seq_id
stringlengths 7
11
| text
stringlengths 156
1.7M
| repo_name
stringlengths 7
125
| sub_path
stringlengths 4
132
| file_name
stringlengths 4
77
| file_ext
stringclasses 6
values | file_size_in_byte
int64 156
1.7M
| program_lang
stringclasses 1
value | lang
stringclasses 38
values | doc_type
stringclasses 1
value | stars
int64 0
24.2k
⌀ | dataset
stringclasses 1
value | pt
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
63614571
|
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt # for making figures
import os
# read in all the words
current_dir = os.getcwd()
words = open(current_dir+'/makemore/names.txt', 'r').read().splitlines()
# print(f"{words[:8]}")
# build the vocabulary of characters and mappings to/from integers
chars = sorted(list(set(''.join(words))))
stoi = {s:i+1 for i,s in enumerate(chars)}
stoi['.'] = 0
itos = {i:s for s,i in stoi.items()}
# print(itos)
# build the dataset
block_size = 3 # context length: how many characters do we take to predict the next one?
def build_dataset(words):
X, Y = [], []
for w in words:
#print(w)
context = [0] * block_size
for ch in w + '.':
ix = stoi[ch]
X.append(context)
Y.append(ix)
#print(''.join(itos[i] for i in context), '--->', itos[ix])
context = context[1:] + [ix] # crop and append
X = torch.tensor(X)
Y = torch.tensor(Y)
# print(X.shape, Y.shape)
return X, Y
import random
random.seed(42)
random.shuffle(words)
n1 = int(0.8*len(words))
n2 = int(0.9*len(words))
Xtr, Ytr = build_dataset(words[:n1])
Xdev, Ydev = build_dataset(words[n1:n2])
Xte, Yte = build_dataset(words[n2:])
g = torch.Generator().manual_seed(42) # for reproducibility
C = torch.randn((27, 10), generator=g)
W1 = torch.randn((30, 200), generator=g)
W2 = torch.randn((200, 27), generator=g)
parameters = [C, W1, W2]
for p in parameters:
p.requires_grad = True
lri = []
lossi = []
stepi = []
batch = 32
for i in range(100):
# minibatch construct
ix = torch.randint(0, Xtr.shape[0], (batch,))
# forward pass
emb = C[Xtr[ix]] # (32, 3, 10)
h = torch.tanh(emb.view(-1, 30) @ W1) # (32, 200)
logits = h @ W2 # (32, 27)
loss = F.cross_entropy(logits, Ytr[ix])
#print(loss.item())
# backward pass
for p in parameters:
p.grad = None
loss.backward()
# update
lr = 0.1
for p in parameters:
p.data += -lr * p.grad
# track stats
#lri.append(lre[i])
stepi.append(i)
lossi.append(loss.item())
#print(loss.item())
plt.plot(stepi, lossi)
plt.show()
# sample from the model
g = torch.Generator().manual_seed(2147483647 + 10)
for _ in range(5):
out = []
context = [0] * block_size # initialize with all ...
while True:
emb = C[torch.tensor([context])] # (1,block_size,d)
h = torch.tanh(emb.view(1, -1) @ W1)
logits = h @ W2
probs = F.softmax(logits, dim=1)
ix = torch.multinomial(probs, num_samples=1, generator=g).item()
context = context[1:] + [ix]
out.append(ix)
if ix == 0:
break
print(''.join(itos[i] for i in out))
|
code-cp/bitesize_ai_rs
|
makemore/scripts/mlp.py
|
mlp.py
|
py
| 2,642 |
python
|
en
|
code
| 2 |
github-code
|
6
|
22795567170
|
import urllib2
import sys
user=sys.argv[1]
url='http://noaddress.x10.mx/chat/'
url+= user
url+=".txt"
response = urllib2.urlopen(url).read()
response=response[4:]
#RSA
def split(txt, seps):
default_sep = seps[0]
for sep in seps[1:]: # we skip seps[0] because that's the default seperator
txt = txt.replace(sep, default_sep)
return [i.strip() for i in txt.split(default_sep)]
response=split(response, ['&', '%26'])
for i in range(0,len(response)):
print(response[i])
|
noaddress/securemessenger
|
client/0.0-TheBeginnings/read.py
|
read.py
|
py
| 491 |
python
|
en
|
code
| 0 |
github-code
|
6
|
4034606024
|
import argparse
import glob
import multiprocessing as mp
import os
import shutil
import time
import cv2
import tqdm
import numpy as np
from detectron2.config import get_cfg
from partseg import add_partseg_config
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.visualizer import ColorMode, Visualizer
# constants
WINDOW_NAME = "COCO detections"
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
add_partseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# Set score_threshold for builtin models
cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = (
args.confidence_threshold
)
# load weights from the default path
if not args.custom_weights:
default_weights = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
if os.path.exists(default_weights):
print("Use the default weights.")
cfg.MODEL.WEIGHTS = default_weights
cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin models")
parser.add_argument(
"--config-file",
default="configs/mask_rcnn_R_50_FPN_chair.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--root-dir",
type=str,
help="root directory",
default="datasets/images/test/chair",
)
parser.add_argument(
"--output-dir",
type=str,
help="path to output",
default="datasets/predictions/test/chair",
)
parser.add_argument("--shape-list-fn", type=str, help="path to shape list")
parser.add_argument("--start", type=int, default=0)
parser.add_argument("--end", type=int, default=None)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--custom-weights", action="store_true", help="whether to use custom weights"
)
parser.add_argument(
"--include-image", action="store_true", help="whether to include input images"
)
parser.add_argument("--vis", action="store_true")
parser.add_argument("--with-score", action="store_true")
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
return parser
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args()
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
predictor = DefaultPredictor(cfg)
root_dir = args.root_dir
if args.shape_list_fn:
with open(args.shape_list_fn, "r") as f:
image_ids = f.readlines()
image_ids = [x.strip() for x in image_ids]
else:
image_ids = os.listdir(root_dir)
image_ids = [x for x in image_ids if os.path.isdir(os.path.join(root_dir, x))]
image_ids = sorted(image_ids)
image_ids = image_ids[args.start : args.end]
for image_id in tqdm.tqdm(image_ids[:]):
file_name = os.path.join(root_dir, image_id, "img.png")
image = read_image(file_name, format="BGR")
predictions = predictor(image)
instances = predictions["instances"].to("cpu")
pred_masks = instances.pred_masks.numpy() # [N, H, W]
pred_masks = (pred_masks * 255).astype(np.uint8)
# for pred_mask in pred_masks:
# cv2.imshow('mask', pred_mask)
# if cv2.waitKey(0) == 27:
# break # esc to quit
output_dir = os.path.join(args.output_dir, image_id)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
# save
for idx, pred_mask in enumerate(pred_masks):
output_file_name = os.path.join(output_dir, f"partmask_{idx}.png")
cv2.imwrite(output_file_name, pred_mask)
# Convert image from OpenCV BGR format to Matplotlib RGB format.
image_rgb = image[:, :, ::-1]
visualizer = Visualizer(image_rgb, None, instance_mode=ColorMode.IMAGE)
if not args.with_score:
# workaround to suppress visualizing scores
instances.remove("scores")
vis_output = visualizer.draw_instance_predictions(predictions=instances)
if args.vis:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, vis_output.get_image()[:, :, ::-1])
if cv2.waitKey(0) == 27:
break # esc to quit
else:
output_file_name = os.path.join(output_dir, f"partmask_all.png")
vis_output.save(output_file_name)
if args.include_image:
shutil.copy(file_name, os.path.join(output_dir, "img.png"))
|
hansongfang/CompNet
|
PartSeg/predict_net.py
|
predict_net.py
|
py
| 5,233 |
python
|
en
|
code
| 33 |
github-code
|
6
|
38453799002
|
T = int(input())
for i in range(1,T+1):
L = list(map(int,input().split()))
L.sort()
a,b,c = L
type = ""
if a+b <= c:
type = "invalid!"
elif a == b and b == c:
type = "equilateral"
elif a == b or b == c:
type = "isosceles"
else:
type = "scalene"
print(f"Case #{i}: {type}")
|
LightPotato99/baekjoon
|
math/geometry/triangle/triClassify.py
|
triClassify.py
|
py
| 345 |
python
|
en
|
code
| 0 |
github-code
|
6
|
72602309309
|
import sys
n1 = sys.stdin.readline()
n, m = n1.split(" ")
n = int(n)
m = int(m)
matrix=[]
for i in range(n):
n1 = sys.stdin.readline()
row =[]
for j in n1.strip():
row.append(int(j))
matrix.append(row)
def DFS(x,y,k,maze):
row = len(maze)
col = len(maze[0])
if k==0:
res.append((x,y))
return
else:
f =False
for x1,y1 in [(x+1,y),(x,y+1),(x,y-1),(x-1,y)]:
if maze[x1,y1] !=maze[x,y] and x<row and x>=0 and y<col and y>=0:
f = True
maze[x1,y1] = 1 if maze[x1,y1]==0 else 0
DFS(x1,y1,k-1,maze)
maze[x1,y1] = 1 if maze[x1,y1]==0 else 0
if f==False:
res.append((x,y))
n = input()
n = int(n)
for i in range(n):
n1 = sys.stdin.readline()
x , y ,k=n1.split(" ")
x = int(x)
y = int(y)
k = int(k)
res=[]
maze= matrix.copy()
r = DFS(x,y,k,maze)
print(r[0])
|
CountyRipper/offer_py
|
mt2.py
|
mt2.py
|
py
| 974 |
python
|
en
|
code
| 0 |
github-code
|
6
|
23013301215
|
'''
The purpose of this python script is to produce a program, that when run, will provide two input options:
1. File path
2. Type of directory
One inputted, the program will create a directory with sub folders for data requests.
The best package to use may be Tkinter.
'''
from tkinter import *
from tkinter.ttk import *
import tkinter
import os
window = Tk()
window.title("Batch File")
window.geometry('450x200')
#window.configure(background = 'Gray64')
directory_base_check = ''
style = Style()
#style.layout()
lbl_description = Label(window, text='Enter the Directory and type of Data Request to create standard folders')
lbl_description.grid(column=0,row=0, columnspan = 2, pady = 5, sticky=W+E+N+S)
lbl_path = Label(window, text='Directory:').grid(row=2, sticky = E, pady = 20)
#lbl_path.grid(column=0,row=2, pady = 20)
directory_input = Entry(window,width=50)
directory_input.grid(column=1, row=2, sticky = W, padx = 5)
lbl_combo = Label(window, text='Data Request Type:').grid(row=4, sticky = W)
#lbl_combo.grid(column=0,row=4)
#Types of Data Requests
dr_type = Combobox(window)
dr_type['values']= ('External with DA','External without DA','Internal','Recurring Reporting')
dr_type.current(0) #set the selected item
dr_type.grid(column=1, row=4, sticky =W, padx = 5)
def print_text(input_text):
lbl_display['text'] = input_text
def directory_create():
dr_type_ans = dr_type.get()
dir_ans = directory_input.get()
#Create Error if Folder path does not match preferred
if directory_base_check in dir_ans:
pass
else:
print('Recheck Directory: Incorrect Directory')
print_text('Recheck Directory: Incorrect Directory')
btn = Button(window, text="Create Folders",command=directory_create)
btn.grid(column=0, row=5, pady = 20)
lbl_display = Label(window, text = '')
lbl_display.grid(column = 1, row = 5, sticky=W+E+N+S, pady = 20, padx = 5)
lbl_display.configure(background = 'gray64')
#combo.get()
window.mainloop()
|
jfkocher/Python_Code
|
Data Request/Batch_v3/main.py
|
main.py
|
py
| 1,989 |
python
|
en
|
code
| 0 |
github-code
|
6
|
31153800734
|
import pygame
import random
import numpy as np
class Explosion(pygame.sprite.Sprite):
def __init__(self, frames, xcoord, ycoord, scale=1.5, update_n=1):
pygame.sprite.Sprite.__init__(self) # call Sprite initializer
self.frame = 0
self.frames = frames
self.image = self.frames[self.frame]
self.rect = self.image.get_rect()
self.x = xcoord
self.y = ycoord
self.scale = scale
self.update_n = update_n
self.update_counter = self.update_n
def update(self):
self.update_counter -= 1
if self.frame >= len(self.frames) - 1:
self.kill()
self.image = self.frames[self.frame]
self.rect = self.image.get_rect()
self.image = pygame.transform.scale(self.image, (int(self.rect.size[0] * self.scale),
int(self.rect.size[1] * self.scale)))
self.rect = self.image.get_rect()
self.rect.x = self.x
self.rect.y = self.y
if self.update_counter == 0:
self.frame += 1
self.update_counter = self.update_n
gameDisplay.blit(self.image, self.rect)
def update_moving(self, xspeedboss, yspeedboss):
if self.frame >= len(self.frames) - 1:
self.kill()
self.image = self.frames[self.frame]
self.rect = self.image.get_rect()
self.image = pygame.transform.scale(self.image, (int(self.rect.size[0] * 1.5), int(self.rect.size[1] * 1.5)))
self.rect = self.image.get_rect()
self.x += xspeedboss
self.y += yspeedboss
self.rect.x = self.x
self.rect.y = self.y
self.frame += 1
gameDisplay.blit(self.image, self.rect)
class Explosion2(pygame.sprite.Sprite):
def __init__(self, frames, xcoord, ycoord):
pygame.sprite.Sprite.__init__(self) # call Sprite initializer
self.frame = 0
self.frames = frames
self.image = self.frames[self.frame]
self.rect = self.image.get_rect()
self.x = xcoord
self.y = ycoord
self.expansion = 0.8
self.update_counter = 3
def update(self):
self.update_counter -= 1
if self.frame >= len(self.frames) - 1:
self.kill()
self.image = self.frames[self.frame]
self.rect = self.image.get_rect()
self.image = pygame.transform.scale(self.image, (int(self.rect.size[0] * self.expansion),
int(self.rect.size[1] * self.expansion)))
self.rect = self.image.get_rect()
self.mask = pygame.mask.from_surface(self.image)
self.rect.centerx = self.x
self.rect.centery = self.y
if self.update_counter == 0:
self.expansion += 0.045
self.frame += 1
self.update_counter = 4
gameDisplay.blit(self.image, self.rect)
class Ship(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self) # call Sprite initializer
self.image = player_ship
self.rect = self.image.get_rect()
self.width = self.rect.size[0]
self.height = self.rect.size[1]
self.x = (display_width - self.width) * 0.5
self.y = display_height - self.height * 1.2
self.speed = 0 # This variable changes with key presses
self.endspeed = 1
self.mask = pygame.mask.from_surface(self.image)
def update(self):
# Update variables of the game for next update
self.x += self.speed
if self.x > display_width - self.width:
self.x = display_width - self.width # boundaries for ship
elif self.x < 0:
self.x = 0 # boundaries for ship
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
def to_end_position(self, xcoord):
statement = False
self.speed = 0
if self.x < xcoord - 1:
self.x += self.endspeed
elif self.x > xcoord + 1:
self.x -= self.endspeed
else:
statement = True
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
return statement
class Meteor(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self) # call Sprite initializer
meteor_choices = [meteor1, meteor2, meteor3, meteor4]
self.image = meteor_choices[random.randrange(0, 3)]
self.rect = self.image.get_rect()
self.width = self.rect.size[0]
self.height = self.rect.size[1]
self.x = random.randrange(0, display_width - self.width)
self.y = -200
self.mask = pygame.mask.from_surface(self.image)
self.speed = 7
def update(self):
self.y += self.speed
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
class Laser(pygame.sprite.Sprite):
def __init__(self, xcoord, ycoord):
pygame.sprite.Sprite.__init__(self)
self.image = laser_blue
self.rect = self.image.get_rect()
self.width = self.rect.size[0]
self.height = self.rect.size[1]
self.x = xcoord - 0.5 * self.width # depends on ship location
self.y = ycoord # These will be set at spawn because it depends on ship location
self.speed = -20
self.mask = pygame.mask.from_surface(self.image)
def update(self):
self.y += self.speed
if self.y < 0 - self.height:
self.kill()
else:
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
class EnemyGoon(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self) # call Sprite initializer
enemy_choices = [enemy1, enemy2, enemy3]
self.image = enemy_choices[random.randrange(0, 2)]
self.rect = self.image.get_rect()
self.image = pygame.transform.scale(self.image, (int(self.rect.size[0] / 1.5), int(self.rect.size[1] / 1.5)))
self.rect = self.image.get_rect() # after transforming need to acquire new rect
self.width = self.rect.size[0]
self.height = self.rect.size[1]
self.x = random.choice(np.linspace(0, display_width - self.width, 10))
self.y = 100 + self.height
self.mask = pygame.mask.from_surface(self.image)
self.update_timer = fps * 2 # update every 60 frames
self.x_speed = random.choice([-3, 3])
def update(self):
self.update_timer -= 1
if self.update_timer == 0:
self.fire()
self.update_timer = fps * 2
self.y = 100 * np.sin(timer / 500) + 100
self.x += self.x_speed
if self.x > display_width - self.width:
self.x = display_width - self.width # boundaries for enemy
self.x_speed = -self.x_speed # flip speed so that enemy moves into opposite direction
elif self.x < 0:
self.x = 0 # boundaries for ship
self.x_speed = -self.x_speed # flip speed so that enemy moves into opposite direction
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
def fire(self):
enemy_lasers.add(EnemyLaser(self.x + 0.5 * self.width, self.y))
pygame.mixer.Channel(2).play(enemy_laser_sound)
class EnemyLaser(pygame.sprite.Sprite):
def __init__(self, xcoord, ycoord):
pygame.sprite.Sprite.__init__(self)
self.image = laser_red
self.image = pygame.transform.flip(self.image, 0, 1)
self.rect = self.image.get_rect()
self.width = self.rect.size[0]
self.height = self.rect.size[1]
self.x = xcoord - 0.5 * self.width # depends on ship location
self.y = ycoord # These will be set at spawn because it depends on ship location
self.speed = 7
self.mask = pygame.mask.from_surface(self.image)
def update(self):
self.y += self.speed
if self.y > display_height:
self.kill()
else:
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
class ChooseFont(object):
def __init__(self, fonttype, fontsize, color):
self.font = pygame.font.Font(fonttype, fontsize)
self.color = color
def message(self, text, xcoord, ycoord, centered=False):
text_surface = self.font.render(text, True, self.color)
text_rect = text_surface.get_rect()
if centered is True:
text_rect.center = (xcoord, ycoord)
elif centered is False:
text_rect.x = xcoord
text_rect.y = ycoord
gameDisplay.blit(text_surface, text_rect)
class Boss(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self) # call Sprite initializer
self.image = boss_image
self.rect = self.image.get_rect()
self.width = self.rect.size[0]
self.height = self.rect.size[1]
self.x = display_width * 0.5 - self.width * 0.5
self.y = 50
self.y_speed = 0
self.mask = pygame.mask.from_surface(self.image)
self.laser_timer_max = fps * 2 # update every 120 frames
self.laser_timer = fps * 2 # update every 120 frames
self.laser_list = [5, 10, 15, 20, 25]
self.bomb_timer_max = fps * 4
self.bomb_timer = self.bomb_timer_max
self.x_speed = 3
self.hp = 100
self.maxhp = self.hp
self.dead_timer = 170
self.add_explosion_timer = 10
self.randx = None
self.randy = None
self.hp_50 = False
self.hp_25 = False
def update(self):
if self.hp > 0:
self.laser_timer -= 1
self.bomb_timer -= 1
if self.laser_timer in self.laser_list: # frames at which ship fires
self.fire_laser()
if self.laser_timer == 0:
self.laser_timer = self.laser_timer_max
if self.bomb_timer == 0:
self.bomb_timer = self.bomb_timer_max
self.fire_bomb()
if self.hp < self.maxhp * 0.5 and self.hp_50 is False:
if self.x_speed > 0:
self.x_speed = 5
elif self.x_speed < 0:
self.x_speed = -5
self.laser_timer_max = fps * 1.7
self.bomb_timer_max = fps * 3.5
self.hp_50 = True
if self.hp < self.maxhp * 0.25 and self.hp_25 is False:
if self.x_speed > 0:
self.x_speed = 7
elif self.x_speed < 0:
self.x_speed = -7
self.laser_timer_max = fps * 1.5
self.bomb_timer_max = fps * 3
self.hp_25 = True
elif self.dead_timer > 0:
self.x_speed = 1
self.add_explosion_timer -= 1
self.dead_timer -= 1
if self.add_explosion_timer == 0:
self.add_explosions()
self.add_explosion_timer = 10
for explosion in explosions_boss:
explosion.update_moving(self.x_speed, self.y_speed)
self.x += self.x_speed
if self.x > display_width - self.width:
self.x = display_width - self.width # boundaries for enemy
self.x_speed = -self.x_speed # flip speed so that enemy moves into opposite direction
elif self.x < 0:
self.x = 0 # boundaries for ship
self.x_speed = -self.x_speed # flip speed so that enemy moves into opposite direction
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
self.draw_health()
def fire_laser(self):
enemy_lasers.add(EnemyLaser(self.x + 0.35 * self.width, self.y + 0.8 * self.height))
enemy_lasers.add(EnemyLaser(self.x + 0.65 * self.width, self.y + 0.8 * self.height))
pygame.mixer.Channel(2).play(enemy_laser_sound)
def fire_bomb(self):
boss_bomb.add(BossBomb(self.x, self.y))
pygame.mixer.Channel(4).play(bomb_release_sound)
def draw_health(self):
color = red
width_hp = self.width * (self.hp / self.maxhp)
healthbar = pygame.Rect((self.x, self.y - 10, width_hp, 10))
pygame.draw.rect(gameDisplay, color, healthbar)
def add_explosions(self):
for i in range(2):
self.randx = random.randint(np.round(self.x) + 10 - 32, np.round(self.x) + self.width - 10 - 32)
self.randy = random.randint(np.round(self.y) + 10 - 64, np.round(self.y) + self.height - 10 - 64)
explosions_boss.add(Explosion(explosion1, self.randx, self.randy))
pygame.mixer.Channel(3).play(explosion_sound)
class BossBomb(pygame.sprite.Sprite):
def __init__(self, xcoord, ycoord):
pygame.sprite.Sprite.__init__(self)
self.image = missile
self.image = pygame.transform.flip(self.image, 0, 1)
self.rect = self.image.get_rect()
self.width = self.rect.size[0]
self.height = self.rect.size[1]
self.x = xcoord - 0.5 * self.width # depends on ship location
self.y = ycoord # These will be set at spawn because it depends on ship location
self.xspeed = 0
self.xspeedincr = 0.3
self.xspeedmax = 5
self.yspeed = 3
self.mask = pygame.mask.from_surface(self.image)
def update(self, xship, yship):
if xship > self.x:
if self.xspeed < self.xspeedmax:
self.xspeed += self.xspeedincr
elif xship < self.x:
if self.xspeed > -self.xspeedmax:
self.xspeed -= self.xspeedincr
self.x += self.xspeed
self.y += self.yspeed
if self.y >= display_height - 200:
self.kill()
explosions.add(Explosion2(explosion2, self.x, self.y))
pygame.mixer.Channel(5).play(bomb_explosion_sound)
else:
self.rect.x = self.x
self.rect.y = self.y # set the rect (not just blit) or collision won't work!
gameDisplay.blit(self.image, self.rect)
def main_menu():
button_width = start_button.get_rect().size[0]
scheme_width = controlscheme.get_rect().size[0]
button_x_center = (display_width - button_width) * 0.5
scheme_x_center = (display_width - scheme_width) * 0.5
# End game when this becomes true
in_main_menu = True
# Play the soundtrack
pygame.mixer.Channel(0).play(game_music, loops=-1)
# This is the game loop where all game logic happens
while in_main_menu:
# This checks all events that happen (which are located in pygame.event.get()
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
if event.type == pygame.MOUSEBUTTONDOWN and event.button == 1:
pos = pygame.mouse.get_pos()
if startbutton.collidepoint(pos):
pygame.mixer.Channel(1).play(button_sound)
global time_since_startbutton
time_since_startbutton = pygame.time.get_ticks()
game_loop()
elif creditbutton.collidepoint(pos):
credit_loop()
elif quitbutton.collidepoint(pos):
pygame.mixer.Channel(1).play(button_sound)
pygame.quit()
quit()
# Update main menu
gameDisplay.blit(background, (0, 0))
startbutton = gameDisplay.blit(start_button, (button_x_center, display_height * 0.4))
creditbutton = gameDisplay.blit(credit_button, (button_x_center, display_height * 0.5))
quitbutton = gameDisplay.blit(quit_button, (button_x_center, display_height * 0.6))
gameDisplay.blit(controlscheme, (scheme_x_center, display_height * 0.7))
pygame.display.update()
def credit_loop():
credits = True
while credits:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_RETURN:
credits = False
# Update
gameDisplay.blit(credit_background, (0, 0))
pygame.display.update()
def game_loop():
# Instantiate Ship & Meteor and create a group for lasersprites
global ship, ship_group, meteors, lasers, score_count, enemies, fps, timer, enemy_lasers, score_count
global boss_bomb, explosions, explosions_boss
ship_group = pygame.sprite.GroupSingle()
boss_group = pygame.sprite.GroupSingle()
boss_bomb = pygame.sprite.Group()
enemies = pygame.sprite.Group()
meteors = pygame.sprite.Group()
lasers = pygame.sprite.Group()
enemy_lasers = pygame.sprite.Group()
explosions = pygame.sprite.Group()
explosions_boss = pygame.sprite.Group()
# Set variables and events needed for meteor shower
add_meteor_event = pygame.USEREVENT + 1
add_meteor_timer = 300 # add new meteor evert 300 ms
ms_event = pygame.USEREVENT + 2
ms_start = 60000 # ms after which meteor shower arrives
ms_duration = 20000
pygame.time.set_timer(add_meteor_event, add_meteor_timer)
pygame.time.set_timer(ms_event, ms_start)
ms_passed = False
ms_announcement = False
# Set variables needed to spawn enemies
add_enemies_event = pygame.USEREVENT + 3
add_enemies_timer = 5000 # add new enemies every 5000 ms
pygame.time.set_timer(add_enemies_event, add_enemies_timer)
num_enemies = 3
enemies_meteors_spawning = True
# Set variables for boss battle
boss_battle = False
won = False
ship_centered = False
boss_announcement = False
# Instatiate other variables
score_count = 0 # score
meteors_dodged = 0
enemies_killed = 0
bosses_killed = 0
fps = 60
ship = Ship()
ship_group.add(ship) # Add ship once before playing loop starts
# This is the game loop where all game logic happens
playing = True
while playing:
timer = pygame.time.get_ticks() - time_since_startbutton # ms that have passed since start
if 30000 < timer <= 40000:
num_enemies = 4
elif 40000 < timer <= 50000:
num_enemies = 5
elif 50000 < timer <= 60000:
num_enemies = 6
# Check for global events
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
if not won:
# Check for user-inputted event
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
ship.speed = -10
elif event.key == pygame.K_RIGHT:
ship.speed = 10
elif event.key == pygame.K_SPACE:
lasers.add(Laser(ship.x + 0.5*ship.width, ship.y))
pygame.mixer.Channel(1).play(laser_sound)
if event.type == pygame.KEYUP:
if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT:
ship.speed = 0
if ship_centered is True:
# Button to return to main menu after defeating boss
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_RETURN:
playing = False
# Check for events that only happen within certain time range
if event.type == ms_event and ms_passed is False: # This only occurs once
ms_announcement_timer = timer
ms_announcement = True
enemies_meteors_spawning = False
if event.type == add_enemies_event and enemies_meteors_spawning:
for i in range(num_enemies):
enemies.add(EnemyGoon())
try:
if timer - ms_announcement_timer < 2000 and ms_announcement is True: # display message 2000 ms
continue
elif ms_announcement is True:
ms_announcement = False # This makes sure announcement doesn't return anymore
ms_start_timer = timer # Timestamp start of meteor shower
except UnboundLocalError:
continue
try:
if timer - ms_start_timer < ms_duration and ms_passed is False:
if event.type == add_meteor_event: # add a meteor every time event is in event queue
meteors.add(Meteor())
elif ms_passed is False:
ms_passed = True # This makes sure ms doesn't return after it passed event is queued again
boss_announcement_timer = timer
boss_announcement = True
except UnboundLocalError:
continue
try:
if timer - boss_announcement_timer < 2000 and boss_announcement is True:
continue
elif boss_announcement is True:
boss_announcement = False
boss_battle = True
boss = Boss()
boss_group.add(boss)
except UnboundLocalError:
continue
# Update display and sprites
gameDisplay.blit(background, (0, 0))
ship.update()
if len(meteors) < 1 and enemies_meteors_spawning:
meteors.add(Meteor())
for meteor in meteors:
meteor.update()
if meteor.y > display_height:
meteor.kill()
meteors_dodged += 1
score_count += 10
for laser in lasers:
laser.update()
for enemy in enemies:
enemy.update()
for laser in enemy_lasers:
laser.update()
if boss_battle is True:
boss.update()
for bomb in boss_bomb:
bomb.update(ship.x + 0.5 * ship.width, ship.y + 0.5 * ship.height)
boss_hit = pygame.sprite.groupcollide(lasers, boss_group, 1, 0, pygame.sprite.collide_mask)
for sprite in boss_hit:
if boss_hit[sprite]:
explosions_boss.add(Explosion(explosion1, sprite.x - 32, sprite.y - 64)) # 64 is w/l of explosion
pygame.mixer.Channel(3).play(explosion_sound)
boss.hp -= 1
for explosion in explosions_boss:
explosion.update_moving(boss.x_speed, boss.y_speed)
if boss.dead_timer <= 0:
explosions.add(Explosion(explosion3, boss.x - boss.width*0.5, boss.y - boss.height*0.5, 3, 5))
del boss
boss_battle = False
won = True
score_count += 1000
bosses_killed += 1
for explosion in explosions:
explosion.update()
if boss_battle is True:
burned = pygame.sprite.groupcollide(ship_group, explosions, 0, 0, pygame.sprite.collide_mask)
if burned:
explosions.add(Explosion(explosion3, ship.x - ship.width * 0.5, ship.y - ship.height * 0.5, 2, 5))
crashed_text.message('you died. BUT DO NOT PANIC!',
display_width * 0.5, display_height * 0.5, centered=True)
pygame.display.update()
waiting = True
while waiting:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_RETURN:
waiting = False
playing = False
for explosion in explosions:
explosion.update()
performance_text.message('Return to main menu by pressing Enter and try again.',
display_width * 0.5, 500, centered=True)
pygame.display.update()
if boss_battle is False and won is True:
if ship_centered is False:
ship_centered = ship.to_end_position(display_width*0.5 - ship.width * 0.5)
# Check for collisions after new display if updated
crashed = pygame.sprite.groupcollide(ship_group, meteors, 0, 0, pygame.sprite.collide_mask)
hit = pygame.sprite.groupcollide(enemy_lasers, ship_group, 1, 0, pygame.sprite.collide_mask)
if crashed or hit:
explosions.add(Explosion(explosion3, ship.x - ship.width * 0.5, ship.y - ship.height * 0.5, 2, 5))
crashed_text.message('you died. BUT DO NOT PANIC!',
display_width * 0.5, display_height * 0.5, centered=True)
pygame.display.update()
waiting = True
while waiting:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_RETURN:
waiting = False
playing = False
for explosion in explosions:
explosion.update()
performance_text.message('Return to main menu by pressing Enter and try again.',
display_width * 0.5, 500, centered=True)
pygame.display.update()
# Kill sprites after collision
pygame.sprite.groupcollide(lasers, meteors, 1, 0, pygame.sprite.collide_mask)
pygame.sprite.groupcollide(enemy_lasers, meteors, 1, 0, pygame.sprite.collide_mask)
enemy_hit = pygame.sprite.groupcollide(enemies, lasers, 1, 1, pygame.sprite.collide_mask)
for sprite in enemy_hit:
if enemy_hit[sprite]:
explosions.add(Explosion(explosion1, sprite.x, sprite.y))
pygame.mixer.Channel(3).play(explosion_sound)
score_count += 100
enemies_killed += 1
# Lastly, show text
performance_text.message('score: ' + str(score_count), 5, 0)
performance_text.message('%i' % (timer/1000), display_width - 45, 0)
if ms_announcement:
shower_text.message('METEOR SHOWER INCOMING', display_width * 0.5, display_height * 0.5, centered=True)
if boss_announcement:
shower_text.message('FINAL BOSS INCOMING', display_width * 0.5, display_height * 0.5, centered=True)
if ship_centered is True:
performance_text.message('meteors dodged: %i' % meteors_dodged, display_width * 0.5, 360, centered=True)
performance_text.message('enemies destroyed: %i:' % enemies_killed, display_width * 0.5, 380, centered=True)
performance_text.message('bosses destroyed: %i' % bosses_killed, display_width * 0.5, 400, centered=True)
endgame_score_text.message('Final score: %i' % score_count, display_width * 0.5, 430, centered=True)
performance_text.message('press enter to return to main menu', display_width * 0.5, 500, centered=True)
pygame.display.update()
# Set FPS
clock.tick(fps)
# Here we initialize pygame, set variables and start the actual game
pygame.init()
# pygame.mouse.set_cursor(*pygame.cursors.diamond)
pygame.mouse.set_cursor(*pygame.cursors.broken_x)
# Define some colors
black = (0, 0, 0) # (R,G,B)
red = (255, 0, 0)
green = (0, 255, 0)
# Setup a window for the game
display_width = 800
display_height = 800
gameDisplay = pygame.display.set_mode((display_width, display_height))
pygame.display.set_caption('MyFirstGame') # Window Title
# -- Load sprites from spritesheets
spritesheet_explosion1 = pygame.image.load('Textures/explosions.png')
explosion1 = []
x_all = [628, 628, 628, 628, 576, 566, 562, 562, 562, 562, 924, 858, 792, 726, 660, 594, 924, 858, 792, 726, 660, 594,
924, 764]
y_all = [772, 706, 640, 574, 938, 872, 772, 706, 640, 574, 502, 496, 496, 496, 496, 496, 436, 430, 430, 430, 430, 430,
370, 826]
height = 64
width = 64
for i in range(24):
frame = str(i)
if len(frame) is 1:
frame = '0' + frame
x = x_all[i]
y = y_all[i]
explosion1.append(spritesheet_explosion1.subsurface(pygame.Rect(x, y, width, height)))
explosion3 = []
x_all = [100, 100, 100, 100, 888, 790, 692, 594, 496, 398, 300, 202, 104, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 100]
y_all = [398, 300, 202, 104, 2, 2, 2, 2, 2, 2, 2, 2, 2, 884, 786, 688, 590, 492, 394, 296, 198, 100, 2, 496]
h = 96
w = 96
for i in range(24):
frame = str(i)
if len(frame) is 1:
frame = '0' + frame
x = x_all[i]
y = y_all[i]
explosion3.append(spritesheet_explosion1.subsurface(pygame.Rect(x, y, h, w)))
spritesheet_explosion2 = pygame.image.load('Textures/particlefx_06.png')
height_exp = 128
width_exp = 128
explosion2 = []
for i in range(8):
for j in range(8):
explosion2.append(spritesheet_explosion2.subsurface(pygame.Rect(
i*height_exp, j*width_exp, height_exp, width_exp)))
spritesheetspace = pygame.image.load('Textures/spritesheet_space.png')
start_button = spritesheetspace.subsurface(pygame.Rect(0, 117, 222, 39))
credit_button = spritesheetspace.subsurface(pygame.Rect(0, 78, 222, 39))
quit_button = spritesheetspace.subsurface(pygame.Rect(0, 0, 222, 39))
enemy1 = spritesheetspace.subsurface(pygame.Rect(423, 728, 93, 84))
enemy2 = spritesheetspace.subsurface(pygame.Rect(120, 604, 104, 84))
enemy3 = spritesheetspace.subsurface(pygame.Rect(144, 156, 103, 84))
laser_blue = spritesheetspace.subsurface(pygame.Rect(856, 421, 9, 54))
laser_red = spritesheetspace.subsurface(pygame.Rect(858, 230, 9, 54))
meteor1 = spritesheetspace.subsurface(pygame.Rect(224, 664, 101, 84))
meteor2 = spritesheetspace.subsurface(pygame.Rect(0, 520, 120, 98))
meteor3 = spritesheetspace.subsurface(pygame.Rect(518, 810, 89, 82))
meteor4 = spritesheetspace.subsurface(pygame.Rect(327, 452, 98, 96))
player_ship = spritesheetspace.subsurface(pygame.Rect(224, 832, 99, 75))
spritesheetspace2 = pygame.image.load('Textures/spritesheet_space2.png')
missile = spritesheetspace2.subsurface(pygame.Rect(1093, 711, 19, 40))
boss_image = spritesheetspace2.subsurface(pygame.Rect(276, 0, 172, 151))
controlscheme = pygame.image.load('Textures/controlscheme.png')
background = pygame.image.load('Textures/space_background.png').convert()
credit_background = pygame.image.load('Textures/credits.png').convert()
# Load files used in the game
game_music = pygame.mixer.Sound('Sounds/desert-travel.ogg') # Channel 0
game_music.set_volume(0.5)
button_sound = pygame.mixer.Sound('Sounds/click_menu_sound.wav') # Channel 1
laser_sound = pygame.mixer.Sound('Sounds/laser5.wav') # Channel 1
enemy_laser_sound = pygame.mixer.Sound('Sounds/laser8.wav') # Channel 2
enemy_laser_sound.set_volume(0.5)
explosion_sound = pygame.mixer.Sound('Sounds/explodemini.wav') # Channel 3
bomb_release_sound = pygame.mixer.Sound('Sounds/weaponfire4.wav') # Channel 4
bomb_explosion_sound = pygame.mixer.Sound('Sounds/explosion2.wav') # Channel 5
# Load fonts to use in the game
performance_text = ChooseFont('Fonts/xirod.ttf', 15, green)
endgame_score_text = ChooseFont('Fonts/xirod.ttf', 30, green)
crashed_text = ChooseFont('Fonts/xirod.ttf', 30, red)
shower_text = ChooseFont('Fonts/xirod.ttf', 30, red)
# Define game clock to time things
clock = pygame.time.Clock()
main_menu()
|
Hiimbawb/Spacey
|
Spacey.py
|
Spacey.py
|
py
| 32,449 |
python
|
en
|
code
| 0 |
github-code
|
6
|
22284911130
|
# ---------------------------------------------------
#
# 필수 import 파일임:
# scripts 폴더의 스크립트들이 서로 import하기 위해서는
# scripts 폴더를 pythonpath에 등록해야한다.
#
# ---------------------------------------------------
import os
dirpath = os.path.dirname(os.path.realpath(__file__))
dirpath = dirpath + "\\scripts"
print('Using modified Pythonpath from PYTHONPATH.py')
os.sys.path.append(dirpath)
|
crack-love/KSL
|
Project_DNN/PYTHONPATH.py
|
PYTHONPATH.py
|
py
| 447 |
python
|
ko
|
code
| 0 |
github-code
|
6
|
24013809061
|
from QLearning import Game
from collections import Counter
import pandas as pd
import matplotlib.pyplot as plt
gamma = 0.1
def Menu():
usr_op = None
while usr_op != 0:
print('//-//-//-// Card-Jitsu Menu //-//-//-//')
print('\nSelect an option to continue: ')
print('1. Play game vs AI.')
print('2. Get Strategy Metrics.')
print('3. Get Random Metrics.')
print('4. Train Ai Manual.')
print('5. Train Ai Random.')
print('0. Exit.')
usr_op = int(input('\n Option selected: '))
if usr_op == 1:
Game(gamma)
elif usr_op == 2:
get_metrics(is_random = False, train = False, show_game = True)
elif usr_op == 3:
get_metrics(is_random = True, train = False, show_game = False)
elif usr_op == 4:
get_metrics(is_random = False, train = True, show_game = True)
elif usr_op == 5:
get_metrics(is_random = True, train = True, show_game = False, show_metrics = False)
print('\n\n')
def get_metrics(is_random, train, show_game, show_metrics = True):
history = {
'Game': [],
'Round': [],
'AI': [],
'Player': [],
'Winner': [],
'Game Winner': []
}
game = 0
g = int(input('Numero de juegos a realizar: '))
while game < g:
winrecord , winner = Game(gamma, is_random, train, show_game)
for round in range(len(winrecord)):
history['Game'].append(game)
history['Game Winner'].append(winner)
history['Round'].append(round)
history['AI'].append(winrecord[round]['AI'])
history['Player'].append(winrecord[round]['Player'])
history['Winner'].append(winrecord[round]['Winner'])
game += 1
if not show_metrics: return 0
history = pd.DataFrame.from_dict(history)
# Histograma de Rondas y juegos
game_winrate = Counter(list(history['Game Winner']))
game_winrate = pd.DataFrame.from_dict(game_winrate, orient='index', columns=['Games Won'])
game_winrate.plot(kind='pie', y='Games Won', autopct='%1.0f%%', explode=(0.01, 0.01), startangle=20)
plt.title('Frecuency of Games Won')
plt.ylabel('')
plt.show()
# Diagrama de Pie de rondas ganadas
round_winrate = Counter(list(history['Winner']))
round_winrate = pd.DataFrame.from_dict(round_winrate, orient='index', columns=['Rounds Won'])
round_winrate.plot(kind='pie', y='Rounds Won', autopct='%1.0f%%', explode=(0.01, 0.01, 0.01), startangle=60)
plt.title('Frecuency of Rounds Won and Tied')
plt.ylabel('')
plt.show()
# Histograma de cartas
ai_cardrate = Counter(list(history['AI']))
ai_cardrate = pd.DataFrame.from_dict(ai_cardrate, orient='index', columns=['AI Cards'])
player_cardrate = Counter(list(history['Player']))
player_cardrate = pd.DataFrame.from_dict(player_cardrate, orient='index', columns=['Player Cards'])
hist_cardrate = ai_cardrate.merge(player_cardrate, how='outer', left_index=True, right_index=True).fillna(0)
hist_cardrate.plot(kind = 'bar')
plt.title('Frecuency of Cards Used')
plt.show()
Menu()
|
Marinovsky/Card-Jitsu
|
metrics_modifications/game.py
|
game.py
|
py
| 3,225 |
python
|
en
|
code
| 0 |
github-code
|
6
|
73817284346
|
"""Basic status commands to check the health of the bot."""
import datetime
import discord
from discord.ext import commands
from metricity.config import BotConfig
DESCRIPTIONS = (
"Command processing time",
"Last event received",
"Discord API latency",
)
ROUND_LATENCY = 3
INTRO_MESSAGE = "Hello, I'm {name}. I insert all your data into a GDPR-compliant database."
class Status(commands.Cog):
"""Get the latency between the bot and Discord."""
def __init__(self, bot: commands.Bot) -> None:
self.bot = bot
@commands.Cog.listener()
async def on_socket_event_type(self, _: str) -> None:
"""Store the last event received as an int."""
self.last_event_received = int(datetime.datetime.now(datetime.UTC).timestamp())
@commands.command()
@commands.has_any_role(BotConfig.staff_role_id)
@commands.guild_only()
async def status(self, ctx: commands.Context) -> None:
"""Respond with an embed with useful status info for debugging."""
if ctx.guild.id != BotConfig.guild_id:
return
bot_ping = (datetime.datetime.now(datetime.UTC) - ctx.message.created_at).total_seconds() * 1000
if bot_ping <= 0:
bot_ping = "Your clock is out of sync, could not calculate ping."
else:
bot_ping = f"{bot_ping:.{ROUND_LATENCY}f} ms"
discord_ping = f"{self.bot.latency * 1000:.{ROUND_LATENCY}f} ms"
last_event = f"<t:{self.last_event_received}>"
embed = discord.Embed(
title="Status",
description=INTRO_MESSAGE.format(name=ctx.guild.me.display_name),
)
for desc, latency in zip(DESCRIPTIONS, (bot_ping, last_event, discord_ping), strict=True):
embed.add_field(name=desc, value=latency, inline=False)
await ctx.send(embed=embed)
async def setup(bot: commands.Bot) -> None:
"""Load the status extension."""
await bot.add_cog(Status(bot))
|
python-discord/metricity
|
metricity/exts/status.py
|
status.py
|
py
| 1,958 |
python
|
en
|
code
| 39 |
github-code
|
6
|
36347921741
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
test_pyredatam
Tests for `pyredatam` module.
