: return articles = doc.select('#artibody p')#得到的是一个列表 content = '' date = time.strftime('%Y.%m.%d',time.localtime(time.time())) for article in articles: content += article.get_text() dict['date'] = date dict['title'] = title[0].get_text().strip() dict['content'] = content dict['url'] = addr.get_attribute('href') write_in_database(dict) def write_in_database(dict): #当文章未存入时存入 client = MongoClient('mongodb://localhost:27017/') database = client.xinlang collection = database.articles dict['Id'] = collection.find().count() print(dict) if collection.find_one({'title':dict['title']}) == None: collection.insert(dict) def main(): url = 'https://mobile.sina.com.cn/' browser = webdriver.Chrome() browser.get(url) addrs = browser.find_elements_by_css_selector('#feedCard #feedCardContent .feed-card-item h2 a') #获取每篇文章的url for addr in addrs: html=get_page(addr.get_attribute('href')).text parse_page(html,addr) if __name__ == '__main__': while(True):#定时在9点和21点时运行 now = datetime.datetime.now() if (now.hour == 9 or now.hour == 21) and now.minute == 0 : main() time.sleep(60) ##ok
lzzandsx/lizhengzhao_python_homework
xinlang.py
xinlang.py
py
1,935
python
en
code
0
github-code
6
29279761170
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Ambre chamber """ __author__ = "Dennis van Gils" __authoremail__ = "[email protected]" __url__ = "https://github.com/Dennis-van-Gils/project-Ambre-chamber" __date__ = "31-08-2020" __version__ = "2.0" # pylint: disable=bare-except, broad-except, try-except-raise import os import sys import time import numpy as np import psutil from PyQt5 import QtCore, QtGui from PyQt5 import QtWidgets as QtWid from PyQt5.QtCore import QDateTime import pyqtgraph as pg from dvg_debug_functions import tprint, dprint, print_fancy_traceback as pft from dvg_pyqt_controls import ( create_LED_indicator, create_Toggle_button, SS_TEXTBOX_READ_ONLY, SS_GROUP, ) from dvg_pyqt_filelogger import FileLogger from dvg_pyqtgraph_threadsafe import ( HistoryChartCurve, LegendSelect, PlotManager, ) from dvg_devices.Arduino_protocol_serial import Arduino from dvg_qdeviceio import QDeviceIO TRY_USING_OPENGL = True if TRY_USING_OPENGL: try: import OpenGL.GL as gl # pylint: disable=unused-import except: print("OpenGL acceleration: Disabled") print("To install: `conda install pyopengl` or `pip install pyopengl`") else: print("OpenGL acceleration: Enabled") pg.setConfigOptions(useOpenGL=True) pg.setConfigOptions(antialias=True) pg.setConfigOptions(enableExperimental=True) # Global pyqtgraph configuration # pg.setConfigOptions(leftButtonPan=False) pg.setConfigOption("foreground", "#EEE") # Constants # fmt: off DAQ_INTERVAL_MS = 1000 # [ms] CHART_INTERVAL_MS = 500 # [ms] CHART_HISTORY_TIME = 3600 # [s] # fmt: on # Show debug info in terminal? Warning: Slow! Do not leave on unintentionally. DEBUG = False def get_current_date_time(): cur_date_time = QDateTime.currentDateTime() return ( cur_date_time.toString("dd-MM-yyyy"), # Date cur_date_time.toString("HH:mm:ss"), # Time cur_date_time.toString("yyMMdd_HHmmss"), # Reverse notation date-time ) # ------------------------------------------------------------------------------ # Arduino state # ------------------------------------------------------------------------------ class State(object): """Reflects the actual readings, parsed into separate variables, of the Arduino. There should only be one instance of the State class. """ def __init__(self): self.time = np.nan # [s] self.ds18b20_temp = np.nan # ['C] self.dht22_temp = np.nan # ['C] self.dht22_humi = np.nan # [%] self.is_valve_open = False # Automatic valve control self.humi_threshold = np.nan # [%] self.open_valve_when_super_humi = np.nan state = State() # ------------------------------------------------------------------------------ # MainWindow # ------------------------------------------------------------------------------ class MainWindow(QtWid.QWidget): def __init__(self, parent=None, **kwargs): super().__init__(parent, **kwargs) self.setWindowTitle("Ambre chamber") self.setGeometry(350, 50, 960, 800) self.setStyleSheet(SS_TEXTBOX_READ_ONLY + SS_GROUP) # ------------------------- # Top frame # ------------------------- # Left box self.qlbl_update_counter = QtWid.QLabel("0") self.qlbl_DAQ_rate = QtWid.QLabel("DAQ: nan Hz") self.qlbl_DAQ_rate.setStyleSheet("QLabel {min-width: 7em}") vbox_left = QtWid.QVBoxLayout() vbox_left.addWidget(self.qlbl_update_counter, stretch=0) vbox_left.addStretch(1) vbox_left.addWidget(self.qlbl_DAQ_rate, stretch=0) # Middle box self.qlbl_title = QtWid.QLabel( "Ambre chamber", font=QtGui.QFont("Palatino", 14, weight=QtGui.QFont.Bold), ) self.qlbl_title.setAlignment(QtCore.Qt.AlignCenter) self.qlbl_cur_date_time = QtWid.QLabel("00-00-0000 00:00:00") self.qlbl_cur_date_time.setAlignment(QtCore.Qt.AlignCenter) self.qpbt_record = create_Toggle_button( "Click to start recording to file", minimumWidth=300 ) # fmt: off self.qpbt_record.clicked.connect(lambda state: log.record(state)) # pylint: disable=unnecessary-lambda # fmt: on vbox_middle = QtWid.QVBoxLayout() vbox_middle.addWidget(self.qlbl_title) vbox_middle.addWidget(self.qlbl_cur_date_time) vbox_middle.addWidget(self.qpbt_record) # Right box self.qpbt_exit = QtWid.QPushButton("Exit") self.qpbt_exit.clicked.connect(self.close) self.qpbt_exit.setMinimumHeight(30) self.qlbl_recording_time = QtWid.QLabel(alignment=QtCore.Qt.AlignRight) vbox_right = QtWid.QVBoxLayout() vbox_right.addWidget(self.qpbt_exit, stretch=0) vbox_right.addStretch(1) vbox_right.addWidget(self.qlbl_recording_time, stretch=0) # Round up top frame hbox_top = QtWid.QHBoxLayout() hbox_top.addLayout(vbox_left, stretch=0) hbox_top.addStretch(1) hbox_top.addLayout(vbox_middle, stretch=0) hbox_top.addStretch(1) hbox_top.addLayout(vbox_right, stretch=0) # ------------------------- # Bottom frame # ------------------------- # Charts # ------------------------- self.gw = pg.GraphicsLayoutWidget() # Plot: Temperature: DS18B20 p = {"color": "#EEE", "font-size": "10pt"} self.pi_ds18b20_temp = self.gw.addPlot(row=0, col=0) self.pi_ds18b20_temp.setLabel("left", text="temperature (°C)", **p) # Plot: Temperature: DHT 22 self.pi_dht22_temp = self.gw.addPlot(row=1, col=0) self.pi_dht22_temp.setLabel("left", text="temperature (°C)", **p) # Plot: Humidity: DHT22 self.pi_dht22_humi = self.gw.addPlot(row=2, col=0) self.pi_dht22_humi.setLabel("left", text="humidity (%)", **p) self.plots = [ self.pi_ds18b20_temp, self.pi_dht22_humi, self.pi_dht22_temp, ] for plot in self.plots: plot.setClipToView(True) plot.showGrid(x=1, y=1) plot.setLabel("bottom", text="history (s)", **p) plot.setMenuEnabled(True) plot.enableAutoRange(axis=pg.ViewBox.XAxis, enable=False) plot.enableAutoRange(axis=pg.ViewBox.YAxis, enable=True) plot.setAutoVisible(y=True) plot.setRange(xRange=[-CHART_HISTORY_TIME, 0]) # Curves capacity = round(CHART_HISTORY_TIME * 1e3 / DAQ_INTERVAL_MS) PEN_01 = pg.mkPen(color=[255, 255, 0], width=3) PEN_02 = pg.mkPen(color=[0, 255, 255], width=3) self.tscurve_ds18b20_temp = HistoryChartCurve( capacity=capacity, linked_curve=self.pi_ds18b20_temp.plot( pen=PEN_01, name="DS18B20 temp." ), ) self.tscurve_dht22_temp = HistoryChartCurve( capacity=capacity, linked_curve=self.pi_dht22_temp.plot( pen=PEN_01, name="DHT22 temp." ), ) self.tscurve_dht22_humi = HistoryChartCurve( capacity=capacity, linked_curve=self.pi_dht22_humi.plot( pen=PEN_02, name="DHT22 humi." ), ) self.tscurves = [ self.tscurve_ds18b20_temp, self.tscurve_dht22_temp, self.tscurve_dht22_humi, ] # Group `Readings` # ------------------------- legend = LegendSelect( linked_curves=self.tscurves, hide_toggle_button=True ) p = { "readOnly": True, "alignment": QtCore.Qt.AlignRight, "maximumWidth": 54, } self.qlin_ds18b20_temp = QtWid.QLineEdit(**p) self.qlin_dht22_temp = QtWid.QLineEdit(**p) self.qlin_dht22_humi = QtWid.QLineEdit(**p) # fmt: off legend.grid.setHorizontalSpacing(6) legend.grid.addWidget(self.qlin_ds18b20_temp , 0, 2) legend.grid.addWidget(QtWid.QLabel("± 0.5 °C"), 0, 3) legend.grid.addWidget(self.qlin_dht22_temp , 1, 2) legend.grid.addWidget(QtWid.QLabel("± 0.5 °C"), 1, 3) legend.grid.addWidget(self.qlin_dht22_humi , 2, 2) legend.grid.addWidget(QtWid.QLabel("± 3 %") , 2, 3) # fmt: on qgrp_readings = QtWid.QGroupBox("Readings") qgrp_readings.setLayout(legend.grid) # Group 'Log comments' # ------------------------- self.qtxt_comments = QtWid.QTextEdit() grid = QtWid.QGridLayout() grid.addWidget(self.qtxt_comments, 0, 0) qgrp_comments = QtWid.QGroupBox("Log comments") qgrp_comments.setLayout(grid) # Group 'Charts' # ------------------------- self.plot_manager = PlotManager(parent=self) self.plot_manager.add_autorange_buttons(linked_plots=self.plots) self.plot_manager.add_preset_buttons( linked_plots=self.plots, linked_curves=self.tscurves, presets=[ { "button_label": "00:30", "x_axis_label": "history (sec)", "x_axis_divisor": 1, "x_axis_range": (-30, 0), }, { "button_label": "01:00", "x_axis_label": "history (sec)", "x_axis_divisor": 1, "x_axis_range": (-60, 0), }, { "button_label": "10:00", "x_axis_label": "history (min)", "x_axis_divisor": 60, "x_axis_range": (-10, 0), }, { "button_label": "30:00", "x_axis_label": "history (min)", "x_axis_divisor": 60, "x_axis_range": (-30, 0), }, { "button_label": "60:00", "x_axis_label": "history (min)", "x_axis_divisor": 60, "x_axis_range": (-60, 0), }, ], ) self.plot_manager.add_clear_button(linked_curves=self.tscurves) self.plot_manager.perform_preset(1) qgrp_chart = QtWid.QGroupBox("Charts") qgrp_chart.setLayout(self.plot_manager.grid) # Group 'Valve control' # ------------------------- self.LED_is_valve_open = create_LED_indicator() self.qlin_humi_threshold = QtWid.QLineEdit( "%d" % state.humi_threshold, alignment=QtCore.Qt.AlignRight, maximumWidth=36, ) self.qlin_humi_threshold.editingFinished.connect( self.process_qlin_humi_threshold ) self.qpbt_open_when_super_humi = QtWid.QPushButton( ( "humidity > threshold" if state.open_valve_when_super_humi else "humidity < threshold" ), checkable=True, checked=state.open_valve_when_super_humi, ) self.qpbt_open_when_super_humi.clicked.connect( self.process_qpbt_open_when_super_humi ) # fmt: off grid = QtWid.QGridLayout() grid.addWidget(QtWid.QLabel("Is valve open?") , 0, 0) grid.addWidget(self.LED_is_valve_open , 0, 1) grid.addWidget(QtWid.QLabel("Humidity threshold"), 1, 0) grid.addWidget(self.qlin_humi_threshold , 1, 1) grid.addWidget(QtWid.QLabel("%") , 1, 2) grid.addWidget(QtWid.QLabel("Open valve when") , 2, 0) grid.addWidget(self.qpbt_open_when_super_humi , 2, 1, 1, 2) grid.setAlignment(QtCore.Qt.AlignTop) # fmt: on qgrp_valve = QtWid.QGroupBox("Valve control") qgrp_valve.setLayout(grid) # Round up right frame vbox = QtWid.QVBoxLayout() vbox.addWidget(qgrp_readings) vbox.addWidget(qgrp_comments) vbox.addWidget(qgrp_valve) # , alignment=QtCore.Qt.AlignLeft) vbox.addWidget(qgrp_chart, alignment=QtCore.Qt.AlignLeft) vbox.addStretch() # Round up bottom frame hbox_bot = QtWid.QHBoxLayout() hbox_bot.addWidget(self.gw, 1) hbox_bot.addLayout(vbox, 0) # ------------------------- # Round up full window # ------------------------- vbox = QtWid.QVBoxLayout(self) vbox.addLayout(hbox_top, stretch=0) vbox.addSpacerItem(QtWid.QSpacerItem(0, 10)) vbox.addLayout(hbox_bot, stretch=1) # -------------------------------------------------------------------------- # Handle controls # -------------------------------------------------------------------------- @QtCore.pyqtSlot() def process_qlin_humi_threshold(self): try: humi_threshold = float(self.qlin_humi_threshold.text()) except (TypeError, ValueError): humi_threshold = 50 except: raise state.humi_threshold = np.clip(humi_threshold, 0, 100) self.qlin_humi_threshold.setText("%.0f" % state.humi_threshold) qdev_ard.send(ard.write, "th%.0f" % state.humi_threshold) @QtCore.pyqtSlot() def process_qpbt_open_when_super_humi(self): if self.qpbt_open_when_super_humi.isChecked(): state.open_valve_when_super_humi = True self.qpbt_open_when_super_humi.setText("humidity > threshold") qdev_ard.send(ard.write, "open when super humi") else: state.open_valve_when_super_humi = False self.qpbt_open_when_super_humi.setText("humidity < threshold") qdev_ard.send(ard.write, "open when sub humi") @QtCore.pyqtSlot() def update_GUI(self): str_cur_date, str_cur_time, _ = get_current_date_time() self.qlbl_cur_date_time.setText( "%s %s" % (str_cur_date, str_cur_time) ) self.qlbl_update_counter.setText("%i" % qdev_ard.update_counter_DAQ) self.qlbl_DAQ_rate.setText( "DAQ: %.1f Hz" % qdev_ard.obtained_DAQ_rate_Hz ) if log.is_recording(): self.qlbl_recording_time.setText(log.pretty_elapsed()) self.qlin_ds18b20_temp.setText("%.1f" % state.ds18b20_temp) self.qlin_dht22_temp.setText("%.1f" % state.dht22_temp) self.qlin_dht22_humi.setText("%.1f" % state.dht22_humi) self.qlbl_title.setText( "Interior: %.1f °C, %.1f %%" % (state.dht22_temp, state.dht22_humi) ) if state.is_valve_open: self.LED_is_valve_open.setText("1") self.LED_is_valve_open.setChecked(True) else: self.LED_is_valve_open.setText("0") self.LED_is_valve_open.setChecked(False) @QtCore.pyqtSlot() def update_chart(self): if DEBUG: tprint("update_chart") for tscurve in self.tscurves: tscurve.update() # ------------------------------------------------------------------------------ # Program termination routines # ------------------------------------------------------------------------------ def stop_running(): app.processEvents() qdev_ard.quit() log.close() print("Stopping timers................ ", end="") timer_GUI.stop() timer_charts.stop() print("done.") @QtCore.pyqtSlot() def notify_connection_lost(): stop_running() window.qlbl_title.setText("! ! ! LOST CONNECTION ! ! !") str_cur_date, str_cur_time, _ = get_current_date_time() str_msg = "%s %s\nLost connection to Arduino." % ( str_cur_date, str_cur_time, ) print("\nCRITICAL ERROR @ %s" % str_msg) reply_ = QtWid.QMessageBox.warning( window, "CRITICAL ERROR", str_msg, QtWid.QMessageBox.Ok ) if reply_ == QtWid.QMessageBox.Ok: pass # Leave the GUI open for read-only inspection by the user @QtCore.pyqtSlot() def about_to_quit(): print("\nAbout to quit") stop_running() ard.close() # ------------------------------------------------------------------------------ # Your Arduino update function # ------------------------------------------------------------------------------ def DAQ_function(): # Date-time keeping str_cur_date, str_cur_time, str_cur_datetime = get_current_date_time() # Query the Arduino for its state success_, tmp_state = ard.query_ascii_values("?", delimiter="\t") if not (success_): dprint( "'%s' reports IOError @ %s %s" % (ard.name, str_cur_date, str_cur_time) ) return False # Parse readings into separate state variables try: ( state.time, state.ds18b20_temp, state.dht22_temp, state.dht22_humi, state.is_valve_open, ) = tmp_state state.time /= 1000 # Arduino time, [msec] to [s] state.is_valve_open = bool(state.is_valve_open) except Exception as err: pft(err, 3) dprint( "'%s' reports IOError @ %s %s" % (ard.name, str_cur_date, str_cur_time) ) return False # We will use PC time instead state.time = time.perf_counter() # Add readings to chart histories window.tscurve_ds18b20_temp.appendData(state.time, state.ds18b20_temp) window.tscurve_dht22_temp.appendData(state.time, state.dht22_temp) window.tscurve_dht22_humi.appendData(state.time, state.dht22_humi) # Logging to file log.update(filepath=str_cur_datetime + ".txt", mode="w") # Return success return True def write_header_to_log(): log.write("[HEADER]\n") log.write(window.qtxt_comments.toPlainText()) log.write("\n\n[DATA]\n") log.write("time\tDS18B20 temp.\tDHT22 temp.\tDHT22 humi.\tvalve\n") log.write("[s]\t[±0.5 °C]\t[±0.5 °C]\t[±3 pct]\t[0/1]\n") def write_data_to_log(): log.write( "%.1f\t%.1f\t%.1f\t%.1f\t%i\n" % ( log.elapsed(), state.ds18b20_temp, state.dht22_temp, state.dht22_humi, state.is_valve_open, ) ) # ------------------------------------------------------------------------------ # Main # ------------------------------------------------------------------------------ if __name__ == "__main__": # Set priority of this process to maximum in the operating system print("PID: %s\n" % os.getpid()) try: proc = psutil.Process(os.getpid()) if os.name == "nt": proc.nice(psutil.REALTIME_PRIORITY_CLASS) # Windows else: proc.nice(-20) # Other except: print("Warning: Could not set process to maximum priority.\n") # -------------------------------------------------------------------------- # Connect to Arduino # -------------------------------------------------------------------------- ard = Arduino(name="Ard", connect_to_specific_ID="Ambre chamber") ard.serial_settings["baudrate"] = 115200 ard.auto_connect() if not (ard.is_alive): print("\nCheck connection and try resetting the Arduino.") print("Exiting...\n") sys.exit(0) # Get the initial state of the valve control success, reply = ard.query("th?") if success: state.humi_threshold = float(reply) success, reply = ard.query("open when super humi?") if success: state.open_valve_when_super_humi = bool(int(reply)) # -------------------------------------------------------------------------- # Create application and main window # -------------------------------------------------------------------------- QtCore.QThread.currentThread().setObjectName("MAIN") # For DEBUG info app = QtWid.QApplication(sys.argv) app.aboutToQuit.connect(about_to_quit) window = MainWindow() # -------------------------------------------------------------------------- # File logger # -------------------------------------------------------------------------- log = FileLogger( write_header_function=write_header_to_log, write_data_function=write_data_to_log, ) log.signal_recording_started.connect( lambda filepath: window.qpbt_record.setText( "Recording to file: %s" % filepath ) ) log.signal_recording_stopped.connect( lambda: window.qpbt_record.setText("Click to start recording to file") ) # -------------------------------------------------------------------------- # Set up multithreaded communication with the Arduino # -------------------------------------------------------------------------- # Create QDeviceIO qdev_ard = QDeviceIO(ard) # Create workers # fmt: off qdev_ard.create_worker_DAQ( DAQ_function = DAQ_function, DAQ_interval_ms = DAQ_INTERVAL_MS, critical_not_alive_count = 1, debug = DEBUG, ) # fmt: on qdev_ard.create_worker_jobs() # Connect signals to slots qdev_ard.signal_DAQ_updated.connect(window.update_GUI) qdev_ard.signal_connection_lost.connect(notify_connection_lost) # Start workers qdev_ard.start(DAQ_priority=QtCore.QThread.TimeCriticalPriority) # -------------------------------------------------------------------------- # Timers # -------------------------------------------------------------------------- timer_GUI = QtCore.QTimer() timer_GUI.timeout.connect(window.update_GUI) timer_GUI.start(100) timer_charts = QtCore.QTimer() timer_charts.timeout.connect(window.update_chart) timer_charts.start(CHART_INTERVAL_MS) # -------------------------------------------------------------------------- # Start the main GUI event loop # -------------------------------------------------------------------------- window.show() sys.exit(app.exec_())
Dennis-van-Gils/project-Ambre-chamber
src_python/main.py
main.py
py
22,276
python
en
code
0
github-code
6
13538653206
import pygame import numpy as np from util.helpers import * from physics.colliding_object import Colliding class EyeBeam(Colliding): def __init__(self, start, end): self.start = np.array(start) super(EyeBeam, self).__init__(self.start) self.end = np.array(end) self.collide_type = 'line' def unobstructed(self, list_of_game_objects): walls_vector = walls_vector_from_game_objects(list_of_game_objects) edge_vector = np.array((self.start, self.end)) return unobstructed_edges(edge_vector, walls_vector)[0] class Eyes: def __init__(self, view_distance=200): self.view_distance = view_distance self.look_ahead = 10 self.list_of_game_objects = [] def update(self, list_of_game_objects): self.list_of_game_objects = list_of_game_objects def direct_path_to_goal(self, current_position, goal, exclude=[]): obstructions = [i for i in self.list_of_game_objects if i not in exclude] walls_vector = walls_vector_from_game_objects(obstructions) if len(walls_vector) == 0: return True goal_edge = np.array([[current_position[0], current_position[1], goal[0], goal[1]]]) return unobstructed_edges(goal_edge, walls_vector) def get_mouse_position(self): return np.array(pygame.mouse.get_pos()).astype(float) def look_for_collisions(self, coords, vector, radius): for sign in [1.0, 0.0, -1.0]: adjustment = normalise_vector(perpendicular_vector(vector)) * (sign * radius) adjusted_coords = coords + adjustment ahead_end = adjusted_coords + (vector * self.look_ahead) ahead = EyeBeam(adjusted_coords, ahead_end) collision = ahead.get_closest_collision(self.list_of_game_objects) if collision is not None: return collision return None def look_at_object(self, coords, screen_object): if self.direct_path_to_goal(coords, screen_object.coords(), exclude=[screen_object]): return screen_object else: return None def visible_objects(self, coords): visibles = [] for screen_object in self.list_of_game_objects: eyes_see = self.look_at_object(coords, screen_object) if eyes_see is not None: visibles.append(eyes_see) return visibles def look_for_object(self, coords, object_description): matching_objects_in_range = [screen_object for screen_object in \ self.list_of_game_objects \ if screen_object.image['kind'] != 'wall' and distance_between_points(coords, screen_object.coords()) < self.view_distance \ and object_description.viewitems() <= screen_object.image.viewitems()] if len(matching_objects_in_range) > 0: closest_index = find_closest_point_index(coords, [screen_object.coords() for screen_object in matching_objects_in_range]) target_object = matching_objects_in_range[closest_index] return self.look_at_object(coords, target_object) return None
SimonCarryer/video_game_ai
brains/eyes.py
eyes.py
py
3,313
python
en
code
2
github-code
6
74451964986
from core.visualization import PlotGraphics from core.relation_extraction import SpacyRelationExtraction from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score import numpy as np import joblib import os import sys import warnings warnings.filterwarnings('ignore') class TextPipeline: def __init__(self, predictor_name, data_tuple, classifier_name='decision_tree', resources_path=None): # root path self.resources_folder = os.path.join(os.path.dirname(sys.path[0]), 'resources') \ if resources_path is None else resources_path # initializes the classifier dict classifiers = {'decision_tree': DecisionTreeClassifier(random_state=0), 'k_neighbors': KNeighborsClassifier(n_neighbors=15)} # save the predictor name self.predictor_name = predictor_name # receives the data self.x_train, self.x_test, self.y_train, self.y_test = data_tuple # text extraction pipelines self.text_extraction_pipes = {} # prediction model to use self.prediction_model = classifiers[classifier_name] # init the visualizer self.plt_graphics = PlotGraphics(data_tuple, self.text_extraction_pipes) def create_features_pipeline(self, n_features=150, pipeline_obj=None): # checks if the transformer if pipeline_obj is None: # features vectorization transformer_obj = TfidfVectorizer(strip_accents='unicode', stop_words='english', lowercase=True, max_features=n_features, ngram_range=(1, 2), min_df=0.1, max_df=0.7) # creates the pipeline obj pipeline_obj = Pipeline([('vectorizer', transformer_obj)]) # pipeline mapping self.text_extraction_pipes['feature'] = pipeline_obj # returns the pipeline obj return self.text_extraction_pipes['feature'] def create_label_pipeline(self, relation_extraction=False, n_targets=20, n_jobs=8): # target vectorization if relation_extraction: # uses the spacy relation extraction vectorizer = SpacyRelationExtraction(n_relation=n_targets, n_jobs=n_jobs) else: # otherwise uses a normal vectorizer vectorizer = CountVectorizer(strip_accents='unicode', stop_words='english', lowercase=True, max_features=n_targets, ngram_range=(1, 2), min_df=0.1, max_df=0.7) # pipeline creation self.text_extraction_pipes['target'] = Pipeline([('vectorizer', vectorizer)]) def pickle_predictor(self): # save the labels pipeline labels_extractor = self.text_extraction_pipes['target']['vectorizer'] obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'labels', 'vectorizer'])) joblib.dump(labels_extractor, obj_name + '.pkl') # saves the model obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'predictor'])) joblib.dump(self.prediction_model, obj_name + '.pkl') def unpickle_predictor(self): # loads the object obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'labels', 'vectorizer'])) labels_extractor = joblib.load(obj_name + '.pkl') self.text_extraction_pipes['target'] = Pipeline([('vectorizer', labels_extractor)]) # unpickle the model obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'predictor'])) self.prediction_model = joblib.load(obj_name + '.pkl') def fit(self, x_vector): # fit the feature data y_vector = self.text_extraction_pipes['target'].fit_transform(self.y_train).toarray() # convert the y_train y_vector[y_vector > 1] = 1 # print some information data print('\ninput array, shape:', x_vector.shape) print('output array, shape:', y_vector.shape, '\n') # fit the model self.prediction_model.fit(x_vector, y_vector) def predict(self, x_test): # convert using the pipeline x_test_vector = self.text_extraction_pipes['feature'].transform(x_test) # convert the y_test predictions = self.prediction_model.predict(x_test_vector) # returns the predictions return predictions def score(self): # add the exception treatment y_test_vector = self.text_extraction_pipes['target'].transform(self.y_test).toarray() # predict the output for the test set predictions = self.predict(self.x_test) # print some metrics class_labels = self.text_extraction_pipes['target']['vectorizer'].get_feature_names() class_report = self.calculate_metrics(y_test_vector, predictions, class_labels) # plot the data self.plt_graphics.plot_bag_words(class_report) # return the classification report return class_report @staticmethod def calculate_metrics(y_test, predictions, class_labels): # print the results y_test[y_test > 1] = 1 class_report = classification_report(y_test, predictions, target_names=class_labels, output_dict=True) print("Classification report: \n", classification_report(y_test, predictions, target_names=class_labels)) # print("F1 micro averaging:", f1_score(y_test, predictions, average='micro', labels=np.unique(predictions))) print("ROC: ", roc_auc_score(y_test, predictions), '\n') # return the classification results return class_report
eliseu31/MSDS-Analyser
core/text_pipeline.py
text_pipeline.py
py
6,284
python
en
code
8
github-code
6
41550338634
from . animation import Animation from .. layout import circle from .. util import deprecated class Circle(Animation): LAYOUT_CLASS = circle.Circle LAYOUT_ARGS = 'rings', def __init__(self, layout, **kwds): super().__init__(layout, **kwds) self.rings = layout.rings self.ringCount = layout.ringCount if deprecated.allowed(): # pragma: no cover self.lastRing = layout.lastRing self.ringSteps = layout.ringSteps if deprecated.allowed(): # pragma: no cover BaseCircleAnim = Circle
ManiacalLabs/BiblioPixel
bibliopixel/animation/circle.py
circle.py
py
553
python
en
code
263
github-code
6
32644614877
""" Given a universal mesh, record the placements of guide nodes as it relative to universal mesh. And then repoisition guides to that relative position should the universal mesh change from character to character. from mgear.shifter import relativeGuidePlacement reload(relativeGuidePlacement) Execute the following chunk to record initial placement ---------------------- relativeGuidePlacement.exportGuidePlacement(filepath="Y:/tmp/exampleFile.json", skip_strings=["hair"]) Load new universal guide mesh with new proportions Execute the following lines to move the guides to their new position --------- relativeGuidePlacement.importGuidePlacement(filepath="Y:/tmp/exampleFile.json") Attributes: GUIDE_ROOT (str): name of the root guide node SKIP_CONTAINS (list): nodes to skip if they contain the string SKIP_CRAWL_NODES (list): nodes to skip crawling hierarchy SKIP_NODETYPES (list): skip the query of certain node types SKIP_PLACEMENT_NODES (TYPE): nodes to skip updating their positions SKIP_SUFFIX (list): skip if node ends with UNIVERSAL_MESH_NAME (str): default name of the universal mesh """ # python import json import math # dcc import maya.cmds as mc import pymel.core as pm import maya.OpenMaya as om # mgear from mgear.core import utils from mgear.core import vector from mgear.core import transform from mgear.core import meshNavigation # constants ------------------------------------------------------------------- # Designate the root of the hierarchy to crawl GUIDE_ROOT = "guide" # Nodes to avoid checking the hierarchy DEFAULT_SKIP_CRAWL_NODES = ("controllers_org", "spineUI_C0_root", "faceUI_C0_root", "legUI_R0_root", "armUI_L0_root", "legUI_L0_root", "armUI_R0_root") # nodes that will not have their positions updated DEFAULT_SKIP_PLACEMENT_NODES = ("controllers_org", "global_C0_root", "spineUI_C0_root", "faceUI_C0_root", "legUI_R0_root", "armUI_L0_root", "legUI_L0_root", "armUI_R0_root") try: SKIP_CRAWL_NODES SKIP_PLACEMENT_NODES except NameError: SKIP_CRAWL_NODES = list(DEFAULT_SKIP_CRAWL_NODES) SKIP_PLACEMENT_NODES = list(DEFAULT_SKIP_PLACEMENT_NODES) # skip the node if it even contains the characters in the list # eg SKIP_CONTAINS = ["hair"] SKIP_CONTAINS = [] # Avoid nodes of a specified suffix SKIP_SUFFIX = ["sizeRef", "crv", "crvRef", "blade"] # Types of nodes to avoid SKIP_NODETYPES = ["aimConstraint", "pointConstraint", "parentConstraint"] UNIVERSAL_MESH_NAME = "skin_geo_setup" # general functions ----------------------------------------------------------- def crawlHierarchy(parentNode, ordered_hierarchy, skip_crawl_nodes, skip_strings=None): """recursive function to crawl a hierarchy of nodes to return decendents Args: parentNode (str): node to query ordered_hierarchy (str): list to continuesly pass itself skip_crawl_nodes (list): nodes to skip crawl """ if not skip_strings: skip_strings = [] for node in mc.listRelatives(parentNode, type="transform") or []: if node in skip_crawl_nodes or node in ordered_hierarchy: continue if node.endswith(tuple(SKIP_SUFFIX)): continue if mc.objectType(node) in SKIP_NODETYPES: continue if [True for skip_str in skip_strings if skip_str.lower() in node.lower()]: continue ordered_hierarchy.append(node) crawlHierarchy(node, ordered_hierarchy, skip_crawl_nodes, skip_strings=skip_strings) def getPostionFromLoop(vertList): """Get the center position from the list of edge ids provided Args: vertList (list): list of edge ids Returns: list: of translate XYZ, world space """ bb = mc.exactWorldBoundingBox(vertList) pos = ((bb[0] + bb[3]) / 2, (bb[1] + bb[4]) / 2, (bb[2] + bb[5]) / 2) return pos def getVertMatrix(closestVert): """create a matrix from the closestVert and the normals of the surrounding faces for later comparison Args: node (str): guide node to query closestVert (str): closest vert to guide Returns: list: of matrices """ closestVert = pm.PyNode(closestVert) faces = closestVert.connectedFaces() normalVector = faces.getNormal("world") pm.select(faces) faces_str = mc.ls(sl=True, fl=True) pm.select(cl=True) face_pos = pm.dt.Vector(getPostionFromLoop(faces_str)) normal_rot = getOrient([normalVector.x, normalVector.y, normalVector.z], [0, 1, 0], ro=0) orig_ref_matrix = pm.dt.TransformationMatrix() orig_ref_matrix.setTranslation(face_pos, pm.dt.Space.kWorld) orig_ref_matrix.setRotation(normal_rot) return orig_ref_matrix def getOrient(normal, tangent, ro=0): """convert normal direction into euler rotations Args: normal (list): of nomel values ro (int, optional): rotate order Returns: list: of euler rotations """ kRotateOrders = [om.MEulerRotation.kXYZ, om.MEulerRotation.kYZX, om.MEulerRotation.kZXY, om.MEulerRotation.kXZY, om.MEulerRotation.kYXZ, om.MEulerRotation.kZYX, ] cross = [normal[1] * tangent[2] - normal[2] * tangent[1], normal[2] * tangent[0] - normal[0] * tangent[2], normal[0] * tangent[1] - normal[1] * tangent[0]] tMatrix = normal + [0] + tangent + [0] + cross + [0, 0, 0, 0, 1] mMatrix = om.MMatrix() om.MScriptUtil.createMatrixFromList(tMatrix, mMatrix) tmMatrix = om.MTransformationMatrix(mMatrix) rotate = tmMatrix.eulerRotation().reorder(kRotateOrders[ro]) RAD_to_DEG = (180 / math.pi) return [rotate[0] * RAD_to_DEG, rotate[1] * RAD_to_DEG, rotate[2] * RAD_to_DEG] def getRepositionMatrix(node_matrix, orig_ref_matrix, mr_orig_ref_matrix, closestVerts): """Get the delta matrix from the original position and multiply by the new vert position. Add the rotations from the face normals. Args: node_matrix (pm.dt.Matrix): matrix of the guide orig_ref_matrix (pm.dt.Matrix): matrix from the original vert position closestVerts (str): name of the closest vert Returns: mmatrix: matrix of the new offset position, worldSpace """ current_vert = pm.PyNode(closestVerts[0]) mr_current_vert = pm.PyNode(closestVerts[1]) current_length = vector.getDistance(current_vert.getPosition("world"), mr_current_vert.getPosition("world")) orig_length = vector.getDistance(orig_ref_matrix.translate, mr_orig_ref_matrix.translate) orig_center = vector.linearlyInterpolate(orig_ref_matrix.translate, mr_orig_ref_matrix.translate) orig_center_matrix = pm.dt.Matrix() # orig_center_matrix.setTranslation(orig_center, pm.dt.Space.kWorld) orig_center_matrix = transform.setMatrixPosition( orig_center_matrix, orig_center) current_center = vector.linearlyInterpolate( current_vert.getPosition("world"), mr_current_vert.getPosition("world")) length_percentage = 1 if current_length != 0 or orig_length != 0: length_percentage = current_length / orig_length # refPosition_matrix = pm.dt.TransformationMatrix() refPosition_matrix = pm.dt.Matrix() # refPosition_matrix.setTranslation(current_center, pm.dt.Space.kWorld) refPosition_matrix = transform.setMatrixPosition( refPosition_matrix, current_center) deltaMatrix = node_matrix * orig_center_matrix.inverse() deltaMatrix = deltaMatrix * length_percentage deltaMatrix = transform.setMatrixScale(deltaMatrix) refPosition_matrix = deltaMatrix * refPosition_matrix return refPosition_matrix def getRepositionMatrixSingleRef(node_matrix, orig_ref_matrix, mr_orig_ref_matrix, closestVerts): """Get the delta matrix from the original position and multiply by the new vert position. Add the rotations from the face normals. Args: node_matrix (pm.dt.Matrix): matrix of the guide orig_ref_matrix (pm.dt.Matrix): matrix from the original vert position closestVerts (str): name of the closest vert Returns: mmatrix: matrix of the new offset position, worldSpace """ closestVerts = pm.PyNode(closestVerts[0]) faces = closestVerts.connectedFaces() normalVector = faces.getNormal("world") pm.select(faces) faces_str = mc.ls(sl=True, fl=True) pm.select(cl=True) face_pos = pm.dt.Vector(getPostionFromLoop(faces_str)) normal_rot = getOrient([normalVector.x, normalVector.y, normalVector.z], [0, 1, 0], ro=0) refPosition_matrix = pm.dt.TransformationMatrix() refPosition_matrix.setTranslation(face_pos, pm.dt.Space.kWorld) refPosition_matrix.setRotation(normal_rot) deltaMatrix = node_matrix * orig_ref_matrix.inverse() refPosition_matrix = deltaMatrix * refPosition_matrix return refPosition_matrix @utils.viewport_off @utils.one_undo def getGuideRelativeDictionaryLegacy(mesh, guideOrder): """create a dictionary of guide:[[shape.vtx[int]], relativeMatrix] Args: mesh (string): name of the mesh guideOrder (list): the order to query the guide hierarchy Returns: dictionary: create a dictionary of guide:[[edgeIDs], relativeMatrix] """ relativeGuide_dict = {} mesh = pm.PyNode(mesh) for guide in guideOrder: guide = pm.PyNode(guide) # slow function A clst_vert = meshNavigation.getClosestVertexFromTransform(mesh, guide) vertexIds = [clst_vert.name()] # slow function B orig_ref_matrix = getVertMatrix(clst_vert.name()) # -------------------------------------------------------------------- a_mat = guide.getMatrix(worldSpace=True) mm = ((orig_ref_matrix - a_mat) * -1) + a_mat pos = mm[3][:3] mr_vert = meshNavigation.getClosestVertexFromTransform(mesh, pos) mr_orig_ref_matrix = getVertMatrix(mr_vert.name()) vertexIds.append(mr_vert.name()) node_matrix = guide.getMatrix(worldSpace=True) relativeGuide_dict[guide.name()] = [vertexIds, node_matrix.get(), orig_ref_matrix.get(), mr_orig_ref_matrix.get()] mc.select(cl=True) return relativeGuide_dict @utils.viewport_off @utils.one_undo def yieldGuideRelativeDictionary(mesh, guideOrder, relativeGuide_dict): """create a dictionary of guide:[[shape.vtx[int]], relativeMatrix] Args: mesh (string): name of the mesh guideOrder (list): the order to query the guide hierarchy Returns: dictionary: create a dictionary of guide:[[edgeIDs], relativeMatrix] """ for guide in guideOrder: guide = pm.PyNode(guide) # slow function A clst_vert = meshNavigation.getClosestVertexFromTransform(mesh, guide) vertexIds = [clst_vert.name()] # slow function B orig_ref_matrix = getVertMatrix(clst_vert.name()) # -------------------------------------------------------------------- a_mat = guide.getMatrix(worldSpace=True) mm = ((orig_ref_matrix - a_mat) * -1) + a_mat pos = mm[3][:3] mr_vert = meshNavigation.getClosestVertexFromTransform(mesh, pos) mr_orig_ref_matrix = getVertMatrix(mr_vert.name()) vertexIds.append(mr_vert.name()) node_matrix = guide.getMatrix(worldSpace=True) relativeGuide_dict[guide.name()] = [vertexIds, node_matrix.get(), orig_ref_matrix.get(), mr_orig_ref_matrix.get()] yield relativeGuide_dict @utils.viewport_off @utils.one_undo def getGuideRelativeDictionary(mesh, guideOrder): """create a dictionary of guide:[[shape.vtx[int]], relativeMatrix] Args: mesh (string): name of the mesh guideOrder (list): the order to query the guide hierarchy Returns: dictionary: create a dictionary of guide:[[edgeIDs], relativeMatrix] """ relativeGuide_dict = {} mesh = pm.PyNode(mesh) for result in yieldGuideRelativeDictionary( mesh, guideOrder, relativeGuide_dict): pass return relativeGuide_dict @utils.viewport_off @utils.one_undo def updateGuidePlacementLegacy(guideOrder, guideDictionary): """update the guides based on new universal mesh, in the provided order Args: guideOrder (list): of the hierarchy to crawl guideDictionary (dictionary): dict of the guide:edge, matrix position """ for guide in guideOrder: if guide not in guideDictionary or not mc.objExists(guide): continue elif guide in SKIP_PLACEMENT_NODES: continue (vertexIds, node_matrix, orig_ref_matrix, mr_orig_ref_matrix) = guideDictionary[guide] guideNode = pm.PyNode(guide) repoMatrix = getRepositionMatrix(pm.dt.Matrix(node_matrix), pm.dt.Matrix(orig_ref_matrix), pm.dt.Matrix(mr_orig_ref_matrix), vertexIds) guideNode.setMatrix(repoMatrix, worldSpace=True, preserve=True) @utils.viewport_off @utils.one_undo def yieldUpdateGuidePlacement(guideOrder, guideDictionary): """update the guides based on new universal mesh, in the provided order Args: guideOrder (list): of the hierarchy to crawl guideDictionary (dictionary): dict of the guide:edge, matrix position """ for guide in guideOrder: if guide not in guideDictionary or not mc.objExists(guide): continue elif guide in SKIP_PLACEMENT_NODES: continue (vertexIds, node_matrix, orig_ref_matrix, mr_orig_ref_matrix) = guideDictionary[guide] repoMatrix = getRepositionMatrix(pm.dt.Matrix(node_matrix), pm.dt.Matrix(orig_ref_matrix), pm.dt.Matrix(mr_orig_ref_matrix), vertexIds) yield repoMatrix @utils.viewport_off @utils.one_undo def updateGuidePlacement(guideOrder, guideDictionary, reset_scale=False): """update the guides based on new universal mesh, in the provided order Args: guideOrder (list): of the hierarchy to crawl guideDictionary (dictionary): dict of the guide:edge, matrix position """ updateGen = yieldUpdateGuidePlacement(guideOrder, guideDictionary) for guide in guideOrder: if guide not in guideDictionary or not mc.objExists(guide): continue elif guide in SKIP_PLACEMENT_NODES: continue guideNode = pm.PyNode(guide) scl = guideNode.getScale() repoMatrix = next(updateGen) guideNode.setMatrix(repoMatrix, worldSpace=True, preserve=True) if reset_scale: guideNode.setScale([1, 1, 1]) else: guideNode.setScale(scl) yield True # ============================================================================== # Data export, still testing # ============================================================================== def _importData(filepath): try: with open(filepath, 'r') as f: data = json.load(f) return data except Exception as e: print(e) def _exportData(data, filepath): try: with open(filepath, 'w') as f: json.dump(data, f, sort_keys=False, indent=4) except Exception as e: print(e) def exportGuidePlacement(filepath=None, reference_mesh=UNIVERSAL_MESH_NAME, root_node=GUIDE_ROOT, skip_crawl_nodes=SKIP_CRAWL_NODES, skip_strings=[]): """Export the position of the supplied root node to a file. Args: filepath (str, optional): path to export too reference_mesh (str, optional): mesh to query verts root_node (str, optional): name of node to query against skip_crawl_nodes (list, optional): of nodes not to crawl skip_strings (list, optional): strings to check to skip node Returns: list: dict, list, str """ if filepath is None: filepath = pm.fileDialog2(fileMode=0, startingDirectory="/", fileFilter="Export position(*.json)") if filepath: filepath = filepath[0] (relativeGuide_dict, ordered_hierarchy) = recordInitialGuidePlacement( reference_mesh=reference_mesh, root_node=root_node, skip_crawl_nodes=skip_crawl_nodes, skip_strings=skip_strings) data = {} data["relativeGuide_dict"] = relativeGuide_dict data["ordered_hierarchy"] = ordered_hierarchy _exportData(data, filepath) print("Guide position exported: {}".format(filepath)) return relativeGuide_dict, ordered_hierarchy, filepath @utils.one_undo def importGuidePlacement(filepath): """import the position from the provided file Args: filepath (str): file to the json referenceMesh (str, optional): name of mesh to compare against """ data = _importData(filepath) updateGuidePlacement(data["ordered_hierarchy"], data["relativeGuide_dict"]) return data["relativeGuide_dict"], data["ordered_hierarchy"] def recordInitialGuidePlacement(reference_mesh=UNIVERSAL_MESH_NAME, root_node=GUIDE_ROOT, skip_crawl_nodes=SKIP_CRAWL_NODES, skip_strings=None): """convenience function for retrieving a dict of position Args: reference_mesh (str, optional): the mesh to query against root_node (str, optional): root node to crawl skip_crawl_nodes (list, optional): of nodes to avoid skip_strings (list, optional): of strings to check if skip Returns: dict, list: dict of positions, list of ordered nodes """ ordered_hierarchy = [] relativeGuide_dict = {} crawlHierarchy(root_node, ordered_hierarchy, skip_crawl_nodes, skip_strings=skip_strings) relativeGuide_dict = getGuideRelativeDictionary(reference_mesh, ordered_hierarchy) return relativeGuide_dict, ordered_hierarchy
mgear-dev/mgear4
release/scripts/mgear/shifter/relative_guide_placement.py
relative_guide_placement.py
py
19,592
python
en
code
209
github-code
6
33914485796
from django.conf.urls import patterns, url from ventas import viewsInforme,viewsPedido urlpatterns = patterns('', url(r'^$', viewsPedido.venta_desktop, name='venta_desktop'), url(r'^fac/', viewsPedido.venta_desktop, name='venta_desktop1'), url(r'^mobile/$', viewsPedido.venta_mobile, name='venta_mobile'), url(r'^listar/$', viewsInforme.listar, name='listar'), url(r'^clientes/', viewsPedido.clientes, name='clientes'), url(r'^vendedores/', viewsPedido.vendedores, name='vendedores'), url(r'^codproducto/', viewsPedido.codproducto, name='codproducto'), url(r'^nomproducto/', viewsPedido.nomproducto, name='nomproducto'), url(r'^save/$', viewsPedido.savePedido, name='save'), url(r'^save/(?P<anyway>\w+)/$', viewsPedido.savePedido, name='save'), url(r'^saveDetalle/$', viewsPedido.saveDetalle, name='saveDetalle'), url(r'^deleteDetalle/(?P<id>\d+)/$', viewsPedido.deleteDetalle, name='deleteDetalle'), url(r'^pagar/$', viewsPedido.pagarPedido, name='pagarPedido'), )
wilmandx/ipos
ventas/urls.py
urls.py
py
1,020
python
es
code
0
github-code
6
33105484438
