seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
19329693229
from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build from google.oauth2.credentials import Credentials from google.auth.transport.requests import Request import os # All scopes together ALL_SCOPES = [ 'https://www.googleapis.com/auth/contacts.readonly', 'https://www.googleapis.com/auth/calendar.readonly', 'https://www.googleapis.com/auth/gmail.readonly' ] CREDENTIALS_FILE = 'env/token.json' def get_credentials(scopes): creds = None # Load credentials from the file if it exists if os.path.exists(CREDENTIALS_FILE): creds = Credentials.from_authorized_user_file(CREDENTIALS_FILE, scopes) # Refresh or obtain new credentials if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) # Use `Request()` as the required argument for `refresh()` else: flow = InstalledAppFlow.from_client_secrets_file('env/oauth2_credentials.json', scopes) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(CREDENTIALS_FILE, 'w') as token: token.write(creds.to_json()) return creds # Build the service using credentials def get_authenticated_service(api, version, creds): return build(api, version, credentials=creds) # Fetch contacts def get_contacts(creds): service = get_authenticated_service('people', 'v1', creds) results = service.people().connections().list( resourceName='people/me', personFields='names,emailAddresses' ).execute() print("Data type of get_contacts results: ", type(results)) # print("First 500 characters of results: ", json.dumps(results, indent=4)[:500]) return results # Add this line # Fetch calendar events def get_calendar_events(creds): service = get_authenticated_service('calendar', 'v3', creds) results = service.events().list(calendarId='primary').execute() print("Data type of get_calendar_events results: ", type(results)) # print("First 500 characters of results: ", json.dumps(results, indent=4)[:500]) return results # Add this line # Fetch emails def get_emails(creds): service = get_authenticated_service('gmail', 'v1', creds) results = service.users().messages().list(userId='me', maxResults=10).execute() messages = results.get('messages', []) full_messages = [] # List to hold the full message details for message in messages: msg = service.users().messages().get(userId='me', id=message['id']).execute() full_messages.append(msg) return full_messages if __name__ == "__main__": creds = get_credentials(ALL_SCOPES) get_contacts(creds) get_calendar_events(creds) get_emails(creds)
clarkdever/gcal-gcontacts-sync
google_api_utils.py
google_api_utils.py
py
2,803
python
en
code
0
github-code
6
19969055167
""" This helps in finding the means and standards of the images to normalize before training. To run python3 calculate_means_std.py -i path/to/image/folder/ """ import argparse import subprocess import yaml import os import sys sys.path.remove("/opt/ros/kinetic/lib/python2.7/dist-packages") import cv2 import numpy as np def is_image(filename): return any(filename.endswith(ext) for ext in ['.jpg', '.png']) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--image', '-i', type=str, required=True, default=None, help='Directory to get the images from. If not passed, do from scratch!' ) FLAGS, unparsed = parser.parse_known_args() # print summary of what we will do print("----------") print("INTERFACE:") # print("image dir", FLAGS.image) print("----------\n") print("----------\n") # # create list of images and examine their pixel values filenames = [os.path.join(dp, f) for dp, dn, fn in os.walk( os.path.expanduser(FLAGS.image)) for f in fn if is_image(f)] # examine individually pixel values counter = 0.0 pix_val = np.zeros(3, dtype=np.float) for filename in filenames: # analize print("Accumulating mean", filename) # open as rgb cv_img = cv2.imread(filename, cv2.IMREAD_COLOR) cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB) # normalize to 1 cv_img = cv_img.astype(np.float) / 255.0 # count pixels and add them to counter h, w, d = cv_img.shape counter += h * w # sum to moving pix value counter in each channel pix_val += np.sum(cv_img, (0, 1)) # calculate means means = (pix_val / counter) # means print("means(rgb): ", means) # pass again and calculate variance pix_var = np.zeros(3, dtype=np.float) for filename in filenames: # analizel print("Accumulating variance", filename) # open as rgb cv_img = cv2.imread(filename, cv2.IMREAD_COLOR) cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB) # normalize to 1 cv_img = cv_img.astype(np.float) / 255.0 # sum to moving pix value counter in each channel pix_var += np.sum(np.square(cv_img - means), (0, 1)) # calculate the standard deviations stds = np.sqrt(pix_var / counter) print("stds(rgb): ", stds) # finalize by printing both print("*" * 80) print("means(rgb): ", means) print("stds(rgb): ", stds) print("*" * 80)
vijaysamula/Building_floor_counter
calculate_means_stds.py
calculate_means_stds.py
py
2,438
python
en
code
0
github-code
6
13454184469
""" words list가 링크만 있고, 글자 데이터가 없음. 글자 리스트를 받아오기 위한 파일 """ from selenium import webdriver from bs4 import BeautifulSoup import pandas as pd class Get_chndic_data: def __init__(self, link): self.link = link self.get_data = [] def beautiful_soup(self, link): """ Beautiful Soup Type의 객체를 return return값에 다음과 같은 메소드 가능 data = soup.find('div', id='container').find('div', class_='section_hsk') :param link: https://zh.dict.naver.com/ 뒤에 들어갈 {letter_link} 주소 :return: row 데이터 """ chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('headless') chrome_options.add_argument('window-size=1920x1080') chrome_options.add_argument("disable-gpu") # https://beomi.github.io/2017/09/28/HowToMakeWebCrawler-Headless-Chrome/ # driver = webdriver.Chrome("D:/dev/chromedriver.exe", chrome_options=chrome_options) # 집에서 chromedriver 경로 driver = webdriver.Chrome("C:/Users/user/Downloads/chromedriver.exe", chrome_options=chrome_options) # 학원에서 chromedriver 경로 url = f'https://zh.dict.naver.com/{link}' driver.get(url) driver.minimize_window() content = driver.page_source.encode('utf-8').strip() soup = BeautifulSoup(content, "html.parser") driver.close() return soup def find_letter_inf(self): """ 글자 link를 이용해 글자와 글자 뜻, 병음, 단어일 경우 구성 글자와 구성 글자 링크를 받아옴 :return: 위 자료로 구성된 list """ # 병음 추가해야 함. soup = self.beautiful_soup(self.link) letter = soup.find('div', id='container').find('div', class_="section section_entry _section_entry") \ .find('div', class_="entry_title _guide_lang").find('strong', class_='word').text return letter temp_df = pd.read_csv('../csv/hsk_words_listed.csv', encoding='UTF-8') hsk_words_link = temp_df.iloc[:, 1] index = 500 get_data_list = [] ########################################## 파일명 변환 ################################## for i in range(3000, 3100): while True: try: get_data = Get_chndic_data(hsk_words_link[i]) get_data_list.append(get_data.find_letter_inf()) df = pd.DataFrame(get_data_list) print(df.tail()) df.to_csv(f'../csv/letters_list{3000}.csv') break except AttributeError: print('try again') continue
i-hs/chn_words_crawling
make_database/words_list.py
words_list.py
py
2,691
python
ko
code
0
github-code
6
22126010030
import math import random # read data from file def getData(fn): # get data file = open(fn, 'r') read = file.readlines() file.close states = int(read[0]) # number of states rewards = [] # reward data (also state data) moves = [] # move data for i in range(1, len(read)): row = read[i].split('\n')[0].split(' ') # append if i <= states: row[1] = int(row[1]) rewards.append(row) else: row.append(0) moves.append(row) return (rewards, moves) # lookup table -> return index def lookup(table, coln, value): for i in range(len(table)): if table[i][coln] == value: return i return -1 # Q Learning def QLearning_(rewards, moves, state, doRandom, times, lastModifiedTimes): # print symbol = rewards[state][0] # symbol of state print('') print('symbol of state: ' + symbol) for i in range(len(moves)): print(moves[i]) # find all possible actions nextstate = [] for i in range(len(moves)): if moves[i][0] == symbol: nextstate.append(moves[i]) print('possible next moves: ' + str(nextstate)) # decide next action nextActionIndex = -1 # index of next action # RANDOM if random.random() < doRandom: print('decide RANDOM') next_ = random.randint(0, len(nextstate)-1) state = lookup(rewards, 0, nextstate[next_][1]) # update state nextActionIndex = next_ # BEST state else: print('decide BEST') bestVal = 0 bestIndex = -1 for i in range(len(nextstate)): if nextstate[i][2] > bestVal: bestVal = nextstate[i][2] bestIndex = i # best of next state (same value as best choice) # choose best next state randomly bestNextState = [] for i in range(len(nextstate)): if nextstate[i][2] == bestVal: bestNextState.append(nextstate[i]) selectBestNext = random.randint(0, len(bestNextState)-1) state = lookup(rewards, 0, bestNextState[selectBestNext][1]) # update state nextActionIndex = i # get immediate reward r(s, a) r = rewards[state][1] # find new state s' -> y*max(a')(Q(s', a')) symbol = rewards[state][0] maxReward = 0 # next action that has max reward for i in range(len(moves)): if moves[i][0] == symbol: if moves[i][2] > maxReward: maxReward = moves[i][2] # update state value = r + 0.5 * maxReward if nextstate[nextActionIndex][2] != value: lastModifiedTimes = times nextstate[nextActionIndex][2] = value print('update ' + str(nextstate[nextActionIndex][0]) + ' to ' + str(nextstate[nextActionIndex][1]) + ': ' + str(value)) print('symbol of state : ' + symbol) print('immediate reward: ' + str(r)) print('max reward : ' + str(maxReward)) return (rewards, moves, state, times, lastModifiedTimes) # do Q Learning def QLearning(rewards, moves): # print print('Rewards:') for i in range(len(rewards)): print(rewards[i]) times = 0 lastModifiedTimes = 0 # times when action table was lastly changed while 1: # round info times += 1 doRandom = 10/(times+10) # probability of searching randomly print('') print('----------------<<<< ROUND ' + str(times) + ' >>>>----------------') # do Q learning until the last state state = 0 while state != len(rewards)-1: (rewards, moves, state, times, lastModifiedTimes) = QLearning_(rewards, moves, state, doRandom, times, lastModifiedTimes) # break when converged if lastModifiedTimes * 2 + 10 < times: break if __name__ == '__main__': (rewards, moves) = getData('QLearning.txt') QLearning(rewards, moves)
WannaBeSuperteur/AI
QLearning.py
QLearning.py
py
4,032
python
en
code
0
github-code
6
33708620212
import os from google.cloud import storage class GoogleStorageLoader(): def __init__(self) -> None: """Start Google Cloud clint - could be used for uploading to storage """ os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "../content/key-bucket.json" self.client = storage.Client() def upload_to_bucket(self, bucket_name, source_file, destination): """uploads file to the bucket Args: bucket_name (str): _description_ source_file (str): _description_ destination (str): _description_ """ bucket = self.client.bucket(bucket_name) blob = bucket.blob(destination) blob.upload_from_filename(source_file)
IhorLuk/reddit_api_data_ingestion
src/storage.py
storage.py
py
724
python
en
code
0
github-code
6
41054313506
# coding: utf-8 # # Heat Diffusion in Soils # # This Jupyter Notebook gives an example how to implement a 1D heat diffusion model in Python. # # First we need to import the packages which we will be using: # # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import CoupledHeatWaterFlowTHe as cfun import MyTicToc as mt sns.set() ## Main # In[0:] Domain & Soil properties nIN = 51 # soil profile until 15 meters depth zIN = np.linspace(-2.0, 0, num=nIN).reshape(nIN, 1) # nIN = np.shape(zIN)[0] zN = np.zeros(nIN - 1).reshape(nIN - 1, 1) zN[0, 0] = zIN[0, 0] zN[1:nIN - 2, 0] = (zIN[1:nIN - 2, 0] + zIN[2:nIN - 1, 0]) / 2 zN[nIN - 2, 0] = zIN[nIN - 1] nN = np.shape(zN)[0] ii = np.arange(0, nN - 1) dzN = (zN[ii + 1, 0] - zN[ii, 0]).reshape(nN - 1, 1) dzIN = (zIN[1:, 0] - zIN[0:-1, 0]).reshape(nIN - 1, 1) # collect model dimensions in a pandas series: mDim mDim = {'zN' : zN, 'zIN' : zIN, 'dzN' : dzN, 'dzIN' : dzIN, 'nN' : nN, 'nIN' : nIN } mDim = pd.Series(mDim) # ## Definition of material properties # In this section of the code we define the material properties # Soil Properties # [J/(m3 K)] volumetric heat capacity of soil solids zetaSol = 2.235e6 # [J/(m3 K)] volumetric heat capacity of water (Fredlund 2006) zetaWat = 4.154e6 # rhoW = 1000 # [kg/m3] density of water rhoS = 2650 # [kg/m3] density of solid phase rhoB = 1700 # %[kg/m3] dry bulk density of soil n = 1 - rhoB / rhoS # [-] porosity of soil = saturated water content. qCont = 0.75 # quartz content # collect soil parameters in a pandas Series: sPar sPar = {'vGA': np.ones(np.shape(zN)) * 1 / 2.0, # alpha[1/m] 'vGN': np.ones(np.shape(zN)) * 2.0, # n[-] 'vGM': np.ones(np.shape(zN)) * (1 - 1 / 2.0), # m = 1-1/n[-] 'thS': np.ones(np.shape(zN)) * 0.4, # saturated water content 'thR': np.ones(np.shape(zN)) * 0.03, # residual water content 'KSat': np.ones(np.shape(zN)) * 0.25, # [m/day] 'vGE': 0.5, # power factor for Mualem-van Genuchten 'Cv': 1.0e-8, # compressibility of compact sand [1/Pa] 'viscRef': cfun.ViscosityWaterT(283.15), 'qCont': qCont, # quartz content } sPar = pd.Series(sPar) # In[1:] Definition of the Boundary Parameters # Read meteodata meteo_data = pd.read_excel('WieringermeerData_Meteo.xlsx') meteo_data['num_date'] = meteo_data['datetime'].astype(np.int64)/(1e9*3600*24) meteo_data.set_index('datetime',inplace=True) # set simulation time to numeric dates from boudary data... t_range = meteo_data['num_date'][:-1] taxis = meteo_data.index[:-1] # collect boundary parameters in a named tuple boundpar... def BndTTop(t, bPar): if np.size(t)==1: t = np.array([t]) bndT = np.zeros(len(t)) for ii in range(len(t)): xy, md_ind, t_ind = np.intersect1d(bPar.meteo_data['num_date'], np.ceil(t[ii]), return_indices=True) topT = bPar.meteo_data['temp'].iloc[md_ind].values bndT[ii] = 273.15 + topT return bndT def BndqWatTop(t, bPar): if np.size(t)==1: t = np.array([t]) qBnd = np.zeros(len(t)) for ii in range(len(t)): xy, md_ind, t_ind = np.intersect1d(bPar.meteo_data['num_date'], np.ceil(t[ii]), return_indices=True) rf = bPar.meteo_data['rain_station'].iloc[md_ind].values qBnd[ii] = -rf return qBnd bPar = {'topBndFuncHeat': BndTTop, 'meteo_data': meteo_data, 'topCond': 'Robin', 'lambdaRobTop': 1e9, 'lambdaRobBot': 0, 'TBndBot': 273.15 + 10, 'topBndFuncWat': BndqWatTop, #topBndFuncWat(t,bPar) 'bottomTypeWat': 'Robin', # Robin condition or Gravity condition 'kRobBotWat': 0.05, # Robin resistance term for bottom 'hwBotBnd': 1.0, # pressure head at lower boundary } bPar = pd.Series(bPar) # In[3:] Define Initial Conditions zRef = -1.0 # depth of water table hwIni = zRef - zN TIni = np.ones(np.shape(zN)) * (10.0 + 273.15) # K sVecIni = np.concatenate([hwIni, TIni], axis=0) # Time Discretization tOut = np.linspace(t_range[0],t_range[365],365*5) #tplot = taxis[0:50] nOut = np.shape(tOut)[0] nOut = len(tOut) # tOut = np.sort(np.hstack((tOut1, bTime))) # time # copy initial vector to hw0. Apply squeeze to compress it to one dimension mt.tic() int_result = cfun.IntegrateCHWF(tOut, sVecIni, sPar, mDim, bPar) mt.toc() hWSim = int_result.y[0:nN] TSim = int_result.y[nN:2*nN] thSim = cfun.thFun(hWSim,sPar) qWSim = cfun.WatFlux(tOut,hWSim,TSim,sPar,mDim,bPar) qHSim = cfun.HeatFlux(tOut, TSim, hWSim, sPar, mDim, bPar) #mt.tic() #TOutPic, hwOutPic = himp.HalfImplicitPicar(tOut2, hw0, T0, sPar, mDim, bPar, tPar) #mt.toc() sns.set() plt.close('all') fig1, ax1 = plt.subplots(figsize=(7, 4)) ii = np.arange(nN-1, 0, -10) ax1.plot(tOut, TSim[ii,].T, '-') ax1.set_title('Temperature (ODE)') ax1.set_xlabel('time (days)') ax1.set_ylabel('temperature [K]') ax1.legend(zN[ii]) fig2, ax2 = plt.subplots(figsize=(7, 7)) jj = np.arange(0, nOut) ax2.plot(TSim[:, jj], zN, '-') ax2.set_title('Temperature vs. depth (ODE)') ax2.set_ylabel('depth [m]') ax2.set_xlabel('temperature [K]') fig3, ax3 = plt.subplots(figsize=(7, 4)) # plot fluxes after 2nd output time (initial rate is extreme due to initial conditions) ax3.plot(tOut, qHSim[ii,:].T, '-') ax3.set_title('Heat Flux vs. depth (ODE)') ax3.set_ylabel('depth [m]') ax3.set_xlabel('temperature [J/m2]') ax3.legend(zN[ii]) fig4, ax4 = plt.subplots(figsize=(7, 4)) # plot the pressure head for different depths as a function of time # in this case we plot every 20th layer. ax4.plot(tOut, hWSim[ii,:].T, '-') ax4.set_ylabel('pressure head [m]') ax4.set_xlabel('time [d]') #plot pressure head as a function of depth. Here we plot every time step fig5, ax5 = plt.subplots(figsize=(7, 7)) ax5.plot(hWSim, zN, '-') ax5.grid(b=True) ax5.set_xlabel('pressure head [m]') ax5.set_ylabel('depth [m]') # plt.savefig('myfig.png') fig6, ax6 = plt.subplots(figsize=(7, 7)) ax6.plot(thSim, zN, '-') ax6.grid(b=True) ax6.set_xlabel('water content [-]') ax6.set_ylabel('depth [m]') fig7, ax7 = plt.subplots(figsize=(7, 4)) # plot the pressure head for different depths as a function of time # in this case we plot every 20th layer. ax7.plot(tOut, thSim[ii,:].T, '-') ax7.set_ylabel('water content [-]') ax7.set_xlabel('time [d]') ax7.legend(zN[ii]) fig8, ax8 = plt.subplots(figsize=(7, 4)) # plot fluxes after 2nd output time (initial rate is extreme due to initial conditions) ax8.plot(tOut, qWSim[ii,:].T, '-') ax8.set_title('Water Flux ') ax8.set_ylabel('depth [m]') ax8.set_xlabel('water flow [m/d]') ax8.legend(zN[ii]) fig1.savefig('./figures_scenarios/3_figure1.png') fig2.savefig('./figures_scenarios/3_figure2.png') fig3.savefig('./figures_scenarios/3_figure3.png') fig4.savefig('./figures_scenarios/3_figure4.png') fig5.savefig('./figures_scenarios/3_figure5.png') fig6.savefig('./figures_scenarios/3_figure6.png') fig7.savefig('./figures_scenarios/3_figure7.png') fig8.savefig('./figures_scenarios/3_figure8.png') # import shelve # filename='/tmp/shelve.out' # my_shelf = shelve.open(filename,'n') # 'n' for new # for key in dir(): # try: # my_shelf[key] = globals()[key] # except TypeError: # # # # __builtins__, my_shelf, and imported modules can not be shelved. # # # print('ERROR shelving: {0}'.format(key)) # my_shelf.close()
solomelittle/EL-Individual-Assignment
03_ScriptCH_WieringermeerBoundary.py
03_ScriptCH_WieringermeerBoundary.py
py
7,445
python
en
code
0
github-code
6
3477283820
import logging import os import typing from collections import defaultdict from typing import Dict import dpath.util from voluptuous import Any from dvc.exceptions import DvcException from dvc.utils.serialize import ParseError, load_path from dvc_data.hashfile.hash_info import HashInfo from .base import Dependency logger = logging.getLogger(__name__) class MissingParamsError(DvcException): pass class MissingParamsFile(DvcException): pass class ParamsIsADirectoryError(DvcException): pass class BadParamFileError(DvcException): pass class ParamsDependency(Dependency): PARAM_PARAMS = "params" PARAM_SCHEMA = {PARAM_PARAMS: Any(dict, list, None)} DEFAULT_PARAMS_FILE = "params.yaml" def __init__(self, stage, path, params=None, repo=None): self.params = list(params) if params else [] info = ( {self.PARAM_PARAMS: params} if isinstance(params, dict) else None ) repo = repo or stage.repo path = path or os.path.join(repo.root_dir, self.DEFAULT_PARAMS_FILE) super().__init__(stage, path, info=info, repo=repo) def dumpd(self): ret = super().dumpd() if not self.hash_info: ret[self.PARAM_PARAMS] = self.params or {} return ret def fill_values(self, values=None): """Load params values dynamically.""" if values is None: return info = {} if not self.params: info.update(values) for param in self.params: if param in values: info[param] = values[param] self.hash_info = HashInfo(self.PARAM_PARAMS, info) def read_params( self, flatten: bool = True, **kwargs: typing.Any ) -> Dict[str, typing.Any]: try: config = self.read_file() except MissingParamsFile: config = {} if not self.params: return config ret = {} if flatten: for param in self.params: try: ret[param] = dpath.util.get(config, param, separator=".") except KeyError: continue return ret from dpath.util import merge for param in self.params: merge( ret, dpath.util.search(config, param, separator="."), separator=".", ) return ret def workspace_status(self): if not self.exists: return {str(self): "deleted"} if self.hash_info.value is None: return {str(self): "new"} from funcy import ldistinct status = defaultdict(dict) info = self.hash_info.value if self.hash_info else {} actual = self.read_params() # NOTE: we want to preserve the order of params as specified in the # status. In case of tracking the whole file, the order is top-level # keys in the file and then the keys in the `info` from `dvc.lock` # (which are alphabetically sorted). params = self.params or ldistinct([*actual.keys(), *info.keys()]) for param in params: if param not in actual: st = "deleted" elif param not in info: st = "new" elif actual[param] != info[param]: st = "modified" else: assert actual[param] == info[param] continue status[str(self)][param] = st return status def status(self): return self.workspace_status() def validate_filepath(self): if not self.exists: raise MissingParamsFile(f"Parameters file '{self}' does not exist") if self.isdir(): raise ParamsIsADirectoryError( f"'{self}' is a directory, expected a parameters file" ) def read_file(self): self.validate_filepath() try: return load_path(self.fs_path, self.repo.fs) except ParseError as exc: raise BadParamFileError( f"Unable to read parameters from '{self}'" ) from exc def get_hash(self): info = self.read_params() missing_params = set(self.params) - set(info.keys()) if missing_params: raise MissingParamsError( "Parameters '{}' are missing from '{}'.".format( ", ".join(missing_params), self ) ) return HashInfo(self.PARAM_PARAMS, info) def save(self): if not self.exists: raise self.DoesNotExistError(self) if not self.isfile and not self.isdir: raise self.IsNotFileOrDirError(self) self.ignore() self.hash_info = self.get_hash()
gshanko125298/Prompt-Engineering-In-context-learning-with-GPT-3-and-LLMs
myenve/Lib/site-packages/dvc/dependency/param.py
param.py
py
4,814
python
en
code
3
github-code
6
42072257921