"""
from __future__ import unicode_literals
import unittest
import nose
import pyredatam
import queries
class RedatamTestCase(unittest.TestCase):
def test_arealist_query(self):
# Test case AREALIST1
area_level = "FRAC"
variables = "PERSONA.CONDACT"
area_filter = {"PROV": ["02", "03"]}
universe_filter = "1 = 1"
title = "El titulo"
query = pyredatam.arealist_query(area_level, variables, area_filter,
universe_filter, title)
self.assertEqual(query, queries.AREALIST1.strip())
# Test case AREALIST2
variables = ["PERSONA.CONDACT"]
query = pyredatam.arealist_query(area_level, variables)
self.assertEqual(query, queries.AREALIST2.strip())
# Test case AREALIST3
area_filter = {"PROV": "02"}
query = pyredatam.arealist_query(area_level, variables, area_filter)
self.assertEqual(query, queries.AREALIST3.strip())
def test_counter_query(self):
# Test case COUNTER1
area_level = "RADIO"
entity_count = "PERSONA"
area_filter = {"PROV": "02"}
universe_filter = "1 = 1"
title = "El titulo"
query = pyredatam.counter_query(area_level, entity_count, area_filter,
universe_filter, title)
self.assertEqual(query, queries.COUNTER1.strip())
# Test case COUNTER2
area_level = "DPTO"
entity_count = "FRAC"
incl_area_name = True
incl_total = True
query = pyredatam.counter_query(area_level, entity_count, area_filter,
universe_filter, title, incl_area_name,
incl_total)
self.assertEqual(query, queries.COUNTER2.strip())
def test_median_query(self):
# Test case MEDIAN1
variable = "PERSONA.P03"
by_var1 = "PERSONA.CONDACT"
by_var2 = "PERSONA.P02"
incl_name = True
area_break = "PROV"
area_filter = None
universe_filter = "1 = 1"
title = "El titulo"
query = pyredatam.median_query(variable, by_var1, by_var2, incl_name,
area_break, area_filter,
universe_filter, title)
self.assertEqual(query, queries.MEDIAN1.strip())
# Test case MEDIAN2
variable = "PERSONA.P03"
incl_name = None
area_break = None
universe_filter = None
title = None
query = pyredatam.median_query(variable, by_var1, by_var2, incl_name,
area_break, area_filter,
universe_filter, title)
self.assertEqual(query, queries.MEDIAN2.strip())
# Test case MEDIAN3
variable = "PERSONA.P03"
by_var1 = None
by_var2 = None
query = pyredatam.median_query(variable, by_var1, by_var2, incl_name,
area_break, area_filter,
universe_filter, title)
self.assertEqual(query, queries.MEDIAN3.strip())
if __name__ == '__main__':
nose.run(defaultTest=__name__)
|
abenassi/pyredatam
|
tests/test_pyredatam.py
|
test_pyredatam.py
|
py
| 3,362 |
python
|
en
|
code
| 4 |
github-code
|
6
|
11579227616
|
import cv2
import numpy as np
from imageclassifier import ImageClassifier
n_clusters = [3, 4, 5, 6, 7, 8]
kmeans_keys = [
[0], [1], [2],
[0, 1], [0, 2], [1, 2],
[0, 1, 2]
]
sorting_lambdas = [
lambda pixel: pixel[0],
lambda pixel: pixel[1],
lambda pixel: pixel[2],
lambda pixel: sum(pixel),
lambda pixel: max(pixel)
]
cl_sorting_lambdas = [
lambda cluster: cluster[0][0][0],
lambda cluster: cluster[0][0][1],
lambda cluster: cluster[0][0][2],
lambda cluster: sum(cluster[0][0]),
lambda cluster: max(cluster[0][0])
]
coeffs = []
for i in range(5):
for j in range(5):
for k in range(5):
coeffs.append([i, j, k])
sorting_keys = [i for i in range(len(sorting_lambdas))]
colorspaces = [None, cv2.COLOR_BGR2HSV, cv2.COLOR_BGR2LAB, cv2.COLOR_BGR2HLS]
def str_colorspace(colorspace):
if colorspace == None:
return "BGR"
if colorspace == cv2.COLOR_BGR2HSV:
return "HSV"
if colorspace == cv2.COLOR_BGR2LAB:
return "LAB"
if colorspace == cv2.COLOR_BGR2HLS:
return "HLS"
def save(folder, img, n_cluster, key, color_in, sorting_key, color_sort):
filename = folder + "/c{0}_k".format(n_cluster)
filename = filename + '-'.join([str(s) for s in key])
filename = filename + '_' + str_colorspace(color_in) + "_"
filename = filename + 's{0}_'.format(sorting_key)
filename = filename + str_colorspace(color_sort) + ".png"
cv2.imwrite(filename, img)
print("saved: " + filename)
def bruteforce(target, folder):
for n_cluster in n_clusters:
classifier = ImageClassifier(n_cluster, target)
for color_in in colorspaces:
df = classifier.get_dataframe(colorspace=color_in)
for key in kmeans_keys:
cluster_map = classifier.run_kmeans(df, key)
clusters = classifier.get_clusters(cluster_map)
clusters_bak = clusters.copy()
for color_sort in colorspaces:
for sorting_key in sorting_keys:
cmp1 = sorting_lambdas[sorting_key]
cmp2 = cl_sorting_lambdas[sorting_key]
clusters = classifier.sort_clusters(clusters, cmp1, color_sort=color_sort)
res = classifier.merge_clusters(clusters, cmp2)
save(folder, res, n_cluster, key, color_in, sorting_key, color_sort)
clusters = clusters_bak.copy()
def process():
n_cluster = 4
classifier = ImageClassifier(n_cluster, 'src.jpg')
df = classifier.get_dataframe(colorspace=cv2.COLOR_BGR2HSV)
cluster_map = classifier.run_kmeans(df, [0])
clusters = classifier.get_clusters(cluster_map)
clusters_bak = clusters.copy()
#cmp = lambda pixel: (255 - int(pixel[1])) * 2 - (200 if pixel[1] < pixel[2] else 0)
cmp = lambda pixel: int(pixel[0])
#cmp = lambda pixel: pixel[1]
clusters = classifier.sort_clusters(clusters, cmp, color_sort=cv2.COLOR_BGR2LAB)
res = classifier.merge_clusters(clusters, lambda cluster: sum(cluster[0][0]))
#filename = 'res_sort/res_{0}_{1}_{2}.png'.format(coeff[0], coeff[1], coeff[2])
filename="res.png"
cv2.imwrite(filename, res)
print('saved {0}'.format(filename))
clusters = clusters_bak.copy()
def compare(target1, target2):
cl1 = ImageClassifier(4, target1)
cl2 = ImageClassifier(4, target2)
df1 = cl1.get_dataframe()
df2 = cl2.get_dataframe()
print(df1.describe())
print(df2.describe())
exit()
img1 = cv2.imread(target1)
img2 = cv2.imread(target2)
shape1 = img1.shape
shape2 = img2.shape
img1 = np.reshape(img1, (shape1[0] * shape1[1], 3))
img2 = np.reshape(img2, (shape2[0] * shape2[1], 3))
img1 = sorted(img1, key = lambda pixel: sum(pixel))
img2 = sorted(img2, key = lambda pixel: sum(pixel))
img1 = np.reshape(img1, (shape1))
img2 = np.reshape(img2, (shape2))
cv2.imwrite('img1.png', img1)
cv2.imwrite('img2.png', img2)
# bruteforce("town.jpg", "result/town")
# compare("res.png", "town.jpg")
process()
|
elraffray/pyImage
|
classifier.py
|
classifier.py
|
py
| 4,167 |
python
|
en
|
code
| 0 |
github-code
|
6
|
10527381076
|
'''
7. Reverse Integer
https://leetcode.com/problems/reverse-integer/description/
Given a signed 32-bit integer x, return x with its digits reversed. If reversing x causes the value to go outside the signed 32-bit integer range [-231, 231 - 1], then return 0.
Assume the environment does not allow you to store 64-bit integers (signed or unsigned).
Example 1:
Input: x = 123
Output: 321
Example 2:
Input: x = -123
Output: -321
Example 3:
Input: x = 120
Output: 21
Constraints:
-231 <= x <= 231 - 1
'''
class Solution:
def reverse(self, x: int) -> int:
s = str(x)
if x >= 0 : return int(s[::-1]) if int(s[::-1]) <= (2**31 - 1) else 0
else:
s = str(abs(x))
return int('-'+s[::-1]) if int(s[::-1]) <= (2**31) else 0
|
bhaveshratan/LeetCode-Programming-Solutions-in-Python
|
Reverse Integer.py
|
Reverse Integer.py
|
py
| 799 |
python
|
en
|
code
| 0 |
github-code
|
6
|
75316082746
|
import os
import wx
from wx.lib.colourchooser.canvas import Canvas
class ImageCanvas(wx.Panel):
"""
Image Panel
"""
def __init__(self, parent, image_path=None, *args, **kwargs):
"""
Constructor
:param parent:
"""
wx.Panel.__init__(self, parent=parent, *args, **kwargs)
self.image_path = image_path
if self.image_path:
bmp = wx.Bitmap(self.image_path)
padding = 10
self.SetMinClientSize((bmp.GetWidth() + padding,
bmp.GetHeight() + padding))
self.glyphs = []
# self.SetBackgroundStyle(wx.BG_STYLE_CUSTOM)
self.frame = parent
# img = wx.EmptyImage(240, 240)
self.main_sizer = wx.BoxSizer(wx.HORIZONTAL)
self.main_sizer.Add((1, 1), 0, wx.EXPAND, 75)
# self.main_sizer.Add(img, 0, wx.EXPAND)
self.main_sizer.Add((1,1), 0, wx.ALL, 75)
self.SetSizer(self.main_sizer)
self.Bind(wx.EVT_ERASE_BACKGROUND, self.on_erase_background)
self.Bind(wx.EVT_SIZE, self.on_size)
def set_sizer(self):
"""
:param sizer:
:return:
"""
sizer = wx.BoxSizer(wx.VERTICAL)
hSizer = wx.BoxSizer(wx.HORIZONTAL)
for num in range(4):
label = "Button %s" % num
btn = wx.Button(self, label=label)
sizer.Add(btn, 0, wx.ALL, 5)
hSizer.Add((1,1), 1, wx.EXPAND)
hSizer.Add(sizer, 0, wx.TOP, 100)
hSizer.Add((1,1), 0, wx.ALL, 75)
self.SetSizer(hSizer)
def on_size(self, event):
"""
:param event:
"""
event.Skip()
self.Refresh()
def scale_image(self, image, max_width=None, max_height=None):
"""
:param image:
:param max_width:
:param max_height:
:return:
"""
width = image.GetWidth()
height = image.GetHeight()
ratio = min(max_width / width, max_height / height)
image = image.Scale(ratio * width, ratio * height, wx.IMAGE_QUALITY_HIGH)
result = wx.BitmapFromImage(image)
return result
def on_erase_background(self, event):
"""
Add a picture to the background
:param event:
"""
# self.Freeze()
dc = event.GetDC()
w, h = self.GetClientSize()
if not dc:
dc = wx.ClientDC(self)
rect = self.GetUpdateRegion().GetBox()
dc.SetClippingRect(rect)
dc.Clear()
if self.image_path:
bmp = wx.Bitmap(self.image_path)
# bmp = self.scale_image(bmp, 100, 200)
size = bmp.GetSize()
x = int(w/2.0 - size.x/2.0)
y = int(h/2.0 - size.y/2.0)
dc.DrawBitmap(bmp, x, y)
self.draw_model(dc)
# self.Thaw()
def draw_model(self, dc):
"""
Draw glyps
:param dc:
:return:
"""
for glyph in self.glyphs:
glyph.draw(dc)
class Glyph(object):
def __init__(self, *args, **kwargs):
self.pen_color = kwargs.get('pen_color', wx.BLACK)
self.pen_width = kwargs.get('pen_width', 5)
self.coordinates = kwargs.get('coordinates', [])
def set_pen(self, dc):
dc.SetPen(self.pen_color, self.pen_width)
def pre_draw(self, dc):
self.set_pen()
def post_draw(self, dc):
pass
def _draw_(self, dc):
pass
def draw(self, dc):
self.pre_draw(dc)
self._draw_(dc)
self.post_draw(dc)
class Arc(Glyph):
"""
"""
def _draw_(self, dc):
pass
class Line(Glyph):
"""
"""
def _draw_(self, dc):
xy1 = self.coordinates[0]
xy2 = self.coordinates[1]
dc.DrawLine(xy1[0], xy1[1], xy2[0], xy2[1])
class Circle(Glyph):
"""
"""
def _draw_(self, dc):
xy = self.coordinates[0]
dc.DrawCircle(xy[0], xy[1], 100)
class Rectangle(Glyph):
"""
"""
def _draw_(self, dc):
pass
|
JoenyBui/boa-gui
|
boaui/panel/image.py
|
image.py
|
py
| 4,085 |
python
|
en
|
code
| 0 |
github-code
|
6
|
1002491820
|
import unittest
from zag import *
from zag.configable import ConfigException
class ConfigTest(unittest.TestCase):
def test_stage(self):
foo = PyTask("zag.foo")
workflow = Sequence("foo-flow", stages=[
Stage("run-foo",
foo,
args=[
("--foo-type", "$type")
])
])
self.assertEqual(workflow.get_config(), {})
my_config = {"type": "ponies"}
nw = workflow.apply_config(my_config)
self.assertEqual(nw.stages[0].args, [("--foo-type", "ponies")])
def test_missing_value(self):
foo = PyTask("zag.foo")
workflow = Sequence("foo-flow", stages=[
Stage("run-foo",
foo,
args=[
("--foo-type", "$type"),
("--missing-val", "$mv")
])
])
self.assertEqual(workflow.get_config(), {})
my_config = {"type": "ponies"}
with self.assertRaises(ConfigException):
nw = workflow.apply_config(my_config)
def test_nested_workflows(self):
foo = PyTask("zag.foo")
simple_stage = Stage("run-foo",
foo,
args=[
("--foo-type", "$type")
])
bar = Sequence('bar-flow',
config={
"type": "bar"
},
stages=[simple_stage])
baz = Sequence('baz-flow',
config={
"type": "baz"
},
stages=[simple_stage])
qux = Sequence('qux-flow',
config={
"type": "qux"
},
stages=[baz])
workflow = Sequence("all-workflows", stages=[
bar,
qux,
baz
])
config = {}
nw = workflow.apply_config(config)
self.assertEqual(nw.stages[0].stages[0].args, [("--foo-type", "bar")])
self.assertEqual(nw.stages[1].stages[0].stages[0].args, [("--foo-type", "qux")])
self.assertEqual(nw.stages[2].stages[0].args, [("--foo-type", "baz")])
def test_tags(self):
simple_stage = Stage("run-foo",
PyTask("zag.foo"),
args=[
("--foo-type", "$type")
],
tags=['$tag'])
baz = Sequence('baz-flow',
config={
"type": "baz"
},
stages=[simple_stage],
tags=["fomo"])
with self.assertRaises(ConfigException):
baz.apply_config({})
nw = baz.apply_config({"tag": "TAG"})
self.assertEqual(nw.stages[0].tags, {"TAG"})
def test_inherit_tags(self):
simple_stage = Stage("run-foo",
PyTask("zag.foo"),
args=[
("--foo-type", "$type")
],
tags=['foo'])
baz = Sequence('baz-flow',
config={
"type": "baz"
},
stages=[simple_stage],
tags=['all-baz'])
stages = baz.apply_config({"tag": "TAG"}).resolve_stages()
stages = list(stages)
self.assertEqual(stages[0].tags, {"foo", "baz-flow", "all-baz"})
class ZagTest(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_identity(self):
pass
if __name__ == '__main__':
unittest.main()
|
Refefer/zag
|
tests/test_zag.py
|
test_zag.py
|
py
| 3,411 |
python
|
en
|
code
| 1 |
github-code
|
6
|
9357540363
|
#!/usr/bin/env python
__author__ = '[email protected]'
import commands
from d3r.celppade.custom_protein_prep import ProteinPrep
class chimera_dockprep(ProteinPrep):
"""Abstract class defining methods for a custom docking solution
for CELPP
"""
ProteinPrep.OUTPUT_PROTEIN_SUFFIX = '.mol2'
def receptor_scientific_prep(self,
protein_file,
prepared_protein_file,
targ_info_dict={}):
"""
Protein 'scientific preparation' is the process of generating
a dockable representation of the candidate protein from a
single-chain PDB file.
:param protein_file: PDB file containing candidate protein.
:param prepared_protein_file: The result of preparation should have this file name.
:param targ_info_dict: A dictionary of information about this target and the candidates chosen for docking.
:returns: True if preparation was successful. False otherwise.
"""
#####################################################################
### $ python clean_receptor.py receptor.pdb clean_receptor.pdb ###
#####################################################################
# Implements the logic that was formerly in clean_receptor.py
orig_pdb = open(protein_file).readlines()
with open('clean_receptor.pdb','wb') as of:
for line in orig_pdb:
if len(line) > 4:
if line[:4] == 'ATOM':
of.write(line)
#####################################################################
### $ chimera --nogui --script "chimeraPrep.py clean_receptor.pdb prepared_receptor.mol2"
#####################################################################
# Write the chimera-interpreted code to a script file
chimera_prep_text = '''import chimera
import sys
opened = chimera.openModels.open(sys.argv[1])
mol = opened[0]
import DockPrep
DockPrep.prep([mol])
from WriteMol2 import writeMol2
with open(sys.argv[2],'wb') as of:
writeMol2([mol], of)
'''
with open('chimera_prep.py','wb') as of:
of.write(chimera_prep_text)
# Run chimera with the script as an input
prep_cmd = 'chimera --nogui --script "chimera_prep.py clean_receptor.pdb ' + prepared_protein_file + ' " 1> prep.stdout 2> prep.stderr'
commands.getoutput(prep_cmd)
return True
if ("__main__") == (__name__):
import logging
import os
import shutil
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("-p", "--pdbdb", metavar = "PATH", help = "PDB DATABANK which we will dock into")
parser.add_argument("-c", "--challengedata", metavar="PATH", help = "PATH to the unpacked challenge data package")
parser.add_argument("-o", "--prepdir", metavar = "PATH", help = "PATH to the output directory")
logger = logging.getLogger()
logging.basicConfig( format = '%(asctime)s: %(message)s', datefmt = '%m/%d/%y %I:%M:%S', filename = 'final.log', filemode = 'w', level = logging.INFO )
opt = parser.parse_args()
pdb_location = opt.pdbdb
challenge_data_path = opt.challengedata
prep_result_path = opt.prepdir
#running under this dir
abs_running_dir = os.getcwd()
log_file_path = os.path.join(abs_running_dir, 'final.log')
log_file_dest = os.path.join(os.path.abspath(prep_result_path), 'final.log')
prot_prepper = chimera_dockprep()
prot_prepper.run_scientific_protein_prep(challenge_data_path, pdb_location, prep_result_path)
#move the final log file to the result dir
shutil.move(log_file_path, log_file_dest)
|
drugdata/tutorial_rdock_implementation
|
tutorial_rdock_implementation/tutorial_rdock_implementation_protein_prep.py
|
tutorial_rdock_implementation_protein_prep.py
|
py
| 3,827 |
python
|
en
|
code
| 0 |
github-code
|
6
|
29191289762
|
import datetime
import json
import os
import re
import shutil
class Fileop():
def isDirectory(self, fDir):
return os.path.isdir(fDir)
def countDir(self, dPath):
dirListing = next(os.walk(dPath))[2]
return len(dirListing)
def CjsonLoad(self, jfile):
fdir = os.path.join(Fileop.dwnDir(''), "conf")
condir = Fileop.isDirectory('', fdir)
if condir:
confile = os.path.join(fdir, jfile)
with open(confile, "r") as j:
return json.load(j)
def SjsonLoad(self, jfile):
fdir = Fileop.dwnDir('')
condir = Fileop.isDirectory('', fdir)
if condir:
confile = os.path.join(fdir, jfile)
with open(confile, "r") as j:
return json.load(j)
def curWorkDir(self):
return os.path.dirname(os.path.realpath(__file__))
def makDir(self, Folder):
try:
os.makedirs(Folder)
except OSError as e:
print("Warning making {0} : MSG - {1}".format(Folder, e))
def dwnDir(self):
return os.path.normpath(os.getcwd() + os.sep + os.pardir)
def newDirec(self, nDirName):
return os.mkdir(nDirName)
def RecFileDir(self, dirName):
new_Folder = os.path.join(Fileop.dwnDir(''), dirName)
dFlag = Fileop.isDirectory('', new_Folder)
if not dFlag:
# make directory
try:
Fileop.newDirec('', new_Folder)
except OSError:
print("Creation of the directory %s failed. \n" % new_Folder)
else:
print("Successfully created the directory %s.\n " % new_Folder)
else:
print("Directory ( %s ) already exists.\n" % new_Folder)
return new_Folder
def newest(self, path):
files = os.listdir(path)
lenfile = len(files)
if lenfile != 0:
paths = [os.path.join(path, basename) for basename in files]
return max(paths, key=os.path.getctime)
else:
print("Directory ( %s ) is empty\n", path)
def removefiles(self, folder):
files_in_directory = os.listdir(folder)
filtered_files = [file for file in files_in_directory if file.endswith(".wav")]
dircount = Fileop.countDir('', folder)
if dircount > 1:
for file in filtered_files:
path_to_file = os.path.join(folder, file)
os.remove(path_to_file)
else:
print('Failed to delete files, {0} is empty: \n'.format(folder))
def moveFiles(self, froDir, toDir, froFile, toFile):
try:
shutil.move(os.path.join(froDir, froFile), os.path.join(toDir, toFile))
print("Successfully moved {0}.\n".format(os.path.join(froDir, froFile)))
except OSError:
print("Could not move file ({0}) operation.\n".format(os.path.join(froDir, froFile)))
def main(self):
# Check if directories have been created
source_param = Fileop.CjsonLoad('', "conf.json")
source_rep = os.path.join(Fileop.dwnDir(''), "reports")
Fileop.RecFileDir('', source_rep)
dwn_dir = source_param['download_dir']
# Recordings directory based on current date
recFolder = "Recordings" + datetime.datetime.now().strftime("%Y%m%d")
dirRecs = Fileop.RecFileDir('', recFolder)
# print(dirRecs)
# get latest data report file
newFile = Fileop.newest('', source_rep)
# print (newFile)
count = 0
if Fileop.countDir('', dwn_dir) != 0:
with open(newFile, "r") as nf:
lines = nf.readlines()
for line in lines:
count += 1
line_id = ' '.join(re.findall(r'\b\w+\b', line)[:+1])
line_data = ' '.join(re.findall(r'\b\w+\b', line)[:]).replace(line_id, "")
line_data = "_".join(line_data.split())
print("line {0} - file ID : {1} file metadata :- {2} \n".format(count, line_id, line_data))
# move and rename files
Fileop.moveFiles("", dwn_dir, dirRecs, line_id + ".wav", line_data + ".wav")
else:
print("Warning: Call recordings download did not run!\n")
# if __name__ == "__main__":
# main()
|
kkweli/Avaya
|
Avy/avayaFile.py
|
avayaFile.py
|
py
| 4,353 |
python
|
en
|
code
| 0 |
github-code
|
6
|
72143866108
|
from typing import Any, Dict
def play_game() -> None:
print('playing game')
def update_state(current_state: Dict) -> Dict:
print('here we change things')
possible_actions = {
'mod status': lambda : print('modifting status'),
'remove status': lambda : print('removing status'),
'go back': lambda : print('saving updates')
}
show_commands('update status menu', possible_actions)
return current_state
def quit():
print('good bye m8')
def show_commands(title: str, commands: Dict) -> Any:
print(title.upper())
idxs = {}
for idx, op in enumerate(commands):
print(f'{op} -> press [{idx}]')
idxs[str(idx)] = commands[op]
while True:
user_op = input('select an option > ')
if user_op in idxs:
return idxs[user_op]()
def main():
state = {
'user_name': 'santi'
}
commands = {
'play': play_game,
'quit': quit,
'update_satus': lambda : update_state(state)
}
show_commands('main menu', commands=commands)
main()
|
levensworth/udesa-pc-tutorial
|
2022-a/4-testing_and_train/solutions/example_command.py
|
example_command.py
|
py
| 1,096 |
python
|
en
|
code
| 2 |
github-code
|
6
|
11353167972
|
# Licensed under a 3-clause BSD style license - see LICENSE
from __future__ import print_function, division
from astropy.table import Table, Column
from .import_modules import *
##----- ----- ----- ----- ----- ----- ----- ----- ----- -----##
## Miscellaneous utilities
## Contain functions that do not pertain to a particular class.
##----- ----- ----- ----- ----- ----- ----- ----- ----- -----##
def Fit_linear(y, x=None, err=1.0, m=None, b=None, output=None, inline=False):
"""
Fit_linear(y, x=None, err=1.0, m=None, b=None, output=None, inline=False):
return (sol, res, rank, s)
Uses the scipy.linalg.lstsq function to solve the equation y = mx + b
sol -> [b, m]
N.B. Uses the scipy.linalg.lstsq algorithm.
If inline = True, flattens the results.
"""
#x = array([52997., 53210., 53310., 53380.])
#y = array([1.66, 1.54, 1.4, 1.4])
# standard error of the y-variable:
#sy = array([0.05, 0.05, 0.05, 0.05])
if x is None:
x = np.arange(y.shape[0], dtype=float)
if (b is not None) and (m is not None):
sol = [b, m]
res = (((b + m*x - y)/err)**2).sum()
rank = 0.
s = 0.
else:
if b is not None:
A = np.reshape(x/err,(x.shape[0],1))
y1 = y-b
y1 /= err
sol, res, rank, s = scipy.linalg.lstsq(A, y1)
sol = [b,sol[0]]
elif m is not None:
A = np.resize(1/err,(x.shape[0],1))
y1 = y-m*x
y1 /= err
sol, res, rank, s = scipy.linalg.lstsq(A, y1)
sol = [sol[0],m]
else:
A = (np.vstack([np.ones(x.shape[0], dtype=float),x])/err).T
y1 = y/err
sol, res, rank, s = scipy.linalg.lstsq(A, y1)
if output:
b, m = sol
fit_y = b + m*x
print('b -> ' + str(b))
print('m -> ' + str(m))
print('Reduced chi-square: ' + str(res/(len(y)-rank)))
plotxy(y, x, line=None, symbol=2, color=2)
plotxy(fit_y, x)
if res.shape == (0,):
res = np.r_[0.]
if inline:
return np.hstack((sol, res, rank, s))
else:
return (sol, res, rank, s)
def Pprint(arr, show_index=False, max_lines=None):
arr = np.atleast_2d(arr)
if show_index:
cols = np.arange(arr.shape[1]).astype(str)
#rows = np.arange(arr.shape[0]).astype(str)
rows = np.array([r+' |' for r in np.arange(arr.shape[0]).astype(str)])
t = Table(data=arr, names=cols, copy=True)
t.add_column(Column(data=rows, name=' '), index=0)
else:
t = Table(data=arr, copy=True)
t.pprint(show_name=show_index, max_lines=max_lines)
def Sort_list(lst, cols):
"""Sort_list(lst, cols)
Sorts inplace a list by multiple columns.
lst: List to be sorted.
cols: Columns to be sorted, cols[0] first,
cols[1] second, etc.
>>> lst = [(1,2,4),(3,2,1),(2,2,2),(2,1,4),(2,4,1)]
>>> Sort_list(lst, [2,1])
"""
from operator import itemgetter
for keycolumn in reversed(cols):
lst.sort(key=itemgetter(keycolumn))
return
|
bretonr/Icarus
|
Icarus/Utils/Misc.py
|
Misc.py
|
py
| 3,104 |
python
|
en
|
code
| 11 |
github-code
|
6
|
3508041211
|
#!/usr/bin/env python3
import numpy as np
import re
position_re = re.compile('(\d+),(\d+).*?(\d+),(\d+)')
def execute(cmd: str, a: np.array, a2: np.array):
items = position_re.search(cmd)
pos1 = (int(items.group(1)), int(items.group(2)))
pos2 = (int(items.group(3)) + 1, int(items.group(4)) + 1)
if cmd.startswith('toggle'):
a[pos1[0]:pos2[0], pos1[1]:pos2[1]] = np.invert(a[pos1[0]:pos2[0], pos1[1]:pos2[1]])
a2[pos1[0]:pos2[0], pos1[1]:pos2[1]] += 2
elif cmd.startswith('turn on'):
a[pos1[0]:pos2[0], pos1[1]:pos2[1]] = True
a2[pos1[0]:pos2[0], pos1[1]:pos2[1]] += 1
elif cmd.startswith('turn off'):
a[pos1[0]:pos2[0], pos1[1]:pos2[1]] = False
a2[pos1[0]:pos2[0], pos1[1]:pos2[1]] -= 1
a2[a2 < 0] = 0
a = np.zeros((1000, 1000), bool)
a2 = np.zeros((1000, 1000), int)
for cmd in open('6.input').readlines():
execute(cmd, a, a2)
print('part 1', np.sum(a == True))
print('part 2', np.sum(a2))
|
pboettch/advent-of-code
|
2015/6.py
|
6.py
|
py
| 987 |
python
|
en
|
code
| 1 |
github-code
|
6
|
16325116494
|
from functools import wraps
from typing import Callable
from util.threading import Thread, TimeoutException
from util.typing import P
from .AbstractHandler import PAYLOAD_TYPE, RESPONSE_TYPE, CONTEXT_TYPE, AbstractHandler
class AbstractTimeoutHandler(AbstractHandler[PAYLOAD_TYPE, RESPONSE_TYPE, CONTEXT_TYPE]):
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.handle_request = cls._wrap_timeout(cls.handle_request)
def __init__(self, timeout: float = None, default: PAYLOAD_TYPE = None, **kwargs):
super().__init__(**kwargs)
self.timeout = timeout
self.default = default
@staticmethod
def _wrap_timeout(
handle_request: Callable[P, RESPONSE_TYPE]
) -> Callable[P, RESPONSE_TYPE]:
if (
hasattr(handle_request, "_AbstractTimeoutHandler_wrapped")
and handle_request._AbstractTimeoutHandler_wrapped == True
):
return handle_request
@wraps(handle_request)
def execute_with_timeout(self: "AbstractTimeoutHandler") -> RESPONSE_TYPE:
result = None
completed = False
def run_execute_and_store_result():
nonlocal result
nonlocal completed
try:
result = handle_request()
completed = True
except TimeoutException:
pass
thread = Thread(target=run_execute_and_store_result, daemon=True)
thread.start()
thread.join(self.timeout)
if not completed:
result = self.default
return result # type: ignore
execute_with_timeout._AbstractTimeoutHandler_wrapped = True
return execute_with_timeout
|
MysteriousChallenger/nat-holepunch
|
protocol/interface/request_handler/AbstractTimeoutHandler.py
|
AbstractTimeoutHandler.py
|
py
| 1,804 |
python
|
en
|
code
| 0 |
github-code
|
6
|
37502345925
|
import numpy as np
from typing import Callable, Dict, List, Optional, Tuple, Union
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
from torch.cuda.amp import autocast
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, get_norm
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
from mask2former.modeling.pixel_decoder.msdeformattn import MSDeformAttnTransformerEncoderOnly
from mask2former.modeling.transformer_decoder.position_encoding import PositionEmbeddingSine
@SEM_SEG_HEADS_REGISTRY.register()
class MSSharePixelDecoder(nn.Module):
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
transformer_dropout: float,
transformer_nheads: int,
transformer_dim_feedforward: int,
transformer_enc_layers: int,
conv_dim: int,
mask_dim: int,
norm: Optional[Union[str, Callable]] = None,
# deformable transformer encoder args
transformer_in_features: List[str],
common_stride: int,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shapes (channels and stride) of the input features
transformer_dropout: dropout probability in transformer
transformer_nheads: number of heads in transformer
transformer_dim_feedforward: dimension of feedforward network
transformer_enc_layers: number of transformer encoder layers
conv_dims: number of output channels for the intermediate conv layers.
mask_dim: number of output channels for the final conv layer.
norm (str or callable): normalization for all conv layers
"""
super().__init__()
transformer_input_shape = {
k: v for k, v in input_shape.items() if k in transformer_in_features
}
# this is the input shape of pixel decoder
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
self.feature_strides = [v.stride for k, v in input_shape]
self.feature_channels = [v.channels for k, v in input_shape]
# this is the input shape of transformer encoder (could use less features than pixel decoder
transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: x[1].stride)
self.transformer_in_features = [k for k, v in transformer_input_shape] # starting from "res2" to "res5"
transformer_in_channels = [v.channels for k, v in transformer_input_shape]
self.transformer_feature_strides = [v.stride for k, v in transformer_input_shape] # to decide extra FPN layers
self.transformer_num_feature_levels = len(self.transformer_in_features)
if self.transformer_num_feature_levels > 1:
input_proj_list = []
# from low resolution to high resolution (res5 -> res2)
for in_channels in transformer_in_channels[::-1]:
input_proj_list.append(nn.Sequential(
nn.Conv2d(in_channels, conv_dim, kernel_size=1),
nn.GroupNorm(32, conv_dim),
))
self.input_proj = nn.ModuleList(input_proj_list)
else:
self.input_proj = nn.ModuleList([
nn.Sequential(
nn.Conv2d(transformer_in_channels[-1], conv_dim, kernel_size=1),
nn.GroupNorm(32, conv_dim),
)])
for proj in self.input_proj:
nn.init.xavier_uniform_(proj[0].weight, gain=1)
nn.init.constant_(proj[0].bias, 0)
self.transformer = MSDeformAttnTransformerEncoderOnly(
d_model=conv_dim,
dropout=transformer_dropout,
nhead=transformer_nheads,
dim_feedforward=transformer_dim_feedforward,
num_encoder_layers=transformer_enc_layers,
num_feature_levels=self.transformer_num_feature_levels,
)
N_steps = conv_dim // 2
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
'''
self.mask_dim = mask_dim
# use 1x1 conv instead
self.mask_features = Conv2d(
conv_dim,
mask_dim,
kernel_size=1,
stride=1,
padding=0,
)
weight_init.c2_xavier_fill(self.mask_features)
'''
self.maskformer_num_feature_levels = 3 # always use 3 scales
self.common_stride = common_stride
# extra fpn levels
stride = min(self.transformer_feature_strides)
self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
lateral_convs = []
output_convs = []
use_bias = norm == ""
for idx, in_channels in enumerate(self.feature_channels[:self.num_fpn_levels]):
lateral_norm = get_norm(norm, conv_dim)
output_norm = get_norm(norm, conv_dim)
lateral_conv = Conv2d(
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
)
output_conv = Conv2d(
conv_dim,
conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias,
norm=output_norm,
activation=F.relu,
)
weight_init.c2_xavier_fill(lateral_conv)
weight_init.c2_xavier_fill(output_conv)
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Place convs into top-down order (from low to high resolution)
# to make the top-down computation in forward clearer.
self.lateral_convs = lateral_convs[::-1]
self.output_convs = output_convs[::-1]
'''
share_mask_branch = []
for idx in range(self.maskformer_num_feature_levels):
share_norm = get_norm(norm, mask_dim)
share_mask_conv = Conv2d(
conv_dim,
mask_dim,
kernel_size=3,
stride=2,
padding=1,
norm=share_norm,
activation=F.relu,
)
weight_init.c2_xavier_fill(share_mask_conv)
self.add_module("share_{}".format(idx + 1), share_mask_conv)
share_mask_branch.append(share_mask_conv)
self.share_mask_branch = share_mask_branch
'''
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
ret = {}
ret["input_shape"] = {
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
}
ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
# ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
ret["transformer_dim_feedforward"] = 1024 # use 1024 for deformable transformer encoder
ret[
"transformer_enc_layers"
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config
ret["transformer_in_features"] = cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES
ret["common_stride"] = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE
return ret
@autocast(enabled=False)
def forward_features(self, features):
srcs = []
pos = []
# Reverse feature maps into top-down order (from low to high resolution)
for idx, f in enumerate(self.transformer_in_features[::-1]):
x = features[f].float() # deformable detr does not support half precision
srcs.append(self.input_proj[idx](x))
pos.append(self.pe_layer(x))
y, spatial_shapes, level_start_index = self.transformer(srcs, pos)
bs = y.shape[0]
split_size_or_sections = [None] * self.transformer_num_feature_levels
for i in range(self.transformer_num_feature_levels):
if i < self.transformer_num_feature_levels - 1:
split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i]
else:
split_size_or_sections[i] = y.shape[1] - level_start_index[i]
y = torch.split(y, split_size_or_sections, dim=1)
out = []
multi_scale_features = []
num_cur_levels = 0
for i, z in enumerate(y):
out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1]))
# append `out` with extra FPN levels
# Reverse feature maps into top-down order (from low to high resolution)
for idx, f in enumerate(self.in_features[:self.num_fpn_levels][::-1]):
x = features[f].float()
lateral_conv = self.lateral_convs[idx]
output_conv = self.output_convs[idx]
cur_fpn = lateral_conv(x)
# Following FPN implementation, we use nearest upsampling here
y = cur_fpn + F.interpolate(out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False)
y = output_conv(y)
out.append(y)
for o in out:
if num_cur_levels < self.maskformer_num_feature_levels:
multi_scale_features.append(o)
num_cur_levels += 1
'''
mask_feats = []
feat = features['res2'].float()
for idx in range(self.maskformer_num_feature_levels):
feat = self.share_mask_branch[idx](feat)
mask_feats.append(feat)
feat = features['res2']
mask_feat = mask_feats[0]
for idx in range(self.maskformer_num_feature_levels-1, 0, -1):
mask_feat = mask_feats[idx] + F.interpolate(mask_feat, size=mask_feats[idx].shape[-2:], mode="bilinear", align_corners=False)
mask_feat = feat + F.interpolate(mask_feat, size=feat.shape[-2:], mode="bilinear", align_corners=False)
'''
return out[-1], out[0], multi_scale_features
#return self.mask_features(mask_feat), out[0], multi_scale_features
|
zfonemore/NewVIS
|
minvis/share_mask_fpn.py
|
share_mask_fpn.py
|
py
| 10,597 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21228252116
|
from django.urls import path
from widgets.views import HomePageView, UserProfilePageView, SharedWidgetsPageView, \
PrivateWidgetsPageView, MemoryWidgetsView
urlpatterns = [
path('', HomePageView.as_view(), name='home'),
path('home/shared-widgets/', SharedWidgetsPageView.as_view(), name='shared-widgets'),
path('user-profile/<slug:slug>/', UserProfilePageView.as_view(), name='user-profile'),
path('user-profile/<slug:slug>/widgets/', PrivateWidgetsPageView.as_view(), name='private-widgets'),
path('memory-widgets/<int:pk>', MemoryWidgetsView.as_view(), name='memory-widgets'),
]
|
alex-polo/homepage
|
widgets/urls.py
|
urls.py
|
py
| 607 |
python
|
en
|
code
| 0 |
github-code
|
6
|
856153134
|
from setuptools import setup
import sys
VERSION = '1.2.1263'
plist = dict(
CFBundleName='VisTrails',
CFBundleShortVersionString=VERSION,
CFBundleGetInfoString=' '.join(['VisTrails', VERSION]),
CFBundleExecutable='vistrails',
CFBundleIdentifier='edu.utah.sci.vistrails',
)
sys.path.append('../..')
APP = ['../../vistrails/run.py']
#comma-separated list of additional data files and
#folders to include (not for code!)
#DATA_FILES = ['/usr/local/graphviz-2.12/bin/dot',]
OPTIONS = {'argv_emulation': True,
'iconfile': 'vistrails/resources/vistrails_icon.icns',
'includes': 'sip,pylab,xml,netCDF3,netCDF4_utils,netcdftime,\
libxml2,libxslt, Cookie, BaseHTTPServer, multifile, shelve,itk, itkBase, itkConfig, itkLazy, itkTypes, itkExtras',
'packages': 'PyQt4,vtk,MySQLdb,matplotlib,vistrails,numpy,ZSI,api',
'plist': plist,
}
setup(
app=APP,
# data_files=DATA_FILES,
options={'py2app': OPTIONS},
setup_requires=['py2app'],
)
|
VisTrails/VisTrails
|
scripts/dist/mac/setup_itk.py
|
setup_itk.py
|
py
| 1,027 |
python
|
en
|
code
| 100 |
github-code
|
6
|
32612633515
|
# Реализовать базовый класс Worker (работник), в котором определить атрибуты:
# name, surname, position (должность), income (доход). Последний атрибут должен быть защищенным и
# ссылаться на словарь, содержащий элементы: оклад и премия, например, {"wage": wage, "bonus": bonus}.
# Создать класс Position (должность) на базе класса Worker. В классе Position реализовать методы
# получения полного имени сотрудника (get_full_name) и дохода с учетом премии (get_total_income).
# Проверить работу примера на реальных данных (создать экземпляры класса Position, передать данные,
# проверить значения атрибутов, вызвать методы экземпляров).
salary_dict = {'Сергей Петров': {'wage': 30000, 'bonus': 7000},
'Михаил Смирнов': {'wage': 10000, 'bonus': 5000}
}
class Worker:
name: str
surname: str
position: str
_income = salary_dict
def __init__(self, name, surname, position):
self.name = name
self.surname = surname
self.position = position
class Position(Worker):
def __init__(self, name, surname, position):
super().__init__(name, surname, position)
def get_full_name(self):
print(f'\nСотрудник: {self.name} {self.surname}\nДолжность: {self.position}')
def get_total_income(self):
if f"{self.name} {self.surname}" in self._income.keys():
print(f'Доход с учетом премии: {sum(self._income[f"{self.name} {self.surname}"].values())} рублей.')
else:
print('Такого сотрудника нет!')
petrov = Position('Сергей', 'Петров', 'Менеджер')
petrov.get_full_name()
petrov.get_total_income()
smirnov = Position('Михаил', 'Смирнов', 'Грузчик')
smirnov.get_full_name()
smirnov.get_total_income()
tenev = Position('Михаил', 'Тенев', 'Иллюминат')
tenev.get_full_name()
tenev.get_total_income()
|
Unst1k/GeekBrains-PythonCourse
|
DZ6/DZ6-3.py
|
DZ6-3.py
|
py
| 2,365 |
python
|
ru
|
code
| 1 |
github-code
|
6
|
43242415991
|
from os.path import abspath, dirname, join
from preggy import expect
from tornado.testing import gen_test
from tests.base import TestCase
from thumbor.compatibility.storage import Storage
from thumbor.config import Config
from thumbor.context import Context, ServerParameters
from thumbor.importer import Importer
STORAGE_PATH = abspath(join(dirname(__file__), "../fixtures/images/"))
class CompatibilityStorageTestCase(TestCase):
def get_image_path(self, name):
return f"./tests/fixtures/images/{name}"
def get_image_bytes(self, name):
with open(self.get_image_path(name), "rb") as img:
return img.read()
def get_image_url(self, name):
return f"s.glbimg.com/some/{name}"
def get_context(self):
config = Config(
FILE_LOADER_ROOT_PATH=STORAGE_PATH,
COMPATIBILITY_LEGACY_STORAGE="tests.compatibility.legacy_file_storage",
STORES_CRYPTO_KEY_FOR_EACH_IMAGE=True,
)
importer = Importer(config)
importer.import_modules()
server = ServerParameters(
8889, "localhost", "thumbor.conf", None, "info", None
)
server.security_key = "ACME-SEC"
return Context(server, config=config, importer=importer)
@gen_test
async def test_should_raise_for_invalid_compatibility_storage(self):
config = Config(
FILE_LOADER_ROOT_PATH=STORAGE_PATH,
STORES_CRYPTO_KEY_FOR_EACH_IMAGE=True,
)
importer = Importer(config)
importer.import_modules()
server = ServerParameters(
8889, "localhost", "thumbor.conf", None, "info", None
)
server.security_key = "ACME-SEC"
ctx = Context(server, config=config, importer=importer)
storage = Storage(ctx)
with expect.error_to_happen(
RuntimeError,
message=(
"The 'COMPATIBILITY_LEGACY_STORAGE' configuration should "
"point to a valid storage when using compatibility storage."
),
):
await storage.get("invalid-path")
@gen_test
async def test_should_return_none_for_invalid_image(self):
storage = Storage(self.context)
result = await storage.get("invalid-path")
expect(result).to_be_null()
@gen_test
async def test_should_get(self):
url = self.get_image_url("image.jpg")
image_bytes = self.get_image_bytes("image.jpg")
storage = Storage(self.context)
await storage.put(url, image_bytes)
result = await storage.get(url)
expect(result).not_to_be_null()
expect(result).not_to_be_an_error()
expect(result).to_equal(image_bytes)
@gen_test
async def test_should_put(self):
url = self.get_image_url("image.jpg")
image_bytes = self.get_image_bytes("image.jpg")
storage = Storage(self.context)
await storage.put(url, image_bytes)
result = await storage.get(url)
expect(result).not_to_be_null()
expect(result).not_to_be_an_error()
expect(result).to_equal(image_bytes)
@gen_test
async def test_should_put_detector_data(self):
iurl = self.get_image_url("image_7.jpg")
ibytes = self.get_image_bytes("image.jpg")
storage = Storage(self.context)
await storage.put(iurl, ibytes)
await storage.put_detector_data(iurl, "some-data")
got = await storage.get_detector_data(iurl)
expect(got).not_to_be_null()
expect(got).not_to_be_an_error()
expect(got).to_equal("some-data")
@gen_test
async def test_should_put_crypto(self):
iurl = self.get_image_url("image_7.jpg")
ibytes = self.get_image_bytes("image.jpg")
storage = Storage(self.context)
await storage.put(iurl, ibytes)
await storage.put_crypto(iurl)
got = await storage.get_crypto(iurl)
expect(got).not_to_be_null()
expect(got).not_to_be_an_error()
expect(got).to_equal("ACME-SEC")
@gen_test
async def test_exists(self):
iurl = self.get_image_url("image_7.jpg")
ibytes = self.get_image_bytes("image.jpg")
storage = Storage(self.context)
await storage.put(iurl, ibytes)
exists = await storage.exists(iurl)
not_exists = await storage.exists("some-invalid-random-file.jpg")
expect(exists).to_be_true()
expect(not_exists).to_be_false()
@gen_test
async def test_remove(self):
iurl = self.get_image_url("image_7.jpg")
ibytes = self.get_image_bytes("image.jpg")
storage = Storage(self.context)
await storage.put(iurl, ibytes)
exists = await storage.exists(iurl)
expect(exists).to_be_true()
await storage.remove(iurl)
not_exists = await storage.exists(iurl)
expect(not_exists).to_be_false()
|
thumbor/thumbor
|
tests/compatibility/test_compatibility_storage.py
|
test_compatibility_storage.py
|
py
| 4,916 |
python
|
en
|
code
| 9,707 |
github-code
|
6
|
72784516667
|
# https://www.codewars.com/kata/58fd9f6213b00172ce0000c9
def split_exp(n):
lenn = len(n)
res = []
pnt = n.find('.')
if pnt < 0:
res = [c + '0'*(lenn-i-1) for i, c in enumerate(n) if c != '0']
else:
for i,j in zip(range(0, pnt), range(pnt-1,-1,-1)):
if n[i]!= '0': res.append(n[i] + '0'*j)
for i, j in zip(range(pnt+1, lenn), range(lenn)):
if n[i]!= '0': res.append('.' + '0'*j + n[i])
return res
|
blzzua/codewars
|
7-kyu/simple_fun_205_split_exp.py
|
simple_fun_205_split_exp.py
|
py
| 470 |
python
|
en
|
code
| 0 |
github-code
|
6
|
24615537845
|
# Layers are stacked in order of drawing
level_0 = {
'tiles_sheet_path': '../imgs/terrain/mario_terrain.png',
'layers': {
'terrain': {
'path': '../levels/level_data/0/level0_Level.csv',
'type': 'static',
},
'ghost_passage': {
'path': '../levels/level_data/0/level0_GhostPassage.csv',
'type': 'passage',
},
'scenery': {
'path': '../levels/level_data/0/level0_Scenery.csv',
'type': 'static',
},
'scenery2': {
'path': '../levels/level_data/0/level0_Additional Scenery.csv',
'type': 'static',
},
'player': {
'path': '../levels/level_data/0/level0_Mario.csv',
'type': 'player',
},
'ghosts': {
'path': '../levels/level_data/0/level0_Pacman.csv',
'type': 'ghosts',
},
'coins': {
'path': '../levels/level_data/0/level0_Coins.csv',
'type': 'coin',
},
'question_blocks': {
'path': '../levels/level_data/0/level0_Question_blocks.csv',
'type': 'question_block',
},
'pipe_head_pair_0': {
'path': '../levels/level_data/0/level0_Pipe_head_pair_0.csv',
'type': 'pipe_head',
},
'pipe_head_pair_1': {
'path': '../levels/level_data/0/level0_Pipe_head_pair_1.csv',
'type': 'pipe_head',
},
'pipe_head_pair_2': {
'path': '../levels/level_data/0/level0_Pipe_head_pair_2.csv',
'type': 'pipe_head',
},
}
}
player = {
'sprite_sheet_path': '../imgs/player/shroomaddict.png',
'animation_idle': {
'frames': [0],
'fps': 1,
},
'animation_walking': {
'frames': [1, 2, 3],
'fps': 10
},
'animation_running': {
'frames': [1, 2, 3],
'fps': 16
},
'animation_jumping': {
'frames': [5],
'fps': 1
},
'animation_dede': {
'frames': [6],
'fps': 1
}
}
ghosts = {
'sprite_sheet_path': '../imgs/ghosts/ghost_sprites.png',
'seconds_following': 12,
'seconds_spreading': 8,
'animation_idle': {
'frames': [0],
'fps': 1
},
'animation_right': {
'frames': [0, 1],
'fps': 7,
},
'animation_left': {
'frames': [2, 3],
'fps': 7
},
'animation_up': {
'frames': [4, 5],
'fps': 7
},
'animation_down': {
'frames': [6, 7],
'fps': 7
},
'animation_scared': {
'frames': [8, 9],
'fps': 7
}, 'animation_scared_white': {
'frames': [10, 11],
'fps': 7
}, 'animation_dead_right': {
'frames': [12],
'fps': 1
}, 'animation_dead_left': {
'frames': [13],
'fps': 1
}, 'animation_dead_up': {
'frames': [14],
'fps': 1
}, 'animation_dead_down': {
'frames': [15],
'fps': 1
}
}
coins = {
'sprite_sheet_path': '../imgs/coin/coin.png',
'animation_idle': {
'frames': [0, 1, 2, 3, 4, 5, 6, 7],
'fps': 10
}
}
question_block = {
'sprite_sheet_path': '../imgs/question_block/question_block.png',
'animation_idle': {
'frames': [0, 0, 0, 1, 2],
'fps': 4
},
'animation_hit': {
'frames': [3, 3],
'fps': 1
}
}
pipe_head = {
'sprite_sheet_path': '../imgs/terrain/mario_terrain.png',
'animation_idle': {
'frames': [0],
'fps': 1
},
}
ui = {
'sprite_sheet_path': '../imgs/ui/ui.png'
}
|
ysbrandB/M6FinalProject
|
code/game_data.py
|
game_data.py
|
py
| 3,637 |
python
|
en
|
code
| 0 |
github-code
|
6
|
71066866429
|
from ....utils.onlinetex import tex_to_svg_file_online
from ....utils.jupyter import video
from ..scene import SceneGL
from ..config import Size
from .plot import Plot
from .scatter import Scatter
from pathlib import Path
import re
import time
import shutil
from manimlib import (
BLUE,
GREEN,
ShowCreation,
Write,
VGroup,
Transform,
ReplacementTransform,
FadeIn,
FadeOut,
)
from manimlib.utils.rate_functions import linear, smooth
from manimlib.extract_scene import get_scene_config
import manimlib.config
from manimlib.camera.camera import Camera
from sparrow.path import rel_to_abs
__all__ = ["EagerModeScene", "JupyterModeScene", "CONFIG"]
class CONFIG:
# skip_animations = False # "Save the last frame"
color = None # Background color"
full_screen = False
gif = False
resolution = '1920x1080'
preview = False
# Render to a movie file with an alpha channel,
# if transparent is True, .mov file will be generated.
transparent = False
save_pngs = False # Save each frame as a png
hd = False
uhd = False
quiet = True
open = False # Automatically open the saved file once its done
finder = False # Show the output file in finder
frame_rate = 30
file_name = None
video_dir = None # directory to write video
start_at_animation_number = None
use_online_tex = False
class EagerModeScene(SceneGL):
def __init__(
self,
screen_size=Size.big,
scene_name='EagerModeScene',
):
# self.CONFIG = CONFIG
args = manimlib.config.parse_cli()
args_dict = vars(args)
args_dict['file'] = None
args_dict['scene_names'] = scene_name
args_dict['screen_size'] = screen_size
if CONFIG.preview:
from pyglet.window import key
self.key = key
else:
args_dict['write_file'] = True
for key, value in CONFIG.__dict__.items():
args_dict[key] = value
if CONFIG.gif is True:
args_dict['write_file'] = True
# if CONFIG.gif is True:
# args_dict["transparent"] = False
if CONFIG.use_online_tex:
print("Use online latex compiler")
manimlib.mobject.svg.tex_mobject.tex_to_svg_file = tex_to_svg_file_online
self.config = manimlib.config.get_configuration(args)
self.scene_config = get_scene_config(self.config)
super().__init__(**self.scene_config)
self.virtual_animation_start_time = 0
self.real_animation_start_time = time.time()
self.file_writer.begin()
self.setup()
self.plt = Plot()
self.is_axes_line_gen_ed = False
self._scatter_ax = None
self.clips = []
self.current_clip = 0
self.saved_states = []
self.animation_list = []
self.animation_func_dict = {}
self.loop_start_animation = None
self.pause_start_animation = 0
def play(self, *args, run_time=1, rate_func=linear, **kwargs):
"""TODO:"""
super().play(*args, run_time=run_time,
rate_func=rate_func,
**kwargs)
def _play_method(self, mobj, Method, loc):
loc.pop('self')
args = loc.pop('args')
kwargs = loc.pop('kwargs')
self.play(Method(mobj), *args, **loc, **kwargs)
def write(self, mobject, *args, run_time=1., rate_func=linear, **kwargs):
self._play_method(mobject, Write, locals())
def show_creation(self, mobject, *args, run_time=1, rate_func=linear, **kwargs):
self._play_method(mobject, ShowCreation, locals())
def fade_in(self, mobject, *args, run_time=1, rate_func=linear, **kwargs):
self._play_method(mobject, FadeIn, locals())
def fade_out(self, mobject, *args, run_time=1, rate_func=linear, **kwargs):
self._play_method(mobject, FadeOut, locals())
def get_animate_name_func(self):
def get_clip_names():
names = []
# Fixme: use other method to replace `dir()`
for name in dir(self):
if re.search(r'clip_*[0-9]+', name):
names.append(name)
# sort
if names:
names = sorted(names, key=lambda x: int(re.search(r"[0-9]+", x).group()))
return names
clip_names = get_clip_names()
animation_func_dict = {}
if clip_names:
for func_name in clip_names:
animation_func_dict.setdefault(func_name, getattr(self, func_name))
self.animation_func_dict = animation_func_dict
def save_image(self, filename):
"""This method works only when CONFIG.preview=False. """
assert (CONFIG.preview == False, "`self.save_image` works only when CONFIG.preview=False.")
self.camera: Camera
self.camera.get_image().save(filename)
def render(self):
self.get_animate_name_func()
for name, func in self.animation_func_dict.items():
self.save_state()
self.saved_states.append(self.saved_state)
self.current_clip += 1
func()
self.animation_list.append(func)
self.hold_on()
def replay(self, animation_index=None):
if animation_index is None:
animation_index = self.current_clip
self.saved_state = self.saved_states[animation_index - 1]
self.restore()
self.animation_list[animation_index - 1]()
def loop_animate(self, animation_index=None, num=10):
while num:
num -= 1
self.replay(animation_index)
def next_animate(self):
self.current_clip += 1
def _clip_control(self, symbol):
# play preview clip
if symbol in (self.key.LEFT, self.key.COMMA, self.key.NUM_1, self.key._1):
self.current_clip -= 1
try:
self.replay(self.current_clip)
except IndexError:
self.current_clip += 1
# play next clip
elif symbol in (self.key.RIGHT, self.key.PERIOD, self.key._3, self.key.NUM_3):
self.current_clip += 1
try:
self.replay(self.current_clip)
except IndexError:
self.current_clip -= 1
# play current clip
elif symbol in (self.key.NUM_DIVIDE, self.key.DOWN, self.key._2, self.key.NUM_2):
self.replay(self.current_clip)
def hold_on(self):
self.tear_down()
def tear_down(self):
super().tear_down()
def get_config(self):
return self.config
def save_default_config(self):
"""Save the default config file to current directory."""
shutil.copy(rel_to_abs("custom_config.yml"), rel_to_abs('custom_config.yml'))
def get_scene_config(self):
return self.scene_config
def save_start(self, file_name):
"""TODO"""
def save_end(self):
"""TODO"""
# self.file_writer.finish()
def embed(self):
super().embed()
# FIXME: Remove method `plot` from EagerModeScene.
def plot(self,
x,
y,
color=None,
width=2,
axes_ratio=0.62,
scale_ratio=None,
num_decimal_places=None,
show_axes=True,
include_tip=True,
x_label='x',
y_label='y'):
"""
params
------
scale_ratio: Scale ratio of coordinate axis. i.e. y / x .
num_decimal_places: Number of significant digits of coordinate_labels.