#!/usr/bin/env python # -*- coding: UTF-8 -*- import logging; logger = logging.getLogger("main") FORMAT = '%(asctime)s - %(levelname)s: %(message)s' logging.basicConfig(format=FORMAT, level=logging.WARNING) import time from flask import Flask, escape, url_for,render_template, g, request, redirect, jsonify, session from werkzeug import secure_filename import sys, os from jinja2 import Environment, PackageLoader import json app = Flask(__name__, static_folder='static') maze = [] width = 0 height = 0 STARTPOS=[1,1] MAXLIFE = 10 MIN_TIME_BETWEEN_INTERACTIONS=0.2 #seconds robots = {} def store_map(rawmaze): global maze, width, height if is_map_loaded(): logger.warning("Map already loaded. Ignoring it. Restart the backend if you want to update the map.") return width = rawmaze["width"] height = rawmaze["height"] maze = [True if x in [399,431,463,492,493,494,495] else False for x in rawmaze["data"]] for j in range(height): for i in range(width): idx = i + j * width if maze[idx]: sys.stdout.write('.') else: sys.stdout.write(' ') sys.stdout.write('\n') logger.info("Maze successfully loaded!") def is_map_loaded(): return width and height def get_obstacles(x,y): # obstacle at centre, north, south, east, west? obstacles = [True, True, True, True, True] if x >= 0 and y >= 0 and x < width and y < height and maze[x + y * width]: obstacles[0] = False if x >= 0 and y-1 >= 0 and x < width and y-1 < height and maze[x + (y-1) * width]: obstacles[1] = False if x >= 0 and y+1 >= 0 and x < width and y+1 < height and maze[x + (y+1) * width]: obstacles[2] = False if x+1 >= 0 and y >= 0 and x+1 < width and y < height and maze[x+1 + y * width]: obstacles[3] = False if x-1 >= 0 and y >= 0 and x-1 < width and y < height and maze[x-1 + y * width]: obstacles[4] = False logger.info(str(obstacles)) return obstacles @app.route("/set/<name>/<x>/<y>") def set_robot(name, x, y): logger.info("Placing robot %s to %s,%s" % (name,x,y)) x = int(x) y=int(y) c,_,_,_,_ = get_obstacles(x,y) if c: logger.info("Can not place robot there!") return json.dumps(False) robots[name]["pos"] = [x,y] return json.dumps(True) def get_robot(name): if name not in robots: return json.dumps([-1,-1]) return json.dumps(robots[name]["pos"]) @app.route("/") def main(): return render_template('index.html') @app.route("/live") def map(): return render_template('map.html') @app.route("/get_robots") def get_robots(): now = time.time() complete_robots = dict(robots) for k in list(robots.keys()): if robots[k]["life"] <= 0: logger.warning("Robot %s has no life left! killing it!" % k) del robots[k] del complete_robots[k] continue if now - robots[k]["lastinteraction"] > 60 * 10: logger.warning("Robot %s has not being used for 10 min. Removing it." % k) del robots[k] del complete_robots[k] continue complete_robots[k]["age"] = now - robots[k]["created"] return json.dumps(complete_robots) def create_new_robot(name): logger.info("Placing new robot %s at start position" % name) robots[name] = {"pos": STARTPOS, "created": time.time(), "lastinteraction": 0, "life": MAXLIFE } @app.route('/move/<name>/<direction>') def move(name, direction): if not is_map_loaded(): logger.error("Map not loaded yet! Reload webpage.") return json.dumps([False,[]]) if name not in robots: create_new_robot(name) logger.info("Moving robot %s to %s" % (name,direction)) now = time.time() if now - robots[name]["lastinteraction"] < MIN_TIME_BETWEEN_INTERACTIONS: logger.error("Too many interactions with %s. Wait a bit." % name) return json.dumps([False,[]]) robots[name]["lastinteraction"] = now x,y = robots[name]["pos"] if direction == 'N': nx, ny = x, y-1 if direction == 'S': nx, ny = x, y+1 if direction == 'E': nx, ny = x+1, y if direction == 'W': nx, ny = x-1, y c,n,s,e,w = get_obstacles(nx,ny) if c: logger.info("...can not move there!") robots[name]["life"] -= 1 return json.dumps([False,[]]) else: robots[name]["pos"] = [nx,ny] return json.dumps([True,[n,s,e,w]]) @app.route("/map", methods=['POST']) def load_map(): logger.info("Retrieving the map data...") store_map(json.loads([k for k in request.form.keys()][0])) return "" @app.route("/life/<name>") def life(name): return json.dumps(robots[name]["life"] if name in robots else 0)
severin-lemaignan/robomaze
backend/backend.py
backend.py
py
4,956
python
en
code
1
github-code
6
27264160200
""" GenT2MF_Trapezoidal.py Created 3/1/2022 """ from __future__ import annotations from typing import List from juzzyPython.generalType2zSlices.sets.GenT2MF_Prototype import GenT2MF_Prototype from juzzyPython.intervalType2.sets.IntervalT2MF_Trapezoidal import IntervalT2MF_Trapezoidal from juzzyPython.type1.sets.T1MF_Trapezoidal import T1MF_Trapezoidal class GenT2MF_Trapezoidal(GenT2MF_Prototype): """ Class GenT2MF_Trapezoidal Creates a new instance of GenT2zMF_Trapezoidal Parameters: primer primer0 primer1 primers numberOfzLevels Functions: getZSlice """ def __init__(self, name: str,primer: IntervalT2MF_Trapezoidal = None,primer0: IntervalT2MF_Trapezoidal = None, primer1: IntervalT2MF_Trapezoidal = None,primers: List[IntervalT2MF_Trapezoidal] = None, numberOfzLevels = None) -> None: super().__init__(name) self.DEBUG = False if primer != None: stepsize = [0] * 4 self.numberOfzLevels = numberOfzLevels self.support = primer.getSupport() self.primer = primer slices_fs = [0] * numberOfzLevels self.slices_zValues = [0] * numberOfzLevels z_stepSize = 1.0/numberOfzLevels self.zSlices = [0] * numberOfzLevels stepsize[0] = (primer.getLMF().getA() - primer.getUMF().getA())/(numberOfzLevels-1)/2.0 stepsize[1] = (primer.getLMF().getB() - primer.getUMF().getB())/(numberOfzLevels-1)/2.0 stepsize[2] = (primer.getUMF().getC() - primer.getLMF().getC())/(numberOfzLevels-1)/2.0 stepsize[3] = (primer.getUMF().getD() - primer.getLMF().getD())/(numberOfzLevels-1)/2.0 inner = primer.getLMF().getParameters().copy() outer = primer.getUMF().getParameters().copy() self.zSlices[0] = IntervalT2MF_Trapezoidal("Slice 0",primer.getUMF(),primer.getLMF()) self.slices_zValues[0] = z_stepSize if self.DEBUG: print(self.zSlices[0].toString()+" Z-Value = "+str(self.slices_zValues[0])) for i in range(1,numberOfzLevels): self.slices_zValues[i] = self.slices_zValues[i-1]+z_stepSize inner[0]-=stepsize[0] inner[1]-=stepsize[1] inner[2]+=stepsize[2] inner[3]+=stepsize[3] outer[0]+=stepsize[0] outer[1]+=stepsize[1] outer[2]-=stepsize[2] outer[3]-=stepsize[3] if(inner[0]<outer[0]): inner[0] = outer[0] if(inner[1]<outer[1]): inner[1] = outer[1] if(inner[2]>outer[2]): inner[2] = outer[2] if(inner[3]>outer[3]): inner[3] = outer[3] self.zSlices[i] = IntervalT2MF_Trapezoidal("Slice "+str(i), T1MF_Trapezoidal("upper_slice "+str(i),outer),T1MF_Trapezoidal("lower_slice "+str(i),inner)) if self.DEBUG: print(self.zSlices[i].toString()+" Z-Value = "+str(self.slices_zValues[i])) elif primer0 != None and primer1 != None: if self.DEBUG: print("Number of zLevels: "+str(numberOfzLevels)) self.numberOfzLevels = numberOfzLevels self.support = primer0.getSupport() slices_fs = [0] * numberOfzLevels self.slices_zValues = [0] * numberOfzLevels self.zSlices = [0] * numberOfzLevels self.zSlices[0] = primer0 self.zSlices[0].setName(self.getName()+"_Slice_0") self.zSlices[-1] = primer1 z_stepSize = 1.0/(numberOfzLevels) self.slices_zValues[0] = z_stepSize self.slices_zValues[-1] = 1.0 lsu = (primer1.getUMF().getParameters()[0]-primer0.getUMF().getParameters()[0])/(numberOfzLevels-1) lsl = (primer0.getLMF().getParameters()[0]-primer1.getLMF().getParameters()[0])/(numberOfzLevels-1) rsu = (primer0.getUMF().getParameters()[3]-primer1.getUMF().getParameters()[3])/(numberOfzLevels-1) rsl = (primer1.getLMF().getParameters()[3]-primer0.getLMF().getParameters()[3])/(numberOfzLevels-1) if self.DEBUG: print("lsu = "+str(lsu)+" lsl = "+str(lsl)+" rsu = "+str(rsu)+" rsl = "+str(rsl)) inner = primer0.getLMF().getParameters().copy() outer = primer0.getUMF().getParameters().copy() for i in range(1,numberOfzLevels-1): self.slices_zValues[i] = self.slices_zValues[i-1]+z_stepSize inner[0]-=lsl inner[3]+=rsl outer[0]+=lsu outer[3]-=rsu if self.DEBUG: print("Slice "+str(i)+" , inner: "+str(inner[0])+" "+str(inner[1])+" "+str(inner[2])+" outer: "+str(outer[0])+" "+str(outer[1])+" "+str(outer[2])) self.zSlices[i] = IntervalT2MF_Trapezoidal(self.getName()+"_Slice_"+str(i),T1MF_Trapezoidal("upper_slice "+str(i),outer),T1MF_Trapezoidal("lower_slice "+str(i),inner)) if self.DEBUG: print(self.zSlices[i].toString()+" Z-Value = "+str(self.slices_zValues[i])) elif primers != None: self.numberOfzLevels = len(primers) self.support = primers[0].getSupport() slices_fs = [0] * self.numberOfzLevels self.slices_zValues = [0] * self.numberOfzLevels z_stepSize = 1.0/self.numberOfzLevels self.slices_zValues[0] = z_stepSize self.zSlices = primers.copy() for i in range(self.numberOfzLevels): self.slices_zValues[i] = z_stepSize*(i+1) if self.DEBUG: print(self.zSlices[i].toString()+" Z-Value = "+str(self.slices_zValues[i])) def clone(self) -> GenT2MF_Trapezoidal: """Not implemented""" print("Not implemented") return None def getZSlice(self, slice_number: int) -> IntervalT2MF_Trapezoidal: """Return the slice number""" return self.zSlices[slice_number] def getLeftShoulderStart(self) -> float: """Not implemented""" print("Not implemented") return float("Nan") def getRightShoulderStart(self) -> float: """Not implemented""" print("Not implemented") return float("Nan")
LUCIDresearch/JuzzyPython
juzzyPython/generalType2zSlices/sets/GenT2MF_Trapezoidal.py
GenT2MF_Trapezoidal.py
py
6,556
python
en
code
4
github-code
6
71066844029
from examples.example_imports import * scene = EagerModeScene() fixed_point = Sphere(radius=0.08).move_to(ORIGIN).set_color(GREEN_D) scene.add(fixed_point) start_rod = Vec3(*UP*3) end_rod = Vec3(-3, 3, 0) L = (end_rod - start_rod).norm() # rod = Line3D(start_rod, end_rod, width=0.08).set_color(RED_D) fine_line = Line3D(start_rod.to_array(), end_rod.to_array(), width=0.02).set_color(RED_D) scene.add(fine_line) massive_bob = Sphere(radius=0.12).move_to(end_rod.to_array()).set_color(GREY_D) m = 1. #kg g = 9.8 G = Vec3(0, -g, 0)# m/s^2 scene.add(massive_bob) f = Vec3(0, 0, 0) tension = Vec3(0, 0, 0) f_arrow = Arrow(end_rod.to_array(), f.to_array(), buff=0) mg_arrow = Arrow(end_rod.to_array(), m*G.to_array(), buff=0) tension_arrow = Arrow(end_rod.to_array(), tension.to_array(), buff=0) scene.add(f_arrow, mg_arrow, tension_arrow) v = Vec3(0, 0, 0) def update_func(obj, dt): global v, end_rod, fine_line, f, tension rob_vec = end_rod - start_rod theta = rob_vec.angle_between(DOWN) tension_scalar = m*g*np.cos(theta) + m * (v.norm()**2)/L tension = tension_scalar * (-1*rob_vec.normalise()) f = tension + m*G a = f * (1/m) v += a * dt end_rod += v*dt obj.move_to(end_rod.to_array()) def update_line(obj): obj.put_start_and_end_on(start_rod.to_array(), end_rod.to_array()) def update_f_arrow(obj): obj.put_start_and_end_on(end_rod.to_array(), (end_rod+f*0.1).to_array()) def update_mg_arrow(obj): obj.put_start_and_end_on(end_rod.to_array(), (end_rod+m*G*0.1).to_array()) def update_tension_arrow(obj): obj.put_start_and_end_on(end_rod.to_array(), (end_rod+tension*0.1).to_array()) fine_line.add_updater(update_line) massive_bob.add_updater(update_func) f_arrow.add_updater(update_f_arrow) mg_arrow.add_updater(update_mg_arrow) tension_arrow.add_updater(update_tension_arrow) scene.wait(50) scene.hold_on()
beidongjiedeguang/manim-express
examples/animate/单摆.py
单摆.py
py
1,885
python
en
code
13
github-code
6
22768172274
from backend import credential import urllib.parse from google.cloud import storage import streamlit as st import os import json import fnmatch import file_io import utils import traceback import io def init(): creds_str = credential.google_creds() if not os.path.exists('temp'): os.makedirs('temp') with open('temp/google-credentials.json', 'w') as f: json.dump(creds_str, f) os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'temp/google-credentials.json' storage_client = storage.Client() st.session_state['storage_client'] = storage_client def upload_to_bucket(root_dir, file, uid, name, metadata=None, compress=None): dir = f"{root_dir}/{uid}" try: # get file extension extension = os.path.splitext(file.name)[1] filename = name + extension compressed_file_path = None if compress: # Compress file if compress == 'gzip': compressed_file_path = file_io.compress_to_gzip(file) filename += '.gz' # Add '.gz' extension to the filename elif compress == 'xz': compressed_file_path = file_io.compress_to_xz(file) filename += '.xz' # Add '.xz' extension to the filename else: raise ValueError(f'Unsupported compression type: {compress}. Supported types are "gzip" and "xz".' f'if you do not want to compress the file, set compress=None') storage_client = st.session_state['storage_client'] bucket = storage_client.get_bucket(st.secrets['gcp']['bucket_name']) blob = bucket.blob(f"{dir}/{filename}") if compress: # Open the compressed file in read-binary mode for upload with open(compressed_file_path, 'rb') as file_obj: file_content = file_obj.read() # read file content once default_meta = { 'md5_hash': utils.calculate_md5(file_content), 'size': utils.calculate_size(file_content), 'owner': st.session_state['student_number'], 'time': utils.get_current_time() } # Merge the default metadata with the given metadata meta = {**default_meta, **metadata} if metadata else default_meta # Set the blob metadata blob.metadata = meta blob.upload_from_file(io.BytesIO(file_content)) # Delete the compressed file os.remove(compressed_file_path) else: # If compress is None or False, upload the file as is # Convert file_content to a BytesIO object and upload file_content = file.read() default_meta = { 'md5_hash': utils.calculate_md5(file_content), 'size': utils.calculate_size(file_content), 'owner': st.session_state['student_number'], 'time': utils.get_current_time() } # Merge the default metadata with the given metadata meta = {**default_meta, **metadata} if metadata else default_meta # Set the blob metadata blob.metadata = meta blob.upload_from_file(io.BytesIO(file_content)) except Exception as e: tb = traceback.format_exc() st.error(f'❌Failed to upload to the bucket: **{e}** \n\n **Traceback**:\n ```{tb}```') st.stop() def delete_from_bucket(root_dir, filenames, uid): for filename in filenames: # Decode the filename to ensure spaces are handled correctly decoded_filename = urllib.parse.unquote(filename) try: storage_client = st.session_state['storage_client'] bucket = storage_client.get_bucket(st.secrets['gcp']['bucket_name']) blob = bucket.blob(f"{root_dir}/{uid}/{decoded_filename}") blob.delete() except Exception as e: st.error(f'failed to delete file ({root_dir}/{uid}/{decoded_filename}) from bucket. **{e}**') st.stop() def download_from_bucket(root_dir, filename, uid): try: storage_client = st.session_state['storage_client'] bucket = storage_client.get_bucket(st.secrets['gcp']['bucket_name']) blob = bucket.blob(f"{root_dir}/{uid}/{filename}") if not os.path.exists('temp'): os.makedirs('temp') with open(f"temp/{filename}", 'wb') as f: storage_client.download_blob_to_file(blob, f) return f"temp/{filename}" except Exception as e: st.error(f'failed to download file from bucket. **{e}**') st.stop() def get_blobs(bucket, dir, name_pattern, extensions): blobs = [] if '*' in name_pattern: # If wildcard is present in name_pattern, process as pattern. prefix, pattern = name_pattern.split('*', 1) # List blobs whose names start with the given prefix for blob in bucket.list_blobs(prefix=f"{dir}/{prefix}"): for extension in extensions: if blob.name.endswith(extension) and fnmatch.fnmatch(blob.name, f"{dir}/{name_pattern}"): blobs.append(blob) # Once a match is found, no need to check other extensions break else: # If no wildcard is present, process name_pattern as exact file name. for extension in extensions: blob = bucket.blob(f"{dir}/{name_pattern}{extension}") if blob.exists(): blobs.append(blob) return blobs def get_public_urls_from_blobs(blobs): return [blob.public_url for blob in blobs] def get_blob_md5(blobs): return [blob.md5_hash for blob in blobs] def get_blob_metadata(blobs): return [blob.metadata for blob in blobs] def get_blob_info(root_dir, uid, name_pattern, extensions, infos): storage_client = st.session_state['storage_client'] bucket = storage_client.get_bucket(st.secrets['gcp']['bucket_name']) dir = f"{root_dir}/{uid}" blobs = get_blobs(bucket, dir, name_pattern, extensions) for info in infos: if info == 'url': return get_public_urls_from_blobs(blobs) else: metas = get_blob_metadata(blobs) return [meta[info] for meta in metas]
sean1832/Mongrel-Assemblies-DB
src/backend/gcp_handler.py
gcp_handler.py
py
6,361
python
en
code
0
github-code
6
22329941730
from discord.ext import commands, tasks import discord import asyncio import os import json import sqlite3 from dotenv import load_dotenv import requests from datetime import datetime,time load_dotenv() class Birthday(commands.Cog): """Birthday commands.""" def __init__(self, client): self.client = client self.birthday_announcments.start() @commands.command(hidden = True) @commands.is_owner() async def force_add_user(self, ctx, user: discord.Member, day: int, month: int): """Adds a user to the birthday list.""" if day > 31 or day < 1 or month > 12 or month < 1: await ctx.send("Invalid date.") return con = sqlite3.connect("databases/user_brithdays.db") cur = con.cursor() cur.execute("SELECT * FROM birthday WHERE user_id = ?", (user.id,)) if cur.fetchone() is not None: await ctx.send("User already exists.") return cur.execute("INSERT INTO birthday VALUES (?, ?, ?)", (user.id, day, month)) con.commit() con.close() await ctx.send("Added user to birthday list.") @commands.command(hidden=True) @commands.is_owner() async def makeservertablebirthday(self,ctx): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() cur.execute("CREATE TABLE server(ServerID int, Servertoggle, birthdaychannel int,birthdaymessage text)") con.commit() con.close() con = sqlite3.connect("databases/user_brithdays.db") cur = con.cursor() cur.execute("CREATE TABLE birthday(UsersID int, birthday)") con.commit() con.close() await ctx.send("Done") # #@commands.command(hidden = True) #@commands.is_owner() #async def setallbithday(self,ctx): # for i in self.client.guilds: # con = sqlite3.connect("databases/server_brithdays.db") # cur = con.cursor() # cur.execute("INSERT INTO server(ServerID, Servertoggle,birthdaychannel) VALUES(?, ?,?)", (i.id, False,None)) # await ctx.send(f"{i} has been set") # con.commit() # con.close() @commands.Cog.listener() async def on_guild_join(self, guild): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() cur.execute("INSERT INTO server(ServerID, Servertoggle) VALUES(?, ?)", (guild.id, False)) con.commit() con.close() @commands.command(help = " enable and disable Birthday") @commands.has_permissions(administrator=True) async def toggle_birthday(self,ctx): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() datas = cur.execute("SELECT * FROM server WHERE ServerID=?", (ctx.guild.id,)) datas = cur.fetchall() toggle = datas[0][1] if toggle == True: cur.execute("UPDATE server SET Servertoggle = ? WHERE ServerID=?", (False, ctx.guild.id,)) con.commit() con.close() await ctx.send("Birthday reminders has been turned off") if toggle == False: cur.execute("UPDATE server SET Servertoggle = ? WHERE ServerID=?", (True, ctx.guild.id,)) con.commit() con.close() await ctx.send("Birthday reminders has been turrned on") @commands.slash_command(name="toggle_birthday", description="enable and disable Birthday") @commands.has_permissions(administrator=True) async def _toggle_birthday(self,ctx): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() datas = cur.execute("SELECT * FROM server WHERE ServerID=?", (ctx.guild.id,)) datas = cur.fetchall() toggle = datas[0][1] if toggle == True: cur.execute("UPDATE server SET Servertoggle = ? WHERE ServerID=?", (False, ctx.guild.id,)) con.commit() con.close() await ctx.respond("Birthday reminders has been turned off") if toggle == False: cur.execute("UPDATE server SET Servertoggle = ? WHERE ServerID=?", (True, ctx.guild.id,)) con.commit() con.close() await ctx.respond("Birthday reminders has been turrned on") await ctx.followup.send("If you like the bot, please consider voting for it at https://top.gg/bot/902240397273743361 \n It helps a lot! :D", ephemeral=True) @commands.slash_command(name="setbirthday", description="Set your birthday use day then month") async def setbirthday__slash(self, ctx, day: int, month: int): tocken = os.getenv("TOPGG_TOKEN") api = requests.get(f"https://top.gg/api/bots/902240397273743361/check?userId={ctx.author.id}", headers={"Authorization": tocken, "Content-Type": "application/json"}) data = api.json() print(api) print(data) voted = data["voted"] #if the api does not return a 200 status code if api.status_code != 200: voted = 1 print("api error") if voted == 0: await ctx.respond("You need to have voted for simplex in the last 24 hours to set your birthday. Please vote and then try again, you can vote here: https://top.gg/bot/902240397273743361/vote",ephemeral=True) return else: if day > 31 or day < 1 or month > 12 or month < 1: await ctx.respond("Invalid date.") else: #force 2 digit date if day < 10: day = f"0{day}" if month < 10: month = f"0{month}" con = sqlite3.connect("databases/user_brithdays.db") cur = con.cursor() data = cur.execute("SELECT * FROM birthday WHERE UsersID=?", (ctx.author.id,)) data = cur.fetchall() if data == []: cur.execute("INSERT INTO birthday(UsersID, birthday) VALUES(?, ?)", (ctx.author.id, f"{day}/{month}")) con.commit() con.close() await ctx.respond("Your birthday has been set") else: cur.execute("UPDATE birthday SET birthday = ? WHERE UsersID=?", (f"{day}/{month}", ctx.author.id,)) con.commit() con.close() await ctx.respond("Your birthday has been updated") @commands.command(name="setbirthday", help = "Set your birthday use day then month") async def setbirthday_commands(self, ctx, day: int, month: int): if day > 31 or day < 1 or month > 12 or month < 1: await ctx.send("Invalid date.") else: #formate date 2 digit if len(str(day)) == 1: day = f"0{day}" if len(str(month)) == 1: month = f"0{month}" con = sqlite3.connect("databases/user_brithdays.db") cur = con.cursor() data = cur.execute("SELECT * FROM birthday WHERE UsersID=?", (ctx.author.id,)) data = cur.fetchall() if data == []: cur.execute("INSERT INTO birthday(UsersID, birthday) VALUES(?, ?)", (ctx.author.id, f"{day}/{month}")) con.commit() con.close() await ctx.send("Your birthday has been set") else: cur.execute("UPDATE birthday SET birthday = ? WHERE UsersID=?", (f"{day}/{month}", ctx.author.id,)) con.commit() con.close() await ctx.send("Your birthday has been updated") @commands.command(name="set_birthday_channel",help = "Set the birthday channel") @commands.has_permissions(administrator=True) async def set_birthday_channel_command(self,ctx, channel: commands.TextChannelConverter): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() cur.execute("UPDATE server SET birthdaychannel = ? WHERE ServerID=?", (channel.id, ctx.guild.id,)) con.commit() con.close() await ctx.send(f"Birthday channel has been set to {channel} \n To enable birthday reminders use the command `/toggle_birthday` \n To set a custom message use the command `/birthday_message`") @commands.slash_command(name="set_birthday_channel",help = "Set the birthday channel") @commands.has_permissions(administrator=True) async def set_birthday_channel__slash(self,ctx, channel: commands.TextChannelConverter): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() cur.execute("UPDATE server SET birthdaychannel = ? WHERE ServerID=?", (channel.id, ctx.guild.id,)) con.commit() con.close() await ctx.respond(f"Birthday channel has been set to {channel}") @commands.slash_command(name="findbirthday", description="Find a users birthday") async def findbirthday__slash(self, ctx, user: discord.Member): con = sqlite3.connect("databases/user_brithdays.db") cur = con.cursor() data = cur.execute("SELECT * FROM birthday WHERE UsersID=?", (user.id,)) data = cur.fetchall() if data == []: await ctx.respond(f"{user} has not set their birthday") else: await ctx.respond(f"{user} birthday is {data[0][1]}") await ctx.followup.send("If you like the bot, please consider voting for it at https://top.gg/bot/902240397273743361 \n It helps a lot! :D", ephemeral=True) @tasks.loop(time=time(7,00)) async def birthday_announcments(self): print("Birthday announcments") for server in self.client.guilds: print(server) con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() datas = cur.execute("SELECT * FROM server WHERE ServerID=?", (server.id,)) datas = cur.fetchall() if datas == []: cur.execute("INSERT INTO server(ServerID, Servertoggle, birthdaychannel) VALUES(?, ?, ?)", (server.id, False, None)) con.commit() con.close() else: pass con = sqlite3.connect("databases/user_brithdays.db") cur = con.cursor() data = cur.execute("SELECT * FROM birthday") data = cur.fetchall() if data == []: print("No birthday") #does not work below here else: for x in data: if datas[0][1] == True: if datas[0][2] == None: pass else: user = await self.client.fetch_user(x[0]) if user in server.members: channel = await self.client.fetch_channel(datas[0][2]) message = datas[0][3] if message == None: message = ":tada:" print(channel) print(x[1]) print(datetime.now().strftime("%d/%m")) if x[1] == datetime.now().strftime("%d/%m"): print("Birthday") print(x[0]) await channel.send(f"Happy birthday <@{x[0]}>! \n {message}") else: username = await self.client.fetch_user(x[0]) print(f"User {username} not in server {x[0]} {server}") else: pass #@commands.command() #@commands.is_owner() #async def foramt_all_birthdays(self,ctx): # con = sqlite3.connect("databases/user_brithdays.db") # cur = con.cursor() # data = cur.execute("SELECT * FROM birthday") # data = cur.fetchall() # for i in data: # day = i[1].split("/")[0] # month = i[1].split("/")[1] # if len(day) == 1: # day = "0" + day # if len(month) == 1: # month = "0" + month # cur.execute("UPDATE birthday SET Birthday = ? WHERE UsersID=?", (f"{day}/{month}", i[0],)) # con.commit() # con.close() # @commands.command() @commands.is_owner() async def add_message_to_birthday(self,ctx,*,message): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() #creat a new column cur.execute("ALTER TABLE server ADD COLUMN birthdaymessage TEXT") #set the message cur.execute("UPDATE server SET birthdaymessage = ?", (message,)) con.commit() con.close() await ctx.send("Done") @commands.slash_command(name="birthday_message", description="Add a message to the birthday announcment") @commands.has_permissions(administrator=True) async def add_message_to_birthday__slash(self,ctx,*,message): con = sqlite3.connect("databases/server_brithdays.db") cur = con.cursor() data = cur.execute("SELECT * FROM server WHERE ServerID=?", (ctx.guild.id,)) data = cur.fetchall() if data == []: await ctx.respond("You have not set a birthday channel") else: cur.execute("UPDATE server SET birthdaymessage = ? WHERE ServerID=?", (message, ctx.guild.id,)) con.commit() con.close() await ctx.respond("Done") await ctx.followup.send("If you like the bot, please consider voting for it at https://top.gg/bot/902240397273743361 \n It helps a lot! :D", ephemeral=True) def setup(bot): bot.add_cog(Birthday(bot))
micfun123/Simplex_bot
cogs/birthday.py
birthday.py
py
14,104
python
en
code
24
github-code
6
21932276295
from discord.ext import commands class ErrorHandeler(commands.Cog): """A cog for global error handling""" def __init__(self, bot: commands.Bot): self.bot = bot @commands.Cog.listener() async def on_command_error(self, ctx: commands.Context, error: commands.CommandError): if isinstance(error, commands.MemberNotFound): await ctx.send("Please input a valid user") if isinstance(error, commands.UnexpectedQuoteError): await ctx.send("Your message must be surrounded by quotes.") def setup(bot: commands.Bot): bot.add_cog(ErrorHandeler(bot))
Jarkyc/Franklin-The-Undying
errorhandler.py
errorhandler.py
py
599
python
en
code
0
github-code
6
27801635646
import socket import time #traceroute.py 172.217.23.78 udp -p 53 -n 3 -d class Tracerouter: def __init__(self, ip,port,timeout,request,sendwait,debug,data,size): self.ip = ip self.request = request self.timeout = timeout self.port = port self.sendwait = sendwait self.debug = debug self.data=data self.size=size def log(self,message): if self.debug: with open('logs.txt', "a") as file: file.write(message + "\n") def send_and_recive(self, send_socket, recv_socket): self.log(f'Отправка на {self.ip}') send_socket.sendto(b"0" * self.size ,(self.ip, self.port)) adr = '' try: _, adr = recv_socket.recvfrom(512) adr = adr[0] self.log(f'Получение данных от {adr}') except socket.timeout as e: self.log(f'Вышло время ожидания ответа') pass return adr def ping(self, ttl, send_socket, recv_socket): recv_socket.settimeout(self.timeout) send_socket.setsockopt(socket.SOL_IP, socket.IP_TTL, ttl) current = None start = time.time() adr = self.send_and_recive(send_socket,recv_socket) if adr != '': current = adr times = round((time.time() - start) * 1000) self.log(f'Время ответа {times} ms') return current,times def run(self): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.getprotobyname("udp")) as send_socket: with socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.getprotobyname("icmp")) as recv_socket: for ttl in range(1, self.request + 1): self.log(f'Отправка пакета на {self.ip} с ttl {ttl}') current,times= self.ping(ttl, send_socket, recv_socket) if current is None: continue else: self.data.append([str(ttl), current, f'{times} ms']) if current == self.ip: break time.sleep(self.sendwait) return self.data
belutkautka/Traceroute
UDP_traceroute.py
UDP_traceroute.py
py
2,259
python
en
code
0
github-code
6
86625823283
#! /usr/bin/env python import argparse parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='Linearly normalize intensity to between 0 and 255') parser.add_argument("input_spec", type=str, help="Input specification") parser.add_argument("out_version", type=str, help="Output image version") args = parser.parse_args() import sys import os sys.path.append(os.environ['REPO_DIR'] + '/utilities') from utilities2015 import * from data_manager import * from metadata import * from distributed_utilities import * from learning_utilities import * input_spec = load_ini(args.input_spec) image_name_list = input_spec['image_name_list'] stack = input_spec['stack'] prep_id = input_spec['prep_id'] if prep_id == 'None': prep_id = None resol = input_spec['resol'] version = input_spec['version'] if version == 'None': version = None from scipy.ndimage.interpolation import map_coordinates from skimage.exposure import rescale_intensity, adjust_gamma from skimage.transform import rotate # for section in set(metadata_cache['valid_sections_all'][stack]) - set(metadata_cache['valid_sections'][stack]): # for section in metadata_cache['valid_sections'][stack]: for image_name in image_name_list: # print "Section", section t = time.time() img = DataManager.load_image_v2(stack=stack, prep_id=prep_id, fn=image_name, version=version, resol=resol) sys.stderr.write('Load image: %.2f seconds.\n' % (time.time() - t)) t = time.time() tb_mask = DataManager.load_thumbnail_mask_v3(stack=stack, prep_id=None, fn=image_name) # raw_mask = rescale_by_resampling(tb_mask, new_shape=(img.shape[1], img.shape[0])) raw_mask = resize(tb_mask, img.shape) > .5 save_data(raw_mask, DataManager.get_image_filepath_v2(stack=stack, prep_id=prep_id, fn=image_name, version='mask', resol=resol, ext='bp'), upload_s3=False) sys.stderr.write('Rescale mask: %.2f seconds.\n' % (time.time() - t)) t = time.time() mean_std_all_regions = [] cx_cy_all_regions = [] region_size = 5000 region_spacing = 3000 # for cx in range(region_size/2, img.shape[1]-region_size/2+1, region_spacing): # for cy in range(region_size/2, img.shape[0]-region_size/2+1, region_spacing): for cx in range(0, img.shape[1], region_spacing): for cy in range(0, img.shape[0], region_spacing): region = img[max(cy-region_size/2, 0):min(cy+region_size/2+1, img.shape[0]-1), max(cx-region_size/2, 0):min(cx+region_size/2+1, img.shape[1]-1)] region_mask = raw_mask[max(cy-region_size/2, 0):min(cy+region_size/2+1, img.shape[0]-1), max(cx-region_size/2, 0):min(cx+region_size/2+1, img.shape[1]-1)] if np.count_nonzero(region_mask) == 0: continue mean_std_all_regions.append((region[region_mask].mean(), region[region_mask].std())) cx_cy_all_regions.append((cx, cy)) sys.stderr.write('Compute mean/std for sample regions: %.2f seconds.\n' % (time.time() - t)) t = time.time() mean_map = resample_scoremap(sparse_scores=np.array(mean_std_all_regions)[:,0], sample_locations=cx_cy_all_regions, gridspec=(region_size, region_spacing, img.shape[1], img.shape[0], (0,0)), downscale=4, interpolation_order=2) sys.stderr.write('Interpolate mean map: %.2f seconds.\n' % (time.time() - t)) #10s t = time.time() mean_map = rescale_by_resampling(mean_map, new_shape=(img.shape[1], img.shape[0])) sys.stderr.write('Scale up mean map: %.2f seconds.\n' % (time.time() - t)) #30s t = time.time() std_map = resample_scoremap(sparse_scores=np.array(mean_std_all_regions)[:,1], sample_locations=cx_cy_all_regions, gridspec=(region_size, region_spacing, img.shape[1], img.shape[0], (0,0)), downscale=4, interpolation_order=2) sys.stderr.write('Interpolate std map: %.2f seconds.\n' % (time.time() - t)) #10s t = time.time() std_map = rescale_by_resampling(std_map, new_shape=(img.shape[1], img.shape[0])) sys.stderr.write('Scale up std map: %.2f seconds.\n' % (time.time() - t)) #30s # Save mean/std results. fp = DataManager.get_intensity_normalization_result_filepath(what='region_centers', stack=stack, fn=image_name) create_parent_dir_if_not_exists(fp) np.savetxt(fp, cx_cy_all_regions) fp = DataManager.get_intensity_normalization_result_filepath(what='mean_std_all_regions', stack=stack, fn=image_name) create_parent_dir_if_not_exists(fp) np.savetxt(fp, mean_std_all_regions) fp = DataManager.get_intensity_normalization_result_filepath(what='mean_map', stack=stack, fn=image_name) create_parent_dir_if_not_exists(fp) bp.pack_ndarray_file(mean_map.astype(np.float16), fp) fp = DataManager.get_intensity_normalization_result_filepath(what='std_map', stack=stack, fn=image_name) create_parent_dir_if_not_exists(fp) bp.pack_ndarray_file(std_map.astype(np.float16), fp) # Export normalized image. t = time.time() raw_mask = raw_mask & (std_map > 0) img_normalized = np.zeros(img.shape, np.float32) img_normalized[raw_mask] = (img[raw_mask] - mean_map[raw_mask]) / std_map[raw_mask] sys.stderr.write('Normalize: %.2f seconds.\n' % (time.time() - t)) #30s t = time.time() # FIX THIS! THIS only save uint16, not float16. Need to save as bp instead. # img_fp = DataManager.get_image_filepath_v2(stack=stack, prep_id=None, version='NtbNormalizedFloat', resol='down8', section=section, ) # create_parent_dir_if_not_exists(img_fp) # imsave(img_fp, img_normalized[::8, ::8].astype(np.float16)) save_data(img_normalized.astype(np.float16), DataManager.get_intensity_normalization_result_filepath(what='normalized_float_map', stack=stack, fn=image_name), upload_s3=False) sys.stderr.write('Save float version: %.2f seconds.\n' % (time.time() - t)) #30s # t = time.time() # img_normalized_uint8 = rescale_intensity_v2(img_normalized, -1, 6) # sys.stderr.write('Rescale to uint8: %.2f seconds.\n' % (time.time() - t)) #30s # t = time.time() # img_fp = DataManager.get_image_filepath_v2(stack=stack, prep_id=None, version='NtbNormalized', resol='raw', section=section) # create_parent_dir_if_not_exists(img_fp) # imsave(img_fp, img_normalized_uint8) # sys.stderr.write('Save uint8 version: %.2f seconds.\n' % (time.time() - t)) #30s # Export histogram. plt.hist(img_normalized[raw_mask].flatten(), bins=100, log=True); fp = DataManager.get_intensity_normalization_result_filepath(what='float_histogram_png', stack=stack, fn=image_name) create_parent_dir_if_not_exists(fp) plt.savefig(fp) plt.close(); # hist_fp = DataManager.get_intensity_normalization_result_filepath(what='float_histogram', stack=stack, section=section) # create_parent_dir_if_not_exists(hist_fp) # hist, bin_edges = np.histogram(img_normalized[valid_mask].flatten(), bins=np.arange(0,201,5)); # plt.bar(bin_edges[:-1], np.log(hist)); # plt.xticks(np.arange(0, 200, 20), np.arange(0, 200, 20)); # plt.xlabel('Normalized pixel value (float)'); # plt.title(metadata_cache['sections_to_filenames'][stack][section]) # plt.savefig(hist_fp) # plt.close(); gamma_map = img_as_ubyte(adjust_gamma(np.arange(0, 256, 1) / 255., 8.)) low = -2. high = 50. for image_name in image_name_list: img_normalized = load_data( DataManager.get_intensity_normalization_result_filepath(what='normalized_float_map', stack=stack, fn=image_name), download_s3=False) t = time.time() img_normalized_uint8 = rescale_intensity_v2(img_normalized, low, high) sys.stderr.write('Rescale to uint8: %.2f seconds.\n' % (time.time() - t)) t = time.time() raw_mask = load_data(DataManager.get_image_filepath_v2(stack=stack, prep_id=prep_id, fn=image_name, version='mask', resol=resol, ext='bp'), download_s3=False) img_normalized_uint8[~raw_mask] = 0 sys.stderr.write('Load mask: %.2f seconds.\n' % (time.time() - t)) img = 255 - img_normalized_uint8 save_data(gamma_map[img], DataManager.get_image_filepath_v2(stack=stack, prep_id=prep_id, fn=image_name, version=args.out_version, resol=resol), upload_s3=False)
mistycheney/MouseBrainAtlas
preprocess/normalize_intensity_adaptive.py
normalize_intensity_adaptive.py
py
8,733
python
en
code
3
github-code
6
29284611127
# -*- coding: utf-8 -*- import sys import re import pdb def main(args): #pdb.set_trace() lines = args[1].decode("gb18030").encode("utf8").split("|||") for line in lines: if re.search(r"^(\S+)",line): s = re.search(r"^(\S+)",line) ss = s.group(1) print(ss.decode("utf8").encode("gb18030")) break if __name__=="__main__": main(sys.argv)
Tubao/xkx
pkuxkx/xx/getRoomName.py
getRoomName.py
py
443
python
en
code
2
github-code
6
20503848569
# Необходимо парсить страницу со свежими статьями (вот эту) и выбирать те статьи, в которых встречается хотя бы одно из ключевых слов (эти слова определяем в начале скрипта). Поиск вести по всей доступной preview-информации (это информация, доступная непосредственно с текущей страницы). Вывести в консоль список подходящих статей в формате: <дата> - <заголовок> - <ссылка>. # определяем список ключевых слов KEYWORDS = ['дизайн', 'фото', 'web', 'python'] import requests from bs4 import BeautifulSoup # from pprint import pprint # import string import re headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7,sv;q=0.6', 'Cache-Control': 'max-age=0', 'Connection': 'keep-alive', 'Cookie': '_ym_uid=1661790138398573269; _ym_d=1661790138; habr_web_home_feed=/all/; hl=ru; fl=ru; _ym_isad=1; _ga=GA1.2.1864422457.1661790139; _gid=GA1.2.2059705457.1661790139; _gat_gtag_UA_726094_1=1', 'DNT': '1', 'Host': 'habr.com', 'Referer': 'https://yandex.ru/', 'sec-ch-ua': '"Chromium";v="104", " Not A;Brand";v="99", "Google Chrome";v="104"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'Sec-Fetch-Dest': 'document', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-Site': 'same-origin', 'Sec-Fetch-User': '?1', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36' } url = 'https://habr.com' responce = requests.get(url+'/ru/all', headers=headers) text = responce.text soup = BeautifulSoup(text, 'html.parser') articles = soup.find_all(class_='tm-articles-list__item') for article in articles: preview = article.find(class_=['article-formatted-body article-formatted-body article-formatted-body_version-2', 'article-formatted-body article-formatted-body article-formatted-body_version-1']).text # Вариант со сравнением множеств # for p in string.punctuation: # if p in preview: # preview = preview.replace(p, '') # preview = set(preview.split()) # if preview & set(KEYWORDS): # data_1 = article.find(class_='tm-article-snippet__datetime-published') # data_2 = data_1.find('time') # data = data_2.attrs['title'] # print(f'Дата статьи: {data}') # title = article.find(class_='tm-article-snippet__title-link').text.strip() # print(f'Название статьи: {title}') # link = article.find(class_='tm-article-snippet__title tm-article-snippet__title_h2') # link = link.find('a') # href = link.attrs['href'] # print(f'Ссылка на статью: {url + href}') # print() # Вариант с регуляркой for i in KEYWORDS: if re.search(i, preview): data = article.find(class_='tm-article-snippet__datetime-published').find('time').attrs['title'] print(f'Дата: {data}') title = article.find(class_='tm-article-snippet__title-link').text.strip() print(f'Заголовок: {title}') link = article.find(class_='tm-article-snippet__title tm-article-snippet__title_h2').find('a').attrs['href'] print(f'Ссылка: {url + link}') print()
Dimasuz/HW_4.3
HW_4.3.py
HW_4.3.py
py
3,750
python
ru
code
0
github-code
6
36697027175
from jinja2 import Environment, PackageLoader import os from typing import Dict import re class SQLTemplate: _templatePath = os.path.join( os.path.dirname(os.path.dirname(os.path.relpath(__file__))), "templates" ) _templatePath = os.path.join("templates") # raise ValueError(f'templatePath = {_templatePath}') def getTemplate(self, sqlAction: str, parameters: Dict, **kwargs) -> str: templateName = f"{sqlAction.lower().strip()}.j2" templateEnv = Environment( loader=PackageLoader( package_name="tips", package_path="framework/templates" ), trim_blocks=True # loader=FileSystemLoader(self._templatePath), trim_blocks=True ) cmd = ( templateEnv.get_template(templateName) .render(parameters=parameters, kwargs=kwargs) .strip() .replace("\n", " ") ) return re.sub(" +", " ", cmd)
ProjectiveGroupUK/tips-snowpark
tips/framework/utils/sql_template.py
sql_template.py
py
1,001
python
en
code
2
github-code
6
9837393322
import networkx as nx # import pulp G = nx.DiGraph() G.add_nodes_from(['A', 'B', 'C', 'D', 'E', 'F']) G.add_edges_from([('A', 'B'), ('A', 'D'), ('B', 'C'), ('B', 'E'), ('C', 'F'), ('D', 'C'), ('E', 'C'), ('E', 'D'), ('E', 'F')]) capacities = [4,5,5,4,4,3,2,2,1] costs = [1,7,7,2,3,2,1,1,4] for i, edge in enumerate(G.edges()): G.edges[edge]['capacity'] = capacities[i] G.edges[edge]['cost'] = costs[i] demands = [-2,-5,-1,3,2,3] for i, node in enumerate(G.nodes()): G.nodes[node]['demand'] = demands[i] myflow = nx.min_cost_flow(G, weight='cost') mycost = nx.cost_of_flow(G, myflow, weight='cost') print(mycost, myflow)
havarpan/verkkomallit-k21-glitchtest
python/luentoesim.py
luentoesim.py
py
639
python
en
code
0
github-code
6
21347456845
class IP(): def __init__(self,ipaddress): url='http://m.ip138.com/ip.asp?ip=' self.IP=ipaddress self.site=url+self.IP self.header={'User-Agent' :'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063'} def get_phy(self): import requests as RQ import re try: r=RQ.get(self.site) r.raise_for_status() r.encoding=r.apparent_encoding html=r.text[-1000:] #print(html) answer=re.findall('本站主数据:(.*?)</p><p',html,re.S) answer=answer[0] return '您查询的IP:%s物理地址应该在:%s '%(self.IP,answer) except: return 'sth wrong' #素质裤衩分析 '''<h1 class="query">您查询的IP:1.1.1.1</h1><p class="result"> 本站主数据:澳大利亚 </p><p class="result"> 参考数据一:澳大利亚</p> ''' ''' while True: point='.' for I in range(7,100,7): for j in range(1,100,7): for k in range(1,100,70): for L in range(1,100,20): add=str(I)+point+str(j)+point+str(k)+point+str(L) print(add) #ip=input() i=IP(add) ans=i.get_phy() print(ans) ''' #第一个利用接口写的东西 '''num=input() num_list=list(num) num_list.remove(' ') num_list.remove(' ') new_num_list=[] print(num_list) for i in range(6): if num_list[i]=='-': new_num_list.append(int(num_list[i]+num_list[i+1])) ''' ''' sentinel ='' # 遇到这个就结束 lines = [] for line in iter(input, sentinel): lines.append(line) init=list(str(input())) try: init.remove(' ') except: pass print(int(init[0])+int(init[1])) string=input() str_list=list(string) str_list=str_list.reverse() new_str=str(str_list) print(new_str) '''
Alex-Beng/CubingQQBot
IP.py
IP.py
py
1,869
python
en
code
0
github-code
6
5312412579
import pygame from flame import Flame class Firework: def __init__(self): self.rect = pygame.Rect(640, 720, 25, 50) self.image = pygame.Surface( (25, 50) ) self.image.fill( (255, 255, 255) ) self.exploded = False self.flames = [] def update(self): if not self.exploded: self.rect.y -= 2 if self.rect.y <= 200: self.explode() else: for flame in self.flames: flame.update() def draw(self, screen): if not self.exploded: screen.blit(self.image, self.rect) else: for flame in self.flames: flame.draw(screen) def explode(self): self.exploded = True for i in range(1000): self.flames.append(Flame())
jbedu1024/fajerwerki
firework.py
firework.py
py
822
python
en
code
0
github-code
6
21725310389
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def push(self, new_data): new_node = Node(new_data) new_node.next = self.head self.head = new_node def printLL(self): temp = self.head while (temp): print(temp.data) temp = temp.next def deleteNode(self, key): temp = self.head if (temp.data is not None): if temp.data == key: self.head = temp.next temp = None return while temp is not None: if temp.data == key: break prev = temp temp = temp.next # if key is not present in the linkedlist then return if temp is None: return # unlink the previous node prev.next = temp.next temp = None def deleteSpecificPosition(self, position): if self.head is None: return temp = self.head for i in range(position - 1): temp = temp.next if temp is None: return # if position is more then the number of node if temp is None: return if temp.next is None: return next = temp.next.next # Unlink the node from the linkedlist temp.next = None temp.next = next def deleteAll(self): current = self.head while current: nextRef = current.next del current.data current = nextRef if __name__ == "__main__": llist = LinkedList() llist.push(7) llist.push(1) llist.push(3) llist.push(2) llist.push(5) llist.push(9) llist.printLL() llist.deleteNode(3) print("Linked list after deleting 3") llist.printLL() llist.deleteSpecificPosition(2) print("Linkedlist after deleting node at 2nd position") llist.printLL() print("Delete everything") llist.deleteAll()
ItsSamarth/ds-python
DataStructures/linkedlist/basic.py
basic.py
py
2,099
python
en
code
0
github-code
6
32757721309