#!/usr/bin/env python # coding: utf-8 # In[36]: import requests from bs4 import BeautifulSoup import pandas list1=[] for page in range(0,30,10): r = requests.get("http://www.pyclass.com/real-estate/rock-springs-wy/LCWYROCKSPRINGS/t=0&s="+str(page)+".html", headers={'User-agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0'}) c= r.content soup=BeautifulSoup(c,"html.parser") all=soup.find_all("div",{"class":"propertyRow"}) x=all[0].find("h4",{"class":"propPrice"}).text for item in all: d={} d["Address"]=item.find_all("span",{"class":"propAddressCollapse"})[0].text try: d["Locality"]=item.find_all("span",{"class":"propAddressCollapse"})[1].text except: d["Locality"]=None d["Price"]=item.find("h4",{"class":"propPrice"}).text.replace("\n","").strip() try: d["Beds"]=item.find("span",{"class":"infoBed"}).find("b").text except: d["Beds"]=None try: d["Area"]=item.find("span",{"class":"infoSqFt"}).find("b").text except: d["Area"]=None try: d["Full Baths"]=item.find("span",{"class":"infoValueFullBath"}).find("b").text except: d["Full Baths"]=None try: d["Half Baths"]=item.find("span",{"class":"infoValueHalfBath"}).find("b").text except: d["Half Baths"]=None for column_group in item.find_all("div",{"class":"columnGroup"}): for fg , fn in zip(column_group.find_all("span",{"class":"featureGroup"}),column_group.find_all("span",{"class":"featureName"})): if "Lot Size" in fg.text : d["Lot Size"]=fn.text list1.append(d) df=pandas.DataFrame(list1) df.to_csv("output.csv")
shivangijain827/python-projects
web - scraper/main.py
main.py
py
1,883
python
en
code
0
github-code
6
74099804029
import os import os.path as osp import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import pandas as pd import argparse from dataset import collate_fn, MergedMatchingDataset from torch.utils.data import DataLoader from EmbedModel import EmbedModel from GCN import gcn from logger import set_logger from utils import _read_csv, accuracy def fetch_edge(batch): edges = [] types = [] for ex in batch: type = ex["type"] center_id = ex["center"][0] neighbors = [] if "neighbors_mask" in ex: for i, n in enumerate(ex["neighbors"]): if ex["neighbors_mask"][i] == 0: continue neighbors.append(n) else: neighbors = ex["neighbors"] if type == 'l': edges += [[center_id, n[0]] for n in neighbors] types += [0] * len(neighbors) elif type == 'r': edges += [[n[0], center_id] for n in neighbors] types += [1] * len(neighbors) else: raise NotImplementedError return edges, types def calculate_f1(edges, scores, labels, types, score_type='left'): score_dict={} for i, edge in enumerate(edges): score = scores[i] label = labels[i] e = tuple(edge) if e in score_dict: assert score_dict[e][1] == label if score_type == 'max': score_dict[e] = (max(score_dict[e][0],score),label) elif score_type == 'mean': score_dict[e] = ((score_dict[e][0] + score) / 2.0, label) elif score_type == 'min': score_dict[e] = (min(score_dict[e][0], score), label) else: raise NotImplementedError else: score_dict[e] = (score,label) score_label = score_dict.values() scores = np.asarray([i[0] for i in score_label]) label = np.asarray([i[1] for i in score_label]) pred = (scores > 0.5).astype('int') TP = np.sum((pred == 1) * (label == 1)) TN = np.sum((pred == 0) * (label == 0)) FP = np.sum((pred == 1) * (label == 0)) FN = np.sum((pred == 0) * (label == 1)) acc = (TP + TN) * 1.0 / (TP + TN + FN + FP) if TP == 0: p = r = f1 =0.0 else: p = TP * 1.0 / (TP + FP) r = TP * 1.0 / (TP + FN) f1 = 2 * p * r / (p + r) return p, r, f1, acc, score_dict def test(iter,logger,model,embed_model,crit,test_step=None,tf_logger=None,score_type='mean', prefix='Test'): model.eval() embed_model.eval() edges = [] scores = [] labels = [] types = [] for j, batch in enumerate(iter): with torch.no_grad(): edge,type = fetch_edge(batch) feature, A, label, masks = embed_model(batch) masks = masks.view(-1) label = label.view(-1)[masks == 1].long() pred = model(feature, A) pred = pred[masks == 1] loss = crit(pred, label) pred = F.softmax(pred, dim=1) p, r, acc = accuracy(pred, label) logger.info( '{}\t[{:d}/{:d}]\tLoss {:.3f}\tAccuracy {:.3f}\tPrecison {:.3f}\tRecall {:.3f}'.format(prefix,j+1,len(iter),loss,acc, p, r)) assert pred.shape[0] == label.shape[0] scores += pred[:,1].detach().cpu().numpy().tolist() edges += edge labels += label.detach().cpu().numpy().tolist() types += type edges = np.asarray(edges) scores = np.asarray(scores) labels = np.asarray(labels) types = np.asarray(types) if not isinstance(score_type,list): score_type = [score_type] f1s = [] for t in score_type: p, r, f1, acc, score_dict = calculate_f1(edges, scores, labels, types, score_type=t.lower()) f1s.append(f1) logger.info('{}\t{}\tPrecison {:.3f}\tRecall {:.3f}\tF1-score {:.3f}\tAccuracy {:.3f}'.format(prefix, t, p, r, f1, acc)) if tf_logger: tf_logger.add_scalar('{}/{}/Precision'.format(prefix, t), p, test_step) tf_logger.add_scalar('{}/{}/Recall'.format(prefix, t), r, test_step) tf_logger.add_scalar('{}/{}/f1Score'.format(prefix, t), f1, test_step) tf_logger.add_scalar('{}/{}/Accuracy'.format(prefix, t), acc, test_step) return f1s if __name__ == '__main__': parser = argparse.ArgumentParser() # misc working_dir = osp.dirname(osp.abspath(__file__)) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--score_type', type=str, nargs='+') # Test args parser.add_argument('--batch_size', type=int, default=8) parser.add_argument('--tableA_path', type=str) parser.add_argument('--tableB_path', type=str) parser.add_argument('--train_path', type=str) parser.add_argument('--test_path', type=str) parser.add_argument('--val_path', type=str) parser.add_argument('--checkpoint_path', type=str) # Device parser.add_argument('--gpu', type=int, default=[0], nargs='+') # Model parser.add_argument('--gcn_layer', default=1, type=int) args = parser.parse_args() torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) tableA = _read_csv(args.tableA_path) tableB = _read_csv(args.tableB_path) useful_field_num = len(tableA.columns) - 1 gcn_dim = 768 test_dataset = MergedMatchingDataset(args.test_path, tableA, tableB, other_path=[args.train_path, args.val_path]) test_iter = DataLoader(test_dataset, batch_size=args.batch_size, collate_fn=collate_fn, shuffle=False) embedmodel = EmbedModel(useful_field_num=useful_field_num,device=args.gpu) model = gcn(dims=[gcn_dim]*(args.gcn_layer + 1)) criterion = nn.CrossEntropyLoss().to(embedmodel.device) logger = set_logger() if args.checkpoint_path: checkpoint = torch.load(args.checkpoint_path) if len(args.gpu) == 1: new_state_dict = {k.replace('module.', ''): v for k, v in checkpoint["embed_model"].items()} embedmodel.load_state_dict(new_state_dict) else: embedmodel.load_state_dict(checkpoint["embed_model"]) model.load_state_dict(checkpoint["model"]) test_type = [checkpoint["type"]] logger.info("Test Type:\t{}".format(checkpoint["type"])) else: test_type = args.test_type embedmodel = embedmodel.to(embedmodel.device) model = model.to(embedmodel.device) test(iter=test_iter, logger=logger, model=model, embed_model=embedmodel, crit=criterion, score_type=test_type)
ChenRunjin/GNEM
test.py
test.py
py
6,754
python
en
code
5
github-code
6
41254027126
from copy import copy, deepcopy from itertools import izip from burrahobbit.util import all SENTINEL = object() SHIFT = 5 BMAP = (1 << SHIFT) - 1 BRANCH = 2 ** SHIFT MAXBITMAPDISPATCH = 16 def relevant(hsh, shift): """ Return the relevant part of the hsh on the level shift. """ return hsh >> shift & BMAP POPCOUNT_TBL = [0] * (2 ** 16) for idx in xrange(2 ** 16): POPCOUNT_TBL[idx] = (idx & 1) + POPCOUNT_TBL[idx >> 1] def bit_count(v): return (POPCOUNT_TBL[v & 0xffff] + POPCOUNT_TBL[(v >> 16) & 0xffff]) def doc(docstring): """ Decorator to set docstring of function to docstring. """ def deco(fn): """ Implementation detail. """ fn.__doc__ = docstring return fn return deco ASSOC = "\n".join([ "Add AssocNode node whose key's hash is hsh to the node or its children.", "shift refers to the current level in the tree, which must be a multiple", "of the global constant BRANCH. If a node with the same key already", "exists, override it.", ]) IASSOC = "\n".join([ "Modify so that the AssocNode whose key's hash is hsh is added to it.", "USE WITH CAUTION.", "shift refers to the current level in the tree, which must be a multiple", "of the global constant BRANCH. If a node with the same key already", "exists, override it.", ]) GET = "\n".join([ "Get value of the AssocNode with key whose hash is hsh in the subtree.", "shift refers to the current level in the tree, which must be a multiple", "of the global constant BRANCH.", ]) WITHOUT = "\n".join([ "Remove AssocNode with key whose hash is hsh from the subtree.", "shift refers to the current level in the tree, which must be a multiple", "of the global constant BRANCH.", ]) IWITHOUT = "\n".join([ "Modify so that the AssocNode whose key's hash is hsh is removed from it.", "USE WITH CAUTION.", "shift refers to the current level in the tree, which must be a multiple", "of the global constant BRANCH.", ]) class Node(object): __slots__ = [] def __and__(self, other): new = NULLNODE for node in other: try: self.get(hash(node.key), 0, node.key) except KeyError: pass else: new = new._iassoc(hash(node.key), 0, node) return new def __xor__(self, other): new = self for node in other: new = new.xor(node.hsh, 0, node) return new def __or__(self, other): new = self for node in other: new = new.assoc(node.hsh, 0, node) return new def __eq__(self, other): return all(node == othernode for node, othernode in izip(self, other)) def __neq__(self, other): return any(node != othernode for node, othernode in izip(self, other)) class NullNode(Node): """ Dummy node being the leaf of branches that have no entries. """ __slots__ = [] def xor(self, hsh, shift, node): return node _ixor = xor @doc(ASSOC) def assoc(self, hsh, shift, node): # Because there currently no node, the new node # is the node to be added. return node # The NullNode does not need to be modified if a new association is # created because it only returns the new node, hence _iassoc = assoc. _iassoc = assoc def get(self, hsh, shift, key): # There is no entry with the searched key because the hash leads # to a branch ending in a NullNode. raise KeyError(key) @doc(WITHOUT) def without(self, hsh, shift, key): # There is no entry with the key to be removed because the hash leads # to a branch ending in a NullNode. raise KeyError(key) _iwithout = without def __iter__(self): # There are no keys contained in a NullNode. Hence, an empty # iterator is returned. return iter([]) # Likewise, there are no values and items in a NullNode. iteritems = itervalues = __iter__ def __copy__(self): return self def cutoff(self, hsh): return self # We only need one instance of a NullNode because it does not contain # any data. NULLNODE = NullNode() class HashCollisionNode(Node): """ If hashes of two keys collide, store them in a list and when a key is searched, iterate over that list and find the appropriate key. """ __slots__ = ['children', 'hsh'] def __init__(self, nodes): self.children = nodes self.hsh = hash(nodes[0].hsh) def xor(self, hsh, shift, node): if not any(node.key == child.key for child in self.children): return HashCollisionNode(self.children + [node]) return self def _ixor(self, hsh, shift, node): if not any(node.key == child.key for child in self.children): self.children.append(node) return self @doc(GET) def get(self, hsh, shift, key): # To get the child we want we need to iterate over all possible ones. # The contents of children are always AssocNodes, # so we can safely access the key member. for node in self.children: if key == node.key: return node raise KeyError(key) @doc(ASSOC) def assoc(self, hsh, shift, node): # If we have yet another key with a colliding key, return a new node # with it added to the children, otherwise return a DispatchNode. if hsh == self.hsh: return HashCollisionNode(self.children + [node]) return DispatchNode.make(shift, [self, node]) @doc(IASSOC) def _iassoc(self, hsh, shift, node): # If we have yet another key with a colliding key, add it to the # children, otherwise return a DispatchNode. if hsh == self.hsh: self.children.append(node) return self return DispatchNode.make(shift, [self, node]) @doc(WITHOUT) def without(self, hsh, shift, key): # Remove the node whose key is key from the children. If it was the # last child, return NULLNODE. If there was no member with a # matching key, raise KeyError. newchildren = [node for node in self.children if node.key != key] if not newchildren: return NULLNODE if newchildren == self.children: raise KeyError(key) return HashCollisionNode(newchildren) @doc(IWITHOUT) def _iwithout(self, hsh, shift, key): newchildren = [node for node in self.children if node.key != key] if not newchildren: return NULLNODE if newchildren == self.children: raise KeyError(key) self.children = newchildren return self def __iter__(self): for node in self.children: for elem in node: yield elem def __copy__(self): return HashCollisionNode(map(copy, self.children)) def cutoff(self, hsh): if self.hsh <= hsh: return NULLNODE return self class ListDispatch(Node): """ Light weight dictionary like object for a little amount of items. Only feasable for a little amount of items as a list of length nitems is always stored. Only accepts integers as keys. """ __slots__ = ['items'] def __init__(self, nitems=None, items=None): if items is None: items = [SENTINEL for _ in xrange(nitems)] self.items = items def replace(self, key, item): """ Return a new ListDispatch with the the keyth item replaced with item. """ return ListDispatch( None, self.items[:key] + [item] + self.items[key + 1:] ) def _ireplace(self, key, item): """ Replace keyth item with item. USE WITH CAUTION. """ self.items[key] = item return self def __getitem__(self, key): value = self.items[key] if value is SENTINEL: raise KeyError(key) return value def get(self, key, default): """ Get keyth item. If it is not present, return default. """ value = self.items[key] if value is not SENTINEL: return value return default def remove(self, key): """ Return new ListDispatch with keyth item removed. Will not raise KeyError if it was not present. """ return self.replace(key, SENTINEL) def _iremove(self, key): """ Remove keyth item. Will not raise KeyError if it was not present. USE WITH CAUTION. """ self._ireplace(key, SENTINEL) return self def to_bitmapdispatch(self): dispatch = BitMapDispatch() for key, value in enumerate(self.items): if value is not SENTINEL: dispatch._ireplace(key, value) return dispatch def __iter__(self): return (item for item in self.items if item is not SENTINEL) def __copy__(self): return ListDispatch(items=self.items[:]) def __deepcopy__(self): return ListDispatch(items=map(deepcopy, self.items)) def map(self, fn): newitems = [] for elem in self.items: if elem is not SENTINEL: elem = fn(elem) newitems.append(elem) return ListDispatch(items=newitems) class BitMapDispatch(Node): """ Light weight dictionary like object for a little amount of items. Best used for as most as many items as an integer has bits (usually 32). Only accepts integers as keys. The items are stored in a list and whenever an item is added, the bitmap is ORed with (1 << key) so that the keyth bit is set. The amount of set bits before the nth bit is used to find the index of the item referred to by key in the items list. """ __slots__ = ['bitmap', 'items'] def __init__(self, bitmap=0, items=None): if items is None: items = [] self.bitmap = bitmap self.items = items def replace(self, key, item): """ Return a new BitMapDispatch with the the keyth item replaced with item. """ # If the item already existed in the list, we need to replace it. # Otherwise, it will be added to the list at the appropriate # position. if len(self.items) >= MAXBITMAPDISPATCH: new = self.to_listdispatch(BRANCH) return new._ireplace(key, item) notnew = bool(self.bitmap & 1 << key) newmap = self.bitmap | 1 << key idx = bit_count(self.bitmap & ((1 << key) - 1)) return BitMapDispatch( newmap, # If notnew is True, the item that is replaced by the new item # is left out, otherwise the new item is inserted. Refer to # _ireplace for a more concise explanation. self.items[:idx] + [item] + self.items[idx+notnew:] ) def _ireplace(self, key, item): """ Replace keyth item with item. USE WITH CAUTION. """ if len(self.items) >= MAXBITMAPDISPATCH: new = self.to_listdispatch(BRANCH) return new._ireplace(key, item) notnew = bool(self.bitmap & 1 << key) self.bitmap |= 1 << key idx = bit_count(self.bitmap & ((1 << key) - 1)) if idx == len(self.items): self.items.append(item) elif notnew: self.items[idx] = item else: self.items.insert(idx, item) return self def get(self, key, default=None): """ Get keyth item. If it is not present, return default. """ if not self.bitmap & 1 << key: return default return self.items[bit_count(self.bitmap & ((1 << key) - 1))] def remove(self, key): """ Return new BitMapDispatch with keyth item removed. Will not raise KeyError if it was not present. """ idx = bit_count(self.bitmap & ((1 << key) - 1)) return BitMapDispatch( # Unset the keyth bit. self.bitmap & ~(1 << key), # Leave out the idxth item. self.items[:idx] + self.items[idx+1:] ) def _iremove(self, key): """ Remove keyth item. Will not raise KeyError if it was not present. USE WITH CAUTION. """ idx = bit_count(self.bitmap & ((1 << key) - 1)) self.bitmap &= ~(1 << key) self.items.pop(idx) return self def __getitem__(self, key): if not self.bitmap & 1 << key: raise KeyError(key) return self.items[bit_count(self.bitmap & ((1 << key) - 1))] def to_listdispatch(self, nitems): """ Return ListDispatch with the same key to value connections as this BitMapDispatch. """ return ListDispatch( None, [self.get(n, SENTINEL) for n in xrange(nitems)] ) def __iter__(self): return iter(self.items) def __nonzero__(self): return bool(self.items) def __copy__(self): return BitMapDispatch(self.bitmap, self.items[:]) def __deepcopy__(self): return BitMapDispatch(self.bitmap, map(deepcopy, self.items)) def map(self, fn): return BitMapDispatch( self.bitmap, [fn(elem) for elem in self.items] ) class DispatchNode(Node): """ Dispatch to children nodes depending of the hsh value at the current level. """ __slots__ = ['children'] def __init__(self, children=None): if children is None: children = BitMapDispatch() self.children = children def xor(self, hsh, shift, node): rlv = relevant(hsh, shift) newchild = self.children.get(rlv, NULLNODE).xor(hsh, shift + SHIFT, node) if newchild is NULLNODE: # This makes sure no dead nodes remain in the tree after # removing an item. newchildren = self.children.remove(rlv) if not newchildren: return NULLNODE else: newchildren = self.children.replace( rlv, newchild ) return DispatchNode(newchildren) def _ixor(self, hsh, shift, node): rlv = relevant(hsh, shift) newchild = self.children[rlv].xor(hsh, shift + SHIFT, node) if newchild is NULLNODE: self.children = self.children._iremove(rlv) if not self.children: return NULLNODE else: self.children = self.children._ireplace(rlv, newchild) return self @doc(ASSOC) def assoc(self, hsh, shift, node): # We need not check whether the return value of # self.children.get(...).assoc is NULLNODE, because assoc never # returns NULLNODE. rlv = relevant(hsh, shift) return DispatchNode( self.children.replace( rlv, self.children.get(rlv, NULLNODE).assoc( hsh, shift + SHIFT, node ) ) ) @doc(IASSOC) def _iassoc(self, hsh, shift, node): rlv = relevant(hsh, shift) self.children = self.children._ireplace( rlv, self.children.get(rlv, NULLNODE)._iassoc(hsh, shift + SHIFT, node) ) return self @classmethod def make(cls, shift, many): # Because the object we create in this function is not yet exposed # to any other code, we may safely call _iassoc. dsp = cls() for elem in many: dsp = dsp._iassoc(elem.hsh, shift, elem) return dsp @doc(GET) def get(self, hsh, shift, key): return self.children.get(relevant(hsh, shift), NULLNODE).get( hsh, shift + SHIFT, key ) @doc(WITHOUT) def without(self, hsh, shift, key): rlv = relevant(hsh, shift) newchild = self.children[rlv].without(hsh, shift + SHIFT, key) if newchild is NULLNODE: # This makes sure no dead nodes remain in the tree after # removing an item. newchildren = self.children.remove(rlv) if not newchildren: return NULLNODE else: newchildren = self.children.replace( rlv, newchild ) return DispatchNode(newchildren) @doc(IWITHOUT) def _iwithout(self, hsh, shift, key): rlv = relevant(hsh, shift) newchild = self.children[rlv]._iwithout(hsh, shift + SHIFT, key) if newchild is NULLNODE: self.children = self.children._iremove(rlv) if not self.children: return NULLNODE else: self.children = self.children._ireplace(rlv, newchild) return self def __iter__(self): for child in self.children: for elem in child: yield elem def __copy__(self): return DispatchNode(self.children.map(copy))
fmayer/burrahobbit
burrahobbit/_tree.py
_tree.py
py
17,423
python
en
code
8
github-code
6
9162832850
def _self_extract_binary(ctx): """Implementation for the self_extract_binary rule.""" # This is a bit complex for stripping out timestamps zip_artifact = ctx.actions.declare_file(ctx.label.name + ".zip") touch_empty_files = [ "mkdir -p $(dirname ${tmpdir}/%s); touch ${tmpdir}/%s" % (f, f) for f in ctx.attr.empty_files ] cp_resources = [ ("mkdir -p $(dirname ${tmpdir}/%s)\n" % r.short_path + "cp %s ${tmpdir}/%s" % (r.path, r.short_path)) for r in ctx.files.resources ] cp_flatten_resources = [ "cp %s ${tmpdir}/%s" % (r.path, r.basename) for r in ctx.files.flatten_resources ] ctx.actions.run_shell( inputs = ctx.files.resources + ctx.files.flatten_resources, outputs = [zip_artifact], command = "\n".join([ "tmpdir=$(mktemp -d ${TMPDIR:-/tmp}/tmp.XXXXXXXX)", "trap \"rm -fr ${tmpdir}\" EXIT", ] + touch_empty_files + cp_resources + cp_flatten_resources + [ "find ${tmpdir} -exec touch -t 198001010000.00 '{}' ';'", "(d=${PWD}; cd ${tmpdir}; zip -rq ${d}/%s *)" % zip_artifact.path, ]), mnemonic = "ZipBin", ) ctx.actions.run_shell( inputs = [ctx.file.launcher, zip_artifact], outputs = [ctx.outputs.executable], command = "\n".join([ "cat %s %s > %s" % ( ctx.file.launcher.path, zip_artifact.path, ctx.outputs.executable.path, ), "zip -qA %s" % ctx.outputs.executable.path, ]), mnemonic = "BuildSelfExtractable", ) self_extract_binary = rule( _self_extract_binary, attrs = { "launcher": attr.label( mandatory = True, allow_single_file = True, ), "empty_files": attr.string_list(default = []), "resources": attr.label_list( default = [], allow_files = True, ), "flatten_resources": attr.label_list( default = [], allow_files = True, ), }, executable = True, )
bazelbuild/bazel
scripts/packages/self_extract_binary.bzl
self_extract_binary.bzl
bzl
2,138
python
en
code
21,632
github-code
6
26470959901