"""
self.plt.plot(x, y, color, width, axes_ratio, scale_ratio, show_axes, include_tip, num_decimal_places,
x_label, y_label)
def scatter2d(self, x, y, color=BLUE, size=0.05, ax=None):
self._scatter_nd(x, y, color=color, size=size, ax=ax)
def scatter3d(self, x, y, z, color=BLUE, size=0.05, ax=None):
self._scatter_nd(x, y, z, color=color, size=size, ax=ax)
def _scatter_nd(self, x, y, z=None, color=BLUE, size=0.05, ax=None):
scatter_obj = Scatter()
if ax is not None: self._scatter_ax = ax
if z is not None:
self._scatter_ax, mobj = scatter_obj.from_dot_cloud_3d(
x, y, z, size=size, color=color, ax=self._scatter_ax)
else:
self._scatter_ax, mobj = scatter_obj.from_dotcloud(x, y, size=size, color=color, ax=self._scatter_ax)
if self._scatter_ax not in self.mobjects:
self.write(self._scatter_ax)
self.add(mobj)
return self._scatter_ax, mobj
def plot3d(self, x, y, z, width=2, axes_ratio=0.62, show_axes=True):
"""TODO"""
def get_plot_mobj(self):
if self.is_axes_line_gen_ed is False:
self.plt.gen_axes_lines()
self.is_axes_line_gen_ed = True
axes_lines_dict = self.plt.get_axes_lines()
axes_mobj = VGroup(*axes_lines_dict["axes"])
lines_mobj = VGroup(*axes_lines_dict["line"])
return axes_mobj, lines_mobj
def get_plot_axes(self):
return self.plt.get_axes()
def reset_plot(self):
self.plt = Plot()
self.is_axes_line_gen_ed = False
def show_plot(self, play=True, reset=True):
axes_mobj, lines_mobj = self.get_plot_mobj()
pltvgroup = VGroup(axes_mobj, lines_mobj)
if play:
self.write(axes_mobj, run_time=1.5, rate_func=smooth)
self.show_creation(lines_mobj, run_time=1.5, rate_func=smooth)
else:
self.add(pltvgroup)
if reset:
self.plt = Plot()
return pltvgroup
class JupyterModeScene(EagerModeScene):
def __init__(self, write_file=True, **kwargs):
CONFIG.write_file = write_file
super().__init__(**kwargs)
def finish(self):
self.file_writer.finish()
def embed(self):
"""We don't need it in jupyter lab/notebook."""
@property
def video_path(self):
path = Path(self.file_writer.get_movie_file_path())
self.file_writer.finish()
relative_path = path.relative_to(Path.cwd())
return str(relative_path)
def display(self,
width=854,
height=480,
controls=True,
autoplay=True,
loop=True):
return video(self.video_path, width, height, controls, autoplay, loop)
def quit(self):
"""Please use exit() or quit() in jupyter cell."""
pass
|
beidongjiedeguang/manim-express
|
manim_express/backend/manimgl/express/eager.py
|
eager.py
|
py
| 10,559 |
python
|
en
|
code
| 13 |
github-code
|
6
|
6969799516
|
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict
from torch import Tensor
from torch.jit.annotations import List
#added
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from load_utils import load_state_dict_from_url
from cub_voc import CUB_VOC
import os
from tqdm import tqdm
import shutil
import numpy as np
from newPad2d import newPad2d
#from torch.autograd import Variable
MEMORY_EFFICIENT = True
IS_TRAIN = 0 # 0/1
IS_MULTI = 0 # 0/1
LAYERS = '121'
DATANAME = 'bird' # bird/cat/.../cub/helen/voc_multi
NUM_CLASSES =6 if IS_MULTI else 2
cub_file = '/data/sw/dataset/frac_dataset'
voc_file = '/data/sw/dataset/VOCdevkit/VOC2010/voc2010_crop'
log_path = '/data/fjq/iccnn/densenet/' # for model
save_path = '/data/fjq/iccnn/basic_fmap/densenet/' # for get_feature
acc_path = '/data/fjq/iccnn/basic_fmap/densenet/acc/'
dataset = '%s_densenet_%s_ori' % (LAYERS, DATANAME)
log_path = log_path + dataset + '/'
pretrain_model = log_path + 'model_2000.pth'
BATCHSIZE = 1
LR = 0.00001
EPOCH = 1000
__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']
model_urls = {
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}
class _DenseLayer(nn.Module):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient=MEMORY_EFFICIENT):
super(_DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
self.add_module('relu1', nn.ReLU(inplace=True)),
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1,
bias=False)),
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
self.add_module('relu2', nn.ReLU(inplace=True)),
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=0, #new padding
bias=False)),
self.drop_rate = float(drop_rate)
self.memory_efficient = memory_efficient
self.pad2d_1 = newPad2d(1) #nn.ReplicationPad2d(1)#new padding
def bn_function(self, inputs):
# type: (List[Tensor]) -> Tensor
concated_features = torch.cat(inputs, 1)
bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features))) # noqa: T484
return bottleneck_output
# todo: rewrite when torchscript supports any
def any_requires_grad(self, input):
# type: (List[Tensor]) -> bool
for tensor in input:
if tensor.requires_grad:
return True
return False
@torch.jit.unused # noqa: T484
def call_checkpoint_bottleneck(self, input):
# type: (List[Tensor]) -> Tensor
def closure(*inputs):
return self.bn_function(inputs)
return cp.checkpoint(closure, *input)
@torch.jit._overload_method # noqa: F811
def forward(self, input):
# type: (List[Tensor]) -> (Tensor)
pass
@torch.jit._overload_method # noqa: F811
def forward(self, input):
# type: (Tensor) -> (Tensor)
pass
# torchscript does not yet support *args, so we overload method
# allowing it to take either a List[Tensor] or single Tensor
def forward(self, input): # noqa: F811
if isinstance(input, Tensor):
prev_features = [input]
else:
prev_features = input
if self.memory_efficient and self.any_requires_grad(prev_features):
if torch.jit.is_scripting():
raise Exception("Memory Efficient not supported in JIT")
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
else:
bottleneck_output = self.bn_function(prev_features)
new_features = self.conv2(self.pad2d_1(self.relu2(self.norm2(bottleneck_output))))#new padding
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate,
training=self.training)
return new_features
class _DenseBlock(nn.ModuleDict):
_version = 2
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, memory_efficient=MEMORY_EFFICIENT):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(
num_input_features + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
drop_rate=drop_rate,
memory_efficient=memory_efficient,
)
self.add_module('denselayer%d' % (i + 1), layer)
def forward(self, init_features):
features = [init_features]
for name, layer in self.items():
new_features = layer(features)
features.append(new_features)
return torch.cat(features, 1)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm2d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
class DenseNet(nn.Module):
r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
num_init_features=64, bn_size=4, drop_rate=0, num_classes=2, memory_efficient=MEMORY_EFFICIENT):
super(DenseNet, self).__init__()
# First convolution
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2,
padding=0, bias=False)), # new padding
('norm0', nn.BatchNorm2d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=0)), # new padding
]))
self.pad2d_1 = newPad2d(1)#nn.ZeroPad2d(1) #new padding
self.pad2d_3 = newPad2d(3)#nn.ZeroPad2d(3) #new padding
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(
num_layers=num_layers,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
drop_rate=drop_rate,
memory_efficient=memory_efficient
)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features,
num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
# Official init from torch repo.
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
for i, layer in enumerate(self.features):
if i == 0:
x = self.pad2d_3(x) # new padding
if i == 3:
x = self.pad2d_1(x) # new padding
x = layer(x)
out = F.relu(x, inplace=True)
f_map = out.detach() # get_feature
out = F.adaptive_avg_pool2d(out, (1, 1))
out = torch.flatten(out, 1)
out = self.classifier(out)
return out, f_map #out
def _load_state_dict(model, model_url, progress):
# '.'s are no longer allowed in module names, but previous _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = load_state_dict_from_url(model_url, progress=progress)
for key in list(state_dict.keys()):
# print(key)
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
pretrained_dict = {k: v for k, v in state_dict.items() if 'classifier' not in k}
model_dict = model.state_dict()
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict, strict=False)
def _densenet(arch, growth_rate, block_config, num_init_features, num_class, pretrained, progress,
**kwargs):
model = DenseNet(growth_rate, block_config, num_init_features, num_classes=num_class, **kwargs)
if pretrained:
_load_state_dict(model, model_urls[arch], progress)
else:
if pretrain_model is not None:
device = torch.device("cuda")
model = nn.DataParallel(model).to(device)
model.load_state_dict(torch.load(pretrain_model))
else:
print('Error: pretrain_model == None')
return model
def densenet121(num_class, pretrained=False, progress=True, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
return _densenet('densenet121', 32, (6, 12, 24, 16), 64, num_class, pretrained, progress,
**kwargs)
def densenet161(num_class, pretrained=False, progress=True, **kwargs):
r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
return _densenet('densenet161', 48, (6, 12, 36, 24), 96, num_class, pretrained, progress,
**kwargs)
def densenet169(num_class, pretrained=False, progress=True, **kwargs):
r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
return _densenet('densenet169', 32, (6, 12, 32, 32), 64, num_class, pretrained, progress,
**kwargs)
def densenet201(num_class, pretrained=False, progress=True, **kwargs):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
return _densenet('densenet201', 32, (6, 12, 48, 32), 64, num_class, pretrained, progress,
**kwargs)
def get_Data(is_train, dataset_name, batch_size):
transform = transforms.Compose([
transforms.RandomResizedCrop((224, 224), scale=(0.5, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
voc_helen = ['bird', 'cat', 'cow', 'dog', 'horse', 'sheep', 'helen', 'voc_multi']
##cub dataset###
label = None if is_train else 0
if not is_train:
batch_size = 1
if dataset_name == 'cub':
trainset = CUB_VOC(cub_file, dataset_name, 'ori', train=True, transform=transform, is_frac=label)
testset = CUB_VOC(cub_file, dataset_name, 'ori', train=False, transform=val_transform, is_frac=label)
###cropped voc dataset###
elif dataset_name in voc_helen:
trainset = CUB_VOC(voc_file, dataset_name, 'ori', train=True, transform=transform, is_frac=label)
testset = CUB_VOC(voc_file, dataset_name, 'ori', train=False, transform=val_transform, is_frac=label)
###celeb dataset###
#elif dataset_name == 'celeb':
# trainset = Celeb(training = True, transform=None)
# testset = Celeb(training = False, transform=None)
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(testset, batch_size=batch_size, shuffle=False)
return train_loader, test_loader
def net_train():
trainset_loader, testset_loader = get_Data(IS_TRAIN, DATANAME, BATCHSIZE)
if os.path.exists(log_path):
shutil.rmtree(log_path);os.makedirs(log_path)
else:
os.makedirs(log_path)
device = torch.device("cuda")
net = None
if LAYERS == '121':
net = densenet121(num_class=NUM_CLASSES, pretrained=True)
if LAYERS == '161':
net = densenet161(num_class=NUM_CLASSES, pretrained=True)
net = nn.DataParallel(net).to(device)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.module.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=200, gamma=0.6)
# Train the model
best_acc = 0.0; save_loss = []; test_loss = []; train_acc = []; test_acc = [];
for epoch in range(EPOCH+1):
scheduler.step()
net.train()
total_loss = 0.0; correct = .0; total = .0;
for batch_step, input_data in tqdm(enumerate(trainset_loader,0),total=len(trainset_loader),smoothing=0.9):
inputs, labels = input_data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
output, _ = net(inputs)
#print(output)
_, predicted = torch.max(output.data, 1)
correct += (predicted == labels).sum()
total += labels.size(0)
loss = criterion(output, labels)
#print(module.features.conv0.weight)
loss.backward()
#if batch_step>0:
# return
#for name, parms in net.named_parameters():
# print('after* name:', name, 'grad_value:',parms.grad)
optimizer.step()
total_loss += loss.item()
total_loss = float(total_loss) / (batch_step+1)
correct = float(correct) / total
testacc, testloss = test(net, testset_loader)
save_loss.append(total_loss); train_acc.append(correct);
test_loss.append(testloss); test_acc.append(testacc);
np.savez(log_path+'loss.npz', train_loss=np.array(save_loss), test_loss=np.array(test_loss),\
train_acc=np.array(train_acc), test_acc=np.array(test_acc))
print('Epoch', epoch, 'train loss: %.4f' % total_loss, 'train accuracy:%.4f' % correct, \
'test loss: %.4f' % testloss, 'test accuracy:%.4f' % testacc)
if epoch % 50 == 0:
torch.save(net.state_dict(), log_path+'model_%.3d.pth' % epoch)
if epoch % 1 == 0:
if testacc > best_acc:
best_acc = testacc
torch.save(net.state_dict(), log_path+'model_%.3d_%.4f.pth' % (epoch, best_acc))
print('Finished Training')
return net
def get_feature():
print('pretrain_model:', pretrain_model)
_, testset_test = get_Data(True, DATANAME, BATCHSIZE)
_, testset_feature = get_Data(False, DATANAME, BATCHSIZE)
device = torch.device("cuda")
net = None
if LAYERS == '121':
net = densenet121(num_class=NUM_CLASSES, pretrained=False)
if LAYERS == '161':
net = densenet161(num_class=NUM_CLASSES, pretrained=False)
net = nn.DataParallel(net).to(device)
# Test the model
acc, _ = test(net, testset_test)
f = open(acc_path+dataset+'_test.txt', 'w+')
f.write('%s\n' % dataset)
f.write('acc:%f\n' % acc)
print('test acc:', acc)
all_feature = []
testset = testset_test if DATANAME == 'voc_multi' else testset_feature
for batch_step, input_data in tqdm(enumerate(testset,0),total=len(testset),smoothing=0.9):
inputs, labels = input_data
inputs, labels = inputs.to(device), labels.to(device)
net.eval()
output, f_map = net(inputs)
all_feature.append(f_map.cpu().numpy())
all_feature = np.concatenate(all_feature,axis=0)
f.write('sample num:%d' % (all_feature.shape[0]))
f.close()
print(all_feature.shape)
np.savez_compressed(save_path+LAYERS+'_densenet_'+DATANAME+'_ori.npz', f_map=all_feature[...])
print('Finished Operation!')
return net
def test(net, testdata):
criterion = nn.CrossEntropyLoss()
correct, total = .0, .0
total_loss = .0
for batch_step, input_data in tqdm(enumerate(testdata,0),total=len(testdata),smoothing=0.9):
inputs, labels = input_data
inputs, labels = inputs.cuda(), labels.cuda()
net.eval()
outputs, _ = net(inputs)
loss = criterion(outputs, labels)
total_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
total_loss = float(total_loss)/(batch_step+1)
return float(correct)/total, total_loss
def densenet_ori_train():
if IS_TRAIN == 1:
net = net_train()
elif IS_TRAIN == 0:
net = get_feature()
|
ada-shen/icCNN
|
densenet_ori_train.py
|
densenet_ori_train.py
|
py
| 20,335 |
python
|
en
|
code
| 18 |
github-code
|
6
|
73789760509
|
def leiaint(msg):
while True:
try:
i = int(input(msg))
except KeyboardInterrupt:
print('entrada de dados interrompida pelo usuario.')
break
except (ValueError, TypeError):
print(f'\033[0;31m ERRO! digite um numero valido \033[m')
continue
else:
return i
def leiafloat(msg):
while True:
try:
f = float(input(msg))
except:
print(f'\033[0;31m ERRO! digite um numero valido \033[m')
else:
return f
i = leiaint('digite um numero inteiro: ')
f = leiafloat('digite um numero real: ')
print(f'os valores digitados foram {i} e {f}')
|
Kaue-Marin/Curso-Python
|
pacote dowlond/curso python/exercicio113.py
|
exercicio113.py
|
py
| 697 |
python
|
pt
|
code
| 0 |
github-code
|
6
|
10422172533
|
from __future__ import annotations
from PySide6.QtCore import QMargins, QPoint, QRect, QSize, Qt
from PySide6.QtWidgets import QLayout, QSizePolicy, QWidgetItem
class FlowLayout(QLayout):
def __init__(self, parent=None, center=False):
super().__init__(parent)
if parent is not None:
self.setContentsMargins(QMargins(0, 0, 0, 0))
self._item_list: list[QWidgetItem] = []
self.center = center
def __del__(self):
item = self.takeAt(0)
while item:
item = self.takeAt(0)
def addItem(self, item):
self._item_list.append(item)
def count(self):
return len(self._item_list)
def itemAt(self, index):
if 0 <= index < len(self._item_list):
return self._item_list[index]
return None
def takeAt(self, index):
if 0 <= index < len(self._item_list):
return self._item_list.pop(index)
return None
def expandingDirections(self):
return Qt.Orientation(0)
def hasHeightForWidth(self):
return True
def heightForWidth(self, width):
height = self._do_layout(QRect(0, 0, width, 0), True)
return height
def setGeometry(self, rect):
super().setGeometry(rect)
self._do_layout(rect, False)
def sizeHint(self):
return self.minimumSize()
def minimumSize(self):
size = QSize()
for item in self._item_list:
size = size.expandedTo(item.minimumSize())
size += QSize(2 * self.contentsMargins().top(), 2 * self.contentsMargins().top())
return size
def _do_layout(self, rect, test_only):
x = rect.x()
y = rect.y()
line_height = 0
spacing = self.spacing()
rows: list[tuple[list[QWidgetItem], int, int]] = []
row = []
for item in self._item_list:
style = item.widget().style()
layout_spacing_x = style.layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Horizontal)
layout_spacing_y = style.layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Vertical)
space_x = (
spacing + layout_spacing_x
) * item.widget().isVisible() # If an item isn't visible, it does not have any influence on the next
space_y = spacing + layout_spacing_y
next_x = x + item.sizeHint().width() + space_x
if next_x - space_x > rect.right() and line_height > 0:
rows.append(
(row, rect.right() - x - space_x, line_height)
) # We need to remove the unnecessary extra padding from all rows, not just the last
row = []
x = rect.x()
y = y + line_height + space_y
next_x = x + item.sizeHint().width() + space_x
line_height = 0
if not test_only:
item.setGeometry(QRect(QPoint(x, y), item.sizeHint()))
x = next_x
line_height = max(line_height, item.sizeHint().height())
row.append(item)
rows.append((row, rect.right() - x - space_x, line_height))
if not test_only and self.center:
for items, x_margin, y_size in rows:
x_margin /= 2
for item in items:
r = item.geometry()
new_y = r.y()
if r.height() < y_size:
new_y += (y_size - r.height()) / 2
item.setGeometry(QRect(QPoint(r.x() + x_margin, new_y), item.sizeHint()))
return y + line_height - rect.y()
|
randovania/randovania
|
randovania/gui/lib/flow_layout.py
|
flow_layout.py
|
py
| 3,663 |
python
|
en
|
code
| 165 |
github-code
|
6
|
73008021309
|
#Lesson / Exercise 23 my code, sort the customer total amount
from pyspark import SparkConf, SparkContext #boilerplate
conf = SparkConf().setMaster("local").setAppName("TotalAmountOrdered")
sc = SparkContext(conf = conf)
def parseLine(line):
fields = line.split(',')
return (int(fields[0]), float(fields[2]))
#return (float(fields[2]), int(fields[1])) # ALTERNATE OPTION I think
lines = sc.textFile("file:///C:/Users/cenzo/SparkCourse/CSV/customer-orders.csv") #read from correct file
rdd = lines.map(parseLine)
totalAmount = rdd.reduceByKey(lambda x, y: x+y)
totalSortedAmount = totalAmount.map(lambda x: (x[1], x[0])).sortByKey()
#to sort this, we want to sort it by total spent so we can see who is biggest spender. TO do this we need to swap the key and values so the amount spent becomes the key
results = totalSortedAmount.collect()
for result in results:
print(str(result[1]) + "\t\t" + str(result[0])) #need to change how output is printed, we do not want the total amount to be pritned first. We also have to cast the result to a string
|
CenzOh/Python_Spark
|
MyCode/customerTotalAmountSorted.py
|
customerTotalAmountSorted.py
|
py
| 1,078 |
python
|
en
|
code
| 0 |
github-code
|
6
|
29954994164
|
from __future__ import print_function
import re
import bitarray
def filterFeatures(sr_obj, feature_types=None, qualifier_regexs=None):
"""Filter a `SeqRecord` object's `SeqFeature` list by type and qualifiers.
Args:
sr_obj (``SeqRecord``) : instantiated Biopython
``SeqRecord`` object
feature_types (list, optional) : list of feature types
(e.g., ['gene', 'CDS'])
qualifier_regexs (dict, optional) : dict of <field name>:
<value regex> entries
Returns:
Filtered list of `SeqRecord` objects
Raises:
None
Examples:
Return a list of all ``SeqFeature`` objects from ``gb_rec``
that are of type 'mRNA' or 'CDS'::
>>>filterFeatures(gb_rec, ['mRNA', 'CDS'])
Return a list of all ``SeqFeature`` objects from ``gb_rec``
that are of type 'mRNA' or 'CDS' and that additionally have the
qualifier field 'gene' with a value that matches the regular expression
'ubc.*'::
>>>filterFeatures(gb_rec, ['gene', 'CDS'], {'gene': 'ubc.*'})
The latter example would match the following genbank records::
CDS join(54..567,789..1254)
/gene="ubc42"
/product="ubiquitin conjugating enzyme"
/function="cell division control"
CDS join(54..567,789..1254)
/gene="ubc51"
/product="ubiquitin conjugating enzyme"
/function="cell division control"
"""
qualifier_regexs = qualifier_regexs or {}
features = sr_obj.features
def _featureFilter(feature):
if feature_types is not None and feature.type not in feature_types:
return False
for feat_key, feat_value_re in qualifier_regexs.items():
q_values = feature.qualifiers.get(feat_key, None)
if q_values is None:
return False
for v in q_values:
if re.search(feat_value_re, v) is None:
return False
return True
return filter(_featureFilter, features)
def findBorders(sr_obj, feature_types=None, qualifier_regexs=None,
strand_specific=False):
"""Filter a ``SeqFeature`` list and find the border indices of its members.
See :func:`filterFeatures` for explanation of filtering functionality.
Args:
sr_obj (``SeqRecord``): instantiated Biopython ``SeqRecord`` object
feature_types (list, optional) : list of feature types (e.g.,
['gene', 'CDS'])
qualifier_regexs (list, optional) : dict of <field name>:
<value regex> entries
strand_specific (list, optional) : boolean determining whether
separate lists should be returned
for each strand (fwd / rev)
Returns:
List(s) of (<idx>, <1 if rising edge, 0 if falling edge>) tuples.
Raises:
None
"""
filtered_features = filterFeatures(sr_obj, feature_types, qualifier_regexs)
if strand_specific:
fwd_feat_list = []
rev_feat_list = []
else:
feat_list = []
for feat in filtered_features:
if strand_specific:
if feat.location.strand == -1:
feat_list = rev_feat_list
else:
feat_list = fwd_feat_list
feat_list.append((feat.location.start, 1))
feat_list.append((feat.location.end, 0))
if strand_specific:
return fwd_feat_list, rev_feat_list
else:
return feat_list
def buildBorderLUT(sr_obj, feature_types=None, qualifier_regexs=None,
strand_specific=False):
"""Filter a ``SeqRecord``'s features and build a binary LUT of border edges.
See :func:`filterFeatures` for explanation of filtering functionality.
Args:
sr_obj (``SeqRecord``): instantiated Biopython ``SeqRecord`` object
feature_types (list, optional) : list of feature types (e.g.,
['gene', 'CDS'])
qualifier_regexs (list, optional) : dict of <field name>:
<value regex> entries
strand_specific (list, optional) : boolean determining whether
separate lists should be returned
for each strand (fwd / rev)
Returns:
Binary bitarray(s) (``bitarray.bitarray``) indicating the indices of
feature borders (border indices have a value of 1). Strand-specific
bitarrays are returned if ``strand_specific`` is ``True``.
Raises:
None
"""
if strand_specific:
fwd_feat_list, rev_feat_list = findBorders(sr_obj, feature_types,
qualifier_regexs,
strand_specific)
fwd_lut = bitarray.bitarray(len(sr_obj.seq))
fwd_lut.setall(0)
rev_lut = bitarray.bitarray(len(sr_obj.seq))
rev_lut.setall(0)
for rec in fwd_feat_list:
fwd_lut[rec[0]] = 1
for rec in rev_feat_list:
rev_lut[rec[0]] = 1
return fwd_lut, rev_lut
else:
feat_list = findBorders(sr_obj, feature_types, qualifier_regexs,
strand_specific)
feat_lut = bitarray.bitarray(len(sr_obj.seq))
feat_lut.setall(0)
for rec in feat_list:
try:
feat_lut[rec[0]] = 1
except IndexError:
print('IndexError while generating border array {}'.format(
rec[0]))
return feat_lut
def findAggregateBoundaries(sr_obj, feature_types=None, qualifier_regexs=None):
"""Determine the outermost border indices of a group of filtered features.
See :func:`filterFeatures` for explanation of filtering functionality.
Args:
sr_obj (``SeqRecord``): instantiated Biopython ``SeqRecord`` object
feature_types (list, optional) : list of feature types (e.g.,
['gene', 'CDS'])
qualifier_regexs (list, optional) : dict of <field name>:
<value regex> entries
Returns:
Tuple of (<min index>, <max index>) of the filtered features
Raises:
None
For example, let's say your genbank file has the following features:
synth_seg 1001..2000
/label="seg17_000"
synth_seg 2001..3000
/label="seg17_001"
synth_seg 3001..4000
/label="seg17_002"
synth_seg 4001..5000
/label="seg18_000"
Then the following call will produce this output::
>>>findAggregateBoundaries(sr, ['synth_seg'], {'label': r'seg17.*'})
(1001, 4000)
"""
filtered_features = list(filterFeatures(sr_obj, feature_types,
qualifier_regexs))
if len(filtered_features) == 0:
return None, None
min_idx = len(sr_obj.seq) + 1
max_idx = -1
for ff in filtered_features:
min_idx = min(int(ff.location.start), min_idx)
max_idx = max(int(ff.location.end), max_idx)
return min_idx, max_idx
|
Wyss/mascpcr
|
mascpcr/genbankfeatures.py
|
genbankfeatures.py
|
py
| 7,725 |
python
|
en
|
code
| 2 |
github-code
|
6
|
41439897989
|
from django.test import TestCase
from django.urls.base import reverse
from .models import Provinces
# Create your tests here.
class ProvincesModelTests(TestCase):
def test_get_one_province(self):
"""if not province exist with passed id, return appropiate message"""
province = Provinces.objects.create(id=1, name='Santa Fe', population=23142323, density=5.8, surface=3252352)
response = self.client.get(reverse('provinciasCrud:get_one_province', args=[province.id]))
print(response)
self.assertEqual(response.status_code, 200)
self.assertContains(response, 'Santa Fe')
# self.assertQuerysetEqual(response.context['province'], {})
def test_get_all_provinces(self):
"""if provinces array is empty, return appropiate message"""
province = Provinces.objects.create(id=1, name='Santa Fe', population=23142323, density=5.8, surface=3252352)
response = self.client.get(reverse('provinciasCrud:get_provinces'))
print(response)
self.assertEqual(response.status_code, 200)
self.assertContains(response, 'Santa Fe')
|
matiasfeliu92/crud_provincias
|
server/provinciasCrud/tests.py
|
tests.py
|
py
| 1,119 |
python
|
en
|
code
| 1 |
github-code
|
6
|
24199771377
|
# -*- coding: utf-8 -*-
"""
Created on Thu May 30 16:32:39 2019
@author: Administrator
"""
class Solution:
def groupAnagrams(self, strs: List[str]) -> List[List[str]]:
d = {}
for i in strs:
key = tuple(sorted(i))
if key not in d.keys():
d[key] = [i]
else:
d[key].append(i)
return list(d.values())
|
AiZhanghan/Leetcode
|
code/49. Group Anagrams.py
|
49. Group Anagrams.py
|
py
| 403 |
python
|
en
|
code
| 0 |
github-code
|
6
|
42126550080
|
class Student:
def __init__(self, name, age):
self.name = name
self.age = age
def display(self):
print("Name:", self.name, " and age:", self.age)
class laptop:
def __init__(self, brand, ram):
self.brand = brand
self.ram = ram
def display(self):
print("Laptop brand:", self.brand, " and Ram:", self.ram)
s1 = Student('arun', 26)
s2 = Student('navin', 21)
s1.display()
s2.display()
lap1 = s1.laptop("Sony", 8)
lap2 = s2.laptop("Mac", 16)
lap1.display()
lap2.display()
|
Robinrrr10/python
|
src/innerClass.py
|
innerClass.py
|
py
| 597 |
python
|
en
|
code
| 0 |
github-code
|
6
|
34221019372
|
"""
UP42 authentication mechanism and base requests functionality
"""
import json
from pathlib import Path
from typing import Dict, List, Optional, Union
import requests
import requests.exceptions
from tenacity import (
Retrying,
wait_fixed,
wait_random_exponential,
stop_after_attempt,
retry_if_exception,
retry_if_exception_type,
retry,
)
from up42.utils import get_logger
logger = get_logger(__name__)
class retry_if_429_error(retry_if_exception):
"""
Adapted from https://github.com/alexwlchan/handling-http-429-with-tenacity
Retry strategy that retries if the exception is an ``HTTPError`` with
a 429 status code.
"""
def __init__(self):
def is_http_429_error(exception):
return (
isinstance(exception, requests.exceptions.HTTPError)
and exception.response.status_code == 429
)
super().__init__(predicate=is_http_429_error)
class Auth:
def __init__(
self,
cfg_file: Union[str, Path] = None,
project_id: str = None,
project_api_key: str = None,
**kwargs,
):
"""
The Auth class handles the authentication with UP42.
Info:
Authentication is possible via the credentials of a specific project (project_id &
project_api_key). To get your **project id** and **project api key**, follow
the instructions in the docs authentication chapter.
Args:
cfg_file: File path to the cfg.json with {project_id: "...", project_api_key: "..."}.
project_id: The unique identifier of the project.
project_api_key: The project-specific API key.
"""
self.cfg_file = cfg_file
self.project_id = project_id
self.project_api_key = project_api_key
self.workspace_id: Optional[str] = None
try:
self.env: str = kwargs["env"]
except KeyError:
self.env = "com"
try:
self.authenticate: bool = kwargs["authenticate"]
except KeyError:
self.authenticate = True
try:
self.retry: bool = kwargs["retry"]
except KeyError:
self.retry = True
try:
self.get_info: bool = kwargs["get_info"]
except KeyError:
self.get_info = True
if self.authenticate:
self._find_credentials()
self._get_token()
self._get_workspace()
logger.info("Authentication with UP42 successful!")
def __repr__(self):
return f"UP42ProjectAuth(project_id={self.project_id}, env={self.env})"
def _find_credentials(self) -> None:
"""
Sources the project credentials from a provided config file, error handling
if no credentials are provided in arguments or config file.
"""
if self.project_id is None or self.project_api_key is None:
if self.cfg_file is None:
raise ValueError(
"Provide project_id and project_api_key via arguments or config file!"
)
# Source credentials from config file.
try:
with open(self.cfg_file) as src:
config = json.load(src)
try:
self.project_id = config["project_id"]
self.project_api_key = config["project_api_key"]
except KeyError as e:
raise ValueError(
"Provided config file does not contain project_id and "
"project_api_key!"
) from e
logger.info("Got credentials from config file.")
except FileNotFoundError as e:
raise ValueError("Selected config file does not exist!") from e
elif all(
v is not None
for v in [self.cfg_file, self.project_id, self.project_api_key]
):
logger.info(
"Credentials are provided via arguments and config file, "
"now using the argument credentials."
)
def _endpoint(self) -> str:
"""Gets the endpoint."""
return f"https://api.up42.{self.env}"
# pylint: disable=assignment-from-no-return
def _get_token(self):
try:
self._get_token_project()
except requests.exceptions.HTTPError as err:
raise ValueError(
"Authentication was not successful, check the provided project credentials."
) from err
def _get_token_project(self) -> None:
"""Project specific authentication via project id and project api key."""
url = (
f"https://{self.project_id}:{self.project_api_key}@api.up42.{self.env}"
f"/oauth/token"
)
payload = "grant_type=client_credentials"
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"cache-control": "no-cache",
}
token_response = requests.request("POST", url, data=payload, headers=headers)
token_response.raise_for_status()
token = json.loads(token_response.text)
# pylint: disable=attribute-defined-outside-init
self.token = token["data"]["accessToken"]
def _get_workspace(self) -> None:
"""Get workspace id belonging to authenticated project."""
url = f"https://api.up42.{self.env}/projects/{self.project_id}"
resp = self._request("GET", url)
self.workspace_id = resp["data"]["workspaceId"] # type: ignore
@staticmethod
def _generate_headers(token: str) -> Dict[str, str]:
version = (
Path(__file__)
.resolve()
.parent.joinpath("_version.txt")
.read_text(encoding="utf-8")
)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {token}",
"cache-control": "no-cache",
"X-UP42-info": f"python/{version}",
}
return headers
# pylint: disable=dangerous-default-value
@retry(
retry=retry_if_429_error(),
wait=wait_random_exponential(multiplier=0.5, max=180),
reraise=True,
)
def _request_helper(
self, request_type: str, url: str, data: Dict = {}, querystring: Dict = {}
) -> requests.Response:
"""
Helper function for the request, running the actual request with the correct headers.
Args:
request_type: 'GET', 'POST', 'PUT', 'PATCH', 'DELETE'
url: The requests url.
data: The payload, e.g. dictionary with job parameters etc.
querystring: The querystring.
Returns:
The request response.
"""
headers = self._generate_headers(self.token)
if querystring == {}:
response = requests.request(
method=request_type, url=url, data=json.dumps(data), headers=headers
)
else:
response = requests.request(
method=request_type,
url=url,
data=json.dumps(data),
headers=headers,
params=querystring,
)
logger.debug(response)
logger.debug(data)
response.raise_for_status()
return response
def _request(
self,
request_type: str,
url: str,
data: Union[Dict, List] = {},
querystring: Dict = {},
return_text: bool = True,
) -> Union[str, Dict, requests.Response]:
"""
Handles retrying the request and automatically gets a new token if the old
is invalid.
Retry is enabled by default, can be set to False as kwargs in Api().
Args:
request_type: 'GET', 'POST', 'PUT', 'PATCH', 'DELETE'
url: The url to request.
data: The payload, e.g. dictionary with job parameters etc.
querystring: The querystring.
return_text: If true returns response text/json, false returns response.
retry: If False, after 5 minutes and invalid token will return 401
errors.
Returns:
The API response.