############### Start stopBackupMaintSched() ############### def stopBackupMaintSched(): message =""" ################################################################## # Start stopBackupMaintSched # ################################################################## """ printLog(message) # check if maintenence activities are running printBoth("check if maintenence activities are running") output = cmdOut("sudo -u admin status.dpn | egrep -A 2 checkpoint") lines = output.split('\n') if lines[0][-3:-1] == 'OK': printBoth("checkpoint 'OK'") if lines[1][-3:-1] == 'OK': printBoth("GC 'OK'") if lines[0][-3:-1] == 'OK': printBoth("hfscheck 'OK'") if (lines[0][-3:-1] == 'OK') and (lines[1][-3:-1] == 'OK') and (lines[2][-3:-1] == 'OK'): printBoth("Stopping Maintenence Scheduler") cmdOut("sudo -u admin dpnctl stop maint") output = cmdOut("sudo -u admin dpnctl status maint 2>&1") while output.split('\n')[-2].split()[-1]!= 'suspended.': question = """couldn't stop the Maintenece scheduler please try manually and when done Press yes to continue or press no to quit""" if not query_yes_no(question): sys.exit() output = cmdOut("sudo -u admin dpnctl status 2>&1") printBoth("Stopping Backup Scheduler") cmdOut("sudo -u admin dpnctl stop sched") output = cmdOut("sudo -u admin dpnctl status sched 2>&1") while output.split('\n')[-2].split()[-1]!= 'down.': question = """couldn't stop the Backup scheduler please try manually and when done Press yes to continue or press no to quit""" if not query_yes_no(question): sys.exit() output = cmdOut("sudo -u admin dpnctl status sched 2>&1") printBoth("Backup and Maintenence schedulers are down") message =""" ################################################################## # End latestProactiveCheck # ################################################################## """ printLog(message) ############### End stopBackupMaintSched() ###############
abodup/Avamar-Upgrade-Tasks
upgrade_tasks/stopBackupMaintSched.py
stopBackupMaintSched.py
py
2,022
python
en
code
1
github-code
6
29510374823
import re import pandas as pd import fool from copy import copy from starter_code1.NER.ner01 import * test_data = pd.read_csv('../data/info_extract/test_data.csv', encoding='gb2312', header=0) # print(test_data.head()) test_data['ner'] = None ner_id = 1001 ner_dict_new = {} # 存储所有实体 ner_dict_reverse_new = {} # 储存所有实体 for i in range(len(test_data)): sentence = copy(test_data.iloc[i, 1]) # TODO: 调用fool积极性实体识别,得到words和ners结果 words, ners = fool.analysis(sentence) # print(words) # print(ners) ners[0].sort(key=lambda x: x[0], reverse=True) for start, end, ner_type, ner_name in ners[0]: if ner_type == 'company' or ner_type == 'person': # ner_dict_new lst = main_extract(ner_name, stop_word, d_4_delete, d_city_province) company_main_name = ''.join(lst) # 对公司名提取主体部分,将包含相同主体部分的公司统一为一个实体 if company_main_name not in ner_dict_new: ner_dict_new[company_main_name] = ner_id ner_dict_reverse_new[ner_id] = company_main_name ner_id += 1 sentence = sentence[:start] + ' ner_' + str(ner_dict_new[company_main_name]) + '_ ' + sentence[end:] test_data.iloc[i, -1] = sentence X_test = test_data[['ner']] # 处理train数据,利用开源工具进行实体识别和并使用实体统一函数储存实体 train_data = pd.read_csv('../data/info_extract/train_data.csv', encoding='gb2312', header=0) train_data['ner'] = None for i in range(len(train_data)): # 判断正负样本 if train_data.iloc[i, :]['member1'] == '0' and train_data.iloc[i, :]['member2'] == '0': sentence = copy(train_data.iloc[i, 1]) # TODO:调用fool进行实体识别,得到wods和ners结果 words, ners = fool.analysis(sentence) ners[0].sort(key=lambda x: x[0], reverse=True) for start, end, ner_type, ner_name in ners[0]: # TODO:调用实体统一函数,储存统一后的实体 # 并自增ner_id if ner_type == 'company' or ner_type == 'person': company_main_name = ''.join( main_extract(ner_name, stop_word, d_4_delete, d_city_province)) # 提取公司主体名称 if company_main_name not in ner_dict_new: ner_dict_new[company_main_name] = ner_id ner_dict_reverse_new[ner_id] = company_main_name ner_id += 1 # 在句子中用编号替换实体名 sentence = sentence[:start] + ' ner_' + str(ner_dict_new[company_main_name]) + '_ ' + sentence[end:] train_data.iloc[i, -1] = sentence else: # 将训练集中正样本已经标注的实体也使用编码替换 sentence = copy(train_data.iloc[i, :])['sentence'] for company_main_name in [train_data.iloc[i, :]['member1'], train_data.iloc[i, :]['member2']]: # TODO:调用实体统一函数,储存统一后的实体 # 并自增ner_id company_main_name = ''.join( main_extract(company_main_name, stop_word, d_4_delete, d_city_province)) # 提取公司主体名称 if company_main_name not in ner_dict_new: ner_dict_new[company_main_name] = ner_id ner_dict_reverse_new[ner_id] = company_main_name ner_id += 1 # 在句子中用编号替换实体名 sentence = re.sub(company_main_name, ' ner_%s_ ' % (str(ner_dict_new[company_main_name])), sentence) train_data.iloc[i, -1] = sentence y = train_data.loc[:, ['tag']] train_num = len(train_data) X_train = train_data[['ner']] # 将train和test放在一起提取特征 # X = pd.concat([X_train, X_test]) # X.to_csv('./x.csv', index=False) # print(X) from sklearn.ensemble import RandomForestClassifier from sklearn import preprocessing from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import LogisticRegression import numpy as np # TODO: 定义需要遍历的参数 paramaeters = {'C': np.logspace(-3, 3, 7)} # TODO:选择模型 lr = LogisticRegression() # TODO:利用GridSearchCV clf = GridSearchCV(lr, paramaeters, cv=5) clf.fit(X_train, y) # TODO:对Test_data进行分类 predict =clf.predict(X_test) predict_prob = clf.predict_proba(X_test) print(predict) print(predict_prob)
jiangq195/tanxin
starter_code1/NER/ner02.py
ner02.py
py
4,477
python
en
code
0
github-code
6
25549551579
import logging from core.connect_db import connect_db from logger.logger import configLogger from settings.settings import load_settings logger = logging.getLogger() class BaseFetcher(object): def __init__(self): super(BaseFetcher, self).__init__() configLogger() self._connect_to_db() def run(self): running = True while running: try: self._run() except Exception as e: logger.error('Got error while running : %r' % e) running = False raise def _run(self): pass def _connect_to_db(self): settings = load_settings() mongo_config = settings['dbs']['mongo'] con = connect_db(**mongo_config)
cipriantruica/news_diffusion
news-spreading-master/fetchers/base_fetcher.py
base_fetcher.py
py
774
python
en
code
0
github-code
6
72478034429
"""HartPro URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.core.paginator import Paginator from django.shortcuts import render from art.models import Tag,Art import json from user import helper import xadmin as admin def toIndex(request): tags1 = Tag.objects.all() # locals将当前函数的局部变量转成字典的key-value结构 #{'request':request,'tags':tags} tags = [] for tag in tags1: #判断该类型中是否有文章,如果有就添加进tags if Art.objects.filter(tag=tag): tags.append(tag) #annotate为每个tag对象增加一个字段(Count('art) 统计每种类型下文章数据) # #读取分类id tag_id = request.GET.get('tag') if tag_id: tag_id = int(tag_id) arts = Art.objects.filter(tag_id=tag_id) #exclude排除条件为真的数据 else: arts = Art.objects.all() # #加载所有文章 # arts = Art.objects.all() #将文章进行分页处理 paginator = Paginator(arts,8) #分页器 page = request.GET.get('page') page = int(page) if page else 1 # 读取请求参数中page参数,如果没有,默认为1 pager = paginator.page(page) # 获取当前页的数据 #获取登录用户的信息 login_user= helper.getLoginInfo(request) return render(request,'index.html',locals()) urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^ueditor/', include('DjangoUeditor.urls')), url(r'^user/',include('user.urls')), url(r'^art/',include('art.urls')), url(r'^$', toIndex), ]
cjxxu/A_Fiction_web
HartPro/urls.py
urls.py
py
2,203
python
en
code
1
github-code
6
22034953643
import pandas as pd import s3fs def main(event = None, context = None): print("Start running LinkedInScraper") values = [['Atreish Ramlakhan', 'New York, New York, United States', 'Katz School at Yeshiva University', 'Graduate Teaching Assistant', 'https://www.linkedin.com/company/16181365/'], ['Yuxiao (Henry) Shen', 'New York, New York, United States', 'The AAT Project (America’s Amazing Teens, LLC)', 'Full Stack PHP Web Developer', 'https://www.linkedin.com/search/results/all/?keywords=The+AAT+Project+%28America%E2%80%99s+Amazing+Teens%2C+LLC%29'], ['Shichao Zhou', 'New York, New York, United States', 'S&P Global Market Intelligence · Internship', 'Data Analyst', 'https://www.linkedin.com/company/162892/'], ['Mahlet Melese', 'New York, New York, United States', None, None, None]] df = pd.DataFrame(values,columns = [["Full Name", "Location", "Most Recent Company", 'Job Title', 'Company Url']]) ###LOAD THE FILE INTO S3#### # prepare csv file name pathname = 'ia-final2022-csv/'#specify location of s3:/{my-bucket}/ filenames = f"{pathname}linkedIn_info.csv" #name of the filepath and csv file #encoding must be adjusted to accommodate abnormal characters. Use s3fs to write to S3 bucket print("Start adding LinkedIn data to csv") byte_encoded_df = df.to_csv(None, index=False).encode() #encodes file as binary s3 = s3fs.S3FileSystem(anon=False) with s3.open(filenames, 'wb') as file: file.write(byte_encoded_df) #writes byte-encoded file to s3 location #print success message print("Successfull uploaded file to location:"+str(filenames)) print("Complete running LinkedInScraper")
sczhou0705/IA-FinalProject-YUconnect
LambdaDeployment/Code/LinkedInScraper.py
LinkedInScraper.py
py
1,878
python
en
code
0
github-code
6
39612347075
## ## EPITECH PROJECT, 2019 ## 108trigo_2019 ## File description: ## utils.py ## def printhelp(): print("USAGE\n" "\t./108trigo fun a0 a1 a2....\n" "\n" "DESCRIPTION\n" "\tfun\tfunction to be applied," ' among at least "EXP", "COS", "SIN", "COSH" and "SINH"\n' '\tai\tcoeficients of the matrix') exit(0) def print_matrix(matrix): for i in range(len(matrix)): for j in range(len(matrix[i])): print("%.2f%c" % (matrix[i][j], '\t' if (j != len(matrix[i]) - 1) else '\n'), end="")
clementfleur/Epitech_Project
tek1/Mathématique/108trigo_2019/utils.py
utils.py
py
571
python
en
code
2
github-code
6
42307014223
import os import sys import time from acbbs.drivers.ate.ClimCham import ClimCham from acbbs.drivers.ate.DCPwr import DCPwr from acbbs.drivers.ate.PwrMeter import PwrMeter from acbbs.drivers.ate.RFSigGen import RFSigGen from acbbs.drivers.ate.RFSigGenV import RFSigGenV from acbbs.drivers.ate.SpecAn import SpecAn from acbbs.drivers.ate.Swtch import Swtch from acbbs.tools.log import get_logger from pymongo import MongoClient from pymongo.errors import ServerSelectionTimeoutError, DuplicateKeyError import configuration from .drivers.PwrMeterCal import PowerMeterCal from .drivers.RFSigGenCal import RFSigGenCal logger = get_logger('calib') CHANNELS = configuration.CHANNELS INPUTS = configuration.INPUTS OUTPUTS = configuration.OUTPUTS CONF_PATH = configuration.CONF_PATH LIST_PATH = configuration.LIST_PATH class NetworkEquipment(object): def __init__(self, simu): logger.info('class Ping init') self.PwrMeter = PwrMeter(simulate=simu) self.SpecAn = SpecAn(simulate=simu) self.RFSigGen = RFSigGen(simulate=simu) self.RFSigGenV = RFSigGenV(simulate=simu) self.Swtch = Swtch(simulate=simu) self.ClimCham = ClimCham(simulate=simu) self.DCPwr = DCPwr(simulate=simu) self.PwrMeterCal = PowerMeterCal(simulate=simu) self.RFSigGenCal = RFSigGenCal(simulate=simu) self.get_ip() def get_ip(self): ip_specAn = self.SpecAn.SpecAnConf['ip'] ip_sigGen = self.RFSigGen.sigGenConf['ip'] ip_pwMeter = self.PwrMeter.PwrMeterConf['ip'] ip_sigGenV = self.RFSigGenV.sigGenConf['ip'] ip_ClimCham = self.ClimCham.dcConf['ip'] ip_dc1 = self.DCPwr.dcConf['powerDevice1-ip'] ip_dc2 = self.DCPwr.dcConf['powerDevice2-ip'] self.listIP = {'rx': {'RFSigGen': ip_sigGen, 'RFSigGenV': ip_sigGenV}, 'tx': {'PwrMeter': ip_pwMeter, 'SpecAn': ip_specAn}, 'DC': {'DC1': ip_dc1, 'DC2': ip_dc2}, 'Chamber': {'climCham': ip_ClimCham}, } def ping_one(self, IP): response = os.system("ping -c 1 " + IP) if response == 0: logger.info("Network Equipement Active at adresse:{0}".format(IP)) return 0 else: logger.error('Network Equipement Error : {0}'.format(IP)) return 1 def check_one_instrument(self, instrum): global result for mode, instrums in self.listIP.items(): if instrum in instrums.keys(): result = self.ping_one(self.listIP[mode][instrum]) break return result def ping_all(self): list_pingReturn = self.listIP for mode, instrums in self.listIP.items(): for instrum, ip in instrums.items(): list_pingReturn[mode][instrum] = self.ping_one(ip) return list_pingReturn def check_all_instruments(self): listPing = self.ping_all() if all(i == 0 for i in listPing): return 0 else: return 1 # renvoyer un tableau qui indique quel instrument est disconnected class database(object): def __init__(self): self.__openDataBase() def __openDataBase(self): # get server, port and database from json configuration file server = configuration.DATABASE_IP port = configuration.DATABASE_PORT database = configuration.DATABASE_NAME_CALIB maxSevSelDelay = configuration.DATABASE_MAXDELAY try: # open MongoDB server self.client = MongoClient(server, int(port), serverSelectionTimeoutMS=maxSevSelDelay) # check if connection is well self.client.server_info() except ServerSelectionTimeoutError as err: print("{0}".format(err)) exit(0) # open MongoDB database self.db = self.client[database] def get_available_collection(self): return self.db.list_collection_names() def get_collection(self, collection): if collection not in self.get_available_collection(): print("Error: conf {0} does not exist. You can list available collection with --list".format(collection)) return self.db[collection].find({}) def writeDataBase(self, document, collection): if collection in self.get_available_collection(): print("Error: conf {0} exist. You can delete it with --delete {0}".format(collection)) self.db_collection = self.db[collection] try: self.db_collection.insert_one(document).inserted_id except DuplicateKeyError as err: print("{0}".format(err)) def delete_collection(self, collection): if collection not in self.get_available_collection(): print("Error: conf {0} does not exist. You can list available collection with --list".format(collection)) self.db.drop_collection(collection) class MatrixCal(object): def __init__(self): self.calibFile = {"date": "", "loss": {}} self.db = database() def get_cal(self, date): for doc in self.db.get_collection(date): calibFile = doc return calibFile def getlossPath(self, port_in, port_out, date): cal = self.get_cal(date) data = cal[port_in][port_out] return data def write_cal(self, data): self.calibFile["loss"] = data self.calibFile["date"] = time.strftime("%Y-%m-%d %H:%M:%S") self.db.writeDataBase(self.calibFile["loss"], self.calibFile["date"]) def readPath_loss(self, port_in, port_out): return self.data["loss"][port_in][port_out] def del_cal(self, cal_name): self.db.delete_collection(cal_name) def history(self): return self.db.get_available_collection() class Calibration(object): def __init__(self, simu): self.equipement = NetworkEquipment(simu=simu) self.channels = CHANNELS self.simu = simu self.iteration = 0 self.totalProgress = 0 self.paths = LIST_PATH self.message = "" self.response = 0 self.matrixCal = MatrixCal() self.loss = {INPUTS[4]: {}, INPUTS[2]: {}, INPUTS[3]: {}, INPUTS[0]: {}, INPUTS[1]: {}, INPUTS[5]: {}} self.delta = {} self.pathlist = list() for i in self.paths.keys(): self.pathlist.append(i) def calibrate(self, tab_freq, pwr): self.tab_freq = tab_freq self.OUTPUT_POWER_CALIBRATION = int(pwr) self.totalProgress = (len(INPUTS) - 2 + len(OUTPUTS)) * len(tab_freq) print('calibration start') self.SMBCal() self.SMBVCal() self.PwrMeterCal() self.FSWCal() self.NoiseCal() self.makeDelta() self.makeMatrixCal() self.matrixCal.write_cal(self.loss) def SMBCal(self): loss = configuration.PORT_SMB pathJ4Jx = self.pathlist[1] # calibration of J4_20dB - J9 print("calibration of SMB, plug the power meter cal to J9") while self.response == 0: self.message = " calibration of SMB, plug the power meter cal to J9 " time.sleep(0.8) print('wait') self.message = "" self.response = 0 self.equipement.Swtch.setSwitch(sw1=1, sw3=self.paths[pathJ4Jx]["sw3"], sw4=self.paths[pathJ4Jx]["sw4"]) for freq in self.tab_freq: self.equipement.RFSigGen.freq = freq self.equipement.RFSigGen.power = self.OUTPUT_POWER_CALIBRATION self.equipement.RFSigGen.status = 1 time.sleep(1) loss["J4_20dB"][str(freq)] = self.OUTPUT_POWER_CALIBRATION - self.equipement.PwrMeterCal.power(nbr_mes=1) self.equipement.RFSigGen.status = 0 self.iteration += 1 self.loss["J4_20dB"]["J9"] = loss["J4_20dB"] # calibration of J4 - Jx for channel in self.channels: print(" plug the power meter cal to J{0}".format(channel + 8)) while self.response == 0: self.message = " plug the power meter cal to {0}".format(channel + 8) time.sleep(0.8) print('wait') self.message = "" self.response = 0 port = pathJ4Jx.replace("Jx", "J" + str(channel + 8)) self.equipement.Swtch.setSwitch(sw1=channel, sw3=self.paths[pathJ4Jx]["sw3"],sw4=self.paths[pathJ4Jx]["sw4"]) for freq in self.tab_freq: self.equipement.RFSigGen.freq = freq self.equipement.RFSigGen.power = self.OUTPUT_POWER_CALIBRATION self.equipement.RFSigGen.status = 1 time.sleep(1) loss["J4"][str(freq)] = self.OUTPUT_POWER_CALIBRATION - self.equipement.PwrMeterCal.power(nbr_mes=1) self.equipement.RFSigGen.status = 0 self.iteration += 1 self.loss["J4"]["J" + str(channel + 8)] = loss["J4"] def SMBVCal(self): loss = configuration.PORT_SMBV pathJ3Jx = self.pathlist[3] print(" calibration of SMBV, plug the power meter of the cal to J9") while self.response == 0: self.message = "plug the power meter cal to J9 " time.sleep(0.8) print('wait') self.message = "" self.response = 0 # calibration of J3 - J9 self.equipement.Swtch.setSwitch(sw1=1, sw3=self.paths[pathJ3Jx]["sw3"], sw4=self.paths[pathJ3Jx]["sw4"]) for freq in self.tab_freq: self.equipement.RFSigGenV.freq = freq self.equipement.RFSigGenV.power = self.OUTPUT_POWER_CALIBRATION # self.equipement.PowerMeterCal = freq self.equipement.RFSigGenV.status = 1 time.sleep(1) loss["J3"][str(freq)] = self.OUTPUT_POWER_CALIBRATION - self.equipement.PwrMeterCal.power(nbr_mes=1) self.equipement.RFSigGenV.status = 0 self.iteration += 1 self.loss["J3"]["J9"] = loss["J3"] def PwrMeterCal(self): loss = configuration.PORT_PowerMeter pathJ2Jx = self.pathlist[5] print(" calibration of Power Meter, plug the RF generator cal to J9") while self.response == 0: self.message = "plug the RF generator cal to J9" time.sleep(0.8) print('wait') self.message = "" self.response = 0 # calibration of J2 - J9 self.equipement.Swtch.setSwitch(sw1=1, sw3=self.paths[pathJ2Jx]["sw3"], sw4=self.paths[pathJ2Jx]["sw4"]) for freq in self.tab_freq: self.equipement.PwrMeter.freq = freq time.sleep(1) loss["J2"][str(freq)] = self.OUTPUT_POWER_CALIBRATION - self.equipement.PwrMeter.power self.iteration += 1 self.loss["J2"]["J9"] = loss["J2"] def FSWCal(self): loss = configuration.PORT_FSW pathJ2Jx = self.pathlist[4] print(" calibration of FSW, plug the RF generator cal to J9") while self.response == 0: self.message = "plug the RF generator cal to J9" time.sleep(0.8) print('wait') self.message = "" self.response = 0 # calibration of J5 - J9 self.equipement.Swtch.setSwitch(sw1=1, sw3=self.paths[pathJ2Jx]["sw3"], sw4=self.paths[pathJ2Jx]["sw4"]) for freq in self.tab_freq: self.equipement.SpecAn.freqSpan = 10000000 pic = self.equipement.SpecAn.markerPeakSearch() time.sleep(1) loss["J5"][str(freq)] = self.OUTPUT_POWER_CALIBRATION - pic[1] self.iteration += 1 self.loss["J5"]["J9"] = loss["J5"] ######### NON CODE ################ def NoiseCal(self): loss = configuration.PORT_NOISE pathJ18Jx = self.pathlist[0] print(" calibration of Noise, plug the RF generator cal to J18 and the power meter to J9") while self.response == 0: self.message = "plug the RF generator cal to J18 and the power meter to J9" time.sleep(0.8) print('wait') self.message = "" self.response = 0 # calibration of J5 - J9 self.equipement.Swtch.setSwitch(sw1=1, sw3=self.paths[pathJ18Jx]["sw3"], sw4=self.paths[pathJ18Jx]["sw4"]) for freq in self.tab_freq: loss["J18"][str(freq)] = self.OUTPUT_POWER_CALIBRATION self.iteration += 1 self.loss["J18"]["J9"] = loss["J18"] def makeDelta(self): for channel in self.channels: Jout = "J" + str(channel + 8) delta_freq = {} self.delta[Jout] = {} for freq in self.tab_freq: delta_freq[str(freq)] = self.loss["J4"][Jout][str(freq)] - self.loss["J4"]["J9"][str(freq)] self.delta[Jout] = delta_freq def makeMatrixCal(self): for Jin in self.loss.keys(): for channel in self.channels[1:]: Jout = "J" + str(channel + 8) self.loss[Jin][Jout] = {} estimate_loss = {} for freq in self.tab_freq: estimate_loss[str(freq)] = self.loss[Jin]["J9"][str(freq)] + self.delta[Jout][str(freq)] self.loss[Jin][Jout] = estimate_loss
Wonters/IHMweb
calib/tasks.py
tasks.py
py
13,334
python
en
code
0
github-code
6
23541886221
# -*- coding: utf-8 -*- """ Created on Tue Mar 22 15:37:26 2022 @author: jeros Hu moments analysis """ import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import PercentFormatter def plotter(huN = 1, bananas = None,oranges = None,lemons = None): # if bananas is not None: # plt.hist(bananas[0,:],bins, alpha=0.5, label='b',weights = weights_b ) # if oranges is not None: # plt.hist(oranges[0,:],bins, alpha=0.5, label='o',weights = weights_o) '''Hu moment number histogram''' if huN == 0: bins = np.linspace(2.85,3.22,100) if huN == 1: bins = np.linspace(5.5,12.5,100) if huN == 2: bins = np.linspace(10,16,100) if huN == 3: bins = np.linspace(9.8,19,100) if huN == 4: bins = np.linspace(-35,35,100) if huN == 5: bins = np.linspace(-25,25,100) if huN == 6: bins = np.linspace(-35,35,100) #plt.hist([bananas[huN,:], oranges[huN,:],lemons[huN,:]],label=['B', 'O','L']) plt.hist([bananas[huN,:], oranges[huN,:],lemons[huN,:]], bins,label=['B', 'O','L'],density = True) plt.title('Hu'+str(huN)) '''Hu moment number 2 histogram''' bins = np.linspace(10,16,100) plt.legend(loc='upper right') plt.autoscale(enable=True, axis='x', tight=True) #plt.gca().yaxis.set_major_formatter(PercentFormatter(1)) plt.show()
jeroserpa/FruitClassifier
histogram_analisys.py
histogram_analisys.py
py
1,459
python
en
code
0
github-code
6
7681527858
#/usr/bin/python3 from pwn import * context.arch = 'i386' if args.REMOTE: con = remote ('chals.damctf.xyz', 31312) else: con = process('./cookie-monster') # Exploit format string vulnerability to leak stack canary. def leak_canary(): con.recvuntil(b'Enter your name:') con.sendline(b'%15$p') con.recvuntil(b'Hello ') canary = con.recvline().strip() con.recvuntil(b'What would you like to purchase?') return int(canary, 16) def main(): # ASLR is enabled on the target system. Leak address of system # in stage 1 to calculate the base address of libc and perform # a classical ret2libc attack in stage 2. # Stage 1 main = 0x08048669 plt_puts = 0x08048430 got_system = 0x0804a020 canary = leak_canary() # Exploit buffer overflow vulnerability to call puts(&system) # and return to main to set up stage 2. payload = flat( b'A' * 32, canary, b'B' * 12, plt_puts, main, got_system ) con.sendline(payload) con.recvuntil(b'Have a nice day!\n') libc_system = u32(con.recvline().strip()[:4].ljust(4, b'\x00')) # Stage 2 libc_offset_system = 0x03ce10 libc_offset_str_binsh = 0x17b88f libc_base = libc_system - libc_offset_system libc_str_binsh = libc_base + libc_offset_str_binsh canary = leak_canary() # Exploit buffer overflow vulnerability again to call system("/bin/sh"). payload = flat( b'A' * 32, canary, b'B' * 12, libc_system, 0xdeadbabe, libc_str_binsh ) con.sendline(payload) con.interactive() if __name__ == '__main__': main()
dystobic/writeups
2021/DAMCTF/cookie-monster/exploit.py
exploit.py
py
1,728
python
en
code
1
github-code
6
5308409860
N = int(input()) map_list = [[0]*101 for _ in range(101)] dirs = {0:(1,0), 1:(0,-1), 2: (-1,0), 3: (0,1)} # d=시작방향 / g=세대 for _ in range(N): x, y, d, g = map(int, input().split()) curve_list = [d] for _ in range(g): curve_list += [(i+1)%4 for i in curve_list[::-1]] map_list[y][x] = 1 for curve in curve_list: x = x+dirs[curve][0] y = y+dirs[curve][1] map_list[y][x] = 1 cnt = 0 for i in range(100): for j in range(100): if map_list[i][j] and map_list[i][j+1] and map_list[i+1][j] and map_list[i+1][j+1]: cnt += 1 print(cnt)
louisuss/Algorithms-Code-Upload
Python/Baekjoon/Simulation/15685.py
15685.py
py
620
python
en
code
0
github-code
6
29010500134
import functools import os import sys from typing import Any, Callable, Iterable, Optional, TextIO, Tuple import click from click import Command from click_option_group import MutuallyExclusiveOptionGroup from . import __version__ from .core import ( CheckHashLineError, HashFileReader, HashFileWriter, ParseHashLineError, check_hash_line, generate_hash_line, ) from .hasher import HashContext, Hasher from .utils.click import CommandX, PathWithSuffix from .utils.glob import glob_filters, sorted_path class ParseHashFileError(ValueError): def __init__(self, hash_line: str, lineno: int) -> None: super().__init__(hash_line, lineno) self.hash_line = hash_line self.lineno = lineno class Output: """Determine the output mode and provide the output interface.""" def __init__( self, agg: Optional[str] = None, sep: Optional[bool] = None, null: Optional[bool] = None, sync: bool = False ) -> None: if (agg and sep) or (agg and null) or (sep and null): raise ValueError("require exactly one argument") # Use the null mode by default. if not (agg or sep or null): null = True # Determine the output mode and dump method. if agg: self.agg_file = HashFileWriter(agg) self._dump = self.output_agg elif sep: self._dump = self.output_sep elif null: self._dump = self.output_null self.sync = sync self.maxmtime = 0.0 def close(self) -> None: try: agg_file = self.agg_file except AttributeError: pass else: agg_file.close() if self.sync: os.utime(agg_file.name, (self.maxmtime, self.maxmtime)) def dump(self, hash_line: str, hash_path: str, path: str) -> None: self._dump(hash_line, hash_path, path) def output_agg(self, hash_line: str, hash_path: str, path: str) -> None: self.agg_file.write_hash_line(hash_line) if self.sync: mtime = os.path.getmtime(path) self.maxmtime = max(self.maxmtime, mtime) def output_sep(self, hash_line: str, hash_path: str, path: str) -> None: with HashFileWriter(hash_path) as f: f.write_hash_line(hash_line) if self.sync: mtime = os.path.getmtime(path) os.utime(hash_path, (mtime, mtime)) def output_null(self, hash_line: str, hash_path: str, path: str) -> None: pass class Gethash: """Provide uniform interface for CLI scripts.""" stdout: TextIO stderr: TextIO glob_mode: int glob_type: str inplace: bool root: Optional[str] start: Optional[int] stop: Optional[int] dir_ok: bool def __init__(self, ctx: HashContext, **kwargs: Any) -> None: self.ctx = ctx self.sync = kwargs.pop("sync", False) self.suffix = kwargs.pop("suffix", ".sha") self.stdout = kwargs.pop("stdout", sys.stdout) self.stderr = kwargs.pop("stderr", sys.stderr) self.glob_mode = kwargs.pop("glob", 1) self.glob_type = kwargs.pop("type", "a") # Determine the path format. self.inplace = kwargs.pop("inplace", False) self.root = kwargs.pop("root", None) # Determine the output mode. agg = kwargs.pop("agg", None) sep = kwargs.pop("sep", None) null = kwargs.pop("null", None) self.output = Output(agg, sep, null, sync=self.sync) # Prepare arguments and construct the hash function. self.start = kwargs.pop("start", None) self.stop = kwargs.pop("stop", None) self.dir_ok = kwargs.pop("dir", False) tqdm_args = { "file": self.stderr, "ascii": kwargs.pop("tqdm_ascii", False), "disable": kwargs.pop("tqdm_disable", False), "leave": kwargs.pop("tqdm_leave", False), } self.hasher = Hasher(ctx, tqdm_args=tqdm_args) def __call__(self, files: Iterable[str], *, check: bool) -> None: if check: self.check_hash(files) else: self.generate_hash(files) def __enter__(self) -> "Gethash": return self def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: self.close() def close(self) -> None: self.output.close() def generate_hash(self, patterns: Iterable[str]) -> None: for path in self.glob_function(patterns): try: root = self.check_root(path) hash_line = generate_hash_line(path, self.hash_function, root=root) hash_path = path + self.suffix self.output.dump(hash_line, hash_path, path) except Exception as e: self.echo_exception(path, e) else: # The hash line already has a newline. self.echo(hash_line, nl=False) def check_hash(self, patterns: Iterable[str]) -> None: for hash_path in self.glob_function(patterns): try: self._check_hash(hash_path) except ParseHashFileError as e: # Strip newline for pretty printing. hash_line = e.hash_line.rstrip("\n") msg = f"[ERROR] invalid hash '{hash_line}' in '{hash_path}' at line {e.lineno}" self.echo_error(msg, fg="white", bg="red") except Exception as e: self.echo_exception(hash_path, e) def _check_hash(self, hash_path: str) -> None: maxmtime = 0.0 for i, hash_line in enumerate(HashFileReader(hash_path)): try: root = self.check_root(hash_path) path = check_hash_line(hash_line, self.hash_function, root=root) maxmtime = max(maxmtime, os.path.getmtime(path)) except ParseHashLineError as e: raise ParseHashFileError(e.hash_line, i) except CheckHashLineError as e: self.echo(f"[FAILURE] {e.path}", fg="red") else: self.echo(f"[SUCCESS] {path}", fg="green") if self.sync: os.utime(hash_path, (maxmtime, maxmtime)) def check_root(self, path: str) -> Optional[str]: if self.inplace: return os.path.dirname(path) return self.root def glob_function(self, paths: Iterable[str]) -> Iterable[str]: return sorted_path( glob_filters(paths, mode=self.glob_mode, type=self.glob_type, recursive=True, user=True, vars=True) ) def hash_function(self, path: str) -> bytes: return self.hasher(path, self.start, self.stop, dir_ok=self.dir_ok) def echo(self, msg: str, **kwargs: Any) -> None: click.secho(msg, file=self.stdout, **kwargs) def echo_error(self, msg: str, **kwargs: Any) -> None: click.secho(msg, file=self.stderr, **kwargs) def echo_exception(self, path: str, exc: Exception) -> None: msg = f"[ERROR] {path}\n\t{type(exc).__name__}: {exc}" click.secho(msg, file=self.stderr, fg="red") def script_main(ctx: HashContext, files: Tuple[str, ...], **options: Any) -> None: """Execute the body for the main function.""" no_stdout = options.pop("no_stdout", False) no_stderr = options.pop("no_stderr", False) stdout = open(os.devnull, "w") if no_stdout else sys.stdout # noqa stderr = open(os.devnull, "w") if no_stderr else sys.stderr # noqa check = options.pop("check", False) with Gethash(ctx, stdout=stdout, stderr=stderr, **options) as gethash: gethash(files, check=check) def gethashcli(command_name: str, display_name: str, **extras: Any) -> Callable[[Callable], Command]: """Apply click decorators to the main function.""" suffix = extras.pop("suffix", "." + command_name.replace("-", "_")) doc = extras.pop("doc", None) def decorator(func: Callable) -> Command: if doc is not None: func.__doc__ = doc context_settings = {"help_option_names": ["-h", "--help"], "max_content_width": 120} path_format = MutuallyExclusiveOptionGroup("Path Format") output_mode = MutuallyExclusiveOptionGroup("Output Mode") @click.command(command_name, cls=CommandX, context_settings=context_settings, no_args_is_help=True) @click.argument("files", nargs=-1) @click.option( "-c", "--check", is_flag=True, help=f"Read {display_name} from FILES and check them.", ) @click.option( "-y", "--sync", is_flag=True, help="Update mtime of hash files to the same as data files.", ) @click.option( "-g", "--glob", type=click.IntRange(0, 2), metavar="[0|1|2]", default=1, show_default=True, help="Set glob mode. If ``0``, disable glob pathname pattern; if ``1``, " "resolve ``*`` and ``?``; if ``2``, resolve ``*``, ``?`` and ``[]``.", ) @click.option( "-t", "--type", type=click.Choice(["a", "d", "f"]), default="a", show_default=True, help="Set file type. If ``a``, include all types; if ``d``, include " "directories; if ``f``, include files.", ) @path_format.option("-i", "--inplace", is_flag=True, help="Use basename in checksum files.") @path_format.option( "-z", "--root", type=click.Path(exists=True, file_okay=False), help="The path field in checksum files is relative to the root directory.", ) @output_mode.option( "-o", "--agg", type=PathWithSuffix(suffix=suffix, dir_okay=False), help="Set the aggregate output file.", ) @output_mode.option("-s", "--sep", is_flag=True, help="Separate output files.") @output_mode.option( "-n", "--null", is_flag=True, help="Do not output to files. This is the default output mode.", ) @click.option("--start", type=click.IntRange(min=0), help="The start offset of files.") @click.option("--stop", type=click.IntRange(min=0), help="The stop offset of files.") @click.option( "-d", "--dir", is_flag=True, help="Allow checksum for directories. Just xor each checksum of files in a given directory.", ) @click.option("--no-stdout", is_flag=True, help="Do not output to stdout.") @click.option("--no-stderr", is_flag=True, help="Do not output to stderr.") @click.option("--tqdm-ascii", type=click.BOOL, default=False, show_default=True) @click.option("--tqdm-disable", type=click.BOOL, default=False, show_default=True) @click.option("--tqdm-leave", type=click.BOOL, default=False, show_default=True) @click.version_option(__version__, "-V", "--version", prog_name=command_name) @functools.wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Any: kwargs.setdefault("suffix", suffix) return func(*args, **kwargs) return wrapper return decorator
xymy/gethash
src/gethash/script.py
script.py
py
11,381
python
en
code
2
github-code
6
44075659516
from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import time import pickle import os #put url here #example_url= "https://archive.thehated3.workers.dev/0:/Station%20X%20-%20The%20Complete%20Cyber%20Security%20Course!/" durl= "https://archive.thehated3.workers.dev/0:/Station%20X%20-%20The%20Complete%20Cyber%20Security%20Course!/" #put local path to download here, leave '.' to download in current directory #example_path="./Station_X_The_Complete_Cyber_Security_Course" dpath="." count=0 rcount=0 failed_links=[] failed_paths=[] def download(url,path): global count, failed_links, failed_paths fireFoxOptions = webdriver.FirefoxOptions() fireFoxOptions.add_argument("--headless") # brower = webdriver.Firefox(firefox_options=fireFoxOptions) driver = webdriver.Firefox(executable_path="./geckodriver.exe",options=fireFoxOptions) driver.get(url) time.sleep(3) previous_height=driver.execute_script('return document.body.scrollHeight') while True: driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') time.sleep(3) new_height=driver.execute_script('return document.body.scrollHeight') if new_height==previous_height: break previous_height=new_height try: element = WebDriverWait(driver,100).until(EC.presence_of_element_located((By.CLASS_NAME, "list-group-item"))) except: count+=1 print(f"FILE NOT DOWNLOADED:\npath: {path}\n count:{count}") print("TIMEOUT not LOADING ELEMENTS BY CLASS NAME list-grout-items EXCEPTION") return tuna=driver.find_elements_by_class_name("list-group-item") dlinks=[] for i in tuna: folder=i.get_attribute('href') if folder==None: target_urls=i.find_elements_by_css_selector('a') furl=target_urls[1].get_attribute('href') dlinks.append(furl) else: fname=i.text formated_folder_name=fname.replace(" ","-") new_path=path+"/"+formated_folder_name download(folder,new_path) for x in dlinks: # print(x) # cmd=f'wget -c -P '+'"'+f'{path}'+'" '+'"'+ f'{x}'+'"' print(f"****DOWNLOADING IN PATH****: {path}\nfiles_skipped_till_now={count} \n\n") failure=os.system(f"""wget -c -P "{path}" "{x}" """) if failure != 0: count+=1 failed_links.append(x) failed_paths.append(path) print(f"FILE NOT DOWNLOADED:\npath: {path}\nfile: {x}\n count:{count}") driver.close() def direct_download(dd_url,dd_path): rfc=os.system(f"""wget -c -P "{dd_path}" "{dd_url}" """) return rfc def retry(): global rcount new_links=[] new_paths=[] rcount=0 try: failed_file_open=open("failed_links_info.pickle","rb") except: print('failed_links_info NOT Available, ABORTING...') return get_failed=pickle.load(failed_file_open) fetch_links=get_failed[0] fetch_paths=get_failed[1] failed_file_open.close() link_size=len(fetch_links) for k in range(link_size): l=fetch_links[k] p=fetch_paths[k] status=direct_download(l,p) if status!=0: rcount+=1 new_links.append(l) new_paths.append(p) print(f"FILE NOT DOWNLOADED:\npath: {p}\nfile: {l}\n count:{rcount}") print(f"Number of files not downloaded: {rcount}") nf=len(new_paths) o_again=open("failed_links_info.pickle","wb") m_list=[new_links,new_paths] pickle.dump(m_list,o_again) o_again.close() for e in range(nf): ww=new_paths[e] tt=new_links[e] print(f"{ww}\n{tt}\n\n") if __name__=='__main__': ui=input("Choose:\n1.Retry failed downloads\n2.Download from new link provided\nChoose either '1' or ('2') :") if ui==1 or ui=='1': retry() else: download(durl,dpath) print(f"Number of files not downloaded: {count}") number_failed=len(failed_paths) fo=open("failed_links_info.pickle","wb") combined_list=[failed_links,failed_paths] pickle.dump(combined_list,fo) fo.close() for i in range(number_failed): a=failed_paths[i] b=failed_links[i] print(f"{a}\n{b}\n\n") user_input=input("Do you want to retry {count} failed downloads? (Y)/N : ") if user_input.lower()=='n': pass else: retry() # print(turl)
aniket328/workers-dev-download-folders
fx.py
fx.py
py
4,837
python
en
code
0
github-code
6
386960757
import os from flask import Response,Flask, request from flask_cors import CORS from insgraph import util, instagram def create_app(test_config=None): """Create and configure an instance of the Flask application.""" app = Flask(__name__, instance_relative_config=True) print("zhuangjb flask start.....:"+__name__) CORS(app) app.config.from_mapping( # a default secret that should be overridden by instance config SECRET_KEY='dev', # store the database in the instance folder DATABASE=os.path.join(app.instance_path, 'insgraph.sqlite'), ) if test_config is None: # load the instance config, if it exists, when not testing app.config.from_pyfile('config.py', silent=True) else: # load the test config if passed in app.config.update(test_config) # ensure the instance folder exists try: os.makedirs(app.instance_path) except OSError: pass @app.route('/hello') def hello(): return 'Hello, World!' @app.before_request def option_replay(): if request.method =='OPTIONS': resp = Response('') print('xxx') resp.headers['Access-Control-Allow-Origin'] = '*' resp.headers['Access-Control-Allow-Headers'] = '*' resp.headers['Access-Control-Request-Method'] = request.headers['Access-Control-Request-Method'] return resp # @app.after_request # def set_allow_origin(resp): # h = resp.headers # if request.method != 'OPTIONS' and 'Origin' in request.headers: # h['Access-Control-Allow-Origin'] = request.headers['Origin'] # register the database commands from insgraph import db db.init_app(app) # apply the blueprints to the app from insgraph import auth, user,case app.register_blueprint(auth.bp) app.register_blueprint(user.bp) app.register_blueprint(case.bp) app.register_blueprint(instagram.bp) # make url_for('index') == url_for('blog.index') # in another app, you might define a separate main index here with # app.route, while giving the blog blueprint a url_prefix, but for # the tutorial the blog will be the main index app.add_url_rule('/', endpoint='index') return app
jiebinzhuang/insgraph-flask
insgraph/__init__.py
__init__.py
py
2,301
python
en
code
0
github-code
6
30409488540
import os import pytest import logging import cocotb from cocotb.clock import Clock, Timer from cocotb.binary import BinaryValue from cocotb.runner import get_runner from cocotb.triggers import FallingEdge from cocotbext.uart import UartSource, UartSink src_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) tests_dir = os.path.dirname(os.path.abspath(__file__)) sim_build = os.path.join(os.path.dirname(os.path.abspath(__file__)), "sim_build", "soc") @cocotb.test() async def check_uart_recv(dut): """ Test that UART is working """ clock = Clock(dut.clk, 10, units="ns") # Create a 10us period clock on port clk cocotb.start_soon(clock.start()) # Start the clock log = logging.getLogger(f"check_uart_recv") dut.RESET.value = BinaryValue('1') await FallingEdge(dut.clk) dut.RESET.value = BinaryValue('0') await FallingEdge(dut.clk) rxd = UartSource(dut.RXD, baud=115200, bits=8) txd = UartSink(dut.TXD, baud=115200, bits=8) await rxd.write(b'ABCDE') for i in range(int(1e9/115200/10) * 10): await FallingEdge(dut.clk) val = await txd.read() assert val == b'E' """ LI(gp, 32'h0200_0000); ADD(x12,x0,x0); ADDI(x2,x0,65); Label(L0_); LW(x12, gp, 8); BNE(x12, x2, LabelRef(L0_)); SW(x12, gp, 8); EBREAK(); """ @pytest.mark.skip(reason="no way of currently testing this") def test_runner(): verilog_sources = [os.path.join(src_dir, "main", "soc.sv")] sim = os.getenv("SIM", "icarus") runner = get_runner(sim)() os.makedirs(os.path.abspath(sim_build), exist_ok=True) with open(os.path.abspath(os.path.join(sim_build, "cmd.f")), 'w') as cmd: cmd.write('+timescale+1ns/1ps') runner.build( verilog_sources=verilog_sources, toplevel="soc", defines=["DEFINE=4", "BENCH=1"], includes=[os.path.join(src_dir, "main")], extra_args=[ '-s', 'soc', '-f', os.path.abspath(os.path.join(sim_build, "cmd.f")) ], build_dir=sim_build ) runner.test( python_search=[tests_dir], toplevel="soc", py_module="test_soc", )
ryarnyah/zenika-fpga-pres
demo/fpga-risc-cpu/src/test/test_soc.py
test_soc.py
py
2,170
python
en
code
1
github-code
6
27044024051
from tkinter import * main = Tk() main.resizable(width=False, height=False) main.config(bg="#2d3436") main.title("Disappearing text App") stop_writing_id = 'after' # store id of the scheduled call to traduire main_text = Label(main, text="Start typing and text will disappear after a few seconds...", fg="#dfe6e9", font=("Helvetica", 18), pady=20, padx=20, bg="#2d3436") main_text.grid(row=0, column=0) entry = Text(main, wrap=WORD, relief=FLAT, padx=14, pady=15, fg="#dfe6e9", font=("Helvetica", 14)) entry.grid(row=1, column=0) entry.configure({"background": "#2d3436"}) entry.focus() def wipe_text(): entry.delete('1.0', END) def stop_writing(event): global stop_writing_id main.after_cancel(stop_writing_id) # cancel previous scheduling of traduire stop_writing_id = main.after(6000, wipe_text) # wait 1s and execute traduire entry.bind('<KeyRelease>', stop_writing) main.mainloop()
Tabinka/disappearingTextApp
main.py
main.py
py
915
python
en
code
0
github-code
6
19637375362
import serial import datetime as dt import sys class gps: def __init__(self, port = "/dev/serial0"): # Initializes serial connection for gps communication try: self.__ser = serial.Serial(port) except Exception as e: sys.exit("Can not connect with GPS using uart: " + str(e)) def get_record(self): # For 50 times tries to read GPRMC record from gps in form of strings got_record = False for _ in range(50): gps_record = self.__ser.readline().decode('UTF-8') if gps_record[0:6] == "$GPRMC": got_record = True break if got_record == True: data = gps_record.split(",") if data[2] == 'A': self._status = "Correct" # GMT time if is_number(data[1][0:2]) and is_number(data[1][2:4]) and is_number(data[1][4:6]): self._time = data[1][0:2] + ":" + data[1][2:4] + ":" + data[1][4:6] else: self._time = dt.datetime.now().strftime('[%H:%M:%S]') self._status = "Corrupted data" # Latitude if (is_number(data[3])): self._latitude = data[3] else: self._status = "Corrupted data" # Latitude direction N/S self._hemisphere_NS = data[4] # Longitude if (is_number(data[5])): self._longitude = data[5] else: self._status = "Corrupted data" # Longitude direction W/E self._hemisphere_WE = data[6] # Velocity in knots if (is_number(data[7])): self._velocity = data[7] else: self._status = "Corrupted data" # True course if (is_number(data[8])): self._course = data[8] elif data[8] == '': self._course = 0; else: self._status = "Corrupted data" # Date if is_number(data[9][4:6]) and is_number(data[9][2:4]) and is_number(data[9][0:2]): self._date = data[9][4:6] + "-" + data[9][2:4] + "-" + data[9][0:2] else: self._status = "Corrupted data" if self._status == "Correct": return 0 else: return 1 else: self._status = "Signal lost" self._time = dt.datetime.now().strftime('%H:%M:%S') self._date = dt.datetime.now().strftime('%Y-%m-%d') return 1 else: self._status = "Connection error" self._time = dt.datetime.now().strftime('%H:%M:%S') self._date = dt.datetime.now().strftime('%Y-%m-%d') return 1 def _decode(self, coord): #Converts DDDMM.MMMMM to DD deg MM.MMMMM min tmp = coord.split(".") deg = tmp[0][0:-2] mins = tmp[0][-2:] return deg + " deg " + mins + "." + tmp[1] + " min" def get_gps_time(self): # Returns date and time or 1 if fails to obtain them if (self.get_record()): return 1 else: return self._date + " " + self._time def get_decimal_degrees_record(self): # Read from GPS and get current location parameters dictionary in decimal_degrees if (self.get_record() == 0): hemi_NE_sign = "+" if self._hemisphere_NS == "N" else "-" hemi_WE_sign = "+" if self._hemisphere_WE == "E" else "-" pos = self._latitude.find('.') lat_deg = self._latitude[:pos-2] lat_mins = self._latitude[pos-2:pos] + self._latitude[pos+1:] lat_mins = str(round(float(lat_mins) / 60.0)) pos = self._longitude.find('.') lng_deg = self._longitude[:pos-2] lng_mins = self._longitude[pos-2:pos] + self._longitude[pos+1:] lng_mins = str(round(float(lng_mins) / 60.0)) return { 'timestamp' : self.get_gps_time(), 'status' : self._status, 'latitude' : float(hemi_NE_sign + lat_deg + "." + lat_mins), 'longitude' : float(hemi_WE_sign + lng_deg + "." + lng_mins), 'velocity' : float(self._velocity), 'course' : float(self._course) } else: return { 'timestamp' : self._date + " " + self._time, 'status' : self._status, 'latitude' : 0, 'longitude' : 0, 'velocity' : 0, 'course' : 0 } def get_location_message(self): # Read from GPS and get current location in a easily readible string self.get_record() time_stamp = dt.datetime.now().strftime('[%Y-%m-%d %H:%M:%S]') return "%s latitude: %s(%s), longitude: %s(%s), velocity: %s, True Course: %s" % ( time_stamp, self._decode(self._latitude), self._hemisphere_NS, self._decode(self._longitude), self._hemisphere_NS, self._velocity, self._course) def is_number(s): try: float(s) return True except ValueError: return False