""" Problem 71: Ordered Fractions https://projecteuler.net/problem=71 Goal: By listing the set of reduced proper fractions for d <= N in ascending order of size, find the numerator and denominator of the fraction immediately to the left of n/d. Constraints: 1 <= n < d <= 1e9, gcd(n, d) == 1, d < N <= 1e15 Reduced Proper Fraction: A fraction n/d, where n & d are positive integers, n < d, and gcd(n, d) == 1. Farey Sequence: A sequence of completely reduced fractions, either between 0 and 1, or which when in reduced terms have denominators <= N, arranged in order of increasing size. The sequence optionally begins with 0/1 and ends with 1/1 if restricted. The middle term of a Farey sequence is always 1/2 for N > 1. e.g. if d <= 8, the Farey sequence would be -> 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8 e.g.: N = 8, n = 3, d = 7 ans = 2/5 """ from fractions import Fraction from math import gcd def left_farey_neighbour(limit: int, n: int, d: int) -> tuple[int, int]: """ Solution finds Farey sequence neighbours based on the following: If a/b and n/d are neighbours, with a/b < n/d, then their difference: n/d - a/b = (nb - ad)/(db) with nb - ad = 1, it becomes -> n/d - a/b = 1/(db) A mediant fraction can be found between 2 neighbours using: p/q = (a + n)/(b + d) This solution could also be implemented similarly using a Stern-Brocot Tree fraction search algorithm that uses binary search to recursively find the target fraction n/d starting from the left & right ancestors, 0/1 & 1/0. Once found, the last left boundary is used with the target to find all mediants until a new mediant's denominator exceeds limit. SPEED (WORSE) 12.03s for N = 1e7 SPEED (Impossible for N > 1e10) :returns: Tuple of (numerator, denominator) representing the fraction to the left of n/d. """ upper_bound = Fraction(n, d) lower_bound = Fraction(n, d + 1) if d != limit else Fraction(n - 1, d) half = Fraction(1, 2) if lower_bound < half < upper_bound: lower_bound = half neighbour = Fraction() while True: delta = upper_bound - lower_bound neighbour_delta = Fraction(1, lower_bound.denominator * d) if delta == neighbour_delta: neighbour = lower_bound lower_bound = Fraction( lower_bound.numerator + n, lower_bound.denominator + d ) if lower_bound.denominator > limit and neighbour != Fraction(): break return neighbour.numerator, neighbour.denominator def compare_fractions( fraction_a: tuple[int, int], fraction_b: tuple[int, int] ) -> int: """ Rather than compare Doubles, whole numbers are compared based on the property that: if a/b < n/d, then ad < bn :returns: -1 if fraction_a < fraction_b; 1 if fraction_a > fraction_b; 0 if both equal. """ left = fraction_a[0] * fraction_b[1] right = fraction_a[1] * fraction_b[0] if left == right: return 0 return -1 if left < right else 1 def reduce_fraction(numerator: int, denominator: int) -> tuple[int, int]: divisor = gcd(numerator, denominator) return numerator // divisor, denominator // divisor def left_farey_neighbour_improved(limit: int, n: int, d: int) -> tuple[int, int]: """ Solution improved based on the following: For each denominator b up to N, the only fraction that needs to be considered is the one with the largest numerator a for which a/b < n/d. a/b < n/d becomes ad < bn, which means ad <= bn - 1 a <= floor((bn - 1)/d) for b <= N, floor((bn - 1)/d)/b is the largest fraction. Fractions with larger denominators are spaced more closely than those with smaller denominators, so iterating backwards starting at N means the largest neighbour below n/d will be found sooner. The loop is broken based on the aforementioned property that: the difference between 2 neighbours is given as 1/(db) for a new fraction r/s to be closer to n/d than a/b -> 1/(ds) < (nb - da)/(db) -> s > b/(nb - da) if delta = nb - da = 1, this means s > b, & the loop can be broken as all denominators between b and N have already been examined. N.B. Using the Fraction class from the fractions library is helpful as an instance intrinsically reduces itself & comparisons & arithmetic operations are more easily implemented; however, its use reduced the execution speed to 405.98s for N = 1e15, a ~4x reduction in performance. SPEED (BETTER) 3.9e4ns for N = 1e7 SPEED (BETTER) 93.99s for N = 1e15 :returns: Tuple of (numerator, denominator) representing the fraction to the left of n/d. """ closest_neighbour = 0, 1 b = limit # current denominator starts at provided limit min_b = 1 while b >= min_b: a = (b * n - 1) // d # current numerator current = a, b # if closest_a / closest_b < current_a / current_b if compare_fractions(closest_neighbour, current) == -1: closest_neighbour = reduce_fraction(a, b) delta = n * b - d * a min_b = b // delta + 1 b -= 1 return closest_neighbour def extended_gcd(n1: int, n2: int) -> tuple[int, int, int]: """ Implements the Extended Euclidean Algorithm that calculates, in addition to gcd(n1, n2), the coefficients of Bezout's identity, integers x and y such that: ax + by = gcd(a, b) :returns: Tuple of (gcd, x, y). :raises ValueError: If either n1 or n2 is less than 0. """ if n1 < 0 or n2 < 0: raise ValueError("Integers should not be negative") if n1 == 0: return n2, 0, 1 e_gcd, x, y = extended_gcd(n2 % n1, n1) return e_gcd, y - n2 // n1 * x, x def left_farey_neighbour_optimised(limit: int, n: int, d: int) -> tuple[int, int]: """ Solution optimised by taking advantage of the Extended Euclidean Algorithm that generates coefficients x and y, in addition to the gcd. When a and b are co-prime, x will be the modular multiplicative inverse of a % b and y will be the modular multiplicative inverse of b % a. Remember that the modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus b. SPEED (BEST) 5700ns for N = 1e7 SPEED (BEST) 1.9e4ns for N = 1e15 :returns: Tuple of (numerator, denominator) representing the fraction to the left of n/d. """ # Python modulus intrinsically handles cases when x is negative mod_inverse_of_n = extended_gcd(n, d)[1] % d new_d = limit % d - mod_inverse_of_n if new_d < 0: new_d += d neighbour_denom = limit - new_d neighbour_num = (neighbour_denom * n - 1) // d return neighbour_num, neighbour_denom
bog-walk/project-euler-python
solution/batch7/problem71.py
problem71.py
py
7,025
python
en
code
0
github-code
6
24455754580
# -*- coding: utf-8 -*- """ @author: Fatih Kemal Terzi """ import cv2 import numpy as np # Image reading img = cv2.imread('pools.png') count=0 # Image converting to HSV color space hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Adjusting range of blue color for detecting pools lower_blue = np.array([80,50,50]) upper_blue = np.array([115,255,255]) # To spesifiying blue region creating binary mask mask = cv2.inRange(hsv, lower_blue, upper_blue) # Perform morphological operations to reduce noise kernel = np.ones((5,5),np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Find contours of blue regions contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw bounding boxes around the blue regions for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2) count+=1 # Display the result cv2.imshow('Detected_pools', img) print('Number of pools : ',count) cv2.waitKey(0) cv2.destroyAllWindows()
FatihKemalTerzi/Image-Processing
Midterm3.py
Midterm3.py
py
1,105
python
en
code
0
github-code
6
10502033252
# https://www.geeksforgeeks.org/find-the-smallest-positive-number-missing-from-an-unsorted-array/ def missing(res): N = len(res) for i in range(0, N): if res[i] < N and res[i] > 0: res[res[i]-1] = -res[res[i]-1] # print(res) for i in range(0, N): if res[i] > 0: return i+1 if __name__ == '__main__': arr = [1, 2, 3, 7, 6, 8, -1, -10, 15] res = [] for item in arr: if item >= 0: res.append(item) print(res) print(missing(res))
anojkr/help
Array/smallest_missing_number_in_unsorted_array.py
smallest_missing_number_in_unsorted_array.py
py
455
python
en
code
0
github-code
6
3739410797
import requests from bs4 import BeautifulSoup import re def get_vote_links(current_page): """Finds the vote page links on the main folktingspage. Args: main_page_soup (_type_): Takes in the main page with all the vote subpages as a soap object Returns: _type_: Returns a list of soap Objects with the links to the respective subpages """ prefix = 'https://www.ft.dk/' a = current_page.find_all(attrs={'class':'column-documents__link'}) a = [prefix+x['href'] for x in a] return a def get_soup_page(url_page): """Converts URL into a BeautifulSoup object. Args: url_page (_type_): takes a URL page as input parsed as a string. Returns: _type_: returns a BeautifulSoup object. """ response = requests.get(url_page) page = BeautifulSoup(response.content, 'html.parser') return page def get_votes_by_party(vote_page) -> dict: """ Takes a BeautifulSoup object and retrieves the votes by party section, then strips it and modifies it so that it is returned in a fixed sized dictionary containing parties, For, Against, Neutral counts. Args: vote_page (_type_): URL for the folketings vote_page (e.g., https://www.ft.dk/samling/20042/afstemning/64.htm) Returns: dict: fixed sized dictionary containing parties, For, Against, Neutral, absent counts for each party """ table = vote_page.find("div", {"id":"tingdok_accordion_vote-2"}) dict = {'parties': [], 'For': [], 'Against':[], 'Neutral':[], 'Absent':[]} regex_party = re.compile(r"\w* \(\w+\)") regex_vote_num = re.compile(r"\d+") for child in table.table.tbody.children: if re.search(regex_party, child.text.strip()): lst = child.text.strip().split("\r\n") votes = [] for i in lst: i = i.strip() if re.search(regex_party,i): party = i dict['parties'].append(party) elif re.search(regex_vote_num, i): votes.append(i) dict['For'].append(votes[0]) dict['Against'].append(votes[1]) dict['Neutral'].append(votes[2]) dict['Absent'].append(votes[3]) return dict def get_votes(vote_page): vote_section = vote_page.find("div", {"id": "tingdok_accordion_vote-3"}) votes = { 'politician': [], 'party': [], 'vote': [] } for child in vote_section.tbody.children: lst = child.text.strip().split("\n\r") if len(lst) == 3: person, party, vote = [x.strip() for x in lst] votes['politician'].append(person) votes['party'].append(party) votes['vote'].append(vote) return votes def get_description_page(vote_page): description_link = vote_page.find("a", {"class":"tingdok-backarrow"}) prefix = 'https://www.ft.dk/' response = requests.get(prefix + description_link['href']) description_page = BeautifulSoup(response.content, 'html.parser') return description_page def get_vote_info(description_page): description_texts = description_page.find('div', {"class":"tingdok__caseinfospot-a__container"}).text.strip().splitlines() info = [] for line in description_texts: if line.strip() != "": info.append(line.strip()) return info def get_vote_id(vote_page): return vote_page.h2.text def get_title(description_page): top_header = description_page.find("div", {"class":"tingdok__caseinfotopspot-a__container"}) return top_header.h1.text.strip() def get_vote_caller(description_page): top_header = description_page.find("div", {"class":"tingdok__caseinfotopspot-a__container"}) hosts_section = top_header.find("div", {"class":"tingdok-normal"}) meeting_hosts = [] for line in hosts_section: clean_line = line.text.strip() if len(clean_line)>5: meeting_hosts.append(clean_line) return meeting_hosts def get_next_page(current_page): next_page_url = current_page.find("a", {"title":"Næste"})['href'] prefix = "https://www.ft.dk/dokumenter/dokumentlister/afstemninger" np_response = requests.get(prefix + next_page_url) return BeautifulSoup(np_response.content, 'html.parser') def exists_next_page(current_page): if current_page.find("a", {"title":"Næste"})['href'] != None: return True else: False
jonahank/Vote-Prediction-Model
utils/scraper_functions.py
scraper_functions.py
py
4,617
python
en
code
1
github-code
6
10138194613
from eth_keys.datatypes import ( PrivateKey, PublicKey, Signature, ) class BaseECCBackend(object): def __init__(self): self.PublicKey = type( '{0}PublicKey'.format(type(self).__name__), (PublicKey,), {'_backend': self}, ) self.PrivateKey = type( '{0}PrivateKey'.format(type(self).__name__), (PrivateKey,), {'_backend': self}, ) self.Signature = type( '{0}Signature'.format(type(self).__name__), (Signature,), {'_backend': self}, ) def ecdsa_sign(self, msg_hash, private_key): raise NotImplementedError() def ecdsa_verify(self, msg_hash, signature, public_key): return self.ecdsa_recover(msg_hash, signature) == public_key def ecdsa_recover(self, msg_hash, signature): raise NotImplementedError() def private_key_to_public_key(self, private_key): raise NotImplementedError()
adithyabsk/loanchain
loanchain/lib/python2.7/site-packages/eth_keys/backends/base.py
base.py
py
1,000
python
en
code
5
github-code
6
75131970108
import requests headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36"} "传入参数的形式" params = {"wd":"haha"} "最后面的问号可加可不加,不加的话,程序会自动帮你加上" url_temp = "https://www.baidu.com/?" "注意用requests调用post和get时的函数" r = requests.get(url_temp, headers=headers, params=params) print(r.status_code) # 获取请求得到的网页的状态 print(r.request.url) # 获取我们请求得到的网页网址 "下面这个更加简洁" ".format用起来和%s效果是一样的" url_2 = "https://www.baidu.com/?wd={}".format("haha") r = requests.get(url_2, headers=headers) print(r.status_code) # 获取请求得到的网页的状态 print(r.request.url) # 获取我们请求得到的网页网址
hahahei957/NewProject_Opencv2
venv_2/爬虫/01_HelloWorld.py
01_HelloWorld.py
py
874
python
zh
code
0
github-code
6
9512772188
import sys import pandas as pd import numpy as np import xml.dom.minidom #from exercise 3 def output_gpx(points, output_filename): """ Output a GPX file with latitude and longitude from the points DataFrame. """ def append_trkpt(pt, trkseg, doc): trkpt = doc.createElement('trkpt') trkpt.setAttribute('lat', '%.8f' % (pt['lat'])) trkpt.setAttribute('lon', '%.8f' % (pt['lon'])) trkseg.appendChild(trkpt) doc = xml.dom.minidom.getDOMImplementation().createDocument(None, 'gpx', None) trk = doc.createElement('trk') doc.documentElement.appendChild(trk) trkseg = doc.createElement('trkseg') trk.appendChild(trkseg) points.apply(append_trkpt, axis=1, trkseg=trkseg, doc=doc) with open(output_filename, 'w') as fh: doc.writexml(fh, indent=' ') def main(input_file): culture_tour = pd.read_csv('culture_tour.csv') dessert_tour = pd.read_csv('dessert_tour.csv') pub_crawl = pd.read_csv('pub_crawl.csv') scenic_tour = pd.read_csv('scenic_tour.csv') lodging_df = pd.read_csv(input_file) lodging_coordinates_df = lodging_df[['lat', 'lon']] output_gpx(lodging_coordinates_df, 'lodging.gpx') culture_interest = lodging_df['culture'].values[0] dessert_interest = lodging_df['dessert'].values[0] drinks_interest = lodging_df['drinks'].values[0] scenic_interest = lodging_df['scenic'].values[0] if (culture_interest == 'y'): culture_tour_subset_df = culture_tour[['lat', 'lon']] culture_tour_subset_df = culture_tour_subset_df.append(culture_tour_subset_df.iloc[0]) output_gpx(culture_tour_subset_df, 'culture.gpx') if (dessert_interest == 'y'): dessert_tour_subset_df = dessert_tour[['lat', 'lon']] dessert_tour_subset_df = dessert_tour_subset_df.append(dessert_tour_subset_df.iloc[0]) output_gpx(dessert_tour_subset_df, 'desserts.gpx') if (drinks_interest == 'y'): pub_crawl_subset_df = pub_crawl[['lat', 'lon']] pub_crawl_subset_df = pub_crawl_subset_df.append(pub_crawl_subset_df.iloc[0]) output_gpx(pub_crawl_subset_df, 'drinks.gpx') if (scenic_interest == 'y'): scenic_tour_subset_df = scenic_tour[['lat', 'lon']] scenic_tour_subset_df = scenic_tour_subset_df.append(scenic_tour_subset_df.iloc[0]) output_gpx(scenic_tour_subset_df, 'scenic.gpx') if __name__ == '__main__': input_file = sys.argv[1] main(input_file)
tomchiu19/tourPlanner
code/05-generate-gpx.py
05-generate-gpx.py
py
2,464
python
en
code
0
github-code
6
24254182121
import time import requester import json import config location_id_data = {} exclude_ids = config.settings["loc_ids_to_exclude"] # Gananoque & Tay Valley Old People One & Prescott def parseLocationsToDict(): # Locations.json is extracted from the bottom of the pomelo covid-vaccination "locations" html page where you select a spot. # Kinda stupid so I just extracted it and then saved it as a json. with open("data/locations.json", encoding="utf-8") as data_file: location_data = json.loads(data_file.read())["locations"] for location in location_data: loc_id = location["loc_id"] location_id_data[loc_id] = location def locAddyToAddress(data): address = data["address"].strip() # address2 = data["address2"].strip() city = data["city"].strip() # province = data["province"].strip() # country = data["country"].strip() postal = data["postal"].strip() loc_address = address + ", " + city + ", " + postal return loc_address def check_locations(checking_locations, verbose_output): config.resetLastAvailableDate() for x in checking_locations: if x["id"] not in exclude_ids: loc_id = x["id"] loc_name = location_id_data[loc_id]["loc_name"].replace(" ", " ") loc_address = locAddyToAddress(location_id_data[loc_id]["address"]) unavailable = x["hasUnavailableAppointments"] if verbose_output: print(f"{loc_id} {loc_name} ({loc_address})") if unavailable: print(f"{loc_id} No appointments available.") print("*" * 50) if not unavailable: earliest_date = requester.findEarliestDate(loc_id) if earliest_date["available"]: current_loc_data = earliest_date["nextByLocId"][0] config_epoch = config.settings["earliest_epoch"] next_epoch = current_loc_data["next_date"] readable_time = current_loc_data["next"] if config_epoch == 0 or next_epoch < config_epoch: # Found new epoch! value_list = [readable_time, next_epoch, loc_id, loc_name, loc_address] key_list = ["earliest_date", "earliest_epoch", "earliest_loc_id", "earliest_loc_name", "earliest_loc_address"] config.updateKeys(key_list, value_list) if verbose_output: print(f"{loc_id} {readable_time}") print("*" * 50) def alertAvailableDate(): latest_epoch = config.settings["earliest_epoch"] alert_epoch = config.settings["alert_epoch"] last_epoch_alerted = config.settings["last_epoch_alerted"] date = config.settings["earliest_date"] loc_name = config.settings["earliest_loc_name"] loc_address = config.settings["earliest_loc_address"] if latest_epoch != 0 and last_epoch_alerted != latest_epoch: if latest_epoch < alert_epoch: # New Time is before alert epoch! Announce print("NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME ") print("NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME ") print("NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME NEW TIME ") print(f"{loc_name} ({loc_address})") print(f"ALERT NEW TIME: {date})") config.update("last_epoch_alerted", latest_epoch) else: # This will output every time a different earliest date is available. # Remove to only alert before the alert epoch print(f"{loc_name} ({loc_address})") print(f"AVAILABLE: {date}") config.update("last_epoch_alerted", latest_epoch) if __name__ == "__main__": print("Pomelo Vaccination Appointment Date Scraper") print("*" * 50) parseLocationsToDict() #requester.getHMSession() active_locations = requester.getLocations() check_locations(active_locations, True) alertAvailableDate() print("*" * 50) time.sleep(60) for i in range(5000): active_locations = requester.getLocations() check_locations(active_locations, False) alertAvailableDate() print("*" * 50) time.sleep(60)
TASelwyn/PomeloScraper
main.py
main.py
py
4,417
python
en
code
0
github-code
6
1708447421
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import ball_endmill from utility import mm_to_inch from utility import plot_circle def plot_spheremill_toolpos(params): # Extract parameters diam_tool = params['diam_tool'] diam_sphere = params['diam_sphere'] tab_thickness = params['tab_thickness'] offset_z = params['center_z'] + 0.5*diam_sphere margin = params['margin'] # Plot sphere cx_sphere = 0.0 cy_sphere = -0.5*diam_sphere + offset_z plot_circle(cx_sphere, cy_sphere, 0.5*diam_sphere) plot_circle(cx_sphere, cy_sphere, 0.5*diam_sphere+margin,'c') plt.plot([-diam_sphere,diam_sphere],[cy_sphere, cy_sphere], 'k') plt.plot([-diam_sphere,diam_sphere],[cy_sphere+0.5*tab_thickness, cy_sphere+0.5*tab_thickness], 'b') plt.plot([-diam_sphere,diam_sphere],[cy_sphere-0.5*tab_thickness, cy_sphere-0.5*tab_thickness], 'b') # Plot ball nose end mills toolpath_annulus_data = ball_endmill.get_toolpath_annulus_data(params) for data in toolpath_annulus_data: for sgn in (1,-1): radius = sgn*data['radius'] step_z = data['step_z'] plot_circle(radius, step_z+0.5*diam_tool, 0.5*diam_tool,color='g') plt.plot([radius], [step_z+0.5*diam_tool], '.g') plt.plot([radius], [step_z], 'xr') #plt.plot([radius, 0.0], [step_z+0.5*diam_tool,params['center_z']], 'r') # Plot material boundaries dx = 2*params['diam_sphere'] dy = 2*params['center_z'] plt.plot([-dx, dx], [0, 0],'k') plt.plot([-dx, dx], [dy, dy], 'k') # ----------------------------------------------------------------------------- if __name__ == '__main__': params = { 'diam_sphere' : mm_to_inch(12.0), 'diam_tool' : 1.0/8.0 , 'margin' : 0.0, 'step_size' : 0.01, 'tab_thickness' : 0.02, 'center_z' : -0.75/2.0, } fig_num = 1 plt.figure(fig_num) plot_spheremill_toolpos(params) plt.axis('equal') plt.grid('on') plt.show()
willdickson/sphere_mill_gcode
sphere_mill_gcode/ball_endmill_viz.py
ball_endmill_viz.py
py
2,135
python
en
code
0
github-code
6
25693073835
# coding=gbk # 函数part_3 返回值 活用return语句 # part_3.1 返回简单值 def get_formatted_name(first_name, last_name): """返回整洁的姓名""" full_name = first_name + " " + last_name return full_name.title() musician = get_formatted_name('jen', 'hex') print(musician) # return语句返回调用函数的代码行 # 调用返回值的函数需要加上变量 # part_3.2 让实参变成可选 根据位置实参 使用默认值可以让实参变成可选 def get_formatted_name(first_name, middle_name, last_name): """返回整洁的姓名""" full_name = first_name + " " +middle_name + " " + last_name return full_name.title() musician = get_formatted_name('jen' , 'lei', 'fu') print(musician) # 假如姓名中间没有 那么可以调整形参的位置 以及默认值 def get_formatted_name(first_name, last_name, middle_name = ''): """返回整洁的姓名""" if middle_name: full_name = first_name + " " +middle_name + " " + last_name else: full_name = first_name + " " + last_name return full_name.title() musician = get_formatted_name('lei', 'fu') print(musician) musician = get_formatted_name('lei', 'fu' ,'tian') print(musician) # if语句 位置实参 默认值 # part_3.3 返回字典 函数体中可以设置 字典 列表 字符串 数值 用一个变量表示 def build_person(first_name, last_name): """返回一个字典, 其中包含有关一个人的信息""" person = {'first' : first_name, 'last' : last_name} return person musician = build_person('jen', 'hex') print(musician) # 返回字典 存储年龄 def build_person(first_name, last_name, age = ''): """返回一个字典 其中包含有关一个人的信息""" person = { 'first' : first_name, 'last' : last_name, } if age: person['age'] = age return person musician = build_person('jen', 'ten', age=27) print(musician) # part_3.4 结合使用函数和while循环 def get_formatted_name(first_name, last_name): """返回整洁的姓名""" full_name = first_name + " " + last_name return full_name.title() # 建立循环 while True: print("\nPlease tell me your name : ") print("Enter 'q' at any time quit.") f_name = input("First name : ") if f_name == 'q': break l_name = input("Last name : ") if l_name == 'q': break formatted_name = get_formatted_name(f_name, l_name) print("\nHello, " + formatted_name + "!")