"""
try:
if self.retry:
retryer = Retrying(
stop=stop_after_attempt(1), # TODO: Find optimal retry solution
wait=wait_fixed(0),
retry=(
retry_if_exception_type(requests.exceptions.HTTPError)
| retry_if_exception_type(requests.exceptions.ConnectionError)
),
after=self._get_token(),
reraise=True,
)
response = retryer(
self._request_helper, request_type, url, data, querystring
)
else:
response = self._request_helper(request_type, url, data, querystring) # type: ignore
except requests.exceptions.RequestException as err: # Base error class
err_message = json.loads(err.response.text)["error"]
if "code" in err_message:
err_message = f"{err_message['code']} Error - {err_message['message']}!"
logger.error(err_message)
raise requests.exceptions.RequestException(err_message) from err
# Handle response text.
if return_text:
try:
response_text = json.loads(response.text)
except json.JSONDecodeError: # e.g. JobTask logs are str format.
response_text = response.text
# Handle api error messages here before handling it in every single function.
# pylint: disable=no-else-raise
try:
if response_text["error"] is not None and response_text["data"] is None:
raise ValueError(response_text["error"])
else:
return response_text
except (
KeyError,
TypeError,
): # Catalog search, JobTask logs etc. does not have the usual {"data":"",
# "error":""} format.
return response_text
else: # E.g. for DELETE
return response
|
stasSajinDD/up42-py
|
up42/auth.py
|
auth.py
|
py
| 10,421 |
python
|
en
|
code
| null |
github-code
|
6
|
5243707290
|
#!/usr/bin/env python3
import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
NUMBER_OF_WORDS = 50
file_path = sys.argv[1]
lines = pd.read_table(file_path, header=None, delim_whitespace=True)
lines = lines.sample(NUMBER_OF_WORDS).reset_index(drop=True)
words = lines.iloc[:, 0]
vectors = lines.iloc[:, 1:]
pca = PCA(n_components=2)
vecs_transformed = pca.fit_transform(vectors)
plt.figure(figsize=(16, 16))
for i in range(len(words)):
(x, y) = [float(val) for val in vecs_transformed[i]]
plt.scatter(x, y)
plt.annotate(words[i],
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.show()
plt.savefig('evaluation.png')
|
data-science-and-big-data-analytics/data-science-frameworks
|
FastText/evaluation.py
|
evaluation.py
|
py
| 819 |
python
|
en
|
code
| 2 |
github-code
|
6
|
32169695426
|
import requests
from .models import Item
import datetime
from django.utils.timezone import make_aware
def fetch_items():
conn = requests.get('https://hacker-news.firebaseio.com/v0/newstories.json?print=pretty')
res = sorted(conn.json())
return list(reversed(res))[:5] # top 5 stories
def fetch_item_by_id(item):
int_item = int(item)
conn = requests.get(f'https://hacker-news.firebaseio.com/v0/item/{int_item}.json?print=pretty')
res = conn.json()
if res['type'] == 'job':
print(res)
return res
def add_kid(kid):
comment = fetch_item_by_id(kid)
parent = Item.objects.get(id=comment['parent'])
if 'deleted'in comment or 'dead' in comment:
return
obj = get_obj(comment)
Item.objects.create(**obj, parent=parent)
return obj
def get_obj(detail):
type = detail.get("type")
id = str(detail.get("id"))
by = detail.get("by")
timestamp = datetime.datetime.fromtimestamp(detail.get("time"))
time = make_aware(timestamp)
url = detail.get("url")
title = detail.get("title")
text = detail.get("text")
descendants = detail.get("descendants", 0)
score = detail.get("score", 0)
obj = {
"type": type,
"id": id,
"by": by,
"time": time,
"url": url,
"title": title,
"text": text,
"score": score,
"fetched": True,
"descendants": descendants
}
return obj
def add_to_db():
items = fetch_items()
for single in items:
details = fetch_item_by_id(single)
if details['type'] == 'comment' or 'deleted' in details or 'dead' in details:
return
if details['type'] == 'job':
print(details)
if not Item.objects.filter(id=details['id']).exists():
item_obj = get_obj(details)
Item.objects.create(**item_obj)
if 'kids' in details:
kids = details['kids']
for kid in kids:
add_kid(kid)
|
Alisjj/HackerNews
|
newsList/fetcher.py
|
fetcher.py
|
py
| 2,008 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35241998177
|
from flask import Flask
#from flask_cors import CORS, cross_origin
from pymongo import MongoClient
connection = MongoClient("mongodb://localhost:27017/")
def create_mongodatabase():
try:
dbnames = connection.database_names()
if 'cloud_native' not in dbnames:
db = connection.cloud_native.users
db_tweets = connection.cloud_native.tweets
db_api = connection.cloud_native.apirelease
db.insert({
"email": "[email protected]",
"id": 33,
"name": "Eric stromberg",
"password": "eric@123",
"username": "eric.strom"
})
db_tweets.insert({
"body": "New blog post, Launch your app with the AWS StartupKit! # AWS",
"id": 18,
"timestamp": "2017-03-11T06:39:40Z",
"tweetedby": "eric.strom"
})
db_api.insert({
"buildtime": "2017-01-01 10:00:00",
"links": "/api/v1/users",
"methods": "get, post, put, delete",
"version": "v1"
})
db_api.insert({
"buildtime": "2017-02-11 10:00:00",
"links": "api/v2/tweets",
"methods": "get, post",
"version": "2017-01-10 10:00:00"
})
print("Database Initialize completed!")
else:
print("Database already Initialized!")
except:
print(" Database creation failed!!")
app = Flask(__name__)
#app.config['SERVER_NAME'] = 'enrg_sy:5000'
#app.secret_key = 'F12Zr47j\3yX R~X@H!jmM]Lwf/,?KTq'
#CORS(app)
from flask import jsonify
import json
import sqlite3
from flask import make_response
@app.errorhandler(404)
def resource_not_found(error):
return make_response(jsonify({'error': 'Resource not found1!'}), 404)
@app.route("/performance")
def get_perf_counter():
strCount1 = "<div style=""position:relative;width:100%;height:60%"">" \
"<iframe width=""384"" height=""216""" \
" src=""https://insights-embed.newrelic.com/embedded_widget/y8OoxNBFXRR6yDOsQCIDGPlTkEA6LnJi"" frameborder=""0""" \
" style=""position:absolute;width:100%;height:100%""></iframe></div>" \
"<div id = ""we"" style=""position:relative;width:100%;height:60%"">" \
" <iframe width=""384"" height=""216"" " \
" src=""https://insights-embed.newrelic.com/embedded_widget/35HhAcTJ1y3KgDpbnSDmcI8y_5R01b1n"" frameborder=""0""" \
" style=""position:absolute;width:100%;height:100%""></iframe></div>"
return strCount1
@app.route("/api/v1/info")
def home_index():
api_list = []
db = connection.cloud_native.apirelease
for row in db.find():
api_list.append(str(row))
return jsonify({'api_version': api_list}), 200
@app.route('/api/v1/users', methods=['GET'])
def get_users():
return list_users()
def list_users():
api_list=[]
db = connection.cloud_native.users
for row in db.find():
api_list.append(str(row))
return jsonify({'user_list': api_list})
@app.route('/api/v1/users/<int:user_id>', methods=['GET'])
def get_user(user_id):
return list_user(user_id)
def list_user(user_id):
api_list=[]
db = connection.cloud_native.users
for i in db.find({'id':user_id}):
api_list.append(str(i))
if api_list == []:
abort(404)
return jsonify({'user_details':api_list})
@app.errorhandler(400)
def invalid_request(error):
return make_response(jsonify({'error': 'Bad Request1'}), 400)
@app.errorhandler(401)
def invalid_request1(error):
return make_response(jsonify({'error': 'Bad Request2'}), 400)
@app.errorhandler(405)
def invalid_request2(error):
return make_response(jsonify({'error': 'Bad Request5'}), 400)
@app.errorhandler(403)
def invalid_request3(error):
return make_response(jsonify({'error': 'Bad Request4'}), 400)
from flask import request, abort
import random
@app.route('/api/v1/users', methods=['POST'])
def create_user():
if not request.json or not 'username' in request.json or not \
'email' in request.json or not 'password' in request.json:
abort(400)
user = {
'username': request.json['username'],
'email': request.json['email'],
'name': request.json['name'],
'password': request.json['password'],
'id': random.randint(1, 1000)
}
return jsonify({'status': add_user(user)}), 201
def add_user(new_user):
api_list=[]
print(new_user)
db = connection.cloud_native.users
user = db.find({'$or':[{"username":new_user['username']}, {"email":new_user['email']}]})
for i in user:
print(str(i))
api_list.append(str(i))
if api_list == []:
db.insert(new_user)
return "Succes"
else:
abort(409)
@app.route('/api/v1/users', methods=['DELETE'])
def delete_user():
if not request.json or not 'username' in request.json:
abort(400)
user = request.json['username']
return jsonify({'status': del_user(user)}), 200
def del_user(del_user):
db = connection.cloud_native.users
api_list = []
for i in db.find({'username':del_user}):
api_list.append(str(i))
if api_list == []:
abort(404)
else:
db.remove({'username':del_user})
return "Succes"
@app.route('/api/v1/users/<int:user_id>', methods=['PUT'])
def update_user(user_id):
print(user_id)
user = {}
user['id'] = user_id
key_list = request.json.keys()
for i in key_list:
user[i] = request.json[i]
return jsonify({'status': upd_user(user)}), 200
def upd_user(user):
api_list=[]
print(user)
db_user = connection.cloud_native.users
users = db_user.find_one({"id":user['id']})
for i in users:
api_list.append(str(i))
if api_list == []:
abort(409)
else:
db_user.update({'id':user['id']},{'$set': user},upsert=False)
return "Succes"
@app.route('/api/v2/tweets', methods=['GET'])
def get_tweets():
return list_tweets()
def list_tweets():
api_list = []
db = connection.cloud_native.tweets
for row in db.find():
api_list.append(str(row))
return jsonify({'tweets_list': api_list})
import time
@app.route('/api/v2/tweets', methods=['POST'])
def add_tweets():
user_tweet = {}
if not request.json or not 'username' in request.json or not 'Body' in request.json:
abort(400)
user_tweet['id'] = request.json['id']
user_tweet['tweetedby'] = request.json['username']
user_tweet['body'] = request.json['Body']
user_tweet['created_at'] = time.strftime(
"%Y-%m-%dT%H:%M:%SZ", time.gmtime())
print(user_tweet)
return add_tweet(user_tweet)
def add_tweet(new_tweets):
api_list = []
db_users = connection.cloud_native.users
db_tweets = connection.cloud_native.tweets
print(new_tweets)
users = db_users.find({"username":new_tweets['tweetedby']})
for user in users:
api_list.append(str(user))
if api_list == []:
abort(400)
else:
db_tweets.insert(new_tweets)
return "Succes"
#sdfsd
@app.route('/api/v2/tweets/<int:id>', methods=['GET'])
def get_tweet(id):
return list_tweet(id)
def list_tweet(user_id):
db = connection.cloud_native.tweets
api_list = []
tweets = db.find({'id':user_id})
for tweet in tweets:
api_list.append(str(tweet))
if api_list == []:
abort(404)
else:
return jsonify({"tweet":api_list})
from flask import render_template, make_response, url_for, request, redirect, session
def sumSessionCounter():
try:
session['counter'] += 1
except KeyError:
session['counter'] = 1
@app.route('/')
def main():
sumSessionCounter()
return render_template('main.html')
@app.route('/addname')
def addname():
if request.args.get('yourname'):
session['name'] = request.args.get('yourname')
# And then redirect the user to the main page
return redirect(url_for('main'))
else:
return render_template('addname.html', session=session)
@app.route('/adduser')
def adduser():
return render_template('adduser.htm')
@app.route('/addtweets')
def addtweets():
return render_template('addtweets.htm')
@app.route('/clear')
def clearsession():
# Clear the session
session.clear()
# Redirect the user to the main page
return redirect(url_for('main'))
@app.route('/set_cookie')
def cookie_insertion():
redirect_to_main = redirect('/')
response = app.make_response(redirect_to_main)
response.set_cookie('cookie_name2', value='qwqwqw')
return response
@app.route('/index')
def index():
return render_template('index.html')
if __name__ == "__main__":
create_mongodatabase()
app.run(host='0.0.0.0', port=5000, debug=True)
|
AnatolyS1/Cloud-Native-Python
|
app.py
|
app.py
|
py
| 8,921 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21365592875
|
from __future__ import print_function
import sys
import os
from os.path import exists, dirname
import numpy as np
import pickle
import json
import time
import six
if six.PY3:
import _thread as thread
from queue import Queue
else:
import thread
from Queue import Queue
from collections import OrderedDict
from datetime import datetime
from sklearn.metrics import roc_auc_score
import multiprocessing
import paddle.distributed as dist
from glob import glob
from paddle import fluid
from pahelix.utils.splitters import \
RandomSplitter, IndexSplitter, ScaffoldSplitter, RandomScaffoldSplitter
from pahelix.datasets import *
def get_downstream_task_names(dataset_name, data_path):
"""
Get task names of downstream dataset
"""
if dataset_name == 'bace':
task_name = get_default_bace_task_names()
elif dataset_name == 'bbbp':
task_name = get_default_bbbp_task_names()
elif dataset_name == 'clintox':
task_name = get_default_clintox_task_names()
elif dataset_name == 'hiv':
task_name = get_default_hiv_task_names()
elif dataset_name == 'muv':
task_name = get_default_muv_task_names()
elif dataset_name == 'sider':
task_name = get_default_sider_task_names()
elif dataset_name == 'tox21':
task_name = get_default_tox21_task_names()
elif dataset_name == 'toxcast':
task_name = get_default_toxcast_task_names(data_path)
elif dataset_name == 'esol':
return get_default_esol_task_names()
elif dataset_name == 'freesolv':
return get_default_freesolv_task_names()
elif dataset_name == 'lipophilicity':
return get_default_lipophilicity_task_names()
else:
raise ValueError('%s not supported' % dataset_name)
return task_name
def get_dataset(dataset_name, data_path, task_names):
"""Return dataset according to the ``dataset_name``"""
if dataset_name == 'bace':
dataset = load_bace_dataset(data_path, task_names)
elif dataset_name == 'bbbp':
dataset = load_bbbp_dataset(data_path, task_names)
elif dataset_name == 'clintox':
dataset = load_clintox_dataset(data_path, task_names)
elif dataset_name == 'hiv':
dataset = load_hiv_dataset(data_path, task_names)
elif dataset_name == 'muv':
dataset = load_muv_dataset(data_path, task_names)
elif dataset_name == 'sider':
dataset = load_sider_dataset(data_path, task_names)
elif dataset_name == 'tox21':
dataset = load_tox21_dataset(data_path, task_names)
elif dataset_name == 'toxcast':
dataset = load_toxcast_dataset(data_path, task_names)
elif dataset_name == 'pcba':
dataset = load_pcba_dataset(data_path, task_names)
elif dataset_name == 'esol':
dataset = load_esol_dataset(data_path, task_names)
elif dataset_name == 'freesolv':
dataset = load_freesolv_dataset(data_path, task_names)
elif dataset_name == 'lipophilicity':
dataset = load_lipophilicity_dataset(data_path, task_names)
elif dataset_name == 'qm7':
dataset = load_qm7_dataset(data_path, task_names)
elif dataset_name == 'qm8':
dataset = load_qm8_dataset(data_path, task_names)
elif dataset_name == 'qm9':
dataset = load_qm9_dataset(data_path, task_names)
elif dataset_name == 'qm9_gdb':
dataset = load_qm9_gdb_dataset(data_path, task_names)
else:
raise ValueError('%s not supported' % dataset_name)
return dataset
def get_dataset_stat(dataset_name, data_path, task_names):
"""tbd"""
if dataset_name == 'esol':
return get_esol_stat(data_path, task_names)
elif dataset_name == 'freesolv':
return get_freesolv_stat(data_path, task_names)
elif dataset_name == 'lipophilicity':
return get_lipophilicity_stat(data_path, task_names)
elif dataset_name == 'qm7':
return get_qm7_stat(data_path, task_names)
elif dataset_name == 'qm8':
return get_qm8_stat(data_path, task_names)
elif dataset_name == 'qm9':
return get_qm9_stat(data_path, task_names)
elif dataset_name == 'qm9_gdb':
return get_qm9_gdb_stat(data_path, task_names)
else:
raise ValueError(dataset_name)
def create_splitter(split_type):
"""Return a splitter according to the ``split_type``"""
if split_type == 'random':
splitter = RandomSplitter()
elif split_type == 'index':
splitter = IndexSplitter()
elif split_type == 'scaffold':
splitter = ScaffoldSplitter()
elif split_type == 'random_scaffold':
splitter = RandomScaffoldSplitter()
else:
raise ValueError('%s not supported' % split_type)
return splitter
def calc_rocauc_score(labels, preds, valid):
"""compute ROC-AUC and averaged across tasks"""
if labels.ndim == 1:
labels = labels.reshape(-1, 1)
preds = preds.reshape(-1, 1)
rocauc_list = []
for i in range(labels.shape[1]):
c_valid = valid[:, i].astype("bool")
c_label, c_pred = labels[c_valid, i], preds[c_valid, i]
#AUC is only defined when there is at least one positive data.
if len(np.unique(c_label)) == 2:
rocauc_list.append(roc_auc_score(c_label, c_pred))
print('Valid ratio: %s' % (np.mean(valid)))
print('Task evaluated: %s/%s' % (len(rocauc_list), labels.shape[1]))
if len(rocauc_list) == 0:
raise RuntimeError("No positively labeled data available. Cannot compute ROC-AUC.")
return sum(rocauc_list)/len(rocauc_list)
def calc_rmse(labels, preds):
"""tbd"""
return np.sqrt(np.mean((preds - labels) ** 2))
def calc_mae(labels, preds):
"""tbd"""
return np.mean(np.abs(preds - labels))
def exempt_parameters(src_list, ref_list):
"""Remove element from src_list that is in ref_list"""
res = []
for x in src_list:
flag = True
for y in ref_list:
if x is y:
flag = False
break
if flag:
res.append(x)
return res
def mkdir(path):
path = path.strip()
path = path.rstrip("\\")
isExists = os.path.exists(path)
if not isExists:
os.makedirs(path)
return True
else:
return False
def avg_split_list(listTemp, n):
twoList = [[] for i in range(n)]
for i, e in enumerate(listTemp):
twoList[i % n].append(e)
return twoList
def load_pkls_to_list(args):
fid, pkl_path = args
if (pkl_path.endswith(".pkl")):
pkl = open(pkl_path, "rb")
data = pickle.load(pkl)
if fid % 10 == 0:
print(" ", fid, end=", ")
return data
def get_pickle_files_list(path):
# traversal directory
files_list = []
for root, dirs, files in os.walk(path):
for name in files:
if name.endswith(".pkl"):
files_list.append(os.path.join(root, name))
files_list.sort()
return files_list
"""
Load data, build dataset list with InMemoryDataset, each line is the smile of a molecular
"""
def load_smiles_to_dataset(data_path):
"""tbd"""
files = sorted(glob('%s/*' % data_path))
print("files:", files)
data_list = []
for file in files:
with open(file, 'r') as f:
tmp_data_list = [line.strip() for line in f.readlines()]
data_list.extend(tmp_data_list)
dataset = InMemoryDataset(data_list=data_list)
return dataset
def get_steps_per_epoch(args):
"""tbd"""
# add as argument
if args.dataset == 'zinc':
train_num = int(20000000 * (1 - args.test_ratio))
else:
raise ValueError(args.dataset)
# if args.DEBUG:
# train_num = 100
steps_per_epoch = int(train_num / args.batch_size)
if args.distributed:
steps_per_epoch = int(steps_per_epoch / dist.get_world_size())
return steps_per_epoch
|
liyishuilys/SMPT
|
src/utils.py
|
utils.py
|
py
| 7,884 |
python
|
en
|
code
| 0 |
github-code
|
6
|
31344968208
|
from tkinter import *
import tkinter, threading
from tkinter import messagebox as tmsg
from tkinter import ttk
import random
import datetime
import imageio
import time
from PIL import Image, ImageTk
import smtplib as s
import config
root1 = Tk()
root1.geometry("1208x830")
root1.wm_iconbitmap("Artboard 1.ico")
root1.minsize(1208, 830)
root1.maxsize(1208, 830)
root1.title("RYOCO TOURS© 2021")
video_name = "video1.mp4" #This is your video file path
video = imageio.get_reader(video_name)
def dr1():
time.sleep(2)
root1.destroy()
def login_window():
root2 =Toplevel()
# global dr1, root3
root2.geometry("1202x802")
root2.minsize(1202, 802)
root2.maxsize(1202, 802)
root2.wm_iconbitmap("Artboard 1.ico")
root2.title("RYOCO SIGNIN")
load = Image.open("LOGIN1.png")
render = ImageTk.PhotoImage(load)
jpg = Label(root2, image=render)
jpg.place(x=0, y=0)
#def statusr1():
# for i in range(2):
# statusvar.set("Busy.")
# statusbar.update()
#
# time.sleep(0.2)
# statusvar.set("Busy..")
# statusbar.update()
#
# time.sleep(0.2)
# statusvar.set("Busy...")
# statusbar.update()
#
# time.sleep(0.2)
# statusvar.set("Busy....")
# statusbar.update()
#
# time.sleep(0.2)
# x = 0
# for i in range(101):
# statusvar.set(f"LOADING {x}%")
# statusbar.update()
# time.sleep(0.0000001)
# x += 1
#
# statusvar.set("READY TO USE")
# statusbar.update()
# time.sleep(0.5)
# statusvar.set("PROCEED ENTERING YOUR DATA\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tRYOCO TOURS© 2021")
def register():
with open("ryoco_credentials.txt", 'r') as l:
m = l.read()
l.close()
if reg_name_entry.get() == "" or reg_cnic_entry.get() == '' or reg_contact_entry == "" or reg_email_entry == "" or reg_password_entry == '' or reg_username_entry == '':
tmsg.showerror('ENTRY INVALID', 'PLEASE ENTER COMPLETE DETAILS!', parent=root2)
elif len(reg_cnic_entry.get()) != 13:
tmsg.showerror('ENTRY INVALID', 'CNIC NOT VALID!', parent=root2)
elif len(reg_contact_entry.get()) != 11:
tmsg.showerror('ENTRY INVALID', 'CONTACT NOT VALID!', parent=root2)
# elif reg_username_entry in m:
# tmsg.showerror('ENTRY INVALID', 'USERNAME ALREADY REGISTERED!', parent=root2)
else:
a = tmsg.showinfo("Registeration Successful", "Your information has been registered!", parent=root2)
print(f'''
======================================================================================
First Name: {reg_name_entry.get()}
CNIC No : \t {reg_cnic_entry.get()}
Contact: \t {reg_contact_entry.get()}
E-mail: \t {reg_email_entry.get()}
\nCONFIDENTIAL DETAILS
username:\t {reg_username_entry.get()}'
Password: {reg_password_entry.get()}
''')
with open(f"{reg_username_entry.get()}_Record.txt", "a") as f:
try:
f.write(f'''
=========================================================================
First Name: {reg_name_entry.get()}
CNIC No : \t {reg_cnic_entry.get()}
Contact: \t {reg_contact_entry.get()}
E-mail: \t {reg_email_entry.get()}
\nCONFIDENTIAL DETAILS
username:\t {reg_username_entry.get()}
Password: {reg_password_entry.get()}
''')
f.close()
except:
pass
with open("ryoco_credentials.txt", 'a') as j:
j.write(f"{reg_username_entry.get()}:{reg_password_entry.get()}\n")
j.close()
def login():
with open("ryoco_credentials.txt", 'r') as f:
e = f.read().splitlines()
f.close()
usernames = []
passwords = []
for items in e:
e1 = items.split(":")[0]
e2 = items.split(":")[1]
usernames.insert(1, e1)
passwords.insert(1, e2)
if username_entry.get() not in usernames:
tmsg.showerror("ERROR", "INVALID USERNAME", parent=root2)
elif password_entry.get() not in passwords:
tmsg.showerror("ERROR", "INVALID PASSWORD", parent=root2)
else:
global render1
c = tmsg.showinfo("LOGIN SUCCESSFUL", "LOGIN SUCCESSFUL",parent=root2)
root3 = Toplevel()
# root3.wm_iconbitmap("Artboard 1.ico")
root3.geometry("1202x802")
root3.minsize(1202, 802)
root3.maxsize(1202, 802)
root3.title("RYOCO BOOKING")
def logout():
root3.destroy()
login_window()
def LOCAL():
tmsg.showinfo('DETAILS', '''
\nTOUR-I:\tKumrat Valley (3-Days)
\t\t\tvia-Jahaz Band, Katora Lake
\nTOUR-II:\tFairy Meadows (4-Days)
\t\t\tvia-Naran, Hunza
\nTOUR-III:\tHunza (5-Days)
\t\t\tvia-Swat, Khunjerab''', parent=root3)
def INTERNATIONAL():
tmsg.showinfo('DETAILS', '''
TOUR-I: (14-DAYS)
Russia, Turkey, Dubai (290,000 PKR Per Person)
TOUR-II: (5-DAYS)
Mauritius Tour Package (225,000 PKR Per Person)
TOUR-III: (05-Days)
TURKEY (45,000 PKR Per Person)''', parent=root3)
def dr3():
root3.destroy()
root2.destroy()
load1 = Image.open("booking1.png")
render1 = ImageTk.PhotoImage(load1)
jpg1 = Label(root3, image=render1)
jpg1.place(x=0, y=0)
# def statusr2():
# x = 0
# for i in range(101):
# statusvar.set(f"LOADING {x}%")
# statusbar.update()
# time.sleep(0.000001)
# x += 1
# statusvar.set("READY TO USE")
# statusbar.update()
# time.sleep(0.5)
# statusvar.set(f"\t\t{date_of_booking}\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tRYOCO TOURS© 2021")
def BOOK():
global listbox, login_window
# ============================================ MAILING ===========================================================
with open(f'{reg_username_entry}_trip.txt', "a") as b:
try:
b.write(f'''
CLIENT: {reg_name_entry.get()}
CNIC: {reg_cnic_entry.get()}
USERNAME: {reg_username_entry.get()}
PASSWORD: {reg_password_entry.get()}
TOUR: {tour.get()}
TYPE: {type.get()}
DEPARTURE: {departure.get()}
Time: {time_of_booking}, {date_of_booking}''')
except:
b.write(f'''
TOUR: {tour.get()}
TYPE: {type.get()}
DEPARTURE: {departure.get()}
Time: {time_of_booking}, {date_of_booking}''')
b.close()
with open(f'Ryoco_records.txt', "w") as e:
try:
e.write(f'''
Dear MR/MRS.{reg_name_entry.get()}, CNIC NO. {reg_cnic_entry.get()}
Your username is "{reg_username_entry.get()}" and password is "{reg_password_entry.get()}"
Contact: {reg_contact_entry.get()}
---- Trip Details:
TOUR: {tour.get()}
TYPE: {type.get()}
DEPARTURE: {departure.get()}
Time: {time_of_booking}, {date_of_booking}
YOUR TOUR HAS BEEN BOOKED, OUR ADMINISTRATION WILL CONTACT YOU SHORTLY.
THANK YOU FOR TRUSTING US! :)
Regards,
RYOCO Tours(PVT), Limited.
''')
except:
print(username_entry.get())
e.write(f'''
Dear MR/MRS.{username_entry.get()}
Your username is "{username_entry.get()}" and password is "{password_entry.get()}"
---- Trip Details:
TOUR: {tour.get()}
TYPE: {type.get()}
DEPARTURE: {departure.get()}
Time: {time_of_booking}, {date_of_booking}
YOUR TOUR HAS BEEN BOOKED, OUR ADMINISTRATION WILL CONTACT YOU SHORTLY.
THANK YOU FOR TRUSTING US! :)
Regards,
RYOCO Tours(PVT), Limited.
''')
e.close()
if mail.get() == True:
print('EMAIL SELECTED')
with open('mailingaddress.txt', 'w') as t:
t.write(f'{reg_email_entry.get()}')
t.close()
x = open('mailingaddress.txt', 'r')
mailing = x.read()
x.close()
p = open('Ryoco_records.txt', 'r')
contents = p.read()
p.close()
try:
mailfrom = '[email protected]'
mailto = mailing
subject = 'RYOCO: BOOKING DETIALS'
message = contents
msg = 'Subject: {}\n\n{}'.format(subject, message)
username = config.EMAIL_ADDRESS
password = config.PASSWORD
server = s.SMTP('smtp.gmail.com', 587)
server.ehlo()
server.starttls()
server.login(username, password)
server.sendmail(mailfrom, mailto, msg)
server.quit()
print("Successfully mailed")
except:
print('Failed to mail details')
else:
print('EMAIL NOT SELECTED')
listbox = Text(root3, height=2, width=15, bg='#6F4624', fg="white", font=("Montserrat", 18))
listbox.place(x=700, y=600)
listbox.delete("1.0", END)
if departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-I' and type.get() == 'local':
TotalCost1 = int('11499')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-I' and type.get() == 'local':
TotalCost1 = int('14999')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-I' and type.get() == 'local':
TotalCost1 = int('19999')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
# =======================================TOUR-II=============================================================
elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-II' and type.get() == 'local':
TotalCost1 = int('14999')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-II' and type.get() == 'local':
TotalCost1 = int('15499')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-II' and type.get() == 'local':
TotalCost1 = int('21999')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
# ========================================= TOUR-III =======================================================
elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-III' and type.get() == 'local':
TotalCost1 = int('19499')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-III' and type.get() == 'local':
TotalCost1 = int('19999')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-III' and type.get() == 'local':
TotalCost1 = int('24999')
if class1.get() == 'business':
TotalCost1 += 5000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
# =========================================== INTERNATIONAL ==============================================
# ==========================================TOUR-I========================================================
elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-I' and type.get() == 'international':
TotalCost1 = int('299999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-I' and type.get() == 'international':
TotalCost1 = int('294999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-I' and type.get() == 'international':
TotalCost1 = int('289999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
# ==========================================TOUR-II========================================================
elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-II' and type.get() == 'international':
TotalCost1 = int('234999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-II' and type.get() == 'international':
TotalCost1 = int('229999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-II' and type.get() == 'international':
TotalCost1 = int('224999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
# ==========================================TOUR-III========================================================
elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-III' and type.get() == 'international':
TotalCost1 = int('54999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-III' and type.get() == 'international':
TotalCost1 = int('49999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-III' and type.get() == 'international':
TotalCost1 = int('44999')
if class1.get() == 'business':
TotalCost1 += 50000
Tax = int((TotalCost1 / 100) * 5)
SubTotal1 = int(Tax + TotalCost1)
print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)")
print(f'Total Cost: Rs{SubTotal1}')
listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)')
local_button = Radiobutton(root3, text="LOCAL", font=("Montserrat Black", 18, "italic"), variable=type,
value="local", bg="#FFAA00", fg="#623D28")
local_button.place(x=30, y=580)
international_button = Radiobutton(root3, text="INTERNATIONAL", font=("Montserrat Black", 18, "italic"),
variable=type, value="international", bg="#FFAA00", fg="#623D28")
international_button.place(x=165, y=580)
type_entry = ttk.Combobox(root3, width=50, textvariable=tour)
type_entry['value'] = ('TOUR-I', 'TOUR-II', 'TOUR-III')
type_entry.place(x=65, y=630)
departure_entry = ttk.Combobox(root3, width=30, textvariable=departure)
departure_entry['value'] = ('ISLAMABAD', 'LAHORE', 'KARACHI')
departure_entry.place(x=186, y=665)
economy_button = Radiobutton(root3, text="ECONOMY", font=("Montserrat Black", 18, "italic"), variable=class1,
value="economy", bg="#FFAA00", fg="#623D28")
economy_button.place(x=435, y=602)
business_button = Radiobutton(root3, text="BUSINESS", font=("Montserrat Black", 18, "italic"),
variable=class1,
value="business", bg="#FFAA00", fg="#623D28")
business_button.place(x=435, y=650)
book_button = Button(root3, text="BOOK RIDE", relief=FLAT, bg="#FCD34B", fg="#7F7F7F",
font=("TrashHand", 40),
command=BOOK)
book_button.place(x=985, y=490)
listbox = Text(root3, height=2, width=15, bg='#6F4624', fg="white", font=("Montserrat", 18))
listbox.place(x=700, y=600)
# listbox8.insert(END, time_of_booking)
local_button = Button(root3, text="LOCAL ", width=35, relief=FLAT, bg="#EA7415", fg="#6F4624",
font=("Bahnschrift Light", 25), command=LOCAL)
local_button.place(x=15, y=724)
international_button = Button(root3, text="INTERNATIONAL", width=33, relief=FLAT, bg="#EA7415", fg="#6F4624",
font=("Bahnschrift Light", 25), command=INTERNATIONAL)
international_button.place(x=585, y=724)
mailcheck = Checkbutton(root3, text="EMAIL BOOKING INFO", variable=mail, bg="#FFAA00", font=("Consolas", 13))
mailcheck.place(x=980, y=665)
logout_button = Button(root3, width=15, text="🔙 LOGOUT ", bg="#EA7415", font=("Montserrat SemiBold", 14),relief=FLAT,command=logout)
logout_button.place(x=950, y=36)
# statusvar = StringVar()
# statusvar.set("\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tRYOCO TOURS© 2021")
# statusbar = Label(root3, textvariable=statusvar, bg="#FEEEC6", relief=GROOVE, anchor=W)
# statusbar.pack(side=BOTTOM, fill=X)
# statusr2()
def admin():
root4 = Toplevel()
root4.geometry("1202x802")
root4.minsize(1202, 802)
root4.maxsize(1202, 802)
root4.title("ADMIN CONSOLE")
root2.destroy()
root4.mainloop()
# statusvar = StringVar()
# statusvar.set("READY")
# statusbar = Label(root2, textvariable=statusvar, bg="#FEEEC6", relief=GROOVE, anchor=W)
# statusbar.pack(side=BOTTOM, fill=X)
# ==========================================REGISTERIES========================================
reg_name_entry = StringVar()
reg_cnic_entry = StringVar()
reg_contact_entry = StringVar()
reg_email_entry = StringVar()
reg_username_entry = StringVar()
reg_password_entry = StringVar()
username_entry = StringVar()
password_entry = StringVar()
CNIC = StringVar()
CNIC.set("0")
# ================================================LOGIN=================================================================
username_entryx = Entry(root2, width=23, bg="#F8C43A", textvariable=username_entry, font=("Gill Sans MT", 12))
username_entryx.place(x=985, y=667)
password_entryx = Entry(root2, width=23, bg="#F8C43A", textvariable=password_entry, font=("Gill Sans MT", 12), show="*")
password_entryx.place(x=985, y=720)
# =============================================REGISERATION=============================================================
reg_username_entryx = Entry(root2, width=25, bg="#F8C43A", textvariable=reg_username_entry, font=("Gill Sans MT", 12))
reg_username_entryx.place(x=275, y=669)
reg_password_entryx = Entry(root2, width=25, bg="#F8C43A", textvariable=reg_password_entry, font=("Gill Sans MT", 12))
reg_password_entryx.place(x=275, y=723)
reg_name_entryx = Entry(root2, width=25, bg="#F8C43A", textvariable=reg_name_entry, font=("Gill Sans MT", 12))
reg_name_entryx.place(x=275, y=408)
reg_cnic_entryx = Entry(root2, width=36, bg="#F8C43A", textvariable=reg_cnic_entry, font=("Montserrat SemiBold", 12))
reg_cnic_entryx.place(x=80, y=500)
reg_contact_entryx = Entry(root2, width=18, bg="#F8C43A", textvariable=reg_contact_entry, font=("Montserrat SemiBold", 12))
reg_contact_entryx.place(x=275, y=560)
reg_email_entryx = Entry(root2, width=22, bg="#F8C43A", textvariable = reg_email_entry, font=("Consolas", 12))
reg_email_entryx.place(x=275, y=615)
check = Radiobutton(root2, variable=CNIC, bg="#F7BA11", value="cnic")
check.place(x=75, y=452)
check1 = Radiobutton(root2, variable=CNIC, bg="#F7C235", value="passport")
check1.place(x=235, y=452)
login_button = Button(root2, width=16, text="LOGIN ", bg="#C6633C", font=("Montserrat SemiBold", 12), relief=FLAT,
command=login)
login_button.place(x=880, y=756)
reg_button = Button(root2, width=16, text="REGISTER ", bg="#C6633C", font=("Montserrat SemiBold", 12), relief=FLAT,
command=register)
reg_button.place(x=164, y=756)
# admin_button = Button(root2, width=16, text="ADMIN ", bg="#C6633C", font=("Montserrat SemiBold", 12), relief=FLAT,
# command=admin)
# admin_button.place(x=980, y=40)
# statusr1()
# ================================================ BOOKING TAB =========================================================
mail = IntVar()
local = StringVar()
international = StringVar()
class1 = StringVar()
type = StringVar()
tour = StringVar()
departure = StringVar()
type.set('0')
class1.set('0')
root2.mainloop()
try:
dr1()
except:
pass
def stream(label):
for image in video.iter_data():
frame_image = ImageTk.PhotoImage(Image.fromarray(image))
label.config(image=frame_image)
label.image = frame_image
#====================================== win-0 =====================================
time_of_booking = (time.strftime("%I:%M:%S %p"))
date_of_booking = (time.strftime("%d/%m/%Y"))
def begin():
Button(text="BEGIN EXPLORING!", font=("TrashHand 29"), height=2, width=20, bg="#FFBB56", command=login_window, relief=FLAT).place(x=45, y=680)
my_label = Label(root1)
my_label.pack()
thread = threading.Thread(target=stream, args=(my_label,))
thread.daemon = 1
thread.start()
begin()
root1.mainloop()
|
zuwanish/Tour-Management-System
|
MAIN PROJECT GUI BASED.py
|
MAIN PROJECT GUI BASED.py
|
py
| 30,680 |
python
|
en
|
code
| 0 |
github-code
|
6
|
71344208509
|
import turtle as turtle
# Set up game screen
turtle.title("Pong game")
turtle.setup(400, 300)
turtle.bgcolor("lightblue")
welcome = turtle.Turtle()
welcome.color("black")
welcome.write("Welcome", align='center', font=("Arial", 40, "bold"))
p1 = input("Enter player1 name: ")
p2 = input("Enter player2 name: ")
welcome.clear()
welcome.hideturtle()
border = turtle.Turtle()
border.width(8)
def draw_rec(linecolor, length1=800, length2=600):
border.penup()
border.goto(-400, -300)
border.color(linecolor, "black")
border.pendown()
for i in range(2):
border.forward(length1)
border.left(90)
border.forward(length2)
border.left(90)
border.begin_fill()
draw_rec("orange")
border.end_fill()
border.hideturtle()
# Left Paddle or Paddle 1
paddle1 = turtle.Turtle()
paddle1.shape("square")
paddle1.color("red")
paddle1.shapesize(stretch_wid=5, stretch_len=1)
paddle1.penup()
paddle1.goto(-350, 0)
paddle1.dy = 0
# Right paddle or paddle2
paddle2 = turtle.Turtle()
paddle2.shape("square")
paddle2.color("blue")
paddle2.shapesize(stretch_len=1, stretch_wid=5)
paddle2.penup()
paddle2.goto(350, 0)
paddle2.dy = 0
# Game Rules
game_over = False
winner = None
points = {
"player1": 0,
"player2": 0
}
game_rules = {
"max_points": 3,
"ball_speed": 3
}
# Creating the Ball
ball = turtle.Turtle()
ball.shape("circle")
ball.color("white")
ball.penup()
ball.goto(0, 0)
ball.dx = 0.75
ball.dy = 0.75
ballspeed = 10
# Score display
score_display = turtle.Turtle()
score_display.color("white")
score_display.penup()
score_display.hideturtle()
score_display.goto(0, 260)
score_display.write(f"{p1}: 0 {p2}: 0", align="center",
font=("Arial", 24, "bold"))
# Function to move paddle1 up
def paddle1_up():
paddle1.dy = 10
# Function to move paddle1 down
def paddle1_down():
paddle1.dy = -10
# Function to move paddle2 up
def paddle2_up():
paddle2.dy = 10
# Function to move paddle2 down
def paddle2_down():
paddle2.dy = -10
def paddle1_stop():
paddle1.dy = 0
def paddle2_stop():
paddle2.dy = 0
# Logic for moving the paddles
# Set up keyboard bindings
turtle.listen()
turtle.onkeypress(paddle1_up, "w")
turtle.onkeypress(paddle1_down, "s")
turtle.onkeypress(paddle2_up, "Up")
turtle.onkeypress(paddle2_down, "Down")
turtle.onkeyrelease(paddle1_stop, "w")
turtle.onkeyrelease(paddle1_stop, "s")
turtle.onkeyrelease(paddle2_stop, "Up")
turtle.onkeyrelease(paddle2_stop, "Down")
# Game mathematical logic
# Game loop
while not game_over:
# Move paddles and ball
paddle1.sety(paddle1.ycor() + paddle1.dy)
paddle2.sety(paddle2.ycor() + paddle2.dy)
ball.setx(ball.xcor() + ball.dx * ballspeed)
ball.sety(ball.ycor() + ball.dy * ballspeed)
# Check for game over conditions
if points["player1"] == game_rules["max_points"]:
game_over = True
winner = p1
elif points["player2"] == game_rules["max_points"]:
game_over = True
winner = p2
# Check for ball collision with paddles
if (ball.xcor() > 340 and ball.xcor() < 350) and (ball.ycor() < paddle2.ycor() + 50 and ball.ycor() > paddle2.ycor() - 50):
ball.setx(340)
ball.dx *= -1
elif (ball.xcor() < -340 and ball.xcor() > -350) and (ball.ycor() < paddle1.ycor() + 50 and ball.ycor() > paddle1.ycor() - 50):
ball.setx(-340)
ball.dx *= -1
# Check for ball going off screen
if ball.xcor() > 390:
ball.goto(0, 0)
ball.dx *= -1
points["player1"] += 1
elif ball.xcor() < -390:
ball.goto(0, 0)
ball.dx *= -1
points["player2"] += 1
# Check for ball colliding with top or bottom of screen
if ball.ycor() > 290:
ball.sety(290)
ball.dy *= -1
elif ball.ycor() < -290:
ball.sety(-290)
ball.dy *= -1
print(ball.dy)
# Update score display
score_display.clear()
score_display.write(
f"{p1}: {points['player1']} {p2}: {points['player2']}", align="center", font=("Arial", 24, "bold"))
# Game over screen
game_over_display = turtle.Turtle()
game_over_display.color("white")
game_over_display.penup()
game_over_display.hideturtle()
game_over_display.goto(0, 0)
game_over_display.write("Game Over! {} wins!".format(
winner), align="center", font=("Arial", 36, "normal"))
turtle.done()
# input("Press any key to exit")
|
SoumyadeepBera0230b/Pong_Game.github.io
|
pong.py
|
pong.py
|
py
| 4,418 |
python
|
en
|
code
| 0 |
github-code
|
6
|
26425792111
|
import pandas as pd
import optuna
import numpy as np
from pathlib import Path
import datetime
import lightgbm
import pickle
from functools import partial
import logging
import argparse
from clearml import Task
WORK_DIR = Path(".")
STUDY_PATH = WORK_DIR.joinpath(
f'total_dataset_study_{datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")}'
)
kvant = {7105: 10, 7103: 10, 7115: 5, 7101: 3, 7175: 3, 517: 10}
price_df = pd.DataFrame({'game_code': [7105, 7103, 7115, 7101, 7175],
'price': [100, 100, 75, 50, 75]})
price_df = price_df.set_index('game_code')
utilization_coefficients = {7105: 30,
7103: 35,
7115: 50,
7101: 50,
7175: 50,
517: 30}
utilization_coefficients = {int(game): 100 / (100 - int(utilization_coefficients[game])) for game in
list(utilization_coefficients.keys())}
def mse(real, forecast):
real_array = np.array(real)
forecast_array = np.array(forecast)
return np.mean(np.power((real_array - forecast_array), 2))
def smape(A, F):
return 100 / len(A) * np.sum(2 * np.abs(F - A) / (np.abs(A) + np.abs(F)))
def score(test, predict, active_ops=False, compare_with_real_sales=True):
# return pandas df
df = test.copy()
df['predict'] = predict
df.predict = df.predict.astype(int)
if compare_with_real_sales:
s = sales[sales.game_code.isin(list(test.game_code.unique()))]
s = s[s.ds.isin(list(test.ds.unique()))]
if 'value' in df.columns:
df = df.drop(['value'], 1)
df = df.merge(s[['game_code', 'ds', 'value', 'ops_id']], on=['game_code', 'ds', 'ops_id'], how='left') # outer
df.value = df.value.fillna(0)
df.predict = df.predict.fillna(0)
# df = df.merge(sales)
if active_ops:
f = prod[prod.ds.isin(list(test.ds.values))]
f = f[f.game_code.isin(list(test.game_code.values))]
df = df.merge(f[['ops_id', 'ds', 'base_forecast', 'game_code']], on=['ops_id', 'ds', 'game_code'], how='outer')
df['value'] = df.value.fillna(0)
# business processing (add utilization and round to kvant)
df['distributing'] = df.apply(
lambda x: max(np.ceil(
x.predict * utilization_coefficients[x.game_code] / kvant[x.game_code]
), 1) * kvant[x.game_code]
, 1)
df['plan_transfer'] = df.apply(
lambda x: max(np.ceil(
x.value * utilization_coefficients[x.game_code] / kvant[x.game_code]
), 1) * kvant[x.game_code]
, 1)
if active_ops:
df['distributing'].loc[df.base_forecast.isna()] = 0
df['distributing'].loc[df.predict.isna()] = df.loc[df.predict.isna()].game_code.map(kvant)
df['predict'].loc[df.base_forecast.isna()] = 0
df['predict'].loc[df.predict.isna()] = df.loc[df.predict.isna()].game_code.map(kvant)
score_result = pd.concat(
[
df.groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.value)], columns=['sales'])
),
df.groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.predict)], columns=['origin_predict'])
),
df.groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.distributing)], columns=['predict'])
),
df.groupby(['game_code']).apply(
lambda x: pd.DataFrame([len(x.predict)], columns=['ops_count'])
),
df[df.value < df.predict].groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.predict - x.value)], columns=['origin_over_sales'])
),
df[df.value > df.predict].groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.value - x.predict)], columns=['origin_lost_sales'])
),
df.groupby(['game_code']).apply(
lambda x: pd.DataFrame(
[
sum(
x[x.value > x.distributing].value - x[x.value > x.distributing].distributing
) / sum(x.value) * 100
], columns=['lost_percent'])
),
df.groupby(['game_code']).apply(
lambda x: pd.DataFrame([100 - sum(x.value) / sum(x.distributing) * 100], columns=['util_coef'])
),
df[df.value < df.distributing].groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.distributing - x.value)], columns=['over_sales'])
),
df[df.plan_transfer < df.distributing].groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.distributing - x.plan_transfer)], columns=['over_plan_sales'])
),
df[df.value > df.distributing].groupby(['game_code']).apply(
lambda x: pd.DataFrame([sum(x.value - x.distributing)], columns=['lost_sales'])
)
], 1
)
# score_result = score_result.set_index('game_code')
score_result = score_result.join(price_df, on='game_code', how='left')
score_result['over_plan_losses'] = score_result['lost_sales'] * score_result['price'] + score_result[
'over_plan_sales'] * 5
score_result['lost_sales_losses'] = score_result['lost_sales'] * score_result['price']
score_result['losses'] = score_result['lost_sales'] * score_result['price'] + score_result['over_sales'] * 5
return score_result
def train_model(args, X, Y, params):
"""Train LightGBM model"""
train_params = {key: value for key, value in params.items() if key != "max_bin"}
if args and args.use_gpu:
train_params["device"] = "gpu"
train_params["gpu_device_id"] = 2
train_params["gpu_platform_id"] = 1
train_params["num_threads"] = 10
dataset = lightgbm.Dataset(X, Y, params={"max_bin": params["max_bin"]})
model = lightgbm.train(train_params, dataset)
return model
def scoring(
trial: object,
dss,
args
) -> float:
# Objective function for binary classification.
# Calculates the average precision in holdout
# for the model with picked parameters.
# Args:
# trial (object): a process of evaluating an objective funtion
# x_train (pd.DataFrame, optional): features for training. Defaults to None.
# y_train (pd.DataFrame, optional): labels for training. Defaults to None.
# x_val (pd.DataFrame, optional): features for validation. Defaults to None.
# y_val (pd.DataFrame, optional): labels for validation. Defaults to None.
# Returns:
# float: average precision on test data.
trial_params = {
"seed": 424242,
"verbosity": -1,
"num_gpu": 2,
"n_estimators": trial.suggest_int("n_estimators", 100, 3500, step=100), #
"max_depth": trial.suggest_int("max_depth", -1, 12),
"max_bin": trial.suggest_int("max_bin", 63, 255, step=10),
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-3, 1e-1),
"num_leaves": trial.suggest_int("num_leaves", 7, 100, step=10),
"colsample_bytree": trial.suggest_float("colsample_bytree", 0.2, 1.0, step=0.1),
"colsample_bynode": trial.suggest_float("colsample_bynode", 0.2, 1.0, step=0.1),
"lambda_l1": trial.suggest_float("lambda_l1", 0, 10, step=0.1), #
"max_delta_step": trial.suggest_float("max_delta_step", 0, 10, step=0.1), #
"subsample_freq": trial.suggest_int("subsample_freq", 0, 50, step=1),
"min_child_samples": trial.suggest_int("min_child_samples", 1, 1000, step=10),
"subsample": trial.suggest_float("subsample", 0.5, 1.0, step=0.05),
"cegb_penalty_split": trial.suggest_float("cegb_penalty_split", 0.0, 3.0, step=0.1),
# 'extra_trees': trial.suggest_categorical('extra_trees', [False, True]),
}
dates = ["2020-01-12", '2020-01-26', '2020-03-01', '2020-03-08', '2020-04-05']
drop_columns = ['ds', 'game_code', 'ops_id', 'value']
scores = []
lossses_list = []
for j, ds in enumerate(dss):
X_train = ds[0].drop(drop_columns, 1)
Y_train = ds[0]['value']
drop_test = ds[1][drop_columns].copy()
X_valid = ds[1].drop(drop_columns, 1)
y_valid = ds[1]['value']
# rgr.fit(X_train, Y_train)
model = train_model(args, X_train, Y_train, trial_params)
y_predict = model.predict(X_valid)
X_valid['base_forecast'] = y_predict.astype('int')
X_valid['base_forecast'] = X_valid['base_forecast'].fillna(0)
X_valid[['ds', 'game_code', 'ops_id', 'value']] = drop_test[['ds', 'game_code', 'ops_id', 'value']]
score_table = score(X_valid.drop(['base_forecast'], 1), X_valid['base_forecast'], active_ops=False,
compare_with_real_sales=True)
lossses = score_table["losses"].sum()
lossses_list.append(lossses)
scores.append(score_table.assign(test_date=dates[j]))
# lossses_sum = np.sum(lossses_list)
all_scores = pd.concat(scores)
i = trial.number
all_scores.to_csv(f"./scores_optuna_2/optuna_scores_{i}.csv")
lossses_sum = all_scores['losses'].sum()
lost_sales = all_scores['lost_sales'].sum()
over_sales = all_scores['over_sales'].sum() * 5
lost_sales_losses = all_scores['lost_sales_losses'].sum()
logger.report_text(f"itaration: {i}", iteration=i)
logger.report_text(f"params: {trial_params}", iteration=i)
logger.report_scalar("losses", "base", value=lossses_sum, iteration=i)
logger.report_scalar("lost_sales_losses", "base", value=lost_sales_losses, iteration=i)
logger.report_scalar("over_sales", "base", value=over_sales, iteration=i)
logger.report_table("scores", f"scores_{i}", table_plot=all_scores, iteration=i)
return lossses_sum
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--study-name", type=str, dest="study_name")
parser.add_argument("--use-gpu", dest="use_gpu", action="store_true")
parser.add_argument("--ntrials", type=int, dest="n_trials")
args = parser.parse_args()
LOG_PATH = Path(WORK_DIR / "tuneparams.log")
logging.basicConfig(
filename=LOG_PATH,
filemode="a",
level=logging.INFO,
)
log = logging.getLogger()
log.addHandler(logging.StreamHandler())
log.info("Loading data")
train0 = pd.read_parquet('./optuna_splits/train_14features_0.parquet')
test0 = pd.read_parquet('./optuna_splits/test_14features_0.parquet')
train1 = pd.read_parquet('./optuna_splits/train_14features_1.parquet')
test1 = pd.read_parquet('./optuna_splits/test_14features_1.parquet')
train2 = pd.read_parquet('./optuna_splits/train_14features_2.parquet')
test2 = pd.read_parquet('./optuna_splits/test_14features_2.parquet')
train3 = pd.read_parquet('./optuna_splits/train_14features_3.parquet')
test3 = pd.read_parquet('./optuna_splits/test_14features_3.parquet')
train4 = pd.read_parquet('./optuna_splits/train_14features_4.parquet')
test4 = pd.read_parquet('./optuna_splits/test_14features_4.parquet')
dss = [(train0, test0), (train1, test1), (train2, test2), (train3, test3), (train4, test4)]
read_data = []
for i, p in enumerate(
Path("./sales.parquet").iterdir()
):
if "parquet" in p.name:
df = pd.read_parquet(p)
read_data.append(df)
sales = pd.concat(read_data)
sales.ds = pd.to_datetime(sales.ds)
sales.game_code = sales.game_code.astype(int)
sales.value = sales.value.astype(int)
sales.shape
# Run optuna study
log.info("Starting optuna study")
log.info(
f'Starting optuna study_{datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")}'
)
# init ClearML
model_name = 'lightgbm'
target = 'stoloto'
task = Task.init(
project_name="stoloto",
task_name="optuna_14f",
tags=['opt_params']
)
logger = task.get_logger()
study_name = (
args.study_name if args.study_name else "stoloto-optuna-study"
) # Unique identifier of the study.