maciejzj/pi-observer
scripts/gps.py
gps.py
py
5,664
python
en
code
1
github-code
6
42992886102
import gspread import numpy as np import pandas as pd from datetime import date from datetime import datetime import csv import pytz from oauth2client.service_account import ServiceAccountCredentials import requests #authorization service_account = gspread.service_account(filename = 'capstone-362722-f3745d9260b7.json' ) worksheet = service_account.open('TeamLiftCyberPhysical').sheet1 rows = worksheet.row_count scope = ["https://www.googleapis.com/auth/drive", "https://www.googleapis.com/auth/spreadsheets"] credentials = ServiceAccountCredentials.from_json_keyfile_name('capstone-362722-f3745d9260b7.json', scope) gc = gspread.authorize(credentials) wb = gc.open_by_url('https://docs.google.com/spreadsheets/d/10g0fkjjrK0k9sa_ynw3O0Stdfp3leNJiJWS0MOM_b94/edit#gid=0') #this function gets the last time the spreadsheet was updated def getLastTimeModified(): revisions_uri = f'https://www.googleapis.com/drive/v3/files/{wb.id}/revisions' headers = {'Authorization': f'Bearer {credentials.get_access_token().access_token}'} response = requests.get(revisions_uri, headers=headers).json() return response['revisions'][-1]['modifiedTime'] #this function adds data row to spreadsheets with given params def addData(rowEntry): worksheet.append_row(rowEntry) #sends a csv file line by line to the spreadhseets file on the cloud def sendFile(filename): #mod_time_before = getLastTimeModified() sent_data = np.loadtxt(filename,delimiter=",",dtype = str, ndmin = 2) #lines= data_file.readlines() #for iter in range(len(lines)): #lines[iter] = lines[iter].replace('\n' , '') #lines[iter] = lines[iter].split(',') worksheet.append_rows(sent_data.tolist()); print("sent to spreadsheet"); def replaceNewline(str): return str.replace("\n","") #this function gets acknowledgement from google spreadsheets, by retreiving the last n-nows that were previously populated on the spreadsheet # and doing an elementwise comparison with the numpy array that was just sent def getSpreadsheetAck(filename): ackSuccess = False agg_array= np.loadtxt(filename,delimiter=",",dtype=str, ndmin = 2) print(agg_array) rowsSent = np.shape(agg_array)[0] colsSent = np.shape(agg_array)[1] #rowsSent = np.shape(agg_array)[0] #colsSent = 3 #if(len(np.shape(agg_array)) == 2): #colsSent = np.shape(agg_array)[1] #else: #colsSent = len(agg_array) all_data = np.array(worksheet.get_all_values()) all_data_rows = np.shape(all_data)[0] numRemoteFields = np.shape(all_data)[1] print("rowsSent = ",rowsSent,"colsSent = ",colsSent,"rows in database= ", all_data_rows) if((numRemoteFields - 1) == rowsSent): print("The Number of Fields match between the local and remote database") remote_array = all_data[all_data_rows -rowsSent :all_data_rows:1 , 0:colsSent] print(remote_array) correctDataSent = np.array_equal(agg_array,remote_array) if(correctDataSent == True): print("The Correct Data was sent to the Database\n") ackSuccess = True if(correctDataSent == False): print("The Wrong Data was Sent\n") print("Attempting to send data again") print(agg_array == remote_array) ackSuccess = False return ackSuccess # timezone_oregon = pytz.timezone('US/Pacific') # time_now = (datetime.now(timezone_oregon)).strftime('%Y-%m-%d %H:%M:%S') # print("Data Was Updated at " + str(time_now) ) #this function updates a row in the spreadsheets file, by looking up the value of a column #parameter columtype is the column of the data we are updating #column val is the value of the column to look for #rowdata is the new data that we are updating it to def updateData(columntype,columnval,rowdata): mod_time_before = getLastTimeModified() #gets all the tabulated data is a 2D array full_data = worksheet.get_all_values() # print(full_data) num_rows = len(full_data) index = 0 #depending on the columntype, we assign an index, #this index tells us which column to look inside of if(columntype == 'pumpvelocity'): index = 0 if(columntype == 'pressure'): index = 1 if(columntype == 'timestamp'): index = 2 #iterates through data for k in range(0,num_rows): # print((worksheet.row_values(k))[index]) #finds the row with the target value #updates that row's data with new values if((full_data[k])[index] == columnval): # print("yes") worksheet.update_cell(k+1,1,rowdata[0]) worksheet.update_cell(k+1,2,rowdata[1]) worksheet.update_cell(k+1,3,rowdata[2]) break mod_time_after = getLastTimeModified() print("mod time before update",mod_time_before) print("mod time after update",mod_time_after) if(mod_time_before != mod_time_after): print("Modified at ",mod_time_after ) #this method fetches a data point given the value of a certain column #for example it might search the data point where flow is equal to 55 def getRecord(columntype,columnval): full_data = worksheet.get_all_values() # print(full_data) num_rows = len(full_data) index = 0 if(columntype == 'pumpvelocity'): index = 0 if(columntype == 'pressure'): index = 1 if(columntype == 'timestamp'): index = 2 #iterates through data and returns data point that has certain value for k in range(0,num_rows): # print((worksheet.row_values(k))[index]) if((full_data[k])[index] == columnval): # print("yes") print(full_data[k]) record = full_data[k] printed_record = {"pumpvelocity":record[0],"pressure":record[1],"timestamp":record[2] } print(printed_record) return printed_record
mcenek/TeamLiftCSWaterProject
CloudUpload/datapusher.py
datapusher.py
py
5,965
python
en
code
5
github-code
6
20281135464
def notas(* n, sit = False): ''' -> Função para notas e situacoes de varios alunos. :param n: uma ou mais notas dos alunos (aceita carias). :param sit: valor opcional, indicando se deve ou nao adicionar a situacao. :return: dicionario com varias informacoes da turma. ''' media = maior = menor = c = 0 tot = len(n) for c in range(0, tot, 1): media += n[c] if c == 0: maior = n[c] menor = n[c] if n[c] > maior: maior = n[c] if n[c] < menor: menor = n[c] media /= tot list = {'total': tot, 'maior': maior, 'menor': menor, 'media': media} if sit: if media < 5: list['situacao'] = 'ruim' elif media < 7: list['situacao'] = 'razoavel' else: list['situacao'] = 'boa' return list print(notas(4, 8, 7, 2.5)) print(notas(4, 8, 9, sit = True)) print(help) '''def notas(* n, sit = False): // -> Função para notas e situacoes de varios alunos. :param n: uma ou mais notas dos alunos (aceita carias). :param sit: valor opcional, indicando se deve ou nao adicionar a situacao. :return: dicionario com varias informacoes da turma. // dic = {'total': len(n), 'maior': max(n), 'menor': min(n), 'media': sum(n) / len(n)} if sit: if dic['media'] < 5: dic['situacao'] = 'ruim' elif dic['media'] < 7: dic['situacao'] = 'razoavel' else: dic['situacao'] = 'boa' return dic print(notas(4, 8, 7, 2.5)) print(notas(4, 8, 9, sit = True)) print(help(notas)) '''
JoooNatan/CursoPython
Mundo03/Exs/Ex105.py
Ex105.py
py
1,636
python
pt
code
0
github-code
6
34959494378
# 220728 # SWEA_D1 # 14553. Game Money # N명의 사람이 게임을 하는데, 한 판에 두 사람이 참여함 # 두 사람은 각자 1원씩 게임 머니를 내야함 # 주어진 게임 머니를 통해 최대 몇 게임을 할 수 있는지 계산하기 # N은 최대 20, 초기 게임 머니는 최대 100 T = int(input()) for t in range(1, T+1): N = int(input()) N_ls = sorted(map(int, input().split())) # 숫자 받아서 정렬 game_n = 0 while N_ls[-1] > 0 and N_ls[-2] > 0: # 큰 수 두 개끼리 먼저 게임 시작, 둘 다 돈이 있어야 가능 N_ls[-1] -= 1 # 1원씩 사용 N_ls[-2] -= 1 game_n += 1 # 둘 다 1원씩 사용하면 게임 수 증가 N_ls.sort() # 다시 정렬해서 큰 수 갱신 print(f'#{t} {game_n}')
pearl313/Alorithm_study
알스_220728.py
알스_220728.py
py
918
python
ko
code
0
github-code
6
33198762995
import ConfigParser import io import sys import os import numpy as np from scipy.stats import cumfreq import matplotlib import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cm from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.basemap import Basemap from matplotlib.backends.backend_pdf import PdfPages import pickle configFile = sys.argv[1] def readConfigFile(configFileName): global config with open(configFileName) as f: sample_config = f.read() config = ConfigParser.RawConfigParser(allow_no_value=True) config.readfp(io.BytesIO(sample_config)) return config def stackedPlotHistogram(metric, catchmentSize, title, legendLoc = 2, ymax=3500): plotData = [] lims = [0,10**4,25000,50000,10**5,25*10**4,25*10**10] for lim in range(1,len(lims)): sel1 = catchmentSize/10**6 < lims[lim] sel2 = catchmentSize/10**6 > lims[lim-1] sel = [x and y for x, y in zip(sel1, sel2)] plotData.append(metric[sel]) ax1 = plt.hist(plotData, bins=np.arange(-1,1.01,0.1), width = 0.1, stacked=True, color=plt.get_cmap("Blues")(np.linspace(0, 1, 6)), label = ["$<10*10^3$","$<25*10^3$","$<50*10^3$","$<100*10^3$","$<250*10^3$","$\geq250*10^3$"], edgecolor = "none") ax1 = plt.legend(prop={'size': 10}, title="Catchment size ($km^2$)", loc = legendLoc) ax1 = plt.title(title) ax1 = plt.xlabel("Value") ax1 = plt.ylabel("Frequency") ax1 = plt.xlim(-1, 1) ax1 = plt.ylim(0, ymax) ax1 = plt.gcf().set_tight_layout(True) pdf.savefig() plt.clf() def plotHistogram(metric, title): ax1 = plt.hist(metric, bins=np.arange(-1,1.01,0.1)) ax1 = plt.title(title) ax1 = plt.xlabel("Value") ax1 = plt.ylabel("Frequency") ax1 = plt.xlim(-1, 1) ax1 = plt.gcf().set_tight_layout(True) pdf.savefig() plt.clf() def plotCDF(forecast, validation, title, xlims = [-1,1]): forecast[forecast < -1.01] = -1.01 vals, x1, x2, x3 = cumfreq(forecast, len(forecast)) ax1 = plt.plot(np.linspace(np.min(forecast), np.max(forecast), len(forecast)), vals/len(forecast), label=str(config.get('Main options', 'RunName'))) validation[validation < -1.01] = -1.01 vals, x1, x2, x3 = cumfreq(validation, len(validation)) ax2 = plt.plot(np.linspace(np.min(validation), np.max(validation), len(validation)), vals/len(validation), label=str(config.get('Reference options', 'RunName'))) ax2 = plt.legend(prop={'size': 10}, loc=2) ax1 = plt.title(title) ax1 = plt.xlabel("Value") ax1 = plt.ylabel("ECDF") ax1 = plt.xlim(xlims[0], xlims[1]) ax1 = plt.ylim(0, 1) ax1 = plt.gcf().set_tight_layout(True) pdf.savefig() plt.clf() def plotScatter(forecast, validation, title): ax1 = plt.plot(validation, forecast, "ro", markersize=8) ax1 = plt.plot([-100,100], [-100,100]) ax1 = plt.title(title) ax1 = plt.xlabel(str(config.get('Reference options', 'RunName'))) ax1 = plt.ylabel(str(config.get('Main options', 'RunName'))) ax1 = plt.xlim(-1, 1) ax1 = plt.ylim(-1, 1) ax1 = plt.gcf().set_tight_layout(True) pdf.savefig() plt.clf() def plotHexBin(forecast, validation, title): forecast[forecast < -1.1] = -1.1 validation[validation < -1.1] = -1.1 ax1 = plt.hexbin(validation, forecast, gridsize=20, vmin=1, vmax=20, cmap="OrRd") ax1 = plt.plot([-100,100], [-100,100]) ax1 = plt.title(title) ax1 = plt.xlabel(str(config.get('Reference options', 'RunName'))) ax1 = plt.ylabel(str(config.get('Main options', 'RunName'))) ax1 = plt.xlim(-1, 1) ax1 = plt.ylim(-1, 1) ax1 = plt.gcf().set_tight_layout(True) pdf.savefig() plt.clf() def plotWorldMap(data, lons, lats, title, vmin = -1., vmax = 1., s=5): plt.figure(figsize=(8, 4)) m = Basemap(projection='mill',lon_0=0, llcrnrlon=-20., llcrnrlat=20., urcrnrlon=50., urcrnrlat=75.) x,y = m(lons, lats) m.drawcountries(zorder=0, color="white") #m.drawcoastlines(zorder=0, color="black") m.fillcontinents(color = 'black',zorder=-1) m.scatter(x,y, c=data, cmap='RdBu', vmin=vmin, vmax=vmax, s=s, edgecolors='none') m.colorbar() plt.title(title) plt.gcf().set_tight_layout(True) pdf.savefig() plt.clf() plt.figure(figsize=(8, 6)) config = readConfigFile(configFile) runName = str(config.get('Main options', 'RunName')) refName = str(config.get('Reference options', 'RunName')) output, output2 = pickle.load(open('validationResultsPool_%s_%s.obj' %(runName, refName), 'rb') ) sel1 = (np.isnan(output[:,3]+output[:,2]+output[:,4]+output2[:,2]+output2[:,3]+output2[:,4]) == False) sel2 = np.sum(output[:,3:], axis=1) != 0.0 sel3 = np.sum(output2[:,3:], axis=1) != 0.0 sel = [x and y and z for x, y, z in zip(sel1, sel2, sel3)] sel5Min = sel pdf = PdfPages(str(config.get('Output options', 'outputFile'))) matplotlib.rcParams.update({'font.size': 12}) plotWorldMap(output[sel5Min,3], output[sel5Min,0], output[sel5Min,1], 'Correlation with observations (%s)' %(str(config.get('Main options', 'RunName')))) plotWorldMap(output2[sel,3], output2[sel,0], output2[sel,1], 'Correlation with observations (%s)' %(str(config.get('Reference options', 'RunName')))) plotWorldMap(output[sel,3]-output2[sel,3], output[sel,0], output[sel,1], 'Correlation difference 5min - 30min', vmin=-0.5, vmax=0.5) plotWorldMap(output[sel5Min,4], output[sel5Min,0], output[sel5Min,1], 'Anomaly Correlation (%s)' %(str(config.get('Main options', 'RunName')))) plotWorldMap(output2[sel,4], output2[sel,0], output2[sel,1], 'Anomaly Correlation (%s)' %(str(config.get('Reference options', 'RunName')))) plotWorldMap(output[sel,4]-output2[sel,4], output[sel,0], output[sel,1], 'Anomaly Correlation difference', vmin=-0.5, vmax=0.5) plotWorldMap(output[sel5Min,4]-output[sel5Min,3], output[sel5Min,0], output[sel5Min,1], 'Anomaly Correlation - Correlation (%s)' %(str(config.get('Main options', 'RunName')))) stackedPlotHistogram(output[sel5Min,3], output[sel5Min,2], "Correlation with observations (%s)" %(str(config.get('Main options', 'RunName'))), ymax=750) stackedPlotHistogram(output2[sel,3], output2[sel,2], "Correlation with observations (%s)" %(str(config.get('Reference options', 'RunName'))), ymax=750) stackedPlotHistogram(output[sel5Min,4], output[sel5Min,2], "Anomaly Correlation with observations (%s)" %(str(config.get('Main options', 'RunName'))), ymax=750) stackedPlotHistogram(output2[sel,4], output2[sel,2], "Anomaly Correlation with observations (%s)" %(str(config.get('Reference options', 'RunName'))), ymax=750) stackedPlotHistogram(output[sel5Min,5], output[sel5Min,2], "Kling-Gupta Efficiency (%s)" %(str(config.get('Main options', 'RunName'))), ymax=500) stackedPlotHistogram(output2[sel,5], output2[sel,2], "Kling-Gupta Efficiency (%s)" %(str(config.get('Reference options', 'RunName'))), ymax=500) stackedPlotHistogram(output[sel5Min,4]-output[sel5Min,3], output[sel5Min,2], "AC - R (%s)" %(str(config.get('Main options', 'RunName'))), ymax=550) plotCDF(output[sel,3], output2[sel,3], "R") plotCDF(output[sel,4], output2[sel,4], "AC") plotCDF(output[sel,5], output2[sel,5], "KGE") plotHexBin(output[sel,3], output2[sel,3], "R") plotHexBin(output[sel,4], output2[sel,4], "AC") plotHexBin(output[sel,5], output2[sel,5], "KGE") pdf.close()
edwinkost/PCR-GLOBWB_validation
niko_validation_scripts/standAlone/plotValidation.py
plotValidation.py
py
7,155
python
en
code
0
github-code
6
35379919905
from flask import Flask from flask_apscheduler import APScheduler # config scheduling class from statuschecker import get_health_status class Config(object): JOBS = [ { 'id': 'check_health', 'func': 'app:check_health', 'trigger': 'interval', 'seconds': 1800 } ] SCHEDULER_API_ENABLED = True # function triggered every 30 minutes def check_health(): return get_health_status(); # flask startup app = Flask(__name__) app.config.from_object(Config()) # initiate scheduler scheduler = APScheduler() scheduler.init_app(app) scheduler.start() if __name__ == '__main__': app.run(host='0.0.0.0')
tynorantoni/HealthCheckService
app.py
app.py
py
687
python
en
code
0
github-code
6
40077076852
#!/usr/bin/python # -*- coding: utf-8 -*- import sys import re import logging from .pushbullet import * class Messenger(object): """docstring for Message""" def __init__(self): #, arg): # super(Message, self).__init__() # self.arg = arg self.ready = False self.message = '' self.error_bag = '' self.result_bag = '' self.pattern_time=re.compile(r'\d{1,2}h:\d{1,2}m:\d{1,2}s:\d{1,4}ms') self.pattern_process = re.compile(r'\([0-9\ ]{0,2}/\w{2}\)') self.pattern_stream = re.compile(r'stream\s+\d{1,2}') self.pattern_long_space = re.compile(r'\s+') def _message_chopper(self,line): if 'Finished' in line: return line else: return def bb_message_chopper(self,line): if 'Load test' in line: if 'finished' in line: try: time = re.search(self.pattern_time,line)[0] except: logging.info('re seach time failed') time = 'TIME SEARH FAILED' message = 'Load finished. Time: '+time return message elif 'Power test' in line: if 'finished' in line: try: time = re.search(self.pattern_time,line)[0] except: time = ' TIME SEARH FAILED ' try: process = re.search(self.pattern_process,line)[0] except: if time: process = ' finished.' else: process = ' PROCESS SEARCH FAILED ' # logging.info('re seach time failed') message = 'Power'+process+' Time: '+time if process == ' finished.': return message elif 'throughput' in line: if 'finished' in line: try: self.pattern_long_space = re.compile(r'\s+') stream_buff = re.search(self.pattern_stream,line)[0] stream = self.pattern_long_space.sub(' ',stream_buff) except : stream ='' try: time = re.search(self.pattern_time,line)[0] except: time = ' TIME SEARH FAILED ' try: process = re.search(self.pattern_process,line)[0] except: if time: process = ' finished.' else: process = ' PROCESS SEARCH FAILED ' # logging.info('re seach time failed') message = 'Throughput '+ stream +process+' Time: '+time # if stream == 'stream 0': if process == ' finished.': return message elif 'benchmark: Stop' in line: if 'finished' in line: try: time = re.search(self.pattern_time,line)[0] except: time = ' TIME SEARH FAILED ' message = 'Benchmark Stop. '+'Time: '+time return message elif 'VALID BBQpm' in line: self.result_bag+=line message = line[:-1] return message elif 'Benchmark run terminated' in line: self.error_bag+=line elif 'Reason:' in line: self.error_bag+=line elif 'No final result available.' in line: self.error_bag+=line message=self.error_bag return message def message_buffer(self, line): if line[-1] == '\n': line_tmp=line[:-1] else: line_tmp=line print(line_tmp) sys.stdout.flush() logging.info(line_tmp) if line!='': message2push=self.bb_message_chopper(line) if message2push: self.message+=message2push self.ready=True if self.ready == True: logging.info('Pushing message...(%s)'%self.message) self.send() def test(self,message='Your network seems good.'): p = PushBullet(USER_API_KEY) try: # Get a list of devices devices = p.getDevices() # print_devices(devices) except: print('You may have a network connection probelem to connect pushbullet.com.') sys.stdout.flush() logging.info('You may have a network connection probelem to connect pushbullet.com.') else: if len(devices)!=0: print_devices(devices) sys.stdout.flush() # Send a note p.pushNote(USER_DEVICE_IDEN, 'Alfred is with you.', message) def send(self): p = PushBullet(USER_API_KEY) try: # Get a list of devices devices = p.getDevices() # devices = 'pass' # print_devices(devices) except: print('You may have a network connection probelem to connect pushbullet.com.') sys.stdout.flush() logging.info('You may have a network connection probelem to connect pushbullet.com.') else: if len(devices)!=0: # Send a note p.pushNote(USER_DEVICE_IDEN, 'News from Alfred', self.message) # print('PUSHING NEWS:%s'%self.message) self.message='' self.ready=False def send_all(self,retry=20): while retry>0 and self.message!='': M.send() retry-=1 logging.info('Remaining Attempts:%d'%retry)
lucy9215/jobNotification
pushbullet/messenger.py
messenger.py
py
5,743
python
en
code
0
github-code
6
19645294724
from Math import mathObject import random class areaObject(mathObject): def __init__(self): self.type = "Area" self.areaType = None self.pieces = [] self.content = [] def include(self, x): pass class areaPiece(areaObject): def __init__(self, content, tp): areaObject.__init__(self) self.areaType = tp if isinstance(content, list): self.content = content else: self.content = [content] def include(self, x): if isinstance(x, list): if self.areaType == "discrete": for item in x: if not item in self.content: return False return True elif self.areaType == "continous": for item in x: if not self.content[0] <= item <= self.content[1]: return False return true else: return False elif isinstance(x, int) or isinstance(x, float): if self.areaType == "discrete": if not x in self.content: return False else: return True elif self.areaType == "continous": if not self.content[0] <= x <= self.content[1]: return False else: return True else: return False elif isinstance(x, mathObject) or isinstance(x, object): if self.areaType != "discrete" and self.areaType != "continous": return False if isinstance(x, areaObject): if isinstance(x, areaPiece): if x.areaType == "continous" and self.areaType == "discrete": return False else: return self.include(x.content) else: rlt = True for item in x.pieces: rlt = rlt and self.include(item) return rlt else: if self.areaType != "discrete": return False else: if x in self.content: return True else: return False else: return False class Area(areaObject): def __init__(self, tp, thetaList): areaObject.__init__(self) if isinstance(thetaList, list): tmp = [] for item in thetaList: if isinstance(item, list): self.pieces.append(areaPiece(item, tp)) else: self.pieces.append(areaPiece(thetaList, tp)) self.areaType = tp def include(self, x): for piece in self.pieces: if piece.include(x): return True return False
Anon-LeoH/UncleDaLearn
UD/Area/__init__.py
__init__.py
py
2,974
python
en
code
2
github-code
6
33147997203
from covid_constants_and_util import * import geopandas as gpd import statsmodels.api as sm import json import copy from fbprophet import Prophet from collections import Counter import re import h5py import ast from shapely import wkt from scipy.stats import pearsonr import fiona import geopandas import csv import os from geopandas.tools import sjoin import time try: cast_to_datetime = [datetime.datetime.strptime(s, '%Y-%m-%d') for s in ALL_WEEKLY_STRINGS] except: print(ALL_WEEKLY_STRINGS) raise Exception("At least one weekly string is badly formatted.") def load_social_distancing_metrics(datetimes, version='v2'): """ Given a list of datetimes, load social distancing metrics for those days. load_social_distancing_metrics(helper.list_datetimes_in_range(datetime.datetime(2020, 3, 1), datetime.datetime(2020, 3, 7))) """ print("Loading social distancing metrics for %i datetimes; using version %s" % (len(datetimes), version)) t0 = time.time() daily_cols = ['device_count', 'distance_traveled_from_home', 'completely_home_device_count', 'full_time_work_behavior_devices'] concatenated_d = None for dt in datetimes: if version == 'v1': path = os.path.join(PATH_TO_SDM_V1, dt.strftime('%Y/%m/%d/%Y-%m-%d-social-distancing.csv.gz')) elif version == 'v2': path = os.path.join(PATH_TO_SDM_V2, dt.strftime('%Y/%m/%d/%Y-%m-%d-social-distancing.csv.gz')) else: raise Exception("Version should be v1 or v2") if os.path.exists(path): social_distancing_d = pd.read_csv(path, usecols=['origin_census_block_group'] + daily_cols)[['origin_census_block_group'] + daily_cols] social_distancing_d.columns = ['census_block_group'] + ['%i.%i.%i_%s' % (dt.year, dt.month, dt.day, a) for a in daily_cols] old_len = len(social_distancing_d) social_distancing_d = social_distancing_d.drop_duplicates(keep=False) n_dropped_rows = old_len - len(social_distancing_d) assert len(set(social_distancing_d['census_block_group'])) == len(social_distancing_d) assert(1.*n_dropped_rows/old_len < 0.002) # make sure not very many rows are duplicates. if version == 'v2': assert n_dropped_rows == 0 # they fixed the problem in v2. elif version == 'v1': assert n_dropped_rows > 0 # this seemed to be a problem in v1. if concatenated_d is None: concatenated_d = social_distancing_d else: concatenated_d = pd.merge(concatenated_d, social_distancing_d, how='outer', validate='one_to_one', on='census_block_group') else: raise Exception('Missing Social Distancing Metrics for %s' % dt.strftime('%Y/%m/%d')) if concatenated_d is None: # could not find any of the dates return concatenated_d print("Total time to load social distancing metrics: %2.3f seconds; total rows %i" % (time.time() - t0, len(concatenated_d))) return concatenated_d def annotate_with_demographic_info_and_write_out_in_chunks(full_df, just_testing=False): """ Annotate the Safegraph POI data with Census data and other useful POI data. """ full_df['safegraph_place_id'] = full_df.index full_df.index = range(len(full_df)) # merge with areas. safegraph_areas = pd.read_csv(PATH_TO_SAFEGRAPH_AREAS) print("Prior to merging with safegraph areas, %i rows" % len(full_df)) safegraph_areas = safegraph_areas[['safegraph_place_id', 'area_square_feet']].dropna() safegraph_areas.columns = ['safegraph_place_id', 'safegraph_computed_area_in_square_feet'] full_df = pd.merge(full_df, safegraph_areas, how='inner', on='safegraph_place_id', validate='one_to_one') print("After merging with areas, %i rows" % len(full_df)) # map to demo info. The basic class we use here is CensusBlockGroups, which processes the Census data. print("Mapping SafeGraph POIs to demographic info, including race and income.") gdb_files = ['ACS_2017_5YR_BG_51_VIRGINIA.gdb'] if just_testing else None cbg_mapper = CensusBlockGroups(base_directory=PATH_FOR_CBG_MAPPER, gdb_files=gdb_files) pop_df = load_dataframe_to_correct_for_population_size() chunksize = 100000 annotated_df = [] for chunk_number in range(len(full_df) // chunksize + 1): print("******************Annotating chunk %i" % chunk_number) start, end = chunk_number * chunksize, min((chunk_number + 1) * chunksize, len(full_df)) d = full_df.iloc[start:end].copy() # Now annotate each POI on the basis of its location. mapped_pois = cbg_mapper.get_demographic_stats_of_points(d['latitude'].values, d['longitude'].values, desired_cols=['p_white', 'p_asian', 'p_black', 'median_household_income', 'people_per_mile']) mapped_pois['county_fips_code'] = mapped_pois['county_fips_code'].map(lambda x:int(x) if x is not None else x) mapped_pois.columns = ['poi_lat_lon_%s' % a for a in mapped_pois.columns] for c in mapped_pois.columns: d[c] = mapped_pois[c].values # Then annotate with demographic data based on where visitors come from (visitor_home_cbgs). d = aggregate_visitor_home_cbgs_over_months(d, population_df=pop_df) block_group_d = cbg_mapper.block_group_d.copy() block_group_d['id_to_match_to_safegraph_data'] = block_group_d['GEOID'].map(lambda x:x.split("US")[1]).astype(int) block_group_d = block_group_d[['id_to_match_to_safegraph_data', 'p_black', 'p_white', 'p_asian', 'median_household_income']] block_group_d = block_group_d.dropna() for col in block_group_d: if col == 'id_to_match_to_safegraph_data': continue cbg_dict = dict(zip(block_group_d['id_to_match_to_safegraph_data'].values, block_group_d[col].values)) d['cbg_visitor_weighted_%s' % col] = d['aggregated_cbg_population_adjusted_visitor_home_cbgs'].map(lambda x:compute_weighted_mean_of_cbg_visitors(x, cbg_dict)) # see how well we did. for c in [a for a in d.columns if 'poi_lat_lon_' in a or 'cbg_visitor_weighted' in a]: print("Have data for %s for fraction %2.3f of people" % (c, 1 - pd.isnull(d[c]).mean())) d.to_hdf(os.path.join(ANNOTATED_H5_DATA_DIR, CHUNK_FILENAME) ,f'chunk_{chunk_number}', mode='a', complevel=2) annotated_df.append(d) annotated_df = pd.concat(annotated_df) annotated_df.index = range(len(annotated_df)) return annotated_df def load_date_col_as_date(x): # we allow this to return None because sometimes we want to filter for cols which are dates. try: year, month, day = x.split('.') # e.g., '2020.3.1' return datetime.datetime(int(year), int(month), int(day)) except: return None def get_h5_filepath(load_backup): backup_string = 'BACKUP_' if load_backup else '' filepath = os.path.join(ANNOTATED_H5_DATA_DIR, backup_string + CHUNK_FILENAME) return filepath def load_chunk(chunk, load_backup=False): """ Load a single 100k chunk from the h5 file; chunks are randomized and so should be reasonably representative. """ filepath = get_h5_filepath(load_backup=load_backup) print("Reading chunk %i from %s" % (chunk, filepath)) d = pd.read_hdf(filepath, key=f'chunk_{chunk}') date_cols = [load_date_col_as_date(a) for a in d.columns] date_cols = [a for a in date_cols if a is not None] print("Dates range from %s to %s" % (min(date_cols), max(date_cols))) return d def load_multiple_chunks(chunks, load_backup=False, cols=None): """ Loads multiple chunks from the h5 file. Currently quite slow; quicker if only a subset of columns are kept. Use the parameters cols to specify which columns to keep; if None then all are kept. """ dfs = [] for i in chunks: t0 = time.time() chunk = load_chunk(i, load_backup=load_backup) print("Loaded chunk %i in %2.3f seconds" % (i, time.time() - t0)) if cols is not None: chunk = chunk[cols] dfs.append(chunk) t0 = time.time() df = pd.concat(dfs) print("Concatenated %d chunks in %2.3f seconds" % (len(chunks), time.time() - t0)) return df def load_all_chunks(cols=None, load_backup=False): """ Load all 100k chunks from the h5 file. This currently takes a while. """ filepath = get_h5_filepath(load_backup=load_backup) f = h5py.File(filepath, 'r') chunks = sorted([int(a.replace('chunk_', '')) for a in list(f.keys())]) f.close() assert chunks == list(range(max(chunks) + 1)) print("Loading all chunks: %s" % (','.join([str(a) for a in chunks]))) return load_multiple_chunks(chunks, cols=cols, load_backup=load_backup) def load_patterns_data(month=None, year=None, week_string=None, extra_cols=[], just_testing=False): """ Load in Patterns data for a single month and year, or for a single week. (These options are mutually exclusive). Use extra_cols to define non-default columns to load. just_testing is a flag to allow quicker prototyping; it will load only a subset of the data. """ change_by_date = ['visitor_home_cbgs', 'visitor_country_of_origin', 'distance_from_home', 'median_dwell', 'bucketed_dwell_times'] # fields that are time-varying if month is not None and year is not None: month_and_year = True assert week_string is None assert month in range(1, 13) assert year in [2017, 2018, 2019, 2020] if (year == 2019 and month == 12) or (year == 2020 and month in [1, 2]): upload_date_string = '2020-03-16' # we originally downloaded files in two groups; load them in the same way. else: upload_date_string = '2019-12-12' month_and_year_string = '%i_%02d-%s' % (year, month, upload_date_string) base_dir = os.path.join(UNZIPPED_DATA_DIR, 'SearchofAllRecords-CORE_POI-GEOMETRY-PATTERNS-%s' % month_and_year_string) print("Loading all files from %s" % base_dir) filenames = [a for a in os.listdir(base_dir) if (a.startswith('core_poi-geometry-patterns-part') and a.endswith('.csv.gz'))] # make sure we're not ignoring any files we don't expect to ignore. assert all([a in ['brand_info.csv', 'visit_panel_summary.csv', 'README.txt', 'home_panel_summary.csv'] for a in os.listdir(base_dir) if a not in filenames]) if just_testing: filenames = filenames[:2] print("Number of files to load: %i" % len(filenames)) full_paths = [os.path.join(base_dir, a) for a in filenames] x = load_csv_possibly_with_dask(full_paths, use_dask=True, usecols=['safegraph_place_id', 'parent_safegraph_place_id', 'location_name', 'latitude', 'longitude', 'city', 'region', 'postal_code', 'top_category', 'sub_category', 'naics_code', "polygon_wkt", "polygon_class", 'visits_by_day', 'visitor_home_cbgs', 'visitor_country_of_origin', 'distance_from_home', 'median_dwell', 'bucketed_dwell_times'] + extra_cols, dtype={'naics_code': 'float64'}) print("Fraction %2.3f of NAICS codes are missing" % pd.isnull(x['naics_code']).mean()) x = x.rename(columns={k: f'{year}.{month}.{k}' for k in change_by_date}) else: # weekly patterns data. month_and_year = False assert month is None and year is None assert week_string in ALL_WEEKLY_STRINGS filepath = os.path.join(PATH_TO_WEEKLY_PATTERNS, '%s-weekly-patterns.csv.gz' % week_string) # Filename is misleading - it is really a zipped file. # Also, we're missing some columns that we had before, so I think we're just going to have to join on SafeGraph ID. x = pd.read_csv(filepath, escapechar='\\', compression='gzip', nrows=10000 if just_testing else None, usecols=['safegraph_place_id', 'visits_by_day', 'visitor_home_cbgs', 'visitor_country_of_origin', 'distance_from_home', 'median_dwell', 'bucketed_dwell_times', 'date_range_start', 'visits_by_each_hour']) x['offset_from_gmt'] = x['date_range_start'].map(lambda x:x.split('-')[-1]) assert x['date_range_start'].map(lambda x:x.startswith(week_string + 'T' + '00:00:00')).all() # make sure date range starts where we expect for all rows. print("Offset from GMT value counts") print(x['offset_from_gmt'].value_counts()) del x['date_range_start'] x = x.rename(columns={k: f'{week_string}.{k}' for k in change_by_date}) print("Prior to dropping rows with no visits by day, %i rows" % len(x)) x = x.dropna(subset=['visits_by_day']) x['visits_by_day'] = x['visits_by_day'].map(json.loads) # convert string lists to lists. if month_and_year: days = pd.DataFrame(x['visits_by_day'].values.tolist(), columns=[f'{year}.{month}.{day}' for day in range(1, len(x.iloc[0]['visits_by_day']) + 1)]) else: year = int(week_string.split('-')[0]) month = int(week_string.split('-')[1]) start_day = int(week_string.split('-')[2]) start_datetime = datetime.datetime(year, month, start_day) all_datetimes = [start_datetime + datetime.timedelta(days=i) for i in range(7)] days = pd.DataFrame(x['visits_by_day'].values.tolist(), columns=['%i.%i.%i' % (dt.year, dt.month, dt.day) for dt in all_datetimes]) # Load hourly data as well. # Per SafeGraph documentation: # Start time for measurement period in ISO 8601 format of YYYY-MM-DDTHH:mm:SS±hh:mm # (local time with offset from GMT). The start time will be 12 a.m. Sunday in local time. x['visits_by_each_hour'] = x['visits_by_each_hour'].map(json.loads) # convert string lists to lists. assert all_datetimes[0].strftime('%A') == 'Sunday' hours = pd.DataFrame(x['visits_by_each_hour'].values.tolist(), columns=[f'hourly_visits_%i.%i.%i.%i' % (dt.year, dt.month, dt.day, hour) for dt in all_datetimes for hour in range(0, 24)]) days.index = x.index x = pd.concat([x, days], axis=1) if not month_and_year: assert list(x.index) == list(range(len(x))) assert (hours.index.values == x.index.values).all() hours.index = x.index old_len = len(x) x = pd.concat([x, hours], axis=1) assert len(x) == old_len x = x.drop(columns=['visits_by_each_hour']) # The hourly data has some spurious spikes # related to the GMT-day boundary which we have to correct for. date_cols = [load_date_col_as_date(a) for a in x.columns] date_cols = [a for a in date_cols if a is not None] assert len(date_cols) == 7 if week_string >= '2020-03-15': # think this is because of DST. Basically, these are the timezone strings we look for and correct; they shift at DST. hourly_offsets = [4, 5, 6, 7] else: hourly_offsets = [5, 6, 7, 8] hourly_offset_strings = ['0%i:00' % hourly_offset for hourly_offset in hourly_offsets] percent_rows_being_corrected = (x['offset_from_gmt'].map(lambda a:a in hourly_offset_strings).mean() * 100) print("%2.3f%% of rows have timezones that we spike-correct for." % percent_rows_being_corrected) assert percent_rows_being_corrected > 99 # make sure we're correcting almost all rows # have to correct for each timezone separately. for hourly_offset in hourly_offsets: idxs = x['offset_from_gmt'] == ('0%i:00' % hourly_offset) for date_col in date_cols: # loop over days. date_string = '%i.%i.%i' % (date_col.year, date_col.month, date_col.day) # not totally clear which hours are messed up - it's mainly one hour, but the surrounding ones look weird too - # or what the best way to interpolate is, but this yields plots which look reasonable. for hour_to_correct in [24 - hourly_offset - 1, 24 - hourly_offset, 24 - hourly_offset + 1]: # interpolate using hours fairly far from hour_to_correct to avoid pollution. if hour_to_correct < 21: cols_to_use = ['hourly_visits_%s.%i' % (date_string, a) for a in [hour_to_correct - 3, hour_to_correct + 3]] else: # Use smaller offset so we don't have hours >= 24. This technically overlaps with earlier hours, # but I think it should be okay because they will already have been corrected. cols_to_use = ['hourly_visits_%s.%i' % (date_string, a) for a in [hour_to_correct - 2, hour_to_correct + 2]] assert all([col in x.columns for col in cols_to_use]) x.loc[idxs, 'hourly_visits_%s.%i' % (date_string, hour_to_correct)] = x.loc[idxs, cols_to_use].mean(axis=1) del x['offset_from_gmt'] x = x.set_index('safegraph_place_id') x = x.drop(columns=['visits_by_day']) if month_and_year: print("%i rows loaded for month and year %s" % (len(x), month_and_year_string)) else: print("%i rows loaded for week %s" % (len(x), week_string)) return x def load_weekly_patterns_v2_data(week_string, cols_to_keep, expand_hourly_visits=True): """ Load in Weekly Patterns V2 data for a single week. If week_string <= '2020-06-15': we are using the earlier version of Weekly Pattern v2 in /weekly_20190101_20200615/, and week_string denotes the first day of the week. Else: we are using the later version of Weekly Patterns v2 in /weekly_20200615_20201005/, and week_string denotes the day this update was released. """ ts = time.time() elements = week_string.split('-') assert len(elements) == 3 week_datetime = datetime.datetime(int(elements[0]), int(elements[1]), int(elements[2])) cols_to_load = cols_to_keep.copy() must_load_cols = ['date_range_start', 'visits_by_each_hour'] # required for later logic for k in must_load_cols: if k not in cols_to_load: cols_to_load.append(k) if week_string <= '2020-06-15': path_to_csv = os.path.join(CURRENT_DATA_DIR, 'weekly_20190101_20200615/main-file/%s-weekly-patterns.csv.gz' % week_string) assert os.path.isfile(path_to_csv) print('Loading from %s' % path_to_csv) df = load_csv_possibly_with_dask(path_to_csv, use_dask=True, usecols=cols_to_load, dtype={'poi_cbg':'float64'}) start_day_string = week_string start_datetime = week_datetime else: path_to_weekly_dir = os.path.join(CURRENT_DATA_DIR, 'weekly_20200615_20201028/patterns/%s/' % week_datetime.strftime('%Y/%m/%d')) inner_folder = os.listdir(path_to_weekly_dir) assert len(inner_folder) == 1 # there is always a single folder inside the weekly folder path_to_patterns_parts = os.path.join(path_to_weekly_dir, inner_folder[0]) dfs = [] for filename in sorted(os.listdir(path_to_patterns_parts)): if filename.startswith('patterns-part'): # e.g., patterns-part1.csv.gz path_to_csv = os.path.join(path_to_patterns_parts, filename) assert os.path.isfile(path_to_csv) print('Loading from %s' % path_to_csv) df = load_csv_possibly_with_dask(path_to_csv, use_dask=True, usecols=cols_to_load, dtype={'poi_cbg':'float64'}) dfs.append(df) df = pd.concat(dfs, axis=0) start_day_string = df.iloc[0].date_range_start.split('T')[0] elements = start_day_string.split('-') assert len(elements) == 3 start_datetime = datetime.datetime(int(elements[0]), int(elements[1]), int(elements[2])) assert df['date_range_start'].map(lambda x:x.startswith(start_day_string + 'T00:00:00')).all() # make sure date range starts where we expect for all rows. if expand_hourly_visits: # expand single hourly visits column into one column per hour df['visits_by_each_hour'] = df['visits_by_each_hour'].map(json.loads) # convert string lists to lists. all_dates = [start_datetime + datetime.timedelta(days=i) for i in range(7)] # all days in the week hours = pd.DataFrame(df['visits_by_each_hour'].values.tolist(), columns=[f'hourly_visits_%i.%i.%i.%i' % (date.year, date.month, date.day, hour) for date in all_dates for hour in range(0, 24)]) assert len(hours) == len(df) hours.index = df.index df = pd.concat([df, hours], axis=1) # The hourly data has some spurious spikes # related to the GMT-day boundary which we have to correct for. df['offset_from_gmt'] = df['date_range_start'].map(lambda x:x[len(start_day_string + 'T00:00:00'):]) print("Offset from GMT value counts") offset_counts = df['offset_from_gmt'].value_counts() print(offset_counts) hourly_offset_strings = offset_counts[:4].index # four most common timezones across POIs assert all(['-0%i:00' % x in hourly_offset_strings for x in [5, 6, 7]]) # should always include GMT-5, -6, -7 assert ('-04:00' in hourly_offset_strings) or ('-08:00' in hourly_offset_strings) # depends on DST percent_rows_being_corrected = (df['offset_from_gmt'].map(lambda x:x in hourly_offset_strings).mean() * 100) print("%2.3f%% of rows have timezones that we spike-correct for." % percent_rows_being_corrected) assert percent_rows_being_corrected > 98 # almost all rows should fall in these timezones end_datetime = datetime.datetime(all_dates[-1].year, all_dates[-1].month, all_dates[-1].day, 23) # have to correct for each timezone separately. for offset_string in sorted(hourly_offset_strings): print('Correcting GMT%s...' % offset_string) idxs = df['offset_from_gmt'] == offset_string offset_int = int(offset_string.split(':')[0]) assert (-8 <= offset_int) and (offset_int <= -4) for date in all_dates: # not totally clear which hours are messed up - it's mainly one hour, but the surrounding ones # look weird too - but this yields plots which look reasonable. for hour_to_correct in [24 + offset_int - 1, 24 + offset_int, 24 + offset_int + 1]: # interpolate using hours fairly far from hour_to_correct to avoid pollution. dt_hour_to_correct = datetime.datetime(date.year, date.month, date.day, hour_to_correct) start_hour = max(start_datetime, dt_hour_to_correct + datetime.timedelta(hours=-3)) end_hour = min(end_datetime, dt_hour_to_correct + datetime.timedelta(hours=3)) cols_to_use = [f'hourly_visits_%i.%i.%i.%i' % (dt.year, dt.month, dt.day, dt.hour) for dt in list_hours_in_range(start_hour, end_hour)] assert all([col in df.columns for col in cols_to_use]) # this technically overlaps with earlier hours, but it should be okay because they will # already have been corrected. df.loc[idxs, 'hourly_visits_%i.%i.%i.%i' % (date.year, date.month, date.day, hour_to_correct)] = df.loc[idxs, cols_to_use].mean(axis=1) non_required_cols = [col for col in df.columns if not(col in cols_to_keep or col.startswith('hourly_visits_'))] df = df.drop(columns=non_required_cols) df = df.set_index('safegraph_place_id') te = time.time() print("%i rows loaded for week %s [total time = %.2fs]" % (len(df), start_day_string, te-ts)) return df def load_core_places_footprint_data(cols_to_keep): area_csv = os.path.join(CURRENT_DATA_DIR, 'core_places_footprint/August2020Release/SafeGraphPlacesGeoSupplementSquareFeet.csv.gz') print('Loading', area_csv) df = load_csv_possibly_with_dask(area_csv, usecols=cols_to_keep, use_dask=True) df = df.set_index('safegraph_place_id') print('Loaded core places footprint data for %d POIs' % len(df)) return df def load_core_places_data(cols_to_keep): core_dir = os.path.join(CURRENT_DATA_DIR, 'core_places/2020/10/') # use the most recent core info dfs = [] for filename in sorted(os.listdir(core_dir)): if filename.startswith('core_poi-part'): path_to_csv = os.path.join(core_dir, filename) print('Loading', path_to_csv) df = load_csv_possibly_with_dask(path_to_csv, usecols=cols_to_keep, use_dask=True) dfs.append(df) df = pd.concat(dfs, axis=0) df = df.set_index('safegraph_place_id') print('Loading core places info for %d POIs' % len(df)) return df def load_google_mobility_data(only_US=True): df = pd.read_csv(PATH_TO_GOOGLE_DATA) if only_US: df = df[df['country_region_code'] == 'US'] return df def list_datetimes_in_range(min_day, max_day): """ Return a list of datetimes in a range from min_day to max_day, inclusive. Increment is one day. """ assert(min_day <= max_day) days = [] while min_day <= max_day: days.append(min_day) min_day = min_day + datetime.timedelta(days=1) return days def list_hours_in_range(min_hour, max_hour): """ Return a list of datetimes in a range from min_hour to max_hour, inclusive. Increment is one hour. """ assert(min_hour <= max_hour) hours = [] while min_hour <= max_hour: hours.append(min_hour) min_hour = min_hour + datetime.timedelta(hours=1) return hours def normalize_dict_values_to_sum_to_one_and_cast_keys_to_ints(old_dict): """ Self-explanatory; used by aggregate_visitor_home_cbgs_over_months. """ new_dict = {} value_sum = 1.