Troysps/learn_python
61/函数3_返回值.py
函数3_返回值.py
py
2,326
python
en
code
0
github-code
6
9661128383
def gcd(A: int, B: int): if B == 0: return A else: return gcd(B, A % B) A, B = map(int, input()) result = gcd(A, B) while result > 0: print(1, end='') result -= 1 # 큰쪽에서 작은 쪽을 나눠서 떨어지면 작은 쪽이 최대 공약수 # 나누어 떨어지지 않으면 1, 0이면 나머지 하나가 최대공약 수
java-squid/lets-algorithm
07--number-theory/ragdoll/1850.py
1850.py
py
365
python
ko
code
0
github-code
6
18597795385
class BankCard: def __init__(self, number, cvc, first_name, last_name): self.number = number self.cvc = cvc self.first_name = first_name self.last_name = last_name def _luhn_algorithm(self, value): card_sum = 0 for index, digit in enumerate(value): digit = int(digit) if index % 2 == 0: digit *= 2 if digit > 9: digit -= 9 card_sum += digit if card_sum % 10 != 0: raise ValueError("Invalid card number") @property def number(self): return self._number @number.setter def number(self, value): if len(value) != 16: raise ValueError("Card number length must be 16.") if not value.isdigit(): raise ValueError("Card number must contains only integers.") if value[0] not in ('4', '5'): raise ValueError("Unsupported payment gateway.") self._luhn_algorithm(value) self._number = value @property def cvc(self): return self._cvc @cvc.setter def cvc(self, value): if len(value) != 3: raise ValueError("Invalid cvc code") self._cvc = value bc1 = BankCard("4561261212345467", '13', None, None) print(bc1)
pyteacher123/py35-onl
lesson15/classwork/task2.py
task2.py
py
1,323
python
en
code
2
github-code
6
10933119158
import os import cv2 # commutator vision import numpy as np import matplotlib.pyplot as plt import tensorflow as tf mnist = tf.keras.datasets.mnist # The hand number nad what it is (x_train, y_train), (x_test, y_test) = mnist.load_data() # split to training data and test data || x is the pixle data y is what Number x_train = tf.keras.utils.normalize(x_train, axis=1) # make all valus 0 to 1 instaed of 1-255 x_test = tf.keras.utils.normalize(x_test, axis=1) model = tf.keras.models.Sequential() model.add(tf.keras.layers.Flatten(input_shape=(28, 28))) # makes grid of pixles into one big line of 7840 pixles model.add(tf.keras.layers.Dense(236, activation='relu')) # rectify linior unit model.add(tf.keras.layers.Dense(10, activation="softmax")) # output layer || softmax = pick the most confident nuron model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=3) # Train model || epoch = how many time brain sees same data model.save('HandWriteModel.model') #model = tf.keras.models.load_model('HandWriteModel') image_number = 1 while os.path.isfile(f"DigetsByMe\\diget{image_number}.png"): try: img = cv2.imread(f"DigetsByMe\\diget{image_number}.png")[:,:,0] # rgb? img = np.invert(np.array([img])) prediction = model.predict(img) print(f"The number is {np.argmax(prediction)}") plt.imshow(img[0], cmap=plt.cm.binary) plt.show() except: print("Img is probable not 28 by 28") finally: image_number += 1 loss, accuracy = model.evaluate(x_test, y_test) print(loss) print(accuracy)
Zippy-boy/HandDigets
main.py
main.py
py
1,658
python
en
code
0
github-code
6
33702855496
import socket HOST = "127.0.0.1" # localhost PORT = 1234 # pixelflut-port with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.connect((HOST, PORT)) XMIN=641 XMAX=1279 YMIN=0 YMAX=719 for y in range(YMIN, YMAX+1): for x in range(XMIN, XMAX+1): msg = bytes(f"PX {x} {y} FF0000\n", "UTF-8") sock.sendall(msg)
HacktoberfestMunich/Hacktoberfest-2023
Teams/red_titans/src/RedBackground.py
RedBackground.py
py
403
python
en
code
0
github-code
6
73700516027
import os, time, gc import numpy as np import gym import random from gym import spaces from gym.utils import seeding from screeninfo import get_monitors import pybullet as p from .agents.objects import Object from .util import Util from .agents.agent import Agent class BaseEnv(gym.Env): def __init__(self, time_step=0.02, frame_skip=5, render=False, gravity=-9.81, seed=1001): self.time_step = time_step self.frame_skip = frame_skip self.gravity = gravity self.id = None self.gui = False self.gpu = False self.view_matrix = None self.seed(seed) if render: self.render() else: self.id = p.connect(p.DIRECT) self.util = Util(self.id, self.np_random) self.directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'assets') # Define action space for each robot self.action_space_robot = {} for robot_name, robot_class in self.my_robots.items(): action_robot_len = len(robot_class.controllable_joint_indices) # Add gripper action if gripper is enabled if len(self.gripper_enabled_robots) == len(self.my_robots) and self.gripper_enabled_robots[robot_name]: action_robot_len += 1 elif len(self.gripper_enabled_robots) != len(self.my_robots): print("Gripper enabling mode for robots needs to be defined for every single robot") exit() self.action_space_robot[robot_name] = spaces.Box(low=np.array([-1.0]*action_robot_len, dtype=np.float32), high=np.array([1.0]*action_robot_len, dtype=np.float32), dtype=np.float32) # Define observation space for each robot self.observation_space_robot = {} for robot_name, robot_class in self.my_robots.items(): if len(self.obs_len_robots) == len(self.my_robots): obs_robot_len = self.obs_len_robots[robot_name] else: print("Received observation lenghts for robots needs to be defined for every single robot") exit() self.observation_space_robot[robot_name] = spaces.Box(low=np.array([-1000000000.0]*obs_robot_len, dtype=np.float32), high=np.array([1000000000.0]*obs_robot_len, dtype=np.float32), dtype=np.float32) self.plane = Agent() def step(self, action): raise NotImplementedError('Implement observations') def _get_obs(self, agent=None): raise NotImplementedError('Implement observations') def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def set_seed(self, seed=1000): self.np_random.seed(seed) def enable_gpu_rendering(self): self.gpu = True def disconnect(self): p.disconnect(self.id) def reset(self): p.resetSimulation(physicsClientId=self.id) if not self.gui: # Reconnect the physics engine to forcefully clear memory when running long training scripts self.disconnect() self.id = p.connect(p.DIRECT) self.util = Util(self.id, self.np_random) if self.gpu: self.util.enable_gpu() # Configure camera position p.resetDebugVisualizerCamera(cameraDistance=8, cameraYaw=90, cameraPitch=-30, cameraTargetPosition=[0, 0, 1], physicsClientId=self.id) p.configureDebugVisualizer(p.COV_ENABLE_MOUSE_PICKING, 0, physicsClientId=self.id) p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0, physicsClientId=self.id) p.setTimeStep(self.time_step, physicsClientId=self.id) # Disable real time simulation so that the simulation only advances when we call stepSimulation p.setRealTimeSimulation(0, physicsClientId=self.id) p.setGravity(0, 0, self.gravity, physicsClientId=self.id) self.last_sim_time = None self.iteration = 0 self.task_success_clock = 0 self.task_success_switch = False self.task_success = {} for robot_name, robot in self.my_robots.items(): self.task_success[robot_name] = 0 self.updatable_objects = {} Object.instances = [] self.threshold_picking = 0.02 def create_world(self): # Load the ground plane plane = p.loadURDF(os.path.join(self.directory, 'plane', 'plane.urdf'), physicsClientId=self.id) self.plane.init(plane, self.id, self.np_random, indices=-1) # Randomly set friction of the ground # self.plane.set_frictions(self.plane.base, lateral_friction=self.np_random.uniform(0.025, 0.5), spinning_friction=0, rolling_friction=0) # Disable rendering during creation p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 0, physicsClientId=self.id) # Create robots for _, robot in self.my_robots.items(): robot.init(self.directory, self.id, self.np_random) robot.set_gravity(0, 0, 0) finger_COM_pos, _ = robot.get_finger_COM() robot.finger_COM_sphere = self.create_sphere(radius=0.003, mass=0.0, pos=finger_COM_pos, collision=False, rgba=[0.5, 0.5, 0.5, 0.5]) def take_step(self, actions, gains=None, forces=None, action_multiplier=0.05, step_sim=True): if self.last_sim_time is None: self.last_sim_time = time.time() self.iteration += 1 for i, (robot_name, robot) in enumerate(self.my_robots.items()): robot_actions = actions[robot_name].copy() robot_actions = np.clip(robot_actions, a_min=self.action_space_robot[robot_name].low, a_max=self.action_space_robot[robot_name].high) robot_actions *= action_multiplier if len(self.gripper_enabled_robots) == len(self.my_robots) and self.gripper_enabled_robots[robot_name]: joint_actions = robot_actions[:-1] gripper_action = True if robot_actions[-1]<0 else False else: joint_actions = robot_actions joint_actions *= robot.action_multiplier # Append the new action to the current measured joint angles robot_joint_angles = robot.get_joint_angles(robot.controllable_joint_indices) # Update the target robot joint angles based on the proposed action and joint limits for _ in range(self.frame_skip): below_lower_limits = robot_joint_angles + joint_actions < robot.controllable_joint_lower_limits above_upper_limits = robot_joint_angles + joint_actions > robot.controllable_joint_upper_limits joint_actions[below_lower_limits] = 0 joint_actions[above_upper_limits] = 0 robot_joint_angles[below_lower_limits] = robot.controllable_joint_lower_limits[below_lower_limits] robot_joint_angles[above_upper_limits] = robot.controllable_joint_upper_limits[above_upper_limits] robot_joint_angles += joint_actions robot.control(robot.controllable_joint_indices, robot_joint_angles, robot.motor_gains, robot.motor_forces) if len(self.gripper_enabled_robots) == len(self.my_robots) and self.gripper_enabled_robots[robot_name]: self.update_grippable_objects(gripper_action, robot_name, robot) if step_sim: # Update all agent positions for _ in range(self.frame_skip): p.stepSimulation(physicsClientId=self.id) self.update_targets() self.update_objects() self.update_robot_finger_COM() if self.gui: # Slow down time so that the simulation matches real time self.slow_time() def slow_time(self): # Slow down time so that the simulation matches real time t = time.time() - self.last_sim_time if t < self.time_step: time.sleep(self.time_step - t) self.last_sim_time = time.time() def update_targets(self): pass def update_objects(self): pass def update_grippable_objects(self, gripper_action, robot_name, robot): all_distances = [] if self.gripper_enabled_robots[robot_name]: for object_name, obj in self.all_grippable_objects.items(): for joint in range(-1,p.getNumJoints(obj.body, physicsClientId=self.id)): finger_COM_pos, finger_COM_orien = robot.get_finger_COM() obj_pos, _ = obj.get_pos_orient(joint) dist_finger_COM_to_obj = abs(np.linalg.norm(obj_pos-finger_COM_pos)) all_distances.append(abs(dist_finger_COM_to_obj)) # When distance is lower than threshold then set robot.grippable[object_name]['grippable'] to True robot.grippable[object_name]['grippable']['joint_'+str(joint)] = True if dist_finger_COM_to_obj < self.threshold_picking else False # If robot is ready to grip and the object is grippable then update its position if robot.grippable[object_name]['grippable']['joint_'+str(joint)] and gripper_action: if robot.grippable[object_name]['constraint']['joint_'+str(joint)] is None: robot.grippable[object_name]['constraint']['joint_'+str(joint)] = p.createConstraint(robot.body, robot.end_effector, obj.body, joint, p.JOINT_POINT2POINT, [0, 0, 0], parentFramePosition=[0,0,0], childFramePosition=[0, 0, 0], parentFrameOrientation=[0,0,0,1], childFrameOrientation=[0, 0, 0, 1], physicsClientId=self.id) # robot.control(robot.gripper_indices, robot.closed_gripper, robot.motor_gains, robot.motor_forces) else: robot.its_gripping = False if robot.grippable[object_name]['constraint']['joint_'+str(joint)] is not None: p.removeConstraint(robot.grippable[object_name]['constraint']['joint_'+str(joint)], physicsClientId=self.id) robot.grippable[object_name]['constraint']['joint_'+str(joint)] = None # robot.control(robot.gripper_indices, robot.opened_gripper, robot.motor_gains, robot.motor_forces) robot.visual_gripping = True if any(i<0.03 for i in all_distances) else False constraints_list = [] for object_name, obj in self.all_grippable_objects.items(): for const_id, const in robot.grippable[object_name]['constraint'].items(): constraints_list.append(const) if all(v is None for v in constraints_list): robot.its_gripping = False robot.control(robot.gripper_indices, robot.opened_gripper, robot.motor_gains, robot.motor_forces) robot.buff = 0 else: robot.its_gripping = True if robot.buff == 0 and robot.visual_gripping: robot.control(robot.gripper_indices, robot.closed_gripper, robot.motor_gains, robot.motor_forces) robot.buff =+ 1 def update_robot_finger_COM(self): for robot_name, robot in self.my_robots.items(): finger_COM_pos, _ = robot.get_finger_COM() robot.finger_COM_sphere.set_base_pos_orient(finger_COM_pos, [0, 0, 0, 1]) def render(self, mode='human'): if not self.gui: self.gui = True if self.id is not None: self.disconnect() try: self.width = get_monitors()[0].width self.height = get_monitors()[0].height except Exception as e: self.width = 1920 self.height = 1080 self.id = p.connect(p.GUI, options='--background_color_red=0.81 --background_color_green=0.93 --background_color_blue=0.99 --width=%d --height=%d' % (self.width, self.height)) self.util = Util(self.id, self.np_random) def get_euler(self, quaternion): return np.array(p.getEulerFromQuaternion(np.array(quaternion), physicsClientId=self.id)) def get_quaternion(self, euler): return np.array(p.getQuaternionFromEuler(np.array(euler), physicsClientId=self.id)) def setup_camera(self, camera_eye=[0.5, -0.75, 1.5], camera_target=[-0.2, 0, 0.75], fov=60, camera_width=1920//4, camera_height=1080//4): self.camera_width = camera_width self.camera_height = camera_height self.view_matrix = p.computeViewMatrix(camera_eye, camera_target, [0, 0, 1], physicsClientId=self.id) self.projection_matrix = p.computeProjectionMatrixFOV(fov, camera_width / camera_height, 0.01, 100, physicsClientId=self.id) def setup_camera_rpy(self, camera_target=[-0.2, 0, 0.75], distance=1.5, rpy=[0, -35, 40], fov=60, camera_width=1920//4, camera_height=1080//4): self.camera_width = camera_width self.camera_height = camera_height self.view_matrix = p.computeViewMatrixFromYawPitchRoll(camera_target, distance, rpy[2], rpy[1], rpy[0], 2, physicsClientId=self.id) self.projection_matrix = p.computeProjectionMatrixFOV(fov, camera_width / camera_height, 0.01, 100, physicsClientId=self.id) def get_camera_image_depth(self, light_pos=[0, -3, 1], shadow=False, ambient=0.8, diffuse=0.3, specular=0.1): assert self.view_matrix is not None, 'You must call env.setup_camera() or env.setup_camera_rpy() before getting a camera image' w, h, img, depth, _ = p.getCameraImage(self.camera_width, self.camera_height, self.view_matrix, self.projection_matrix, lightDirection=light_pos, shadow=shadow, lightAmbientCoeff=ambient, lightDiffuseCoeff=diffuse, lightSpecularCoeff=specular, physicsClientId=self.id) img = np.reshape(img, (h, w, 4)) depth = np.reshape(depth, (h, w)) return img, depth def create_sphere(self, radius=0.01, mass=0.0, pos=[0, 0, 0], visual=True, collision=True, rgba=[0, 1, 1, 1], maximal_coordinates=False, return_collision_visual=False): sphere_collision = p.createCollisionShape(shapeType=p.GEOM_SPHERE, radius=radius, physicsClientId=self.id) if collision else -1 sphere_visual = p.createVisualShape(shapeType=p.GEOM_SPHERE, radius=radius, rgbaColor=rgba, physicsClientId=self.id) if visual else -1 if return_collision_visual: return sphere_collision, sphere_visual body = p.createMultiBody(baseMass=mass, baseCollisionShapeIndex=sphere_collision, baseVisualShapeIndex=sphere_visual, basePosition=pos, useMaximalCoordinates=maximal_coordinates, physicsClientId=self.id) sphere = Agent() sphere.init(body, self.id, self.np_random, indices=-1) return sphere def randomize_init_joint_angles(self, min_dist=0.5, radius=2, joint_randomness=0.15): done = False while not done: # random_angles = {} # # Generate random angles for each robot # for robot_name, robot in self.my_robots.items(): # random_angles[robot_name] = [] # for joint in robot.arm_joint_indices: # random_angles[robot_name].append(self.np_random.uniform(robot.lower_limits[joint]*joint_randomness, robot.upper_limits[joint]*joint_randomness)) # robot.set_joint_angles(robot.arm_joint_indices, random_angles[robot_name]) for robot_name, robot in self.my_robots.items(): robot_pos, _ = robot.get_base_pos_orient() random_end_effector_pos = [random.uniform(robot_pos[0]-radius, robot_pos[0]+radius), random.uniform(robot_pos[1]-radius, robot_pos[1]+radius), random.uniform(robot_pos[2], robot_pos[2]+radius)] self.set_end_effector_pos(robot, random_end_effector_pos, threshold=1e-2, maxIter=100) # Collect all joint pos and obj pos(last 4 joints is enough) joints_pos = {} for robot_name, robot in self.my_robots.items(): joints_pos[robot_name] = [] for joint in robot.arm_joint_indices[-5:]: j_pos, _ = robot.get_pos_orient(joint) joints_pos[robot_name].append(j_pos) objects_pos = [] for obj in Object.instances: for joint in range(-1,p.getNumJoints(obj.body, physicsClientId=self.id)): obj_pos, _ = obj.get_pos_orient(joint) objects_pos.append(obj_pos) # Check for collision between robots and objects in the environment done = True for robot_name_i, robot_i in self.my_robots.items(): for robot_name_j, robot_j in self.my_robots.items(): if robot_name_i != robot_name_j: joints_pos_i = joints_pos[robot_name_i] joints_pos_j = joints_pos[robot_name_j] for joint_pos_i in joints_pos_i: for joint_pos_j in joints_pos_j: dist = np.linalg.norm(joint_pos_i-joint_pos_j) if abs(dist) < min_dist: done = False for robot_name, robot in self.my_robots.items(): for obj_pos in objects_pos: joint_pos = joints_pos[robot_name] dist = np.linalg.norm(joint_pos-dist) if abs(dist) < min_dist: done = False def set_end_effector_pos(self, robot, target_position, target_orient=None, threshold=1e-15, maxIter=1000): if target_orient is not None and len(target_orient) == 3: target_orient = self.get_quaternion(target_orient) closeEnough = False iter = 0 dist2 = 1e30 while (not closeEnough and iter < maxIter): joint_pos = p.calculateInverseKinematics(bodyIndex=robot.body, endEffectorLinkIndex=robot.end_effector, targetPosition=target_position, targetOrientation=target_orient, physicsClientId=self.id) robot.set_joint_angles_all(joint_pos) ls = p.getLinkState(robot.body, robot.end_effector) newPos = ls[4] diff = [target_position[0] - newPos[0], target_position[1] - newPos[1], target_position[2] - newPos[2]] dist2 = (diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2]) closeEnough = (dist2 < threshold) iter = iter + 1 def disable_collision(self, obj_1, obj_2): body_1 = obj_1.body body_2 = obj_2.body for i in range(p.getNumJoints(body_1, physicsClientId=self.id)): for j in range(p.getNumJoints(body_2, physicsClientId=self.id)): p.setCollisionFilterPair(body_1, body_2, i, j, 0, physicsClientId=self.id) def get_euler(self, quaternion): return np.array(p.getEulerFromQuaternion(np.array(quaternion), physicsClientId=self.id)) def get_quaternion(self, euler): return np.array(p.getQuaternionFromEuler(np.array(euler), physicsClientId=self.id)) def init_env_variables(self): # Select all grippable objects i = 0 self.all_grippable_objects = {} for obj in Object.instances: if obj.enable_gripping: i += 1 object_name = 'object_' + str(i) self.all_grippable_objects[object_name] = obj for robot_name, robot in self.my_robots.items(): robot.buff = 0 robot.grippable = {} robot.ready_to_grip = False for object_name, obj in self.all_grippable_objects.items(): robot.grippable[object_name] = {'obj': obj, 'grippable': {}, 'constraint': {}} for joint in range(-1,p.getNumJoints(obj.body, physicsClientId=self.id)): robot.grippable[object_name]['constraint']['joint_'+str(joint)] = None