storage_name = "sqlite:///{}.db".format(study_name)
total_study = optuna.create_study(
direction="minimize",
study_name=study_name,
storage=storage_name,
load_if_exists=True,
)
first_trial_params = {'colsample_bynode': 0.6,
'colsample_bytree': 0.5,
'lambda_l1': 6.4,
'learning_rate': 0.06878228501024089,
'max_bin': 163,
'max_depth': 7,
'min_child_samples': 13,
'n_estimators': 1400,
'num_leaves': 87,
'subsample': 0.8,
'subsample_freq': 14,
'max_delta_step': 0.0,
'cegb_penalty_split': 0.0
}
total_study.enqueue_trial(params=first_trial_params)
scoring = partial(
scoring,
dss=dss,
args=args,
)
try:
total_study.optimize(scoring, n_trials=args.n_trials, show_progress_bar=True)
except KeyboardInterrupt:
pass
with open(STUDY_PATH, "wb") as f:
pickle.dump(total_study, f)
log.info("Save study at studypath")
log.info("Best LightGBM parameters")
log.info(total_study.best_params)
log.info(
f'Save study results_{datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")}'
)
with open(STUDY_PATH, "wb") as fs:
pickle.dump(total_study, fs)
task.mark_completed()
|
Anaksibia/Ticket_distribution_system
|
scripts/run_optuna_5_dates.py
|
run_optuna_5_dates.py
|
py
| 13,803 |
python
|
en
|
code
| 0 |
github-code
|
6
|
10719490049
|
import sys
import pathlib
import generator_func
import generator_logging
from datetime import datetime
from PyQt6.QtCore import QRunnable, QThreadPool, QDateTime, QSettings
from PyQt6.QtWidgets import (QApplication,
QDateTimeEdit,
QLabel,
QMainWindow,
QPushButton,
QWidget,
QFileDialog,
QGridLayout,
QLineEdit,
QComboBox,
QProgressBar,
QStatusBar,
QSpinBox,
QTableWidget,
QTableWidgetItem,
QMessageBox)
from PyQt6.QtGui import QIcon
MAXIMUM_IK_QUANTITY = 9999
class Worker(QRunnable): # класс для мультипоточности???
def run(self): # мой код
date_1 = win.date_1
ed_date = date_1.toString('yyyy-MM-dd')
req_date_time = date_1.toString('yyyy-MM-ddThh:mm:ssZ')
path_for_ik = win.directory_path.currentText() # в качестве пути для ИК берётся значение, указанное в ComboBox
win.progressbar.setMaximum(win.ik_quantity.value())
win.btn_create_IK.setEnabled(False)
start = datetime.now()
# aaa = generator_func.check_dir_emptiness(path_for_ik) # проверка каталога сохранения ИК на наличие файлов
for i in range(win.ik_quantity.value()):
generator_func.create_ik(path_for_ik, ed_date, req_date_time)
win.progressbar.setValue(i + 1)
win.status_bar.showMessage(f'Создано конвертов: {i + 1}')
end = datetime.now()
win.status_bar.showMessage(f'Создано конвертов: {win.ik_quantity.value()}. Затраченное время: {end - start}')
generator_logging.log_event(f'Создано конвертов: {win.ik_quantity.value()}. Каталог: {path_for_ik}. '
f'Затраченное время: {end - start}')
win.btn_create_IK.setEnabled(True)
class Window(QMainWindow):
def __init__(self):
super(Window, self).__init__()
# Добавляем файл с настройками
self.settings = QSettings('settings.ini', QSettings.Format.IniFormat)
self.path_history = set()
self.date_1 = ''
self.setWindowTitle("Генератор ИК") # заголовок главного окна
self.setMinimumSize(500, 150) # минимальные размеры главного окна
self.get_directory_path = QPushButton('Выбрать каталог', self)
self.get_directory_path.setFixedWidth(150) # установка ширины кнопки
# Определяем элементы интерфейса
self.btn_create_IK = QPushButton('Создать конверты', self)
self.ik_quantity_label = QLabel()
self.calendar_label = QLabel()
self.line_edit_for_combo = QLineEdit()
self.directory_path = QComboBox()
self.directory_path.setLineEdit(self.line_edit_for_combo)
self.ik_quantity = QSpinBox()
self.calendar = QDateTimeEdit()
self.progressbar = QProgressBar()
self.status_bar = QStatusBar()
self.start_date = QDateTime.currentDateTime()
self.calendar.setDisplayFormat('dd.MM.yyyy')
self.ik_quantity.setMaximum(MAXIMUM_IK_QUANTITY)
self.setMaximumWidth(1800)
self.get_directory_path.clicked.connect(self.get_directory)
self.btn_create_IK.clicked.connect(self.create_ik_func)
self.ik_quantity.textChanged.connect(self.ik_quantity_signal)
self.calendar.dateTimeChanged.connect(self.calendar_changed)
self.calendar.setCalendarPopup(True)
self.calendar.setDateTime(self.start_date)
self.date_1 = self.calendar.dateTime()
self.table = QTableWidget()
self.table_widget_item = QTableWidgetItem()
# размещение элементов
grid_layout = QGridLayout()
grid_layout.addWidget(self.get_directory_path, 0, 0)
grid_layout.addWidget(self.directory_path, 0, 1)
grid_layout.addWidget(self.ik_quantity_label, 1, 0)
grid_layout.addWidget(self.ik_quantity, 1, 1)
grid_layout.addWidget(self.calendar_label, 2, 0)
grid_layout.addWidget(self.calendar, 2, 1)
grid_layout.addWidget(self.btn_create_IK, 3, 0, 1, 2)
# grid_layout.addWidget(self.progressbar, 5, 0, 1, 2)
grid_layout.addWidget(self.status_bar, 4, 0, 1, 2)
widget = QWidget()
widget.setLayout(grid_layout)
self.setCentralWidget(widget)
self.ik_quantity_label.setText('Количество конвертов')
self.calendar_label.setText('Дата ИК')
self.btn_create_IK.setEnabled(False)
# создание всплывающих подсказок для элементов интерфейса
self.get_directory_path.setToolTip('Выберите каталог для сохранения ИК')
self.directory_path.setToolTip('Можно вставить путь или выбрать с помощью кнопки')
self.ik_quantity.setToolTip('Количество создаваемых конвертов')
self.btn_create_IK.setToolTip('Введите количество создаваемых конвертов')
self.calendar.setToolTip('Дата интеграционного конверта, дата заявки, дата выдачи кредита')
self.status_bar.showMessage('')
# self.table.cellClicked(0,0)
# Что-то про многопоточность
self.threadpool = QThreadPool()
self.ik_quantity_label = ''
self.iteration_count = ''
# определение переменных для пути к каталогам и файлам
self.start_path = pathlib.Path.cwd()
self.envelope_path = self.start_path.joinpath('sample/envelope.xml')
self.routeinfo_path = self.start_path.joinpath('sample/RouteInfo.xml')
self.ed421_path = self.start_path.joinpath('sample/ED421.xml')
self.line_edit_for_combo.setText(str(self.start_path))
self.path_for_ik = self.start_path
self.path_for_ik_str = str(self.path_for_ik)
# подгонка ширины под длину пути к каталогу
self.setMinimumWidth(int(len(str(self.start_path)) * 8.5))
# импорт сохраненных настроек
if self.settings.value('OD'):
self.calendar.setDateTime(self.settings.value('OD'))
else:
self.date_1 = self.calendar.date()
if self.settings.value('Path'):
self.directory_path.addItems(self.settings.value('Path'))
self.path_history = self.settings.value('Path')
else:
self.path_history = set()
def get_directory(self):
"""
Вызов диалогового окна для выбора каталога сохранения создаваемых конвертов
:return:
"""
self.path_for_ik = QFileDialog.getExistingDirectory(self, caption='Выбрать каталог сохранения',
directory=str(pathlib.Path.cwd()))
self.path_for_ik_str = str(self.path_for_ik)
self.line_edit_for_combo.setText(self.path_for_ik_str)
self.setMinimumWidth(len(self.path_for_ik_str * 10))
def create_ik_func(self):
"""
Создание конвертов
:return:
"""
worker = Worker() # делаем переменную на созданный класс FirstThread
self.threadpool.start(worker) # обращаемся к созданному классу FirstThread
# добавление пути для ИК в выпадающий список
if self.path_for_ik_str in self.path_history:
pass
elif self.path_for_ik_str not in self.path_history:
self.path_history.add(self.path_for_ik_str)
self.directory_path.addItem(self.path_for_ik_str)
def ik_quantity_signal(self, value):
"""
Определяет заполнено поле с количеством конвертов или нет и блокирует кнопку создания ИК
:param value:
:return:
"""
if self.ik_quantity.value() == 0:
self.btn_create_IK.setEnabled(False)
self.btn_create_IK.setToolTip('Введите количество создаваемых конвертов')
else:
self.btn_create_IK.setEnabled(True)
self.btn_create_IK.setToolTip('Создать конверты')
def calendar_changed(self):
self.date_1 = self.calendar.dateTime()
def closeEvent(self, event): # переопределение события закрытия окна
self.settings.setValue('Path', self.path_history) # Сохранить переменную с историей в файле с настройками
self.settings.setValue('OD', self.date_1) # Сохранить переменную с датой в файле с настройками
if __name__ == '__main__':
app = QApplication(sys.argv)
style = """
QMainWindow {
/*background-color: #fff;*/
}
QProgressBar {
border: 1px solid grey;
border-radius: 5px;
text-align: center;
}
QProgressBar::chunk {
background-color: #05B8CC;
width: 10px;
/*margin: 0.5px;*/
}
"""
app.setStyleSheet(style)
win = Window()
app.setWindowIcon(QIcon(str(win.start_path.joinpath('other/hedgehog_deep_red.png'))))
win.show()
sys.exit(app.exec())
|
Steelglowhawk/updateTool
|
generator_gui.py
|
generator_gui.py
|
py
| 10,348 |
python
|
ru
|
code
| 1 |
github-code
|
6
|
2621863867
|
''' The elif clause executes if age < 12 is True and name == 'Alice' is False.
However, if both of the conditions are False,
then both of the clauses are skipped.
It is not guaranteed that at least one of the clauses will be executed.
When there is a chain of elif statements,
only one or none of the clauses will be executed.
Once one of the statements’ conditions is found to be True,
the rest of the elif clauses are automatically skipped.'''
name = 'Carol'
age = 3000
if name == 'Alice':
print('Hi, Alice.')
elif age <12:
print("You are not Alice, Kiddo.")
elif age > 2000:
print("Unlike you, Alice is not an undead, immortal vampire.")
elif age > 100:
print('You are not Alice, grannie.')
|
ladamsperez/python_excercises
|
automatetheboringstuff/vampire.py
|
vampire.py
|
py
| 718 |
python
|
en
|
code
| 0 |
github-code
|
6
|
24531644863
|
import os
import json
import random as rd
from copy import deepcopy
from matplotlib.pylab import *
import math
import torch
import torchvision.datasets as dsets
import torch.nn as nn
import torch.nn.functional as F
# import torch_xla
# import torch_xla.core.xla_model as xm
device = torch.device("cuda")
def encode(lstm, wemb_l, l, return_hidden=False, hc0=None, last_only=False):
""" [batch_size, max token length, dim_emb]
"""
bS, mL, eS = wemb_l.shape
# sort before packking
l = array(l)
perm_idx = argsort(-l)
perm_idx_inv = generate_perm_inv(perm_idx)
# pack sequence
packed_wemb_l = nn.utils.rnn.pack_padded_sequence(wemb_l[perm_idx, :, :],
l[perm_idx],
batch_first=True)
# Time to encode
if hc0 is not None:
hc0 = (hc0[0][:, perm_idx], hc0[1][:, perm_idx])
# ipdb.set_trace()
packed_wemb_l = packed_wemb_l.float() # I don't know why..
packed_wenc, hc_out = lstm(packed_wemb_l, hc0)
hout, cout = hc_out
# unpack
wenc, _l = nn.utils.rnn.pad_packed_sequence(packed_wenc, batch_first=True)
if last_only:
# Take only final outputs for each columns.
wenc = wenc[tuple(range(bS)), l[perm_idx] - 1] # [batch_size, dim_emb]
wenc.unsqueeze_(1) # [batch_size, 1, dim_emb]
wenc = wenc[perm_idx_inv]
if return_hidden:
# hout.shape = [number_of_directoin * num_of_layer, seq_len(=batch size), dim * number_of_direction ] w/ batch_first.. w/o batch_first? I need to see.
hout = hout[:, perm_idx_inv].to(device)
cout = cout[:, perm_idx_inv].to(device) # Is this correct operation?
return wenc, hout, cout
else:
return wenc
def encode_hpu(lstm, wemb_hpu, l_hpu, l_hs):
wenc_hpu, hout, cout = encode(lstm,
wemb_hpu,
l_hpu,
return_hidden=True,
hc0=None,
last_only=True)
wenc_hpu = wenc_hpu.squeeze(1)
bS_hpu, mL_hpu, eS = wemb_hpu.shape
hS = wenc_hpu.size(-1)
wenc_hs = wenc_hpu.new_zeros(len(l_hs), max(l_hs), hS)
wenc_hs = wenc_hs.to(device)
# Re-pack according to batch.
# ret = [B_NLq, max_len_headers_all, dim_lstm]
st = 0
for i, l_hs1 in enumerate(l_hs):
wenc_hs[i, :l_hs1] = wenc_hpu[st:(st + l_hs1)]
st += l_hs1
return wenc_hs
def generate_perm_inv(perm):
# Definitly correct.
perm_inv = zeros(len(perm), dtype=int) # Was an undefine int32 variable
for i, p in enumerate(perm):
perm_inv[int(p)] = i
return perm_inv
def pred_sc(s_sc):
"""
return: [ pr_wc1_i, pr_wc2_i, ...]
"""
# get g_num
pr_sc = []
for s_sc1 in s_sc:
pr_sc.append(s_sc1.argmax().item())
return pr_sc
def pred_sc_beam(s_sc, beam_size):
"""
return: [ pr_wc1_i, pr_wc2_i, ...]
"""
# get g_num
pr_sc_beam = []
for s_sc1 in s_sc:
val, idxes = s_sc1.topk(k=beam_size)
pr_sc_beam.append(idxes.tolist())
return pr_sc_beam
def pred_sa(s_sa):
"""
return: [ pr_wc1_i, pr_wc2_i, ...]
"""
# get g_num
pr_sa = []
for s_sa1 in s_sa:
pr_sa.append(s_sa1.argmax().item())
return pr_sa
def pred_wn(s_wn):
"""
return: [ pr_wc1_i, pr_wc2_i, ...]
"""
# get g_num
pr_wn = []
for s_wn1 in s_wn:
pr_wn.append(s_wn1.argmax().item())
# print(pr_wn, s_wn1)
# if s_wn1.argmax().item() == 3:
# input('')
return pr_wn
def pred_wc(wn, s_wc):
"""
return: [ pr_wc1_i, pr_wc2_i, ...]
! Returned index is sorted!
"""
# get g_num
pr_wc = []
for b, wn1 in enumerate(wn):
s_wc1 = s_wc[b]
pr_wc1 = argsort(-s_wc1.data.cpu().numpy())[:wn1]
pr_wc1.sort()
pr_wc.append(list(pr_wc1))
return pr_wc
def pred_wo(wn, s_wo):
"""
return: [ pr_wc1_i, pr_wc2_i, ...]
"""
# s_wo = [B, 4, n_op]
pr_wo_a = s_wo.argmax(dim=2) # [B, 4]
# get g_num
pr_wo = []
for b, pr_wo_a1 in enumerate(pr_wo_a):
wn1 = wn[b]
pr_wo.append(list(pr_wo_a1.data.cpu().numpy()[:wn1]))
return pr_wo
def topk_multi_dim(tensor, n_topk=1, batch_exist=True):
if batch_exist:
idxs = []
for b, tensor1 in enumerate(tensor):
idxs1 = []
tensor1_1d = tensor1.reshape(-1)
values_1d, idxs_1d = tensor1_1d.topk(k=n_topk)
idxs_list = unravel_index(idxs_1d.cpu().numpy(), tensor1.shape)
# (dim0, dim1, dim2, ...)
# reconstruct
for i_beam in range(n_topk):
idxs11 = []
for idxs_list1 in idxs_list:
idxs11.append(idxs_list1[i_beam])
idxs1.append(idxs11)
idxs.append(idxs1)
else:
tensor1 = tensor
idxs1 = []
tensor1_1d = tensor1.reshape(-1)
values_1d, idxs_1d = tensor1_1d.topk(k=n_topk)
idxs_list = unravel_index(idxs_1d.numpy(), tensor1.shape)
# (dim0, dim1, dim2, ...)
# reconstruct
for i_beam in range(n_topk):
idxs11 = []
for idxs_list1 in idxs_list:
idxs11.append(idxs_list1[i_beam])
idxs1.append(idxs11)
idxs = idxs1
return idxs
def remap_sc_idx(idxs, pr_sc_beam):
for b, idxs1 in enumerate(idxs):
for i_beam, idxs11 in enumerate(idxs1):
sc_beam_idx = idxs[b][i_beam][0]
sc_idx = pr_sc_beam[b][sc_beam_idx]
idxs[b][i_beam][0] = sc_idx
return idxs
def check_sc_sa_pairs(tb, pr_sc, pr_sa, ):
"""
Check whether pr_sc, pr_sa are allowed pairs or not.
agg_ops = ['', 'MAX', 'MIN', 'COUNT', 'SUM', 'AVG']
"""
bS = len(pr_sc)
check = [False] * bS
for b, pr_sc1 in enumerate(pr_sc):
pr_sa1 = pr_sa[b]
hd_types1 = tb[b]['types']
hd_types11 = hd_types1[pr_sc1]
if hd_types11 == 'text':
if pr_sa1 == 0 or pr_sa1 == 3: # ''
check[b] = True
else:
check[b] = False
elif hd_types11 == 'real':
check[b] = True
else:
raise Exception("New TYPE!!")
return check
def pred_wvi_se_beam(max_wn, s_wv, beam_size):
"""
s_wv: [B, 4, mL, 2]
- predict best st-idx & ed-idx
output:
pr_wvi_beam = [B, max_wn, n_pairs, 2]. 2 means [st, ed].
prob_wvi_beam = [B, max_wn, n_pairs]
"""
bS = s_wv.shape[0]
# [B, 4, mL, 2] -> [B, 4, mL, 1], [B, 4, mL, 1]
s_wv_st, s_wv_ed = s_wv.split(1, dim=3)
s_wv_st = s_wv_st.squeeze(3) # [B, 4, mL, 1] -> [B, 4, mL]
s_wv_ed = s_wv_ed.squeeze(3)
prob_wv_st = F.softmax(s_wv_st, dim=-1).detach().to('cpu').numpy()
prob_wv_ed = F.softmax(s_wv_ed, dim=-1).detach().to('cpu').numpy()
k_logit = int(ceil(sqrt(beam_size)))
n_pairs = k_logit**2
assert n_pairs >= beam_size
values_st, idxs_st = s_wv_st.topk(k_logit) # [B, 4, mL] -> [B, 4, k_logit]
values_ed, idxs_ed = s_wv_ed.topk(k_logit) # [B, 4, mL] -> [B, 4, k_logit]
# idxs = [B, k_logit, 2]
# Generate all possible combination of st, ed indices & prob
pr_wvi_beam = [] # [B, max_wn, k_logit**2 [st, ed] paris]
prob_wvi_beam = zeros([bS, max_wn, n_pairs])
for b in range(bS):
pr_wvi_beam1 = []
idxs_st1 = idxs_st[b]
idxs_ed1 = idxs_ed[b]
for i_wn in range(max_wn):
idxs_st11 = idxs_st1[i_wn]
idxs_ed11 = idxs_ed1[i_wn]
pr_wvi_beam11 = []
pair_idx = -1
for i_k in range(k_logit):
for j_k in range(k_logit):
pair_idx += 1
st = idxs_st11[i_k].item()
ed = idxs_ed11[j_k].item()
pr_wvi_beam11.append([st, ed])
p1 = prob_wv_st[b, i_wn, st]
p2 = prob_wv_ed[b, i_wn, ed]
prob_wvi_beam[b, i_wn, pair_idx] = p1*p2
pr_wvi_beam1.append(pr_wvi_beam11)
pr_wvi_beam.append(pr_wvi_beam1)
# prob
return pr_wvi_beam, prob_wvi_beam
def convert_pr_wvi_to_string(pr_wvi, nlu_t, nlu_wp_t, wp_to_wh_index, nlu):
"""
- Convert to the string in whilte-space-separated tokens
- Add-hoc addition.
"""
pr_wv_str_wp = [] # word-piece version
pr_wv_str = []
for b, pr_wvi1 in enumerate(pr_wvi):
pr_wv_str_wp1 = []
pr_wv_str1 = []
wp_to_wh_index1 = wp_to_wh_index[b]
nlu_wp_t1 = nlu_wp_t[b]
nlu_t1 = nlu_t[b]
for i_wn, pr_wvi11 in enumerate(pr_wvi1):
st_idx, ed_idx = pr_wvi11
# Ad-hoc modification of ed_idx to deal with wp-tokenization effect.
# e.g.) to convert "butler cc (" ->"butler cc (ks)" (dev set 1st question).
pr_wv_str_wp11 = nlu_wp_t1[st_idx:ed_idx+1]
pr_wv_str_wp1.append(pr_wv_str_wp11)
st_wh_idx = wp_to_wh_index1[st_idx]
ed_wh_idx = wp_to_wh_index1[ed_idx]
pr_wv_str11 = nlu_t1[st_wh_idx:ed_wh_idx+1]
pr_wv_str1.append(pr_wv_str11)
pr_wv_str_wp.append(pr_wv_str_wp1)
pr_wv_str.append(pr_wv_str1)
return pr_wv_str, pr_wv_str_wp
def merge_wv_t1_eng(where_str_tokens, NLq):
"""
Almost copied of SQLNet.
The main purpose is pad blank line while combining tokens.
"""
nlq = NLq.lower()
where_str_tokens = [tok.lower() for tok in where_str_tokens]
alphabet = 'abcdefghijklmnopqrstuvwxyz0123456789$'
special = {'-LRB-': '(',
'-RRB-': ')',
'-LSB-': '[',
'-RSB-': ']',
'``': '"',
'\'\'': '"',
}
# '--': '\u2013'} # this generate error for test 5661 case.
ret = ''
double_quote_appear = 0
for raw_w_token in where_str_tokens:
# if '' (empty string) of None, continue
if not raw_w_token:
continue
# Change the special characters
# maybe necessary for some case?
w_token = special.get(raw_w_token, raw_w_token)
# check the double quote
if w_token == '"':
double_quote_appear = 1 - double_quote_appear
# Check whether ret is empty. ret is selected where condition.
if len(ret) == 0:
pass
# Check blank character.
elif len(ret) > 0 and ret + ' ' + w_token in nlq:
# Pad ' ' if ret + ' ' is part of nlq.
ret = ret + ' '
elif len(ret) > 0 and ret + w_token in nlq:
pass # already in good form. Later, ret + w_token will performed.
# Below for unnatural question I guess. Is it likely to appear?
elif w_token == '"':
if double_quote_appear:
ret = ret + ' ' # pad blank line between next token when " because in this case, it is of closing apperas
# for the case of opening, no blank line.
elif w_token[0] not in alphabet:
pass # non alphabet one does not pad blank line.
# when previous character is the special case.
elif (ret[-1] not in ['(', '/', '\u2013', '#', '$', '&']) and (ret[-1] != '"' or not double_quote_appear):
ret = ret + ' '
ret = ret + w_token
return ret.strip()
|
DebadityaPal/RoBERTa-NL2SQL
|
seq2sql_model_internal_functions.py
|
seq2sql_model_internal_functions.py
|
py
| 11,929 |
python
|
en
|
code
| 17 |
github-code
|
6
|
42929566304
|
class Solution:
def decodeString(self, str):
num, stack, i = 0, [""], 0
while i < len(str):
if str[i].isdigit():
num = num*10 + int(str[i])
elif str[i] == "[":
stack.append(num)
num = 0
stack.append("")
elif str[i] == "]":
str1 = stack.pop()
cnt = stack.pop()
str2 = stack.pop()
stack.append(str2 + str1*cnt)
else:
stack[-1] += str[i]
i += 1
return "".join(stack)
obj = Solution()
str = "3[a2[c]]"
ans = obj.decodeString(str)
print(ans)
|
shwetakumari14/Leetcode-Solutions
|
Miscellaneous/Python/394. Decode String.py
|
394. Decode String.py
|
py
| 702 |
python
|
en
|
code
| 0 |
github-code
|
6
|
75316085946
|
import wx
import os
from .smart import SmartCheckBox, SmartInputLayout
__author__ = 'Joeny'
class CheckboxInputLayout(SmartInputLayout):
"""
Checkbox Input Layout
"""
def __init__(self, parent, checkbox=None, layout=None, *args, **kwargs):
label = None
if checkbox:
label = checkbox
else:
label = SmartCheckBox(parent)
SmartInputLayout.__init__(self, parent, layout=layout, label=label, *args, **kwargs)
self.do_layout()
def set_value(self, value):
# type: (object) -> object
self.label.SetValue(bool(value))
def get_value(self):
return self.label.Value
|
JoenyBui/boa-gui
|
boaui/textbox/checkbox.py
|
checkbox.py
|
py
| 675 |
python
|
en
|
code
| 0 |
github-code
|
6
|
33559300888
|
#Declarar Varibles
contador = int ()
suma = int ()
#Limpiar/Inicializar Variables
contador = 0
suma = 0
#Asignar Valores a las variables
contador = 1
while (contador <= 10):
suma = suma + contador
contador = contador + 1
print("El resultado de la suma de estos numeros es: ", suma)
|
renzovarela9/Proyectos-Propios
|
PYTHON/PROBANDO UNA SUMA CON WHILE.py
|
PROBANDO UNA SUMA CON WHILE.py
|
py
| 302 |
python
|
es
|
code
| 0 |
github-code
|
6
|
29942141352
|
import functools
import typing as tp
import shapely.geometry
import torch
import torchmetrics
from torch.nn.utils.rnn import PackedSequence
def _multiarange(counts: torch.Tensor) -> torch.Tensor:
"""Returns a sequence of aranges concatenated along the first dimension.
>>> counts = torch.tensor([1, 3, 2])
>>> _multiarange(counts)
torch.tensor([0, 0, 1, 2, 0, 1])
"""
counts1 = counts[:-1]
reset_index = counts1.cumsum(0)
incr = torch.ones(int(counts.sum()), dtype=torch.int64)
incr[0] = 0
incr[reset_index] = 1 - counts1
out: torch.Tensor = incr.cumsum(0)
return out
class TokenAccuracy(torchmetrics.Metric):
higher_is_better = True
def __init__(self) -> None:
super().__init__()
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, prediction: PackedSequence, target: PackedSequence) -> None:
if prediction.data.ndim == 2:
prediction = prediction._replace(data=prediction.data.argmax(1))
# prediction and target should be padded to the same length so the shapes match
pad_length = max(len(prediction.batch_sizes), len(target.batch_sizes))
prediction_padded, prediction_lens = torch.nn.utils.rnn.pad_packed_sequence(
prediction, batch_first=True, total_length=pad_length
)
target_padded, target_lens = torch.nn.utils.rnn.pad_packed_sequence(
target, batch_first=True, total_length=pad_length
)
# correct only among target tokens, if prediction is longer extra tokens are
# ignored
selection = (torch.repeat_interleave(target_lens), _multiarange(target_lens))
self.correct += torch.sum(
prediction_padded[selection] == target_padded[selection]
)
self.total += torch.sum(target_lens)
def compute(self) -> torch.Tensor:
if self.correct == 0:
return torch.tensor(0.0)
return self.correct / self.total # type:ignore[operator]
class SequenceAccuracy(torchmetrics.Metric):
higher_is_better = True
def __init__(self) -> None:
super().__init__()
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, prediction: PackedSequence, target: PackedSequence) -> None:
if prediction.data.ndim == 2:
prediction = prediction._replace(data=prediction.data.argmax(1))
# prediction and target should be padded to the same length so the shapes match
pad_length = max(len(prediction.batch_sizes), len(target.batch_sizes))
prediction_padded, prediction_lens = torch.nn.utils.rnn.pad_packed_sequence(
prediction, batch_first=True, total_length=pad_length
)
target_padded, target_lens = torch.nn.utils.rnn.pad_packed_sequence(
target, batch_first=True, total_length=pad_length
)
batch_size = target_padded.shape[0]
self.correct += torch.sum(torch.all(prediction_padded == target_padded, dim=1))
self.total += batch_size # type:ignore[operator]
def compute(self) -> torch.Tensor:
if self.correct == 0:
return torch.tensor(0.0)
return self.correct / self.total # type:ignore[operator]
class PolygonAccuracy(torchmetrics.Metric):
correct: torch.Tensor
total: torch.Tensor
def __init__(self) -> None:
super().__init__()
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
pass
def update(
self,
point_sets: PackedSequence,
predictions: PackedSequence,
targets: PackedSequence,
) -> None:
pad = functools.partial(
torch.nn.utils.rnn.pad_packed_sequence, batch_first=True
)
if predictions.data.ndim == 2:
predictions = predictions._replace(data=predictions.data.argmax(1))
correct, total = 0, 0
for i, (
point_set,
point_set_len,
prediction,
prediction_len,
target,
target_len,
) in enumerate(zip(*pad(point_sets), *pad(predictions), *pad(targets))):
target_polygon = shapely.geometry.Polygon(
point_set[target[: target_len - 1] - 1].tolist()
)
predicted_polygon = shapely.geometry.Polygon(
point_set[prediction[: prediction_len - 1] - 1].tolist()
)
correct += target_polygon.equals(predicted_polygon)
total += 1
self.correct += correct
self.total += total
def compute(self) -> torch.Tensor:
if self.correct == 0:
return torch.tensor(0.0)
return self.correct / self.total
class AverageAreaCoverage(torchmetrics.Metric):
coverages: tp.List[torch.Tensor]
is_valid: tp.List[torch.Tensor]
def __init__(self, is_valid_threshold: float = 0.1) -> None:
super().__init__()
self.is_valid_threshold = is_valid_threshold
self.add_state("coverages", default=[], dist_reduce_fx="cat")
self.add_state("is_valid", default=[], dist_reduce_fx="cat")
def update(
self,
point_sets: PackedSequence,
predictions: PackedSequence,
targets: PackedSequence,
) -> None:
pad = functools.partial(
torch.nn.utils.rnn.pad_packed_sequence, batch_first=True
)
coverages: tp.List[float] = []
is_valid: tp.List[bool] = []
for (
point_set,
point_set_len,
prediction,
prediction_len,
target,
target_len,
) in zip(*pad(point_sets), *pad(predictions), *pad(targets)):
target_polygon = shapely.geometry.Polygon(
point_set[target[: target_len - 1] - 1].tolist()
)
predicted_polygon = shapely.geometry.Polygon(
point_set[prediction[: prediction_len - 1] - 1].tolist()
)
coverages.append(predicted_polygon.area / target_polygon.area)
is_valid.append(predicted_polygon.is_simple)
self.coverages.append(torch.tensor(coverages))
self.is_valid.append(torch.tensor(is_valid))
def compute(self) -> torch.Tensor:
is_valid = torch.cat(self.is_valid, dim=0)
coverages = torch.cat(self.coverages, dim=0)
if torch.sum(~is_valid) > self.is_valid_threshold * len(is_valid):
return torch.tensor(-1.0)
return torch.mean(coverages[is_valid])
class TourDistance(torchmetrics.Metric):
tour_distances: tp.List[torch.Tensor]
def __init__(self) -> None:
super().__init__()
self.add_state("tour_distances", default=[], dist_reduce_fx="cat")
def update(self, point_sets: PackedSequence, prediction: PackedSequence) -> None:
batch_size = point_sets.batch_sizes[0]
device = point_sets.data.device
point_sets_padded, npoints = torch.nn.utils.rnn.pad_packed_sequence(
point_sets, batch_first=True
)
prediction_padded, prediction_lens = torch.nn.utils.rnn.pad_packed_sequence(
prediction, batch_first=True
)
max_pred_len = prediction_padded.shape[1]
batch_arange = torch.arange(batch_size, device=device)
assert torch.all(
prediction_padded[batch_arange, prediction_lens - 1] == 0
), "all prediction should finish with a 0"
assert torch.all(
prediction_padded[batch_arange, prediction_lens - 2]
== prediction_padded[:, 0]
), "all tours should end where they start"
# pad with the first value, so that summing distances after closing
# tour doesn't increase the tour distance
prediction_padded += (
torch.arange(max_pred_len, device=device).expand_as(prediction_padded)
>= (prediction_lens.to(device) - 1)[:, None]
) * prediction_padded[:, 0:1]
# NOTE: i just trust from decoding that there are no repeated points
# and all points are visited
curr = point_sets_padded[batch_arange[:, None], prediction_padded[:, :-1] - 1]
next_ = point_sets_padded[batch_arange[:, None], prediction_padded[:, 1:] - 1]
tour_distances = torch.sum(
torch.sqrt(torch.sum((next_ - curr) ** 2, dim=2)), dim=1
)
self.tour_distances.append(tour_distances)
def compute(self) -> torch.Tensor:
all_tour_distances = torch.cat(self.tour_distances)
return all_tour_distances.mean()
|
gchaperon/pointer-networks
|
ptrnets/metrics.py
|
metrics.py
|
py
| 8,846 |
python
|
en
|
code
| 20 |
github-code
|
6
|
18187145317
|
# -----------------------------
# pluieOS source code
# made with heart by dadoum
# -----------------------------
# Partly based on rainbox
# -----------------------------
import subprocess
import sys
import time
import signal
import os
import traceback
import matplotlib as matplotlib
import numpy
import sh
import distutils.core
import urllib.request
from pprint import pprint
from PIL import Image, ImageDraw, ImageFont
from pluieAPI import Application, View, width, height
import platform
# import bakebit_128_64_oled as display
app_path = os.path.join(os.getenv("HOME"), "Pluvieuses applications") # POA format is a compressed format that means pluieOS Application, but it corresponds to a Pluvieuses application (or correctly application pluvieuse, but we will stay simple)
# Launcher Application is an application like any application,
# Except it will never be killed until shutdown, and that it is not in the standard folder
class LauncherApp(Application):
name = "Launcher"
def __init__(self):
super().__init__()
def run(self):
sub = os.listdir(app_path)
import json
# For each app
applications = []
jsons = []
dirs = []
for di in sub:
d = os.path.join(app_path, di)
if os.path.isdir(d):
# We take its app.json,
app_json = os.path.join(d, "app.json")
with open(app_json) as f:
content = f.read()
# Retrieve some important values
parsed_json = json.loads(content)
script = os.path.join(d, parsed_json["script"])
name = parsed_json["name"]
entry_point = parsed_json["entry_point"]
# And import the entry point
import importlib.util
spec = importlib.util.spec_from_file_location(os.path.splitext(parsed_json["script"])[0], script)
app = importlib.util.module_from_spec(spec)
spec.loader.exec_module(app)
# This is the application class
app_class = getattr(app, entry_point)
applications.append(app_class)
jsons.append(parsed_json)
dirs.append(d)
collectionView = AppCollectionView(applications, jsons)
while True:
btn = collectionView.run()
if not collectionView.app_avail:
print("Cannot go further, shutdown.")
btn = 3
if btn == 1:
collectionView.app_number += 1
collectionView.reset()
elif btn == 2:
selected_app = applications[collectionView.app_number]
appli = selected_app()
appli.run(dirs[collectionView.app_number])
elif btn == 3:
print("Shutdown...")
if not os.uname().machine == "x86_64":
os.system('systemctl poweroff')
break
return 0
class AppCollectionView(View):
app_number = 0
app_avail = True
app_list = []
app_jsons = []
def __init__(self, app_list, app_jsons):
super().__init__("Applications", "Next", "Select", "Shutdown")
self.app_list = app_list
self.app_jsons = app_jsons
return
def draw(self, draw):
if len(self.app_list) == 0:
w, h = draw.textsize("No any app installed\nConnect on your computer\nand install apps !")
draw.text(((width - w) / 2, (height - h) / 2), "No any app installed\nConnect on your computer\nand install apps !", 255)
self.app_avail = False
return
self.app_number %= len(self.app_list)
app_name = str(self.app_jsons[self.app_number]["name"])
w, h = draw.textsize(app_name)
app_icon = os.path.join(app_path, self.app_jsons[self.app_number]["name"], "icon.png")
img = Image.open(app_icon)
img_w, img_h = img.size
from pluieAPI import image # Bad practice, do that when it is not possible to do in another way
image.paste(img, (5, int((height - (img_h + (h / 2))) / 2)))
draw.text(((width - w - 5), (height - h) / 2), app_name, 255)
return
def launch():
trace = ""
try:
launcher = LauncherApp()
exitCode = launcher.run()
except:
trace = ""
try:
trace = traceback.format_exc(-1)
exitCode = 2
except:
exitCode = 1
if exitCode != 0:
print("Launcher crashed !")
from pluieAPI import draw, image
draw.rectangle((0, 0, width, height), 0)
draw.text((0, 0), "Launcher crashed :(", 255)
if exitCode == 2:
w, h = draw.textsize("Launcher crashed!")
print(trace)
draw.text((0, h + 1), trace, 255, font=ImageFont.truetype('DejaVuSansMono.ttf', 8))
if os.uname().machine == "x86_64":
image.save("./debug.png")
launch()
|
Dadoum/pluieOS
|
pluieLauncher.py
|
pluieLauncher.py
|
py
| 4,248 |
python
|
en
|
code
| 0 |
github-code
|
6
|
22879333885
|
# import socket
# import json
# s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# # host = socket.gethostname()
# port = 9999
# s.connect(("127.0.0.1", port))
# msg = s.recv(1024)
# msg = msg.decode('utf-8')
# print(msg)
# s.close()
import socket
import json
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# host = socket.gethostname()
port = 8888
s.connect(("127.0.0.1", port))
# msg = "hi"
msg = {"a":0.01}
msg = json.dumps(msg)
s.sendall(msg.encode('utf-8'))
s.close()
|
HugoXK/ECE-445-Senior-Design
|
client.py
|
client.py
|
py
| 491 |
python
|
en
|
code
| 0 |
github-code
|
6
|
72740356347
|
import subprocess
from dataclasses import dataclass
from typing import Dict
import json
from src.config import LOGGER
@dataclass
class Server:
server_name: str
server_id: int
class SpeedTestGateway:
@classmethod
def get_speed_test_result(cls, server_id: int) -> Dict:
command = [
"speedtest",
"--format=json-pretty",
"--progress=no",
"--accept-license",
"--accept-gdpr",
f"--server-id={server_id}",
]
try:
console_output = subprocess.check_output(command, timeout=180)
return cls.parse_json(console_output=console_output)
except subprocess.CalledProcessError as exc:
LOGGER.error("Process error", extra={"server_id": server_id, "exc": str(exc)})
except subprocess.TimeoutExpired:
LOGGER.error("Time out error", extra={"server_id": server_id})
@staticmethod
def parse_json(console_output: bytes) -> Dict:
try:
return json.loads(console_output)
except ValueError:
raise subprocess.CalledProcessError
|
galloramiro/internet-connection-log
|
src/speed_test_gateway.py
|
speed_test_gateway.py
|
py
| 1,128 |
python
|
en
|
code
| 0 |
github-code
|
6
|
9989418734
|
import socket
# Crear un socket TCP/IP
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Vincular el socket a un puerto conocido
server_address = ('', 12345)
sock.bind(server_address)
# Escuchar conexiones entrantes
sock.listen(1)
while True:
connection, client_address = sock.accept()
# Recibir el mensaje del contenedor1
data = connection.recv(1024)
# Responder al contenedor1
response = "Su solicitud de visculación ha sido ingresada con exito"
connection.sendall(response.encode())
# Cerrar la conexión
connection.close()
|
JoseMiranda21/poli
|
poli2/app2.py
|
app2.py
|
py
| 604 |
python
|
es
|
code
| 0 |
github-code
|
6
|
26171304664
|
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.nn import CrossEntropyLoss
from torch.optim import Adam
from datetime import datetime
class MLPClassifier(nn.Module):
def __init__(self):
super().__init__()
self.MLP = nn.Sequential(
nn.Linear(10000, 2000),
nn.ReLU(),
nn.Linear(2000, 500),
nn.ReLU(),
nn.Linear(500, 500),
nn.ReLU(),
nn.Linear(500, 500),
nn.ReLU(),
nn.Linear(500, 5)
)
def forward(self, x):
x = self.MLP(x)
return x
def predict(self, X):
self.to('cpu')
samples = torch.from_numpy(X).float()
with torch.no_grad():
outputs = self(samples)
predicted = torch.argmax(outputs.data, axis=1)
return predicted
def fit(self, train_dataset, batch_size=128, num_epochs=5, PATH=None, device='cpu'):
# Multi-layer Perceptron classifier
criterion = CrossEntropyLoss()
optimizer = Adam(self.parameters(), lr=0.001)
trainloader = DataLoader(train_dataset, batch_size=batch_size)
losses = []
running_loss = 0.0
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(trainloader, start=0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = self(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if epoch % 1 == 0 and i==0: # print every epoch
print(f'[{epoch+1}] loss: {running_loss:.6f}')
losses.append((epoch, running_loss))
running_loss = 0.0
if not PATH:
t = datetime.now().strftime('%d-%m-%Y_%H-%M-%S')
PATH = f'models/MLP_{t}.pth'
torch.save(self.state_dict(), PATH)
return self
|
Charlie-Bell/stack-overflow-classifier
|
src/MLP.py
|
MLP.py
|
py
| 2,284 |
python
|
en
|
code
| 0 |
github-code
|
6
|
19703597779
|
# check the costs after every time consuming all examples
# usage: python check_costs.py
import mnist_loader
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
import network
import numpy as np
import matplotlib.pyplot as plt
net = network.Network([784, 30, 10])
net.set_check_cost_inside_SGD()
net.SGD(training_data, 5, 10, 3.0, test_data=test_data)
# draw a picture
xpoints = []
ypoints = []
for x, y in net.costs:
xpoints.append(x)
ypoints.append(y)
plt.plot(xpoints, ypoints, marker = 'o', mec = 'r', mfc = 'r')
plt.xlabel('# of input')
plt.ylabel('average cost')
plt.show()
|
hzget/machine-learning
|
dl_tutorial/check_costs.py
|
check_costs.py
|
py
| 617 |
python
|
en
|
code
| 0 |
github-code
|
6
|
6400878080
|
##4. Write a program that takes a line as input and converts all lower-case letters to upper case and all upper-case letters to lower-case and spaces to $.
##Input Example:
##My NaMe is KhaN.