*sum(old_dict.values()) if len(old_dict) > 0: assert value_sum > 0 for k in old_dict: new_dict[int(k)] = old_dict[k] / value_sum return new_dict def cast_keys_to_ints(old_dict): new_dict = {} for k in old_dict: new_dict[int(k)] = old_dict[k] return new_dict def aggregate_visitor_home_cbgs_over_months(d, cutoff_year=2019, population_df=None, periods_to_include=None): """ Aggregate visitor_home_cbgs across months and produce a normalized aggregate field. Usage: d = aggregate_visitor_home_cbgs_over_months(d). cutoff = the earliest time (could be year or year.month) to aggregate data from population_df = the DataFrame loaded by load_dataframe_to_correct_for_population_size """ t0 = time.time() if periods_to_include is not None: cols = ['%s.visitor_home_cbgs' % period for period in periods_to_include] assert cutoff_year is None else: # Not using CBG data from weekly files for now because of concerns that it's inconsistently # processed - they change how they do the privacy filtering. assert cutoff_year is not None weekly_cols_to_exclude = ['%s.visitor_home_cbgs' % a for a in ALL_WEEKLY_STRINGS] cols = [a for a in d.columns if (a.endswith('.visitor_home_cbgs') and (a >= str(cutoff_year)) and (a not in weekly_cols_to_exclude))] print('Aggregating data from: %s' % cols) assert all([a in d.columns for a in cols]) # Helper variables to use if visitor_home_cbgs counts need adjusting for differential sampling across CBGs. adjusted_cols = [] if population_df is not None: int_cbgs = [int(cbg) for cbg in population_df.census_block_group] for k in cols: if type(d.iloc[0][k]) != Counter: print('Filling %s with Counter objects' % k) d[k] = d[k].fillna('{}').map(lambda x:Counter(cast_keys_to_ints(json.loads(x)))) # map strings to counters. if population_df is not None: sub_t0 = time.time() new_col = '%s_adjusted' % k assert new_col not in d.columns total_population = population_df.total_cbg_population.to_numpy() time_period = k.strip('.visitor_home_cbgs') population_col = 'number_devices_residing_%s' % time_period assert(population_col in population_df.columns) num_devices = population_df[population_col].to_numpy() assert np.isnan(num_devices).sum() == 0 assert np.isnan(total_population).sum() == 0 cbg_coverage = num_devices / total_population median_coverage = np.nanmedian(cbg_coverage) cbg_coverage = dict(zip(int_cbgs, cbg_coverage)) assert ~np.isnan(median_coverage) assert ~np.isinf(median_coverage) assert median_coverage > 0.001 # want to make sure we aren't missing data for too many CBGs, so a small hack - have # adjust_home_cbg_counts_for_coverage return two arguments, where the second argument # tells us if we had to clip or fill in the missing coverage number. d[new_col] = d[k].map(lambda x:adjust_home_cbg_counts_for_coverage(x, cbg_coverage, median_coverage=median_coverage)) print('Finished adjusting home CBG counts for %s [time=%.3fs] had to fill in or clip coverage for %2.6f%% of rows; in those cases used median coverage %2.3f' % (time_period, time.time() - sub_t0, 100 * d[new_col].map(lambda x:x[1]).mean(), median_coverage)) d[new_col] = d[new_col].map(lambda x:x[0]) # remove the second argument of adjust_home_cbg_counts_for_coverage, we don't need it anymore. adjusted_cols.append(new_col) # make sure there are no NAs anywhere. assert d[k].map(lambda x:len([a for a in x.values() if np.isnan(a)])).sum() == 0 assert d[new_col].map(lambda x:len([a for a in x.values() if np.isnan(a)])).sum() == 0 # add counters together across months. d['aggregated_visitor_home_cbgs'] = d[cols].aggregate(func=sum, axis=1) # normalize each counter so its values sum to 1. d['aggregated_visitor_home_cbgs'] = d['aggregated_visitor_home_cbgs'].map(normalize_dict_values_to_sum_to_one_and_cast_keys_to_ints) if len(adjusted_cols) > 0: d['aggregated_cbg_population_adjusted_visitor_home_cbgs'] = d[adjusted_cols].aggregate(func=sum, axis=1) d['aggregated_cbg_population_adjusted_visitor_home_cbgs'] = d['aggregated_cbg_population_adjusted_visitor_home_cbgs'].map(normalize_dict_values_to_sum_to_one_and_cast_keys_to_ints) d = d.drop(columns=adjusted_cols) for k in ['aggregated_cbg_population_adjusted_visitor_home_cbgs', 'aggregated_visitor_home_cbgs']: y = d.loc[d[k].map(lambda x:len(x) > 0), k] y = y.map(lambda x:sum(x.values())) assert np.allclose(y, 1) print("Aggregating CBG visitors over %i time periods took %2.3f seconds" % (len(cols), time.time() - t0)) print("Fraction %2.3f of POIs have CBG visitor data" % (d['aggregated_visitor_home_cbgs'].map(lambda x:len(x) != 0).mean())) return d def adjust_home_cbg_counts_for_coverage(cbg_counter, cbg_coverage, median_coverage, max_upweighting_factor=100): """ Adjusts the POI-CBG counts from SafeGraph to estimate the true count, based on the coverage that SafeGraph has for this CBG. cbg_counter: a Counter object mapping CBG to the original count cbg_coverage: a dictionary where keys are CBGs and each data point represents SafeGraph's coverage: num_devices / total_population This should be between 0 and 1 for the vast majority of cases, although for some weird CBGs it may not be. Returns the adjusted dictionary and a Bool flag had_to_guess_coverage_value which tells us whether we had to adjust the coverage value. """ had_to_guess_coverage_value = False if len(cbg_counter) == 0: return cbg_counter, had_to_guess_coverage_value new_counter = Counter() for cbg in cbg_counter: # cover some special cases which should happen very rarely. if cbg not in cbg_coverage: upweighting_factor = 1 / median_coverage had_to_guess_coverage_value = True elif np.isnan(cbg_coverage[cbg]): # not sure this case ever actually happens, but just in case. upweighting_factor = 1 / median_coverage had_to_guess_coverage_value = True else: assert cbg_coverage[cbg] >= 0 upweighting_factor = 1 / cbg_coverage[cbg] # need to invert coverage if upweighting_factor > max_upweighting_factor: upweighting_factor = 1 / median_coverage had_to_guess_coverage_value = True new_counter[cbg] = cbg_counter[cbg] * upweighting_factor return new_counter, had_to_guess_coverage_value def compute_weighted_mean_of_cbg_visitors(cbg_visitor_fracs, cbg_values): """ Given a dictionary cbg_visitor_fracs which gives the fraction of people from a CBG which visit a POI and a dictionary cbg_values which maps CBGs to values, compute the weighted mean for the POI. """ if len(cbg_visitor_fracs) == 0: return None else: numerator = 0. denominator = 0. for cbg in cbg_visitor_fracs: if cbg not in cbg_values: continue numerator += cbg_visitor_fracs[cbg] * cbg_values[cbg] denominator += cbg_visitor_fracs[cbg] if denominator == 0: return None return numerator/denominator def load_dataframe_for_individual_msa(MSA_name, nrows=None): """ This loads all the POI info for a single MSA. """ t0 = time.time() filename = os.path.join(STRATIFIED_BY_AREA_DIR, '%s.csv' % MSA_name) d = pd.read_csv(filename, nrows=nrows) for k in (['aggregated_cbg_population_adjusted_visitor_home_cbgs', 'aggregated_visitor_home_cbgs']): d[k] = d[k].map(lambda x:cast_keys_to_ints(json.loads(x))) for k in ['%s.visitor_home_cbgs' % a for a in ALL_WEEKLY_STRINGS]: d[k] = d[k].fillna('{}') d[k] = d[k].map(lambda x:cast_keys_to_ints(json.loads(x))) print("Loaded %i rows for %s in %2.3f seconds" % (len(d), MSA_name, time.time() - t0)) return d def load_dataframe_to_correct_for_population_size(just_load_census_data=False): """ Load in a dataframe with rows for the 2018 ACS Census population code in each CBG and the SafeGraph population count in each CBG (from home-panel-summary.csv). The correlation is not actually that good, likely because individual CBG counts are noisy. Definition of num_devices_residing: Number of distinct devices observed with a primary nighttime location in the specified census block group. """ acs_data = pd.read_csv(PATH_TO_ACS_1YR_DATA, encoding='cp1252', usecols=['STATEA', 'COUNTYA', 'TRACTA', 'BLKGRPA','AJWBE001'], dtype={'STATEA':str, 'COUNTYA':str, 'BLKGRPA':str, 'TRACTA':str}) # https://www.census.gov/programs-surveys/geography/guidance/geo-identifiers.html # FULL BLOCK GROUP CODE = STATE+COUNTY+TRACT+BLOCK GROUP assert (acs_data['STATEA'].map(len) == 2).all() assert (acs_data['COUNTYA'].map(len) == 3).all() assert (acs_data['TRACTA'].map(len) == 6).all() assert (acs_data['BLKGRPA'].map(len) == 1).all() acs_data['census_block_group'] = (acs_data['STATEA'] + acs_data['COUNTYA'] + acs_data['TRACTA'] + acs_data['BLKGRPA']) acs_data['census_block_group'] = acs_data['census_block_group'].astype(int) assert len(set(acs_data['census_block_group'])) == len(acs_data) acs_data['county_code'] = (acs_data['STATEA'] + acs_data['COUNTYA']).astype(int) acs_data = acs_data[['census_block_group', 'AJWBE001', 'STATEA', 'county_code']] acs_data = acs_data.rename(mapper={'AJWBE001':'total_cbg_population', 'STATEA':'state_code'}, axis=1) print("%i rows of 2018 1-year ACS data read" % len(acs_data)) if just_load_census_data: return acs_data combined_data = acs_data # now read in safegraph data to use as normalizer. Months and years first. all_filenames = [] all_date_strings = [] for month, year in [(1, 2017),(2, 2017),(3, 2017),(4, 2017),(5, 2017),(6, 2017),(7, 2017),(8, 2017),(9, 2017),(10, 2017),(11, 2017),(12, 2017), (1, 2018),(2, 2018),(3, 2018),(4, 2018),(5, 2018),(6, 2018),(7, 2018),(8, 2018),(9, 2018),(10, 2018),(11, 2018),(12, 2018), (1, 2019),(2, 2019),(3, 2019),(4, 2019),(5, 2019),(6, 2019),(7, 2019),(8, 2019),(9, 2019),(10, 2019),(11, 2019),(12, 2019), (1, 2020),(2, 2020)]: if (year == 2019 and month == 12) or (year == 2020 and month in [1, 2]): upload_date_string = '2020-03-16' # we downloaded files in two groups; load them in the same way. else: upload_date_string = '2019-12-12' month_and_year_string = '%i_%02d-%s' % (year, month, upload_date_string) filename = os.path.join(UNZIPPED_DATA_DIR, 'SearchofAllRecords-CORE_POI-GEOMETRY-PATTERNS-%s' % month_and_year_string, 'home_panel_summary.csv') all_filenames.append(filename) all_date_strings.append('%i.%i' % (year, month)) # now weeks for date_string in ALL_WEEKLY_STRINGS: all_filenames.append(os.path.join(PATH_TO_HOME_PANEL_SUMMARY, '%s-home-panel-summary.csv' % date_string)) all_date_strings.append(date_string) cbgs_with_ratio_above_one = np.array([False for a in range(len(acs_data))]) for filename_idx, filename in enumerate(all_filenames): date_string = all_date_strings[filename_idx] print("\n*************") safegraph_counts = pd.read_csv(filename, dtype={'census_block_group':str}) print("%s: %i devices read from %i rows" % ( date_string, safegraph_counts['number_devices_residing'].sum(), len(safegraph_counts))) safegraph_counts = safegraph_counts[['census_block_group', 'number_devices_residing']] col_name = 'number_devices_residing_%s' % date_string safegraph_counts.columns = ['census_block_group', col_name] safegraph_counts['census_block_group'] = safegraph_counts['census_block_group'].map(int) assert len(safegraph_counts['census_block_group'].dropna()) == len(safegraph_counts) print("Number of unique Census blocks: %i; unique blocks %i: WARNING: DROPPING NON-UNIQUE ROWS" % (len(safegraph_counts['census_block_group'].drop_duplicates(keep=False)), len(safegraph_counts))) safegraph_counts = safegraph_counts.drop_duplicates(subset=['census_block_group'], keep=False) combined_data = pd.merge(combined_data, safegraph_counts, how='left', validate='one_to_one', on='census_block_group') missing_data_idxs = pd.isnull(combined_data[col_name]) print("Missing data for %i rows; filling with zeros" % missing_data_idxs.sum()) combined_data.loc[missing_data_idxs, col_name] = 0 r, p = pearsonr(combined_data['total_cbg_population'], combined_data[col_name]) combined_data['ratio'] = combined_data[col_name]/combined_data['total_cbg_population'] cbgs_with_ratio_above_one = cbgs_with_ratio_above_one | (combined_data['ratio'].values > 1) combined_data.loc[combined_data['total_cbg_population'] == 0, 'ratio'] = None print("Ratio of SafeGraph count to Census count") print(combined_data['ratio'].describe(percentiles=[.25, .5, .75, .9, .99, .999])) print("Correlation between SafeGraph and Census counts: %2.3f" % (r)) print("Warning: %i CBGs with a ratio greater than 1 in at least one month" % cbgs_with_ratio_above_one.sum()) del combined_data['ratio'] combined_data.index = range(len(combined_data)) assert len(combined_data.dropna()) == len(combined_data) return combined_data def load_and_reconcile_multiple_acs_data(): """ Because we use Census data from two data sources, load a single dataframe that combines both. """ acs_1_year_d = load_dataframe_to_correct_for_population_size(just_load_census_data=True) column_rename = {'total_cbg_population':'total_cbg_population_2018_1YR'} acs_1_year_d = acs_1_year_d.rename(mapper=column_rename, axis=1) acs_1_year_d['state_name'] = acs_1_year_d['state_code'].map(lambda x:FIPS_CODES_FOR_50_STATES_PLUS_DC[str(x)] if str(x) in FIPS_CODES_FOR_50_STATES_PLUS_DC else np.nan) acs_5_year_d = pd.read_csv(PATH_TO_ACS_5YR_DATA) print('%i rows of 2017 5-year ACS data read' % len(acs_5_year_d)) acs_5_year_d['census_block_group'] = acs_5_year_d['GEOID'].map(lambda x:x.split("US")[1]).astype(int) # rename dynamic attributes to indicate that they are from ACS 2017 5-year dynamic_attributes = ['p_black', 'p_white', 'p_asian', 'median_household_income', 'block_group_area_in_square_miles', 'people_per_mile'] column_rename = {attr:'%s_2017_5YR' % attr for attr in dynamic_attributes} acs_5_year_d = acs_5_year_d.rename(mapper=column_rename, axis=1) # repetitive with 'state_code' and 'county_code' column from acs_1_year_d acs_5_year_d = acs_5_year_d.drop(['Unnamed: 0', 'STATEFP', 'COUNTYFP'], axis=1) combined_d = pd.merge(acs_1_year_d, acs_5_year_d, on='census_block_group', how='outer', validate='one_to_one') combined_d['people_per_mile_hybrid'] = combined_d['total_cbg_population_2018_1YR'] / combined_d['block_group_area_in_square_miles_2017_5YR'] return combined_d def compute_cbg_day_prop_out(sdm_of_interest, cbgs_of_interest=None): ''' Computes the proportion of people leaving a CBG on each day. It returns a new DataFrame, with one row per CBG representing proportions for each day in sdm_of_interest. sdm_of_interest: a Social Distancing Metrics dataframe, data for the time period of interest cbgs_of_interest: a list, the CBGs for which to compute reweighting; if None, then reweighting is computed for all CBGs in sdm_of_interest --------------------------------------- Sample usage: sdm_sq = helper.load_social_distancing_metrics(status_quo_days) days_of_interest = helper.list_datetimes_in_range(datetime.datetime(2020, 3, 1), datetime.datetime(2020, 4, 1)) sdm_of_interest = helper.load_social_distancing_metrics(days_of_interest) reweightings_df = helper.compute_cbg_day_reweighting( sdm_of_interest) ''' # Process SDM of interest dataframe orig_len = len(sdm_of_interest) interest_num_home_cols = [col for col in sdm_of_interest.columns if col.endswith('completely_home_device_count')] interest_device_count_cols = [col for col in sdm_of_interest.columns if col.endswith('device_count') and col not in interest_num_home_cols] sdm_of_interest = sdm_of_interest.dropna(subset=interest_device_count_cols + interest_num_home_cols) assert sdm_of_interest['census_block_group'].duplicated().sum() == 0 sdm_of_interest.set_index(sdm_of_interest['census_block_group'].values, inplace=True) print('Kept %i / %i CBGs with non-NaN SDM for days of interest' % (len(sdm_of_interest), orig_len)) if cbgs_of_interest is None: cbgs_of_interest = sdm_of_interest.census_block_group.unique() # Find CBGs in common between SDM dataframe and CBGs of interest cbgs_with_data = set(cbgs_of_interest).intersection(sdm_of_interest.index) print('Found SDM data for %i / %i CBGs of interest' % (len(cbgs_with_data), len(cbgs_of_interest))) # Get proportion of population that goes out during days of interest sub_sdm_int = sdm_of_interest[sdm_of_interest['census_block_group'].isin(cbgs_with_data)] assert(len(sub_sdm_int) == len(cbgs_with_data)) sub_sdm_int = sub_sdm_int.sort_values(by='census_block_group') assert list(sub_sdm_int['census_block_group']) == sorted(cbgs_with_data) int_num_out = sub_sdm_int[interest_device_count_cols].values - sub_sdm_int[interest_num_home_cols].values int_prop_out = int_num_out / sub_sdm_int[interest_device_count_cols].values int_prop_out = np.clip(int_prop_out, 1e-10, None) # so that the reweighting is not zero N, T = int_prop_out.shape dates = [col.strip('_device_count') for col in interest_device_count_cols] dates2 = [col.strip('_completely_home_device_count') for col in interest_num_home_cols] assert dates == dates2 sorted_cbgs_with_data = sorted(cbgs_with_data) prop_df = pd.DataFrame(int_prop_out, columns=dates) prop_df['census_block_group'] = sorted_cbgs_with_data # If we could not compute reweighting for a CBG, use median reweighting for that day if len(cbgs_with_data) < len(cbgs_of_interest): missing_cbgs = set(cbgs_of_interest) - cbgs_with_data print('Filling %d CBGs with median props' % len(missing_cbgs)) median_prop = np.median(int_prop_out, axis=0) missing_props = np.broadcast_to(median_prop, (len(missing_cbgs), T)) missing_props_df = pd.DataFrame(missing_props, columns=dates) missing_props_df['census_block_group'] = list(missing_cbgs) prop_df = pd.concat((prop_df, missing_props_df)) return prop_df def write_out_acs_5_year_data(): cbg_mapper = CensusBlockGroups(base_directory=PATH_FOR_CBG_MAPPER, gdb_files=None) geometry_cols = ['STATEFP', 'COUNTYFP', 'TRACTCE', 'Metropolitan/Micropolitan Statistical Area', 'CBSA Title', 'State Name'] block_group_cols = ['GEOID', 'p_black', 'p_white', 'p_asian', 'median_household_income', 'block_group_area_in_square_miles', 'people_per_mile'] for k in geometry_cols: cbg_mapper.block_group_d[k] = cbg_mapper.geometry_d[k].values df_to_write_out = cbg_mapper.block_group_d[block_group_cols + geometry_cols] print("Total rows: %i" % len(df_to_write_out)) print("Missing data") print(pd.isnull(df_to_write_out).mean()) df_to_write_out.to_csv(PATH_TO_ACS_5YR_DATA) class CensusBlockGroups: """ A class for loading geographic and demographic data from the ACS. A census block group is a relatively small area. Less good than houses but still pretty granular. https://en.wikipedia.org/wiki/Census_block_group Data was downloaded from https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.html We use the most recent ACS 5-year estimates: 2013-2017, eg: wget https://www2.census.gov/geo/tiger/TIGER_DP/2017ACS/ACS_2017_5YR_BG.gdb.zip These files are convenient because they combine both geographic boundaries + demographic data, leading to a cleaner join. The main method for data access is get_demographic_stats_of_point. Sample usage: x = CensusBlockGroups(gdb_files=['ACS_2017_5YR_BG_51_VIRGINIA.gdb']) x.get_demographic_stats_of_points(latitudes=[38.8816], longitudes=[-77.0910], desired_cols=['p_black', 'p_white', 'mean_household_income']) """ def __init__(self, base_directory=PATH_TO_CENSUS_BLOCK_GROUP_DATA, gdb_files=None, county_to_msa_mapping_filepath=PATH_TO_COUNTY_TO_MSA_MAPPING): self.base_directory = base_directory if gdb_files is None: self.gdb_files = ['ACS_2017_5YR_BG.gdb'] else: self.gdb_files = gdb_files self.crs_to_use = WGS_84_CRS # https://epsg.io/4326, WGS84 - World Geodetic System 1984, used in GPS. self.county_to_msa_mapping_filepath = county_to_msa_mapping_filepath self.load_raw_dataframes() # Load in raw geometry and demographic dataframes. # annotate demographic data with more useful columns. self.annotate_with_race() self.annotate_with_income() self.annotate_with_counties_to_msa_mapping() self.annotate_with_area_and_pop_density() def annotate_with_area_and_pop_density(self): # https://gis.stackexchange.com/questions/218450/getting-polygon-areas-using-geopandas. # See comments about using cea projection. gdf = self.geometry_d[['geometry']].copy().to_crs({'proj':'cea'}) area_in_square_meters = gdf['geometry'].area.values self.block_group_d['block_group_area_in_square_miles'] = area_in_square_meters / (1609.34 ** 2) self.block_group_d['people_per_mile'] = (self.block_group_d['B03002e1'] / self.block_group_d['block_group_area_in_square_miles']) print(self.block_group_d[['block_group_area_in_square_miles', 'people_per_mile']].describe()) def annotate_with_race(self): """ Analysis focuses on black and non-white population groups. Also annotate with p_asian because of possible anti-Asian discrimination. B03002e1 HISPANIC OR LATINO ORIGIN BY RACE: Total: Total population -- (Estimate) B03002e3 HISPANIC OR LATINO ORIGIN BY RACE: Not Hispanic or Latino: White alone: Total population -- (Estimate) B03002e4 HISPANIC OR LATINO ORIGIN BY RACE: Not Hispanic or Latino: Black or African American alone: Total population -- (Estimate) B03002e6 HISPANIC OR LATINO ORIGIN BY RACE: Not Hispanic or Latino: Asian alone: Total population -- (Estimate) """ print("annotating with race") self.block_group_d['p_black'] = self.block_group_d['B03002e4'] / self.block_group_d['B03002e1'] self.block_group_d['p_white'] = self.block_group_d['B03002e3'] / self.block_group_d['B03002e1'] self.block_group_d['p_asian'] = self.block_group_d['B03002e6'] / self.block_group_d['B03002e1'] print(self.block_group_d[['p_black', 'p_white', 'p_asian']].describe()) def load_raw_dataframes(self): """ Read in the original demographic + geographic data. """ self.block_group_d = None self.geometry_d = None demographic_layer_names = ['X25_HOUSING_CHARACTERISTICS', 'X01_AGE_AND_SEX', 'X03_HISPANIC_OR_LATINO_ORIGIN', 'X19_INCOME'] for file in self.gdb_files: # https://www.reddit.com/r/gis/comments/775imb/accessing_a_gdb_without_esri_arcgis/doj9zza full_path = os.path.join(self.base_directory, file) layer_list = fiona.listlayers(full_path) print(file) print(layer_list) geographic_layer_name = [a for a in layer_list if a[:15] == 'ACS_2017_5YR_BG'] assert len(geographic_layer_name) == 1 geographic_layer_name = geographic_layer_name[0] geographic_data = geopandas.read_file(full_path, layer=geographic_layer_name).to_crs(self.crs_to_use) # by default when you use the read file command, the column containing spatial objects is named "geometry", and will be set as the active column. print(geographic_data.columns) geographic_data = geographic_data.sort_values(by='GEOID_Data')[['GEOID_Data', 'geometry', 'STATEFP', 'COUNTYFP', 'TRACTCE']] for demographic_idx, demographic_layer_name in enumerate(demographic_layer_names): assert demographic_layer_name in layer_list if demographic_idx == 0: demographic_data = geopandas.read_file(full_path, layer=demographic_layer_name) else: old_len = len(demographic_data) new_df = geopandas.read_file(full_path, layer=demographic_layer_name) assert sorted(new_df['GEOID']) == sorted(demographic_data['GEOID']) demographic_data = demographic_data.merge(new_df, on='GEOID', how='inner') assert old_len == len(demographic_data) demographic_data = demographic_data.sort_values(by='GEOID') shared_geoids = set(demographic_data['GEOID'].values).intersection(set(geographic_data['GEOID_Data'].values)) print("Length of demographic data: %i; geographic data %i; %i GEOIDs in both" % (len(demographic_data), len(geographic_data), len(shared_geoids))) demographic_data = demographic_data.loc[demographic_data['GEOID'].map(lambda x:x in shared_geoids)] geographic_data = geographic_data.loc[geographic_data['GEOID_Data'].map(lambda x:x in shared_geoids)] demographic_data.index = range(len(demographic_data)) geographic_data.index = range(len(geographic_data)) assert (geographic_data['GEOID_Data'] == demographic_data['GEOID']).all() assert len(geographic_data) == len(set(geographic_data['GEOID_Data'])) if self.block_group_d is None: self.block_group_d = demographic_data else: self.block_group_d = pd.concat([self.block_group_d, demographic_data]) if self.geometry_d is None: self.geometry_d = geographic_data else: self.geometry_d = pd.concat([self.geometry_d, geographic_data]) assert pd.isnull(self.geometry_d['STATEFP']).sum() == 0 good_idxs = self.geometry_d['STATEFP'].map(lambda x:x in FIPS_CODES_FOR_50_STATES_PLUS_DC).values print("Warning: the following State FIPS codes are being filtered out") print(self.geometry_d.loc[~good_idxs, 'STATEFP'].value_counts()) print("%i/%i Census Block Groups in total removed" % ((~good_idxs).sum(), len(good_idxs))) self.geometry_d = self.geometry_d.loc[good_idxs] self.block_group_d = self.block_group_d.loc[good_idxs] self.geometry_d.index = self.geometry_d['GEOID_Data'].values self.block_group_d.index = self.block_group_d['GEOID'].values def annotate_with_income(self): """ We want a single income number for each block group. This method computes that. """ print("Computing household income") # copy-pasted column definitions right out of the codebook. codebook_string = """ B19001e2 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): Less than $10,000: Households -- (Estimate) B19001e3 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $10,000 to $14,999: Households -- (Estimate) B19001e4 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $15,000 to $19,999: Households -- (Estimate) B19001e5 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $20,000 to $24,999: Households -- (Estimate) B19001e6 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $25,000 to $29,999: Households -- (Estimate) B19001e7 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $30,000 to $34,999: Households -- (Estimate) B19001e8 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $35,000 to $39,999: Households -- (Estimate) B19001e9 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $40,000 to $44,999: Households -- (Estimate) B19001e10 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $45,000 to $49,999: Households -- (Estimate) B19001e11 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $50,000 to $59,999: Households -- (Estimate) B19001e12 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $60,000 to $74,999: Households -- (Estimate) B19001e13 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $75,000 to $99,999: Households -- (Estimate) B19001e14 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $100,000 to $124,999: Households -- (Estimate) B19001e15 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $125,000 to $149,999: Households -- (Estimate) B19001e16 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $150,000 to $199,999: Households -- (Estimate) B19001e17 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): $200,000 or more: Households -- (Estimate) """ self.income_bin_edges = [0] + list(range(10000, 50000, 5000)) + [50000, 60000, 75000, 100000, 125000, 150000, 200000] income_column_names_to_vals = {} column_codes = codebook_string.split('\n') for f in column_codes: if len(f.strip()) == 0: continue col_name = f.split('HOUSEHOLD INCOME')[0].strip() if col_name == 'B19001e2': val = 10000 elif col_name == 'B19001e17': val = 200000 else: lower_bound = float(f.split('$')[1].split()[0].replace(',', '')) upper_bound = float(f.split('$')[2].split(':')[0].replace(',', '')) val = (lower_bound + upper_bound) / 2 income_column_names_to_vals[col_name] = val print("The value for column %s is %2.1f" % (col_name, val)) # each column gives the count of households with that income. So we need to take a weighted sum to compute the average income. self.block_group_d['total_household_income'] = 0. self.block_group_d['total_households'] = 0. for col in income_column_names_to_vals: self.block_group_d['total_household_income'] += self.block_group_d[col] * income_column_names_to_vals[col] self.block_group_d['total_households'] += self.block_group_d[col] self.block_group_d['mean_household_income'] = 1.*self.block_group_d['total_household_income'] / self.block_group_d['total_households'] self.block_group_d['median_household_income'] = self.block_group_d['B19013e1'] # MEDIAN HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS): Median household income in the past 12 months (in 2017 inflation-adjusted dollars): Households -- (Estimate) assert (self.block_group_d['total_households'] == self.block_group_d['B19001e1']).all() # sanity check: our count should agree with theirs. assert (pd.isnull(self.block_group_d['mean_household_income']) == (self.block_group_d['B19001e1'] == 0)).all() print("Warning: missing income data for %2.1f%% of census blocks with 0 households" % (pd.isnull(self.block_group_d['mean_household_income']).mean() * 100)) self.income_column_names_to_vals = income_column_names_to_vals assert len(self.income_bin_edges) == len(self.income_column_names_to_vals) print(self.block_group_d[['mean_household_income', 'total_households']].describe()) def annotate_with_counties_to_msa_mapping(self): """ Annotate with metropolitan area info for consistency with Experienced Segregation paper. # https://www2.census.gov/programs-surveys/metro-micro/geographies/reference-files/2017/delineation-files/list1.xls """ print("Loading county to MSA mapping") self.counties_to_msa_df = pd.read_csv(self.county_to_msa_mapping_filepath, skiprows=2, dtype={'FIPS State Code':str, 'FIPS County Code':str}) print("%i rows read" % len(self.counties_to_msa_df)) self.counties_to_msa_df = self.counties_to_msa_df[['CBSA Title', 'Metropolitan/Micropolitan Statistical Area', 'State Name', 'FIPS State Code', 'FIPS County Code']] self.counties_to_msa_df.columns = ['CBSA Title', 'Metropolitan/Micropolitan Statistical Area', 'State Name', 'STATEFP', 'COUNTYFP'] self.counties_to_msa_df = self.counties_to_msa_df.dropna(how='all') # remove a couple blank rows. assert self.counties_to_msa_df['Metropolitan/Micropolitan Statistical Area'].map(lambda x:x in ['Metropolitan Statistical Area', 'Micropolitan Statistical Area']).all() print("Number of unique Metropolitan statistical areas: %i" % len(set(self.counties_to_msa_df.loc[self.counties_to_msa_df['Metropolitan/Micropolitan Statistical Area'] == 'Metropolitan Statistical Area', 'CBSA Title']))) print("Number of unique Micropolitan statistical areas: %i" % len(set(self.counties_to_msa_df.loc[self.counties_to_msa_df['Metropolitan/Micropolitan Statistical Area'] == 'Micropolitan Statistical Area', 'CBSA Title']))) old_len = len(self.geometry_d) assert len(self.counties_to_msa_df.drop_duplicates(['STATEFP', 'COUNTYFP'])) == len(self.counties_to_msa_df) self.geometry_d = self.geometry_d.merge(self.counties_to_msa_df, on=['STATEFP', 'COUNTYFP'], how='left') # For some reason the index gets reset here. Annoying, not sure why. self.geometry_d.index = self.geometry_d['GEOID_Data'].values assert len(self.geometry_d) == old_len assert (self.geometry_d.index == self.block_group_d.index).all() def get_demographic_stats_of_points(self, latitudes, longitudes, desired_cols): """ Given a list or array of latitudes and longitudes, matches to Census Block Group. Returns a dictionary which includes the state and county FIPS code, along with any columns in desired_cols. This method assumes the latitudes and longitudes are in https://epsg.io/4326, which is what I think is used for Android/iOS -> SafeGraph coordinates. """ def dtype_pandas_series(obj): return str(type(obj)) == "<class 'pandas.core.series.Series'>" assert not dtype_pandas_series(latitudes) assert not dtype_pandas_series(longitudes) assert len(latitudes) == len(longitudes) t0 = time.time() # we have to match stuff a million rows at a time because otherwise we get weird memory warnings. start_idx = 0 end_idx = start_idx + int(1e6) merged = [] while start_idx < len(longitudes): print("Doing spatial join on points with indices from %i-%i" % (start_idx, min(end_idx, len(longitudes)))) points = geopandas.GeoDataFrame(pd.DataFrame({'placeholder':np.array(range(start_idx, min(end_idx, len(longitudes))))}), # this column doesn't matter. We just have to create a geo data frame. geometry=geopandas.points_from_xy(longitudes[start_idx:end_idx], latitudes[start_idx:end_idx]), crs=self.crs_to_use) # see eg gdf = geopandas.GeoDataFrame(df, geometry=geopandas.points_from_xy(df.Longitude, df.Latitude)). http://geopandas.org/gallery/create_geopandas_from_pandas.html merged.append(sjoin(points, self.geometry_d[['geometry']], how='left', op='within')) assert len(merged[-1]) == len(points) start_idx += int(1e6) end_idx += int(1e6) merged = pd.concat(merged) merged.index = range(len(merged)) assert list(merged.index) == list(merged['placeholder']) could_not_match = pd.isnull(merged['index_right']).values print("Cannot match to a CBG for a fraction %2.3f of points" % could_not_match.mean()) results = {} for k in desired_cols + ['state_fips_code', 'county_fips_code', 'Metropolitan/Micropolitan Statistical Area', 'CBSA Title', 'GEOID_Data', 'TRACTCE']: results[k] = [None] * len(latitudes) results = pd.DataFrame(results) matched_geoids = merged['index_right'].values[~could_not_match] for c in desired_cols: results.loc[~could_not_match, c] = self.block_group_d.loc[matched_geoids, c].values if c in ['p_white', 'p_black', 'mean_household_income', 'median_household_income', 'new_census_monthly_rent_to_annual_income_multiplier', 'new_census_median_monthly_rent_to_annual_income_multiplier']: results[c] = results[c].astype('float') results.loc[~could_not_match, 'state_fips_code'] = self.geometry_d.loc[matched_geoids, 'STATEFP'].values results.loc[~could_not_match, 'county_fips_code'] = self.geometry_d.loc[matched_geoids, 'COUNTYFP'].values results.loc[~could_not_match, 'Metropolitan/Micropolitan Statistical Area'] = self.geometry_d.loc[matched_geoids,'Metropolitan/Micropolitan Statistical Area'].values results.loc[~could_not_match, 'CBSA Title'] = self.geometry_d.loc[matched_geoids, 'CBSA Title'].values results.loc[~could_not_match, 'GEOID_Data'] = self.geometry_d.loc[matched_geoids, 'GEOID_Data'].values results.loc[~could_not_match, 'TRACTCE'] = self.geometry_d.loc[matched_geoids, 'TRACTCE'].values print("Total query time is %2.3f" % (time.time() - t0)) return results
snap-stanford/covid-mobility
helper_methods_for_aggregate_data_analysis.py
helper_methods_for_aggregate_data_analysis.py
py
68,047
python
en
code
146
github-code
6
8655705907
import errno import os import requests from pathlib import Path import sly_globals as g import supervisely as sly from supervisely.app.v1.widgets.progress_bar import ProgressBar progress5 = ProgressBar(g.task_id, g.api, "data.progress5", "Download weights", is_size=True, min_report_percent=5) local_weights_path = None def get_models_list(): from train import model_list res = [] for name, data in model_list.items(): res.append({ "model": name, "description": data["description"] }) return res def get_table_columns(): return [ {"key": "model", "title": "Model", "subtitle": None}, {"key": "description", "title": "Description", "subtitle": None}, ] def get_model_info_by_name(name): models = get_models_list() for info in models: if info["model"] == name: return info raise KeyError(f"Model {name} not found") def init(data, state): models = get_models_list() data["models"] = models data["modelColumns"] = get_table_columns() state["selectedModel"] = models[0]["model"] state["weightsInitialization"] = "random" # "custom" state["collapsed5"] = True state["disabled5"] = True progress5.init_data(data) state["weightsPath"] = "" data["done5"] = False def restart(data, state): data["done5"] = False @g.my_app.callback("download_weights") @sly.timeit @g.my_app.ignore_errors_and_show_dialog_window() def download_weights(api: sly.Api, task_id, context, state, app_logger): #"https://download.pytorch.org/models/vgg11-8a719046.pth" to /root/.cache/torch/hub/checkpoints/vgg11-8a719046.pth from train import model_list global local_weights_path try: if state["weightsInitialization"] == "custom": weights_path_remote = state["weightsPath"] if not weights_path_remote.endswith(".pth"): raise ValueError(f"Weights file has unsupported extension {sly.fs.get_file_ext(weights_path_remote)}. " f"Supported: '.pth'") # get architecture type from previous UI state prev_state_path_remote = os.path.join(str(Path(weights_path_remote).parents[1]), "info/ui_state.json") prev_state_path = os.path.join(g.my_app.data_dir, "ui_state.json") api.file.download(g.team_id, prev_state_path_remote, prev_state_path) prev_state = sly.json.load_json_file(prev_state_path) api.task.set_field(g.task_id, "state.selectedModel", prev_state["selectedModel"]) local_weights_path = os.path.join(g.my_app.data_dir, sly.fs.get_file_name_with_ext(weights_path_remote)) if sly.fs.file_exists(local_weights_path) is False: file_info = g.api.file.get_info_by_path(g.team_id, weights_path_remote) if file_info is None: raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), weights_path_remote) progress5.set_total(file_info.sizeb) g.api.file.download(g.team_id, weights_path_remote, local_weights_path, g.my_app.cache, progress5.increment) progress5.reset_and_update() else: weights_url = model_list[state["selectedModel"]].get("pretrained") if weights_url is not None: default_pytorch_dir = "/root/.cache/torch/hub/checkpoints/" #local_weights_path = os.path.join(g.my_app.data_dir, sly.fs.get_file_name_with_ext(weights_url)) local_weights_path = os.path.join(default_pytorch_dir, sly.fs.get_file_name_with_ext(weights_url)) if sly.fs.file_exists(local_weights_path) is False: response = requests.head(weights_url, allow_redirects=True) sizeb = int(response.headers.get('content-length', 0)) progress5.set_total(sizeb) os.makedirs(os.path.dirname(local_weights_path), exist_ok=True) sly.fs.download(weights_url, local_weights_path, g.my_app.cache, progress5.increment) progress5.reset_and_update() sly.logger.info("Pretrained weights has been successfully downloaded", extra={"weights": local_weights_path}) except Exception as e: progress5.reset_and_update() raise e fields = [ {"field": "data.done5", "payload": True}, {"field": "state.collapsed6", "payload": False}, {"field": "state.disabled6", "payload": False}, {"field": "state.activeStep", "payload": 6}, ] g.api.app.set_fields(g.task_id, fields) def restart(data, state): data["done5"] = False
supervisely-ecosystem/unet
supervisely/train/src/ui/step05_models.py
step05_models.py
py
4,736
python
en
code
2
github-code
6
5475332432
class Empleado(): def __init__(self, nombre, cargo, salario): self.nombre = nombre self.cargo = cargo self.salario = salario def __str__(self): return "{} que trabaja como {} tiene un salario de {} €".format(self.nombre, self.cargo, self.salario) listaEmpleados=[ Empleado("juan", "director", 75000), Empleado("ana", "presidente", 85000), Empleado("antonio", "administrativo", 45000), Empleado("sara", "analista", 25000), Empleado("mario", "secratario", 15000) ] salarios_altos=filter(lambda empleado:empleado.salario>50000, listaEmpleados) for empledo_salario in salarios_altos: print(empledo_salario)
mivargas/ejercicios-de-python
funcion_filter2.py
funcion_filter2.py
py
626
python
es
code
0
github-code
6
108222953
''' Created on Oct 31, 2010 @author: pekka ''' from event import MapBuiltEvent, SectorsLitRequest, CharactorMoveEvent, CharactorTurnAndMoveRequest, \ DimAllSectorsRequest, CharactorPlaceEvent, CalculatePathRequest, OccupiedSectorAction, \ FreeSectorAction, ActiveCharactorChangeEvent, CharactorPlaceRequest import constants import math from astar import a_star #------------------------------------------------------------------------------ class Map: """...""" STATE_PREPARING = 0 STATE_BUILT = 1 #---------------------------------------------------------------------- def __init__(self, event_manager, grid_size_x, grid_size_y, walls_up, walls_right, walls_left, walls_down): self.event_manager = event_manager self.event_manager.register_listener( self ) self.state = Map.STATE_PREPARING self.grid_size_x = grid_size_x self.grid_size_y = grid_size_y self.sectors = None self.free_start_sector_indices = [0, 1, 2, 3] self.map_state = MapState(event_manager) self.walls_up = walls_up self.walls_right = walls_right self.walls_left = walls_left self.walls_down = walls_down #---------------------------------------------------------------------- def build(self): self.sectors = [Sector(x) for x in xrange(self.grid_size_x*self.grid_size_y)] for i, sector in enumerate(self.sectors): if i > self.grid_size_x-1: #not first row sector.neighbors[constants.DIRECTION_UP] = self.sectors[i-self.grid_size_x] upleft = i-(self.grid_size_x+1) if upleft > -1 and not (upleft+1) % self.grid_size_x == 0: sector.corners[constants.DIRECTION_UP_LEFT] = self.sectors[upleft] upright = i-(self.grid_size_x-1) if not (upright) % self.grid_size_x == 0: sector.corners[constants.DIRECTION_UP_RIGHT] = self.sectors[upright] if i == 0 or not (i+1) % self.grid_size_x == 0: #not rightmost column sector.neighbors[constants.DIRECTION_RIGHT] = self.sectors[i+1] if i < self.grid_size_x*(self.grid_size_y-1): #not last row sector.neighbors[constants.DIRECTION_DOWN] = self.sectors[i+self.grid_size_x] downleft = i+(self.grid_size_x-1) if not (downleft+1) % self.grid_size_x == 0 : sector.corners[constants.DIRECTION_DOWN_LEFT] = self.sectors[downleft] downright = i+self.grid_size_x+1 if downright < self.grid_size_x*self.grid_size_y and not (downright) % self.grid_size_x == 0: sector.corners[constants.DIRECTION_DOWN_RIGHT] = self.sectors[downright] if not i % self.grid_size_x == 0: #not leftmost column sector.neighbors[constants.DIRECTION_LEFT] = self.sectors[i-1] for i in self.walls_up: self.sectors[i].neighbors[constants.DIRECTION_UP] = None for i in self.walls_right: self.sectors[i].neighbors[constants.DIRECTION_RIGHT] = None for i in self.walls_down: self.sectors[i].neighbors[constants.DIRECTION_DOWN] = None for i in self.walls_left: self.sectors[i].neighbors[constants.DIRECTION_LEFT] = None for sector in self.sectors: for corner in sector.corners: if not self._is_open_corner_of(corner, sector): sector.corners[sector.corners.index(corner)] = None self.state = Map.STATE_BUILT new_event = MapBuiltEvent(self) self.event_manager.post(new_event) def _is_open_corner_of(self, corner, sector): for neighbor in sector.neighbors: if not neighbor == None and corner in neighbor.neighbors: return True return False def fov(self, charactor): angle = 0 lit_sectors = set() lit_sectors.add(charactor.sector) while angle < 360: delta_x = math.cos(angle*0.01745) delta_y = math.sin(angle*0.01745) lit_sectors = lit_sectors.union(self.determine_fov(charactor.sector, charactor.radius, delta_x, delta_y)) angle += 6 #magic number here new_event = DimAllSectorsRequest() self.event_manager.post(new_event) new_event = SectorsLitRequest(lit_sectors) self.event_manager.post(new_event) #---------------------------------------------------------------------- def determine_fov(self, sector, radius, delta_x, delta_y): i = 0 original_x = self.sector_x(sector)+0.5 original_y = self.sector_y(sector)+0.5 lit_sectors = [] while i < radius: old_sector = self.sector_by_coordinates((original_x), (original_y)) original_x += delta_x original_y += delta_y new_sector = self.sector_by_coordinates((original_x), (original_y)) if not new_sector == None: if not new_sector == old_sector and (new_sector in old_sector.neighbors or new_sector in old_sector.corners): lit_sectors.append(new_sector) else: return lit_sectors i += 1 return lit_sectors def sector_x(self, sector): return self.sectors.index(sector) % self.grid_size_x def sector_y(self, sector): return self.sectors.index(sector)/self.grid_size_x def sector_by_coordinates(self, x_coordinate, y_coordinate): if x_coordinate >= 0 and x_coordinate < self.grid_size_x and y_coordinate >= 0 and y_coordinate < self.grid_size_y: index = int(math.floor(y_coordinate)*11.0+math.floor(x_coordinate)) #TODO magic number if index > -1: return self.sectors[index] def charactor_by_coordinates(self, x_coordinate, y_coordinate): sector = self.sector_by_coordinates(x_coordinate/constants.GRID_SIZE, y_coordinate/constants.GRID_SIZE) if sector == None or self.map_state.sector_is_free(sector): return None else: return self.map_state.actors_by_sector_id.get(sector.sector_id, -1) #---------------------------------------------------------------------- def notify(self, event): if isinstance(event, CharactorMoveEvent) or isinstance(event, CharactorPlaceEvent) or isinstance(event, ActiveCharactorChangeEvent): self.fov(event.charactor) elif isinstance(event, CalculatePathRequest): goal = self.sector_by_coordinates(event.pos[0]/constants.GRID_SIZE, event.pos[1]/constants.GRID_SIZE) path = a_star(event.start_sector, goal, self) if not path == None: path.append(goal) for index, node in enumerate(path): if index < len(path)-1: new_event = CharactorTurnAndMoveRequest(node.neighbors.index(path[index+1])) self.event_manager.post(new_event) elif isinstance(event, OccupiedSectorAction): event.function(self.charactor_by_coordinates(event.pos[0], event.pos[1])) elif isinstance(event, CharactorPlaceRequest): if not len(self.free_start_sector_indices) == 0: event.charactor.place(self.sectors[self.free_start_sector_indices.pop(0)]) #------------------------------------------------------------------------------ class Sector: """...""" def __init__(self, sector_id=0): self.sector_id = sector_id self.neighbors = range(4) self.corners = range(4) self.neighbors[constants.DIRECTION_UP] = None self.neighbors[constants.DIRECTION_DOWN] = None self.neighbors[constants.DIRECTION_LEFT] = None self.neighbors[constants.DIRECTION_RIGHT] = None self.corners[constants.DIRECTION_UP_RIGHT] = None self.corners[constants.DIRECTION_DOWN_RIGHT] = None self.corners[constants.DIRECTION_DOWN_LEFT] = None self.corners[constants.DIRECTION_UP_LEFT] = None #---------------------------------------------------------------------- def move_possible(self, direction): if self.neighbors[direction]: return True else: return False def __repr__(self): result = "[Sector] " result += "id: %s, " % (self.sector_id, ) result += "neighbors: %s, " % ([neighbor.sector_id for neighbor in self.neighbors if not neighbor == None], ) result += "open corners: %s" % ([open_corner.sector_id for open_corner in self.corners if not open_corner == None]) return result class MapState: """Keeps record of occupied sectors and actors occupying them""" def __init__(self, event_manager): self.event_manager = event_manager event_manager.register_listener(self) self.occupied_sectors_by_actor_id = {} self.actors_by_sector_id = {} def sector_is_free(self, sector): if sector not in self.occupied_sectors_by_actor_id.values(): return True return False def notify(self, event): if isinstance(event, CharactorPlaceEvent) or isinstance(event, CharactorMoveEvent): self.occupied_sectors_by_actor_id[event.charactor.charactor_id] = event.charactor.sector self.actors_by_sector_id[event.charactor.sector.sector_id] = event.charactor #print [(c,d) for c,d in enumerate(self.actors_by_sector_id)] #print [(c, d) for c,d in enumerate(self.occupied_sectors_by_actor_id)] elif isinstance(event, FreeSectorAction): event.function(self.sector_is_free(event.sector))