gabriansa/collaborative-gym
collaborative_gym/envs/base_env.py
base_env.py
py
20,082
python
en
code
0
github-code
6
35037176201
import cv2 import numpy as np from analyzers.analyseContour import AnalyseContour from analyzers.contour import Contour class AnalyseSafran(AnalyseContour): """ Class qui mesure la taille du safran qui sort de l'eau. Attributs: x1RefPoint (int): coordonnée x du premier point de référence correspond au point le plus haut du safran. y1RefPoint (int): coordonnée y du premier point de référence correspond au point le plus haut du safran. x2RefPoint (int): coordonnée x du deuxième point de référence pour calculer la droite du safran. y2RefPoint (int): coordonnée y du deuxième point de référence pour calculer la droite du safran. """ def __init__(self, x1, y1, x2, y2, x1RefPoint, y1RefPoint, x2RefPoint, y2RefPoint, qualityLimit): super().__init__(x1, y1, x2, y2, qualityLimit) self.x1RefPoint = x1RefPoint - x1 self.y1RefPoint = y1RefPoint - y1 self.x2RefPoint = x2RefPoint - x1 self.y2RefPoint = y2RefPoint - y1 def compute(self, frame): """ Méthode qui mesure la taille du safran qui sort de l'eau. """ m = (self.y2RefPoint - self.y1RefPoint) / (self.x2RefPoint - self.x1RefPoint) p = self.y1RefPoint - m * self.x1RefPoint cropFrame = frame[self.y1:self.y2, self.x1:self.x2] qualityIndex = self.embrunDetection.detection(cropFrame) # Conversion en noir et blanc et floutage gray_img_safran = cv2.cvtColor(cropFrame, cv2.COLOR_BGR2GRAY) gray_img_safran = cv2.GaussianBlur(gray_img_safran, (3, 7), 0) # Dessins de toutes les bordures median_pix = np.median(gray_img_safran) lower = int(max(0, 0.5*median_pix)) upper = int(min(255, 1.3*median_pix)) edged = cv2.Canny(gray_img_safran, lower, upper) # Détection des contours # La variable de hiérarchie contient des informations sur la relation entre chaque contour. (si un contour est dans un contour) contours_list_safran, hierarchy = cv2.findContours(edged, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if contours_list_safran: contourSafran = None for c in contours_list_safran: # Si un contour est à moins de 15 pixel du point (point sur le bord avant du safran) if abs(cv2.pointPolygonTest(c, (self.x1RefPoint + 1, self.y1RefPoint + 3), True)) < 15: contourSafran = c tOffSetSafran = (self.x1, self.y1) points = [] # Regarde si les points correspondent plus ou moins à l'équation du safran # Equation qui représente la droite au niveau du safran for point in c: x = point[0][0] y = point[0][1] # Résultat de l'équation resultEquation = m * x - y + p if resultEquation > -15 and resultEquation < 15: points.append((x, y)) if len(points) >= 2: # firstPointSafran = min(points, key=lambda x:x[1]) # Plus petite valeur en y firstPointSafran = (self.x1RefPoint, self.y1RefPoint) # Plus grande valeur en y secondPointSafran = max(points, key=lambda x: x[1]) # Ajout du décalage pour correspondre sur l'image original firstPointSafranOffSet = tuple(map(lambda x, y: x + y, firstPointSafran, tOffSetSafran)) secondPointSafranOffSet = tuple(map(lambda x, y: x + y, secondPointSafran, tOffSetSafran)) hauteurSafran = secondPointSafran[1] - firstPointSafran[1] # Décalage des coordonnées du contour pour correspondre sur l'image original (frame) contourSafranOffset = contourSafran + (self.x1, self.y1) return Contour(hauteurSafran, contourSafranOffset, firstPointSafranOffSet, secondPointSafranOffSet, qualityIndex) return Contour(None, None, None, None, qualityIndex)
Torystan/analyse-images
analyzers/analyseSafran.py
analyseSafran.py
py
4,231
python
fr
code
0
github-code
6
38466019670
__author__ = 'christiaanleysen' import features.featureMaker as fm from sklearn.metrics import mean_absolute_error import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from sklearn import preprocessing ''' This file is used to calculate the linear regression ''' def predictConsumption(trainSetX, trainSetY, testSetX, testSetY,tune_params=True,scaled=False): """ predicts the consumption Parameters: ----------- trainSetX: training feature set trainSetY: training value set testSetX: test feature set testSetY: test value set Returns: -------- a prediction of the consumption """ if scaled: trainSetX = np.asarray([preprocessing.scale(element)for element in trainSetX]) #trainSetY =preprocessing.scale(trainSetY,axis=0) testSetX = np.asarray([preprocessing.scale(element )for element in testSetX]) #testSetY =preprocessing.scale(testSetY,axis=0) OLS = LinearRegression() OLS.fit(trainSetX,trainSetY)# fit default model (mean zero & rbf kernel) with data predictedSetY = OLS.predict(testSetX) MAE = mean_absolute_error(testSetY,predictedSetY) if np.mean(np.mean(testSetY)) == 0: MRE = 50 else: MRE = (MAE/(np.mean(testSetY)))*100 return predictedSetY,testSetY,MAE,MRE
chrike-platinum/Thesis-Gaussian-process-regression-clustering-and-prediction-of-energy-consumption
Methods/LinRegPrediction.py
LinRegPrediction.py
py
1,353
python
en
code
1
github-code
6
23135628898
# Make Table 4: Snowdrift Type Census Zonal Statistics import pandas as pd df = pd.read_csv('drift_zonal_statistics_mean_over_time.csv', index_col=False) del df['Median Drift Depth [m]'] df.replace('watertrack', 'water track (f)', inplace=True) df.replace('polygon', 'ice wedge (f)', inplace=True) df.replace('stream', 'stream (nf)', inplace=True) df.replace('lake', 'lake (nf)', inplace=True) df.replace('outcrop', 'outcrop (nf)', inplace=True) df['Drift Area [m^2]'] = df['Drift Area [m^2]'].astype(int) df['Mean Drift Volume [m^3]'] = df['Mean Drift Volume [m^3]'].astype(int) df.columns = ['Class','Swath','Drift Area (m<sup>2</sup>)', 'Mean Drift Depth (m)', 'Drift Volume (m<sup>3</sup>)', 'Std. Depth (m)', 'CV Depth', 'NDV (m)'] df2 = df.groupby(['Swath','Class']).mean().reset_index() df2['Drift Area (m<sup>2</sup>)'] = df2['Drift Area (m<sup>2</sup>)'].astype(int) df2['Drift Volume (m<sup>3</sup>)'] = df2['Drift Volume (m<sup>3</sup>)'].astype(int) df2.set_index('Swath', inplace=True) df2 = df2.sort_values('Class') df2 = df2.round(2) hv_outcrop = pd.Series(['outcrop (nf)', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A',], name='HV', index=df2.columns) df2 = df2.append(hv_outcrop) df2 = df2.sort_values('Class') print(df2.to_markdown())
charparr/arctic-snowdrifts
snowdrift_type_census/results/make_table_4.py
make_table_4.py
py
1,271
python
en
code
0
github-code
6
27267969236
from flask import Flask, render_template from shp_display import * app = Flask(__name__) def script(): return ['hades2'] def get_table(db): db = db script = "<table>" # Header Generator code = "<tr>" for s in db: if str(s) != "MULTIPOLYGON" and str(s) != 'geometry': code = code + "<th>" + str(s) + "</th>" script = script + code # Data Generator for i in range(len(db.index)): code = "<tr>" for item in list(db.loc[i]): if not str(item).startswith("MULTIPOLYGON") and not str(item).startswith("POLYGON "): code = code + "<td>" + str(item) + "</td>" code = code + "</tr>" script = script + code script = script + "</table>" return script @app.route('/') def index(): value = script() return render_template('index.html', entry1=value[0], path_to_image=some[0], lis=some[1].shape, table_n=get_table(some[1]) ) @app.route('/up_pop') def up_pop(): some = get_file() return render_template('up_population.html', table_n=get_table(some[1]), path_to_image=some[0]) if __name__ == "__main__": app.run(debug=True, host='10.68.69.29')
nitish8090/Watershed_Modules_Py3
flask_app/app.py
app.py
py
1,373
python
en
code
0
github-code
6
37964221731
import sys import os import random from PIL import Image ''' Simple image carver. Right now it will assemble any and all JPEGS found including partial fragmented files. It does not find the rest of the file. You must have pillow installed. You can do that by `pip install pillow`. YOU MUST HAVE PYTHON 3 NOT 2! THE Pillow version used is the python version 3 and I can't guarantee any of this works on python 2. ''' def main(): if len(sys.argv) < 2: print("Invalid input, you must specify a file as the first argument.") exit(0) readFile(sys.argv[1]) # Reads file and creates the list of SOI AND EOI markers def readFile(filename): startMarkerArr = [] endMarkerArr = [] sosArr = [] counter = 0 fileSize = os.stat(filename).st_size file = open(filename, 'rb') fileBuffer = bytearray(file.read()) while counter < fileSize: byte1 = bytes([fileBuffer[counter]]) byte2 = bytes([fileBuffer[counter+1]]) if findStart(byte1, byte2): startMarkerArr.append(counter) if findEnd(byte1, byte2): endMarkerArr.append(counter) counter += 2 print("Found markers") pairs = findPairs(startMarkerArr, endMarkerArr, sosArr) validCount = buildFile(pairs) #Finds SOI def findStart(byte1, byte2): if byte1 == b'\xFF' and byte2 == b'\xD8': return True return False #Finds EOI def findEnd(byte1, byte2): if byte1 == b'\xFF' and byte2 == b'\xD9': return True return False #Creates the pairs of SOI and EOI markers def findPairs(startMarkerArr, endMarkerArr, sosArr): markerPairs = [] for startI in range(0, len(startMarkerArr)): for endI in range(0, len(endMarkerArr)): if startMarkerArr[startI] < endMarkerArr[endI] + 2: markerPairs.append((startMarkerArr[startI], endMarkerArr[endI])) print("Found pairs list size is " + str(len(markerPairs))) return markerPairs #Tests all pairs and tests/ deletes invalid images using Pillow/ PIL # Also tests to see if the discovered file is the smallest of the ones generated from the same SOI def buildFile(markerPairs): file = open(sys.argv[1], 'rb') byteBuffer = file.read() counter = 0 smallestHashMap = {} while counter < len(markerPairs): jpegBytes = bytearray() start = markerPairs[counter][1] jpegBytes.extend(byteBuffer[markerPairs[counter][0]:markerPairs[counter][1]+2]) name = str(random.random()) jpegFile = open(name + ".jpg", 'wb+') jpegFile.write(jpegBytes) try: Image.open(name + ".jpg") except IOError: os.remove(name + ".jpg") print("Invalid image removed") else: if smallestHashMap.get(markerPairs[counter][0]) != None: print(len(jpegBytes), smallestHashMap[markerPairs[counter][0]][0]) if counter != 0 and smallestHashMap.get(markerPairs[counter][0]) != None and len(jpegBytes) < smallestHashMap[markerPairs[counter][0]][0]: print("Smaller image found, duplicate removed!") os.remove(smallestHashMap[markerPairs[counter][0]][1]) smallestHashMap[markerPairs[counter][0]] = (len(jpegBytes), name + ".jpg") if smallestHashMap.get(markerPairs[counter][0]) != None and len(jpegBytes) > smallestHashMap[markerPairs[counter][0]][0]: os.remove(name + ".jpg") print("Original is the smallest duplicate removed") if smallestHashMap.get(markerPairs[counter][0]) == None: smallestHashMap[markerPairs[counter][0]] = (len(jpegBytes), name + ".jpg") print("One valid image has been added or replaced") counter += 1 # No idea what this does if __name__ == '__main__': main()
steviekong/Jpeg_carver
carver.py
carver.py
py
3,434
python
en
code
1
github-code
6
26247964346
import six import webob.exc from oslo_log import log from delfin.i18n import _ LOG = log.getLogger(__name__) class ConvertedException(webob.exc.WSGIHTTPException): def __init__(self, exception): self.code = exception.code self.title = '' self.explanation = exception.msg self.error_code = exception.error_code self.error_args = exception.error_args super(ConvertedException, self).__init__() class DelfinException(Exception): """Base Delfin Exception To correctly use this class, inherit from it and define a 'msg_fmt' property. That msg_fmt will get printf'd with the tuple arguments provided to the constructor. """ msg_fmt = _("An unknown exception occurred.") code = 500 def __init__(self, *args, **kwargs): self.error_args = args message = kwargs.get('message') try: if not message: message = self.msg_fmt.format(*args) else: message = six.text_type(message) except Exception: LOG.error("Failed to format message: {0}".format(args)) message = self.msg_fmt self.msg = message super(DelfinException, self).__init__(message) @property def error_code(self): return self.__class__.__name__ class NotAuthorized(DelfinException): msg_fmt = _("Not authorized.") code = 403 class Invalid(DelfinException): msg_fmt = _("Unacceptable parameters.") code = 400 class BadRequest(Invalid): msg_fmt = _('The server could not comply with the request since\r\n' 'it is either malformed or otherwise incorrect.\r\n') code = 400 class MalformedRequestBody(Invalid): msg_fmt = _("Malformed request body: {0}.") class MalformedRequestUrl(Invalid): msg_fmt = _("Malformed request url.") class InvalidCredential(Invalid): msg_fmt = _("The credentials are invalid.") class InvalidResults(Invalid): msg_fmt = _("The results are invalid. {0}") class InvalidInput(Invalid): msg_fmt = _("Invalid input received. {0}") class InvalidName(Invalid): msg_fmt = _("An invalid 'name' value was provided. {0}") class InvalidContentType(Invalid): msg_fmt = _("Invalid content type: {0}.") class StorageSerialNumberMismatch(Invalid): msg_fmt = _("Storage serial number mismatch. {0}") class StorageAlreadyExists(Invalid): msg_fmt = _("Storage already exists.") class InvalidSNMPConfig(Invalid): msg_fmt = _("Invalid SNMP configuration: {0}") class NotFound(DelfinException): msg_fmt = _("Resource could not be found.") code = 404 class NoSuchAction(NotFound): msg_fmt = _("There is no such action: {0}") class AccessInfoNotFound(NotFound): msg_fmt = _("Access information for storage {0} could not be found.") class AlertSourceNotFound(NotFound): msg_fmt = _("Alert source for storage {0} could not be found.") class AlertSourceNotFoundWithHost(NotFound): msg_fmt = _("Alert source could not be found with host {0}.") class SNMPConnectionFailed(BadRequest): msg_fmt = _("Connection to SNMP server failed: {0}") class StorageNotFound(NotFound): msg_fmt = _("Storage {0} could not be found.") class StorageBackendNotFound(NotFound): msg_fmt = _("Storage backend could not be found.") class StoragePoolNotFound(NotFound): msg_fmt = _("Storage pool {0} could not be found.") class VolumeNotFound(NotFound): msg_fmt = _("Volume {0} could not be found.") class StorageHostInitiatorNotFound(NotFound): msg_fmt = _("Storage host initiator {0} could not be found.") class StorageHostNotFound(NotFound): msg_fmt = _("Storage host {0} could not be found.") class StorageHostGroupNotFound(NotFound): msg_fmt = _("Storage host group {0} could not be found.") class PortGroupNotFound(NotFound): msg_fmt = _("Port group {0} could not be found.") class VolumeGroupNotFound(NotFound): msg_fmt = _("Volume group {0} could not be found.") class MaskingViewNotFound(NotFound): msg_fmt = _("Masking View {0} could not be found.") class StorageHostGrpHostRelNotFound(NotFound): msg_fmt = _("Storage Host Group Host Relation {0} could not be found.") class PortGrpPortRelNotFound(NotFound): msg_fmt = _("Port Group Port Relation {0} could not be found.") class VolGrpVolRelationNotFound(NotFound): msg_fmt = _("Volume Group Volume Relation {0} could not be found.") class ControllerNotFound(NotFound): msg_fmt = _("Controller {0} could not be found.") class ControllerListNotFound(NotFound): msg_fmt = _("Controller List for {0} could not be found.") class PortNotFound(NotFound): msg_fmt = _("Port {0} could not be found.") class PortListNotFound(NotFound): msg_fmt = _("Port List for {0} could not be found.") class DiskNotFound(NotFound): msg_fmt = _("Disk {0} could not be found.") class FilesystemNotFound(NotFound): msg_fmt = _("Filesystem {0} could not be found.") class QtreeNotFound(NotFound): msg_fmt = _("Qtree {0} could not be found.") class QuotaNotFound(NotFound): msg_fmt = _("Quota {0} could not be found.") class ShareNotFound(NotFound): msg_fmt = _("Share {0} could not be found.") class StorageDriverNotFound(NotFound): msg_fmt = _("Storage driver '{0}'could not be found.") class TaskNotFound(NotFound): msg_fmt = _("Task {0} could not be found.") class FailedTaskNotFound(NotFound): msg_fmt = _("Failed task {0} could not be found.") class ConfigNotFound(NotFound): msg_fmt = _("Could not find config at {0}.") class PasteAppNotFound(NotFound): msg_fmt = _("Could not load paste app '{0}' from {1}.") class StorageBackendException(DelfinException): msg_fmt = _("Exception from Storage Backend: {0}.") class SSHException(DelfinException): msg_fmt = _("Exception in SSH protocol negotiation or logic. {0}") class SSHInjectionThreat(DelfinException): msg_fmt = _("SSH command injection detected: {0}.") # Tooz locking class LockCreationFailed(DelfinException): msg_fmt = _('Unable to create lock. Coordination backend not started.') class LockAcquisitionFailed(DelfinException): msg_fmt = _('Lock acquisition failed.') class DuplicateExtension(DelfinException): msg_fmt = _('Found duplicate extension: {0}.') class ImproperIPVersion(DelfinException): msg_fmt = _("Provided improper IP version {0}.") class ConnectTimeout(DelfinException): msg_fmt = _("Connect timeout.") code = 500 class InvalidUsernameOrPassword(DelfinException): msg_fmt = _("Invalid username or password.") code = 400 class BadResponse(Invalid): msg_fmt = _('Bad response from server') code = 500 class InvalidPrivateKey(DelfinException): msg_fmt = _("not a valid RSA private key.") code = 400 class SSHConnectTimeout(DelfinException): msg_fmt = _("SSH connect timeout.") code = 500 class SSHNotFoundKnownHosts(NotFound): msg_fmt = _("{0} not found in known_hosts.") code = 400 class StorageClearAlertFailed(DelfinException): msg_fmt = _("Failed to clear alert. Reason: {0}.") class StorageListAlertFailed(DelfinException): msg_fmt = _("Failed to list alerts. Reason: {0}.") class HTTPConnectionTimeout(DelfinException): msg_fmt = _("HTTP connection timeout: {0}.") class InvalidCAPath(DelfinException): msg_fmt = _("Invalid CA path: {0}.") class StoragePerformanceCollectionFailed(DelfinException): msg_fmt = _("Failed to collect performance metrics. Reason: {0}.") class SSLCertificateFailed(Invalid): msg_fmt = _("SSL Certificate Failed.") code = 400 class SSLHandshakeFailed(Invalid): msg_fmt = _("SSL handshake failure.") class StorageIsSyncing(Invalid): msg_fmt = _("Storage {0} is syncing now, please try again later.") class InvalidIpOrPort(DelfinException): msg_fmt = _("Invalid ip or port.") code = 400 class InvalidStorageCapability(Invalid): msg_fmt = _("Invalid capability response: {0}") code = 500 class StorageCapabilityNotSupported(Invalid): msg_fmt = _("Capability feature not supported by storage") code = 501 class EmptyResourceMetrics(DelfinException): msg_fmt = _("Empty resource metric in capabilities") code = 501 class TelemetryTaskExecError(DelfinException): msg_fmt = _("Failure in telemetry task execution") class ComponentNotFound(NotFound): msg_fmt = _("Component {0} could not be found.") class IncompleteTrapInformation(DelfinException): msg_fmt = _("Incomplete trap information." "Storage {0} alert information needs to be synchronized.") class StorageMaxUserCountException(DelfinException): msg_fmt = _( "Exception from storage of users has reached the upper limit: {0}.")