##Output:
##mY$nAmE$ISkHAn.
res=input()
rstr=''
for i in res:
if(i.isupper())==True:
rstr=rstr+(i.lower())
elif(i.islower())==True:
rstr=rstr+(i.upper())
elif(i.isspace())==True:
rstr=rstr+'$'
print(rstr)
|
bhumijaapandey248/Python-Programs-Assignments
|
assignment16.4.py
|
assignment16.4.py
|
py
| 464 |
python
|
en
|
code
| 0 |
github-code
|
6
|
71484036668
|
import sys
if sys.version[0] == '2':
range, input = xrange, raw_input
sys.setrecursionlimit(10 ** 6)
MAX_COINS = 500 * 100
INF = 10 ** 9
def dfs(idx, coins):
if idx == N:
return 0, 0
elif dp[idx][coins] != -1:
return dp[idx][coins]
ret = (0, -INF)
# not buy
ret = max(ret, dfs(idx + 1, coins))
# buy using only bills
change = (1000 - P[idx] % 1000) % 1000
cand, money = dfs(idx + 1, coins + change % 500)
ret = max(ret, (cand + (change >= 500), money - P[idx]))
# buy using both and get 500
if (P[idx] + 500) % 1000 <= coins:
cand, money = dfs(idx + 1, coins - (P[idx] + 500) % 1000)
ret = max(ret, (cand + 1, money - P[idx]))
dp[idx][coins] = ret
# print(idx, coins, ret)
return ret
while True:
N = int(input())
if not N:
break
P = [int(input()) for _ in range(N)]
dp = [[-1] * (MAX_COINS + 1) for _ in range(N + 1)]
ans, money = dfs(0, 0)
print(ans, -money)
|
knuu/competitive-programming
|
aoj/16/aoj1603.py
|
aoj1603.py
|
py
| 993 |
python
|
en
|
code
| 1 |
github-code
|
6
|
30665509176
|
from django.urls import path
from . import views
urlpatterns = [
path('', views.home, name='home'),
path('about/', views.about, name='about'),
path('cows/', views.cows_index, name='index'),
path('cows/<int:cow_id>/', views.cows_detail, name='detail'),
path('cows/create/', views.CowCreate.as_view(), name='cows_create'),
path('cows/<int:pk>/update/', views.CowUpdate.as_view(), name='cows_update'),
path('cows/<int:pk>/delete/', views.CowDelete.as_view(), name='cows_delete'),
path('cows/<int:cow_id>/add_feeding/', views.add_feeding, name='add_feeding'),
path('cows/<int:cow_id>/assoc_toy/<int:toy_id>/', views.assoc_toy, name='assoc_toy'),
path('cows/<int:cow_id>/unassoc_toy/<int:toy_id>/', views.unassoc_toy, name='unassoc_toy'),
path('toys/', views.ToyList.as_view(), name='toys_index'),
path('toys/<int:pk>/', views.ToyDetail.as_view(), name='toys_detail'),
path('toys/create/', views.ToyCreate.as_view(), name='toys_create'),
path('toys/<int:pk>/update/', views.ToyUpdate.as_view(), name='toys_update'),
path('toys/<int:pk>/delete/', views.ToyDelete.as_view(), name='toys_delete'),
]
|
jessmucklow/cowcollector
|
main_app/urls.py
|
urls.py
|
py
| 1,122 |
python
|
en
|
code
| 1 |
github-code
|
6
|
4343926541
|
# make all the vowels become "g"
def translate(phrase):
translation = ""
for letter in phrase:
if letter.lower() in "aeiou":
if letter.isupper():
translation = translation + "G"
else:
translation = translation + "g "
else:
translation = translation + letter
return translation
print(translate(input("Enter a phrase: ")))
# if letter.lower in "aeiou"
# only have to type out the lower case letters
|
silviawin/Giraffe_python_exercises
|
pyTranslator.py
|
pyTranslator.py
|
py
| 516 |
python
|
en
|
code
| 0 |
github-code
|
6
|
31126701613
|
from SensorGroup import SensorGroup
from DistanceSensor import DistanceSensor
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
r1 = DistanceSensor(21,20,'r1')
r2 = DistanceSensor(26,19,'r2')
sensorGroup = SensorGroup(sensors=[r1,r2],delay_between_pings_ms =1*1000)
try:
while True:
reading = sensorGroup.measure()
print(reading)
except KeyboardInterrupt:
GPIO.cleanup()
except:
# this catches ALL other exceptions including errors.
# You won't get any error messages for debugging
# so only use it once your code is working
print("Other error or exception occurred!")
finally:
GPIO.cleanup() # this ensures a clean exit
|
gregorianrants/technic-bot
|
technic/distance_sensors/SensorGroup.test.py
|
SensorGroup.test.py
|
py
| 674 |
python
|
en
|
code
| 0 |
github-code
|
6
|
25168389335
|
if __name__ == "__main__":
list_ = [4, -1, 10, -1, 3, -3, -6, 8, 6, 9]
list_n = [i for i in list_ if i % 2 == 1]
list_ch = [i for i in list_ if i % 2 == 0]
print(list_ch)
print(list_n)
z_n = len(list_n)
z_ch = len(list_ch)
if z_n > z_ch:
print("Нечетных больше")
elif z_n < z_ch:
print("Четных больше")
elif z_n == z_ch:
print("Числа равны")
|
mur78/PythonPY100
|
Занятие4/Лабораторные_задания/task1_5/main.py
|
main.py
|
py
| 445 |
python
|
ru
|
code
| 0 |
github-code
|
6
|
24213867050
|
from django.contrib import admin
from django.urls import path, include
from . import views
#应用的名称
app_name = 'userprofile'
urlpatterns = [
path('login/', views.user_login, name='login'),
path('logout/', views.user_logout, name='logout'),
path('register/', views.user_register, name='register'),
#用户信息
path('edit/<int:id>/', views.user_edit, name='edit'),
]
|
blackjibert/Blog
|
myblog/userprofile/urls.py
|
urls.py
|
py
| 392 |
python
|
en
|
code
| 0 |
github-code
|
6
|
6159880936
|
import sys
def sum_int():
filename = sys.argv[1]
result = 0
numbers = []
file = open(filename, "r")
numbers = file.read()
numbers = numbers.split(' ')
for i in range(len(numbers)-1):
result = result + int(numbers[i])
return result
if __name__ == '__main__':
print (sum_int())
|
Vencislav-Dzhukelov/101-3
|
week2/2-File-System-Problems/sum_numbers.py
|
sum_numbers.py
|
py
| 324 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35616526877
|
# https://adventofcode.com/2022/day/15
from dataclasses import dataclass
from aoctk.data import Range, weighted_union_size
from aoctk.input import get_lines
from aoctk.metric import manhattan2d as md
@dataclass
class Sensor:
pos: complex
beacon: complex
distance: int
def __init__(self, desc):
self.pos, self.beacon = eval(
desc.replace("Sensor at x=", "complex(")
.replace("y=", "")
.replace(": closest beacon is at x=", "), complex(")
+ ")"
)
self.distance = md(self.beacon, self.pos)
def get_intervals(y, sensors):
beacons = tuple({int(_.beacon.real) for _ in sensors if _.beacon.imag == y})
intervals = []
for s in sensors:
left = s.distance - int(abs(s.pos.imag - y))
if left >= 0:
intervals.extend(
Range(int(s.pos.real - left), int(s.pos.real + left)).split(*beacons)
)
return Range.weighted_union(intervals)
def part_one(data="input.txt", y=2000000):
return weighted_union_size(get_intervals(y, [Sensor(_) for _ in get_lines(data)]))
def part_two(data="input.txt", y=2000000, lo=0, hi=4000000):
sensors = [Sensor(_) for _ in get_lines(data)]
beacons = {_.beacon for _ in sensors}
v_max = hi - lo + 1
for cy in (
_ for p in zip(range(y - 1, lo - 1, -1), range(y + 1, hi + 1)) for _ in p
):
intervals = get_intervals(cy, sensors)
for i, _ in intervals:
i.clip(lo, hi)
if weighted_union_size(intervals) < v_max:
(x,) = set(range(lo, hi + 1)) - set.union(
*(set(i) for i, w in intervals if w > 0)
)
if complex(x, cy) not in beacons:
return x * 4000000 + cy
def test():
assert part_one("test.txt", 10) == 26
assert part_two("test.txt", 10, 0, 20) == 56000011
|
P403n1x87/aoc
|
2022/15/code.py
|
code.py
|
py
| 1,883 |
python
|
en
|
code
| 2 |
github-code
|
6
|
25091116397
|
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 8 13:14:13 2019
@author: jordan loll
Creating a cards library / deck
"""
import random
from PIL import Image, ImageDraw
#Local Path
local_path =r"C:\Users\jorda\Documents\PythonPrograms\Questar\Git_Stuff\Quest-Game"
#local_path = r"C:\Users\xTheC\Desktop\Quest\Quest-Game"
image_path = local_path+"\Images"
# Create the deck
# class for format of each card # weapons/armor need a 'slot' on each character
class card:
def __init__(self, n = "none", i = 'none', t = "none", st = "0", d = "none"):
self.title = n
self.image = i
self.type = t
self.stats = st
self.desc = d
# Weapons, Armor, and any other cards types we need
# Perhaps make a class for each type of card instead of one generic form
#images
im_sw = Image.open(image_path+"\sword.png")
# Weapons
sword = card("Sword", im_sw, "1-Handed Weapon", 10, "Sharp Steel")
spear = card("Spear", "image", "2-Handed Weapon", 30, "Deadly at a Distance")
# Armor
shield = card("Kite Shield", "shield image", "1-Handed", 20, "Impenetrable")
#print(sword.title, sword.type)
#print(sword.stats, shield.desc, spear.image)
sword.image.show()
# Jordan is the best
|
scottwedge/Quest-Game
|
Old Files/cards.py
|
cards.py
|
py
| 1,214 |
python
|
en
|
code
| 0 |
github-code
|
6
|
11296078217
|
import requests
import json
data = {
"a": "GetBidYiDong",
"Token": "29db4b581d67ec1c46a231e09e919671",
"c": "StockBidYiDong",
"UserID": 19,
"day": "20171026"
}
url = "https://hq.kaipanla.com/w1/api/index.php"
respone = requests.post(url, data)
respone.encoding = "unicode_escape"
result = respone.text
print(result)
result = result.replace("zhangfu", "涨幅").replace("BidAmount", "成交").replace("sjltp", "市值")\
.replace("BidAmount", "净额").replace("BuyP", "大单占比").replace("Buy100", "买入")\
.replace("Sell100", "卖出").replace("BidAmount", "净额").replace("Plate", "概念")
for p in json.loads(result)["List"]:
print("--------------------------------------------------------------------------------")
print(p)
|
mykright/auto_stock_search
|
竞价.py
|
竞价.py
|
py
| 778 |
python
|
en
|
code
| 3 |
github-code
|
6
|
38722538066
|
import pandas as pd
import numpy as np
import tensorflow as tf
import sklearn.model_selection as sk
import helper as hp
import preprocessing as pre
import machine_learning as ml
import json
import os
from flask import Flask, redirect, url_for, request, jsonify
from tensorflow.keras import layers
from tensorflow.keras.models import load_model
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
ML_model = None
ML_history = None
graph = None
titles = None
classes = None
targets = None
categories = None
training_type = 0
app = Flask(__name__)
@app.route('/')
def initialize():
return 'Use /Train or /Predict'
@app.route('/Train', methods = ['POST'])
def Train():
global ML_model
global ML_history
global classes
global titles
global targets
global categories
global graph
# Getting the POST Request Body Data
Data = request.data
# Converting Text/Plain to JSON Structure
JsonData = json.loads(Data)
# Extracting product titles and product classes
titles = JsonData["products"]
targets = JsonData["classes"]
training_type = JsonData["training_type"]
# 1 is Very Small (80 vec size, Hidden Layers (1024,512))
# 2 is Small (200 vec size, Hidden Layers (2048,1024))
# 3 is Large (200 vec size, Hidden Layers (2048,1024,1024))
if(len(titles) == len(targets)):
# Preprocessing of data
# Converts target to multi classes array where [1,0,0,0,0,0,....] corresponds to class 1 and [0,1,0,0,0,0,....] corresponds to class 2
labels, classes, categories = hp.Get_Targets_Arrays(targets)
print(categories)
# Converts products titles to vectors
pre.Doc2Vectors(titles, training_type)
# Creating Vectors List for all products -> Dataset
Vectors_List = hp.Get_Product_Vectors(len(titles),training_type)
# Splitting Data to Train, Validate and Test sets
train_data, train_labels, val_data, val_labels, test_data, test_labels = pre.Data_Split(Vectors_List,labels)
# Training
if(training_type == 1):
ML_model, ML_history = ml.Train_1(train_data, train_labels, val_data, val_labels, len(labels[0]))
else:
if(training_type ==2):
ML_model, ML_history = ml.Train_2(train_data, train_labels, val_data, val_labels, len(labels[0]))
else:
ML_model, ML_history = ml.Train_3(train_data, train_labels, val_data, val_labels, len(labels[0]))
graph = tf.get_default_graph()
# Evaluating the trained model
results = ML_model.evaluate(test_data, test_labels)
response = "Training Completed with testing scores of " + str(results[1]) + " accuracy and " + str(results[0]) + " Loss"
return response
else:
return "Products and Classes don't have the same length"
@app.route('/Predict',methods = ['POST'])
def Predict():
global ML_model
global classes
global categories
global training_type
# Getting the POST Request Body Data
Data = request.data
# Converting Text/Plain to JSON Structure
JsonData = json.loads(Data)
# Extracting product titles and product classes
titles = JsonData["products"]
# Get the product title for prediction from the GET Request
#title = request.args.get('product')
# Convert the title to vector based on the titles vector model done in the training process
#v = hp.Get_Products_Title_Vector(titles)
# Load model weights for predictins
ML_model = load_model("weights")
ML_model._make_predict_function()
predicted_classes = []
for title in titles:
v = hp.Get_Product_Title_Vector(title)
# Predictions
pred = ML_model.predict(v)
max_index = np.argmax(pred)
predicted_class = categories[max_index]
predicted_classes.append(predicted_class)
response = {
"predictions":predicted_classes,
}
return jsonify(response)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5010)
|
ahmedhazemfekry/Neural-Network-Flask-Server
|
server.py
|
server.py
|
py
| 4,067 |
python
|
en
|
code
| 0 |
github-code
|
6
|
36724497528
|
from django.contrib.auth.decorators import login_required
from django.contrib.auth.mixins import LoginRequiredMixin
from django.db.models import Count
from django.http import Http404
from django.shortcuts import render, get_object_or_404, redirect
from django.urls import reverse_lazy, reverse
from django.utils import timezone
from django.views.generic import UpdateView, ListView, DeleteView
from .forms import NewTopicForm, NewPostForm
from .models import (
Board,
Topic,
Post
)
class BoardListView(ListView):
model = Board
context_object_name = 'boards'
template_name = 'home.html'
class TopicListView(ListView):
model = Topic
context_object_name = 'topics'
paginate_by = 20
def get_context_data(self, **kwargs):
kwargs['board'] = self.board
return super().get_context_data(**kwargs)
def get_queryset(self):
self.board = get_object_or_404(Board, pk=self.kwargs.get('pk'))
queryset = self.board.topics.order_by('-last_update').annotate(
replies=Count('posts') - 1)
return queryset
@login_required
def topic_new(request, pk):
board = get_object_or_404(Board, pk=pk)
if request.method == 'POST':
form = NewTopicForm(request.POST)
if form.is_valid():
user = request.user
topic = form.save(commit=False)
topic.board = board
topic.starter = user
topic.save()
message = form.cleaned_data.get('message')
Post.objects.create(
message=message,
topic=topic,
created_by=user,
)
return redirect('boards:topic-posts', pk=pk, topic_pk=topic.pk)
else:
form = NewTopicForm()
context = {
'board': board,
'form': form
}
return render(request, 'boards/topic_new.html', context)
class PostListView(ListView):
model = Post
context_object_name = 'posts'
paginate_by = 20
def get_context_data(self, **kwargs):
session_key = f'viewed_topic_{self.topic.id}'
if not self.request.session.get(session_key, False):
self.topic.views += 1
self.topic.save()
self.request.session[session_key] = True
kwargs['topic'] = self.topic
return super().get_context_data(**kwargs)
def get_queryset(self):
self.topic = get_object_or_404(Topic,
board__pk=self.kwargs.get('pk'),
pk=self.kwargs.get('topic_pk'))
queryset = self.topic.posts.order_by('created_at')
return queryset
@login_required
def topic_reply(request, pk, topic_pk):
topic = get_object_or_404(Topic, board__pk=pk, pk=topic_pk)
if request.method == "POST":
form = NewPostForm(request.POST)
if form.is_valid():
user = request.user
post = form.save(commit=False)
post.topic = topic
post.created_by = user
post.save()
topic.last_update = timezone.now()
topic.save()
topic_url = reverse('boards:topic-posts',
kwargs={
'pk': topic.board.pk,
'topic_pk': topic.pk
})
topic_post_url = f'{topic_url}?page={topic.get_page_count()}#{post.pk}'
return redirect(topic_post_url)
else:
form = NewPostForm()
context = {
'form': form,
'topic': topic
}
return render(request, 'boards/topic_reply.html', context)
class PostEditView(LoginRequiredMixin, UpdateView):
model = Post
fields = ('message',)
template_name = 'boards/post_edit.html'
pk_url_kwarg = 'post_pk'
context_object_name = 'post'
def get_queryset(self):
queryset = super().get_queryset()
if not self.request.user.is_staff:
queryset = queryset.filter(created_by=self.request.user)
return queryset
def form_valid(self, form):
post = form.save(commit=False)
post.updated_by = self.request.user
post.save()
return redirect('boards:topic-posts', pk=post.topic.board.pk,
topic_pk=post.topic.pk)
class TopicDeleteView(DeleteView):
def get_object(self, queryset=None):
user = self.request.user
board_pk = self.kwargs.get('pk')
topic_pk = self.kwargs.get('topic_pk')
topic = get_object_or_404(Topic, board__pk=board_pk, pk=topic_pk)
if not topic.starter == user and not user.is_staff:
raise Http404
return topic
def get_success_url(self):
board_pk = self.kwargs.get('pk')
return reverse_lazy('boards:topic-list', kwargs={'pk': board_pk})
|
zawi99/web-boards
|
boards/views.py
|
views.py
|
py
| 4,855 |
python
|
en
|
code
| 0 |
github-code
|
6
|
23936105649
|
import numpy as np
from scipy.io import loadmat
from variables import*
def load_mat_file(mat_file):
mat_data = loadmat(mat_file)
x, y = mat_data['X'], mat_data['y']
x = x.reshape(
-1,
input_shape[0],
input_shape[1],
input_shape[2]
)
y = y.reshape(-1,)
return x, y
def load_data():
X, Y = load_mat_file(train_dir)
Xtest, Ytest = load_mat_file(test_dir)
X = X/rescale
Xtest = Xtest/rescale
return X, Y, Xtest, Ytest
|
1zuu/SVHN-Image-Classification
|
util.py
|
util.py
|
py
| 543 |
python
|
en
|
code
| 0 |
github-code
|
6
|
22458997174
|
import flask
from flask import Flask,request,jsonify
import json
from sqlib import cek_data_user, input_data,input_dataa, show_data, node1_suhu, node1_kelembapanudara, node1_kelembapantanah, node1_keltanah_konversi, node1_intensitascahaya, node1_curahhujan, node1_curahhujan_konversi, node2_suhu, node2_kelembapanudara, node2_kelembapantanah, node2_keltanah_konversi, node2_curahhujan, node2_curahhujan_konversi ,node2_intensitascahaya, show_dataa,input_user,cek_username,update_ip
app = Flask(__name__)
@app.route('/monitor/node1', methods=['POST'])
def node1():
json_data = flask.request.json
if json_data ==None:
result = {"pesan":"data not found"}
resp = jsonify(result)
return resp,404
else :
if 'Suhu' not in json_data or 'Kelembapan_udara' not in json_data or 'Intensitas_cahaya' not in json_data or 'Curah_hujan' not in json_data or 'Kelembapan_tanah' not in json_data :
result = {"pesan": "bad request"}
resp = jsonify(result)
return resp,403
else :
Suhu = json_data ['Suhu']
Kelembapan_udara = json_data ['Kelembapan_udara']
Intensitas_cahaya = json_data ['Intensitas_cahaya']
Curah_hujan = json_data ['Curah_hujan']
Kelembapan_tanah = json_data ['Kelembapan_tanah']
input_data(Suhu,Kelembapan_udara,Intensitas_cahaya,Curah_hujan,Kelembapan_tanah)
result = {"pesan" : " input berhasil"}
resp= jsonify(result)
return resp, 200
@app.route('/monitor/node2', methods=['POST'])
def node2():
json_data = flask.request.json
if json_data ==None:
result = {"pesan":"data not found"}
resp = jsonify(result)
return resp,404
else :
if 'Suhu' not in json_data or 'Kelembapan_udara' not in json_data or 'Intensitas_cahaya' not in json_data or 'Curah_hujan' not in json_data or 'Kelembapan_tanah' not in json_data :
result = {"pesan": "bad request"}
resp = jsonify(result)
return resp,403
else :
Suhu = json_data ['Suhu']
Kelembapan_udara = json_data ['Kelembapan_udara']
Intensitas_cahaya = json_data ['Intensitas_cahaya']
Curah_hujan = json_data ['Curah_hujan']
Kelembapan_tanah = json_data ['Kelembapan_tanah']
input_dataa (Suhu,Kelembapan_udara,Intensitas_cahaya,Curah_hujan,Kelembapan_tanah)
result = {"pesan" : " input berhasil"}
resp= jsonify(result)
return resp, 200
@app.route('/monitor/node1', methods=['GET'])
def monitor_node1() :
resp = show_data()
return resp,200
@app.route('/monitor/suhu', methods=['GET'])
def monitor_suhu() :
resp = node1_suhu()
return resp,200
@app.route('/monitor/udara', methods=['GET'])
def monitor_udara() :
resp = node1_kelembapanudara()
return resp,200
@app.route('/monitor/tanah', methods=['GET'])
def monitor_tanah() :
resp = node1_kelembapantanah()
return resp,200
@app.route('/monitor/tanahkonversi', methods=['GET'])
def monitor_tanahkonversi() :
resp = node1_keltanah_konversi()
return resp,200
@app.route('/monitor/cahaya', methods=['GET'])
def monitor_cahaya() :
resp = node1_intensitascahaya()
return resp,200
@app.route('/monitor/hujan', methods=['GET'])
def monitor_hujan() :
resp = node1_curahhujan()
return resp,200
@app.route('/monitor/hujankonversi', methods=['GET'])
def monitor_hujankonversi() :
resp = node1_curahhujan_konversi()
return resp,200
@app.route('/monitor/node2', methods=['GET'])
def monitor_node2() :
resp = show_dataa()
return resp,200
@app.route('/monitor/suhu2', methods=['GET'])
def monitor_suhu2() :
resp = node2_suhu()
return resp,200
@app.route('/monitor/udara2', methods=['GET'])
def monitor_udara2() :
resp = node2_kelembapanudara()
return resp,200
@app.route('/monitor/tanah2', methods=['GET'])
def monitor_tanah2() :
resp = node2_kelembapantanah()
return resp,200
@app.route('/monitor/tanahkonversi2', methods=['GET'])
def monitor_tanahkonversi2() :
resp = node2_keltanah_konversi()
return resp,200
@app.route('/monitor/cahaya2', methods=['GET'])
def monitor_cahaya2() :
resp = node2_intensitascahaya()
return resp,200
@app.route('/monitor/hujan2', methods=['GET'])
def monitor_hujan2() :
resp = node2_curahhujan()
return resp,200
@app.route('/monitor/hujankonversi2', methods=['GET'])
def monitor_hujankonversi2() :
resp = node2_curahhujan_konversi()
return resp,200
@app.route('/monitor/register/user',methods=['POST'])
def user_register():
json_data = request.json
if json_data==None:
result = {"pesan":"data not found"}
resp = jsonify(result)
return resp,404
else:
if 'Username' not in json_data or 'Password' not in json_data or 'IP_Address' not in json_data:
result = {"pesan": "bad request"}
resp = jsonify(result)
return resp,403
else:
Username = json_data['Username']
Password = json_data['Password']
IP_Address = json_data['IP_Address']
cek = cek_username(Username)
if cek == False:
result = {"pesan" : " User Already Existed"}
resp= jsonify(result)
return resp, 208
else:
input_user(Username,Password,IP_Address)
result = {"pesan" : " input berhasil"}
resp= jsonify(result)
return resp, 200
@app.route('/monitor/login/user',methods=['POST'])
def user_login():
json_data = request.json
if json_data==None:
result = {"pesan":"data not found"}
resp = jsonify(result)
return resp,404
else:
if 'Username' not in json_data or 'Password' not in json_data or 'IP_Address' not in json_data:
result = {"pesan": "bad request"}
resp = jsonify(result)
return resp,403
else:
Username = json_data['Username']
Password = json_data['Password']
IP_Address = json_data['IP_Address']
cek = cek_data_user(Username,Password)
if cek==False:
result = {"pesan": "Forbidden"}
resp = jsonify(result)
return resp,203
else:
update_ip(IP_Address,Username,Password)
result = {"pesan" : " Selamat Datang "+Username}
resp= jsonify(result)
return resp, 200
if __name__ == "__main__" :
#serve(app, host="0.0.0.0", port=4001)
app.run(port=4001, debug=True)
|
triani16/Aplikasi-Monitoring-Tanaman
|
penerima.py
|
penerima.py
|
py
| 6,735 |
python
|
en
|
code
| 0 |
github-code
|
6
|
71969681149
|
"""This module is useful for generating yaml files for the withParams tests and for running unformal
compiler tests during development."""
import time
from kfp.compiler import compiler
from kfp import dsl
from kfp.dsl import _for_loop
class Coder:
def __init__(self, ):
self._code_id = 0
def get_code(self, ):
self._code_id += 1
return '{code:0{num_chars:}d}'.format(code=self._code_id, num_chars=_for_loop.LoopArguments.NUM_CODE_CHARS)
dsl.ParallelFor._get_unique_id_code = Coder().get_code
if __name__ == '__main__':
do_output = True
params = {}
if do_output:
@dsl.pipeline(name='my-pipeline')
def pipeline():
op0 = dsl.ContainerOp(
name="my-out-cop0",
image='python:alpine3.6',
command=["sh", "-c"],
arguments=['python -c "import json; import sys; json.dump([{\'a\': 1, \'b\': 2}, {\'a\': 10, \'b\': 20}], open(\'/tmp/out.json\', \'w\'))"'],
file_outputs={'out': '/tmp/out.json'},
)
with dsl.ParallelFor(op0.output) as item:
op1 = dsl.ContainerOp(
name="my-in-cop1",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["echo do output op1 item.a: %s" % item.a],
)
op_out = dsl.ContainerOp(
name="my-out-cop2",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["echo do output op2, outp: %s" % op0.output],
)
job_name = f'do-output=TRUE-passed-{time.time()}'
else:
@dsl.pipeline(name='my-pipeline')
def pipeline(loopidy_doop=[{'a': 1, 'b': 2}, {'a': 10, 'b': 20}]):
op0 = dsl.ContainerOp(
name="my-out-cop0",
image='python:alpine3.6',
command=["sh", "-c"],
arguments=['python -c "import json; import sys; json.dump([i for i in range(20, 31)], open(\'/tmp/out.json\', \'w\'))"'],
file_outputs={'out': '/tmp/out.json'},
)
with dsl.ParallelFor(loopidy_doop) as item:
op1 = dsl.ContainerOp(
name="my-in-cop1",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["echo no output global op1, item: %s" % item.a],
).after(op0)
op_out = dsl.ContainerOp(
name="my-out-cop2",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["echo no output global op2, outp: %s" % op0.output],
)
job_name = f'do-output=FALSE-global-{time.time()}'
yaml_text = compiler.Compiler().compile(pipeline, None)
print(yaml_text)
import kfp
import time
client = kfp.Client(host='127.0.0.1:8080/pipeline')
print(client.list_experiments())
pkg_path = '/tmp/witest_pkg.tar.gz'
compiler.Compiler().compile(pipeline, package_path=pkg_path)
exp = client.create_experiment('withparams_exp')
client.run_pipeline(
experiment_id=exp.id,
job_name=job_name,
pipeline_package_path=pkg_path,
params=params,
)
|
kubeflow/kfp-tekton-backend
|
sdk/python/tests/compiler/compiler_withparams_test_helper.py
|
compiler_withparams_test_helper.py
|
py
| 3,332 |
python
|
en
|
code
| 8 |
github-code
|
6
|
71997536508
|
from django.shortcuts import render, redirect
from django.contrib import messages
from django.contrib.auth.decorators import login_required
from .forms import *
from .models import *
# from my side...
@login_required(login_url='/useraccount/common_login')
def business_location_list(request):
if request.method == 'POST':
form = BusinessLocationForm(request.POST)
if form.is_valid():
form_save = form.save(commit=False)
form_save.save()
if form_save.location_id == '' or form_save.location_id == None:
form_save.location_id = 'LOC-1000' + str(form_save.id)
form_save.save()
messages.success(request, 'added a business location ' + str(form_save.name))
return redirect('business-location')
else:
form = BusinessLocationForm()
list_locations = BusinessLocation.objects.filter(status=True).order_by('-id')
return render(request, 'divmart_dashboard/business_location_list.html', {'lists':list_locations,'form':form})
@login_required(login_url='/useraccount/common_login')
def business_location_update(request, id):
loc_obj = BusinessLocation.objects.get(id=id)
if request.method == 'POST':
form = BusinessLocationForm(request.POST, instance=loc_obj)
if form.is_valid():
form.save()
messages.success(request, str(loc_obj.name) +' update success...')
return redirect('business-location')
else:
form = BusinessLocationForm(instance=loc_obj)
return render(request, 'divmart_dashboard/business_location_edit.html', {'form':form, 'loc_obj':loc_obj})
@login_required(login_url='/useraccount/common_login')
def business_location_delete(request, id):
loc_obj = BusinessLocation.objects.get(id=id)
if loc_obj:
loc_obj.status = False
loc_obj.save()
messages.info(request, str(loc_obj.name) + ' remove success..')
return redirect('business-location')
@login_required(login_url='/useraccount/common_login')
def add_tax_rate(request):
if request.method == 'POST':
form = TaxRateForm(request.POST)
if form.is_valid():
form_save = form.save(commit=False)
form_save.status = True
form_save.save()
return redirect('tax-rate')
else:
form = TaxRateForm()
tax_rates = TaxRate.objects.filter(status=True)
return render(request, 'divmart_dashboard/tax_rate.html', {'rates':tax_rates})
@login_required(login_url='/useraccount/common_login')
def edit_tax_rate(request, id):
tax_rate_obj = TaxRate.objects.get(id=id, status=True)
if request.method == 'POST':
form = TaxRateForm(request.POST, instance = tax_rate_obj)
if form.is_valid():
form.save()
return redirect('tax-rate')
else:
form = TaxRateForm(instance=tax_rate_obj)
return render(request, 'divmart_dashboard/tax_rate_edit.html', {'obj':tax_rate_obj})
@login_required(login_url='/useraccount/common_login')
def delete_tax_rate(request, id):
tax_rate_obj = TaxRate.objects.get(id=id, status=True)
tax_rate_obj.status = False
tax_rate_obj.save()
return redirect('tax-rate')
|
chaitphani/New-DivMart
|
div_settings/views.py
|
views.py
|
py
| 3,238 |
python
|
en
|
code
| 0 |
github-code
|
6
|
70720136829
|
import re
from zipfile import ZipFile
nothing = 90052
nothings = []
with ZipFile('channel.zip', 'r') as myzip:
def get_path(nothing):
return '{0}.txt'.format(nothing)
def get_next_nothing(nothing):
data = myzip.read(get_path(nothing)).decode('utf-8')
m = re.search('(\d*)$', data)
next_nothing = m.group(1)
return next_nothing
def get_comment(nothing):
return myzip.getinfo(get_path(nothing)).comment.decode('utf-8')
while(1):
try:
if nothing:
nothings.append(nothing)
nothing = get_next_nothing(nothing)
except:
break
print("".join([get_comment(n) for n in nothings]))
#http://www.pythonchallenge.com/pc/def/oxygen.html
|
akiran/pythonchallenge
|
challenge7.py
|
challenge7.py
|
py
| 758 |
python
|
en
|
code
| 0 |
github-code
|
6
|
17652959673
|
saver = tf.train.Saver()
session=tf.InteractiveSession()
# Initializing the variables
session.run(tf.global_variables_initializer())
for itr in range(training_iters):
offset = (itr * batch_size) % (labels.shape[0] - batch_size)
batch_x = X_train[offset:(offset + batch_size), :, :]
batch_y = y_train[offset:(offset + batch_size), :]
_, c = session.run([optimizer, loss_f],feed_dict={x: batch_x, y : batch_y, keep_prob: 0.95})
if itr % display_step == 0:
# Calculate batch accuracy
acc = session.run(accuracy, feed_dict={x: batch_x, y: batch_y, keep_prob: 1})
# Calculate batch loss
loss = session.run(loss_f, feed_dict={x: batch_x, y: batch_y, keep_prob: 1})
print("Iter " + str(itr) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
print('Test accuracy: ',round(session.run(accuracy, feed_dict={x: X_test, y: y_test, keep_prob: 1}) , 3))
saver.save(session, save_path = "./model/mfcc_audio.ckpt")
|
AntoniaLovjer/audio_adversarial_training
|
train.py
|
train.py
|
py
| 1,065 |
python
|
en
|
code
| 1 |
github-code
|
6
|
30424017235
|
import numpy as np
import re
import operator
from Indice_Invertido import Indice_Invertido
class Consulta:
def formataString(self, s):
s = s.lower()
s = re.sub("[:,'|.@()?!#$&]"," ", s)
s = s.replace("\n", " ")
s = re.sub('[^A-Za-z0-9 ]+', '', s)
strings = s.split()
return strings
def __init__(self, queryOriginal, indInv):
self.queryOriginal = queryOriginal
self.numPalavras = 0
self.indiceDaConsulta = {}
self.vetorDaConsulta = np.zeros((indInv.numPalavras,1))
self.resultado = {}
self.documentos = {}
self.formataQuery()
self.constroiIndiceConsulta(indInv)
def formataQuery (self):
palavrasNaConsulta = self.formataString(self.queryOriginal)
for palavra in palavrasNaConsulta:
if palavra in self.indiceDaConsulta:
self.indiceDaConsulta[palavra] += 1
else:
self.indiceDaConsulta[palavra] = 1
self.numPalavras += 1
def constroiIndiceConsulta(self, indInv):
palavrasCoincidentes = 0
indicePalavra = 0;
for palavra, docs in indInv.indice.items():
if palavra in self.indiceDaConsulta.keys():
nx = len(docs)
idf = np.log(indInv.numDocs/nx)
w = self.indiceDaConsulta[palavra] * idf
self.vetorDaConsulta[indicePalavra,0] = w
palavrasCoincidentes+=1
indicePalavra+=1
if palavrasCoincidentes != 0:
self.verificaConsulta(indInv)
else:
print("Nada a fazer")
def verificaConsulta(self, indInv):
Q = self.vetorDaConsulta
for i in range(np.shape(indInv.coordenadas)[1]):
vec = indInv.coordenadas[:, i]
vec = vec.reshape((len(vec),1))
similaridade = (vec.T @ Q)/(np.linalg.norm(vec) * np.linalg.norm(Q))
self.resultado[i] = similaridade[0][0]
self.organizaResultado(indInv)
def organizaResultado(self, indInv):
for idDoc, similaridade in self.resultado.items():
if similaridade != 0:
for nomeDoc, idDocIndInv in indInv.arquivos.items():
if idDoc == idDocIndInv:
self.documentos[nomeDoc] = similaridade
self.documentos = sorted(self.documentos.items(), key=operator.itemgetter(1))
|
pdrsa/PSE
|
code/Consulta.py
|
Consulta.py
|
py
| 2,563 |
python
|
pt
|
code
| 0 |
github-code
|
6
|
13453404410
|
import sqlite3
from flask import Flask
import json
app = Flask(__name__)
@app.route('/animals/<idx>')
def animals(idx):
with sqlite3.connect("animal.db") as connection:
cursor = connection.cursor()
query = f"""
select * from animals_final
left join outcomes on outcomes.animal_id = animals_final.animal_id
where animals_final.id = {idx}
"""
cursor.execute(query)
result = cursor.fetchall()
if len(result) == 1:
line = result[0]
result_dict = {}
number = 1
for i in line:
result_dict[f"{number}"] = i
number += 1
else:
result_dict = "Nothing found"
return json.dumps(result_dict)
app.run(debug=True, port=5001)
|
aquwue/lesson_15
|
main_program.py
|
main_program.py
|
py
| 812 |
python
|
en
|
code
| 0 |
github-code
|
6
|
18805686608
|
# 3 - Imprima os 10 primeiros números naturais após um número inserido no console usando um loop while:
num = int(input('Informe um número: '))
contador = 0
while (contador < 10):
if num > 0:
num += 1
contador += 1
print(num)
else:
print('erro!, não existem números naturais negativos')
break
|
chrystian-souza/exercicios_em_python
|
exerciciosAula4/exercicio03.py
|
exercicio03.py
|
py
| 352 |
python
|
pt
|
code
| 0 |
github-code
|
6
|
17996198287
|
# -*- coding:utf-8 -*-
# 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
# 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) == 1:
return nums[0]
g = l = -10000000
for n in nums:
l = max(n, n + l)
g = max(l, g)
return g
if __name__ == '__main__':
print(Solution().maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))
|
shirleychangyuanyuan/LeetcodeByPython
|
53-最大子序和.py
|
53-最大子序和.py
|
py
| 672 |
python
|
zh
|
code
| 0 |
github-code
|
6
|
13680558659
|
""" Production Settings """
import os
import dj_database_url
from .dev import *
############
# SECURITY #
############
DEBUG = bool(os.getenv('DJANGO_DEBUG', ''))
SECRET_KEY = os.getenv('DJANGO_SECRET_KEY', SECRET_KEY)
ALLOWED_HOSTS = ['*']
###########
# LOGGING #
###########
LOGGING = {
'version': 1,
'handlers': {
'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',
},
},
'loggers': {
'django.request': {
'handlers':['console'],
'propagate': True,
'level':'DEBUG',
}
},
}
|
team-terminus17/dublin_bus
|
backend/settings/prod.py
|
prod.py
|
py
| 604 |
python
|
en
|
code
| 1 |
github-code
|
6
|
28749398084
|
import urllib2
import json
import mraa
import threading
import sys
import time
moveSensor = mraa.Gpio(20)
moveSensor.dir(mraa.DIR_IN)
soundSensor = mraa.Gpio(21)
soundSensor.dir(mraa.DIR_IN)
fotoSensor = mraa.Gpio(43)
fotoSensor.dir(mraa.DIR_IN)
gasSensor = mraa.Gpio(17)
gasSensor.dir(mraa.DIR_IN)
def update():
threading.Timer(3.0, update).start()
moveVal = moveSensor.read()
if (moveVal == 1):
moveValue = True
else:
moveValue = False
gasVal = gasSensor.read()
if (gasVal == 0):
gasValue = True
else:
gasValue = False
fotoVal = fotoSensor.read()
if (fotoVal == 1):
fotoValue = True
else:
fotoValue = False
soundVal = soundSensor.read()
if (soundVal == 1):
soundValue = True
else:
soundValue = False
url = 'http://%s:5000/api/rooms/0' % host
data = json.dumps({'movement': moveValue, 'gas': gasValue, 'light': fotoValue, 'noise': soundValue, 'timestamp': time.time()})
req = urllib2.Request(url, data, {'Content-Type': 'application/json'})
f = urllib2.urlopen(req)
response = f.read()
f.close()
host = sys.argv[1]
update();
|
Jasiu0/SmartGlassIoT
|
client-linkit/rest_client.py
|
rest_client.py
|
py
| 1,172 |
python
|
en
|
code
| 0 |
github-code
|
6
|
18028682844
|
from pyfiglet import Figlet
import os
from shutil import copyfile
import shutil
import sqlite3
import subprocess
import winreg
import base64
import subprocess
import datetime
import socket
import ctypes
def init():
f = Figlet(font='slant')
print(f.renderText('Reboot'))
print("This program is Artifact collecter\n")
def showOptions():
print("\n==========Options==========")
print("1) Memory Dump")
print("2) Registry Hive")
print("3) System Info")
print("4) System Audit Policy")
print("5) Group Policy")
print("6) Event Viewer Log")
print("7) Services Log")
print("8) Hosts Data")
print("9) SRUM (System Resource Utilization Monitor)")
print("10) Environment Variables")
print("11) Patch List")
print("12) Process List")
print("13) Opened Port")
print("14) IP Config Info")
print("15) ARP Info")
print("16) Net BIOS")
print("17) Opened Handle")
print("18) Task Schedule Info")
print("19) System Logon Info")
print("20) UserAssist")
print("21) AutoRun")
print("22) Registry User")
print("23) Internet Browser History")
print("24) Recycle Bin")
print("25) LNK File")
print("26) PowerShell Log File")
print("27) Registerd Service Info")
print("28) Recent Activity Info")
print("29) Prefetch")
print("30) NTFS Artifact")
print("777) ALL")
print("0) exit program")
def registryHive():
print("\n==========Registry Hive File==========")
current_directory = os.getcwd()
export_registry_hive(current_directory, winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE")
export_registry_hive(current_directory, winreg.HKEY_CURRENT_USER, r"Software")
def export_registry_hive(output_directory, hive_name, hive_path):
registry_folder = os.path.join(output_directory, "RegistryHive")
if not os.path.exists(registry_folder):
os.makedirs(registry_folder)
try:
with winreg.ConnectRegistry(None, hive_name) as hive:
hive_output_file = os.path.join(registry_folder, f"{hive_name}_hive.txt")
with open(hive_output_file, 'w', encoding='utf-16') as file:
def export_subkeys(key, indent=""):
for i in range(winreg.QueryInfoKey(key)[0]):
subkey_name = winreg.EnumKey(key, i)
subkey_path = os.path.join(hive_path, subkey_name)
file.write(f"{indent}[{subkey_path}]\n")
with winreg.OpenKey(key, subkey_name) as subkey:
export_subkeys(subkey, indent + " ")
export_subkeys(hive)
print(f"{hive_name} hive exported to {hive_output_file}")
except Exception as e:
print(f"Error: {e}")
def systemInfo():
print("\n==========System Info File==========")
subprocess.run(['systeminfo'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8')
output_directory = os.getcwd()
system_info_folder = os.path.join(output_directory, "SystemInfo")
if not os.path.exists(system_info_folder):
os.makedirs(system_info_folder)
try:
system_info_output_file = os.path.join(system_info_folder, "system_info.txt")
with open(system_info_output_file, 'w', encoding='utf-8') as file:
file.write(subprocess.getoutput('systeminfo'))
print(f"System info exported to {system_info_output_file}")
except Exception as e:
print(f"Error: {e}")
def systemAudit():
print("\n==========System Audit Policy File==========")
subprocess.run(['auditpol', '/get', '/category:*'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8')
output_directory = os.getcwd()
audit_policy_folder = os.path.join(output_directory, "AuditPolicy")
if not os.path.exists(audit_policy_folder):
os.makedirs(audit_policy_folder)
try:
audit_policy_output_file = os.path.join(audit_policy_folder, "audit_policy_info.txt")
with open(audit_policy_output_file, 'w', encoding='utf-8') as file:
file.write(subprocess.getoutput('auditpol /get /category:*'))
print(f"Audit policy info exported to {audit_policy_output_file}")
except Exception as e:
print(f"Error: {e}")
def groupPolicy():
print("\n==========Group Policy File==========")
subprocess.run(['gpresult', '/R'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8')
output_directory = os.getcwd()
group_policy_folder = os.path.join(output_directory, "GroupPolicy")
if not os.path.exists(group_policy_folder):
os.makedirs(group_policy_folder)
try:
group_policy_output_file = os.path.join(group_policy_folder, "group_policy_info.txt")
with open(group_policy_output_file, 'w', encoding='utf-8') as file:
file.write(subprocess.getoutput('gpresult /R'))
print(f"Group policy info exported to {group_policy_output_file}")
except Exception as e:
print(f"Error: {e}")
def eventLog():
print("\n==========Event Viewer Log File==========")
output_directory = os.getcwd()
event_logs_folder = os.path.join(output_directory, "EventLogs")
if not os.path.exists(event_logs_folder):
os.makedirs(event_logs_folder)
try:
# 시스템 이벤트 로그 내용 가져오기
system_log_output_file = os.path.join(event_logs_folder, "system_event_log.txt")
subprocess.run(['wevtutil', 'qe', 'System', '/f:text', '/c:1'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8')
with open(system_log_output_file, 'w', encoding='utf-8') as file:
file.write(subprocess.getoutput(f'wevtutil qe System /f:text /c:1'))
print(f"System event log exported to {system_log_output_file}")
# 응용 프로그램 이벤트 로그 내용 가져오기
application_log_output_file = os.path.join(event_logs_folder, "application_event_log.txt")
subprocess.run(['wevtutil', 'qe', 'Application', '/f:text', '/c:1'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8')
with open(application_log_output_file, 'w', encoding='utf-8') as file:
file.write(subprocess.getoutput(f'wevtutil qe Application /f:text /c:1'))
print(f"Application event log exported to {application_log_output_file}")
except Exception as e:
print(f"Error: {e}")
def serviceLog():
print("\n==========Service Log File==========")
output_directory = os.getcwd()
service_log_folder = os.path.join(output_directory, "ServiceLog")
if not os.path.exists(service_log_folder):
os.makedirs(service_log_folder)
try:
# 서비스 로그를 가져와서 파일로 저장
service_log_output_file = os.path.join(service_log_folder, "service_log.txt")
subprocess.run(['net', 'start'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8')
with open(service_log_output_file, 'w', encoding='utf-8') as file:
file.write(subprocess.getoutput('net start'))
print(f"Service log exported to {service_log_output_file}")
except Exception as e:
print(f"Error: {e}")
def hostsData():
print("\n==========Hosts Data File==========")
output_directory = os.getcwd()
hosts_folder = os.path.join(output_directory, "Hosts")
if not os.path.exists(hosts_folder):
os.makedirs(hosts_folder)
try:
hosts_file_path = r"C:\Windows\System32\drivers\etc\hosts" # Hosts 파일 경로
hosts_output_file = os.path.join(hosts_folder, "hosts.txt")
with open(hosts_file_path, 'r', encoding='utf-8') as input_file, open(hosts_output_file, 'w', encoding='utf-8') as output_file:
hosts_content = input_file.read()
output_file.write(hosts_content)
print(f"Hosts file exported to {hosts_output_file}")
except Exception as e:
print(f"Error: {e}")
def srum():
print("\n==========SRUM File==========")
output_directory = os.getcwd()
srum_folder = os.path.join(output_directory, "SRUM")
if not os.path.exists(srum_folder):
os.makedirs(srum_folder)
try:
with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\SRUM\Extensions", 0, winreg.KEY_READ) as key:
i = 0
while True:
try:
subkey_name = winreg.EnumKey(key, i)
subkey_path = os.path.join(r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\SRUM\Extensions", subkey_name)
with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, subkey_path, 0, winreg.KEY_READ) as subkey:
j = 0
while True:
try:
value_name, srum_data, _ = winreg.EnumValue(subkey, j)
# 각 데이터를 파일로 저장 (바이너리 모드 또는 문자열 모드로 열기)
srum_output_file = os.path.join(srum_folder, f"{subkey_name}_{value_name}.txt")
with open(srum_output_file, 'wb' if isinstance(srum_data, bytes) else 'w') as file:
if isinstance(srum_data, bytes):
file.write(srum_data)
else:
file.write(str(srum_data))
print(f"SRUM data from {subkey_name}/{value_name} exported to {srum_output_file}")
j += 1
except OSError as e:
break
i += 1
except OSError as e:
break
if i == 0:
print("No SRUM data found.")
except Exception as e:
print(f"Error: {e}")
def environmentVar():
print("\n==========Envionment Variable File==========")
output_directory = os.getcwd()
environ_var_folder = os.path.join(output_directory, "EnvironmentVar")
if not os.path.exists(environ_var_folder):
os.makedirs(environ_var_folder)
output_file = os.path.join(environ_var_folder, "environment_variables.txt")
try:
with open(output_file, 'w') as file:
for key, value in os.environ.items():
file.write(f"{key} = {value}\n")
print(f"Environment variables exported to {output_file}")
except Exception as e:
print(f"Error: {e}")
def patchList():
print("\n==========Patch List File==========")
output_directory = os.getcwd()
patch_list_folder = os.path.join(output_directory, "PatchList")
if not os.path.exists(patch_list_folder):
os.makedirs(patch_list_folder)
try:
with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based Servicing\Packages", 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key:
i = 0
while True:
try:
package_name = winreg.EnumKey(key, i)
patch_list_file = os.path.join(patch_list_folder, f"{package_name}.txt")
with open(patch_list_file, 'w') as file:
file.write(package_name)
i += 1
except OSError as e:
break
if i > 0:
print(f"Patch list exported to {patch_list_folder}")
else:
print("No patch list information found.")
except Exception as e:
print(f"Error: {e}")
def processList():
print("\n==========Process List File==========")
file_path = os.getcwd()
file_path = os.path.join(file_path, "ProcessList")
if not os.path.exists(file_path):
os.makedirs(file_path)
file_path = os.path.join(file_path, "process_list.txt")
process_info_list = []
for process in psutil.process_iter(attrs=['pid', 'name', 'username', 'memory_info']):
info = process.info
pid = info['pid']
name = info['name']
username = info['username']
memory = info['memory_info'].rss # Resident Set Size: 메모리 사용량
process_info = f"PID: {pid}, Process Name: {name}, User: {username}, Memory: {memory} bytes"
process_info_list.append(process_info)
with open(file_path, 'w') as f:
for process in process_info_list:
f.write(process + '\n')
print(f"실행 중인 프로세스 정보가 {file_path} 에 저장되었습니다.")
def openPort():
print("\n==========Open Port File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "OpenPort")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
file_path = os.path.join(destination_folder, "open_ports.txt")
open_ports = []
for conn in psutil.net_connections(kind='inet'):
laddr, raddr, status, pid = conn.laddr, conn.raddr, conn.status, conn.pid
if raddr:
open_ports.append(f"{laddr} <--> {raddr} {status} {pid}")
else:
open_ports.append(f"{laddr} {status} {pid}")
with open(file_path, 'w') as f:
for port in open_ports:
f.write(f"{port}\n")
print(f"Open port information has been saved to {file_path}")
def IPConfigInfo():
print("\n==========IP Config File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "IPConfig")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
ip_info = {}
hostname = socket.gethostname()
local_ip = socket.gethostbyname(hostname)
ip_info["Hostname"] = hostname
ip_info["Local IP"] = local_ip
interfaces = psutil.net_if_addrs()
for interface, addrs in interfaces.items():
ip_info[interface] = []
for addr in addrs:
ip_info[interface].append(str(addr))
filename = os.path.join(destination_folder, f"ip_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt")
with open(filename, 'w') as f:
for key, value in ip_info.items():
f.write(f"{key}: {value}\n")
print(f"IP 설정 정보가 {filename} 에 저장되었습니다.")
def arpInfo():
print("\n==========ARP Info File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "ARPInfo")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
try:
# 'arp -a' 명령을 실행하고 결과를 반환받습니다.
arp_output = subprocess.check_output("arp -a", shell=True, stderr=subprocess.STDOUT, text=True)
except subprocess.CalledProcessError as e:
arp_output = f"An error occurred while trying to fetch ARP info: {str(e)}"
# 파일 이름에 현재 시간을 추가하여 고유하게 만듭니다.
filename = os.path.join(destination_folder, f"arp_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt")
# ARP 정보를 .txt 파일에 저장합니다.
with open(filename, 'w') as f:
f.write(arp_output)
print(f"ARP 정보가 {filename} 에 저장되었습니다.")
def netBIOS():
print("\n==========Net BIOS File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "NetBIOS")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
try:
# 'nbtstat -n' 명령을 실행하고 그 결과를 반환합니다.
netbios_output = subprocess.check_output("nbtstat -n", shell=True, stderr=subprocess.STDOUT, text=True)
except subprocess.CalledProcessError as e:
netbios_output = f"An error occurred while trying to fetch NetBIOS info: {str(e)}"
# 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다.
filename = os.path.join(destination_folder, f"netbios_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt")
# NetBIOS 정보를 .txt 파일에 저장합니다.
with open(filename, 'w') as f:
f.write(netbios_output)
print(f"NetBIOS 정보가 {filename} 에 저장되었습니다.")