speque/shallowspace
shallowspace/map.py
map.py
py
10,022
python
en
code
2
github-code
6
40260766080
import gvar as gv import corrfitter as cf import numpy as np import collections import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.ticker import MultipleLocator matplotlib.use('Agg') plt.rc("font",**{"size":18}) import datetime import os import pickle import copy #from plotting import * import lsqfit lsqfit.nonlinear_fit.set(fitter='gsl_multifit',alg='subspace2D',scaler='more',solver='cholesky')#,solver='cholesky') #################################### maxiter=5000 ####################################################################################################### def read_setup(setup): #Reads in setups, and strips out currents, parents and daughters, as well as which is which daughters = [] currents = [] parents = [] for element in setup: lab = element.split('-') daughters.append(lab[0]) currents.append(lab[1]) parents.append(lab[2]) return(daughters,currents,parents) ###################################################################################################### def strip_list(l): #Strips elemenst from list l stripped = '' for element in l: stripped = '{0}{1}'.format(stripped,element) return(stripped) ###################################################################################################### def make_params(Fit,FitMasses,FitTwists,FitTs,daughters,currents,parents): #Removes things we do not want to fit, specified by FitMasses, FitTwists, FitTs assumes parents have varing mass and daughters varing twist j = 0 for i in range(len(Fit['masses'])): if i not in FitMasses: del Fit['masses'][i-j] for element in set(parents): del Fit['tmaxes{0}'.format(element)][i-j] j += 1 j = 0 for i in range(len(Fit['twists'])): if i not in FitTwists: del Fit['twists'][i-j] for element in set(daughters): del Fit['tmaxes{0}'.format(element)][i-j] j += 1 j = 0 for i in range(len(Fit['Ts'])): if i not in FitTs: del Fit['Ts'][i-j] j += 1 return() ####################################################################################################### def make_data(filename,binsize): # Reads in filename.gpl, checks all keys have same configuration numbers, returns averaged data print('Reading data, binsize = ', binsize) dset = cf.read_dataset(filename,binsize=binsize) sizes = [] for key in dset: #print(key,np.shape(dset[key])) sizes.append(np.shape(dset[key])) if len(set(sizes)) != 1: print('Not all elements of gpl the same size') for key in dset: print(key,np.shape(dset[key])) return(gv.dataset.avg_data(dset)) ###################################################################################################### def make_pdata(filename,models,binsize): # Reads in filename.gpl, checks all keys have same configuration numbers, returns averaged data print('Reading processed data, binsize = ', binsize) dset = cf.read_dataset(filename,binsize=binsize) sizes = [] for key in dset: #print(key,np.shape(dset[key])) sizes.append(np.shape(dset[key])) if len(set(sizes)) != 1: print('Not all elements of gpl the same size') for key in dset: print(key,np.shape(dset[key])) return(cf.process_dataset(dset, models)) ####################################################################################################### def effective_mass_calc(tag,correlator,tp): #finds the effective mass and amplitude of a two point correlator M_effs = [] for t in range(2,len(correlator)-2): thing = (correlator[t-2] + correlator[t+2])/(2*correlator[t]) if thing >= 1: M_effs.append(gv.arccosh(thing)/2) #M_effs is all positive masses, we now take a rolling average of 4, and find where this changes the least rav = [] for i in range(len(M_effs)-4): rav.append((M_effs[i] + M_effs[i+1] + M_effs[i+2] + M_effs[i+3])/4) M_eff = rav[0] diff = abs((rav[1] - rav[0]).mean) for i in range(1,len(rav)-1): if abs((rav[i+1]-rav[i]).mean) < diff: diff = abs((rav[i+1]-rav[i]).mean) M_eff = (rav[i] + rav[i+1])/2 return(M_eff) ###################################################################################################### def effective_amplitude_calc(tag,correlator,tp,M_eff,Fit,corr): #finds the effective mass and amplitude of a two point correlator tmin = Fit['tmin{0}'.format(corr)] A_effs = [] if len(correlator) == tp: tmin = 0 for t in range(tmin,tmin+len(correlator)): numerator = correlator[t-tmin] if numerator >= 0: A_effs.append( gv.sqrt(numerator/(gv.exp(-M_eff*t)+gv.exp(-M_eff*(tp-t))))) rav = [] for i in range(len(A_effs)-4): rav.append((A_effs[i] + A_effs[i+1] + A_effs[i+2] + A_effs[i+3])/4) A_eff = rav[0] diff = abs((rav[1] - rav[0]).mean) for i in range(1,len(rav)-1): if abs((rav[i+1]-rav[i]).mean) < diff: diff = abs((rav[i+1]-rav[i]).mean) A_eff = (rav[i] + rav[i+1])/2 an = gv.gvar(Fit['an']) if A_eff.sdev/A_eff.mean > 0.5: print('Replaced A_eff for {0} {1} -> {2}'.format(tag,A_eff,an)) A_eff = an return(A_eff) ######################################################################################## def effective_V_calc(corr,daughter,parent,correlator,dcorr,pcorr,Fit,mass,twist,pA_eff,dA_eff): #finds the effective V_nn[0][0] tp = Fit['tp'] T = Fit['Ts'][-1] dtmin = Fit['tmin{0}'.format(daughter)] ptmin = Fit['tmin{0}'.format(parent)] Vtmin = Fit['{0}tmin'.format(corr)] dcorr2 = [] pcorr2 = [] Vcorr2 = [] V_effs = [] #print(corr,daughter,parent,mass,twist) if len(dcorr) == int(tp): dcorr2 = dcorr else: for i in range(dtmin): dcorr2.append(0) dcorr2.extend(dcorr) for i in range(int(tp/2)-len(dcorr2)+1): dcorr2.append(0) #print(dcorr2) if len(pcorr) == int(tp): pcorr2 = pcorr else: for i in range(ptmin): pcorr2.append(0) pcorr2.extend(pcorr) for i in range(int(tp/2)-len(pcorr2)+1): pcorr2.append(0) #print(pcorr2) if len(correlator) == int(tp): Vcorr2 = correlator else: for i in range(Vtmin): Vcorr2.append(0) Vcorr2.extend(correlator) for i in range(T-len(Vcorr2)+1): Vcorr2.append(0) #print(Vcorr2) for t in range(T): numerator = Vcorr2[t]*pA_eff*dA_eff denominator = dcorr2[t]*pcorr2[T-t] if numerator != 0 and denominator !=0: V_effs.append(numerator/denominator) rav = [] for i in range(len(V_effs)-4): rav.append((V_effs[i] + V_effs[i+1] + V_effs[i+2] + V_effs[i+3])/4) V_eff = rav[0] diff = abs((rav[1] - rav[0]).mean) for i in range(1,len(rav)-1): if abs((rav[i+1]-rav[i]).mean) < diff: diff = abs((rav[i+1]-rav[i]).mean) if (rav[i] + rav[i+1]) > 0: V_eff = (rav[i] + rav[i+1])/2 V = gv.gvar(Fit['{0}Vnn0'.format(corr)]) if abs((V_eff.mean-V).mean/(V_eff.mean-V).sdev) > 1: print('Replaced V_eff for {0} m {1} tw {2}: {3} --> {4}'.format(corr,mass,twist,V_eff,V)) V_eff = V return(V_eff) ####################################################################################################### def SVD_diagnosis(Fit,models,corrs,svdfac,currents,SepMass): binsize = Fit['binsize'] #Feed models and corrs (list of corrs in this SVD cut) if list(set(corrs).intersection(currents)) ==[]: filename = 'SVD/{0}{1}{2}{3}{4}{5}{6}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(corrs),binsize,SepMass) else: filename = 'SVD/{0}{1}{2}{3}{4}{5}{6}{7}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(corrs),strip_list(Fit['Ts']),binsize,SepMass) #print(filename) for corr in corrs: if 'tmin{0}'.format(corr) in Fit: filename += '{0}'.format(Fit['tmin{0}'.format(corr)]) for element in Fit['tmaxes{0}'.format(corr)]: filename += '{0}'.format(element) if '{0}tmin'.format(corr) in Fit: filename += '{0}'.format(Fit['{0}tmin'.format(corr)]) #print(filename) if os.path.isfile(filename) and os.path.getsize(filename) > 0: pickle_off = open(filename,"rb") svd = pickle.load(pickle_off) print('Loaded SVD for {0} : {1:.2g} x {2} = {3:.2g}'.format(corrs,svd,svdfac,svd*svdfac)) pickle_off.close() else: print('Calculating SVD for {0}'.format(corrs)) s = gv.dataset.svd_diagnosis(cf.read_dataset('{0}{1}.gpl'.format(Fit['file_location'],Fit['filename']),binsize=binsize), models=models, nbstrap=20) svd = s.svdcut ######## save plot ########################## plt.figure() x = s.val / s.val[-1] ratio = s.bsval / s.val idx = x > s.mincut ratio = ratio[idx] x = x[idx] y = gv.mean(ratio) yerr = gv.sdev(ratio) plt.errorbar(x=x, y=y, yerr=yerr, fmt='+', color='b') sig = (2. / len(s.val)) ** 0.5 plt.plot([x[0], x[-1]], [1. - sig, 1. - sig], 'k:') plt.axhline(1,ls='--',color='k') plt.axvline(s.svdcut,ls=':',color='g') #plt.axvline(0.013,ls='--',color='g') plt.xscale('log') plt.savefig('svd_plots/{0}.pdf'.format(filename.split('/')[1])) ############################################### pickle_on = open(filename,"wb") print('Calculated SVD for {0} : {1:.2g} x {2} = {3:.2g}'.format(corrs,svd,svdfac,svd*svdfac)) pickle.dump(svd,pickle_on) return(svd*svdfac) ####################################################################################################### def make_models(Fit,FitCorrs,notwist0,non_oscillating,daughters,currents,parents,svdfac,Chained,allcorrs,links,parrlinks,SepMass,NoSVD=False): #several forms [(A,B,C,D)],[(A,B),(C),(D)],[(A,B),[(C),(D)]] #First make all models and then stick them into the correct chain models = collections.OrderedDict() tp = Fit['tp'] for corr in set(parents): if corr in allcorrs: models['{0}'.format(corr)] = [] for i,mass in enumerate(Fit['masses']): tag = Fit['{0}-Tag'.format(corr)].format(mass) models['{0}'.format(corr)].append(cf.Corr2(datatag=tag, tp=tp, tmin=Fit['tmin{0}'.format(corr)], tmax=Fit['tmaxes{0}'.format(corr)][i], a=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), b=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), dE=('dE:{0}'.format(tag), 'dE:o{0}'.format(tag)),s=(1,-1))) for corr in set(daughters): if corr in allcorrs: models['{0}'.format(corr)] = [] for i,twist in enumerate(Fit['twists']): tag = Fit['{0}-Tag'.format(corr)].format(twist) if twist == '0' and corr in notwist0: pass elif twist == '0' and corr in non_oscillating: models['{0}'.format(corr)].append(cf.Corr2(datatag=tag, tp=tp, tmin=Fit['tmin{0}'.format(corr)], tmax=Fit['tmaxes{0}'.format(corr)][i], a=('{0}:a'.format(tag)), b=('{0}:a'.format(tag)), dE=('dE:{0}'.format(tag)))) else: models['{0}'.format(corr)].append(cf.Corr2(datatag=tag, tp=tp, tmin=Fit['tmin{0}'.format(corr)], tmax=Fit['tmaxes{0}'.format(corr)][i], a=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), b=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), dE=('dE:{0}'.format(tag), 'dE:o{0}'.format(tag)),s=(1,-1))) for i,corr in enumerate(currents): if corr in allcorrs: models['{0}'.format(corr)] = [] for mass in Fit['masses']: for twist in Fit['twists']: for T in Fit['Ts']: tag = Fit['threePtTag{0}'.format(corr)].format(T,Fit['m_s'],mass,Fit['m_l'],twist) ptag = Fit['{0}-Tag'.format(parents[i])].format(mass) dtag = Fit['{0}-Tag'.format(daughters[i])].format(twist) if twist == '0' and corr in notwist0: pass elif twist == '0' and daughters[i] in non_oscillating: models['{0}'.format(corr)].append(cf.Corr3(datatag=tag, T=T, tmin=Fit['{0}tmin'.format(corr)], a=('{0}:a'.format(dtag)), dEa=('dE:{0}'.format(dtag)), b=('{0}:a'.format(ptag), 'o{0}:a'.format(ptag)), dEb=('dE:{0}'.format(ptag), 'dE:o{0}'.format(ptag)), sb=(1,-1), Vnn='{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist), Vno='{0}Vno_m{1}_tw{2}'.format(corr,mass,twist))) else: models['{0}'.format(corr)].append(cf.Corr3(datatag=tag, T=T, tmin=Fit['{0}tmin'.format(corr)], a=('{0}:a'.format(dtag), 'o{0}:a'.format(dtag)), dEa=('dE:{0}'.format(dtag), 'dE:o{0}'.format(dtag)), sa=(1,-1), b=('{0}:a'.format(ptag), 'o{0}:a'.format(ptag)), dEb=('dE:{0}'.format(ptag), 'dE:o{0}'.format(ptag)), sb=(1,-1), Vnn='{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist), Vno='{0}Vno_m{1}_tw{2}'.format(corr,mass,twist),Von='{0}Von_m{1}_tw{2}'.format(corr,mass,twist),Voo='{0}Voo_m{1}_tw{2}'.format(corr,mass,twist))) #Now we make these models into our chain calculating an svd cut for each. We make them in two halves so we can sndwich a marginalisation term if we like later if Chained: finalmodelsA = [] finalmodelsB = [] intermediate = [] for key in links: link = [] #link is models in link for corr in links[key]: link.extend(models['{0}'.format(corr)]) svd = SVD_diagnosis(Fit,link,links[key],svdfac,currents,SepMass) finalmodelsA.append({'svdcut':svd}) finalmodelsA.append(tuple(link)) for key in parrlinks: link = [] #link is models in link for corr in parrlinks[key]: link.extend(models['{0}'.format(corr)]) svd = SVD_diagnosis(Fit,link,parrlinks[key],svdfac,currents,SepMass) intermediate.append({'svdcut':svd}) intermediate.append(tuple(link)) finalmodelsB.append(intermediate) return(finalmodelsA,finalmodelsB) else: finalmodels = [] for corr in allcorrs: finalmodels.extend(models['{0}'.format(corr)]) if NoSVD == False: svd = SVD_diagnosis(Fit,finalmodels,allcorrs,svdfac,currents,SepMass) return(tuple(finalmodels),svd) else: return(tuple(finalmodels)) ####################################################################################################### def elements_in_FitCorrs(a): # reads [A,[B,C],[[D,E],F]] and interprets which elements will be chained and how. Returns alphabetical list of all elements, links in chain and links in parallell chain allcorrs = [] links = collections.OrderedDict() parrlinks = collections.OrderedDict() for i in range(np.shape(a)[0]): links[i] =[] if len(np.shape(a[i])) == 0: #deals with one corr in chain #print(a[i],i,'fit alone in chain') allcorrs.append(a[i]) links[i].append(a[i]) elif len(np.shape(a[i][0])) == 0 : #deals with multiple elements in chain for j in range(len(a[i])): #print(a[i][j],i,'fit together in chain') allcorrs.append(a[i][j]) links[i].append(a[i][j]) else: del links[i] #don't need thi key if it is in paralell for j in range(np.shape(a[i])[0]): parrlinks[j] = [] if len(np.shape(a[i][j])) == 0: #deals with one corr in parr chain allcorrs.append(a[i][j]) parrlinks[j].append(a[i][j]) else: # deals with multiple elements in parralell chain for k in range(len(a[i][j])): allcorrs.append(a[i][j][k]) parrlinks[j].append(a[i][j][k]) return(sorted(allcorrs),links,parrlinks) ###################################################################################################### def make_prior(Fit,N,allcorrs,currents,daughters,parents,loosener,data,notwist0,non_oscillating): No = N # number of oscillating exponentials prior = gv.BufferDict() tw_corr = True otw_corr = True if len(daughters) != 0 and '0' in Fit['twists'] and tw_corr: for corr in set(daughters).intersection(allcorrs): prior['d2_{0}'.format(corr)] = gv.gvar('0.0(1.0)') prior['c2_{0}'.format(corr)] = gv.gvar('0.0(1.0)') print('Daughter twists correlated') if len(daughters) != 0 and '0' in Fit['twists'] and otw_corr: for corr in set(daughters).intersection(allcorrs): prior['oc2_{0}'.format(corr)] = gv.gvar('0.0(1.0)') print('Daughter oscillating twists correlated') tp = Fit['tp'] En = '{0}({1})'.format(0.5*Fit['a'],0.25*Fit['a']*loosener) #Lambda with error of half an = '{0}({1})'.format(gv.gvar(Fit['an']).mean,gv.gvar(Fit['an']).sdev*loosener) aon = '{0}({1})'.format(gv.gvar(Fit['aon']).mean,gv.gvar(Fit['aon']).sdev*loosener) for corr in allcorrs: if corr in parents: for mass in Fit['masses']: tag = Fit['{0}-Tag'.format(corr)].format(mass) M_eff = effective_mass_calc(tag,data[tag],tp) a_eff = effective_amplitude_calc(tag,data[tag],tp,M_eff,Fit,corr) # Parent prior['log({0}:a)'.format(tag)] = gv.log(gv.gvar(N * [an])) prior['log(dE:{0})'.format(tag)] = gv.log(gv.gvar(N * [En])) prior['log({0}:a)'.format(tag)][0] = gv.log(gv.gvar(a_eff.mean,loosener*Fit['loosener']*a_eff.mean)) prior['log(dE:{0})'.format(tag)][0] = gv.log(gv.gvar(M_eff.mean,loosener*Fit['Mloosener']*M_eff.mean)) # Parent -- oscillating part prior['log(o{0}:a)'.format(tag)] = gv.log(gv.gvar(No * [an])) prior['log(dE:o{0})'.format(tag)] = gv.log(gv.gvar(No * [En])) prior['log(dE:o{0})'.format(tag)][0] = gv.log(gv.gvar((M_eff+gv.gvar(En)*(4/5)).mean,loosener*Fit['oMloosener']*((M_eff+gv.gvar(En)*(4/5)).mean))) if corr in daughters: for twist in Fit['twists']: if twist =='0' and corr in notwist0: pass else: ap2 = 3*(np.pi*float(twist)/Fit['L'])**2 #print(twist,ap2) tag0 = Fit['{0}-Tag'.format(corr)].format('0') M_eff = np.sqrt(effective_mass_calc(tag0,data[tag0],tp)**2 + ap2) #from dispersion relation tag = Fit['{0}-Tag'.format(corr)].format(twist) a_eff = effective_amplitude_calc(tag,data[tag],tp,M_eff,Fit,corr) # Daughter prior['log({0}:a)'.format(tag)] = gv.log(gv.gvar(N * [an])) prior['log(dE:{0})'.format(tag)] = gv.log(gv.gvar(N * [En])) #prior['log(dE:{0})'.format(tag)][1] = gv.log(gv.gvar(gv.gvar(En).mean,0.01*gv.gvar(En).mean)) if twist !='0' and '0' in Fit['twists'] and 'log(dE:{0})'.format(tag0) in prior and tw_corr: prior['log(dE:{0})'.format(tag)][0] = gv.log(gv.sqrt(prior['dE:{0}'.format(tag0)][0]**2 + ap2) * (1 + prior['c2_{0}'.format(corr)]*ap2/(np.pi)**2) ) prior['log({0}:a)'.format(tag)][0] = gv.log((prior['{0}:a'.format(tag0)][0]/gv.sqrt(gv.sqrt(1 + ap2/(prior['dE:{0}'.format(tag0)][0])**2))) * (1 + prior['d2_{0}'.format(corr)]*ap2/(np.pi)**2) ) else: prior['log(dE:{0})'.format(tag)][0] = gv.log(gv.gvar(M_eff.mean,loosener*Fit['Mloosener']*M_eff.mean)) prior['log({0}:a)'.format(tag)][0] = gv.log(gv.gvar(a_eff.mean,loosener*Fit['loosener']*a_eff.mean)) # Daughter -- oscillating part if twist =='0' and corr in non_oscillating: pass else: newaon = aon if twist == '0': newaon = '{0}({1})'.format(gv.gvar(aon).mean/4,gv.gvar(aon).mean/2) #v small in the case of tw0 prior['log(o{0}:a)'.format(tag)] = gv.log(gv.gvar(No * [newaon])) prior['log(dE:o{0})'.format(tag)] = gv.log(gv.gvar(No * [En])) if twist !='0' and '0' in Fit['twists'] and 'log(dE:o{0})'.format(tag0) in prior and otw_corr: prior['log(dE:o{0})'.format(tag)][0] = gv.log(gv.sqrt(prior['dE:o{0}'.format(tag0)][0]**2 + ap2) * (1 + prior['oc2_{0}'.format(corr)]*ap2/(np.pi)**2) ) #prior['log(o{0}:a)'.format(tag)][0] = gv.log((prior['o{0}:a'.format(tag0)][0]/gv.sqrt(1 + ap2/(prior['dE:o{0}'.format(tag0)][0])**2)) * (1 + prior['od2']*ap2/(np.pi)**2) ) prior['log(o{0}:a)'.format(tag)][0] = gv.log(gv.gvar(gv.gvar(newaon).mean,loosener*Fit['oloosener']*gv.gvar(newaon).mean)) else: prior['log(dE:o{0})'.format(tag)][0] = gv.log(gv.gvar((M_eff+gv.gvar(En)/2).mean,loosener*Fit['oMloosener']*((M_eff+gv.gvar(En)/2).mean))) # kaon splitting #prior['log(dE:o{0})'.format(tag)][0] = gv.log(prior['dE:{0}'.format(tag)][0] + gv.gvar(En)) prior['log(o{0}:a)'.format(tag)][0] = gv.log(gv.gvar(gv.gvar(newaon).mean,loosener*Fit['oloosener']*gv.gvar(newaon).mean)) if corr in currents: for mass in Fit['masses']: for twist in Fit['twists']: if twist =='0' and corr in notwist0: pass else: daughter=daughters[currents.index(corr)] parent=parents[currents.index(corr)] dcorr = data[Fit['{0}-Tag'.format(daughter)].format(twist)] pcorr = data[Fit['{0}-Tag'.format(parent)].format(mass)] correlator = data[Fit['threePtTag{0}'.format(corr)].format(Fit['Ts'][-1],Fit['m_s'],mass,Fit['m_l'],twist)] ptag = Fit['{0}-Tag'.format(parent)].format(mass) pM_eff = effective_mass_calc(ptag,data[ptag],tp) pa_eff = effective_amplitude_calc(ptag,data[ptag],tp,pM_eff,Fit,parent) dtag = Fit['{0}-Tag'.format(daughter)].format(twist) dM_eff = effective_mass_calc(dtag,data[dtag],tp) da_eff = effective_amplitude_calc(dtag,data[dtag],tp,dM_eff,Fit,daughter) V_eff = effective_V_calc(corr,daughter,parent,correlator,dcorr,pcorr,Fit,mass,twist,da_eff,pa_eff) if V_eff.mean != gv.gvar(Fit['{0}Vnn0'.format(corr)]).mean: Vnn0 = '{0}({1})'.format(V_eff.mean,loosener*V_eff.mean*Fit['Vloosener']) else: Vnn0 = '{0}({1})'.format(V_eff.mean,loosener*V_eff.sdev) Vn = '{0}({1})'.format(gv.gvar(Fit['{0}Vn'.format(corr)]).mean,loosener*gv.gvar(Fit['{0}Vn'.format(corr)]).sdev) V0 = '{0}({1})'.format(gv.gvar(Fit['{0}V0'.format(corr)]).mean,loosener*gv.gvar(Fit['{0}V0'.format(corr)]).sdev) if twist =='0' and corr in notwist0: pass elif twist =='0' and daughters[currents.index(corr)] in non_oscillating : prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [N * [Vn]]) prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(Vnn0) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [No* [Vn]]) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) else: prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [N * [Vn]]) prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(Vnn0) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [No * [Vn]]) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) prior['{0}Voo_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(No * [No * [Vn]]) prior['{0}Voo_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) prior['{0}Von_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(No * [N * [Vn]]) prior['{0}Von_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) # for key in prior: # if key[0] == corr: # for i in range(1,N): # for j in range(1,N): # prior[key][i][j] = gv.gvar('0.0(5)') return(prior) ###################################################################################################### def get_p0(Fit,fittype,Nexp,allcorrs,prior,FitCorrs): # We want to take in several scenarios in this order, choosing the highest in preference. # 1) This exact fit has been done before, modulo priors, svds t0s etc # 2) Same but different type of fit, eg marginalised # 3) This fit has been done before with Nexp+1 # 4) This fit has been done beofore with Nexp-1 # 5a) Some elemnts have bene fitted to Nexp before, # 5b) Some elements of the fit have been fitted in other combinations before filename1 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp) filename2 = 'p0/{0}{1}{2}{3}{4}{5}{6}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),Nexp) filename3 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp+1) filename4 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp-1) filename5a = 'p0/{0}{1}{2}'.format(Fit['conf'],Fit['filename'],Nexp) filename5b = 'p0/{0}{1}'.format(Fit['conf'],Fit['filename']) #case 1 if os.path.isfile(filename1): p0 = gv.load(filename1) print('Loaded p0 from exact fit') #case 2 elif os.path.isfile(filename2): p0 = gv.load(filename2) print('Loaded p0 from exact fit of different type') #case 3 elif os.path.isfile(filename3): p0 = gv.load(filename3) print('Loaded p0 from exact fit Nexp+1') #case 4 elif os.path.isfile(filename4): p0 = gv.load(filename4) print('Loaded p0 from exact fit Nexp-1') #case 5 elif os.path.isfile(filename5b): p0 = gv.load(filename5b) print('Loaded global p0') if os.path.isfile(filename5a): pnexp = gv.load(filename5a) for key in pnexp: if key in prior: if key not in p0: print('Error: {0} in global Nexp but not in global fit'.format(key)) p0[key] = pnexp[key] del p0[key] p0[key] = pnexp[key] print('Loaded {0} p0 from global Nexp'.format(key)) else: p0 = None return(p0) ###################################################################################################### def update_p0(p,finalp,Fit,fittype,Nexp,allcorrs,FitCorrs,Q,marg=False): # We want to take in several scenarios in this order # 1) This exact fit has been done before, modulo priors, svds t0s etc # 2) Same but different type of fit, eg marginalised # 3) Global Nexp # 4) Global # 5) if Marg is True, we don't want to save anything but filename 1 as Nexp = nmarg and is not similar to if we do other fits filename1 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp) filename2 = 'p0/{0}{1}{2}{3}{4}{5}{6}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),Nexp) filename3 = 'p0/{0}{1}{2}'.format(Fit['conf'],Fit['filename'],Nexp) filename4 = 'p0/{0}{1}'.format(Fit['conf'],Fit['filename']) #case 1 for element in ['c2','d2','oc2']: for corr in allcorrs: if '{0}_{1}'.format(element,corr) in p: del p['{0}_{1}'.format(element,corr)] for element in ['c2','d2','oc2']: for corr in allcorrs: if '{0}_{1}'.format(element,corr) in finalp: del finalp['{0}_{1}'.format(element,corr)] gv.dump(p,filename1) if marg == False: #case 2 gv.dump(finalp,filename2) #case 3 if os.path.isfile(filename3) and Q > 0.05: p0 = gv.load(filename3) #load exisiting global Nexp for key in finalp: # key in this output p0[key] = finalp[key] #Update exisiting and add new gv.dump(p0,filename3) else: gv.dump(finalp,filename3) if os.path.isfile(filename4) and Q > 0.05: p0 = gv.load(filename4) # load existing, could be any length for key in finalp: # key in new if key in p0: # if if len(np.shape(p0[key])) == 1 and len(p0[key]) <= Nexp: #print('shape p0[key]',np.shape(p0[key]),key) del p0[key] p0[key] = finalp[key] print('Updated global p0 {0}'.format(key)) elif np.shape(p0[key])[0] <= Nexp: #print('shape p0[key]',np.shape(p0[key]),key) del p0[key] p0[key] = finalp[key] print('Updated global p0 {0}'.format(key)) else: p0[key] = finalp[key] print('Added new element to global p0 {0}'.format(key)) gv.dump(p0,filename4) else: gv.dump(finalp,filename4) return() ###################################################################################################### def save_fit(fit,Fit,allcorrs,fittype,Nexp,SvdFactor,PriorLoosener,currents,smallsave): filename = 'Fits/{0}{1}{2}{3}{4}{5}{6}_Nexp{7}_sfac{8}_pfac{9}_Q{10:.2f}_chi{11:.3f}_sm{12}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),fittype,Nexp,SvdFactor,PriorLoosener,fit.Q,fit.chi2/fit.dof,smallsave) for corr in allcorrs: if corr in currents: filename += '_{0}tmin{1}'.format(corr,Fit['{0}tmin'.format(corr)]) savedict = gv.BufferDict() if smallsave: for key in fit.p: if key[0] == 'l': key2 = key.split('(')[1].split(')')[0] if key2.split(':')[0] =='dE' and key2.split(':')[1][0] != 'o': savedict[key] = [fit.p[key][0]] #was palt elif key[2] =='n' and key[3] == 'n': savedict[key] = [[fit.p[key][0][0]]] #was palt elif smallsave == False: savedict = fit.p print('Started gv.gdump to {1}, smallsave = {0}'.format(smallsave,'{0}.pickle'.format(filename)),datetime.datetime.now()) gv.gdump(savedict,'{0}.pickle'.format(filename)) print('Finished gv.gdump fit, starting save fit output',datetime.datetime.now()) f = open('{0}.txt'.format(filename),'w') f.write(fit.format(pstyle='v')) f.close() print('Finished save fit output',datetime.datetime.now()) return() ###################################################################################################### def do_chained_fit(data,prior,Nexp,modelsA,modelsB,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,FitCorrs,save,smallsave,GBF):#if GBF = None doesn't pass GBF, else passed GBF #do chained fit with no marginalisation Nexp = NMax models = copy.deepcopy(modelsA) if len(modelsB[0]) !=0: models.extend(modelsB) print('Models',models) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'chained',Nexp,allcorrs,prior,FitCorrs) print(30 * '=','Chained-Unmarginalised','Nexp =',Nexp,'Date',datetime.datetime.now()) fit = fitter.chained_lsqfit(data=data, prior=prior, p0=p0, noise=noise,debug=True) update_p0([f.pmean for f in fit.chained_fits.values()],fit.pmean,Fit,'chained',Nexp,allcorrs,FitCorrs,fit.Q) #fittype=chained, for marg,includeN if GBF == None: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return() elif fit.logGBF - GBF < 1 and fit.logGBF - GBF > 0: print('log(GBF) went up by less than 1: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) elif fit.logGBF - GBF < 0: print('log(GBF) went down {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) else: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) print('log(GBF) went up {0:.2f}'.format(fit.logGBF - GBF)) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return(fit.logGBF) ###################################################################################################### def do_chained_marginalised_fit(data,prior,Nexp,modelsA,modelsB,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,FitCorrs,save,smallsave,GBF,Marginalised):#if GBF = None doesn't pass GBF, else passed GBF #do chained fit with marginalisation nterm = nexp,nexp Nmarg=Marginalisation us in p0 bits models = copy.deepcopy(modelsA) if len(modelsB[0]) !=0: models.append(dict(nterm=(Nexp,Nexp))) models.extend(modelsB) else: print('Marginalisation not applied as no parrallelised models') print('Models',models) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,allcorrs,prior,FitCorrs) print(30 * '=','Chained-marginalised','Nexp =',Marginalised,'nterm = ({0},{0})'.format(Nexp),'Date',datetime.datetime.now()) fit = fitter.chained_lsqfit(data=data, prior=prior, p0=p0, noise=noise,debug=True) update_p0([f.pmean for f in fit.chained_fits.values()],fit.pmean,Fit,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,allcorrs,FitCorrs,fit.Q,True) #fittype=chained, for marg,includeN if GBF == None: print(fit)#.format(pstyle='m')) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return() elif fit.logGBF - GBF < 1 and fit.logGBF - GBF > 0: print('log(GBF) went up by less than 1: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) elif fit.logGBF - GBF < 0: print('log(GBF) went down {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) else: print(fit)#.format(pstyle='m')) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) print('log(GBF) went up {0:.2f}'.format(fit.logGBF - GBF)) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return(fit.logGBF) ###################################################################################################### def do_unchained_fit(data,prior,Nexp,models,svdcut,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,save,smallsave,GBF):#if GBF = None doesn't pass GBF, else passed GBF #do chained fit with no marginalisation Nexp = NMax print('Models',models) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'unchained',Nexp,allcorrs,prior,allcorrs) # FitCorrs = allcorrs print(30 * '=','Unchained-Unmarginalised','Nexp =',Nexp,'Date',datetime.datetime.now()) fit = fitter.lsqfit(pdata=data, prior=prior, p0=p0, svdcut=svdcut, noise=noise,debug=True) update_p0(fit.pmean,fit.pmean,Fit,'unchained',Nexp,allcorrs,allcorrs,fit.Q) #fittype=chained, for marg,includeN if GBF == None: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior)#,Fit) print_Z_V(fit.p,Fit,allcorrs) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'unchained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return() elif fit.logGBF - GBF < 1 and fit.logGBF - GBF > 0: print('log(GBF) went up by less than 1: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) elif fit.logGBF - GBF < 0: print('log(GBF) went down: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) else: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior)#,Fit) print_Z_V(fit.p,Fit,allcorrs) print('log(GBF) went up more than 1: {0:.2f}'.format(fit.logGBF - GBF)) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'unchained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return(fit.logGBF) ####################################################################################################### def do_sep_mass_fit(data,prior,Nexp,models,svdcut,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,save,smallsave,GBF): #if GBF = None doesn't pass GBF, else passed GBF #do chained fit with no marginalisation Nexp = NMax print('Models',models) #print(data) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'sepmass',Nexp,allcorrs,prior,allcorrs) # FitCorrs = allcorrs print(30 * '=','Seperate Mass Fit','Nexp =',Nexp,'Date',datetime.datetime.now()) fit = fitter.lsqfit(pdata=data, prior=prior, p0=p0, svdcut=svdcut, noise=noise,debug=True) update_p0(fit.pmean,fit.pmean,Fit,'sepmass',Nexp,allcorrs,allcorrs,fit.Q) #fittype=chained, for marg,includeN print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior)#,Fit) return(fit) ###################################################################################################### def combine_sep_mass_fits(result,Fit,priors,allcorrs,Nexp,SvdFactor,PriorLoosener,currents,save,smallsave): prior = gv.BufferDict() combined = [] for mass in Fit['masses']: smallresult = gv.BufferDict() fit = result[mass].p for key in fit: if key[0] == 'l': key2 = key.split('(')[1].split(')')[0] if key2.split(':')[0] =='dE': smallresult[key] = [fit[key][0]] elif key[2] =='n' and key[3] == 'n': smallresult[key] = [[fit[key][0][0]]] combined.append(smallresult) prior = copy.deepcopy(priors[Fit['masses'][0]]) for mass in Fit['masses']: for key in priors[mass]: if key not in prior: prior[key] = copy.deepcopy(priors[mass][key]) #print(combined) final = lsqfit.wavg(combined) #print(gv.evalcorr([final['SVnn_m0.433_tw0.8563'][0][0],final['SVnn_m0.683_tw0.8563'][0][0]])) chi = 0 Q = 0 GBF = 0 for mass in Fit['masses']: chi += (result[mass].chi2/result[mass].dof)/len(Fit['masses']) Q += (result[mass].Q)/len(Fit['masses']) GBF += result[mass].logGBF print('Mean chi^2/dof = {0:.3f} Q = {1:.3f}, total logGBF {2:.1f}'.format(chi,Q,GBF)) print_results(final,prior)#,Fit) print_Z_V(final,Fit,allcorrs) if save: save_combined_fit(final,Fit,allcorrs,'sep_mass',Nexp,SvdFactor,PriorLoosener,currents,smallsave,chi,Q) return() ###################################################################################################################### def save_combined_fit(fit,Fit,allcorrs,fittype,Nexp,SvdFactor,PriorLoosener,currents,smallsave,chi,Q): filename = 'Fits/{0}{1}{2}{3}{4}{5}{6}_Nexp{7}_sfac{8}_pfac{9}_Q{10:.2f}_chi{11:.3f}_sm{12}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),fittype,Nexp,SvdFactor,PriorLoosener,Q,chi,smallsave) for corr in allcorrs: if corr in currents: filename += '_{0}tmin{1}'.format(corr,Fit['{0}tmin'.format(corr)]) savedict = gv.BufferDict() if smallsave: for key in fit: if key[0] == 'l': key2 = key.split('(')[1].split(')')[0] if key2.split(':')[0] =='dE' and key2.split(':')[1][0] != 'o': savedict[key] = [fit[key][0]] elif key[2] =='n' and key[3] == 'n': savedict[key] = [[fit[key][0][0]]] elif smallsave == False: print('Error, can only do small save with sep masses' ) #print(gv.evalcorr([savedict['SVnn_m0.433_tw0.8563'][0][0],savedict['SVnn_m0.683_tw0.8563'][0][0]])) print('Started gv.gdump to {1}, smallsave = {0}'.format(smallsave,'{0}.pickle'.format(filename)),datetime.datetime.now()) gv.gdump(savedict,'{0}.pickle'.format(filename)) print('Finished gv.gdump fit',datetime.datetime.now()) return() ###################################################################################################### def print_p_p0(p,p0,prior): print('{0:<30}{1:<20}{2:<40}{3:<20}'.format('key','p','p0','prior')) for key in prior: if len(np.shape(p[key])) ==1 : for element in range(len(p[key])): if element == 0: print('{0:<30}{1:<20}{2:<40}{3:<20}'.format(key,p[key][element],p0[key][element],prior[key][element])) else: print('{0:>30}{1:<20}{2:<40}{3:<20}'.format('',p[key][element],p0[key][element],prior[key][element])) return() ##################################################################################################### def print_results(p,prior):#,Fit): print(100*'-') print('{0:<30}{1:<15}{2:<15}{3:<15}{4}'.format('key','p','p error','prior','prior error')) print(100*'-') print('Ground state energies') print(100*'-') for key in prior: if key[0] == 'l': key = key.split('(')[1].split(')')[0] if key.split(':')[0] =='dE' and key.split(':')[1][0] != 'o': print('{0:<30}{1:<15}{2:<15.3%}{3:<15}{4:.2%}'.format(key,p[key][0],p[key][0].sdev/p[key][0].mean,prior[key][0],prior[key][0].sdev/prior[key][0].mean)) #if '{0}'.format(key.split(':')[1]) == Fit['BG-Tag'].format(Fit['masses'][0]): # print('split: ', p['dE:{0}'.format(Fit['BNG-Tag'].format(Fit['masses'][0]))][0]-p[key][0]) print('') print('Oscillating ground state energies') print(100*'-') for key in prior: if key[0] == 'l': key = key.split('(')[1].split(')')[0] if key.split(':')[0] =='dE' and key.split(':')[1][0] == 'o': print('{0:<30}{1:<15}{2:<15.3%}{3:<15}{4:.2%}'.format(key,p[key][0],p[key][0].sdev/p[key][0].mean,prior[key][0],prior[key][0].sdev/prior[key][0].mean)) print('') print('V_nn[0][0]') print(100*'-') for key in prior: if key[1] != '2' and key[2] =='n' and key[3] == 'n': print('{0:<30}{1:<15}{2:<15.3%}{3:<15}{4:.2%}'.format(key,p[key][0][0],p[key][0][0].sdev/p[key][0][0].mean,prior[key][0][0],prior[key][0][0].sdev/prior[key][0][0].mean)) print(100*'-') return() ##################################################################################################### def make_Z_V(m_h,m_s,M_parent,M_daughter,S,V): Z_V = (m_h-m_s)/(M_parent-M_daughter) * S/V return(Z_V) ##################################################################################################### # needs generalising ##################################################################################################### def print_Z_V(p,Fit,allcorrs): if 'S' in allcorrs and 'V' in allcorrs: print(100*'-') for mass in Fit['masses']: M_parent = p['dE:{0}'.format(Fit['{0}-Tag'.format('BG')].format(mass))][0] M_daughter = p['dE:{0}'.format(Fit['{0}-Tag'.format('KG')].format('0'))][0] S = p['SVnn_m{0}_tw0'.format(mass)][0][0] V = p['VVnn_m{0}_tw0'.format(mass)][0][0] Z_V = make_Z_V(float(mass),float(Fit['m_s']),M_parent,M_daughter,S,V) print("Mass = {0} Z_V = {1}".format(mass,Z_V)) print(100*'-') return() #####################################################################################################
WillParrott/New_bodiddley_fitter
functions.py
functions.py
py
47,341
python
en
code
0
github-code
6
43067183900
# Modified by: Dr. Smruti Panigrahi import numpy as np def mean_nav_angle(Rover): # Add standard deviation to the mean Nav angle to make Rover a left-wall-crawler return np.clip( (np.mean(Rover.nav_angles) + Rover.wall_offset_angle) * 180/np.pi, -15, 15) def is_moving(Rover): # Checks if the Rover has moved a certain distance since the last frame. distance_travelled = np.sqrt( (Rover.pos[0] - Rover.last_pos[0]) ** 2 + (Rover.pos[1] - Rover.last_pos[1]) ** 2 ) return distance_travelled > Rover.stuck_dist def is_near_home(Rover): # Checks if the Rover is near home. distance_from_home = np.sqrt( (Rover.pos[0] - Rover.home_pos[0]) ** 2 + (Rover.pos[1] - Rover.home_pos[1]) ** 2 ) return distance_from_home < Rover.home_dist # This is where you can build a decision tree for determining throttle, brake and steer # commands based on the output of the perception_step() function def decision_step(Rover): # Implement conditionals to decide what to do given perception data # Here you're all set up with some basic functionality but you'll need to # improve on this decision tree to do a good job of navigating autonomously! # offset in rad used to hug the left wall 15s after the start time to avoid donut mode if Rover.total_time < 15: # Steering proportional to the (mean + standard deviation) results in # smaller offsets on narrow vison map and large offsets in turns and open areas Rover.wall_offset_angle = 0 #-0.65 * np.std(Rover.nav_angles) else: Rover.wall_offset_angle = 0.75 * np.std(Rover.nav_angles) if Rover.total_time == 0: Rover.home_pos = Rover.pos print("Rover Home Position (x, y): ", Rover.home_pos) if Rover.nav_angles is not None: # Check for Rover.mode status # If all samples has been collected and more than 90% mapped then go home if is_near_home(Rover) and Rover.total_time > 30: print("Rover is close to Home!") #Rover.mode = 'gohome' if Rover.samples_collected == Rover.total_samples: if Rover.mapped >= 50: Rover.mode = 'gohome' else: Rover.mode = 'forward' if (Rover.throttle >= Rover.throttle_set and np.abs(Rover.vel) <= 0.01 and not Rover.picking_up): Rover.stuck_counter += 1 print("Stuck counter: ", Rover.stuck_counter) if (Rover.stuck_counter >= 2*Rover.fps): print("Rover is still stuck! Try turning in the opposite direction") Rover.steer = -15 Rover.brake = 0 Rover.throttle = 0 #5*Rover.throttle_set Rover.mode = 'stuck' Rover.stuck_counter = 0 else: Rover.mode = 'forward' elif (Rover.throttle == Rover.throttle_set and Rover.steer == 15 and Rover.vel > 0.5): Rover.donut_counter += 1 if (Rover.donut_counter >= 5*Rover.fps): print("Rover eating donut!") print("Donut counter: ", Rover.donut_counter) Rover.throttle = 0 Rover.brake = 0 Rover.steer = -15 Rover.mode = 'donut' elif Rover.picking_up == 1: Rover.throttle = 0 Rover.steer = 0 Rover.brake = Rover.brake_set Rover.mode = 'stop' Rover.samples_collected += 1 elif Rover.near_sample == 1: Rover.throttle = 0 Rover.steer = 0 Rover.brake = Rover.brake_set Rover.mode = 'stop' elif Rover.mode == 'pursuit': print("Pickup counter: ", Rover.pickup_counter) if Rover.pickup_counter <= 100: Rover.wall_offset_angle = 0; print("Rover Picking up Rock..........") Rover.steer = mean_nav_angle(Rover) Rover.brake = 0 Rover.throttle = 0 if Rover.vel <= 0.2: Rover.throttle = Rover.throttle_set else: Rover.throttle = 0 Rover.samples_located += 1 Rover.mode == 'stop' else: Rover.steer = mean_nav_angle(Rover) Rover.brake = 0 Rover.throttle = 0 Rover.mode = 'forward' Rover.pickup_counter = 0 elif Rover.mode == 'forward': # Check the extent of navigable terrain if len(Rover.nav_angles) >= Rover.stop_forward: # Rover.brake = 0 # If mode is forward, navigable terrain looks good # and velocity is below max, then throttle if Rover.vel < Rover.max_vel: # Set throttle value to throttle setting Rover.throttle = Rover.throttle_set Rover.brake = 0 elif Rover.vel > Rover.max_vel: Rover.throttle = 0 Rover.brake = 0.2*Rover.brake_set else: # Else coast Rover.throttle = 0 Rover.brake = 0 # Set steering to average angle clipped to the range +/- 15 Rover.steer = mean_nav_angle(Rover) # If there's a lack of navigable terrain pixels then go to 'stop' mode elif len(Rover.nav_angles) < Rover.stop_forward: # Set mode to "stop" and hit the brakes! Rover.throttle = 0 # Set brake to stored brake value Rover.brake = 5*Rover.brake_set Rover.steer = 0 Rover.mode = 'stop' # If we're already in "stop" mode then make different decisions elif Rover.mode == 'stop': # If we're in stop mode but still moving keep braking if Rover.vel > 0.2: Rover.throttle = 0 Rover.brake = 5*Rover.brake_set Rover.steer = 0 # If we're not moving (vel < 0.2) then do something else elif Rover.vel <= 0.2: # Now we're stopped and we have vision data to see if there's a path forward if len(Rover.nav_angles) < Rover.go_forward: Rover.throttle = 0 # Release the brake to allow turning Rover.brake = 0 # Turn range is +/- 15 degrees, when stopped the next line will induce 4-wheel turning Rover.steer = -15 # If we're stopped but see sufficient navigable terrain in front then go! elif len(Rover.nav_angles) >= Rover.go_forward: # Set throttle back to stored value Rover.throttle = Rover.throttle_set # Release the brake Rover.brake = 0 # Set steer to mean angle Rover.steer = mean_nav_angle(Rover) Rover.mode = 'forward' elif Rover.mode == 'stuck': if (Rover.throttle == 0 and Rover.brake == 0 and Rover.steer != 0): #spinning in place print("Rover is spinning in place") Rover.throttle = 0 Rover.brake = Rover.brake_set Rover.steer = 0 Rover.mode = 'forward' elif (Rover.throttle >= Rover.throttle_set and Rover.vel <= 0.5): print("Rover is still stuck") Rover.steer = -15 Rover.throttle = 5*Rover.throttle_set Rover.brake = 0 Rover.mode = 'stop' elif Rover.vel < -0.2: #if rover moving backwards go to stop mode Rover.throttle = 0 Rover.brake = Rover.brake_set Rover.steer = -15 print("Rover out of stuck mode and going to stop mode") Rover.mode = 'stop' else: Rover.stuck_counter = 0 Rover.throttle = 0 Rover.brake = Rover.brake_set Rover.steer = -15 Rover.mode = 'stop' elif Rover.mode == 'donut': Rover.throttle = 0 Rover.brake = 0 #Rover.brake_set Rover.wall_offset_angle *= -2 Rover.steer = mean_nav_angle(Rover) if (Rover.donut_counter >= 5*Rover.fps + 5): # Wait for 6 frames to turn Rover by 90deg Rover.donut_counter = 0 Rover.mode = 'stop' else: Rover.mode = 'forward' elif Rover.mode == 'gohome': if is_near_home(Rover): Rover.throttle = 0 Rover.brake = Rover.brake_set Rover.steer = 0 print("Rover is home") else: Rover.mode = 'forward' # Just to make the rover do something even if no modifications have been made to the code else: Rover.throttle = Rover.throttle_set Rover.steer = 0 Rover.brake = 0 # If in a state where want to pickup a rock send pickup command if Rover.near_sample and Rover.vel == 0 and not Rover.picking_up: Rover.send_pickup = True return Rover
DrPanigrahi/RoboND-Rover-Project
code/decision.py
decision.py
py
9,602
python
en
code
0
github-code
6
22791922218