sodafoundation/delfin
delfin/exception.py
exception.py
py
8,827
python
en
code
201
github-code
6
16543442339
# RE_DATA names DATA_BLOCK = "Data" ACTION = "Action" STAGE = "Stage" STATIONFROM = "StationFrom" STATIONFROMCODE = "StationFromCode" STATIONTO = "StationTo" STATIONTOCODE = "StationToCode" DEPARTDATE = "DepDate" DEPARTTIME = "DepTime" BADDATE = "BadDate" BADTIME = "BadTime" ARRTIME = "ArrTime" STATIONAT = "StationAt" STATIONATTIME = "StationAtTime" SINGLERETURN = "SingleReturn" RETURNDATE = "ReturnDate" RETURNTIME = "ReturnTime" RESPONSE_HEAD = "Response" RESPONSE_CODE = "Code" RESPONSE_DATA = "ResponseData" CONFIRMED = "Confirmed" QUESTION = "Question" ACTUALDEPART = "ActualDepart" QUESTIONSEARCHING = "QSEARCHING" QUESTIONTREE = "QUESTIONTREE" STATUS_EXIT = 999 STATUS_INVALID = "Status Invalid" FORMAT_DATE = '%d/%m/%Y' FORMAT_TIME = '%H:%M' FORMAT_DATETIME = FORMAT_DATE + ' ' + FORMAT_TIME
Grimmii/TrainChatBot
src/ai_chatbot/scripts/REDataHeader.py
REDataHeader.py
py
806
python
en
code
0
github-code
6
1601092211
__author__ = "Meet Dave" __version__ = "1.0" __maintainer__ = "Meet Dave" __email__ = "[email protected]" # Load libraries import matplotlib.pyplot as plt import torch import cv2 import numpy as np from torchvision import models from torchvision import transforms from make_video import make_video # Load pretrained model deeplapv3_101 = models.segmentation.deeplabv3_resnet101(pretrained=True).eval() # Load background image background_path = "../images/books-seats.png" background = cv2.imread(background_path) background = cv2.cvtColor(background, cv2.COLOR_BGR2RGB) video_path = "../images/test1.avi" # Webcam stream cap = cv2.VideoCapture(0) ret, img = cap.read() height = img.shape[0] width = img.shape[1] video_download = make_video(video_path,width,height) background = cv2.resize(background, (width,height)) background = background.astype(float) # Preprocess class preprocess = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((256,256)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) while(True): ret, img = cap.read() if ret: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Preprocess image input_img = preprocess(img) # Creating a batch dimension input_batch = input_img.unsqueeze(0) # Inference output = deeplapv3_101(input_batch)['out'][0] final_output = output.argmax(dim=0) # Just keep person class and make everything else background person_output = torch.zeros_like(final_output) person_output[final_output == 15] = 1 img_resize = cv2.resize(img,(256,256)) # Get person segmentation foreground = img_resize * person_output.numpy()[:,:,None] foreground = foreground.astype(float) foreground_orig_size = cv2.resize(foreground,(width,height)) # Create alpha mask for blending th, alpha = cv2.threshold(foreground_orig_size,0,255, cv2.THRESH_BINARY) # Smooth the edges for smooth blending alpha = (cv2.GaussianBlur(alpha, (7,7),0))/255 final = foreground_orig_size * alpha + background * (1 - alpha) final = final[...,::-1] final = (final).astype(np.uint8) cv2.imshow('frame',final) video_download.write(final) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
meetdave06/random-cv-tasks
test1/test1.py
test1.py
py
2,455
python
en
code
0
github-code
6
73727669948
import torch def get_device(model=None): """Returns two-tuple containing a PyTorch device (CPU or GPU(s)), and number of available GPUs. Returns a two-tuple containing a PyTorch device (CPU or GPU(s)) and number of available CUDA devices. If `model` is not None, and a CUDA device is available, the model is placed on the CUDA device with `model.to(device)`. If multiple GPUs are available, the model is parallized with `torch.nn.DataParallel(model)`. Args: (Torch.nn.Module) PyTorch model, if CUDA device is available this function will place the model on the CUDA device with `model.to(device)`. If multiple CUDA devices are available, the model is parallized with `torch.nn.DataParallel(model)`. Returns: A two-tuple containing a PyTorch device (CPU or GPU(s)), and number of available GPUs. """ n_gpu = 0 # use a GPU if available if torch.cuda.is_available(): device = torch.device("cuda") n_gpu = torch.cuda.device_count() # if model is provided, we place it on the GPU and parallize it (if possible) if model: model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) model_names = ', '.join([torch.cuda.get_device_name(i) for i in range(n_gpu)]) print('Using CUDA device(s) with name(s): {}.'.format(model_names)) else: device = torch.device("cpu") print('No GPU available. Using CPU.') return device, n_gpu def preprocess_query(query): """Preprocesses `query` to look more like natural language. Preprocess `query` to look more like natural language by puntuating it with a question mark and rearanging into a subject-verb-object (SVO) topology. Args: query (str): Query from Wiki- or Medhop. Returns: `query`, punctuated by a question mark and re-arranged into an SVO topology. """ return ' '.join(query.split(' ')[1:] + query.split(' ')[0].split('_')).replace('?', '') + '?'
bowang-lab/Transformer-GCN-QA
src/utils/model_utils.py
model_utils.py
py
2,040
python
en
code
15
github-code
6
24199424367
# -*- coding: utf-8 -*- """ Created on Tue Jun 25 15:22:37 2019 @author: Administrator """ # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None import test_module from queue import PriorityQueue class Node: def __init__(self, priority, node): self.priority = priority self.node = node def __lt__(self, other): return self.priority < other.priority class Solution: def mergeKLists(self, lists): pq = PriorityQueue() for _list in lists: if _list: pq.put(Node(_list.val, _list)) dummy_head = ListNode(0) cur = dummy_head while pq.qsize() != 0: min_node = pq.get() cur.next = min_node.node cur = cur.next if min_node.node.next: pq.put(Node(min_node.node.next.val, min_node.node.next)) return dummy_head.next if __name__ == '__main__': arrs = [[1,4,5],[1,3,4],[2,6]] heads = [] for arr in arrs: heads.append(test_module.create_list_node(arr, len(arr))) for head in heads: test_module.print_linked_list(head) res = Solution().mergeKLists(heads) test_module.print_linked_list(res)
AiZhanghan/Leetcode
code/23. Merge k Sorted Lists.py
23. Merge k Sorted Lists.py
py
1,325
python
en
code
0
github-code
6
18821603273
import os def rename_files(): # 1 get file names from a folder # r stands for raw path file_list = os.listdir(r"D:\workspace\Udacity\Course 1\Lesson 1\Prank") print(file_list) os.chdir(r"D:\workspace\Udacity\Course 1\Lesson 1\Prank") # 2 for each file, rename file for file_name in file_list: os.rename("athensssss.jpg", "austin.jpg") print("New file name: " + file_name) rename_files()
joshuar500/full-stack-nano
Course 1/Lesson 1/rename_files.py
rename_files.py
py
438
python
en
code
0
github-code
6
73675801466
import os, sys proj_path = "/home/webuser/webapps/tigaserver/" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tigaserver_project.settings") sys.path.append(proj_path) os.chdir(proj_path + "util_scripts/") from django.core.wsgi import get_wsgi_application application = get_wsgi_application() from django.db.models import Count from tigaserver_app.models import EuropeCountry, Report, ExpertReportAnnotation, Categories current_progress = Report.objects.exclude(creation_time__year=2014).exclude(note__icontains="#345").exclude(hide=True).exclude(photos=None).filter(type='adult').annotate(n_annotations=Count('expert_report_annotations')).filter(n_annotations__lt=3).exclude(n_annotations=0).order_by('-server_upload_time') reports_filtered = filter(lambda x: not x.deleted and x.latest_version, current_progress) for c in current_progress: country = 'None' if c.country is not None: country = c.country.name_engl print("Report in progress {0} - country {1} - date {2}".format(c.version_UUID, country, c.server_upload_time )) assigned_to = ExpertReportAnnotation.objects.filter(report=c) for a in assigned_to: print("\t - assigned to {0} from country , regional manager , country has regional manager ".format( a.user.username ))
Mosquito-Alert/mosquito_alert
util_scripts/check_in_progress_reports.py
check_in_progress_reports.py
py
1,276
python
en
code
6
github-code
6
39380382951
import datetime import jpholiday from django import template register = template.Library() # Djangoのテンプレートタグライブラリ # カスタムフィルタとして登録する @register.filter def get_dict_value(dictionary, key): return dictionary.get(key) @register.filter def append_string(dest, src): return dest + src @register.filter def get_day_class(date): day_class = '' # dateは年/月/日形式の文字列 #d = datetime.strptime(date,'%Y/%m/%d') # strptimeを使用すると、is_holidayが正しく動作しないためのワークアラウンド # datetime.date(2020,7,23,0,0)になるのが原因? sp = date.split('/') day = datetime.date(int(sp[0]), int(sp[1]), int(sp[2])) if day.weekday() == 5: # 土曜日 day_class = 'text-primary' elif day.weekday() == 6 or jpholiday.is_holiday(day): # 日曜 or 祝日 day_class = 'text-danger' return day_class @register.filter def get_monthly_max(monthly_list): max_count = 0 for date, count in monthly_list: max_count = max(max_count, count) return max_count
manakamu/docker
django/Docker-Django/django_project/pole/templatetags/pole_tags.py
pole_tags.py
py
1,141
python
ja
code
0
github-code
6
39463837440
# Standard library imports import serial import time import sys import zerorpc import datetime # Application library imports from MySQLhandler import * import Utility SCRIPT_NAME = "RFIDhandler" TIME_BEFORE_ACTIVATION = 60 * 5 print("Initialize serial connection with Arduino") try: s = serial.Serial('/dev/ttyACM0', 9600) except: error_msg = "Unable to connect to the Arduino" print(error_msg) Utility.launch_fatal_process_alert(SCRIPT_NAME, error_msg) time.sleep(50000) # Wait a moment for a possible fix sys.exit() # Close the process and hope for a restart (-> supervisor) # Each variables store an object capable of inserting, updating and deleting # in the given t timeshot = 0 while True: line = s.readline() # Get the line sent by the Arduino try: db_devices = MySQL('devices') db_alarms = MySQL('alarms') db_users = MySQL('users') except: error_msg = "Unable to connect to the database" print(error_msg) Utility.launch_fatal_process_alert(SCRIPT_NAME, error_msg) time.sleep(50000) sys.exit() user = db_users.get('RFID', line.split('\r')[0]) # [user] represents the owner's row of the RFID tag passed # if it exists if user: Utility.switch_led_info(0) Utility.sound(0) c = zerorpc.Client() c.connect("tcp://127.0.0.1:4242") c.RFID() alarms = db_alarms.all() state = bool(alarms[0]['state']) is_one_alarm_up = False for alarm in alarms: is_one_alarm_up = is_one_alarm_up or bool(alarm['state']) if is_one_alarm_up and not state: for alarm in alarms: db_alarms.modify(alarm['id'], 'state', state) elif not state: print("[{}]: Waiting {} sec before activation".format(datetime.datetime.now().strftime("%d/%b/%Y %H:%M:%S"), TIME_BEFORE_ACTIVATION)) time.sleep(TIME_BEFORE_ACTIVATION) for alarm in alarms: db_alarms.modify(alarm['id'], 'state', not state) elif state: print("[{}]: Deactivating".format(datetime.datetime.now().strftime("%d/%b/%Y %H:%M:%S"))) for alarm in alarms: db_alarms.modify(alarm['id'], 'state', not state) else: print("[{}]: Unauthorized tag".format(datetime.datetime.now().strftime("%d/%b/%Y %H:%M:%S"))) c = zerorpc.Client() c.connect("tcp://127.0.0.1:4242") c.RFIDError()
jeremyalbrecht/Alarm-RPI
RFIDhandler.py
RFIDhandler.py
py
2,490
python
en
code
0
github-code
6
43367818416
# Importancia de la característica de permutación (PFI) para la clasificación de latidos utilizando un perceptrón multicapa (MLP) # # # - Código 'PFI.py' # - Trabajo Fin de Máster. # - Néstor Bolaños Bolaños. ([email protected]) import warnings warnings.filterwarnings("ignore") import numpy as np import pickle import glob import matplotlib.pyplot as plt import pandas as pd from scipy import * import os import seaborn as sns import tensorflow as tf from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from sklearn import * from sklearn.metrics import * from sklearn.model_selection import StratifiedKFold sns.set() # Cargamos los datos y codificamos las clases de cada latido mediante One Hot # Cargamos los datos de entrenamiento y de test: tamaño = 277 valores_train = np.empty(shape=[0, tamaño]) valores_test = np.empty(shape=[0, tamaño]) latidos_entrenamiento = glob.glob('train_beats.csv') latidos_test = glob.glob('test_beats.csv') for j in latidos_entrenamiento: filas = np.loadtxt(j, delimiter=',') valores_train = np.append(valores_train, filas, axis=0) for j in latidos_test: filas = np.loadtxt(j, delimiter=',') valores_test = np.append(valores_test, filas, axis=0) print(valores_train.shape) print(valores_test.shape) # Separamos los datos de entrenamiento y de test, y aplicamos la codificación One Hot a Y: X_train = valores_train[:,:-2] X_test = valores_test[:,:-2] y_train = valores_train[:,-2] y_test = valores_test[:,-2] # Combinamos todo nuevamente: X = np.concatenate((X_train, X_test), axis = 0) Y = np.concatenate((y_train, y_test), axis = 0) # codificación One Hot de Y: Y = to_categorical(Y) # Construimos el perceptrón multicapa # Construimos el modelo MLP def getModel(): model_mlp = Sequential() model_mlp.add(Dense(100, activation = 'relu')) model_mlp.add(Dense(9, activation = 'softmax')) return model_mlp model_mlp.summary() # Implementamos y aplicamos PFI para el perceptrón multicapa # Métodos de perturbación: # Hay diferentes tipos de perturbación para la importancia de la característica de permutación, como la perturbación media, la perturbación cero y la perturbación aleatoria. En la implementación que hemos realizado en este cuaderno, los datos dentro de cada corte se han barajado aleatoriamente. fig, ax = plt.subplots(1, 4, figsize = (20, 4), sharex = True, sharey=True) # Sin perturbación: señal original. ax[0].set_title('Sin perturbación') ax[0].plot(np.arange(len( X[20, :])), X[20, :]) # perturbación 0: se establecen los valores de cada corte a 0. ax[1].set_title('Perturbación 0') X_zero_perturbed = X[20, :].copy() X_zero_perturbed[5 * 25 : 6 * 25] = 0.0 ax[1].plot(np.arange(len(X[20, :])), X_zero_perturbed) # Perturbación aleatoria: los valores de cada corte se reemplazan con valores aleatorios. ax[2].set_title('Perturbación aleatoria') X_random_perturbed = X[20, :].copy() X_random_perturbed[5 * 25 : 6 * 25] = np.std(X[20, :]) * np.random.randn(25) + np.mean(X[20, :]) ax[2].plot(np.arange(len(X[20, :])), X_random_perturbed) # Perturbación media: se promedian los valores del corte actual. ax[3].set_title('Perturbación Media') X_mean_perturbed = X[20, :].copy() X_mean_perturbed[5 * 25 : 6 * 25] = np.mean(X[20, 5 * 25 : 6 * 25]) ax[3].plot(np.arange(len(X[20, :])), X_mean_perturbed) for i in range(4): ax[i].set_xlabel('Tiempo') ax[i].axvspan(5 * 25, 6 * 25, color = 'green', alpha = 0.25) # Importancia de la característica de permutación: kf = StratifiedKFold(n_splits = 5, shuffle = True) contador_pliegues = 0 M = np.zeros((X.shape[0], 11)) for indice_train, indice_test in kf.split(X, np.argmax(Y, axis = 1)): print('Fold ', contador_pliegues) # Separamos los datos en cada pliegue: X_train, X_test = X[indice_train], X[indice_test] y_train, y_test = Y[indice_train], Y[indice_test] # Construimos el modelo de aprendizaje con los datos de entrenamiento: model_mlp = getModel() model_mlp.compile(optimizer = 'adam', loss = tf.keras.losses.CategoricalCrossentropy()) model_mlp.fit(X_train, y_train, epochs = 100, verbose = 0) # Realizamos predicciones con los datos de test sin permutaciones: predicciones = model_mlp.predict(X_test) # Para cada característica: for corte in range(0, 275, 25): # Permutamos y realizamos predicciones: x_permutacion = np.copy(X_test) x_corte = X_test[:, corte:corte+25] x_corte_permutacion = np.random.permutation(x_corte) x_permutacion[:, corte:corte + 25] = x_corte_permutacion pred_perm = model_mlp.predict(x_permutacion) # Obtenemos la importancia: importancia = ((np.argmax(y_test, axis = 1) - np.argmax(pred_perm, axis = 1))**2 - (np.argmax(y_test, axis = 1) - np.argmax(predicciones, axis = 1))**2) M[indice_test, corte // 25] = importancia contador_pliegues += 1 importancia_media = np.mean(M, axis = 0) indices_ordenados = np.argsort(-1 * importancia_media) cortes = np.arange(1, 12) colores = ['forestgreen', 'limegreen', 'royalblue', 'blue', 'darkorange', 'cyan', 'purple', 'red', 'pink', 'yellow', 'coral'] fig, ax = plt.subplots(1, 2, figsize = (15, 4)) ax[0].bar(range(11), importancia_media[indices_ordenados], color = np.array(colores)[indices_ordenados]) ax[0].set_title('Importancia de cada característica del modelo MLP') ax[0].set_xticks(np.arange(11)) ax[0].set_xticklabels(cortes[indices_ordenados].astype(int)) ax[0].set_xlabel('Corte') ax[0].set_ylabel('Importancia de cada característica') ecg_normalizado = (X[20, :] - X[20, :].min()) / (X[20, :].max() - X[20, :].min()) Importancia_caraceristica_normalizada = (importancia_media - importancia_media.min()) / (importancia_media.max() - importancia_media.min()) ax[1].plot(np.arange(len(ecg_normalizado)), ecg_normalizado, label='Datos ECG') ax[1].plot(np.repeat(Importancia_caraceristica_normalizada, 25), label = 'Importancia de cada característica') ax[1].set_title('Importancia de cada característica \npara el modelo MLP en una muestra de ECG') ax[1].set_xlabel('Tiempo') ax[1].set_ylabel('Señal ECG / Importancia de cada característica') ax[1].legend()
Nestructor/Codigo_TFM_Aplicacion-del-Aprendizaje-Profundo-en-la-toma-de-Decisiones-Clinicas-Informadas
PFI.py
PFI.py
py
6,333
python
es
code
0
github-code
6
36774550355
class Solution(object): def equalPairs(self, grid): """ :type grid: List[List[int]] :rtype: int """ dic = defaultdict(int) no_pair = 0 rows = len(grid) cols = len(grid[0]) for i in range(rows): dic[tuple(grid[i])] += 1 for j in range(cols): temp_tupel = tuple([row[j] for row in grid]) no_pair += dic[temp_tupel] return no_pair
nathy-min/Competitive-Programming
2352-equal-row-and-column-pairs/2352-equal-row-and-column-pairs.py
2352-equal-row-and-column-pairs.py
py
494
python
en
code
2
github-code
6
43216118551
import graphlab as gl import urlparse settings = {'client_log': 's3://dato-demo-metrics/client-logs', 'server_log_old': 's3://gl-testing-chris/log/strata-predictive-service-three_logs', 'server_log_old2': 's3://dato-stratanow/logs/stratanow_logs', 'server_log': 's3://dato-stratanow/log/strata-now_logs'} def process_client(settings): # Process client logs client_logs = gl.SFrame.read_csv(settings['client_log'] + '/*.gz', comment_char='#', delimiter='\t', header=False) def parse_query_string(x): return {k : v[0] for (k,v) in urlparse.parse_qs(x).iteritems()} client_logs['params'] = client_logs['X12'].apply(lambda x: parse_query_string(x)) client_logs = client_logs.unpack('params') client = client_logs[[c for c in client_logs.column_names() if c.startswith('params.se')]] colnames = {k: k.replace('params.se_','') for k in client.column_names()} #duid = user id client = client.rename(colnames) client['user'] = client_logs['params.duid'] client['date'] = client_logs['X1'] client['time'] = client_logs['X2'] client = client.rename({'pr': 'uuid', 'ac': 'event_type', 'la': 'item_id'}) return client def process_server(settings): server_logs = gl.SFrame.read_csv(settings['server_log'] + '/*custom.log', header=False) return server_logs.unpack('X2', column_name_prefix='')\ .unpack('data', column_name_prefix='') clientlogs = process_client(settings) clientlogs.tail() serverlogs = process_server(settings) serverlogs.tail() historical = serverlogs.join(clientlogs, on='uuid') c = clientlogs[clientlogs['event_type']=='like'] c = c.rename({'user':'user_id'}) c = c.groupby(['user_id', 'item_id'], {}) train,test=gl.recommender.util.random_split_by_user(c) m = gl.recommender.create(train) m.evaluate(test)
turi-code/Strata-Now
data/metrics.py
metrics.py
py
1,912
python
en
code
4
github-code
6
42440314481