def openedHandle():
print("\n==========Opened Handle File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "OpenHandle")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
processes = []
for proc in psutil.process_iter(['pid', 'name', 'open_files']):
processes.append(proc.info)
# 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다.
filename = os.path.join(destination_folder, f"handle_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt")
# 핸들 정보를 .txt 파일에 저장합니다.
with open(filename, 'w') as f:
for proc in processes:
f.write(f"PID: {proc['pid']}, Name: {proc['name']}\n")
if proc['open_files']:
for open_file in proc['open_files']:
f.write(f"\t{open_file}\n")
print(f"열려있는 핸들 정보가 {filename} 에 저장되었습니다.")
def taskSchedule():
print("\n==========Task Schedule File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "JobSchedule")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
try:
# 'schtasks' 명령을 실행하고 그 결과를 반환합니다.
output = subprocess.check_output("schtasks /query /fo LIST", shell=True, stderr=subprocess.STDOUT, text=True)
except subprocess.CalledProcessError as e:
output = f"An error occurred while trying to fetch task scheduler info: {str(e)}"
# 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다.
filename = os.path.join(destination_folder, f"task_scheduler_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt")
# 작업 스케줄러 정보를 .txt 파일에 저장합니다.
with open(filename, 'w') as f:
f.write(output)
print(f"작업 스케줄 정보가 {filename} 에 저장되었습니다.")
def systemLogon():
print("\n==========System Logon File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "SystemLogon")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
file_path = os.path.join(destination_folder, "logon_history.txt")
query = "wevtutil qe Security /q:\"*[System[Provider[@Name='Microsoft-Windows-Security-Auditing'] and (EventID=4624)]]\" /c:1 /rd:true /f:text"
result = subprocess.run(query, capture_output=True, text=True, shell=True)
with open(file_path, 'w') as f:
f.write(result.stdout)
print(f"시스템 로그온 정보가 {file_path} 에 저장되었습니다.")
def memoryDump():
print("\n==========MemoryDump File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "MemoryDump")
# "MemoryDump" 폴더 생성 후 저장
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# 메모리 덤프 파일을 저장할 디렉토리 경로 지정
dump_directory = destination_folder
# psexec.exe 경로 (psexec을 다운로드한 경로로 설정)
psexec_path = os.getcwd()
psexec_path = os.path.join(psexec_path, "PSTools")
psexec_path = os.path.join(psexec_path, "PsExec.exe")
# procdump.exe 경로 (procdump를 설치한 경로로 설정)
procdump_path = os.getcwd()
procdump_path = os.path.join(procdump_path, "Procdump")
procdump_path = os.path.join(procdump_path, "procdump.exe")
# 현재 실행 중인 모든 프로세스 가져오기
running_processes = list(psutil.process_iter(attrs=['pid', 'name']))
# 실행 중인 모든 프로세스에 대해 메모리 덤프 생성
for process in running_processes:
process_name = process.info['name']
process_pid = process.info['pid']
dump_file_path = os.path.join(dump_directory, f"{process_name}_{process_pid}_dump.dmp")
# procdump을 사용하여 메모리 덤프 실행
cmd = [procdump_path, f"-ma", process_name, dump_file_path]
try:
subprocess.run(cmd, check=True)
print(f"{process_name} 프로세스의 메모리 덤프 생성 완료:", dump_file_path)
except subprocess.CalledProcessError as e:
print(f"{process_name} 프로세스의 메모리 덤프 생성 중 오류 발생:", e)
print("모든 프로세스의 메모리 덤프 생성 완료")
def userAssist():
print("\n==========UserAssist File==========")
keys_to_copy = [
# 실행파일 기록 subkey
r"Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-9926F41749EA}\Count",
# 바로가기 실행 기록 subkey
r"Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{F4E57C4B-2036-45F0-A9AB-443BCFE33D9F}\Count"
]
current_directory = os.getcwd()
destination_folder = os.path.join(current_directory, "UserAssist")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
try:
with winreg.OpenKey(winreg.HKEY_CURRENT_USER, keys_to_copy[0], 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key:
userAssistRegistry(key, destination_folder, 1)
with winreg.OpenKey(winreg.HKEY_CURRENT_USER, keys_to_copy[1], 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key:
userAssistRegistry(key, destination_folder, 2)
except Exception as e:
print(f"Error: {e}")
def sanitize_filename(filename):
# 파일 이름에 유효하지 않은 문자를 대체
invalid_chars = ['\\', '/', ':', '*', '?', '"', '<', '>', '|', '.', '&', '!', '@', '#', '$', '%', '^', '(', ')', '[', ']', '{', '}', '+', '=', ',', ';', '`', "'", '~', ' ']
for char in invalid_chars:
filename = filename.replace(char, '_')
# 파일 이름을 최대 100자로 제한
return filename[:100]
def userAssistRegistry(subkey, output_directory, num):
try:
if not os.path.exists(output_directory):
os.makedirs(output_directory)
if num == 1:
subkey_name = str(winreg.QueryInfoKey(subkey)[0])
subkey_path = os.path.join(output_directory, "CEBFF5CD-ACE2-4F4F-9178-9926F41749EA")
else:
subkey_name = str(winreg.QueryInfoKey(subkey)[0])
subkey_path = os.path.join(output_directory, "F4E57C4B-2036-45F0-A9AB-443BCFE33D9F")
if not os.path.exists(subkey_path):
os.makedirs(subkey_path)
i = 0
while True:
try:
value_name, value_data, _ = winreg.EnumValue(subkey, i)
value_output_file = os.path.join(subkey_path, f"{sanitize_filename(value_name)}.txt")
# 중간 디렉터리가 없는 경우 생성
value_output_dir = os.path.dirname(value_output_file)
if not os.path.exists(value_output_dir):
os.makedirs(value_output_dir)
with open(value_output_file, 'w') as file:
file.write(str(value_data)) # value_data를 문자열로 변환하여 쓰기
i += 1
except OSError as e:
print(f"Error while processing subkey {subkey_name}: {e}")
break
print(f"Data from subkey {subkey_name} has been saved to {subkey_path}")
except Exception as e:
print(f"Error: {e}")
def autoRun():
print("\n==========AutoRun File==========")
output_directory = os.getcwd()
autorun_folder = os.path.join(output_directory, "AutoRun")
if not os.path.exists(autorun_folder):
os.makedirs(autorun_folder)
try:
with winreg.OpenKey(winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Run", 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key:
values = {}
i = 0
while True:
try:
value_name, value_data, _ = winreg.EnumValue(key, i)
values[value_name] = value_data
i += 1
except OSError as e:
break
if values:
output_file = os.path.join(autorun_folder, "autorun_values.txt")
with open(output_file, 'w') as file:
for name, data in values.items():
file.write(f"{name} = {data}\n")
print(f"AutoRun values exported to {output_file}")
else:
print("No AutoRun values found.")
except Exception as e:
print(f"Error: {e}")
def registryUser():
print("\n==========Registry User File==========")
output_directory = os.getcwd()
registry_folder = os.path.join(output_directory, "AllUserRegistry")
if not os.path.exists(registry_folder):
os.makedirs(registry_folder)
try:
with winreg.ConnectRegistry(None, winreg.HKEY_USERS) as users_hive:
with winreg.OpenKey(users_hive, None) as users_key:
num_subkeys = winreg.QueryInfoKey(users_key)[0]
for i in range(num_subkeys):
user_sid = winreg.EnumKey(users_key, i)
user_hive_path = f"{user_sid}\\Software" # 사용자 하이브 경로
with winreg.ConnectRegistry(None, winreg.HKEY_USERS) as user_hive:
with winreg.CreateKey(user_hive, user_hive_path) as user_key:
# 사용자 레지스트리 정보를 파일로 저장
user_output_file = os.path.join(registry_folder, f"{user_sid}_registry.txt")
with open(user_output_file, 'w', encoding='utf-16') as file:
def export_subkeys(key, indent=""):
for j in range(winreg.QueryInfoKey(key)[0]):
subkey_name = winreg.EnumKey(key, j)
subkey_path = os.path.join(user_hive_path, subkey_name)
file.write(f"{indent}[{subkey_path}]\n")
with winreg.OpenKey(key, subkey_name) as subkey:
export_subkeys(subkey, indent + " ")
export_subkeys(user_key)
print(f"{user_sid} registry exported to {user_output_file}")
except Exception as e:
print(f"Error: {e}")
def export_registry_key(reg_file, hkey, key_path):
try:
key = winreg.OpenKey(hkey, key_path)
for i in range(winreg.QueryInfoKey(key)[0]):
sub_key_name = winreg.EnumKey(key, i)
sub_key_path = os.path.join(key_path, sub_key_name)
reg_file.write(f'\n[{sub_key_path}]\n')
export_registry_key(reg_file, hkey, sub_key_path)
for i in range(winreg.QueryInfoKey(key)[1]):
value_name, value_data, value_type = winreg.EnumValue(key, i)
if value_type == winreg.REG_SZ:
reg_file.write(f'"{value_name}"="{value_data}"\n')
elif value_type == winreg.REG_DWORD:
reg_file.write(f'"{value_name}"=dword:{value_data:08X}\n')
# 여러 다른 레지스트리 값 유형에 대한 처리 추가 가능
except Exception as e:
pass
def save_browser_history():
print("\n==========Browser History File==========")
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "BrowserHistory")
# "MemoryDump" 폴더 생성 후 저장
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# 크롬 브라우저의 기록 데이터베이스 경로
chrome_history_path = os.path.expanduser('~') + '\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\History'
# 복사할 임시 파일 경로
temp_db_path = os.path.join(destination_folder, 'temp_history')
# 기록 데이터베이스 파일 복사
copyfile(chrome_history_path, temp_db_path)
# 데이터베이스 연결
connection = sqlite3.connect(temp_db_path)
cursor = connection.cursor()
# 방문 기록 가져오기
cursor.execute("SELECT title, url, last_visit_time FROM urls")
history = cursor.fetchall()
# 파일로 저장
history_file_path = os.path.join(destination_folder, 'browser_history.txt')
with open(history_file_path, 'w', encoding='utf-8') as file:
for item in history:
title, url, timestamp = item
time_formatted = str(timestamp)
file.write(f"Title: {title}\nURL: {url}\nTimestamp: {time_formatted}\n\n")
# 연결 종료 및 임시 데이터베이스 파일 삭제
cursor.close()
connection.close()
os.remove(temp_db_path)
print("브라우저 기록이 'Browser' 폴더에 저장되었습니다.")
def recycleBin():
print("\n==========Recycle Bin File==========")
# 'RecycleBin' 폴더 생성
destination_folder = os.path.join(os.getcwd(), 'RecycleBin')
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
try:
# Powershell 스크립트 실행
script_path = os.path.join(os.path.dirname(__file__), 'copy_recycle.ps1')
command = ["powershell", "-ExecutionPolicy", "Bypass", "-File", script_path]
subprocess.run(command, shell=True, check=True)
print("휴지통 내용이 'RecycleBin' 폴더에 복사되었습니다.")
except Exception as e:
print(f"오류가 발생했습니다: {e}")
def lnkFile():
print("\n==========LNK File==========")
# LNK 폴더 생성 후 저장
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "LNK")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# .lnk파일 위치
source_folder = os.path.expanduser("~") + "\\AppData\\Roaming\\Microsoft\\Windows\\Recent"
# file copy
for root, dirs, files in os.walk(source_folder):
for file in files:
source_file_path = os.path.join(root, file)
destination_file_path = os.path.join(destination_folder, file)
try:
shutil.copy2(source_file_path, destination_file_path)
print(f"복사 완료: {file}")
except Exception as e:
print(f"복사 실패: {file}, 오류: {e}")
def PowerShellLogFile():
print("\n==========PowerShell Log File==========")
# PowerShellLog 폴더 생성 후 저장
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "PowerShellLog")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# .lnk파일 위치
source_folder = os.path.expanduser("~") + "\\AppData\\Roaming\\Microsoft\\Windows\\PowerShell\\PSReadLine"
# file copy
for root, dirs, files in os.walk(source_folder):
for file in files:
source_file_path = os.path.join(root, file)
destination_file_path = os.path.join(destination_folder, file)
try:
shutil.copy2(source_file_path, destination_file_path)
print(f"복사 완료: {file}")
except Exception as e:
print(f"복사 실패: {file}, 오류: {e}")
def registeredService():
print("\n==========Registered Service File==========")
# PowerShellLog 폴더 생성 후 저장
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "RegisteredService")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
filename = os.path.join(destination_folder, f"service_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt")
try:
# 'sc query' 명령을 실행하여 서비스 정보를 가져옵니다.
output = subprocess.check_output("sc query", shell=True, text=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
output = f"An error occurred while trying to fetch service info: {str(e)}"
# 서비스 정보를 .txt 파일에 저장합니다.
with open(filename, 'w') as f:
f.write(output)
print(f"등록된 서비스 정보가 {filename} 에 저장되었습니다.")
def recentActivity():
print("\n==========Recent Activity File==========")
# PowerShellLog 폴더 생성 후 저장
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "RecentActivity")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# Recent Items 폴더의 경로를 가져옵니다.
recent_folder = os.path.join(os.environ['USERPROFILE'], r'AppData\Roaming\Microsoft\Windows\Recent')
recent_items = []
# 폴더 내의 모든 파일과 폴더를 나열합니다.
for item in os.listdir(recent_folder):
item_path = os.path.join(recent_folder, item)
item_stat = os.stat(item_path)
# 파일의 마지막 액세스 시간을 가져옵니다.
last_access_time = datetime.datetime.fromtimestamp(item_stat.st_atime).strftime('%Y-%m-%d %H:%M:%S')
recent_items.append(f"{item}: Last accessed at {last_access_time}")
# 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다.
filename = os.path.join(destination_folder, f"recent_activity_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt")
# 최근 활동 정보를 .txt 파일에 저장합니다.
with open(filename, 'w') as f:
for info in recent_items:
f.write(f"{info}\n")
print(f"최근 활동 정보가 {filename} 에 저장되었습니다.")
def prefetch():
print("\n==========Prefetch File==========")
# PowerShellLog 폴더 생성 후 저장
current_directory = os.path.dirname(os.path.abspath(__file__))
destination_folder = os.path.join(current_directory, "Prefetch")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# Prefetch 폴더 경로
prefetch_path = r"C:\Windows\Prefetch"
# Prefetch 폴더에서 .pf 파일 목록 수집
try:
prefetch_files = [f for f in os.listdir(prefetch_path) if f.endswith('.pf')]
except PermissionError:
print("관리자 권한이 필요합니다.")
exit()
for prefetch_file in prefetch_files:
source_file = os.path.join(prefetch_path, prefetch_file)
destination_file = os.path.join(destination_folder, prefetch_file)
shutil.copy(source_file, destination_file)
print(f"prefetch 파일이 {destination_file} 에 저장되었습니다.")
def NTFS():
print("\n==========NTFS Artifact File==========")
script_dir = os.path.dirname(os.path.abspath(__file__))
ntfs_folder = os.path.join(script_dir, 'NTFS')
os.makedirs(ntfs_folder, exist_ok=True) # 'NTFS' 폴더 생성 (이미 존재하면 무시)
# 복사할 NTFS 시스템 파일
ntfs_files = ["$MFT", "$LogFile", "$Extend\\$UsnJrnl:$J"]
for ntfs_file in ntfs_files:
source_file = "C:\\" + ntfs_file
destination_file_name = ntfs_file.replace('$', '').replace(':', '').replace('\\', '_') + ".txt"
destination_file = os.path.join(ntfs_folder, destination_file_name)
command = "fsutil file queryextents {} > {}".format(source_file, destination_file)
try:
subprocess.run(command, shell=True, check=True, stderr=subprocess.PIPE)
print("{}를 성공적으로 복사했습니다.".format(source_file))
except subprocess.CalledProcessError as e:
print("{}를 복사하는 데 실패했습니다: {}".format(source_file, e.stderr.decode('utf-8')))
print(f"NTFS 파일이 {destination_file} 에 저장되었습니다.")
def main():
init()
while(True):
showOptions()
options = input("[Select Option] : ")
if options == "0":
print("Good Bye!")
exit()
elif options == "1":
memoryDump()
elif options == "2":
registryHive()
elif options == "3":
systemInfo()
elif options == "4":
systemAudit()
elif options == "5":
groupPolicy()
elif options == "6":
eventLog()
elif options == "7":
serviceLog()
elif options == "8":
hostsData()
elif options == "9":
srum()
elif options == "10":
environmentVar()
elif options == "11":
patchList()
elif options == "12":
processList()
elif options == "13":
openPort()
elif options == "14":
IPConfigInfo()
elif options == "15":
arpInfo()
elif options == "16":
netBIOS()
elif options == "17":
openedHandle()
elif options == "18":
taskSchedule()
elif options == "19":
systemLogon()
elif options == "20":
userAssist()
elif options == "21":
autoRun()
elif options == "22":
registryUser()
elif options == "23":
save_browser_history()
elif options == "24":
recycleBin()
elif options == "25":
lnkFile()
elif options == "26":
PowerShellLogFile()
elif options == "27":
registeredService()
elif options == "28":
recentActivity()
elif options == "29":
prefetch()
elif options == "30":
NTFS()
elif options == "777":
memoryDump()
registryHive()
systemInfo()
systemAudit()
groupPolicy()
eventLog()
serviceLog()
hostsData()
srum()
environmentVar()
patchList()
processList()
openPort()
IPConfigInfo()
arpInfo()
netBIOS()
openedHandle()
taskSchedule()
systemLogon()
userAssist()
autoRun()
registryUser()
save_browser_history()
recycleBin()
lnkFile()
PowerShellLogFile()
registeredService()
recentActivity()
prefetch()
NTFS()
else :
print("\nPlease input correct options!")
pass
if __name__ == "__main__":
main()
|
KIMJOONSIG/Reboot3
|
Windows/reboot3.py
|
reboot3.py
|
py
| 36,418 |
python
|
en
|
code
| 0 |
github-code
|
6
|
10356870047
|
import time
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ExponentialLR
import argparse
import os
# pylint: disable=E1101, W0612
"""
# GPU CLUSTER
source = '/vol/gpudata/rar2417/src/model1' #path to code location
data_path = '/vol/gpudata/rar2417/Data' #path to the parent directory of 'audio'
output_path = '/vol/gpudata/rar2417/results/model1' #path to output the results
model_path = output_path + '/models/resnet_bgru_1.ckpt' #path to find pre-trained model
"""
# HOME SETUP
source = '/home/r2d9/Desktop/SpeechRecognitionProject' #path to code location
data_path = '/home/r2d9/Desktop/Data/train' #path to the parent directory of 'audio'
output_path = '/home/r2d9/Desktop/results' #path to output the results
model_path = output_path + '/models/resnet_bgru_1.ckpt' #path to find pre-trained model
parser = argparse.ArgumentParser()
parser.add_argument('-key', '--filekey', type = str, help='key for multiple trainings')
parser.add_argument('-lr', '--learning_rate', type = float, help='LEARNING_RATE')
parser.add_argument('-md', '--mode', type = int, help='1, 2 or 3')
args = parser.parse_args()
KEY = '' #provided for convenience, easy way to differenciate experiments
if args.filekey is not None:
KEY = args.filekey
MODE = 4 #3-step training procedure
if args.mode is not None:
MODE = args.mode
os.chdir(source)
from dataset import dataset
from model_resnet_bgru import Network, accuracy
# Configuration
start = time.time()
torch.set_default_tensor_type('torch.FloatTensor')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyperparams
NUM_EPOCHS = 50
BATCH_SIZE = 20
LAMBDA = 0.87
LEARNING_RATE = 0.0003
if args.learning_rate is not None:
LEARNING_RATE = args.learning_rate
# Model & Dataset
data = dataset(data_path + '/training_list.txt', data_path + '/audio')
valset = dataset(data_path + '/validation_list.txt', data_path + '/audio')
testset = dataset(data_path + '/testing_list.txt', data_path + '/audio')
if MODE == 1: #training only the resnet
model = Network(mode=1).to(device)
if MODE == 2: #training only the bgru
model = Network().to(device)
model.load_state_dict(torch.load(model_path))
for name, param in model.named_parameters():
if 'gru' in name:
param.requires_grad = True
if 'resnet' in name:
param.requires_grad = False
if MODE == 3: #training resnet and bgru from pre-trained model
model = Network().to(device)
model.load_state_dict(torch.load(model_path))
for params in model.parameters():
params.requires_grad = True
if MODE == 4: #training everything in one go from scratch
model = Network().to(device)
for params in model.parameters():
params.requires_grad = True
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=LEARNING_RATE)
scheduler = ExponentialLR(optimizer, LAMBDA) #learning rate decay, halved every 5 epochs
epoch, estop, maxval, maxind = 0, False, 0, 0
while epoch < NUM_EPOCHS and not estop: #early stopping
dataloader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, drop_last=False)
if epoch > 4: #fixed learning rate for first 5 epochs
scheduler.step()
for i_batch, batch in enumerate(dataloader):
# Forward
optimizer.zero_grad()
outputs = model(batch['audio'])
loss = criterion(outputs, batch['label'].to(device))
# Backward and optimize
loss.backward()
optimizer.step()
# Save loss
with open(output_path +'/loss_'+KEY+'.txt', 'a') as myfile:
myfile.write(str(loss.item())+'\n')
# Save model, accuracy at each epoch
newval = accuracy(model, valset, output_path + '/val_'+KEY+'.txt', 4) #accuracy on validation set for early-stopping
accuracy(model, dataset, output_path + '/train_'+KEY+'.txt', 4) #accuracy on training set to monitor overfitting
accuracy(model, testset, output_path + '/test_'+KEY+'.txt', 4) #accuracy on testing set
# Early stopping
if newval > maxval:
maxval = newval
maxind = epoch
if MODE == 1:
torch.save(model.state_dict(), output_path + '/models/resnet_'+KEY+'.ckpt')
if MODE == 2:
torch.save(model.state_dict(), output_path +'/models/bgru_'+KEY+'.ckpt')
if MODE == 3:
torch.save(model.state_dict(), output_path +'/models/resnet_bgru_3_'+KEY+'.ckpt')
if MODE == 4:
torch.save(model.state_dict(), output_path +'/models/resnet_bgru_'+KEY+'.ckpt')
if epoch > maxind + 4:
estop = True
epoch += 1
data.resample_unknown_class()
print('key ', KEY)
print('time ', time.time()-start)
print('epochs ', epoch)
|
remit0/SpeechRecognitionProject
|
legacy/training3.py
|
training3.py
|
py
| 4,844 |
python
|
en
|
code
| 0 |
github-code
|
6
|
18454402127
|
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import
import sys
import argparse
import logging.config
from pathlib import Path
sys.path.append(str(Path().absolute()))
from mx_crm.main import run_completing
from mx_crm.settings import LOGGING
logging.config.dictConfig(LOGGING)
logger = logging.getLogger(__name__)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Complete/Update data')
parser.add_argument('--all', action='store_true', help='Run all completers')
parser.add_argument('--websites', action='store_true', help='Complite missing websites')
parser.add_argument('--update-wiki', action='store_true', help='Update already parsed wiki data by existing url')
parser.add_argument('--update-xing', action='store_true', help='Update already parsed xing data by existing url')
parser.add_argument('--parse-wiki', action='store_true', help='Parse not parsed/found data for wiki')
parser.add_argument('--parse-xing', action='store_true', help='Parse not parsed/found data for xing')
parser.add_argument('--force-update', action='store_true', help='Force update')
parser.add_argument('--google-evaluation', action='store_true', help='Parse not parsed google evaluation')
args = parser.parse_args()
logger.info("""
Arguments:
--all={all}
--websites={websites}
--update-wiki={update_wiki}
--update-xing={update_xing}
--parse-wiki={parse_wiki}
--parse-xing={parse_xing}
--force-update={force_update}
""".format(
all=args.all,
websites=args.websites,
update_wiki=args.update_wiki,
update_xing=args.update_xing,
parse_wiki=args.parse_wiki,
parse_xing=args.parse_xing,
force_update=args.force_update,
google_evaluation=args.google_evaluation,
))
try:
run_completing(
force_update=args.force_update,
c_all=args.all,
c_websites=args.websites,
c_update_wiki=args.update_wiki,
c_update_xing=args.update_xing,
c_parse_wiki=args.parse_wiki,
c_parse_xing=args.parse_xing,
c_google_evaluation=args.google_evaluation
)
except IOError as e:
logger.error(e)
|
alexpinkevichwork/squirrel
|
complete_data.py
|
complete_data.py
|
py
| 2,311 |
python
|
en
|
code
| 0 |
github-code
|
6
|
17510483933
|
'''
start: 1:42?
end:
left and right pointers
come from both ends until sum of left and right equals target
if the sum isn't target. then if it is more than target decrement right. otherwise increment left
T: O(n) S: O(1)
'''
class Solution:
def twoSum(self, numbers: List[int], target: int) -> List[int]:
left, right = 0, len(numbers) - 1
while left < right:
twosum = numbers[left] + numbers[right] #17
if twosum == target:
return [1 + left, 1 + right]
elif twosum < target:
left += 1
else:
right -= 1
raise ValueError("numbers has no two sum")
|
soji-omiwade/cs
|
dsa/before_rubrik/twosum_ordered_input.py
|
twosum_ordered_input.py
|
py
| 675 |
python
|
en
|
code
| 0 |
github-code
|
6
|
30903913191
|
import pdb
from models.gamedetail import Gamedetail
from models.game import Game
from models.team import Team
from repositories import gamedetail_repository, game_repository, team_repository
gamedetail_repository.delete_all()
game_repository.delete_all()
team_repository.delete_all()
team_1 = Team("Glasgow Clan", "Breahead Arena", "Glasgow", "http://www.clanihc.com", "gla_logo.png")
team_repository.save(team_1)
team_2 = Team("Fife Flyers", "Fife Ice Arena", "Kirkcaldy", "http://www.fifeflyers.co.uk", "fif_logo.png")
team_repository.save(team_2)
team_3 = Team("Dundee Stars", "Dundee Ice Arena", "Dundee", "http://www.dundeestars.com", "dun_logo.png")
team_repository.save(team_3)
team_4 = Team("Sheffield Steelers", "Sheffield Arena", "Sheffield", "http://www.sheffieldsteelers.co.uk", "she_logo.png")
team_repository.save(team_4)
team_5 = Team("Coventry Blaze", "Skydome Arena", "Coventry", "http://www.coventryblaze.co.uk", "cov_logo.png")
team_repository.save(team_5)
team_6 = Team("Nottingham Panthers", "Motorpoint Arena", "Nottingham", "http://www.panthers.co.uk", "not_logo.png")
team_repository.save(team_6)
team_7 = Team("Cardiff Devils", "Ice Arena Wales", "Cardiff", "http://www.cardiffdevils.com", "car_logo.png")
team_repository.save(team_7)
team_8 = Team("Manchester Storm", "Planet Ice Altrincham", "Manchester", "http://www.manchesterstorm.com", "mcr_logo.png")
team_repository.save(team_8)
team_9 = Team("Belfast Giants", "The SSE Arena", "Belfast", "http://www.belfastgiants.com", "bel_logo.png")
team_repository.save(team_9)
team_10 = Team("Guildford Flames", "Spectrum Leisure Complex", "Guildford", "http://www.guildfordflames.co.uk", "gui_logo.png")
team_repository.save(team_10)
game_1 = Game("20220918","1800", "Guildford", "2022")
game_repository.save(game_1)
game_2 = Game("20220922","1930", "Glasgow", "2022")
game_repository.save(game_2)
game_3 = Game("20220924","1900", "Cardiff", "2022")
game_repository.save(game_3)
game_4 = Game("20221008","1900", "Glasgow", "2022")
game_repository.save(game_4)
game_5 = Game("20220924","1915", "Kirkcaldy", "2022")
game_repository.save(game_5)
game_6 = Game("20220625","1730", "coventry", "2022")
game_repository.save(game_6)
game_7 = Game("20221010","1915", "Guildford", "2022")
game_repository.save(game_7)
game_8 = Game("20221002","1900", "Kirkcaldy", "2022")
game_repository.save(game_8)
game_9 = Game("20220918","1700", "Dundee", "2022")
game_repository.save(game_9)
game_10 = Game("20223009","1930", "Nottingham", "2022")
game_repository.save(game_10)
game_11 = Game("20221001","1900", "Manchester", "2022")
game_repository.save(game_11)
game_12 = Game("20221009","1700", "Dundee", "2022")
game_repository.save(game_12)
game_13 = Game("20220910","1900", "Sheffield", "2022")
game_repository.save(game_13)
game_14 = Game("20220911","1800", "Guildford", "2022")
game_repository.save(game_14)
game_15 = Game("20220210","1730", "Coventry", "2022")
game_repository.save(game_15)
game_16 = Game("20221006","1930", "Sheffield", "2022")
game_repository.save(game_16)
game_17 = Game("20220910","1900", "Manchester", "2022")
game_repository.save(game_17)
game_18 = Game("20220911","1730", "Coventry", "2022")
game_repository.save(game_18)
game_19 = Game("20220917","1930", "Nottingham", "2022")
game_repository.save(game_19)
game_20 = Game("20220925","1730", "Coventry", "2022")
game_repository.save(game_20)
gamedetail_1 = Gamedetail(game_1,team_1,"Home","Win",7,2,"")
gamedetail_repository.save(gamedetail_1)
gamedetail_2 = Gamedetail(game_1,team_2,"Away","loss",3,8,"")
gamedetail_repository.save(gamedetail_2)
gamedetail_3 = Gamedetail(game_2,team_3,"Home","Win",5,2,"")
gamedetail_repository.save(gamedetail_3)
gamedetail_4 = Gamedetail(game_2,team_4,"Away","loss",0,10,"")
gamedetail_repository.save(gamedetail_4)
gamedetail_5 = Gamedetail(game_3,team_5,"Home","Win",7,2,"")
gamedetail_repository.save(gamedetail_5)
gamedetail_6 = Gamedetail(game_3,team_6,"Away","loss",3,8,"")
gamedetail_repository.save(gamedetail_6)
gamedetail_7 = Gamedetail(game_4,team_7,"Home","Win",5,2,"")
gamedetail_repository.save(gamedetail_7)
gamedetail_8 = Gamedetail(game_4,team_8,"Away","loss",0,10,"")
gamedetail_repository.save(gamedetail_8)
gamedetail_9 = Gamedetail(game_5,team_9,"Home","Win",7,2,"")
gamedetail_repository.save(gamedetail_9)
gamedetail_10 = Gamedetail(game_5,team_10,"Away","loss",3,8,"")
gamedetail_repository.save(gamedetail_10)
gamedetail_11 = Gamedetail(game_6,team_10,"Home","Win",5,2,"")
gamedetail_repository.save(gamedetail_11)
gamedetail_12 = Gamedetail(game_6,team_1,"Away","loss",0,10,"")
gamedetail_repository.save(gamedetail_12)
gamedetail_13 = Gamedetail(game_7,team_2,"Home","Win",7,2,"")
gamedetail_repository.save(gamedetail_13)
gamedetail_14 = Gamedetail(game_7,team_9,"Away","loss",3,8,"")
gamedetail_repository.save(gamedetail_14)
gamedetail_15 = Gamedetail(game_8,team_4,"Home","Win",5,2,"")
gamedetail_repository.save(gamedetail_15)
gamedetail_16 = Gamedetail(game_8,team_3,"Away","loss",0,10,"")
gamedetail_repository.save(gamedetail_16)
gamedetail_17 = Gamedetail(game_9,team_8,"Home","Win",7,2,"")
gamedetail_repository.save(gamedetail_17)
gamedetail_18 = Gamedetail(game_9,team_7,"Away","loss",3,8,"")
gamedetail_repository.save(gamedetail_18)
gamedetail_19 = Gamedetail(game_10,team_6,"Home","Win",5,2,"")
gamedetail_repository.save(gamedetail_19)
gamedetail_20 = Gamedetail(game_10,team_5,"Away","loss",0,10,"")
gamedetail_repository.save(gamedetail_20)
|
GregorRoss/Ice_Hockey_Tracker
|
console.py
|
console.py
|
py
| 5,470 |
python
|
en
|
code
| 1 |
github-code
|
6
|
811063416
|
# Network Delay Time - https://leetcode.com/problems/network-delay-time/
'''There are N network nodes, labelled 1 to N.
Given times, a list of travel times as directed edges times[i] = (u, v, w), where u is the source node,
v is the target node, and w is the time it takes for a signal to travel from source to target.
Now, we send a signal from a certain node K. How long will it take for all nodes to receive the signal? If it is impossible, return -1.
Example 1:
Input: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2
Output: 2'''
# Dijkstra's Algorithm - 0(n2)
from collections import defaultdict
class Solution:
def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int:
def getMinDistance(distance, seen):
minNode = float('inf')
minIndex = -1
for i in range(1, N+1):
if distance[i] < minNode and not seen[i]:
minNode = distance[i]
minIndex = i
return minIndex
graph = defaultdict(list)
for u, v, w in times:
graph[u].append((v,w))
seen = [False] * (N+1)
distance = {node: float('inf') for node in range(1, N+1)}
distance[K] = 0
while True:
u = getMinDistance(distance, seen)
if u < 0:
break
seen[u] = True
for neighbour, time in graph[u]:
if distance[neighbour] > distance[u] + time:
distance[neighbour] = distance[u] + time
output = max(distance.values())
return output if output != float('inf') else -1
# Dijkstra's Algorithm - 0(nlogn)
from collections import defaultdict
import heapq
class Solution:
def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int:
graph = defaultdict(list)
for u, v, w in times:
graph[u].append((v,w))
distance = {}
q = [(0, K)]
while q:
time, node = heapq.heappop(q)
if node in distance:
continue
distance[node] = time
for neighbour, timeTravelled in graph[node]:
if neighbour not in distance:
heapq.heappush(q, (time+timeTravelled, neighbour))
return max(distance.values()) if len(distance) == N else -1
|
Saima-Chaity/Leetcode
|
Graph/networkDelayTime.py
|
networkDelayTime.py
|
py
| 2,428 |
python
|
en
|
code
| 0 |
github-code
|
6
|
27284711802
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pandas_datareader as data
from sklearn.preprocessing import MinMaxScaler
# noinspection PyUnresolvedReferences
import silence_tensorflow.auto # for ignoring tensorflow info and warnings
from keras.layers import Dense, Dropout, LSTM
from keras.models import Sequential
from datetime import date
# starting and ending of data frame
start = '2010-01-01'
end = date.today().strftime('%Y-%m-%d')
# data frame
df = data.DataReader('SBI', 'yahoo', start, end)
df = df.reset_index()
df = df.drop(['Date', 'Adj Close'], axis=1)
# splitting data into Training and Testing
data_training = pd.DataFrame(df['Close'][0:int(len(df) * 0.70)])
data_testing = pd.DataFrame(df['Close'][int(len(df) * 0.70): int(len(df))])
# scaling down the training data and converting it into an array
scale = MinMaxScaler(feature_range=(0, 1))
data_training_array = scale.fit_transform(data_training)
# splitting data into x_train and y_train
# x_train is taken as fist 100 values and y_train as 101 value
# then first value of x_train is dropped and y_train is inserted into x_train
# next y_train is taken as 102 value and same continues till last value
x_train = []
y_train = []
for i in range(100, data_training_array.shape[0]):
x_train.append(data_training_array[i - 100: i])
y_train.append(data_training_array[i, 0])
x_train, y_train = np.array(x_train), np.array(y_train)
# Simple LSTM Model
model = Sequential()
# layer 1
model.add(LSTM(units=50, activation='relu', return_sequences=True, input_shape=(x_train.shape[1], 1)))
model.add(Dropout(0.2))
# layer 2
model.add(LSTM(units=60, activation='relu', return_sequences=True))
model.add(Dropout(0.3))
# layer 3
model.add(LSTM(units=80, activation='relu', return_sequences=True))
model.add(Dropout(0.4))
# layer 4
model.add(LSTM(units=120, activation='relu'))
model.add(Dropout(0.5))
# dense layer
model.add(Dense(units=1))
# compile model with adam optimizer
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x_train, y_train, epochs=50)
# saving model
model.save('keras_model.h5')
# predicting values for testing data
past_100_days = data_training.tail(100)
final_df = past_100_days.append(data_testing, ignore_index=True)
# scaling down the testing data and converting it into an array
input_data = scale.fit_transform(final_df)
# splitting data into x_test and y_test
x_test = []
y_test = []
for i in range(100, input_data.shape[0]):
x_test.append(input_data[i - 100: i])
y_test.append(input_data[i, 0])
x_test, y_test = np.array(x_test), np.array(y_test)
# Making Prediction
y_predicted = model.predict(x_test)
# scaling up the predicted data
scale_factor = 1/scale.scale_[0]
y_predicted = y_predicted * scale_factor
y_test = y_test * scale_factor
# plotting original vs predicted data
plt.figure(figsize=(12, 6))
plt.plot(y_test, 'b', label='Original Price')
plt.plot(y_predicted, 'r', label='Predicted Price')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()
|
aashima1433/StockProject
|
LSTM_model.py
|
LSTM_model.py
|
py
| 3,046 |
python
|
en
|
code
| 0 |
github-code
|
6
|
73401806589
|
from torch import nn
class Mojmyr(nn.Module):
def __init__(self, input_shape, hidden_units, output_shape):
super().__init__()
# Copy TinyVGG structure, modify it slightly for this specific case
self.conv_block_1 = nn.Sequential(
nn.Conv2d(input_shape, hidden_units, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.conv_block_2 = nn.Sequential(
nn.Conv2d(hidden_units, hidden_units, 3, 1),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units, 3, 1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=hidden_units*14*14, out_features=output_shape)
)
# Required forward method that takes the input 'x' through all the conv_blocks and the classifier, returning logits because of the last Linear layer
def forward(self, x):
x = self.conv_block_1(x)
x = self.conv_block_2(x)
x = self.classifier(x)
return x
|
PopeCorn/myr
|
code/model.py
|
model.py
|
py
| 1,162 |
python
|
en
|
code
| 0 |
github-code
|
6
|
74589712187
|
import cv2
smilecascade=cv2.CascadeClassifier('haarcascade\\haarcascade_smile.xml')
cap = cv2.VideoCapture(0)
while 1:
ret, img=cap.read()
#gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
smiles = smilecascade.detectMultiScale(img, 1.3,50 )
for (x,y,w,h) in smiles:
cv2.rectangle(img, (x,y), (x+w, y+h), (255,255,255), 2)
cv2.imshow('img', img)
if cv2.waitKey(1) & 0xFF==ord('q'):
break
cap.release()
cv2.destroyAllWindows()
|
harshikesh-kumar/Projects
|
Project Smile Detect.py
|
Project Smile Detect.py
|
py
| 488 |
python
|
en
|
code
| 0 |
github-code
|
6
|
44530888336
|
import cv2
import numpy as np
from dlclive import DLCLive, Processor
from skimage.transform import (hough_line, hough_line_peaks)
folder = 'model/'
dlc_proc = Processor()
dlc_live = DLCLive(folder, processor=dlc_proc)
dlc_live.init_inference()
i = 0
while True:
# Load frame
i += 1
frame = cv2.imread('frames/ (' + str(i) + ').jpg')
frame = cv2.resize(frame, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)
# Get poses
pose = dlc_live.get_pose(frame)
nose = (int(pose[0, 0]), int(pose[0, 1]))
head = (int(pose[1, 0]), int(pose[1, 1]))
body = (int(pose[2, 0]), int(pose[2, 1]))
# Draw lines on Stage for angle measurement
stage = np.zeros((frame.shape[0], frame.shape[1]), np.uint8) # Clear frame
stage = cv2.line(stage, nose, head, 255, 1)
# Perform Hough Transformation to detect lines
hspace, angles, distances = hough_line(stage)
# Find angle
angle = []
for _, a, distances in zip(*hough_line_peaks(hspace, angles, distances)):
angle.append(a)
# Obtain angle for each line
angles = [a * 180 / np.pi for a in angle]
# Get length of radius for angle visualization
radius = cv2.norm(head, nose)
axes = (int(radius), int(radius))
# Get 360 degree readout
degree = int(angles[0])
if nose[0] > head[0] and degree < 0:
degree = 180 + degree
elif nose[0] < head[0] and degree < 0:
degree = 360 + degree
elif nose[0] < head[0] and degree > 0:
degree = 180 + degree
# Draw lines
frame = cv2.line(frame, nose, head, (255, 255, 0), 1, lineType=cv2.LINE_AA)
frame = cv2.line(frame, (head[0], int(head[1] - radius)), head, (255, 255, 0), 1, lineType=cv2.LINE_AA)
frame = cv2.putText(frame, str(degree), (head[0] - 50, head[1] - 50), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 255),
lineType=cv2.LINE_AA)
# Draw arc of angle
if nose[0] >= head[0]:
frame = cv2.ellipse(frame, head, axes, -90, degree, 0, (255, 255, 0), lineType=cv2.LINE_AA)
else:
frame = cv2.ellipse(frame, head, axes, -90, 0, degree, (255, 255, 0), lineType=cv2.LINE_AA)
# Show video
cv2.imshow('Pose', frame)
cv2.imwrite("output/head_angle/" + str(i) + ".png", frame)
cv2.waitKey(1)
# Reset loop
if i == 969:
i = 0
|
nghess/dlc-live-test
|
head-angle-vf.py
|
head-angle-vf.py
|
py
| 2,324 |
python
|
en
|
code
| 0 |
github-code
|
6
|
26683394696
|
#!/usr/bin/python3
'''This module adds all arguments to a Python list and saves them to a file
'''
import sys
save_to_json_file = __import__('5-save_to_json_file').save_to_json_file
load_from_json_file = __import__('6-load_from_json_file').load_from_json_file
filename = 'add_item.json'
try:
arguments = load_from_json_file(filename)
except FileNotFoundError:
arguments = []
# for each time this module is run with command line arguments,
# append the arguments to the existing arguments list.
# Then create new JSON representation of the updated arguments list
# and save it in filename
for arg in sys.argv[1:]:
arguments.append(arg)
save_to_json_file(arguments, filename)
|
nzubeifechukwu/alx-higher_level_programming
|
0x0B-python-input_output/7-add_item.py
|
7-add_item.py
|
py
| 692 |
python
|
en
|
code
| 0 |
github-code
|
6
|
25881543237
|
#!/usr/bin/python
f = open("in.txt", "r")
kalorije = 0
sumkalorij = []
for vrstica in f:
if len(vrstica) <= 1:
sumkalorij.append(kalorije)
kalorije = 0
else:
kalorije += int(vrstica)
sumkalorij.sort(reverse=True)
print(sumkalorij[0] + sumkalorij[1] + sumkalorij[2])
|
Anja159/Advent_of_code_2022
|
Day1/part2.py
|
part2.py
|
py
| 314 |
python
|
hr
|
code
| 1 |
github-code
|
6
|
24201915314
|
from lnd_client import LND_CLIENT
from utilities import *
class Invoice:
def __init__(self, r_hash_hex, payment_request, add_index, is_paid=False):
self.r_hash_hex = r_hash_hex
self.payment_request = payment_request
self.add_index = add_index
self.decoded_pay_req = LND_CLIENT.rpc.decode_pay_req(pay_req=self.payment_request)
self.is_paid = is_paid
def __str__(self):
return f"{self.decoded_pay_req}Is paid: {self.is_paid}"
def __repr__(self):
return f"Invoice({self.r_hash_hex}, {self.payment_request}," \
f"{self.add_index}, {self.is_paid})"
def pay(self, preimage_base64):
preimage_bytes = base64_to_bytes(preimage_base64)
preimage_hash_hex = sha256_of_bytes_to_hex(preimage_bytes)
# hash_hex = bytes_to_hex(hash_bytes)
if preimage_hash_hex == self.decoded_pay_req.payment_hash:
self.is_paid = True
print('\nInvoice paid successfully, releasing item.\n\n')
else:
print("Preimage not valid. Check encoding is base64")
|
willcl-ark/boltstore
|
invoices.py
|
invoices.py
|
py
| 1,088 |
python
|
en
|
code
| 1 |
github-code
|
6
|
38036093112
|
import logging
from collections import defaultdict
from typing import Dict, Optional, Tuple, Union
import numpy as np
from matplotlib import rcParams
from matplotlib.axes import SubplotBase
from matplotlib.axis import Axis
from matplotlib.colors import LogNorm
from matplotlib.ticker import AutoMinorLocator, MaxNLocator
from pymatgen.electronic_structure.bandstructure import (
BandStructure,
BandStructureSymmLine,
)
from pymatgen.electronic_structure.core import Spin
from pymatgen.electronic_structure.plotter import BSPlotter
from sumo.plotting import pretty_plot
from sumo.symmetry import Kpath, PymatgenKpath
from amset.constants import defaults, hbar
from amset.interpolation.bandstructure import Interpolator
from amset.interpolation.periodic import PeriodicLinearInterpolator
from amset.log import initialize_amset_logger
from amset.plot import BaseMeshPlotter, amset_base_style, styled_plot
__author__ = "Alex Ganose"
__maintainer__ = "Alex Ganose"
__email__ = "[email protected]"
logger = logging.getLogger(__name__)
class LineshapePlotter(BaseMeshPlotter):
def __init__(
self,
data,
interpolation_factor=5,
print_log=defaults["print_log"],
symprec=defaults["symprec"],
):
super().__init__(data)
self.interpolation_factor = interpolation_factor
if print_log:
initialize_amset_logger(filename="lineshape.log")
self.symprec = symprec
def _get_interpolater(self, n_idx, t_idx, mode="linear"):
props = defaultdict(dict)
for spin in self.spins:
# calculate total rate
spin_rates = np.sum(self.scattering_rates[spin][:, n_idx, t_idx], axis=0)
# easier to interpolate the log
log_rates = np.log10(spin_rates)
# # handle rates that close to numerical noise
log_rates[log_rates > 18] = 15
log_rates[np.isnan(log_rates)] = 15
# map to full k-point mesh
props[spin]["rates"] = log_rates
if mode == "linear":
return _LinearBandStructureInterpolator(
self.kpoints,
self.ir_to_full_kpoint_mapping,
self.energies,
self.structure,
self.efermi,
props,
)
elif mode == "fourier":
bs = BandStructure(
self.ir_kpoints,
self.energies,
self.structure.lattice,
self.efermi,
structure=self.structure,
)
return Interpolator(
bs,
self.num_electrons,
interpolation_factor=self.interpolation_factor,
soc=self.soc,
other_properties=props,
)
raise ValueError("Unknown interpolation mode; should be 'linear' or 'fourier'.")