#2022.08.15 #Q1. 다음은 Calcutalor 클래스이다. class Calculator: def __init__(self): self.value = 0 def add(self, val): self.value += val #위 클래스를 상속하는 UpgradeCalculator를 만들고 값을 뺄 수 있는 minus 메소드를 추가해 보자. #즉 다음과 같이 동작하는 클래스를 만들어야 한다. class UpgradeCalculator(Calculator): def minus(self, val): self.value -= val cal = UpgradeCalculator() cal.add(10) cal.minus(7) print(cal.value) #10에서 7을 뺀 3을 출력 #Q2. 객체변수 Value가 100 이상의 값은 가질 수 없도록 제헌하는 MaxLimitCalculator 클래스를 만들어 보자. 즉 다음과 같이 동작해야 한다. #Calculator 클래스를 상속하고 add 메소드를 오버라이딩하여 다음과 같은 클래스를 만든다. class MaxLimitCalculator(Calculator): def add(self,val): if self.value > 100: self.value = 100 cal = MaxLimitCalculator() cal.add(50) #50 더하기 cal.add(50) #60 더하기 print(cal.value) #100 출력 #단 반드시 다음과 같은 Calculator 클래스를 상속해서 만들어야 한다. # class Calculator: # def __init__(self): # self.value = 0 # def add(self, val): # self.value += val #Q3. 다음 결과를 예측해 보자. #1. all([1, 2, abs(-3)-3]) #False #abs(-3)은 -3의 절댓값이므로 3이 되어 all([1,2,0])이 되고, 리스트의 요솟값 중 0이 있기 때문에 all 내장 함수의 결과는 False가 된다. #2. chr(ord('a')) == 'a' #True #ord('a')의 결과는 97이 되어 chr(97)로 치환된다. chr(97)의 결과는 다시 'a'가 되므로 'a' == 'a'가 되어 True를 돌려 준다. #Q4. filter와 lambda를 사용하여 리스트 [1,-2,3,-5,8-,3]에서 음수를 모두 제거해 보자. #음수를 제거하기 위한 filter의 함수로 lambda 함수를 다음과 같이 만들어 실행한다. print(list(filter(lambda x:x>0,[1,-2,3,-5,8,-3]))) #Q5.234라는 10진수의 16진수는 ㄷ음과 같이 구할 수 있다. print(hex(234)) #이번에는 반대로 16진수 문자열 0xea를 10진수로 변경해 보자. print(int('0xea',16)) #Q6.Map과 lambda를 사용하여 [1,2,3,4] 리스트의 각 요솟값에 3이 곱해진 리스트 [3,6,9,12]를 만들어 보자. #입력에 항상 3을 곱하여 돌려 주는 lambda 함수를 다음과 같이 만들고 map과 조합하여 실행한다. print(list(map(lambda x:x*3,[1,2,3,4]))) #Q7.다음 리스트의 최댓값과 최솟값의 합을 구해보자. a = [-8,2,7,5,-3,5,0,1] print(max(a) + min(a)) #Q8. 17 / 3 의 결과는 다음과 같다. print(17 / 3 ) #5.666666666666667 #위와 같은 결괏값 5.666666666666667을 소숫점 4자리까지만 반올림하여 표시해 보자. print(round(17/3,4)) #Q9. 다음과 같이 실행할 때 입력값을 모두 더하여 출력하는 스크립트(C:/doit/myargv.py)를 작성해 보자. #C:>cd doit #C:/doit>python myargv.py 1 2 3 4 5 6 7 8 9 10 #55 #다음처럼 sys모듈의 argv를 사용하여 명령 행 입력값 모두를 차례로 더해 준다. import sys numbers = sys.argv[1:] #파일 이름을 제외한 명령 행의 모든 입력 result = 0 for number in numbers: result += int(number) print(result) #Q10. os 모듈을 사용하여 다음과 같이 동작하도록 코드를 작성해 보자. #1. C:>doit 디렉터리로 이동한다. #다음처럼 os 모듈의 chdir을 사용하여 C:/doit 이라는 디렉터리로 이동한다. import os print(os.chdir("c:/doit")) #2. dir 명령을 실행하고 그 결과를 변수에 담는다. #그리고 다음처럼 os 모듈의 popen을 사용하여 시스템 명령어인 dir을 수행한다. result = os.popen("dir") #3. dir 명령의 결과를 출력한다. #opoen의 결과를 출력하기 위해 다음과 같이 수행한다. print(result.read()) #Q11. glob 모듈을 사용하여 C:/doit 디렉터리의 파일 중 확장자가 .py인 파일만 출력하는 프로그램을 작성해 보자. #다음과 같이 glob 모듈을 사용한다. import glob print(glob.glob("c:/doit/*.py")) #Q12. time 모듈을 사용하여 현재 날짜와 시간을 다음과 같은 형식으로 출력해 보자. #2018/04/03 17:20:32 #time 모듈의 strftime을 사용하여 다음과 같이 작성한다. import time print(time.strftime("%Y/%m/%d %H:%M:%S")) #%Y:년, %m:월, %d:일, %H:시, %M:분, %S:초 #Q13. random 모듈을 사용하여 로또 번호(1~45 사이의 숫자 6개)를 생성해 보자. #random 모듈의 randint를 사용하여 다음과 같이 작성한다. import random result = [] while len(result) < 6: num = random.randint(1, 45) #1부터 45까지의 난수 발생 if num not in result: result.append(num) print(result)
Yoon-kiyeong/Jump_Up_To_Python
Ch01/Part 04/Practice.py
Practice.py
py
4,802
python
ko
code
0
github-code
6
8103602238
# # @lc app=leetcode id=25 lang=python3 # # [25] Reverse Nodes in k-Group # # @lc code=start # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def reverseKGroup(self, head: Optional[ListNode], k: int) -> Optional[ListNode]: dummy = groupPrev = ListNode(0, head) while True: kth = self.getk(groupPrev, k) if not kth: break groupPrev.next = kth groupNext = kth.next #reverse curr, prev = head, groupNext while curr != groupNext: nxt = curr.next curr.next = prev prev = curr curr = nxt groupPrev = head head = groupNext return dummy.next def getk(self, head, k): while k > 0 and head: head = head.next k -= 1 return head # @lc code=end
HongyuZhu999/LeetCode
25.reverse-nodes-in-k-group.py
25.reverse-nodes-in-k-group.py
py
1,035
python
en
code
0
github-code
6
74921836986
import tkinter as tt from tkinter import * from tkinter import Tk, Label, Button,Entry, StringVar win = tt.Tk()# 创建窗体对象 # win.title('来自我的表白')#标题 # win.geometry('350x200+430+350') # label = tt.Label(win,text='能做我女朋友吗?',font="微软雅黑",fg='#666',bg='red') # label.pack() # def mClick(): # label = tt.Label(win,text='爱你哦!',font="宋体",fg='#888888') # label.place(x=70,y=100) # def mClick1(): # label = tt.Label(win, text='再考虑一下不!我是认真的呢', font="宋体", fg='#888888') # label.place(x=70,y=100) # btn = Button(win,text='可以',command=mClick) # btn1 = Button(win,text='不可以',command=mClick1) # btn.place(x=70,y=50) # btn1.place(x=230,y=50) win.title('程序验证')#标题 win.geometry('350x200+430+350') txt1=StringVar() # 声明为StringVar对象 txt2=StringVar() label = Label(win, text="请输入密码!", font=('宋体','16')) label.pack() def mClick(): # L1 = Label(win, textvariable=txt2,font=('宋体', '16')) # L1.pack() str = txt1.get() # txt2.set(str) if str == '123': L2 = Label(win, text='恭喜你输入正确', font=('宋体','16')) L2.pack() else: L3 = Label(win, text='输入错误', font=('宋体', '16')) L3.pack() txt1=Entry(win, textvariable=txt1, width=16, font=('宋体','16')) txt1.pack() btn=Button(win, text='确认', command=mClick) btn.pack() #成功了! win.mainloop()# 循环事件
git123hub121/Python-analysis
Tkinter/Tk.py
Tk.py
py
1,481
python
en
code
4
github-code
6
21396441749
import os from django.conf import settings from django.db import connection, close_old_connections from django.db.utils import OperationalError from fastapi import FastAPI from fastapi.responses import JSONResponse from racetrack_client.utils.shell import shell, CommandError from lifecycle.django.registry.database import db_access from lifecycle.config import Config def setup_health_endpoint(api: FastAPI, config: Config): @api.get("/live", tags=['root']) async def _live(): """Report service liveness: whether it has started""" return { 'service': 'lifecycle', 'live': True, } @api.get("/ready", tags=['root']) async def _ready(): """Report service readiness: whether it's available for accepting traffic""" return { 'service': 'lifecycle', 'ready': True, } @api.get("/health", tags=['root']) def _health(): """Report current application status""" db_connected = is_database_connected() status_code = 200 if db_connected else 500 content = { 'service': 'lifecycle', 'live': True, 'ready': db_connected, 'database_connected': db_connected, 'git_version': os.environ.get('GIT_VERSION', 'dev'), 'docker_tag': os.environ.get('DOCKER_TAG', ''), 'auth_required': config.auth_required, } return JSONResponse(content=content, status_code=status_code) @db_access def is_database_connected() -> bool: try: django_db_type = os.environ.get('DJANGO_DB_TYPE', 'sqlite') if django_db_type == 'postgres': db_name = settings.DATABASES['default']['NAME'] user = settings.DATABASES['default']['USER'] host = settings.DATABASES['default']['HOST'] port = settings.DATABASES['default']['PORT'] shell(f'pg_isready -h {host} -p {port} -U {user} -d {db_name}', print_stdout=False) close_old_connections() with connection.cursor() as cursor: cursor.execute('select 1') cursor.fetchone() cursor.close() connection.close() return True except CommandError: return False except OperationalError: return False
TheRacetrack/racetrack
lifecycle/lifecycle/endpoints/health.py
health.py
py
2,317
python
en
code
27
github-code
6
29128123138
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import embed_video.fields from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('tracks', '0006_auto_20150604_1856'), ] operations = [ migrations.CreateModel( name='Video', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(default=b'untitled', max_length=128, verbose_name='Title')), ('video', embed_video.fields.EmbedVideoField(help_text=b'Link to youtube or vimeo', verbose_name='Video Link')), ('user', models.ForeignKey(related_name='videos', to=settings.AUTH_USER_MODEL)), ], ), ]
TimBest/ComposersCouch
tracks/migrations/0007_video.py
0007_video.py
py
924
python
en
code
1
github-code
6
32742347893
import requests,time from bs4 import BeautifulSoup import p_mysql,json class jxy_all(): def xunhuan(self,gol_cookies): wrong = 0 first_run = 0 jishu = 0 toufayu = False multiple = [1, 3, 7, 15, 31, 63, 127, 34, 55, 89, 144, 1, 1] maxwrong = 6 global moni firstflag_vote = '' current_period = '' vote_retime = 0 endf = 1 wrongflag = False vote_list = [] self.header = {"Accept": "text/html, application/xhtml+xml, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN", "Connection": "Keep-Alive", "Host": "www.juxiangyou.com", "Referer": "http://www.juxiangyou.com/", "User-Agent": "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64;Trident/5.0)"} post_head = {"Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-cn", "Cache-Control": "no-cache", "Connection": "Keep-Alive", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Host": "www.juxiangyou.com", "Referer": "http://www.juxiangyou.com/fun/play/crazy28/index", "User-Agent": "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)", "X-Requested-With": "XMLHttpRequest"} self.url = 'http://www.juxiangyou.com/fun/play/crazy28/index' yinshu = 1 list_v = [] czlst = [] c_time = time.strftime('%m-%d %H:%M', time.localtime(time.time())) try: req = requests.get(self.url, cookies=gol_cookies, headers=self.header) soup = BeautifulSoup(req.text, 'lxml') # 查询当前投注信息 vote_info = soup.find('p', attrs={'class': 'time-static1'}) # 第一步 找到当前期 这里必然找出当前期,目的是为了投注。 if vote_info != None: if (vote_info.text).find('正在开奖') > 0: print('正在开奖,等待5秒') time.sleep(5) else: # 如果没有开奖,则查询当前投注期 try: vote_current = vote_info.find_all('span') # 结束标识,查询 end_flag = (vote_info.text).find('截止投注') if end_flag > 0: # 即使投注了,当前期也需要展示出来,为投注判断 print(vote_current[0].string + '期已经截止投注') current_period = vote_current[0].string else: print('当前期' + vote_current[0].string + '剩余' + vote_current[1].string + '秒投注') vote_retime = int(vote_current[1].string) current_period = vote_current[0].string except Exception as e: print('搜索资料出错,列表错误') print('traceback.format_exc():%s' % traceback.format_exc()) if current_period != '': # 添加保存第一次金币部分 try: current_jinbi = (soup.find('span', attrs={'class': 'J_udou'}).string).replace(',', '') except Exception as e: print(repr(e)) if firstflag_vote == '': firstflag_vote = current_period firstflag_jinbi = current_jinbi config = configparser.ConfigParser() config.read("Config_jxyfk28.ini") config_title = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) try: config.add_section(config_title) config.set(config_title, "starttime:", config_title) config.set(config_title, "firstvote:", firstflag_vote) config.set(config_title, "firstjinbi", firstflag_jinbi) config.write(open("Config_jxyfk28.ini", "w")) tempa = config.sections() newa = [] findtime = time.strftime('%Y-%m-%d', time.localtime(time.time())) # print(findtime) for x in tempa: # print(x.find(findtime)) if x.find(findtime) >= 0: newa.append(x) todayfirstjinbi = int(config.get(newa[0], 'firstjinbi')) except configparser.DuplicateSectionError: print("Section already exists") # 循环采集部分 mydb = p_mysql.MySQL() # 查询数据库最后一期,然后显示出来 sql_text = "select period from jx_fk28 ORDER BY period DESC limit 1" sql_re = mydb.query(sql_text) if len(sql_re) <= 0: endf = 44 else: endf = int((int(current_period) - int(sql_re[0][0])) / 25) + 1 if endf >= 44: endf = 44 self.up_dt_info.emit("需采集" + str(endf) + "页数") w = 1 while w <= endf: self.up_dt_info.emit("开始采集,第" + str(w) + "页---") try: base_time = int(time.time()) * 1000 x_sign = baseN(base_time, 36) # 为header字典添加一个X-sign标识,毫秒级时间戳36进制 post_head['X-Sign'] = x_sign # 服务器接受str格式,把字典格式json格式转化 a = json.dumps( {"c": "quiz", "fun": "getEachList", "items": "crazy28", "pageSize": 23, "pageIndex": w}) b = json.dumps({"items": "crazy28"}) # 毫秒级时间戳,同时作为postdatspeed16a数据发现服务器 pst_data = {'jxy_parameter': a, 'timestamp': base_time, 'params': b, 'xtpl': 'fun/private/jc-index-tbl'} url = 'http://www.juxiangyou.com/fun/play/interaction' # Post数据服务器,cookies使用登录页面与验证码 合并cookies提交 req_one = requests.post(url, data=pst_data, cookies=gol_cookies, headers=post_head, allow_redirects=False) vote_data = json.loads(req_one.text) if vote_data['code'] == 10000: for x in vote_data['itemList']: period = x['num'] vote_time = x['date'] jcjg = x['jcjg2'] state = x['state'] if state == 1: sql = "insert into jx_fk28 values ('" + period + "','" + vote_time + "','" + str( jcjg) + "')" mydb.query(sql) w = w + 1 except Exception as e: self.up_dt_info.emit("采集过程中,页面信息问题,重新采集该页") print("错误:%s" % traceback.format_exc()) w = w - 1 if w <= 0: w = 1 self.up_dt_info.emit("采集完成") self.up_table_info.emit(req.text) # if moni == 1 and first_run == 0: # wrong = firstwrong # print('当我更新wrong时,我的值还是',firstwrong) if first_run == 0: self.up_dt_info.emit('先搜索最近的一次错6') remax = self.remaxwrong() if int(current_period) - int(remax) <= 30: moni = 0 first_run = 1 self.up_statusinfo.emit( '第一次查询错六为: ' + str(remax) + " ,间隔期 : " + str(int(current_period) - int(remax))) self.up_dt_info.emit('搜索结束') # 每一次,必须采集完成后,才开始从数据库中拿数据判断 if vote_list: # 如果不为空,说明上一次投注了,判断是否正确。 try: vote_period = str(vote_list[-1]).strip() sql = "select * from jx_fk28 where period='" + vote_period + "' limit 1" redata = mydb.query(sql) last_vote = redata[0][2] # print('返回列表', vote_list, '查找返回投注期的结果', last_vote[0]) self.up_dt_info.emit('上期投注列表' + str(vote_list)) if int(last_vote) in vote_list: print('投注正确,倍率清空') self.up_lastinfo.emit((vote_period, '', '', last_vote, '正确', '')) wrong = 0 if wrongflag == True and moni == 1: wrongflag = False toufayu = True jishu = 0 moni = 0 else: self.up_lastinfo.emit((vote_period, '', '', last_vote, '错误', '')) if int(last_vote) > 0: # print('投注错误,次数加 1 ,错误次数:', wrong) wrong = wrong + 1 if wrong >= maxwrong: wrongflag = True moni = 1 except Exception as e: self.up_dt_info.emit("查询已投注的结果错误:%s" % traceback.format_exc()) # --------------------------------------------------- s1 = int(current_period) - 1 s2 = str(int(current_period) - 2) s3 = str(int(current_period) - 3) s4 = str(int(current_period) - 4) # sql = "select * from jx_fk28 where period='" + s1 + "' or period='" + s2 + "' or period='" + s3 + "' or period='" + s4 + "' order by period DESC" sql = "select * from jx_fk28 where period <= %s order by period DESC LIMIT 20" % (s1) # print(sql) redata_1 = mydb.query(sql) # print(redata_1) last_1 = redata_1[0][2] last_2 = redata_1[1][2] last_3 = redata_1[2][2] last_4 = redata_1[3][2] print(last_1, last_2, last_3, last_4) for x in redata_1: czlst.append(int(x[2])) print(czlst) if vote_retime > 9: if moni == 0: if jishu >= 6 and wrong == 0: toufayu = False if toufayu == True: yinshu = 20 jishu = jishu + 1 if jishu >= 250 and wrong <= 2: moni = 1 jishu = 0 # print('lezhuan,最大错:', maxwrong, '当前错误', wrong, "金币:", '倍数', yinshu, '模拟', moni, '投注次数', jishu, # '错标', wrongflag, '偷发育', toufayu) # list_v = daxiao_1(last_1, last_2, last_3, last_4, multiple[wrong], yinshu) list_v = daxiao_2(last_1, last_2, last_3, last_4, multiple[wrong], yinshu, czlst) if list_v: vote_list = vote_thing(current_period, list_v) if int(vote_list[0]) < 10: dd = '小' else: dd = '大' self.up_curinfo.emit((current_period, multiple[wrong] * yinshu * 500, jishu, wrong, int(current_jinbi) - todayfirstjinbi, moni, dd)) else: vote_list = [] self.up_curinfo.emit((current_period, '', '', '', '', moni, '')) del mydb dealy_time = vote_retime + 28 self.up_dt_info.emit('延时%s刷新' % dealy_time) for m in range(dealy_time, -1, -1): self.up_lcd_num.emit(m) time.sleep(1) else: self.up_dt_info.emit("当前期都没找到,继续延时30秒查找") time.sleep(5) except Exception as e: print('traceback.format_exc():%s' % traceback.format_exc()) self.up_dt_info.emit("访问网站出错,等待10秒,重新访问" + repr(e)) time.sleep(5)
ssolsu/newproject
server_jxy.py
server_jxy.py
py
13,611
python
en
code
0
github-code
6
40253497699
from django.urls import path from . import views app_name = 'chat' urlpatterns = [ path('', views.index, name='index'), path('create_room/', views.create_room, name='create_room'), path('my_rooms/', views.rooms_list, name='rooms_list'), path('<str:room_name>/', views.room, name='room'), ]
michalr45/django-chat
chat/urls.py
urls.py
py
308
python
en
code
0
github-code
6
73790991549
from typing import List, Tuple from abstract_puzzles import AbstractPuzzles DATA_TYPE = List[Tuple[Tuple[int, int], Tuple[int, int]]] class Puzzles(AbstractPuzzles): def __init__(self, method_name): super().__init__( method_name, day=4, puzzle_1_example_answer=2, puzzle_1_answer=487, puzzle_2_example_answer=4, puzzle_2_answer=849, ) def read(self, file_path: str) -> Tuple[DATA_TYPE]: data = [] with open(file_path, 'r') as f: for line in f.read().splitlines(): elf1, elf2 = line.split(',') elf1_start, elf1_end = elf1.split('-') elf2_start, elf2_end = elf2.split('-') data.append(( (int(elf1_start), int(elf1_end)), (int(elf2_start), int(elf2_end)), )) return data, def puzzle_1(self, schedules: DATA_TYPE) -> int: return len(list(filter( lambda elfs: (elfs[0][0] >= elfs[1][0] and elfs[0][1] <= elfs[1][1]) or (elfs[1][0] >= elfs[0][0] and elfs[1][1] <= elfs[0][1]), schedules ))) def puzzle_2(self, schedules: DATA_TYPE) -> int: return len(list(filter( lambda elfs: elfs[1][0] <= elfs[0][0] <= elfs[1][1] or elfs[1][0] <= elfs[0][1] <= elfs[1][1] or elfs[0][0] <= elfs[1][0] <= elfs[0][1] or elfs[0][0] <= elfs[1][1] <= elfs[0][1], schedules )))
Lynxens/AdventOfCode2022
advent_of_code/day4.py
day4.py
py
1,600
python
en
code
4
github-code
6
20236247442
# WAP count how many times the word India is repeated # Get the data from the file f = open('about_india.txt', "r") data = f.read() f.close() #print(data) words = data.split(" ") #print(words) c = 0 for word in words: if word == "India": #print(word) c = c+1 print(c)
SreekanthChowdary19/PYCLS
class_examples/EVENING/example8.py
example8.py
py
293
python
en
code
0
github-code
6
70097868029
import pygame as pg from pygame.sprite import Sprite class Ship(Sprite): def __init__(self, screen, settings): super(Ship, self).__init__() self.screen = screen self.settings = settings self.sprite = pg.image.load('./assets/spaceship.png') self.scale_factor = 10 self.sprite = pg.transform.scale(self.sprite, (self.sprite.get_width() // self.scale_factor , self.sprite.get_height() // self.scale_factor)) self.rect = self.sprite.get_rect() self.screen_rect = self.screen.get_rect() self.isMovingRight = False self.isMovingLeft = False self.rect.centerx = self.screen_rect.centerx self.rect.bottom = self.screen_rect.bottom - 5 def update(self): if self.isMovingRight and (self.rect.right < self.screen_rect.right): self.rect.centerx += self.settings.space_ship_speed if self.isMovingLeft and (self.rect.left > self.screen_rect.left): self.rect.centerx -= self.settings.space_ship_speed def draw(self): self.screen.blit(self.sprite, self.rect) def center_ship(self): self.rect.centerx = self.screen_rect.centerx
hoangdesu/Alien-Invasion-Pygame
ship.py
ship.py
py
1,239
python
en
code
1
github-code
6
24199809037
class Solution: def maxSubArray(self, nums): """ parameter: nums: list[int] return: int """ temp = nums[0] max_ = temp for i in range(1, len(nums)): if temp > 0: temp += nums[i] max_ = max(temp, max_) else: temp = nums[i] max_ = max(temp, max_) return max_ # class Solution: # def maxSubArray(self, nums): # """ # parameter: # nums: list[int] # return: int # """ # if not nums: # return 0 # self.nums = nums # return self.divide_and_conquer(0, len(nums)-1) # def divide_and_conquer(self, left, right): # """ # parameter: # left: int # right: int # return: int # """ # if left == right: # return self.nums[left] # mid = (left + right) // 2 # left_max_sum = self.divide_and_conquer(left, mid) # right_max_sum = self.divide_and_conquer(mid+1, right) # left_board_sum = self.nums[mid] # right_board_sum = self.nums[mid+1] # max_left_board_sum = self.nums[mid] # max_right_board_sum = self.nums[mid+1] # # 向左扫描 # for i in range(mid-1, -1, -1): # left_board_sum += self.nums[i] # if left_board_sum > max_left_board_sum: # max_left_board_sum = left_board_sum # # 向右扫描 # for i in range(mid+2, right+1): # right_board_sum += self.nums[i] # if right_board_sum > max_right_board_sum: # max_right_board_sum = right_board_sum # return max(left_max_sum, right_max_sum, max_left_board_sum+max_right_board_sum)
AiZhanghan/Leetcode
code/53. 最大子序和.py
53. 最大子序和.py
py
1,851
python
en
code
0
github-code
6
28857307321
import torch import numpy as np from six import string_types from torch import optim import inspect import torch.nn as nn import torch.nn.parallel from torch.autograd import Variable import torch.nn.functional as F from tqdm import tqdm import copy def get_function_args( fn ): """returns a list of all argumnts, dict of all the defualts , and list of all non default arguments Args: fn (function): [description] Returns: [type]: [description] """ args = inspect.getargspec( fn ).args if inspect.getargspec( fn ).defaults is None: n_defaults = 0 def_args = [] else: n_defaults = len(inspect.getargspec( fn ).defaults ) def_args = list(inspect.getargspec( fn ).defaults ) if n_defaults > 0: default_args = args[ -1*n_defaults : ] else: default_args = [] defaults = { a[0]:a[1] for a in zip(default_args , def_args ) } non_defaults = args[: len( args) - n_defaults ] return args , defaults , non_defaults # given a dictionary kwargs .. this will return which all of those can be sent to the function fn_name def filter_functions_kwargs(fn_name , kwargs ): fn_args = inspect.getargspec( fn_name ).args ret = {} for k in kwargs: if k in fn_args: ret[ k ] = kwargs[k] return ret def str_to_auto_type(var): #first test bools if var == 'True' or var=='true': return True elif var == 'False' or var=='false': return False else: #int try: return int(var) except ValueError: pass #float try: return float(var) except ValueError: pass # homogenus list # todo #string try: return str(var) except ValueError: raise NameError('Something Messed Up Autocasting var %s (%s)' % (var, type(var))) # returns a dictionarly of named args from cli!! def get_cli_opts(argv): opts = {} # Empty dictionary to store key-value pairs. argv= copy.deepcopy(argv) while argv: # While there are arguments left to parse... if argv[0][0] == '-' and argv[0][1] == '-': # Found a "--name value" pair. argv[0] = argv[0][2:] # remove '--' assert argv[0] != '' , "There is some issue with the cli args becasue a key cannot be empty" assert not argv[0] in opts , "Repeated argument: "+argv[0] opts[argv[0]] = str_to_auto_type( argv[1] ) # Add key and value to the dictionary. argv = argv[1:] # Reduce the argument list by copying it starting from index 1. return opts def get_vars( data , cuda=False , numpy=False ): # list( map( lambda x :Variable(torch.FloatTensor(x.float() )).cuda() , imgs )) if type( data ) is tuple: return tuple([ get_vars(d , cuda=cuda , numpy=numpy) for d in data ]) elif type( data ) is list: return list([ get_vars(d , cuda=cuda , numpy=numpy) for d in data ]) elif type( data ) is dict: return { k:get_vars(data[k] , cuda=cuda , numpy=numpy) for k in data } else: if numpy: data = torch.from_numpy(data) r = Variable( data ) if cuda: r = r.cuda() return r def get_np_arrs( data ): if type( data ) is tuple: return tuple([ get_np_arrs(d ) for d in data ]) elif type( data ) is list: return list([ get_np_arrs(d ) for d in data ]) elif type( data ) is dict: return { k:get_np_arrs(data[k] ) for k in data } else: return data.cpu().detach().numpy() class ProgressBar(tqdm): def __init__( self , iterator ): super(ProgressBar, self).__init__(iterator) self.vals_history_dict = {} def add( self , vals_dict ): for k in vals_dict: if not k in self.vals_history_dict: self.vals_history_dict[k] = [] self.vals_history_dict[k].append( vals_dict[k]) self.bar_str = "" for k in self.vals_history_dict: self.bar_str += k+":"+ "%.3f"%(np.mean(self.vals_history_dict[k])) + " " self.set_description(self.bar_str )
divamgupta/pytorch-propane
pytorch_propane/utils.py
utils.py
py
4,467
python
en
code
5
github-code
6
32872627279
from SofiPackage.enum_converter import ANSWERS_AND_QUESTIONS from SofiPackage.db_choise import sample_of_values_to_enum import random def choose_from_random(options_dict): rand = random.randint(0,100) last_weight = 0 for option in options_dict: if last_weight <= rand <= options_dict[option]: return option last_weight = options_dict[option] def generate_oracle(): db_size = choose_from_random({'db_size_inf': 10, 'db_size_100_mb': 20, 'db_size_1_gb': 40, 'db_size_100_gb': 100}) db_flow_rate = choose_from_random({'db_flow_rate_100_mbd': 5, 'db_flow_rate_1_gbd': 20, 'db_flow_rate_100_gbd': 80, 'db_flow_rate_inf': 100}) store_time = choose_from_random({'store_time_1_month': 5, 'store_time_1_year': 20, 'store_time_2_years': 80, 'store_time_5_years': 100}) spatial_use = choose_from_random({'spatial_use': 30, 'non_spatial_use': 100}) complex_select = choose_from_random({'complex_select_10': 10, 'complex_select_25': 30, 'complex_select_60': 80, 'complex_select_100': 100}) select_by_user = choose_from_random({'select_by_user_10': 10, 'select_by_user_25': 30, 'select_by_user_50': 70, 'select_by_user_100': 100}) select_rate = choose_from_random({'select_rate_10_opm': 10, 'select_rate_100_opm': 30, 'select_rate_1000_opm': 80, 'select_rate_inf': 100}) schema_change = choose_from_random({'schema_change_1_year': 80, 'schema_change_5_year': 90, 'schema_change_10_year': 95, 'schema_change_dynamic': 100}) sample = ['oracle', 'schema', db_size, db_flow_rate, store_time, 'non_text_search', spatial_use, 'non_dynamic_schema', complex_select, 'select_by_column', select_by_user, select_rate, schema_change, 'data_type_text', 'scale_up'] sample_string = ', '.join(str(elem) for elem in sample) sample_string += '\n' return sample_string for i in range(100): print(generate_oracle(), end='') # oracle = ['schema', none, none, none, 'non_text_search', none, 'non_dynamic_schema', # none, 'select_by_column', none, none, none, 'data_type_text', 'scale_up'] # # mssql = ['schema', none, none, none, 'non_text_search', 'non_spatial_use', 'non_dynamic_schema', # none, 'select_by_column', none, none, none, none, 'scale_up'] # # hbase = ['non_schema', none, none, none, 'non_text_search', 'non_spatial_use', 'dynamic_schema', # 'complex_select_10', 'select_by_key', 'select_by_user_10', none, none, none, 'scale_out'] # # elastic = ['non_schema', none, none, none, 'text_search', none, 'dynamic_schema', # none, none, none, none, none, 'data_type_text', 'scale_out'] # # mongo = ['non_schema', none, none, none, 'non_text_search', none, 'dynamic_schema', # none, none, none, none, none, none, 'scale_out'] # a = {'a': 10, 'b': 30, 'c': 60, 'd': 100} # print(choose_from_random(a))
IdanM75/Sofi
generate_dataset.py
generate_dataset.py
py
3,039
python
en
code
0
github-code
6
36651482906
from os import system while True: login = str(input("Informe o seu login: ")) senha = str(input("Informe a sua senha: ")) if senha == login: print("Você não pode usar a mesma palavra em login e senha, pois não é seguro.") print("Informe uma senha valida!") else: print("Você esta cadastrado, bem vindo(a)") break system("Cls") while True: login2 = str(input("Informe seu login: ")) senha2 = str(input("Informe seu login:")) if login2 == login: print("Nome de usuario não esta disponivel, tente outro") elif login2 == senha2: print("Você não pode usar a mesma palavra em login e senha, pois não é seguro.") print("Informe uma senha válida!") else: print("Você esta cadastrado, bem vinda(a)") break
ellencamile/pythonEllen
Excercicios while/Questão1.py
Questão1.py
py
826
python
pt
code
1
github-code
6
30569513843
from flask import Flask, render_template, flash, redirect, url_for, session, logging, request from wtforms import Form, StringField, validators import Project import re app = Flask(__name__) @app.route("/search") def search(): return render_template('search.html') class WordPredictionForm(Form): word = StringField('', [validators.Length(min=1, max=1000)]) # PROJECT NLP @app.route('/', methods=['GET', 'POST']) def index(): form = WordPredictionForm(request.form) if request.method == 'POST' and form.validate(): word = form.word.data print(word) #Predict the Model project = Project word = re.sub(r'([^\s\w]|_)+', '', word) seq = word[:40].lower() # print(seq) list = project.predict_completions(seq, 5) chosen = list[0] print(list) flash("loading...") # redirect(url_for('index', list=list)) return render_template('index.html', form=form, list=list, seq=seq, chosen=chosen, scroll='result') return render_template('index.html', form=form) if __name__ == "__main__": app.secret_key = "secret123" app.run(debug=True)
jmgang/wordpredictor
app.py
app.py
py
1,218
python
en
code
0
github-code
6
17661433287
from itertools import islice from collections import defaultdict def distance(point): return abs(point[0]) + abs(point[1]) def neighbours(point): x, y = point return ((x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+1, y+1), (x-1, y-1), (x+1, y-1), (x-1, y+1)) def spiral_seq(): yield 0, 0 x, y = 1, 0 inc_x, inc_y = 0, 1 while True: yield x, y if abs(x) == abs(y): if x <= 0 and y <= 0: inc_x, inc_y = 1, 0 elif x > 0 and y <= 0: x += 1 y -= 1 inc_x, inc_y = 0, 1 elif x <= 0 and y > 0: inc_x, inc_y = 0, -1 else: inc_x, inc_y = -1, 0 x += inc_x y += inc_y def sequential_spiral(nth): return next(islice(spiral_seq(), nth - 1, nth)) def neighbour_spiral(limit): matrix = defaultdict(int) matrix[(0, 0)] = 1 for point in islice(spiral_seq(), 1, None): value = sum(matrix[neighbour] for neighbour in neighbours(point)) if value > limit: return value else: matrix[point] = value print(distance(sequential_spiral(368078))) print(neighbour_spiral(368078))
pdhborges/advent-of-code
2017/3.py
3.py
py
1,231
python
en
code
0
github-code
6
17035306194
def solve(input_str): SIZE = 26 OFFSET = 97 a = list(input_str.strip().split()[1:]) result = [0] * SIZE for char in a: result[ord(char) - OFFSET] += 1 return " ".join(map(str, result)) print(solve(open(0).read()))
atsushi0919/paiza_workbook
data_structure/03-02_dict_step2.py
03-02_dict_step2.py
py
250
python
en
code
0
github-code
6
5487284095
import os import subprocess from typing import List # noqa: F401 from libqtile import bar, layout, widget, hook from libqtile.config import Click, Drag, Group, Key, Match, Screen from libqtile.lazy import lazy from libqtile.utils import guess_terminal mod = "mod4" alt = "mod1" terminal = guess_terminal() qtile_path = os.path.expanduser('~/.config/qtile') keys = [ # Switch between windows Key([alt], "Tab", lazy.layout.next(), desc="Move window focus to other window"), # Move windows Key([mod, "shift"], "h", lazy.layout.shuffle_left(), desc="Move window to the left"), Key([mod, "shift"], "l", lazy.layout.shuffle_right(), desc="Move window to the right"), Key([mod, "shift"], "j", lazy.layout.shuffle_down(), desc="Move window down"), Key([mod, "shift"], "k", lazy.layout.shuffle_up(), desc="Move window up"), # Grow windows Key([mod], "h", lazy.layout.shrink_main(), desc="Shrink Master"), Key([mod], "l", lazy.layout.grow_main(), desc="Grow Master"), Key([mod], "j", lazy.layout.shrink(), desc="Shrink secondary"), Key([mod], "k", lazy.layout.grow(), desc="Grow Secondary"), # Window keybindings Key([mod, "control"], "space", lazy.window.toggle_floating(), desc="Toggle floating"), Key([mod], "m", lazy.window.toggle_maximize(), desc="Toggle maximize"), Key([mod], "n", lazy.window.toggle_minimize(), desc="Toggle minimize"), Key([mod], "f", lazy.window.toggle_fullscreen(), desc="Toggle fullscreen"), Key([mod], "q", lazy.window.kill(), desc="Kill focused window"), # Toggle between different layouts as defined below Key([mod], "space", lazy.next_layout(), desc="Next layouts"), # Qtile control Key([mod, "control"], "r", lazy.restart(), desc="Restart Qtile"), Key([mod, "shift"], "q", lazy.shutdown(), desc="Shutdown Qtile"), # Programs Key([mod], "Return", lazy.spawn(terminal), desc="Launch terminal"), Key([mod], "r", lazy.spawn("dmenu_run_history -f -i -p 'Run: '"), desc="Spawn a command using a prompt widget"), Key([mod], "b", lazy.spawn("brave-browser"), desc="Open Default Browser"), Key([mod], "c", lazy.spawn("copyq toggle"), desc="Open copyq prompt"), Key([mod], "tab", lazy.spawn("rofi -show"), desc="rofi window"), Key([mod], "s", lazy.spawn("smplayer"), desc="Open smplayer"), Key([mod], "e", lazy.spawn("nautilus"), desc="Open nautilus"), Key([mod, 'shift'], "e", lazy.spawn("lf_fm"), desc="Open lf"), Key([mod], "comma", lazy.spawn("codium " + qtile_path), desc="Open qtile config"), Key([mod, "shift"], "comma", lazy.spawn("dmconf"), desc="Open dmconf"), # Media Keys Key([mod, "control"], "Up", lazy.spawn("pactl set-sink-volume @DEFAULT_SINK@ +10%"), desc="Raise volume"), Key([mod, "control"], "Down", lazy.spawn("pactl set-sink-volume @DEFAULT_SINK@ -10%"), desc="lower volume"), Key([], "XF86AudioPlay", lazy.spawn("playerctl play-pause"), desc="Play/Pause"), Key([], "XF86AudioNext", lazy.spawn("playerctl next"), desc="Next track"), Key([], "XF86AudioPrev", lazy.spawn("playerctl previous"), desc="Previous track"), ] groups = [Group(i) for i in "123456789"] for i in groups: keys.extend([ # mod1 + letter of group = switch to group Key([mod], i.name, lazy.group[i.name].toscreen(), desc="Switch to group {}".format(i.name)), # mod1 + shift + letter of group = switch to & move focused window to group Key([mod, "control"], i.name, lazy.window.togroup(i.name, switch_group=True), desc="Switch to & move focused window to group {}".format(i.name)), # Or, use below if you prefer not to switch to that group. # mod1 + shift + letter of group = move focused window to group Key([mod, "shift"], i.name, lazy.window.togroup(i.name), desc="move focused window to group {}".format(i.name)), ]) layouts = [ layout.MonadTall(margin=5, ratio=.55, new_client_position='bottom'), # layout.Max(), # layout.Floating() # layout.Columns(num_columns=2, insert_position=1, margin=5), # Try more layouts by unleashing below layouts. # layout.Columns(border_focus_stack='#d75f5f'), # layout.Stack(num_stacks=2), # layout.Bsp(), # layout.Matrix(), # layout.MonadWide(), # layout.RatioTile(), # layout.TreeTab(), # layout.VerticalTile(), # layout.Zoomy(), ] widget_defaults = dict( font='Monospace', fontsize=12, padding=3, ) extension_defaults = widget_defaults.copy() screens = [ Screen( top=bar.Bar( [ widget.GroupBox(), widget.Prompt(), # widget.WindowName(), widget.WindowTabs(), widget.Systray(), widget.Clock(format='%Y-%m-%d %a %I:%M %p'), widget.CurrentLayout(), ], 24, ), ), ] # Drag floating layouts. mouse = [ Drag([mod], "Button1", lazy.window.set_position(), start=lazy.window.get_position()), Drag([mod, "control"], "Button1", lazy.window.set_size_floating(), start=lazy.window.get_size()), Click([mod], "Button2", lazy.window.bring_to_front()) ] dgroups_key_binder = None dgroups_app_rules = [] # type: List main = None # WARNING: this is deprecated and will be removed soon follow_mouse_focus = True bring_front_click = False cursor_warp = False floating_layout = layout.Floating(float_rules=[ # Run the utility of `xprop` to see the wm class and name of an X client. *layout.Floating.default_float_rules, Match(wm_class='confirmreset'), # gitk Match(wm_class='makebranch'), # gitk Match(wm_class='maketag'), # gitk Match(wm_class='ssh-askpass'), # ssh-askpass Match(title='branchdialog'), # gitk Match(title='pinentry'), # GPG key password entry Match(wm_class='Albert'), Match(wm_class='copyq'), ]) auto_fullscreen = True focus_on_window_activation = "smart" @hook.subscribe.startup_once def autostart(): autostart_script = os.path.expanduser('~/.config/qtile/autostart.sh') subprocess.call([autostart_script]) # XXX: Gasp! We're lying here. In fact, nobody really uses or cares about this # string besides java UI toolkits; you can see several discussions on the # mailing lists, GitHub issues, and other WM documentation that suggest setting # this string if your java app doesn't work correctly. We may as well just lie # and say that we're a working one by default. # # We choose LG3D to maximize irony: it is a 3D non-reparenting WM written in # java that happens to be on java's whitelist. wmname = "LG3D"
AhmedHalim96/dotfiles
.config/qtile/config.py
config.py
py
7,199
python
en
code
0
github-code
6
10561942242
# scrip for generation of charging points ############################################################# import random rng = random.Random() import pandas as pd import sys import os ############################################################# def eucl_dist(x1,y1,x2,y2): return ( (x1-x2)**2 + (y1-y2)**2 )**0.5 ############################################################# def usage(): """ Explain correct script call """ print("Please use the following command: <Python-Interpreter> instance_generator.py <Solomon instance folder> <number of service stations per quadrant> <charging time> <battery capacity> <Output folder>") return None def read_file(filename): """ Collect all data from a given file with read_csv-method of pandas Input: path to Solomon file Output: list of depot and customer data """ result = [] data = pd.read_csv(filename, header = 5) datalist = data.values.tolist() for element in datalist: result.append(element[0].split()) return result def generate_coordinates_r(count): """ generate and return a given number (count) of coordinates for service stations randomly distributed in a 50 units radius """ result = [] while(len(result) < count): x = rng.randint(0,100) y = rng.randint(0,100) if (eucl_dist(x,y,50,50) < 50): check = True for elem in result: if (eucl_dist(x,y, elem[0], elem[1]) < 10): check = False if check: result.append( (x,y) ) return result def generate_coordinates_c(count): """ generate and return a given number (count) of coordinates for service stations distributed around congestion centers NOTE: count should be divisible by the length of centers """ result = [] centers = [(25,25), (25,75), (75,25), (75,75)] partial_count = count//len(centers) for center in centers: subresult = [] while(len(subresult) < partial_count): x = rng.randint(0,100) y = rng.randint(0,100) if (eucl_dist(x,y,center[0],center[1]) < 15): subresult.append( (x,y) ) for elem in subresult: result.append(elem) return result def generate_instance(name, solomon_data, service_stations, service_time, battery, capacity): """ compile the whole instance and write it to name-file NOTE: solomon data entry 0 is the depot! """ output = "ID\tType\tx\ty\tDemand\tReady\tDue\tService\n" output += "D" + solomon_data[0][0] + "\td\t" for index in range(1,7): output += solomon_data[0][index] + "\t" output += "\n" output += "S" + solomon_data[0][0] + "\tf\t" for index in range(1,6): output += solomon_data[0][index] + "\t" output += str(service_time) + "\n" counter = 1 for element in service_stations: output += "S" + str(counter) + "\tf\t" + str(element[0]) + "\t" + str(element[1]) + "\t" for index in range(3,6): output += solomon_data[0][index] + "\t" output += str(service_time) + "\n" counter += 1 for index_out in range(1,101): output += "C" + solomon_data[index_out][0] + "\tc\t" for index_in in range(1,7): output += solomon_data[index_out][index_in] + "\t" output += "\n" output += "\n" output += "Q battery capacity /" + str(battery) + "/ \n" output += "C vehicle load /" + str(capacity) + "/ \n" output += "R replenishment time /" + str(service_time) + "/ \n" with open (name, 'w') as file_handle: file_handle.write(output) ############################################################## c1_num = 9 c2_num = 8 r1_num = 12 r2_num = 11 rc1_num = 8 rc2_num = 8 instance_numbers = [c1_num, c2_num, r1_num, r2_num, rc1_num, rc2_num] c1_pre = 'c1' c2_pre = 'c2' r1_pre = 'r1' r2_pre = 'r2' rc1_pre = 'rc1' rc2_pre = 'rc2' prefixes = [c1_pre, c2_pre, r1_pre, r2_pre, rc1_pre, rc2_pre] capacities = [200, 700, 200, 1000, 200, 1000] suffix = '.txt' ############################################################## if __name__ == '__main__': if (len(sys.argv) != 6): usage() exit() in_directory = sys.argv[1] num_of_servicestations = 4 * int(sys.argv[2]) service_time = int(sys.argv[3]) battery = int(sys.argv[4]) out_directory = sys.argv[5] if not os.path.exists(out_directory): os.makedirs(out_directory) service_stations = generate_coordinates_c(num_of_servicestations) for index in range(6): capacity = capacities[index] for count in range(1,instance_numbers[index]+1): #get input directory input_file = in_directory + prefixes[index] if count < 10: input_file += "0" + str(count) else: input_file += str(count) input_file += suffix #write instance file solomon_instance = read_file(input_file) output_file = out_directory + prefixes[index] if count < 10: output_file += "0" + str(count) else: output_file += str(count) output_file += "_" + str(num_of_servicestations) + suffix generate_instance(output_file, solomon_instance, service_stations, service_time, battery, capacity)
SteffenPottel/td_vrptw_instancegenerator
src/instances/instance_generator.py
instance_generator.py
py
4,851
python
en
code
1
github-code
6
21071659263
from enum import Enum import ffmpeg import numpy as np import pandas as pd import torch from data_processing.custom_segmentation import CustomSegmentationStrategy from data_processing.simple_segmentation import SimpleSegmentation from data_processing.voice_activity_detection import VADSilero class Method(Enum): CUSTOM = "CUSTOM" SILERO = "SILERO" SIMPLE = "SIMPLE" class AudioConvert: def __init__(self, method: Method = Method.CUSTOM, use_gpu: bool = False): self.method = method if method == method.SILERO: self.custom_speaker_activity_detection = VADSilero(use_gpu=use_gpu) self.custom_segmentation = None self.simple_segmentation = None elif method == method.CUSTOM: self.custom_segmentation = CustomSegmentationStrategy() self.custom_speaker_activity_detection = None self.simple_segmentation = None elif method == method.SIMPLE: self.custom_segmentation = None self.custom_speaker_activity_detection = None self.simple_segmentation = SimpleSegmentation() @staticmethod def read_file_to_np(audiofile_path: str): out, err = ( ffmpeg .input(audiofile_path) .output('pipe:', format="wav", acodec="pcm_s16le", ar=16000, ac=1) .run(capture_stdout=True) ) numpy_array = np.frombuffer(out, dtype=np.int16) return numpy_array def convert_file_to_segments(self, audiofile_path: str): audio = self.read_file_to_np(audiofile_path) audio_tensor = torch.Tensor(audio) if self.method == Method.CUSTOM: vad_matrix = self.custom_speaker_activity_detection.get_VAD_matrix(audio_tensor) self.custom_segmentation.plot_VAD(vad_matrix) segments = self.custom_segmentation.segment(vad_matrix.numpy()) audio_segments = self.custom_speaker_activity_detection.audio_to_segments_from_stamps(audio, segments) elif self.method == Method.SILERO: timestamps = self.custom_speaker_activity_detection._get_speech_ts_adaptive(audio_tensor) audio_segments = self.custom_speaker_activity_detection.audio_to_segments(audio, timestamps) elif self.method == Method.SIMPLE: audio_segments = self.simple_segmentation.segment(audio_tensor) else: raise RuntimeError() return audio_segments if __name__ == '__main__': method = Method.SILERO converter = AudioConvert(method=method, use_gpu=False) audio_files = [ #"/media/rafje/danspeech/data_mining/unlabeled/podcasts/foelg_pengende/Foelg-pengene--Hvem-sk_5e5eee8c464747fdaab37a30a626df9b_192.mp3", #"/media/rafje/danspeech/data_mining/unlabeled/podcasts/24_spørgsmål_til_professoren/Historier_fra_de_varme_lande.mp3", #"/media/rafje/danspeech/data_mining/unlabeled/podcasts/danske_statsministre/Bang_Andr_f_rdigproduceret_med_intro_og_outro_online-audio-converter_com_.mp3", #"/media/rafje/danspeech/data_mining/unlabeled/podcasts/den_agile_podcast/Podcast#3 - Agile kontra vandfald.mp3", #"/media/rafje/danspeech/data_mining/unlabeled/podcasts/supertanker/Supertanker--USA-paa-r_2c271306def14480840af87150e5d636_192.mp3", "/home/rafje/Downloads/Foelg-pengene--Apple--_823566a09c664d17aad77862d288473a_192.mp3" ] audio_lenghts = [] for audio_file in audio_files: lengths = map(lambda x: len(x[2]) / 16000, converter.convert_file_to_segments(audio_file)) audio_lenghts.append(lengths) import matplotlib.pyplot as plt all_lengths = [] lower_seconds = 4 upper_seconds = 15 under_seconds = [] between = [] over_seconds = [] for i in range(len(audio_lenghts)): current_lengths = list(audio_lenghts[i]) all_lengths += current_lengths df = pd.DataFrame(current_lengths, columns=['one']) ax = df.plot.hist(bins=20, alpha=0.5) plt.show() for audio_length in current_lengths: if audio_length < lower_seconds: under_seconds.append(audio_length) if audio_length > upper_seconds: over_seconds.append(audio_length) else: between.append(audio_length) df = pd.DataFrame(all_lengths, columns=['Audio lengths']) ax = df.plot.hist(bins=20, alpha=0.5) plt.show() print(f"Length under: {len(under_seconds)}") print(f"Length over: {len(over_seconds)}") print(f"Length between: {len(between)}") print(f"total length: {len(under_seconds) + len(over_seconds) + len(between)}") print(f"Length under seconds: {sum(under_seconds)}") print(f"Length over seconds: {sum(over_seconds)}") print(f"Length between seconds: {sum(between)}") print(f"total length seconds: {sum(under_seconds) + sum(over_seconds) + sum(between)}")
centre-for-humanities-computing/Gjallarhorn
data_processing/convert_audiofile_to_segments.py
convert_audiofile_to_segments.py
py
4,941
python
en
code
1
github-code
6
18015910724