import plotly.express as px import plotly.graph_objs as go import pandas as pd from sklearn.decomposition import PCA import numpy as np #****************** Récupération des données CSV ************************# df = pd.read_csv("https://simplonline-v3-prod.s3.eu-west-3.amazonaws.com/media/file/csv/be67fa74-2c34-419c-9249-050394a7eb3e.csv") # df2016 = df[df.year == 2016].iloc[:50,:] # df2016['world_rank'] = df2016['world_rank'].replace(['=39'],'39') # df2016['world_rank'] = df2016['world_rank'].replace(['=44'],'44') # df2016['world_rank'] = df2016['world_rank'].replace(['=47'],'47') # df2016["num_students"] = [str(each).replace(',', '') for each in df2016["num_students"]] df2016 = df[df.year == 2016].iloc[:58,:] # 8lines contains "NaN" df2016 df2016 = df2016.dropna() df2016.isnull().sum() print(len(df2016)) df2016 def convertGender (x): a, b= x.split(':') c = format(int(a)/int(b), ".2f") return c df2016['female_male_ratio'] = df2016['female_male_ratio'].apply(convertGender) df2016.world_rank = [int(each.replace('=','')) for each in df2016.world_rank] df2016['international_students'] = df2016['international_students'].str.replace(r'%', r'.0').astype('float') / 100.0 df2016['num_students'] = df2016['num_students'].str.replace(r',', r'.').astype('float') df2016['income'] = df2016['income'].astype('float') df2016['international'] = df2016['international'].astype('float') df2016['total_score'] = df2016['total_score'].astype('float') df_2016 = df2016.drop(['year', 'university_name','country'], axis=1) #nombre d'observations n = df_2016.shape[0] #nombre de variables p = df_2016.shape[1] # figure1 fig1 = px.scatter(df2016, x="country", y="world_rank", color="country") fig1.update_layout(clickmode='event+select') fig1.update_traces(marker_size=20) # figure2 trace1 = go.Scatter( x = df2016.world_rank,y = df2016.citations, mode = "lines", name = "citations",marker = dict(color = 'rgba(16, 112, 2, 0.8)'),text = df.university_name) trace2 = go.Scatter( x = df2016.world_rank,y = df2016.teaching, mode = "lines+markers",name = "enseignement",marker = dict(color = 'rgba(80, 26, 80, 0.8)'),text = df.university_name) data = [trace1, trace2] layout = dict(title = 'Citation et enseignement comparé au classement mondial des 50 meilleures universités en 2016', xaxis = dict(title = 'Rang Mondial',ticklen = 5,zeroline= False)) fig2 = dict(data = data, layout = layout) # figure3 fig3 = px.scatter(df2016, x="num_students", y="citations",color="country") fig3.update_layout(clickmode='event+select') fig3.update_traces(marker_size=20) # figure3 fig4 = px.scatter(df2016, x="world_rank", y="citations",color="country") fig4.update_layout(clickmode='event+select') fig4.update_traces(marker_size=20) ############### Figures pour page 2 ###################### # PCA #1- FIRST-FIG df_2016 = df2016.drop(['year', 'university_name','country'], axis=1) #features = ["sepal_width", "sepal_length", "petal_width", "petal_length"] features = ['world_rank','teaching','research','citations',] fig5 = px.scatter_matrix( df_2016, dimensions=features, #color="species" ) fig5.update_traces(diagonal_visible=False) # 2- ACP-FIG pca = PCA(n_components=4) components = pca.fit_transform(df_2016) labels = { str(i): f"PC {i+1} ({var:.1f}%)" for i, var in enumerate(pca.explained_variance_ratio_ * 100) } fig6 = px.scatter_matrix( components, labels=labels, dimensions=range(4), ) fig6.update_traces(diagonal_visible=False) # 3- cumsum pca.explained variance pca2 = PCA() pca2.fit(df_2016) val_prop = ((n-1)/n*pca2.explained_variance_)/100 exp_var_cumul = np.cumsum(pca2.explained_variance_ratio_) fig7 = px.area( x=range(1, exp_var_cumul.shape[0] + 1), y=exp_var_cumul, labels={"x": "# Components", "y": "cumul_variance"} ) fig8 = px.area( x=range(1, val_prop.shape[0] + 1), y=val_prop, labels={"x": "# Components", "y": "variance"} )
AbdiNi/Plotly-Dash
Dash_Plotly/My_dataset.py
My_dataset.py
py
4,007
python
en
code
0
github-code
6
29059896663
import imageio import torch import torch.nn.functional as F import numpy as np import os, argparse os.environ["CUDA_VISIBLE_DEVICES"] = "0" from net.bgnet import Net from utils.tdataloader import test_dataset parser = argparse.ArgumentParser() parser.add_argument('--testsize', type=int, default=416, help='testing size') parser.add_argument('--pth_path', type=str, default='./checkpoints/best/BGNet.pth') for _data_name in ['CAMO','CHAMELEON','COD10K','NC4K']: data_path = './data/TestDataset/{}/'.format(_data_name) save_path = './results/BGNet/{}/'.format(_data_name) opt = parser.parse_args() model = Net() model.load_state_dict(torch.load(opt.pth_path)) model.cuda() model.eval() os.makedirs(save_path, exist_ok=True) os.makedirs(save_path+'edge/', exist_ok=True) image_root = '{}/Imgs/'.format(data_path) gt_root = '{}/GT/'.format(data_path) test_loader = test_dataset(image_root, gt_root, opt.testsize) for i in range(test_loader.size): image, gt, name = test_loader.load_data() gt = np.asarray(gt, np.float32) gt /= (gt.max() + 1e-8) image = image.cuda() _, _, res, e = model(image) res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False) res = res.sigmoid().data.cpu().numpy().squeeze() res = (res - res.min()) / (res.max() - res.min() + 1e-8) imageio.imwrite(save_path+name, (res*255).astype(np.uint8)) # e = F.upsample(e, size=gt.shape, mode='bilinear', align_corners=True) # e = e.data.cpu().numpy().squeeze() # e = (e - e.min()) / (e.max() - e.min() + 1e-8) # imageio.imwrite(save_path+'edge/'+name, (e*255).astype(np.uint8))
thograce/BGNet
etest.py
etest.py
py
1,718
python
en
code
57
github-code
6
38049723382
import sys import os import yaml import json CUSTOM_WORD_LIST_FILENAME = '.wordlist.txt' def find_wordlist_files(path): wordlist_paths = [] for root, dirs, files in os.walk(path): for file in files: if file.endswith(CUSTOM_WORD_LIST_FILENAME): wordlist_paths.append(os.path.join(root, file)) return wordlist_paths if __name__ == '__main__': spell_check_yaml_path = sys.argv[1] markdown_base_path = sys.argv[2] spell_check_yaml = None with open(spell_check_yaml_path, 'r') as read_file: spell_check_yaml = yaml.load(read_file, Loader=yaml.FullLoader) wordlist_paths = find_wordlist_files(markdown_base_path) print("Adding wordlists: ") print("\n".join(wordlist_paths)) spell_check_yaml['matrix'][0]['dictionary']['wordlists'].extend(wordlist_paths) with open(spell_check_yaml_path + ".tmp", 'w') as write_file: #yaml.dump doesn't work in Python >3, so we dump to JSON instead & convert using yq in the outer script #yaml.dump(write_file, spell_check_yaml, Dumper=yaml.Dumper) json.dump(spell_check_yaml, write_file, indent=4)
actions-marketplace-validations/jordanbean-msft_wth-spell-check-action
generate-spellcheck.py
generate-spellcheck.py
py
1,153
python
en
code
0
github-code
6
3962586718
import sys import os import random import matplotlib.pyplot as plt from typing import List BASE_FILENAME="develop" OUTPUT_TYPE="png" def create_pie_chart(keywords: List[str], base_filename: str, output_type: str): data = [] explode = [] biggest_value = 0 biggest_iterator = 0 for i, _ in enumerate(keywords): random_value = random.randint(10, 100) data.append(random_value) explode.append(0) if random_value >= biggest_value: biggest_iterator = i biggest_value = random_value explode[biggest_iterator] = 0.1 fig1, ax1 = plt.subplots() ax1.set_xlabel("Distribution of value") ax1.pie(data, explode=explode, labels=keywords, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.savefig(f"outputs/{base_filename}_pie.{output_type}") def create_bar_chart(keywords: List[str], base_filename: str, output_type: str): data = [] for _ in keywords: data.append(random.randint(5, 40)) plt.xlabel('Option') plt.ylabel('Annual savings in percent') plt.bar(keywords, data) plt.savefig(f"outputs/{base_filename}_bar.{output_type}") def main(): keywords = [] for i, element in enumerate(sys.argv): if i == 0: continue keywords.append(element) print(f"Your important {len(keywords)} keywords are: {keywords}") create_bar_chart(keywords, BASE_FILENAME, OUTPUT_TYPE) create_pie_chart(keywords, BASE_FILENAME, OUTPUT_TYPE) print("Your important graphs were created") if __name__=="__main__": main()
neilschark/bullshitgraphs
bullshitgraphs/bullshitgraphs.py
bullshitgraphs.py
py
1,675
python
en
code
1
github-code
6
962892446
from tkinter import * from tkinter.messagebox import showinfo import pandas as pd import numpy as np import sklearn as sk from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # function call def cal(): data = pd.read_csv("2a.csv") if (var1.get()=='123'): showinfo("Invalid input", "please select a state") df = pd.DataFrame(data, columns=['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']) data= df.loc[df['SUBDIVISION'] == var1.get()] x = data['YEAR'] x = x.values.reshape(-1, 1) # x=x.drop(['Unnamed: 0'],axis=1) if (var.get()=='123'): showinfo("Invalid input", "please select a month") y = data[var.get()] y = y.values.reshape(-1, 1) clf = LinearRegression() clf.fit(x, y) v = int(Year.get()) if (v<=0 and v>10000 ): showinfo("Invalid input", "please use a valid year") inp = np.array(v) inp = inp.reshape(1, -1) # Print output showinfo("output",f"The precipitation in inches for the input is:,{clf.predict(inp)}") # year_index = 100 # year = [i for i in range(v-50,v+50)] plt.scatter(x, y, color='g',marker= ".") plt.scatter(v, clf.predict(inp), color='b',label=f"Predicted value {clf.predict(inp)} in {Year.get()}",marker= "*") v=max(v,2015) x1=[1901,v] y1=[clf.predict([[1901]])[0][0],clf.predict([[v]])[0][0]] plt.plot(x1,y1,color='r',label=f"linear prediction from 1901 to {v} ") plt.title('Precipitation level') plt.xlabel('Year') plt.ylabel(f"Precipitation for {var.get()}") plt.legend() # Plot a graph of precipitation levels vs n# of days plt.show() #GUI root=Tk() root.geometry("600x600") # root.title("rainfall prediction") Label(root, text="Enter year and choose any one of these",font="any 15 underline",fg="#f58d25").grid(row=0,column=3,ipady=10) Label(root, text=" Year =",font="any 13 bold",foreground="#853535").grid(row=1,column=1) Year=Entry(root,justify=LEFT,bg="#cafad2",font="any 12 bold",fg="red") Year.grid(row=1,column=2,ipady=5,pady=17,ipadx=15) var=StringVar() var.set("123") Radiobutton(root,text="Jan",variable=var, value="JAN",font="any 12",foreground="blue").grid(row=3,column=2) Radiobutton(root,text="Feb",variable=var, value="FEB",font="any 12",foreground="blue").grid(row=4,column=2) Radiobutton(root,text="Mar",variable=var, value="MAR",font="any 12",foreground="blue").grid(row=5,column=2) Radiobutton(root,text="Apr",variable=var, value="APR",font="any 12",foreground="blue").grid(row=6,column=2) Radiobutton(root,text="May",variable=var, value="MAY",font="any 12",foreground="blue").grid(row=7,column=2) Radiobutton(root,text="Jun",variable=var, value="JUN",font="any 12",foreground="blue").grid(row=8,column=2) obj=['ANDAMAN & NICOBAR ISLANDS', 'ARUNACHAL PRADESH', 'ASSAM & MEGHALAYA', 'NAGA MANI MIZO TRIPURA', 'GANGETIC WEST BENGAL', 'ORISSA', 'JHARKHAND', 'BIHAR', 'EAST UTTAR PRADESH', 'WEST UTTAR PRADESH', 'UTTARAKHAND', 'HARYANA DELHI & CHANDIGARH', 'PUNJAB', 'HIMACHAL PRADESH', 'JAMMU & KASHMIR', 'WEST RAJASTHAN' , 'EAST RAJASTHAN', 'WEST MADHYA PRADESH', 'EAST MADHYA PRADESH', 'GUJARAT REGION', 'SAURASHTRA & KUTCH', 'KONKAN & GOA', 'MADHYA MAHARASHTRA', 'MATATHWADA', 'VIDARBHA', 'CHHATTISGARH', 'COASTAL ANDHRA PRADESH', 'TELANGANA', 'RAYALSEEMA', 'TAMIL NADU', 'COASTAL KARNATAKA', 'NORTH INTERIOR KARNATAKA', 'SOUTH INTERIOR KARNATAKA', 'KERALA', 'LAKSHADWEEP',] var1=StringVar() var.set('ANDAMAN & NICOBAR ISLANDS') OptionMenu(root,var1,*obj).grid(row=9,column=2) Label(root, text=" Select -> :)",font="any 13 bold",foreground="#853535").grid(row=9,column=1) Button(text="Calculate Now", command=cal, activebackground = "yellow",border=5).grid(row=11,column=2,pady=20,ipadx=25) root.mainloop()
Santonu-Naskar/Rainfall-Prediction
rainfall/main/main1.py
main1.py
py
3,959
python
en
code
0
github-code
6
73652302269
# 编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 '1' 的个数(也被称为汉明重量)。 class Solution(object): def hammingWeight(self, n): """ :type n: int :rtype: int """ ret = 0 while n: n &= n - 1 ret += 1 return ret
xxxxlc/leetcode
Bit/hammingWeight.py
hammingWeight.py
py
397
python
zh
code
0
github-code
6
27137014730
#Programmer Sadiq #By@Sadiqul Islam #Use of sum() function #sum() function #Syntax of sum() function : sum(iterable,start) #If you want to add all element of list.So you use it #Example 1 list1 = list(range(0,11)) #list app = sum(list1,0) #use of sum() function print(app) #add element of list #Example 2 numbers = [2.5,3,4,-5] sum1 = sum(numbers) #start parameter is not provided print(sum1) sum2 = sum(numbers,10) #use of start parameter print(sum2)
swesadiqul/python-list
sum() function.py
sum() function.py
py
470
python
en
code
0
github-code
6
2053821942
from config import dogs_and_cats_config as config from pyimagesearch.preprocessing import ImageToArrayPreprocessor, MeanPreprocessor, CropPreprocessor from pyimagesearch.io import HDF5DatasetGenerator from keras.models import load_model import progressbar import json import numpy as np import cv2 import argparse import pandas as pd # construct argument parser and parse the argument ap = argparse.ArgumentParser() ap.add_argument('-s', '--submit', required=True, help='path to submission file') args = vars(ap.parse_args()) # load RGB means for json means = json.loads(open(config.DATASET_MEAN).read()) # initialize image preprocessors mp, cp, iap = MeanPreprocessor(means['R'], means['G'], means['B']), CropPreprocessor(227, 227), ImageToArrayPreprocessor() # load model print('[INFO] loading model...') model = load_model(config.MODEL_PATH) # initialize dataset generator test_gen = HDF5DatasetGenerator(config.PUBLIC_TEST_HDF5, batch_size=64, preprocessors=[mp]) preds = [] # initialize progressbar widgets = ['Evaluating: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] pbar = progressbar.ProgressBar(maxval=test_gen.num_images//64, widgets=widgets) # loop over single pass of test data for i, (images, labels) in enumerate(test_gen.generator(passes=1)): # loop over individual images for image in images: # apply crop preprocessor crops = cp.preprocess(image) crops = np.array([iap.preprocess(crop) for crop in crops], dtype='float32') # predict on the crops pred = model.predict(crops) preds.append(pred.mean(axis=0)) pbar.update(i) pbar.finish() # read sample submission df = pd.DataFrame({ 'id': np.array(range(1, test_gen.num_images+1)), 'label': np.array(preds).argmax(axis=1) }) df.to_csv(args['submit']) # close database test_gen.close()
lykhahaha/Mine
PractitionerBundle/chapter10-dogs_vs_cats/crop_accuracy_public_test.py
crop_accuracy_public_test.py
py
1,859
python
en
code
0
github-code
6
30192351629
import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target def sigmoid(inX):# 定义sigmoid函数 return 1.0/(1+np.exp(-inX)) def std_data(X): means = X.mean(axis=0) #均值 stds = X.std(axis=0) #标准差 A=X.shape[0] #样本个数 B= X.shape[1] + 1 #参数维度 X_std = np.ones((A, B)) X_std[:, 1:] = (X - means) / stds return X_std def predict(Pw): #准确率 y_pred=[] for p in Pw: P=list(p) y_pred.append(P.index(max(P))) return y_pred def gradAscent(X_train,y_train,K_num):#梯度下降法解权值 loss=[] ks = list(set(y_train)) N=X_train.shape[0] # N样本数, M = X_train.shape[1] + 1 #M参数向量的维 data = std_data(X_train) Weight = np.zeros((K_num - 1, M)) # 存储参数矩阵 temp=[1.0 / N * np.sum(data[y_train == ks[i]], axis=0) for i in range(K_num - 1)] priEs = np.array(temp) # 期望值 for i in range(1000): wx = np.exp(np.dot(Weight, data.transpose())) probs = np.divide(wx, 1 + np.sum(wx, axis=0).transpose()) pEs = 1.0 / N * np.dot(probs, data) loss.append(np.sum(pEs-priEs)) gradient = pEs - priEs + 1.0 /100 * Weight # 梯度 Weight = Weight - gradient # 修正参数 plt.figure() x=[i for i in range(1000)] plt.plot(x,loss) plt.title('loss line') plt.xlabel('number') plt.ylabel('loss') plt.show() return Weight def LogisticRegression(Weight,K,X_test): N1= X_test.shape[0] data=std_data(X_test) prob = np.ones((N1,K)) prob[:,:-1] = np.exp(np.dot(data,Weight.transpose())) prob =prob/ np.array([np.sum(prob,axis = 1)]).transpose() #概率 return prob def main(): split_list = [0.1, 0.3, 0.5]# 载入数据 for i in split_list: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=i) K_num = np.shape(list(set(y_train)))[0] W = gradAscent(X_train, y_train, K_num) prob = LogisticRegression(W, K_num, X_test) y_pre = predict(prob) print("测试集:{} 准确率:{}".format(i, accuracy_score(y_pre, y_test))) if __name__ == "__main__": main()
TJPU-ML/Homework-for-the-fall-semester-of-2018
iris classification/王熙煚/lris.py
lris.py
py
2,416
python
en
code
0
github-code
6
30950837477
def D0(fp): Dt = 1 taur = 1./(3*Dt) return fp**2*taur/2. def rms(fp,ts): Dt = 1 taur = 1./(3*Dt) d = 2 tts = ts*1e-5 return 4*Dt*tts+fp**2*taur**2/(d*(d-1))*(2*d*tts/taur+np.exp(-2*d*tts/taur)-1) def swim(fp,rho): Dt = 1 taur = 1./(3*Dt) return rho*fp*fp*taur/2.0 if __name__=="__main__": import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../../plotting_scripts') from jupyterplots import JupyterPlots sys.path.append('../../analysis_scripts') from logloader import LogLoader figsize = JupyterPlots() prefix1 = 'data2/' tcut = -1 fps = np.array([1,5,10,20,40,60,80,100],int) # density (in lj units) rho = '0.7' fig,axarr = plt.subplots(2,sharex=True,figsize=[figsize[0],figsize[0]*2]) fp = 100 fname = f'pressure_{fp}_{rho}' ll = LogLoader(prefix1 + f'log_{fp}_{rho}.lammps.log') ts = ll.data['Step'] RMSs = ll.data['c_mymsdd[4]'] Ps = ll.data['c_press'] Ds = ll.data['v_Diff'] #data = np.loadtxt(prefix1 + fname + '.txt.fixprint') #ts = data[:,0] #Ts = data[:,1] #Ds = data[:,2] #Ps = data[:,3] #tcut = 200000 print(ts) #axarr[0].plot(ts[1:],np.gradient(RMSs,ts)[1:]/4e-5,'o',label=rf'$f_p={fp}$') axarr[0].plot(ts,RMSs,'o',label=rf'$f_p={fp}$') axarr[0].plot(ts,rms(fp,ts),'k-') #axarr[0].plot(ts,D0(fp)+0*ts,'k-') #axarr[0].plot(ts[1:],Ds[1:],'.',label=rf'$f_p={fp}$') axarr[1].plot(ts,Ps,'o',label=rf'$f_p={fp}$') axarr[1].plot(ts,swim(fp,float(rho))+ts*0,'k-',label=rf'$f_p={fp}$') axarr[0].set_ylabel(r'$<R^2>$') axarr[1].set_ylabel(r'$P_{eff}$') axarr[1].set_xlabel(r'$t$') fig.savefig('results_single_pressure/' + fname + '.pdf') plt.show()
samueljmcameron/ABPs_coarse_graining
experiments/2020_03_31/no_interactions_pressure/single_pressure.py
single_pressure.py
py
1,818
python
en
code
0
github-code
6
73279162747
import numpy as np import matplotlib.pyplot as plt # system variables fs = 100e3 f = 1e3 phi = np.pi/4 N = 4*fs/f n_var = 0.01 # create some empty vectors to fill x = np.zeros(N, dtype=complex) n_a = np.zeros(N, dtype=complex) e = np.zeros(N) w = np.zeros(N) y = np.zeros(N, dtype=complex) y_ = np.zeros(N, dtype=complex) w_ = np.zeros(N) # loop through performing esitmation for n in xrange(int(N)): # create reference signal x[n] = np.exp(1j*(2*n*np.pi*f/fs + phi)) # create noise to get received signal n_a[n] = float(np.random.normal(0, np.sqrt(n_var), 1)) + 1j*float(np.random.normal(0, np.sqrt(n_var), 1)) y[n] = x[n] + n_a[n] # create the estimated signal y_[n] = np.exp(1j*sum(w_)) # create the error signal e[n] = y[n] * y_[n] # create new frequency estimate w_[n] = e[n] # plot the results plt.plot(np.real(x)) plt.plot(np.imag(y_)) plt.title("Maximum Likelihood Phase Estimation") plt.xlabel("samples") plt.ylabel("amplitude") plt.show()
yrrapt/ada-comms
sinusoid_estimate_noise.py
sinusoid_estimate_noise.py
py
1,012
python
en
code
0
github-code
6
12242514248
#!/usr/bin/env python from rootpy import ROOT from rootpy.io import File from rootpy.tree import Tree from collections import deque def find_maintenance(filename): aux_file = File(filename, 'read') aux_tree = aux_file.get('t_hk_obox') maintenance_start = False maintenance_list = [] gps_time_list = [] ship_time_list = [] for entry in aux_tree: if entry.obox_is_bad > 0: continue if entry.obox_mode.encode('hex') == '04': if not maintenance_start: maintenance_start = True gps_time_list.append(entry.abs_gps_week * 604800 + entry.abs_gps_second) ship_time_list.append(entry.abs_ship_second) else: if maintenance_start: maintenance_start = False maintenance_list.append(((ship_time_list[0] + ship_time_list[-1]) / 2, (gps_time_list[0] + gps_time_list[-1]) / 2)) gps_time_list = [] ship_time_list = [] return [(int(x[0]), "%d:%d" % (int(x[1] / 604800), int(x[1] % 604800))) for x in maintenance_list] def find_orbitstart(filename): LAT_LEN = 500 lat_deque = deque() orbitstart_list = [] ppd_file = File(filename, 'read') ppd_tree = ppd_file.get('t_ppd') ready_flag = True pre_diff = 0.0 cur_diff = 0.0 for entry in ppd_tree: if entry.flag_of_pos != 0x55: continue lat_deque.append((entry.latitude, entry.ship_time_sec, entry.utc_time_sec)) if len(lat_deque) < LAT_LEN: pre_diff = lat_deque[-1][0] - lat_deque[0][0] continue else: lat_deque.popleft() cur_diff = lat_deque[-1][0] - lat_deque[0][0] if ready_flag and pre_diff < 0 and cur_diff >= 0: orbitstart_list.append(((lat_deque[-1][1] + lat_deque[0][1]) / 2, (lat_deque[-1][2] + lat_deque[0][2]) / 2)) ready_flag = False if not ready_flag and pre_diff > 0 and cur_diff <= 0: ready_flag = True pre_diff = cur_diff return [(int(x[0]), "%d:%d" % (int(x[1] / 604800), int(x[1] % 604800))) for x in orbitstart_list]