@styled_plot(amset_base_style)
def get_plot(
self,
n_idx,
t_idx,
zero_to_efermi=True,
estep=0.01,
line_density=100,
height=3.2,
width=3.2,
emin=None,
emax=None,
amin=5e-5,
amax=1e-1,
ylabel="Energy (eV)",
plt=None,
aspect=None,
kpath=None,
cmap="viridis",
colorbar=True,
style=None,
no_base_style=False,
fonts=None,
):
interpolater = self._get_interpolater(n_idx, t_idx)
bs, prop = interpolater.get_line_mode_band_structure(
line_density=line_density,
return_other_properties=True,
kpath=kpath,
symprec=self.symprec,
)
bs, rates = force_branches(bs, {s: p["rates"] for s, p in prop.items()})
fd_emin, fd_emax = self.fd_cutoffs
if not emin:
emin = fd_emin
if zero_to_efermi:
emin -= bs.efermi
if not emax:
emax = fd_emax
if zero_to_efermi:
emax -= bs.efermi
logger.info("Plotting band structure")
if isinstance(plt, (Axis, SubplotBase)):
ax = plt
else:
plt = pretty_plot(width=width, height=height, plt=plt)
ax = plt.gca()
if zero_to_efermi:
bs.bands = {s: b - bs.efermi for s, b in bs.bands.items()}
bs.efermi = 0
bs_plotter = BSPlotter(bs)
plot_data = bs_plotter.bs_plot_data(zero_to_efermi=zero_to_efermi)
energies = np.linspace(emin, emax, int((emax - emin) / estep))
distances = np.array([d for x in plot_data["distances"] for d in x])
# rates are currently log(rate)
mesh_data = np.full((len(distances), len(energies)), 0.0)
for spin in self.spins:
for spin_energies, spin_rates in zip(bs.bands[spin], rates[spin]):
for d_idx in range(len(distances)):
energy = spin_energies[d_idx]
linewidth = 10 ** spin_rates[d_idx] * hbar / 2
broadening = lorentzian(energies, energy, linewidth)
broadening /= 1000 # convert 1/eV to 1/meV
mesh_data[d_idx] += broadening
im = ax.pcolormesh(
distances,
energies,
mesh_data.T,
rasterized=True,
cmap=cmap,
norm=LogNorm(vmin=amin, vmax=amax),
shading="auto",
)
if colorbar:
pos = ax.get_position()
cax = plt.gcf().add_axes([pos.x1 + 0.035, pos.y0, 0.035, pos.height])
cbar = plt.colorbar(im, cax=cax)
cbar.ax.tick_params(axis="y", length=rcParams["ytick.major.size"] * 0.5)
cbar.ax.set_ylabel(
r"$A_\mathbf{k}$ (meV$^{-1}$)", rotation=270, va="bottom"
)
_maketicks(ax, bs_plotter, ylabel=ylabel)
_makeplot(
ax,
plot_data,
bs,
zero_to_efermi=zero_to_efermi,
width=width,
height=height,
ymin=emin,
ymax=emax,
aspect=aspect,
)
return plt
def _makeplot(
ax,
data,
bs,
zero_to_efermi=True,
ymin=-3.0,
ymax=3.0,
height=None,
width=None,
aspect=None,
):
"""Tidy the band structure & add the density of states if required."""
# draw line at Fermi level if not zeroing to e-Fermi
if not zero_to_efermi:
ytick_color = rcParams["ytick.color"]
ef = bs.efermi
ax.axhline(ef, color=ytick_color)
# set x and y limits
ax.set_xlim(0, data["distances"][-1][-1])
if bs.is_metal() and not zero_to_efermi:
ax.set_ylim(bs.efermi + ymin, bs.efermi + ymax)
else:
ax.set_ylim(ymin, ymax)
# keep correct aspect ratio for axes based on canvas size
if aspect is not False:
x0, x1 = ax.get_xlim()
y0, y1 = ax.get_ylim()
if width is None:
width = rcParams["figure.figsize"][0]
if height is None:
height = rcParams["figure.figsize"][1]
if not aspect:
aspect = height / width
ax.set_aspect(aspect * ((x1 - x0) / (y1 - y0)))
def _maketicks(ax, bs_plotter, ylabel="Energy (eV)"):
"""Utility method to add tick marks to a band structure."""
# set y-ticks
ax.yaxis.set_major_locator(MaxNLocator(6))
ax.yaxis.set_minor_locator(AutoMinorLocator(2))
# set x-ticks; only plot the unique tick labels
ticks = bs_plotter.get_ticks()
unique_d = []
unique_l = []
if ticks["distance"]:
temp_ticks = list(zip(ticks["distance"], ticks["label"]))
unique_d.append(temp_ticks[0][0])
unique_l.append(temp_ticks[0][1])
for i in range(1, len(temp_ticks)):
# Append label to sequence if it is not same as predecessor
if unique_l[-1] != temp_ticks[i][1]:
unique_d.append(temp_ticks[i][0])
unique_l.append(temp_ticks[i][1])
logging.info("Label positions:")
for dist, label in list(zip(unique_d, unique_l)):
logging.info(f"\t{dist:.4f}: {label}")
ax.set_xticks(unique_d)
ax.set_xticklabels(unique_l)
ax.xaxis.grid(True)
ax.set_ylabel(ylabel)
def lorentzian(x, x0, gamma):
return 1 / np.pi * gamma / ((x - x0) ** 2 + gamma**2)
class _LinearBandStructureInterpolator:
def __init__(
self,
full_kpoints,
ir_to_full_idx,
energies,
structure,
efermi,
other_properties,
):
self.structure = structure
self.efermi = efermi
self.spins = list(energies.keys())
self.nbands = {s: len(e) for s, e in energies.items()}
full_energies = {s: e[:, ir_to_full_idx] for s, e in energies.items()}
self.bs_interpolator = PeriodicLinearInterpolator.from_data(
full_kpoints, full_energies
)
self.property_interpolators = {}
other_properties = _transpose_dict(other_properties)
for prop, prop_data in other_properties.items():
full_prop_data = {s: p[:, ir_to_full_idx] for s, p in prop_data.items()}
self.property_interpolators[prop] = PeriodicLinearInterpolator.from_data(
full_kpoints, full_prop_data, gaussian=0.75
)
def get_line_mode_band_structure(
self,
line_density: int = 50,
kpath: Optional[Kpath] = None,
symprec: Optional[float] = defaults["symprec"],
return_other_properties: bool = False,
) -> Union[
BandStructureSymmLine,
Tuple[BandStructureSymmLine, Dict[Spin, Dict[str, np.ndarray]]],
]:
"""Gets the interpolated band structure along high symmetry directions.
Args:
line_density: The maximum number of k-points between each two
consecutive high-symmetry k-points
symprec: The symmetry tolerance used to determine the space group
and high-symmetry path.
return_other_properties: Whether to include the interpolated
other_properties data for each k-point along the band structure path.
Returns:
The line mode band structure.
"""
if not kpath:
kpath = PymatgenKpath(self.structure, symprec=symprec)
kpoints, labels = kpath.get_kpoints(line_density=line_density, cart_coords=True)
labels_dict = {
label: kpoint for kpoint, label in zip(kpoints, labels) if label != ""
}
rlat = self.structure.lattice.reciprocal_lattice
frac_kpoints = rlat.get_fractional_coords(kpoints)
energies = {}
other_properties = defaultdict(dict)
for spin in self.spins:
energies[spin] = self._interpolate_spin(
spin, frac_kpoints, self.bs_interpolator
)
if return_other_properties:
for prop, property_interpolator in self.property_interpolators.items():
other_properties[spin][prop] = self._interpolate_spin(
spin, frac_kpoints, property_interpolator
)
bs = BandStructureSymmLine(
kpoints,
energies,
rlat,
self.efermi,
labels_dict,
coords_are_cartesian=True,
structure=self.structure,
)
if return_other_properties:
return bs, other_properties
else:
return bs
def _interpolate_spin(self, spin, kpoints, interpolator):
nkpoints = len(kpoints)
spin_nbands = self.nbands[spin]
ibands = np.repeat(np.arange(spin_nbands), nkpoints)
all_kpoints = np.tile(kpoints, (spin_nbands, 1))
data = interpolator.interpolate(spin, ibands, all_kpoints)
return data.reshape(spin_nbands, nkpoints)
def _transpose_dict(d):
td = defaultdict(dict)
for k1, v1 in d.items():
for k2, v2 in v1.items():
td[k2][k1] = v2
return td
def force_branches(bandstructure, other_property=None):
"""Force a linemode band structure to contain branches.
Branches give a specific portion of the path from one high-symmetry point
to another. Branches are required for the plotting methods to function correctly.
Unfortunately, due to the pymatgen BandStructure implementation they require
duplicate k-points in the band structure path. To avoid this unnecessary
computational expense, this function can reconstruct branches in band structures
without the duplicate k-points.
Args:
bandstructure: A band structure object.
other_property: Another property with the format {spin: (nbands, nkpts, ...)
to split into branches.
Returns:
A band structure with brnaches.
"""
kpoints = np.array([k.frac_coords for k in bandstructure.kpoints])
labels_dict = {k: v.frac_coords for k, v in bandstructure.labels_dict.items()}
# pymatgen band structure objects support branches. These are formed when
# two kpoints with the same label are next to each other. This bit of code
# will ensure that the band structure will contain branches, if it doesn't
# already.
dup_ids = []
high_sym_kpoints = tuple(map(tuple, labels_dict.values()))
for i, k in enumerate(kpoints):
dup_ids.append(i)
if (
tuple(k) in high_sym_kpoints
and i != 0
and i != len(kpoints) - 1
and (
not np.array_equal(kpoints[i + 1], k)
or not np.array_equal(kpoints[i - 1], k)
)
):
dup_ids.append(i)
kpoints = kpoints[dup_ids]
eigenvals = {}
projections = {}
for spin, spin_energies in bandstructure.bands.items():
eigenvals[spin] = spin_energies[:, dup_ids]
if len(bandstructure.projections) != 0:
projections[spin] = bandstructure.projections[spin][:, dup_ids]
new_property = {}
if other_property is not None:
for spin, spin_prop in other_property.items():
new_property[spin] = spin_prop[:, dup_ids]
new_bandstructure = type(bandstructure)(
kpoints,
eigenvals,
bandstructure.lattice_rec,
bandstructure.efermi,
labels_dict,
structure=bandstructure.structure,
projections=projections,
)
return new_bandstructure, new_property
|
hackingmaterials/amset
|
amset/plot/lineshape.py
|
lineshape.py
|
py
| 14,486 |
python
|
en
|
code
| 110 |
github-code
|
6
|
11708352884
|
BOARD_SIZE = 9 # it's a square
def strip_zero_unique(list):
strip_zero = [i for i in list if i != 0]
return len(strip_zero) == len(set(strip_zero))
class Board:
def __init__(self):
self.cells = [ [ 0 for _ in range(1 + BOARD_SIZE) ] for _ in range(1 + BOARD_SIZE) ]
self.known_points = []
self.black_dot_constraints = []
self.white_dot_constraints = []
self.arrow_constraints = []
self.thermo_constraints = []
self.palindrome_constraints = []
self.box_constraints = []
def get_cells(self):
return [ line[1:] for line in self.cells[1:] ]
def set_cell(self, line, col, value):
self.cells[line][col] = value
def add_known_point(self, line, col, value):
self.known_points.append((line, col, value))
# black dot connects two adjacent cells, which must have a ratio of 2:1
def add_black_dot_constraint(self, c1, c2):
self.black_dot_constraints.append((c1, c2))
# white dot connects two adjacent cells, which must contain consecutive numbers
def add_white_dot_constraint(self, c1, c2):
self.white_dot_constraints.append((c1, c2))
# the arrow connects multiple cells, and the numbers must sum up to the start of the arrow
# arrow will be passed as a list of cells, from start to end
def add_arrow_constraint(self, cell_list):
self.arrow_constraints.append(cell_list)
# thermo connects multiple cells, and the numbers must be increasing from the bottom up
# thermo will be passed as a list of cells, from bottom to top
def add_thermo_constraint(self, cell_list):
self.thermo_constraints.append(cell_list)
# palindrome is self-explanatory
# also passed as a list of cells, in the specific order
def add_palindrome_constraint(self, cell_list):
self.palindrome_constraints.append(cell_list)
# box constains multiple cells, and the numbers must be unique and sum to a specific number
# box will be passed as a tuple containing the sum and the list of cells, in any order
def add_box_constraint(self, sum, cell_list):
self.box_constraints.append((sum, cell_list))
def check_known_points(self, line, col):
for constraint in self.known_points:
if constraint[0] == line and constraint[1] == col:
return constraint[2] == self.cells[line][col]
return True
def check_line(self, line, col):
# print(f'For line {line}, col {col}, checking {self.cells[line][col]} vs {self.cells[line][1:col]}')
return self.cells[line][col] not in self.cells[line][1:col]
def check_col(self, line, col):
# print(f'For line {line}, col {col}, checking {self.cells[line][col]} vs {[ self.cells[i][col] for i in range(1, col) ]}')
return self.cells[line][col] not in [ cell_line[col] for cell_line in self.cells[1:line] ]
def check_3x3(self, line, col):
line3 = ((line - 1) // 3)
col3 = ((col - 1) // 3)
# print(f'For line {line}, col {col}, checking {self.cells[line][col]} vs {[ self.cells[line3 * 3 + i][col3 * 3 + j] for i in range(1, 4) for j in range(1, 4) if (line3 * 3 + i != line or col3 * 3 + j != col) ]}')
for i in range(1, 4):
for j in range(1, 4):
if (line3 * 3 + i != line or col3 * 3 + j != col) and self.cells[line3 * 3 + i][col3 * 3 + j] == self.cells[line][col]:
return False
return True
def check_black_dot(self, line, col):
for constraint in self.black_dot_constraints:
if constraint[0] == (line, col):
other_line = constraint[1][0]
other_col = constraint[1][1]
return self.cells[other_line][other_col] == 0 or self.cells[line][col] * 2 == self.cells[other_line][other_col] or self.cells[line][col] == self.cells[other_line][other_col] * 2
if constraint[1] == (line, col):
other_line = constraint[0][0]
other_col = constraint[0][1]
return self.cells[other_line][other_col] == 0 or self.cells[line][col] * 2 == self.cells[other_line][other_col] or self.cells[line][col] == self.cells[other_line][other_col] * 2
return True
def check_white_dot(self, line, col):
for constraint in self.white_dot_constraints:
if constraint[0] == (line, col):
other_line = constraint[1][0]
other_col = constraint[1][1]
return self.cells[other_line][other_col] == 0 or abs(self.cells[line][col] - self.cells[other_line][other_col]) == 1
if constraint[1] == (line, col):
other_line = constraint[0][0]
other_col = constraint[0][1]
return self.cells[other_line][other_col] == 0 or abs(self.cells[line][col] - self.cells[other_line][other_col]) == 1
return True
def check_arrow(self, line, col):
for constraint in self.arrow_constraints:
if (line, col) not in constraint:
continue
if not strip_zero_unique([ self.cells[cell[0]][cell[1]] for cell in constraint ]):
return False
target_sum_point = constraint[0]
target_sum = self.cells[target_sum_point[0]][target_sum_point[1]]
found_zero = False
for cell in constraint[1:]:
if self.cells[cell[0]][cell[1]] == 0:
found_zero = True
break
target_sum -= self.cells[cell[0]][cell[1]]
return found_zero or target_sum == 0
return True
def check_thermo(self, line, col):
for constraint in self.thermo_constraints:
if (line, col) not in constraint:
continue
if not strip_zero_unique([ self.cells[cell[0]][cell[1]] for cell in constraint ]):
return False
found_zero = False
for cell in constraint:
if self.cells[cell[0]][cell[1]] == 0:
found_zero = True
break
thermo_values = [ self.cells[cell[0]][cell[1]] for cell in constraint ]
return found_zero or all([ thermo_values[i] < thermo_values[i + 1] for i in range(len(thermo_values) - 1) ])
return True
def check_palindrome(self, line, col):
for constraint in self.palindrome_constraints:
if (line, col) not in constraint:
continue
palindrome_values = [ self.cells[cell[0]][cell[1]] for cell in constraint ]
return all([ palindrome_values[i] == 0 or palindrome_values[i] == palindrome_values[len(palindrome_values) - i - 1] or palindrome_values[len(palindrome_values) - i - 1 == 0] for i in range(len(palindrome_values) // 2) ])
return True
def check_box(self, line, col):
for constraint in self.box_constraints:
box_sum = constraint[0]
if (line, col) not in constraint[1]:
continue
if not strip_zero_unique([ self.cells[cell[0]][cell[1]] for cell in constraint[1] ]):
return False
found_zero = False
for cell in constraint[1]:
if self.cells[cell[0]][cell[1]] == 0:
found_zero = True
break
box_values = [ self.cells[cell[0]][cell[1]] for cell in constraint[1] ]
return found_zero or sum(box_values) == box_sum
return True
# check all constraints + sudoku default ones
def check_at(self, line, col):
if not self.check_known_points(line, col):
return False
if not self.check_line(line, col):
return False
if not self.check_col(line, col):
return False
if not self.check_3x3(line, col):
return False
if not self.check_black_dot(line, col):
return False
if not self.check_white_dot(line, col):
return False
if not self.check_arrow(line, col):
return False
if not self.check_thermo(line, col):
return False
if not self.check_box(line, col):
return False
if not self.check_palindrome(line, col):
return False
return True
def save_solution(self):
with open('solution.txt', 'w') as savefile:
for line in self.cells[1:]:
savefile.write(' '.join([ str(cell) for cell in line[1:] ]))
savefile.write('\n')
|
CristiMacovei/F-Puzzles-Sudoku
|
board.py
|
board.py
|
py
| 7,944 |
python
|
en
|
code
| 0 |
github-code
|
6
|
3026162796
|
#encoding: utf-8
'Support subclassing c++ objects in python, with some limitations. Useful primarily for pure-python preprocessors.'
from woo.core import *
from minieigen import *
class PyAttrTrait(object):
'''
Class mimicking the `AttrTrait` template in c++, to be used when deriving from :obj:`PyWooObject`, like in this example (can be found in `woo.pyderived` module's source)::
class _SamplePyDerivedPreprocessor(woo.core.Preprocessor,PyWooObject):
'Sample preprocessor written in pure python'
_attrTraits=[
PyAttrTrait(bool,'switch',True,"Some bool switch, starting group",startGroup='General'),
PyAttrTrait(int,'a',2,"Integer argument in python"),
PyAttrTrait(str,'b','whatever',"String argument in python"),
PyAttrTrait([Node,],'c',[],"List of nodes in python"),
PyAttrTrait(float,'d',.5,"Parameter with range",range=Vector2(0,.7),startGroup='Advanced'),
PyAttrTrait(int,'choice',2,"Param with choice",choice=[(0,'choice0'),(1,'choice1'),(2,'choice2')]),
PyAttrTrait(int,'flags',1,"Param with bits",bits=['bit0','bit1','bit2','bit3','bit4'],buttons=(['Clear flags','self.flags=0','Set flags to zero'],True)),
PyAttrTrait(int,'choice2',2,'Param with unnamed choice',choice=[0,1,2,3,4,5,6,-1]),
PyAttrTrait(Vector3,'color',Vector3(.2,.2,.2),"Color parameter",rgbColor=True),
PyAttrTrait(float,'length',1.5e-3,"Length",unit='mm'),
]
def __init__(self,**kw):
woo.core.Preprocessor.__init__(self)
self.wooPyInit(self.__class__,woo.core.Preprocessor,**kw)
def __call__(self):
pass
# ...
This class will be represented like this in the GUI:
.. image:: fig/pyderived-gui.png
:param pyType: python type object; can be
* primitive type (like `bool`, `float`, `Vector3`, `str`, …)
* sequence of primitive types, written as 1-list: `[bool,]`, `[float,]`, …
* :obj:`woo Object <woo.core.Object>` or any derived type (:obj:`woo.core.Node`, :obj:`woo.dem.Sphere`, …)
* sequence of woo objects, e.g. `[woo.core.Node,]`
When a value is assigned to the attribute, provided type must be convertible to *pyType*, otherwise `TypeError` is raised. There are some additional restrictions:
* `str` and `unicode` values will *not* be converted to `floats` and such − although python will accept `float('1.23')`
:param name: name of the attribute, given as `str`
:param ini: initial (default) value of the attribute
:param str doc: documentation for this attribute, as it appears in generated docs and tooltips in the UI
:param str unit: unit given as string, which is looked up in :obj:`woo.unit`; the multiplier is the ratio between *unit* and associated basic unit, which is found automatically.
.. warning:: `unit` only determines multiplier for the GUI representation; it has no impact on the internal value used; in particular, the *ini* value is *unit-less*. If you want to give units to the initial value, say something like ``PyAttrTrait(float,'angle',60*woo.unit['deg'],units='deg','This is some angle')``.
:param bool noGui: do not show this attribute in the GUI; use this for attributes which the GUI does not know how to represent (such as python objects, numpy arrays and such), to avoid warnings.
:param bool noDump: skip this attribute when dumping/loading this object; that means that after loading (or after a :obj:`PyWooObjects.deepcopy`), the attribute will be default-initialized.
:param bool rgbColor: this attribute is color in the RGB space (its type must be `Vector3`); the GUI will show color picker.
:param str startGroup: start new attribute group, which is represented as collapsible blocks in the GUI.
:param str hideIf: python expression which determines whether the GUI hide/show this attribute entry dynamically; use `self` to refer to the instance, as usual.
:param range: give range (`Vector2` or `Vector2i`) to this numerical (`float` or `int`) attribute − a slider will be shown in the GUI.
:param choice: this attribute chooses from predefined set of integer values; `choice` itself can be
* list of unnamed values, e.g. `[0,1,2,3,4]` to choose from;
* list of named values, e.g. `[(0,'choice0'),(1,'choice1'),(2,'choice2')]`, where the name will be displayed in the GUI, and the number will be assigned when the choice is made.
:param bits: give names for bit values which this (integer) attribute which represents; they will be shown as array of checkboxes in the GUI.
:param buttons: Tuple of *list* and *bool*; in the flat list of strings, where each consecutive triplet contains
1. button label
2. python expression to evaluate when the button is clicked
3. label to be shown as button description in the GUI
The bool at the end determined whether the button is created above (*True*) or below (*False*) the current attribute.
:param filename: `str` attribute representing filename with file picker in the GUI; the file is possibly non-existent.
:param existingFilename: `str` attribute for existing filename, with file picker in the GUI.
:param dirname: `str` attribute for existing directory name, with directory picker in the GUI.
:param triggerPostLoad: when this attribute is being assigned to, `postLoad(id(self.attr))` will be called.
'''
#
# fake cxxType
#
primitiveTypes={int:'int',str:'string',float:'Real',bool:'bool',
Vector2:'Vector2r',Vector3:'Vector3r',Vector6:'Vector6r',Matrix3:'Matrix3r',Matrix6:'Matrix6r',
Quaternion:'Quaternionr',Vector2i:'Vector2i',Vector3i:'Vector3i',Vector6i:'Vector6i',
MatrixX:'MatrixXr',VectorX:'VectorXr'
}
def __init__(self,pyType,name,ini,doc,# *,
unit=None,
noGui=False,
noDump=False,
#multiUnit=False,
rgbColor=False,
#prefUnit=None,
#altUnit=None,
startGroup=None,
hideIf=None,
range=None,
choice=None,
bits=None,
buttons=None,
altUnits=None,
filename=False,
existingFilename=False,
dirname=False,
psd=False,
triggerPostLoad=False,
guiReadonly=False,
noGuiResize=False,
):
# validity checks
if range:
if (pyType,type(range)) not in [(int,Vector2i),(float,Vector2)]: raise TypeError("Range must be Vector2 for floats and Vector2i for ints")
if isinstance(pyType,list):
if len(pyType)!=1: raise TypeError('Type must be a list of length exactly one, or a plain type')
if pyType[0] in self.primitiveTypes: self.cxxType='vector<%s>'%self.primitiveTypes[pyType[0]]
elif isinstance(pyType[0],type): self.cxxType='vector<shared_ptr<%s>>'%(pyType[0].__name__)
else: raise TypeError('List element must be a type, not a %s'%(str(pyType[0])))
# force correct types in the sequence
if pyType[0] in self.primitiveTypes: ini=[pyType[0](i) for i in ini]
else:
for i,v in enumerate(ini):
if v==None: continue # this is OK
if not isinstance(v,pyType[0]): raise TypeError("%d-th initial value item must be a %s, not a %s"%(i,pyType[0],type(v)))
elif pyType in self.primitiveTypes:
self.cxxType=self.primitiveTypes[pyType]
ini=pyType(ini)
elif isinstance(pyType,type):
self.cxxType='shared_ptr<%s>'%pyType.__name__
else: raise ValueError('Type must be a list of length one, or a primitive type; not a %s'%str(pyType))
#
#
# mandatory args
self.pyType=pyType
self.name=name
self.ini=ini
self.doc=doc
# optional args
self.noGui=noGui
self.noDump=noDump
self.rgbColor=rgbColor
self.startGroup=startGroup
self.hideIf=hideIf
self.range=range
self.choice=choice
self.bits=bits
self.buttons=buttons
self.filename=filename
self.existingFilename=existingFilename
self.dirname=dirname
self.triggerPostLoad=triggerPostLoad
self.noGuiResize=noGuiResize
self.readonly=guiReadonly # this has different meaning in c++ and python, so call it differently
# those are unsupported in python
self.noSave=self.hidden=self.pyByRef=self.static=self.activeLabel=self.namedEnum=False
#
self.validator=None
if self.choice and type(self.choice[0])==str:
#print '%s: Choice of strings (%s)!!!!'%(self.name,str(self.choice))
# choice from strings
def validateStrChoice(self,val):
if val not in self.choice: raise ValueError("%s: '%s' is not an admissible value (must be one of: %s)"%(self.name,str(val),', '.join(["'%s'"%str(c) for c in self.choice])))
self.validator=validateStrChoice
# PSD buttons
if psd:
if self.buttons: raise ValueError("%s: psd and buttons are mutually exclusive (psd created a button for displaying the PSD)"%self.name)
self.buttons=(['Plot the PSD','import pylab; pylab.plot(*zip(*self.%s)); pylab.grid(True); pylab.show();'%(self.name),''],0)
#
# units
#
import woo._units
baseUnit=woo._units.baseUnit
def _unicodeUnit(u):
if isinstance(u,unicode): return u
elif isinstance(u,str): return unicode(u,'utf-8')
elif isinstance(u,tuple): return (_unicodeUnit(u[0]),u[1])
raise ValueError(u"Unknown unit type %sfor %s"%(str(type(u)),u))
if isinstance(unit,str) or isinstance(unit,unicode):
unit=[_unicodeUnit(unit)]
if altUnits: altUnits=[[_unicodeUnit(a) for a in altUnits]]
if not unit:
self.unit=None
self.multiUnit=False
self.prefUnit=None
self.altUnits=None
elif isinstance(unit,list) or isinstance(unit,tuple):
self.multiUnit=(len(unit)>1)
self.unit=[]
self.altUnits=[]
self.prefUnit=[]
for u in unit:
# print self.name,u
if u not in baseUnit: raise ValueError(u'Unknown unit %s; admissible values are: '%u+', '.join(baseUnit.keys()))
base=baseUnit[u]
self.unit.append(base)
self.prefUnit.append((u,1./woo.unit[u]))
alts=[]
for alt in baseUnit:
if baseUnit[alt]==base and alt!=base: alts.append((alt,1./woo.unit[alt]))
self.altUnits.append(alts)
# user-specified alternative units
if altUnits:
if len(altUnits)!=len(self.unit): raise ValueError("altUnits must be of the same length as unit")
for i,au in enumerate(altUnits):
self.altUnits[i]+=au
else: raise ValueError('Unknown unit type %s (must be list, tuple, str, unicode): %s'%(type(unit).__name__,str(unit)))
def validate(self,val):
'Called when the attribute is set'
if self.validator: self.validator(self,val)
def coerceValue(self,val):
'Check whether *val* has type compatible with declared type (pyType). Raise exception if not. Values converted to required types are returned (it is safe to ignore the return value). In addition, validate the (converted) value, if a validator is defined'
def tName(T): return (T.__module__+'.' if T.__module__!='__builtin__' else '')+T.__name__
# sequences
if isinstance(self.pyType,list):
assert len(self.pyType)==1
ret=[]
if not hasattr(val,'__len__'):
raise TypeError("Attribute {self.name} declared as sequence of {T}{cxxType}, but its value {val!s} of type {valType} is not a sequence (__len__ not defined).".format(self=self,T=tName(self.pyType[0]),val=val,valType=tName(type(val)),cxxType=((' ('+self.cxxT+' in c++') if hasattr(self,'cxxT') else '')))
T=self.pyType[0]
if T in self.primitiveTypes: # check convertibility
for i,v in enumerate(val):
try:
if type(v) in (str,unicode) and T in (float,int): raise TypeError("Don't allow conversions from strings to numbers, since that will fail if used without conversion")
ret.append(T(v))
except: raise TypeError("Attribute {self.name} declared as sequence of {T}, but {i}'th item {v!s} of type {itemType} is not convertible to {T}.".format(self=self,i=i,v=v,itemType=tName(type(v)),T=tName(T)))
else:
for i,v in enumerate(val):
ret.append(v)
if v==None: continue # python representation for NULL shared_ptr
if not isinstance(v,T): raise TypeError("Attribute {self.name} declared as a sequence of {T}, but {i}'th item {v!s} of type {itemType} is not a {T}.".format(self=self,i=i,v=v,itemType=tName(type(v)),T=tName(T)))
else:
# do the same as for sequence items; ugly code duplication
T=self.pyType
if T in self.primitiveTypes:
try:
if type(val) in (str,unicode) and T in (float,int): raise TypeError("Don't allow conversions from strings to numbers, since that will fail if used without conversion")
ret=T(val)
except: raise TypeError("Attribute {self.name} declared as {T}, but value {val!s} of type {valType} is not convertible to {T}".format(self=self,val=val,valType=tName(type(val)),T=tName(T)))
else:
# objects
ret=val
if val!=None and not isinstance(val,T): raise TypeError("Attribute {self.name} declared as {T}, but value {val!s} of type {valType} is not a {T}".format(self=self,val=val,valType=tName(type(val)),T=tName(T)))
self.validate(ret)
return ret
def __str__(self): return '<PyAttrTrait '+self.name+' @ '+str(id(self))+'>'
def __repr__(self): return self.__str__()
class PyWooObject:
'''
Define some c++-compatibility functions for python classes. Derived class is created as::
class SomeClass(woo.core.Object,woo.pyderived.PyWooObject): # order of base classes important!
_attrTraits=[
# see below
]
def __init__(self,**kw):
woo.core.Object.__init__(self)
self.wooPyInit(self.__class__,woo.core.Object,**kw)
This new class automatically obtains several features:
* dumping/loading via :obj:`woo.core.Object.dump` etc works.
* the GUI (:obj:`woo.qt.ObjectEditor`) will know how to present this class.
* documentation for this class will be generated
* all attributes are type-checked when assigned
* support for postLoad hooks (see below)
The `_attrTraits` ist a list of :obj:`PyAttrTrait`; each attribute
is defined via its traits, which declare its type, default value, documentation and so on -- this
is documented with :obj:`PyAttrTrait`.
This example shows trait definitions, and also the `triggerPostLoad` flag::
class SomeClass(woo.core.Object,woo.pyderived.PyWooObject):
_PAT=woo.pyderived.PyAttrTrait # alias for class name, to save typing
_attrTraits=[
_PAT(float,'aF',1.,'float attr'),
_PAT([float,],'aFF',[0.,1.,2.],'list of floats attr'),
_PAT(Vector2,'aV2',(0.,1.),'vector2 attr'),
_PAT([Vector2,],'aVV2',[(0.,0.),(1.,1.)],'list of vector2 attr'),
_PAT(woo.core.Node,'aNode',woo.core.Node(pos=(1,1,1)),'node attr'),
_PAT([woo.core.Node,],'aNNode',[woo.core.Node(pos=(1,1,1)),woo.core.Node(pos=(2,2,2))],'List of nodes'),
_PAT(float,'aF_trigger',1.,triggerPostLoad=True,doc='Float triggering postLoad'),
]
def postLoad(self,I):
if I==None: pass # called when constructed/loaded
elif I==id(self.aF_trigger): pass # called when aF_trigger is modified
def __init__(self,**kw):
pass
# ...
The `postLoad` function is called with
* `None` when the instance has just been created (or loaded); it *shoud* be idempotent, i.e. calling `postLoad(None)` the second time should have no effect::
SomeClass() # default-constructed; will call postLoad(None)
SomeClass(aF=3.) # default-construct, assign, call postLoad(None)
* `id(self.attr)` when `self.attr` is modified; this can be used to check for some particular conditions or modify other variables::
instance=SomeClass() # calls instance.postLoad(None)
instance.aF_trigger=3 # calls instance.postLoad(id(instance.aF_trigger))
.. note:: Pay attention to not call `postLoad` in infinite regression.
'''
def wooPyInit(self,derivedClass,cxxBaseClass,**kw):
'''Inject methods into derivedClass, so that it behaves like woo.core.Object,
for the purposes of the GUI and expression dumps'''
cxxBaseClass.__init__(self) # repeat, just to make sure
self.cxxBaseClass=cxxBaseClass
self.derivedClass=derivedClass
self._instanceTraits={}
self._attrValues={}
self._attrTraitsDict=dict([(trait.name,trait) for trait in derivedClass._attrTraits])
for trait in derivedClass._attrTraits:
# basic getter/setter
getter=(lambda self,trait=trait: self._attrValues[trait.name])
setter=(lambda self,val,trait=trait: self._attrValues.__setitem__(trait.name,trait.coerceValue(val)))
if trait.triggerPostLoad:
if not hasattr(derivedClass,'postLoad'): raise RuntimeError('%s.%s declared with triggerPostLoad, but %s.postLoad is not defined.'%(derivedClass.__name__,trait.name,derivedClass.__name__))
def triggerSetter(self,val,trait=trait):
self._attrValues[trait.name]=trait.coerceValue(val)
self.postLoad(id(self._attrValues[trait.name]))
setter=triggerSetter
# chain validation and actual setting
def validatingSetter(self,val,trait=trait,setter=setter):
trait.validate(val)
setter(self,val)
setattr(derivedClass,trait.name,property(getter,validatingSetter,None,trait.doc))
self._attrValues[trait.name]=trait.ini
#print derivedClass,self._attrValues
if kw:
for k in kw:
if not hasattr(self,k): raise AttributeError('No such attribute: %s'%k)
if k in self._attrValues: self._attrValues[k]=self._attrTraitsDict[k].coerceValue(kw[k])
else: setattr(self,k,kw[k])
derivedClass.__str__=lambda o:'<%s @ %d (py)>'%(derivedClass.__name__,id(o))
derivedClass.__repr__=derivedClass.__str__
derivedClass._cxxAddr=property(lambda sefl: id(self))
# pickle support
def __getstate__(self):
#print '__getstate__ in python'
ret=self._attrValues.copy()
ret.update(cxxBaseClass.__getstate__(self)) # get boost::python stuff as well
return ret
def __setstate__(self,st):
#print '__setstate__ in python'
# set managed attributes indirectly, to avoid side-effects
for k in st.keys():
if k in self._attrValues:
self._attrValues[k]=self._attrTraitsDict[k].coerceValue(st.pop(k))
# set remaining attributes using setattr
for k,v in st.items(): setattr(self,k,v)
# call postLoad as if after loading
if hasattr(derivedClass,'postLoad'): self.postLoad(None)
def deepcopy(self):
'''The c++ dedepcopy uses boost::serialization, we need to use pickle. As long as deepcopy
is called from python, this function gets precende over the c++ one.'''
import pickle
return pickle.loads(pickle.dumps(self))
derivedClass.__getstate__=__getstate__
derivedClass.__setstate__=__setstate__
derivedClass.deepcopy=deepcopy
if hasattr(derivedClass,'postLoad'):
self.postLoad(None)
if __name__=='wooMain':
# do not define this class when running woo normally,
# so that it does not show up in the preprocessor dialogue
# inheritance order must not change, due to us using __bases__[0] frequently
# when traversing the class hierarchy
class SamplePyDerivedPreprocessor(Preprocessor,PyWooObject):
'Sample preprocessor written in pure python'
_classTraits=None
_attrTraits=[
PyAttrTrait(bool,'switch',True,"Some bool switch, starting group",startGroup='General'),
PyAttrTrait(int,'a',2,"Integer argument in python"),
PyAttrTrait(str,'b','whatever',"String argument in python"),
PyAttrTrait([Node,],'c',[],"List of nodes in python"),
PyAttrTrait(float,'d',.5,"Parameter with range",range=Vector2(0,.7),startGroup='Advanced'),
PyAttrTrait(int,'choice',2,"Param with choice",choice=[(0,'choice0'),(1,'choice1'),(2,'choice2')]),
PyAttrTrait(int,'flags',1,"Param with bits",bits=['bit0','bit1','bit2','bit3','bit4'],buttons=(['Clear flags','self.flags=0','Set flags to zero'],True)),
PyAttrTrait(int,'choice2',2,'Param with unnamed choice',choice=[0,1,2,3,4,5,6,-1]),
PyAttrTrait(Vector3,'color',Vector3(.2,.2,.2),"Color parameter",rgbColor=True),
PyAttrTrait(float,'length',1.5e-3,"Length",unit='mm'),
PyAttrTrait(str,'outDir','/tmp',dirname=True,doc='output directory'),
]
def __init__(self,**kw):
# construct all instance attributes
Preprocessor.__init__(self)
self.wooPyInit(SamplePyDerivedPreprocessor,Preprocessor,**kw)
def __call__(self):
import woo.core, woo.dem, woo.utils
S=woo.core.Scene(fields=[woo.dem.DemField()])
S.dem.par.append([
woo.utils.wall(0,axis=2,sense=1),
woo.utils.sphere((0,0,1),radius=.2)
])
S.dem.gravity=(0,0,-10)
S.dt=1e-4*woo.utils.pWaveDt(S)
S.engines=woo.utils.defaultEngines(damping=.01)
S.dem.collectNodes()
return S
import woo.pre
woo.pre.SamplePyDerivedPreprocessor=SamplePyDerivedPreprocessor
t=PyAttrTrait(str,'sChoice','aa',choice=['aa','bb','cc'],doc='string choice with validation')
t.validate('abc')
|
Azeko2xo/woodem
|
py/pyderived.py
|
pyderived.py
|
py
| 20,207 |
python
|
en
|
code
| 2 |
github-code
|
6
|
28969795163
|
"""
Artifact module.
"""
from __future__ import annotations
import typing
from typing import Self
from sdk.entities.artifact.metadata import build_metadata
from sdk.entities.artifact.spec import build_spec
from sdk.entities.base.entity import Entity
from sdk.entities.utils.utils import get_uiid
from sdk.utils.api import DTO_ARTF, api_ctx_create, api_ctx_update
from sdk.utils.exceptions import EntityError
from sdk.utils.factories import get_context, get_default_store
from sdk.utils.file_utils import check_file, get_dir
from sdk.utils.uri_utils import get_name_from_uri, get_uri_scheme, rebuild_uri
if typing.TYPE_CHECKING:
from sdk.entities.artifact.metadata import ArtifactMetadata
from sdk.entities.artifact.spec import ArtifactSpec
class Artifact(Entity):
"""
A class representing a artifact.
"""
def __init__(
self,
project: str,
name: str,
kind: str = None,
metadata: ArtifactMetadata = None,
spec: ArtifactSpec = None,
local: bool = False,
embedded: bool = False,
uuid: str = None,
**kwargs,
) -> None:
"""
Initialize the Artifact instance.
Parameters
----------
project : str
Name of the project.
name : str
Name of the artifact.
kind : str
Kind of the artifact
metadata : ArtifactMetadata
Metadata of the object.
spec : ArtifactSpec
Specification of the object.
local: bool
If True, run locally.
embedded: bool
If True embed object in backend.
**kwargs
Keyword arguments.
"""
super().__init__()
self.project = project
self.name = name
self.kind = kind if kind is not None else "artifact"
self.metadata = metadata if metadata is not None else build_metadata(name=name)
self.spec = spec if spec is not None else build_spec(self.kind, **{})
self.embedded = embedded
self.id = uuid if uuid is not None else get_uiid()
self._local = local
# Temporary local artifact path (see as_file())
self._temp_path = None
# Set new attributes
self._any_setter(**kwargs)
# Set context
self._context = get_context(self.project)
# Set key in spec store://<project>/artifacts/<kind>/<name>:<uuid>
self.spec.key = (
f"store://{self.project}/artifacts/{self.kind}/{self.name}:{self.id}"
)
#############################
# Save / Export
#############################
def save(self, uuid: str = None) -> dict:
"""
Save artifact into backend.
Parameters
----------
uuid : str
UUID.
Returns
-------
dict
Mapping representation of Artifact from backend.
"""
if self._local:
raise EntityError("Use .export() for local execution.")
obj = self.to_dict()
if uuid is None:
api = api_ctx_create(self.project, DTO_ARTF)
return self._context.create_object(obj, api)
self.id = uuid
api = api_ctx_update(self.project, DTO_ARTF, self.name, uuid)
return self._context.update_object(obj, api)
def export(self, filename: str = None) -> None:
"""
Export object as a YAML file.
Parameters
----------
filename : str
Name of the export YAML file. If not specified, the default value is used.
Returns
-------
None
"""
obj = self.to_dict()
filename = (
filename
if filename is not None
else f"artifact_{self.project}_{self.name}.yaml"
)
self._export_object(filename, obj)
#############################
# Artifacts Methods
#############################
def as_file(self, target: str = None) -> str:
"""
Get artifact as file. In the case of a local store, the store returns the current
path of the artifact. In the case of a remote store, the artifact is downloaded in
a temporary directory.
Parameters
----------
target : str
Target path is the remote path of the artifact where it is stored
Returns
-------
str
Temporary path of the artifact.
"""
# Get store
store = get_default_store()
# If local store, return local artifact path
if store.is_local():
self._check_src()
return self.spec.src_path
# Check if target path is specified
self._check_target(target)
# Check if target path is remote
self._check_remote()
# Download artifact and return path
self._temp_path = store.download(self.spec.target_path)
return self._temp_path
def download(
self, target: str = None, dst: str = None, overwrite: bool = False
) -> str:
"""
Download artifact from backend.
Parameters
----------
target : str
Target path is the remote path of the artifact
dst : str
Destination path as filename
overwrite : bool
Specify if overwrite an existing file
Returns
-------
str
Path of the downloaded artifact.
"""
# Check if target path is specified
self._check_target(target)
# Check if target path is remote
self._check_remote()
# Check if download destination path is specified and rebuild it if necessary
dst = self._rebuild_dst(dst)
# Check if destination path exists for overwrite
self._check_overwrite(dst, overwrite)
# Get store
store = get_default_store()
# Download artifact and return path
return store.download(self.spec.target_path, dst)
def upload(self, source: str = None, target: str = None) -> str:
"""
Upload artifact to backend.
Parameters
----------
source : str
Source path is the local path of the artifact
target : str
Target path is the remote path of the artifact
Returns
-------
str
Path of the uploaded artifact.
"""
# Check if source path is provided.
self._check_src(source)
# Check if source path is local
self._check_local()
# Check if target path is provided.
self._check_target(target, upload=True)
# Check if target path is remote
self._check_remote()
# Get store
store = get_default_store()
# Upload artifact and return remote path
return store.upload(self.spec.src_path, self.spec.target_path)
#############################
# Private Helpers
#############################
def _check_target(self, target: str = None, upload: bool = False) -> None:
"""
Check if target path is specified.
Parameters
----------
target : str
Target path is the remote path of the artifact
upload : bool
Specify if target path is for upload
Returns
-------
None
"""
if self.spec.target_path is None:
if target is None:
if not upload:
raise EntityError("Target path is not specified.")
path = get_dir(self.spec.src_path)
filename = get_name_from_uri(self.spec.src_path)
target_path = rebuild_uri(f"{path}/{filename}")
self.spec.target_path = target_path
return
self.spec.target_path = target
return
def _check_src(self, src: str = None) -> None:
"""
Check if source path is specified.
Parameters
----------
src : str
Source path is the local path of the artifact
Returns
-------
None
Raises
------
Exception
If source path is not specified.
"""
if self.spec.src_path is None:
if src is None:
raise EntityError("Source path is not specified.")
self.spec.src_path = src
def _check_remote(self) -> None:
"""
Check if target path is remote.
Parameters
----------
ignore_raise : bool
Specify if raise an exception if target path is not remote
Returns
-------
None
Raises
------
Exception
If target path is not remote.
"""
if self.spec.target_path is None:
return
if get_uri_scheme(self.spec.target_path) in ["", "file"]:
raise EntityError("Only remote source URIs are supported for target paths")
def _check_local(self) -> None:
"""
Check if source path is local.
Returns
-------
None
Raises
------
Exception
If source path is not local.
"""
if get_uri_scheme(self.spec.src_path) not in ["", "file"]:
raise EntityError("Only local paths are supported for source paths.")
def _rebuild_dst(self, dst: str = None) -> None:
"""
Check if destination path is specified.
Parameters
----------
dst : str
Destination path as filename
Returns
-------
str
Destination path as filename.
"""
if dst is None:
dst = f"./{get_name_from_uri(self.spec.target_path)}"
return dst
@staticmethod
def _check_overwrite(dst: str, overwrite: bool) -> None:
"""
Check if destination path exists for overwrite.
Parameters
----------
dst : str
Destination path as filename.
overwrite : bool
Specify if overwrite an existing file.
Raises
------
Exception
If destination path exists and overwrite is False.
"""
if check_file(dst) and not overwrite:
raise EntityError(f"File {dst} already exists.")
#############################
# Getters and Setters
#############################
@property
def local(self) -> bool:
"""
Get local flag.
"""
return self._local
@property
def temp_path(self) -> str:
"""
Get temporary path.
"""
return self._temp_path
#############################
# Generic Methods
#############################
@classmethod
def from_dict(cls, obj: dict) -> Self:
"""
Create object instance from a dictionary.
Parameters
----------
obj : dict
Dictionary to create object from.
Returns
-------
Self
Self instance.
"""
parsed_dict = cls._parse_dict(obj)
obj_ = cls(**parsed_dict)
obj_._local = obj_._context.local
return obj_
@staticmethod
def _parse_dict(obj: dict) -> dict:
"""
Parse dictionary.
Parameters
----------
obj : dict
Dictionary to parse.
Returns
-------
dict
Parsed dictionary.
"""
# Mandatory fields
project = obj.get("project")
name = obj.get("name")
if project is None or name is None:
raise EntityError("Project or name are not specified.")
# Optional fields
uuid = obj.get("id")
kind = obj.get("kind")
embedded = obj.get("embedded")
# Build metadata and spec
spec = obj.get("spec")
spec = spec if spec is not None else {}
spec = build_spec(kind=kind, **spec)
metadata = obj.get("metadata", {"name": name})
metadata = build_metadata(**metadata)
return {
"project": project,
"name": name,
"kind": kind,
"uuid": uuid,
"metadata": metadata,
"spec": spec,
"embedded": embedded,
}
def artifact_from_parameters(
project: str,
name: str,
description: str = "",
kind: str = "artifact",
key: str = None,
src_path: str = None,
target_path: str = None,
local: bool = False,
embedded: bool = False,
uuid: str = None,
) -> Artifact:
"""
Create artifact.
Parameters
----------
project : str
Name of the project.
name : str
Identifier of the artifact.
description : str
Description of the artifact.
kind : str
The type of the artifact.
key : str
Representation of artfact like store://etc..
src_path : str
Path to the artifact on local file system or remote storage.
targeth_path : str
Destination path of the artifact.
local : bool
Flag to determine if object has local execution.
embedded : bool
Flag to determine if object must be embedded in project.
uuid : str
UUID.
Returns
-------
Artifact
Artifact object.
"""
meta = build_metadata(name=name, description=description)
spec = build_spec(kind, key=key, src_path=src_path, target_path=target_path)
return Artifact(
project=project,
name=name,
kind=kind,
metadata=meta,
spec=spec,
local=local,
embedded=embedded,
uuid=uuid,
)
def artifact_from_dict(obj: dict) -> Artifact:
"""
Create artifact from dictionary.
Parameters
----------
obj : dict
Dictionary to create artifact from.
Returns
-------
Artifact
Artifact object.
"""
return Artifact.from_dict(obj)
|
trubbio83/core
|
sdk/sdk/entities/artifact/entity.py
|
entity.py
|
py
| 14,056 |
python
|
en
|
code
| 0 |
github-code
|
6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.