import os import numpy as np import matplotlib.pyplot as plt import cv2 # Import PyWavelets library import pywt import pywt.data # Load an example image path = os.path.dirname(__file__) image_path = "image.jpg" original_image = cv2.imread(os.path.join(path, image_path), cv2.IMREAD_GRAYSCALE) # Perform 2D wavelet transform (MRA) on the original image ''' The output is a tuple with 4 elements: LL, (LH, HL, HH) LL = Approximation, LH = Horizontal detail, HL = Vertical detail, HH = Diagonal detail "haar" is the name of the wavelet used ''' coeffs2 = pywt.dwt2(original_image, 'haar') LL, (LH, HL, HH) = coeffs2 # Define meta information (for example, a watermark) '''Random meta-information is generated using NumPy's np.random.randint function. The meta_info variable contains random integer values between 0 and 127. The goal is to embed this meta-information into the approximation component (LL) of the wavelet-transformed image.''' meta_info = np.random.randint(0, 128, size=LL.shape) # Ensure meta_info has the same dimensions as LL # Resize meta_info to match the shape of LL meta_info_resized = cv2.resize(meta_info, (LL.shape[1], LL.shape[0])) # Exchange the LL (approximation) coefficients with meta information LL_with_meta_info = LL + meta_info_resized # Reconstruct the image using the modified coefficients '''The modified coefficients, including LL_with_meta_info, LH, HL, and HH, are used to reconstruct the modified image using the inverse wavelet transform with the 'haar' wavelet. The reconstructed image is stored in the modified_image variable.''' modified_image = pywt.idwt2((LL_with_meta_info, (LH, HL, HH)), 'haar') # Plot the original and modified images plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.imshow(original_image, cmap='gray') plt.title('Original Image') plt.axis('off') plt.subplot(1, 2, 2) plt.imshow(modified_image, cmap='gray') plt.title('Modified Image with Meta Information') plt.axis('off') plt.tight_layout() plt.show()
kio7/smart_tech
Submission 2/Task_4/wavelet_transform.py
wavelet_transform.py
py
1,989
python
en
code
0
github-code
6
38265334911
""" https://www.jianshu.com/p/892ebd063ad9 https://svn.python.org/projects/python/trunk/Objects/listsort.txt https://hg.python.org/cpython/file/5c1bacba828d/Objects/listobject.c https://www.infopulse.com/blog/timsort-sorting-algorithm/ https://github.com/RonTang/SimpleTimsort/blob/master/SimpleTimsort.py 是归并排序法和插入排序法的结合 """ class timsort: def __init__(self,a): self.a=a; a_len=len(a) self.minRun=32 self.minRun=self.dyminRun(a_len) def dyMinRun(self,n): # becomes 1 if the least significant bits contain at least one off bit r=0 while n>=64: r|=n&1 n>>=1 return n+r def rangeCheck(self,len,fromIdx,toIdx): if fromIdx>toIdx: raise Exception("fromdx>toIdx") if fromIdx<0: raise Exception("fromIdx<0") if toIdx>len: raise Exception("toIdx>len") def sort(self): self.sort(self.a,0,len(self.a)) def sort(self,array,lo,hi): self.rangeCheck(len(array),lo,hi) nRemaining=hi-lo if nRemaining<2: return # 小于MIN_MERGE长度的数组就不用归并排序了 if nRemaining<self.minRun: pass
wangbl11/yirobot
a7m/sort/timsort.py
timsort.py
py
1,266
python
en
code
0
github-code
6
31963305131
import sys, math number_list=list(range(0,2*123456+1)) root_number = int(math.sqrt(123456*2)) for i in range(2,root_number+1): if number_list[i]==0: continue target = i+i while target <= 2*123456: number_list[target] = 0 target +=i while True: N = int(sys.stdin.readline()) if N == 0 : break cnt=0 new_number = number_list[N+1:2*N+1] for i in new_number: if i != 0: if i == 1: pass cnt +=1 print(cnt)
yongwoo-jeong/Algorithm
백준/Silver/4948. 베르트랑 공준/베르트랑 공준.py
베르트랑 공준.py
py
465
python
en
code
0
github-code
6
7354238248
# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from kouzi_crawler.items import KouziCrawlerItem class QzkeySpider(CrawlSpider): name = 'qzkey' allowed_domains = ['qzkey.com'] start_urls = ['http://mimi1688.aly611.qzkey.com/'] rules = ( Rule(LinkExtractor(allow=r'Product.aspx\?typeid=\d+'), callback='parse_item', follow=True), ) def parse_item(self, response): app_list = response.xpath('//dl[@class="cpDl2"]/dd/ul//li') kouzi_name = '有鱼汇' kouzi_link = response.url kouzi_type = 'web' for item in app_list: app_item = KouziCrawlerItem() app_item['app_name'] = item.xpath('./a//dd//h3/text()').extract_first().strip() app_item['app_link'] = item.xpath('./a/@href').extract_first() app_item['kouzi_type'] = kouzi_type app_item['kouzi_name'] = kouzi_name app_item['kouzi_link'] = kouzi_link yield app_item
largerbigsuper/kouzi_crawler
kouzi_crawler/spiders/qzkey.py
qzkey.py
py
1,054
python
en
code
0
github-code
6
42543021370
# Initial code written by Stevo. """Wraps BGT's timer object in Python. """ import time class TimerException(Exception): """Raised when an error occurs. Currently does nothing when raised. """ pass class Timer: """Timer object.""" def __init__(self): """Initializes the object.""" self.start_time: int = get_current_ms() self.running: bool = True self.current_time: int = 0 def restart(self): """Restarts the timer backed to 0.""" self.start_time = get_current_ms() self.running = True self.current_time = 0 def pause(self): """Pauses the timer, but does not reset it.""" self.running = False self.current_time = get_current_ms() - self.start_time def resume(self): """Resumes the timer (if it was paused).""" self.running = True self.start_time = get_current_ms() - self.current_time self.current_time = 0 def get_elapsed(self): """Property function for elapsed.""" if not self.running: return int(self.current_time) else: return int(get_current_ms() - self.start_time) def set_elapsed(self, elapsed): """Property function to set elapsed.""" if elapsed < 0: raise TimerException("This value must be at least 0") self.starttime = get_current_ms() - elapsed if not self.running: self.current_time = elapsed elapsed: property = property(get_elapsed, set_elapsed) def get_current_ms(): """Returns the current time in the propper format for the timer.""" c_time: int = time.time() c_time *= 1000 return c_time
trypolis464/ag_py
agpy/timer.py
timer.py
py
1,710
python
en
code
0
github-code
6
70063372668
from pwn import * from LibcSearcher import * context.log_level = 'debug' # p=process('./babyconact') p=remote('t.ctf.qwq.cc',49512) pause() elf=ELF('./babyconact') infos=0x4036E0 backdoor=0x0000000000401722 def show(): p.recvuntil(b'option> ') p.sendline(b'1') def create(name,val): p.recvuntil(b'option> ') p.sendline(b'2') p.recvuntil(b'Input contact name:\n') p.sendline(name) p.recvuntil(b'Input contact phone-number:\n') p.sendline(val) def delete(index): p.recvuntil(b'option> ') p.sendline(b'3') p.sendline(str(index)) def edit(index,name,val): p.recvuntil(b'option> ') p.sendline(b'4') p.recvuntil(b'Input contact index:\n') p.sendline(str(index)) p.recvuntil(b'Input contact name:\n') p.sendline(name) p.recvuntil(b'Input contact phone-number:\n') p.sendline(val) for i in range(10): create(b'aaaa',b'bbbb') delete(0) payload1=b'\x56\x10\x40' payload2=p64(backdoor)+p64(backdoor) edit(-2,payload1,payload2) p.interactive()
CookedMelon/mypwn
NPU/babyconact/exp.py
exp.py
py
1,060
python
fr
code
3
github-code
6
74280993467
import os import sys import threading import asyncio sys.path.append(os.path.join(os.path.dirname(__file__), "lib")) import discord client = None channel = None ready = False def init(): global client global channel intents = discord.Intents.default() intents.message_content = True client = discord.Client(intents=intents) # discord.utils.get(channels.guild.channels, name="") @client.event async def on_ready(): global ready ready = True print(f"We have logged in as {client.user}") @client.event async def on_message(message): if message.author == client.user: return if message.content.startswith('$hello'): await message.channel.send('Hello!') def start(token): threading.Thread(target=client.run, args=(token,)).start() def send_message(channel_id, text, files=[]): channel = client.get_channel(channel_id) if channel == None: print("no such channel") return client.loop.create_task(channel.send(text, files=[discord.File(p) for p in files])) def stop(): client.loop.create_task(client.close())
mojyack/rpi-cat-monitor
remote.py
remote.py
py
1,161
python
en
code
0
github-code
6
11044907424
import tkinter import tkinter as tk from tkinter import messagebox from tkinter import ttk from UI import helper_functions as hf from operations import globalVars from UI.PCCLI import PCCli class PCCanvasObject(object): def __init__(self, canvas, block_name, icons, class_object, master, time_class, load=False): self._x = None self._y = None self.canvas = canvas self.block_name = block_name self.class_object = class_object self.class_object.set_canvas_object(self) self.master = master self.icons = icons self.internal_clock = time_class self.internal_clock.add_pc(self) self.class_object.set_internal_clock(self.internal_clock) # Cursor Location when object is created x = self.canvas.canvasx(self.canvas.winfo_pointerx() - self.canvas.winfo_rootx()) y = self.canvas.canvasy(self.canvas.winfo_pointery() - self.canvas.winfo_rooty()) # Cursor Location when object is created # Icon Stuff self.icon = self.icons[0] self.config_icon = self.icons[1] self.terminal_icon = self.icons[2] self.ethernet_del_icon = self.icons[3] self.x_node_icon = self.icons[4] # Assigned to canvas_object to allow to delete self.canvas_object = self.canvas.create_image(x, y, image=self.icon, tags=(self.block_name, "PC", "Node")) self.canvas.photo = self.icon # Icon Stuff # Hover menu Stuff self.hover_area = self.canvas.create_polygon(x - 50, y - 50, x + 45, y - 50, x + 45, y - 75, x + 95, y - 75, x + 95, y + 75, x + 45, y + 75, x + 45, y + 50, x - 50, y + 50, fill="") self.menu_buttons = self.canvas.create_polygon(x + 40, y + 0, x + 50, y - 5, x + 50, y - 72, x + 92, y - 72, x + 92, y + 72, x + 50, y + 72, x + 50, y + 5, outline="black", fill="NavajoWhite2", width=1, tags=('Hover_Menus', )) self.canvas.itemconfigure(self.menu_buttons, state='hidden') self.config_button = tk.Button(self.canvas, width=25, height=25, image=self.config_icon) self.terminal_button = tk.Button(self.canvas, width=25, height=25, image=self.terminal_icon) self.disconnect_button = tk.Button(self.canvas, width=25, height=25, image=self.ethernet_del_icon) self.delete_button = tk.Button(self.canvas, width=25, height=25, image=self.x_node_icon) self.config_button.config(background='gray75', foreground="white", relief=tk.GROOVE) self.terminal_button.config(background='gray75', foreground="white", relief=tk.GROOVE) self.disconnect_button.config(background='gray75', foreground="white", relief=tk.GROOVE) self.delete_button.config(background='gray75', foreground="white", relief=tk.GROOVE) self.config_button_window = self.canvas.create_window(x + 57, y - 65, window=self.config_button, state='hidden', tag="Menu_Button") self.terminal_button_window = self.canvas.create_window(x + 57, y - 31, window=self.terminal_button, state='hidden', tag="Menu_Button") self.disconnect_button_window = self.canvas.create_window(x + 57, y + 3, window=self.disconnect_button, state='hidden', tag="Menu_Button") self.delete_button_window = self.canvas.create_window(x + 57, y + 37, window=self.delete_button, state='hidden', tag="Menu_Button") # Hover menu Stuff # Button Bindings if not load: self.canvas.tag_bind(self.block_name, '<Motion>', self.motion) # When creating the object self.canvas.tag_bind(self.block_name, '<Button-1>', self.motion) # When creating the object self.canvas.tag_bind(self.block_name, '<B1-Motion>', self.motion) # When moving the object after it is created self.canvas.tag_bind(self.block_name, '<ButtonRelease-1>', self.button_release) # When moving the object after it is created # Button Bindings # Config Window Stuff self.config_window = None self.ipv4_field = None # To set focus self.hostname_field = None # To set focus self.gateway_field = None self.prefix_field = None self.ipv6_field = None self.ipv6_link_local_field = None self.ipv6_link_local_prefix_field = None self.netmask_field = None self.auto_config_nic = tk.BooleanVar() # DHCP # Config Window Stuff # CLI Stuff self.cli_window = None self.cli = None self.cli_object = None self.cli_busy = False self.cli_text = "PC> " self.created_terminal = False self.command_history = [] self.command_history_index = -1 # CLI Stuff # Light Stuff self.line_connections = {} self.tag_1 = "" self.tag_2 = "" self.interface_1 = None self.interface_2 = None self.l1 = None self.l2 = None # Light Stuff def motion(self, event=None): if not event: event_x = self.canvas.coords(self.block_name)[0] + 0.000005 event_y = self.canvas.coords(self.block_name)[1] + 0.000005 else: event_x = self.canvas.canvasx(event.x) event_y = self.canvas.canvasy(event.y) # Hide the menu self.unbind_menu_temporarily() # Move the object self.canvas.coords(self.block_name, event_x, event_y) # Move the hover area and menu buttons self.canvas.coords(self.hover_area, event_x - 50, event_y - 50, event_x + 45, event_y - 50, event_x + 45, event_y - 75, event_x + 95, event_y - 75, event_x + 95, event_y + 75, event_x + 45, event_y + 75, event_x + 45, event_y + 50, event_x - 50, event_y + 50) self.canvas.coords(self.menu_buttons, event_x + 40, event_y, event_x + 50, event_y - 5, event_x + 50, event_y - 72, event_x + 92, event_y - 72, event_x + 92, event_y + 72, event_x + 50, event_y + 72, event_x + 50, event_y + 5) try: line = self.canvas.find_withtag(self.tag_1 + "_line_" + self.tag_2 + "_0") light_1 = self.canvas.find_withtag(self.tag_1 + "_light_" + self.tag_2 + "_0") light_2 = self.canvas.find_withtag(self.tag_2 + "_light_" + self.tag_1 + "_0") if line: self.canvas.delete(light_1) self.l1 = hf.draw_circle(self.canvas.coords(line)[0], self.canvas.coords(line)[1], self.canvas.coords(line)[2], self.canvas.coords(line)[3], 4, self.canvas, self.tag_1 + "_light_" + self.tag_2 + "_0") self.canvas.delete(light_2) self.l2 = hf.draw_circle(self.canvas.coords(line)[2], self.canvas.coords(line)[3], self.canvas.coords(line)[0], self.canvas.coords(line)[1], 4, self.canvas, self.tag_2 + "_light_" + self.tag_1 + "_0") self.canvas.tag_lower(self.l1, list(self.line_connections.keys())[0].get_obj_1().get_canvas_object()) self.canvas.tag_lower(self.l2, list(self.line_connections.keys())[0].get_obj_2().get_canvas_object()) [self.canvas.tag_raise(self.menu_buttons, light) for light in self.canvas.find_withtag('light')] if ((globalVars.show_link_lights and globalVars.light_state) or (not globalVars.show_link_lights and globalVars.light_state)): self.canvas.itemconfig(self.l1, state='normal') self.canvas.itemconfig(self.l2, state='normal') elif ((globalVars.show_link_lights and not globalVars.light_state) or (not globalVars.show_link_lights and not globalVars.light_state)): self.canvas.itemconfig(self.l1, state='hidden') self.canvas.itemconfig(self.l2, state='hidden') if 0 <= abs(event_x - self.canvas.coords(line)[0]) <= 30 and 0 <= abs( event_y - self.canvas.coords(line)[1]) <= 30: self.canvas.coords(line, event_x, event_y, self.canvas.coords(line)[2], self.canvas.coords(line)[3]) self.canvas.itemconfig(self.l1, fill=hf.get_color_from_op(self.interface_1.get_is_operational())) self.canvas.itemconfig(self.l2, fill=hf.get_color_from_op(self.interface_2.get_is_operational())) elif 0 <= abs(event_x - self.canvas.coords(line)[2]) <= 30 and 0 <= abs( event_y - self.canvas.coords(line)[3]) <= 30: self.canvas.coords(line, self.canvas.coords(line)[0], self.canvas.coords(line)[1], event_x, event_y) self.canvas.itemconfig(self.l2, fill=hf.get_color_from_op(self.interface_1.get_is_operational())) self.canvas.itemconfig(self.l1, fill=hf.get_color_from_op(self.interface_2.get_is_operational())) except StopIteration: pass self._x = event_x self._y = event_y globalVars.prompt_save = True return def button_release(self, event): self.canvas.tag_unbind(self.block_name, "<Motion>") self.canvas.tag_unbind(self.block_name, "<Button-1>") # For the object menu self.canvas.tag_bind(self.hover_area, '<Enter>', self.on_start_hover) self.canvas.tag_bind(self.hover_area, '<Leave>', self.on_end_hover) self.canvas.tag_bind(self.block_name, '<Enter>', self.on_start_hover) self.canvas.tag_bind(self.block_name, '<Leave>', self.on_end_hover) self.canvas.tag_bind(self.menu_buttons, '<Enter>', self.on_start_hover) self.config_button.bind('<Enter>', self.config_button_bg_enter) self.config_button.bind('<Leave>', self.config_button_bg_leave) self.config_button.bind('<Button-1>', self.open_config_menu) self.terminal_button.bind('<Enter>', self.terminal_button_bg_enter) self.terminal_button.bind('<Leave>', self.terminal_button_bg_leave) self.terminal_button.bind('<Button-1>', self.menu_pc_cli) self.disconnect_button.bind('<Enter>', self.disconnect_button_bg_enter) self.disconnect_button.bind('<Leave>', self.disconnect_button_bg_leave) self.disconnect_button.bind('<Button-1>', self.disconnect_cable) self.delete_button.bind('<Enter>', self.delete_button_bg_enter) self.delete_button.bind('<Leave>', self.delete_button_bg_leave) self.delete_button.bind('<Button-1>', lambda e, q=False: self.menu_delete(e, q)) if event: self.on_start_hover(event) def hide_menu(self, on_delete=False): self.canvas.itemconfigure(self.menu_buttons, state='hidden') self.canvas.itemconfigure(self.config_button_window, state='hidden') self.canvas.itemconfigure(self.terminal_button_window, state='hidden') self.canvas.itemconfigure(self.disconnect_button_window, state='hidden') self.canvas.itemconfigure(self.delete_button_window, state='hidden') self.config_button.place_forget() self.terminal_button.place_forget() self.disconnect_button.place_forget() self.delete_button.place_forget() if on_delete: self.config_button.destroy() self.terminal_button.destroy() self.disconnect_button.destroy() self.delete_button.destroy() def unbind_menu_temporarily(self): self.canvas.tag_unbind(self.hover_area, '<Enter>') self.canvas.tag_unbind(self.hover_area, '<Leave>') self.canvas.tag_unbind(self.block_name, '<Enter>') self.canvas.tag_unbind(self.block_name, '<Leave>') self.canvas.tag_unbind(self.menu_buttons, '<Enter>') self.canvas.tag_unbind(self.menu_buttons, '<Leave>') self.config_button.unbind('<Enter>') self.terminal_button.unbind('<Enter>') self.disconnect_button.unbind('<Enter>') self.delete_button.unbind('<Enter>') # Hide menu self.hide_menu() def open_config_menu(self, event): def hide_window(): self.config_window.withdraw() self.config_window = tk.Toplevel(self.canvas) self.config_window.protocol('WM_DELETE_WINDOW', hide_window) x = (globalVars.screen_width / 2) - (700 / 2) y = (globalVars.screen_height / 2) - (375 / 2) - 100 self.config_window.geometry('%dx%d+%d+%d' % (700, 375, x, y)) self.config_window.wm_iconphoto(False, self.icons[1]) self.config_window.wm_title("Configure PC") self.config_window.resizable(False, False) configure_menu = ttk.Notebook(self.config_window) general_tab = ttk.Frame(configure_menu) interface_tab = ttk.Frame(configure_menu) configure_menu.bind("<<NotebookTabChanged>>", lambda e=event: self.set_focus_on_tab_change(e)) configure_menu.add(general_tab, text='General Configuration') configure_menu.add(interface_tab, text='Interface Configuration') configure_menu.pack(expand=1, fill="both") # General Tab tk.Label(general_tab, text="Hostname:").place(x=50, y=75) self.hostname_field = tk.Entry(general_tab, width=20) self.hostname_field.insert(0, self.class_object.get_host_name()) self.hostname_field.place(x=150, y=75) tk.Label(general_tab, text="MAC Address:").place(x=50, y=150) mac_address = tk.Entry(general_tab, width=20) mac_address.insert(0, self.class_object.get_mac_address()) mac_address.place(x=150, y=150) # General Tab # Interface Tab ask_b4_quick_del_check = tk.Checkbutton(interface_tab, text='Auto-configure interface settings ' '(Requires a DHCP server)', variable=self.auto_config_nic, onvalue=True, offvalue=False, command=self.set_auto_configure) ask_b4_quick_del_check.place(x=50, y=25) tk.Label(interface_tab, text="IPv4 Address:").place(x=50, y=75) self.ipv4_field = tk.Entry(interface_tab, width=20) self.ipv4_field.insert(0, self.class_object.get_ipv4_address()) self.ipv4_field.place(x=150, y=75) tk.Label(interface_tab, text="Subnet Mask:").place(x=335, y=75) self.netmask_field = tk.Entry(interface_tab, width=20) self.netmask_field.insert(0, self.class_object.get_netmask()) self.netmask_field.place(x=435, y=75) tk.Label(interface_tab, text="Default Gateway:").place(x=50, y=125) self.gateway_field = tk.Entry(interface_tab, width=20) self.gateway_field.insert(0, self.class_object.get_default_gateway()) self.gateway_field.place(x=150, y=125) tk.Label(interface_tab, text="IPv6 Address:").place(x=50, y=175) self.ipv6_field = tk.Entry(interface_tab, width=54) self.ipv6_field.insert(0, self.class_object.get_ipv6_address()) self.ipv6_field.place(x=53, y=195) tk.Label(interface_tab, text="/").place(x=380, y=195) self.prefix_field = tk.Entry(interface_tab, width=3) self.prefix_field.insert(0, self.class_object.get_prefix()) self.prefix_field.place(x=390, y=195) tk.Label(interface_tab, text="IPv6 Link Local Address:").place(x=50, y=245) self.ipv6_link_local_field = tk.Entry(interface_tab, width=54) self.ipv6_link_local_field.insert(0, self.class_object.get_ipv6_link_local_address()) self.ipv6_link_local_field.place(x=53, y=265) tk.Label(interface_tab, text="/").place(x=380, y=265) self.ipv6_link_local_prefix_field = tk.Entry(interface_tab, width=3) self.ipv6_link_local_prefix_field.insert(0, self.class_object.get_link_local_prefix()) self.ipv6_link_local_prefix_field.place(x=390, y=265) # Interface Tab # Save Button save_btn = tk.Button(configure_menu, width=10, height=1, text="Save", relief=tk.GROOVE, command=lambda: self.save_general_parameters(self.hostname_field.get(), mac_address.get(), self.ipv4_field.get(), self.netmask_field.get(), self.gateway_field.get(), self.ipv6_field.get(), self.prefix_field.get(), self.ipv6_link_local_field.get(), self.ipv6_link_local_prefix_field.get(), self.config_window)) save_btn.place(x=590, y=325) save_btn.bind('<Enter>', lambda e, btn=save_btn: hf.button_enter(e, btn)) save_btn.bind('<Leave>', lambda e, btn=save_btn: hf.button_leave(e, btn)) # Save Button self.toggle_config_fields() self.hide_menu() def set_auto_configure(self): self.class_object.set_auto_configure(self.auto_config_nic.get()) self.toggle_config_fields() def set_fields_from_dhcp(self, ipv4_address, netmask, default_gateway): if not ipv4_address: ipv4_address = '' if not netmask: netmask = '' if not default_gateway: default_gateway = '' try: # Empty fields self.ipv4_field.delete('0', tk.END) self.netmask_field.delete('0', tk.END) self.gateway_field.delete('0', tk.END) self.ipv4_field.insert(tk.END, ipv4_address) self.netmask_field.insert(tk.END, netmask) self.gateway_field.insert(tk.END, default_gateway) except (AttributeError, tk.TclError): pass def toggle_config_fields(self): if self.auto_config_nic.get(): self.ipv4_field.config(state= "disabled") self.netmask_field.config(state= "disabled") self.gateway_field.config(state= "disabled") # self.ipv6_field.config(state= "disabled") # self.prefix_field.config(state= "disabled") else: self.ipv4_field.config(state="normal") self.netmask_field.config(state="normal") self.gateway_field.config(state="normal") # self.ipv6_field.config(state="normal") # self.prefix_field.config(state="normal") def set_focus_on_tab_change(self, event): if event.widget.select() == '.!canvas.!toplevel.!notebook.!frame': self.hostname_field.focus_set() else: self.ipv4_field.focus_set() def disconnect_cable(self, event): try: cable = self.class_object.get_interfaces()[0].get_canvas_cable() cable.delete_canvas_cable() except (tk.TclError, AttributeError): pass self.hide_menu() globalVars.prompt_save = True # Disable the hover area when disconnect cable is clicked because mouse lands on the hover area causing the menu # to reappear instantly. It is re-enabled in self.on_end_hover() self.canvas.itemconfigure(self.hover_area, state="hidden") def menu_delete(self, event, is_quick_del, reset=False): if ((not is_quick_del and globalVars.ask_before_delete) or (is_quick_del and globalVars.ask_before_quick_delete) and not reset): answer = messagebox.askokcancel("Delete PC", "Delete this PC?") else: answer = True if answer: self.disconnect_cable(event) self.internal_clock.remove_pc(self) if not is_quick_del: globalVars.pc_objects.remove(self) globalVars.objects.remove(self) self.canvas.delete(self.canvas_object) self.canvas.delete(self.hover_area) self.canvas.delete(self.menu_buttons) self.class_object = None # Destroy windows when deleting node if self.cli_window: self.cli_window.destroy() if self.config_window: self.config_window.destroy() # In case, remove all tooltips [self.canvas.delete(i) for i in self.canvas.find_withtag("Config_Tooltip")] [self.canvas.delete(i) for i in self.canvas.find_withtag("Terminal_Tooltip")] [self.canvas.delete(i) for i in self.canvas.find_withtag("Disconnect_Tooltip")] [self.canvas.delete(i) for i in self.canvas.find_withtag("Delete_Tooltip")] self.hide_menu(on_delete=True) else: self.hide_menu() globalVars.prompt_save = True def save_general_parameters(self, hostname, mac_address, ipv4, netmask, default_route, ipv6, ipv6_prefix, ipv6_ll, ipv6_ll_prefix, parent): hostname_flag = True ipv4_flag = True netmask_flag = True default_route_flag = True ipv6_flag = True ipv6_prefix_flag = True ipv6_ll_flag = True ipv6_ll_prefix_flag = True # must have a hostname if not hostname: hostname_flag = False # check mac address mac_address_flag = hf.check_mac_address(mac_address) # following fields are optional if ipv4: ipv4_flag = hf.check_ipv4(ipv4) netmask_flag = hf.check_subnet_mask(netmask) if default_route: default_route_flag = hf.check_ipv4(default_route) if ipv6: ipv6_flag = hf.check_ipv6(ipv6) ipv6_prefix_flag = hf.check_ipv6_prefix(ipv6_prefix) if ipv6_ll: ipv6_ll_flag = hf.check_ipv6(ipv6_ll) ipv6_ll_prefix_flag = hf.check_ipv6_prefix(ipv6_ll_prefix) if (hostname_flag and mac_address_flag and ipv4_flag and ipv6_flag and netmask_flag and default_route_flag and ipv6_flag and ipv6_prefix_flag and ipv6_ll_flag and ipv6_ll_prefix_flag): self.class_object.set_host_name(hostname) self.class_object.set_mac_address(mac_address) self.class_object.set_ipv4_address(ipv4) self.class_object.set_netmask(netmask) self.class_object.set_ipv6_address(ipv6) self.class_object.set_prefix(ipv6_prefix) self.class_object.set_default_gateway(default_route) self.class_object.set_ipv6_link_local_address(ipv6_ll) self.class_object.set_ipv6_link_local_prefix(ipv6_ll_prefix) parent.withdraw() globalVars.prompt_save = True else: if not hostname_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a Hostname', parent=parent) elif not mac_address_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid MAC Address', parent=parent) elif not ipv4_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid IPv4 Address', parent=parent) elif not netmask_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid Subnet Mask', parent=parent) elif not default_route_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid Default Gateway', parent=parent) elif not ipv6_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid IPv6 Address', parent=parent) elif not ipv6_prefix_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid IPv6 Prefix', parent=parent) elif not ipv6_ll_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid IPv6 Link Local Address', parent=parent) elif not ipv6_ll_prefix_flag: messagebox.showerror('Invalid Parameter', 'Please Enter a valid IPv6 Link Local Prefix', parent=parent) def menu_pc_cli(self, main_event): def hide_window(): self.cli_window.withdraw() if not self.created_terminal: self.cli_window = tk.Toplevel(self.canvas) x = (globalVars.screen_width / 2) - (700 / 2) y = (globalVars.screen_height / 2) - (800 / 2) - 50 self.cli_window.geometry("%dx%d+%d+%d" % (700, 800, x, y)) self.cli_window.wm_iconphoto(False, self.icons[2]) self.cli_window.wm_title("Terminal") self.cli_window.protocol('WM_DELETE_WINDOW', hide_window) self.cli_window.focus_set() self.cli_object = PCCli(self, self.class_object, self.cli_window, self.cli_text, "PC> ", 'white', 'white') self.cli = self.cli_object.get_cli() self.created_terminal = True else: self.cli_window.deiconify() self.hide_menu() def get_class_object(self): return self.class_object def get_canvas_object(self): return self.canvas_object def get_block_name(self): return self.block_name def get_info(self, info, linebreak, last): if linebreak: self.cli.insert(tk.END, info) self.cli.insert(tk.END, "\n") else: self.cli.insert(tk.END, info) def toggle_cli_busy(self): if not self.cli_busy: self.cli_busy = True self.cli.bind("<Key>", lambda e: "break") else: self.cli_busy = False self.cli.unbind("<Key>") self.cli.insert(tk.END, "\n\n" + self.class_object.get_host_name() + "> ") def add_line_connection(self, tag1, tag2, ignored_1, ignored_2, canvas_cable_object): self.line_connections[canvas_cable_object] = [tag1, tag2] self.tag_1 = tag1 self.tag_2 = tag2 def del_line_connection(self, cable): self.line_connections.pop(cable) def get_line_connection_count(self, ignored_1, ignored_2): if len(self.line_connections) > 0: return len(self.line_connections), self.line_connections else: return 0, None def set_interfaces(self, ignored, int1, int2): self.interface_1 = int1 self.interface_2 = int2 def on_start_hover(self, event): for item in globalVars.objects: item.hide_menu() try: if type(self.master.focus_displayof()) == tkinter.Tk: # If the root has focus self.canvas.itemconfigure(self.menu_buttons, state='normal') # Add the frame to the canvas self.canvas.itemconfigure(self.config_button_window, state='normal') self.canvas.moveto(self.config_button_window, self._x + 57, self._y - 65) self.canvas.itemconfigure(self.terminal_button_window, state='normal') self.canvas.moveto(self.terminal_button_window, self._x + 57, self._y - 31) self.canvas.itemconfigure(self.disconnect_button_window, state='normal') self.canvas.moveto(self.disconnect_button_window, self._x + 57, self._y + 3) self.canvas.itemconfigure(self.delete_button_window, state='normal') self.canvas.moveto(self.delete_button_window, self._x + 57, self._y + 37) self.config_button.place() self.terminal_button.place() self.disconnect_button.place() self.delete_button.place() return except tkinter.TclError: pass self.master.update() # Program hangs without calling update def on_end_hover(self, event): self.config_button.place_forget() self.terminal_button.place_forget() self.disconnect_button.place_forget() self.delete_button.place_forget() self.canvas.itemconfigure(self.menu_buttons, state='hidden') self.canvas.itemconfigure(self.config_button_window, state='hidden') self.canvas.itemconfigure(self.terminal_button_window, state='hidden') self.canvas.itemconfigure(self.disconnect_button_window, state='hidden') self.canvas.itemconfigure(self.delete_button_window, state='hidden') # The hover area is disabled when a cable is disconnected because the mouse will land in the hove area and # make the menu reappear instantly. This line re-enables it. self.canvas.itemconfigure(self.hover_area, state="normal") self.master.update() # Program hangs without calling update return def get_lights(self, ignored): return self.l1, self.l2 def config_button_bg_enter(self, event): self.on_start_hover(event) self.canvas.after(600, lambda c=self.canvas, b=self.config_button, text="Configure this PC", tag="Config_Tooltip", p=(self._x + 57, self._y - 65): hf.create_tooltip(c, b, text, tag, p)) self.config_button.config(background='gray89', foreground="white", relief=tk.SUNKEN) def config_button_bg_leave(self, event): self.config_button.config(background='gray75', foreground="white", relief=tk.GROOVE) [self.canvas.delete(i) for i in self.canvas.find_withtag("Config_Tooltip")] def terminal_button_bg_enter(self, event): self.on_start_hover(event) self.canvas.after(600, lambda c=self.canvas, b=self.terminal_button, text="Open the Terminal", tag="Terminal_Tooltip", p=(self._x + 57, self._y - 31), offset=(1, 0): hf.create_tooltip(c, b, text, tag, p, offset)) self.terminal_button.config(background='gray89', foreground="white", relief=tk.SUNKEN) def terminal_button_bg_leave(self, event): self.terminal_button.config(background='gray75', foreground="white", relief=tk.GROOVE) [self.canvas.delete(i) for i in self.canvas.find_withtag("Terminal_Tooltip")] def disconnect_button_bg_enter(self, event): self.on_start_hover(event) self.canvas.after(600, lambda c=self.canvas, b=self.disconnect_button, text="Disconnect Connections", tag="Disconnect_Tooltip", p=(self._x + 57, self._y + 3), offset=(20, 0): hf.create_tooltip(c, b, text, tag, p, offset)) self.disconnect_button.config(background='gray89', foreground="white", relief=tk.SUNKEN) def disconnect_button_bg_leave(self, event): self.disconnect_button.config(background='gray75', foreground="white", relief=tk.GROOVE) [self.canvas.delete(i) for i in self.canvas.find_withtag("Disconnect_Tooltip")] def delete_button_bg_enter(self, event): self.on_start_hover(event) self.canvas.after(600, lambda c=self.canvas, b=self.delete_button, text="Delete PC", tag="Delete_Tooltip", p=(self._x + 57, self._y + 37), offset=(-20, 0): hf.create_tooltip(c, b, text, tag, p, offset)) self.delete_button.config(background='gray89', foreground="white", relief=tk.SUNKEN) def delete_button_bg_leave(self, event): self.delete_button.config(background='gray75', foreground="white", relief=tk.GROOVE) [self.canvas.delete(i) for i in self.canvas.find_withtag("Delete_Tooltip")] # -------------------------- Save & Load Methods -------------------------- # def get_save_info(self): return [self._x, self._y, self.block_name, self.cli_text, self.command_history, self.command_history_index, self.tag_1, self.tag_2, self.l1, self.l2, self.class_object.get_save_info()] def set_pos(self, x_pos, y_pos): self._x = x_pos self._y = y_pos self.canvas.coords(self.canvas_object, x_pos, y_pos) # Move the hover area and menu buttons self.canvas.coords(self.hover_area, self._x - 50, self._y - 50, self._x + 45, self._y - 50, self._x + 45, self._y - 75, self._x + 95, self._y - 75, self._x + 95, self._y + 75, self._x + 45, self._y + 75, self._x + 45, self._y + 50, self._x - 50, self._y + 50) self.canvas.coords(self.menu_buttons, self._x + 40, self._y, self._x + 50, self._y - 5, self._x + 50, self._y - 72, self._x + 92, self._y - 72, self._x + 92, self._y + 72, self._x + 50, self._y + 72, self._x + 50, self._y + 5) self.button_release(None) def get_coords(self): return [self._x, self._y] # -------------------------- Save & Load Methods -------------------------- #
KarimKabbara00/Network-Simulator
UI/PCCanvasObject.py
PCCanvasObject.py
py
34,256
python
en
code
0
github-code
6
26531202521
from simplivity.resources.resource import ResourceBase URL = '/hosts' DATA_FIELD = 'hosts' class Hosts(ResourceBase): """Implements features available for SimpliVity Host resources.""" def __init__(self, connection): super(Hosts, self).__init__(connection) def get_all(self, pagination=False, page_size=0, limit=500, offset=0, sort=None, order='descending', filters=None, fields=None, case_sensitive=True, show_optional_fields=False): """Gets all hosts. Args: pagination: True if need pagination page_size: Size of the page (Required when pagination is on) limit: A positive integer that represents the maximum number of results to return offset: A positive integer that directs the service to start returning the <offset value> instance, up to the limit. sort: The name of the field where the sort occurs. order: The sort order preference. Valid values: ascending or descending. filters: Dictionary with filter values. Example: {'name': 'name'} id: The unique identifier (UID) of the host Accepts: Single value, comma-separated list name: The name of the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard type: The type of host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard model: The model of the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard version: The version of the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard hypervisor_management_system: The IP address of the Hypervisor Management System (HMS) associated with the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard hypervisor_management_system_name: The name of the Hypervisor Management System (HMS) associated with the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard hypervisor_object_id: The unique identifier (UID) of the hypervisor associated with the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard compute_cluster_name: The name of the compute cluster associated with the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard compute_cluster_hypervisor_object_id: The unique identifier (UID) of the Hypervisor Management System (HMS) for the associated compute cluster Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard management_ip: The IP address of the HPE OmniStack management module that runs on the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard storage_ip: The IP address of the HPE OmniStack storage module that runs on the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard federation_ip: The IP address of the federation Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard virtual_controller_name: The name of the Virtual Controller that runs on the host Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard compute_cluster_parent_name: The name of the hypervisor that contains the omnistack cluster that is associated with the instance Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard compute_cluster_parent_hypervisor_object_id: The unique identifier (UID) of the hypervisor that contains the omnistack_cluster that is associated with the instance Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard policy_enabled: An indicator to show the status of the backup policy for the host Valid values: True: The backup policy for the host is enabled. False: The backup policy for the host is disabled. current_feature_level_min: The minimum current feature level of the HPE OmniStack software running on the host current_feature_level_max: The maximum current feature level of the HPE OmniStack software running on the host potential_feature_level_min: The minimum potential feature level of the HPE OmniStack software running on the host potential_feature_level_max: The maximum potential feature level of the HPE OmniStack software running on the host upgrade_state: The state of the most recent HPE OmniStack software upgrade for this host (SUCCESS, FAIL, IN_PROGRESS, NOOP, UNKNOWN) Accepts: Single value, comma-separated list, pattern using one or more asterisk characters as a wildcard can_rollback: An indicator to show if the current HPE OmniStack software running on the host can roll back to the previous version Valid values: True: The current HPE OmniStack software for the host can roll back to the previous version. False: The current HPE OmniStack software for the host cannot roll back to the previous version. Returns: list: list of Host objects """ return self._client.get_all(URL, members_field=DATA_FIELD, pagination=pagination, page_size=page_size, limit=limit, offset=offset, sort=sort, order=order, filters=filters, fields=fields, case_sensitive=case_sensitive, show_optional_fields=show_optional_fields) def get_by_data(self, data): """Gets Host object from host data. Args: data: host data Returns: object: Host object. """ return Host(self._connection, self._client, data) class Host(object): """Implements features available for single Host resource.""" OBJECT_TYPE = 'host' def __init__(self, connection, resource_client, data): self.data = data self._connection = connection self._client = resource_client self._hosts = Hosts(self._connection) def __refresh(self): """Updates the host data.""" resource_uri = "{}/{}".format(URL, self.data["id"]) self.data = self._client.do_get(resource_uri)[self.OBJECT_TYPE] def reload_data(self): self.__refresh() def remove(self, force=False, timeout=-1): """Removes the specified host from the federation. Args: force: An indicator that specifies if the host should be removed forcefully or not. Valid values: True: Forces the removal of the host even if active virtual machines are present and if the host is not HA-compliant. This may cause data loss. False: Returns an error if there are any virtual machines on the host or if the host is not HA-compliant. """ http_headers = {"Content-type": 'application/vnd.simplivity.v1.9+json'} method_url = "{}/{}/remove_from_federation".format(URL, self.data["id"]) data = {"force": force} self._client.do_post(method_url, data, timeout, http_headers) self.data = None def get_hardware(self): """Retrieves the hardware information for the host""" resource_uri = "{}/{}/hardware".format(URL, self.data["id"]) return self._client.do_get(resource_uri) def get_virtual_controller_shutdown_status(self): """Retrieves the shutdown status of the Virtual Controller""" resource_uri = "{}/{}/virtual_controller_shutdown_status".format(URL, self.data["id"]) status = self._client.do_get(resource_uri) return status['shutdown_status']['status'] def shutdown_virtual_controller(self, ha_wait=True, timeout=-1): """Shuts down the Virtual Controller safely (by reaching HA compliance) or by force. Args: ha_wait: An indicator to show if the user wants to shut down the Virtual Controller safely or forcefully. Valid values: True: Virtual Controller waits for the virtual machines to reach HA compliance before shutting down. False: Virtual Controller forced to shut down without waiting for HA compliance. timeout: Time out for the request in seconds. Returns: status: Possible values are 'SUCCESS', 'FAILURE', 'UNKNOWN', 'IN_PROGRESS'. """ method_url = "{}/{}/shutdown_virtual_controller".format(URL, self.data["id"]) data = {"ha_wait": ha_wait} status = self._client.do_post(method_url, data, timeout) return status['shutdown_status']['status'] def cancel_virtual_controller_shutdown(self, timeout=-1): """Cancels the virtual controller shutdown. Args: timeout: Time out for the request in seconds. Returns: status: Possible values are 'SUCCESS', 'FAILURE', 'UNKNOWN', 'IN_PROGRESS'. """ resource_uri = "{}/{}/cancel_virtual_controller_shutdown".format(URL, self.data["id"]) status = self._client.do_post(resource_uri, None, timeout) return status['cancellation_status']['status'] def get_capacity(self, fields=None, time_offset=0, range=43200, resolution="MINUTE"): """Gets host capacity. Args: fields: Comma-separated list of fields to include in the returned objects. time_offset: A time offset in seconds (from now) or a datetime, expressed in ISO-8601 form, based on Coordinated Universal Time (UTC). range: A range in seconds (the duration from the specified point in time). resolution: The resolution (SECOND, MINUTE, HOUR, or DAY). Returns: dict: Dictionary of the capacity details. """ resource_uri = "{}/{}/capacity".format(URL, self.data["id"]) filters = {'time_offset': time_offset, 'range': range, 'resolution': resolution} if fields: filters["fields"] = fields return self._client.do_get(resource_uri, filters) def get_metrics(self, time_offset=0, range=43200, resolution="MINUTE"): """Retrieves throughput, IOPS, and latency data for the host. Args: time_offset: A time offset in seconds (from now) or a datetime, expressed in ISO-8601 form, based on Coordinated Universal Time (UTC). range: A range in seconds (the duration from the specified point in time). resolution: The resolution (SECOND, MINUTE, HOUR, or DAY). Returns: dict: Dictionary of the metrics details. """ resource_uri = "{}/{}/metrics".format(URL, self.data["id"]) filters = {'time_offset': time_offset, 'range': range, 'resolution': resolution} return self._client.do_get(resource_uri, filters)
HewlettPackard/simplivity-python
simplivity/resources/hosts.py
hosts.py
py
12,467
python
en
code
7
github-code
6
18602034777
from django import forms from bankapp.models import Person, City GENDER_CHOICES = [ ('Male', 'Male'), ('Female', 'Female') ] MATERIALS_PROVIDE_CHOICE = [ ('Debit Card', 'Debit Card'), ('Credit Card', 'Credit Card'), ('Check Book', 'Check Book'), ] class PersonCreationForm(forms.ModelForm): gender = forms.ChoiceField(choices=GENDER_CHOICES, widget=forms.RadioSelect) materials = forms.MultipleChoiceField(label='Materials Provide', choices=MATERIALS_PROVIDE_CHOICE, widget=forms.CheckboxSelectMultiple) class Meta: model = Person fields = '__all__' widgets = { 'name': forms.TextInput(attrs={'class': 'form-control','placeholder':'Enter Your Name'}), 'email': forms.EmailInput(attrs={'class': 'form-control','placeholder':'Enter Your Email-ID'}), 'address': forms.TextInput(attrs={'class': 'form-control','placeholder':'Enter Your Address'}), 'age': forms.TextInput(attrs={'class': 'form-control','placeholder':'Enter Your Age'}), 'dob': forms.DateInput(attrs={'class': 'form-control','type':'date'}), 'account': forms.Select(attrs={'class': 'form-control'}), 'district': forms.Select(attrs={'class': 'form-control'}), 'city': forms.Select(attrs={'class': 'form-control'}), 'mob': forms.NumberInput(attrs={'class': 'form-control','placeholder':'Enter Your Mobile Number'}), } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['city'].queryset = City.objects.none() if 'district' in self.data: try: district_id = int(self.data.get('district')) self.fields['city'].queryset = City.objects.filter(district_id=district_id).order_by('name') except (ValueError, TypeError): pass # invalid input from the client; ignore and fallback to empty City queryset elif self.instance.pk: self.fields['city'].queryset = self.instance.district.city_set.order_by('name')
Manjith123/Easybankproject
bankapp/forms.py
forms.py
py
2,110
python
en
code
0
github-code
6