ZhenghengLi/POLAR_DATA
Preprocessing/script/split_time.py
split_time.py
py
2,130
python
en
code
2
github-code
6
2568321990
from DATA.datamanager import Datamanager dm=Datamanager() """ woorden=dm.alle_woorden() for woord in woorden : print (woord[1] ) woord = "abluties" woord=dm.check_by_zoekterm(woord,woord[0]) print (woord) """ woord = "daar" woord=dm.check_by_zoekterm_alle_woorden(woord) print (woord) """a="test" print (len(a)) print ("e" in a ) print (("0" or "e") not in a) print (a[0].upper()) #Aäron #¤ raarletters = "`å` `ç` `ñ``Å``ä` `ë` `ï` `ö` `ü` en `â` `ê` `î` `ô` `û`" print (raarletters.upper())"""
johangoyvaerts/PhytonicWordGame-johan
test.py
test.py
py
523
python
en
code
0
github-code
6
18446576990
from django.conf import settings from django.contrib import messages from django.http import HttpResponseRedirect from allauth.account import signals from allauth.account.adapter import DefaultAccountAdapter class AccountAdapter(DefaultAccountAdapter): def is_open_for_signup(self, request): return getattr(settings, "ACCOUNT_SIGNUP_OPEN", True) def post_login(self, request, user, *, email_verification, signal_kwargs, email, signup, redirect_url): # Copied form https://github.com/pennersr/django-allauth/blob/master/allauth/account/adapter.py#L441 in order # to remove the "logged in" message. See this issue for more information: https://github.com/pennersr/django-allauth/issues/3205 from allauth.account.utils import get_login_redirect_url response = HttpResponseRedirect(get_login_redirect_url(request, redirect_url, signup=signup)) if signal_kwargs is None: signal_kwargs = {} signals.user_logged_in.send( sender=user.__class__, request=request, response=response, user=user, **signal_kwargs, ) if getattr(settings, "ACCOUNT_SHOW_POST_LOGIN_MESSAGE", True) is True: self.add_message( request, messages.SUCCESS, "account/messages/logged_in.txt", {"user": user}, ) return response
epicserve/django-base-site
apps/accounts/auth_adapter.py
auth_adapter.py
py
1,443
python
en
code
284
github-code
6
16647141836
import os import pandas as pd import numpy as np from tqdm.auto import tqdm from textaugment import EDA from nltk.tokenize import word_tokenize class DataProcessing: def __init__(self, input_path, output_path): self.input_path = input_path self.output_path = output_path self.X = None self.label = None self.text = None def read_file(self): data = pd.read_csv(self.input_path, names=['text', 'label']) self.text = data.text if not data.label.isnull().all(): self.label = data.label def convert_to_vector(self, emb_dict): X = [] emb_len = len([*emb_dict.values()][0]) for sentence in self.text.values: vector = np.zeros((1, emb_len)) words = [word for word in sentence.split() if word in emb_dict.keys()] if len(words): vector = np.mean([emb_dict[w] for w in words], axis=0) X.append(vector) self.X = np.vstack(X) def augment_text(self, def_val=3): eda = EDA() avg = int(len(self.label) / self.label.nunique()) small_classes = (self.label.value_counts().reset_index(name='cnt') .query(f'cnt < {avg}')['index'].values) for cl in tqdm(small_classes): tmp_df = self.text[self.label == cl] for sentence in tmp_df.values: text_aug = pd.Series([eda.synonym_replacement(sentence) for _ in range(def_val)]) if sum(self.label==cl) > avg: break self.text = self.text.append(text_aug, ignore_index=True) self.label = self.label.append(pd.Series([cl] * def_val), ignore_index=True) def shuffle_data(self): new_index = np.random.randint(len(self.label), size=len(self.label)) self.label = self.label[new_index] self.text = self.text[new_index] def save_data(self): np.save(os.path.join(self.output_path, 'X.npy'), self.X) if self.label is not None: np.save(os.path.join(self.output_path, 'Y.npy'), self.label.to_numpy()) @staticmethod def load_embedding(file_path): embedding_dict = {} with open(file_path, 'r') as f: for line in tqdm(f): values = line.split() word = values[0] vectors = np.asarray(values[1:], 'float32') embedding_dict[word] = vectors f.close() return embedding_dict
marynadorosh/test_task
src/data/make_dataset.py
make_dataset.py
py
2,626
python
en
code
0
github-code
6
31437732860
#!/bin/usr/python3 # Coding: utf-8 # Author: Rogen # Description: 植株灌溉紀錄 from tkinter import ttk, messagebox from GUI_language import * import subprocess import csv, os import pandas as pd import tkinter as tk class Water_management(object): def __init__(self,ver,code): self.language = ver self.internal_code = code self.NodeAnswer = 'NodeAnswer.exe' self.SaveCSV = './Dataset/Planting_Water.csv' if self.language == 1: ch = Chinese() self.interface = ch.Plating_Management() else: en = English() self.interface = en.Plating_Management() # 灌溉紀錄儲存 def submit(self): situation = self.check() tag = 0 if situation == 1: mylist = [] # Add tea site in the name tag = 1 if os.path.exists(self.SaveCSV) else 0 with open(self.SaveCSV, 'a', encoding='utf_8_sig') as f: if tag == 0: f.write('Internal_Code,Sprinkler_Density_W,Sprinkler_Density_H,Frequence,Amount,Electric_Bill_Year,Water_Bill_Year,Water_Bill_Degreed\n') mylist.append(self.internal_code) for z in range(7): mylist.append(self.water_info[z].get()) f.write(','.join(mylist)+'\n') mylist.clear() self.hidden_node_answer() self.pw_delete_window() # 確認表格是否有填寫 def check(self): self.validation_box.delete(1.0,tk.END) empty = []; situation = 1 for i in range(len(self.water_info)): if self.water_info[i].get() == '': if i == 0 or i == 1: empty.append(self.interface['water']['sprinkler_density']) elif i == 2: empty.append(self.interface['water']['frequence']) ''' # 以下不強制要求使用者輸入 elif i == 3: empty.append(self.interface['water']['amount']) elif i == 4: empty.append(self.interface['water']['electric_bill_year']) elif i == 5: empty.append(self.interface['water']['bill_year']) elif i == 6: empty.append(self.interface['water']['bill_degree']) ''' if len(empty): situation = 0 for e in empty: if self.language == 1: self.validation_box.insert(1.0,'%s 未填寫...\n' % e) elif self.language == 2: self.validation_box.insert(1.0,'%s is empty...\n' % e.replace('\n','')) return(situation) # 視窗關閉返回主選單 def pw_delete_window(self): from Option_List import optionlist self.water.destroy() manu = optionlist(self.language) manu.main() # 呼叫"NodeAnswer.exe"程式 (利用灌溉紀錄來回答專家系統問題) def hidden_node_answer(self): p = subprocess.run(self.NodeAnswer, shell=True) # 茶園灌溉紀錄修改 def watering_edit(self): x = 1 # Escape the colunm of Internal_Code if os.path.exists(self.SaveCSV): pw_df = pd.read_csv(self.SaveCSV,encoding='utf_8_sig',delimiter=',') try: index = pw_df.index[pw_df['Internal_Code'] == self.internal_code].tolist()[-1] for ob in self.water_info: if str(pw_df.iloc[index,x]) == 'nan': pw_df.iloc[index,x] = '' ob.set(pw_df.iloc[index,x]) x = x+1 except IndexError as e: tk.messagebox.showerror('ERROR','You do not recode any infomation!') else: tk.messagebox.showerror('ERROR','You do not recode any infomation!') # 主程式介面 def main(self): self.water = tk.Tk() self.water.geometry('620x415') self.water.resizable(width=False,height=False) self.water.title(self.interface['water']['title']) self.water.protocol("WM_DELETE_WINDOW",self.pw_delete_window) sprinkler_density_width = tk.StringVar() sprinkler_density_heigh = tk.StringVar() watering_frequence = tk.StringVar() watering_volume = tk.StringVar() electric_bill_year = tk.StringVar() water_bill_year = tk.StringVar() water_bill = tk.StringVar() self.water_info = [sprinkler_density_width,sprinkler_density_heigh,watering_frequence,watering_volume,electric_bill_year,water_bill_year,water_bill] self.watering_list = ['3-5天一次','每周一次','每旬一次','每兩週一次','每月一次','表土乾即灌溉'] water_frame = tk.Frame(self.water,highlightbackground='blue',highlightcolor='black',highlightthickness=1,bd=5) water_frame.place(x=10,y=20,width=600,height=100) tk.Label(water_frame,text=self.interface['water']['sprinkler_density']).grid(row=0,column=0) tk.Label(water_frame,text=self.interface['water']['frequence']).grid(row=0,column=1) tk.Label(water_frame,text=self.interface['water']['amount']).grid(row=0,column=2) tk.Label(water_frame,text=self.interface['water']['electric_bill_year']).grid(row=0,column=3) tk.Label(water_frame,text=self.interface['water']['bill_year']).grid(row=0,column=4) tk.Label(water_frame,text=self.interface['water']['bill_degree']).grid(row=0,column=5) sprinkler_frame = tk.Frame(water_frame) sprinkler_frame.grid(row=1,column=0,padx=3,pady=5) for k in range(7): if k == 0: tk.Entry(sprinkler_frame,textvariable=self.water_info[k],width=4).grid(row=0,column=k,padx=2,pady=5) tk.Label(sprinkler_frame,text='mx').grid(row=0,column=k+1,padx=2,pady=5) elif k == 1: tk.Entry(sprinkler_frame,textvariable=self.water_info[k],width=4).grid(row=0,column=k+2,padx=2,pady=5) tk.Label(sprinkler_frame,text='m').grid(row=0,column=k+3,padx=2,pady=5) elif k == 2: watering_combox = ttk.Combobox(water_frame,textvariable=self.water_info[k],values=self.watering_list,width=11,state='readonly') watering_combox.grid(row=1,column=k-1,padx=2,pady=5) else: tk.Entry(water_frame,textvariable=self.water_info[k],width=11).grid(row=1,column=k-1,padx=2,pady=5) tk.Button(self.water,text=self.interface['button']['button']['submit'],width=7,command=self.submit).place(x=530,y=140) tk.Button(self.water,text='Edit',width=7,command=self.watering_edit).place(x=450,y=140) self.validation_box = tk.Text(self.water, bg='lightgray', width=85, height=10) self.validation_box.place(x=10,y=190) self.water.mainloop() # if __name__ == '__main__': # w = Water_management(1,'000-0001') # w.main()
NCHU-rogen/ExpertSystem_Project
Planting_water.py
Planting_water.py
py
5,947
python
en
code
0
github-code
6
16270189491
import pymysql import datetime def insert(outsideTemp, insideTemp, targetTemp, fanState): sql = "INSERT INTO FANS ( `time`, `outside_temp`, `inside_temp`, `target_temp`, `fan_state`) " sql += "VALUES ( \"{0}\", {1}, {2}, {3}, {4})".format(datetime.datetime.now(), outsideTemp, insideTemp, targetTemp, fanState) try: connection = pymysql.connect(host='localhost', db='fans') #connection = pymysql.connect(host='localhost', user='root', db='fans', password='c0staRic4') #connection = pymysql.connect(host='localhost', user='pi', db='fans') cursor = connection.cursor() #print(sql) cursor.execute(sql) connection.commit() finally: connection.close() def select_today(): sql = "SELECT * FROM FANS WHERE DATE(time)=CURRENT_DATE()" return select_sql(sql) def select_last(): sql="select * from FANS order by time desc limit 1" return select_sql(sql) def select_sql(sql): try: connection = pymysql.connect(host='localhost', db='fans') cursor = connection.cursor() cursor.execute(sql) result = cursor.fetchall() finally: connection.close() return result ''' CREATE USER 'pi'@'localhost'; GRANT ALL on *.* to 'pi'@'localhost' WITH GRANT OPTION; create database fans; use fans; CREATE TABLE `FANS` ( `time` TIMESTAMP NOT NULL, `outside_temp` FLOAT NOT NULL, `inside_temp` FLOAT NOT NULL, `target_temp` FLOAT NOT NULL, `fan_state` BOOLEAN NOT NULL, PRIMARY KEY (`time`) ); INSERT INTO fans ( `time`, `outside_temp`, `inside_temp`, `fan_state`) VALUES ( datetime.datetime.now(), 56.7, 74.0, TRUE ) '''
scottware/fans
database.py
database.py
py
1,653
python
en
code
0
github-code
6
27513964476
# -*- coding: utf-8 -*- import os import sys import io import math def synthesize_asic_entity(yosys_location, yosys_synth_script, target_cell, entity_name, timing_constraint, synthesis_output_folder): # Check if folder exists, and if not create if(not os.path.isdir(synthesis_output_folder)): os.mkdir(synthesis_output_folder) # Check if folder exists for the synthesis script, if not, create it int_synthesis_output_folder = synthesis_output_folder + '/' + yosys_synth_script[:-4] if(not os.path.isdir(int_synthesis_output_folder)): os.mkdir(int_synthesis_output_folder) # Check if folder exists for the target cell, if not, create it int_synthesis_output_folder = int_synthesis_output_folder + '/' + target_cell['name'] if(not os.path.isdir(int_synthesis_output_folder)): os.mkdir(int_synthesis_output_folder) command = 'SYNTH_TOP_UNIT_NAME=' + entity_name + ' ' command = command + 'SYNTH_ASIC_CELL_LOCATION=' + target_cell['liberty_file'] + ' ' command = command + 'SYNTH_ASIC_PIN_CONSTRAINTS=' + target_cell['pin_constr_file'] + ' ' command = command + 'SYNTH_TIMING_CONSTRAINT=' + timing_constraint + ' ' command = command + 'SYNTH_OUTPUT_CIRCUIT_FOLDER=' + int_synthesis_output_folder + ' ' log_filename = int_synthesis_output_folder + '/' + entity_name + '__t_' + timing_constraint + '.yslog' command = command + yosys_location + ' -l ' + log_filename + ' -c ' + yosys_synth_script + ' -q' print(command) os.system(command) # Open log and look for the delay and area results result_filename = int_synthesis_output_folder + '/' + entity_name + '__t_' + timing_constraint + '.result' # Area string to look for area_result_line_1 = 'Chip area for module ' + "'" + "\\" + entity_name + "':" area_result_line_2 = 'Chip area for top module ' + "'" + "\\" + entity_name + "':" possible_area_result_lines = [] # Delay string to look for delay_result_line = 'Delay =' possible_delay_result_lines = [] with open(log_filename, "r") as log_file: for log_line in log_file: if (delay_result_line in log_line): possible_delay_result_lines += [log_line] if (area_result_line_1 in log_line): possible_area_result_lines += [log_line] if (area_result_line_2 in log_line): possible_area_result_lines += [log_line] # Only write the biggest area found for the top architecture if(len(possible_area_result_lines) <= 1): biggest_area_line = 0 else: biggest_area_line = 0 temp_line_splitted = possible_area_result_lines[0].split(":") biggest_area_line_result = float((temp_line_splitted[1]).strip()) for i in range(1, len(possible_area_result_lines)): temp_line_splitted = possible_area_result_lines[i].split(":") temp_area_line_result = float((temp_line_splitted[1]).strip()) if(temp_area_line_result > biggest_area_line_result): biggest_area_line = i biggest_area_line_result = temp_area_line_result # Only write the first delay found. This needs to be redone, because ABC doesn't give proper delay results for non flattened results. with open(result_filename, "w") as result_file: result_file.write(possible_area_result_lines[biggest_area_line]) result_file.write(possible_delay_result_lines[0]) def synthesize_simple_entity(yosys_location, yosys_synth_script, entity_name, synthesis_output_folder): # Check if folder exists, and if not create if(not os.path.isdir(synthesis_output_folder)): os.mkdir(synthesis_output_folder) # Check if folder exists for the synthesis script, if not, create it int_synthesis_output_folder = synthesis_output_folder + '/' + yosys_synth_script[:-4] if(not os.path.isdir(int_synthesis_output_folder)): os.mkdir(int_synthesis_output_folder) command = 'SYNTH_TOP_UNIT_NAME=' + entity_name + ' ' command = command + 'SYNTH_OUTPUT_CIRCUIT_FOLDER=' + int_synthesis_output_folder + ' ' log_filename = int_synthesis_output_folder + '/' + entity_name + '.yslog' command = command + yosys_location + ' -l ' + log_filename + ' -c ' + yosys_synth_script + ' -q' print(command) os.system(command) def synthesize_asic_list(yosys_location, all_yosys_synth_scripts, all_target_cells, all_entity_names, all_timing_constraints, synthesis_output_folder): for each_yosys_synth_ecript in all_yosys_synth_scripts: for each_std_cell in all_target_cells: for each_entity in all_entity_names: for each_timing_constraint in all_timing_constraints: synthesize_asic_entity(yosys_location, each_yosys_synth_ecript, each_std_cell, each_entity, each_timing_constraint, synthesis_output_folder) def synthesize_simple_list(yosys_location, all_yosys_synth_scripts, all_entity_names, synthesis_output_folder): for each_yosys_synth_ecript in all_yosys_synth_scripts: for each_entity in all_entity_names: synthesize_simple_entity(yosys_location, each_yosys_synth_ecript, each_entity, synthesis_output_folder) def generate_csv_with_all_results(all_yosys_asic_synth_script, all_target_cells, all_entity_names, all_timing_constraints, synthesis_output_folder): area_result_line = 'Chip area' delay_result_line = 'Delay =' csv_file_name = synthesis_output_folder + '/' + 'results.csv' for each_yosys_synth_ecript in all_yosys_asic_synth_script: with io.open(csv_file_name, "w", encoding="ascii", newline='') as csv_file: line = '"Entity Name","Technology","Timing Constraint","Area","GE","Delay"\r\n' csv_file.write(unicode(line, encoding="ascii")) for each_std_cell in all_target_cells: nand_size = 0.0 with open(each_std_cell['nand_file'], "r") as nand_file: nand_size = float(nand_file.readline()) for each_entity in all_entity_names: for each_timing_constraint in all_timing_constraints: line = '"' + each_entity + '"' + ',' + '"' + each_std_cell['name'] + '"' + ',' + '"' + each_timing_constraint + '"' + ',' result_filename = synthesis_output_folder + '/' + each_yosys_synth_ecript[:-4] + '/' + each_std_cell['name'] + '/' + each_entity + '__t_' + each_timing_constraint + '.result' with open(result_filename, "r") as result_file: for result_line in result_file: if(area_result_line in result_line): area_line_splitted = result_line.split(":") area_result = (area_line_splitted[1]).strip() line = line + '"' + area_result + '"' + ',' area_result_ge = str(int(math.ceil(float(area_result)/nand_size))) line = line + '"' + area_result_ge + '"' + ',' with open(result_filename, "r") as result_file: for result_line in result_file: if(delay_result_line in result_line): delay_line_splitted = result_line.split(delay_result_line) delay_result = ((delay_line_splitted[1]).split())[0] line = line + '"' + delay_result + '"' line = line + '\r\n' csv_file.write(unicode(line, encoding="ascii")) # STD cells descriptions asic_cells_base_folder = '/home/pedro/asic_cells/' gscl45nm_library = { 'name' : 'gscl45nm', 'liberty_file' : asic_cells_base_folder + 'gscl45nm/gscl45nm.lib', 'pin_constr_file' : asic_cells_base_folder + 'gscl45nm/gscl45nm.constr', 'nand_file' : asic_cells_base_folder + 'gscl45nm/gscl45nm.nand', } nangate1_library = { 'name' : 'NangateOpenCellLibrary_typical_ccs', 'liberty_file' : asic_cells_base_folder + 'NangateOpenCellLibrary_typical_ccs/NangateOpenCellLibrary_typical_ccs.lib', 'pin_constr_file' : asic_cells_base_folder + 'NangateOpenCellLibrary_typical_ccs/NangateOpenCellLibrary_typical_ccs.constr', 'nand_file' : asic_cells_base_folder + 'NangateOpenCellLibrary_typical_ccs/NangateOpenCellLibrary_typical_ccs.nand', } # Adding cells to the list all_std_cells_libraries = [] all_std_cells_libraries += [gscl45nm_library] all_std_cells_libraries += [nangate1_library] yosys_location = 'yosys' all_yosys_asic_synth_script = ['synth_asic.tcl'] all_yosys_simple_synth_script = ['synth_simple.tcl'] # All timing constraints all_timing_constraints = [] all_timing_constraints += ['10000'] # All entity names all_entity_names = [] all_entity_names += ['subterranean_round'] all_entity_names += ['subterranean_rounds_simple_1'] all_entity_names += ['subterranean_rounds_simple_2'] all_entity_names += ['subterranean_rounds_simple_4'] # Synthesis output folder synthesis_output_folder = 'synth_out' if __name__ == "__main__" : if(len(sys.argv) == 1): print('This is a basic synthesizes script') print('') print('You can try to synthesize an entity not named here by just writing the name directly') print('synth.py entity_name') print('') print('You can also synthesize one of the entities already listed here by writing -l and their number') print('synth.py -l 0 1 2') print('') print('If you want everyone to be synthesized you can also just run -all') print('synth.py -all') print('') print('If you want to generate asic csv report use -g') print('synth.py -g') print('') print('Here are all timings in the script') for i in range(len(all_timing_constraints)): print(all_timing_constraints[i]) print('') print('Here are all entities already in the script') for i in range(len(all_entity_names)): print(str(i) + ' - ' + all_entity_names[i]) else: if(sys.argv[1] == '-all'): synthesize_asic_list(yosys_location, all_yosys_asic_synth_script, all_std_cells_libraries, all_entity_names, all_timing_constraints, synthesis_output_folder) synthesize_simple_list(yosys_location, all_yosys_simple_synth_script, all_entity_names, synthesis_output_folder) elif(sys.argv[1] == '-l'): selected_entity_names = [] list_of_numbers = [str(i) for i in sys.argv[2:]] list_of_numbers = " ".join(list_of_numbers) for i in range(len(all_entity_names)): if(str(i) in list_of_numbers): selected_entity_names += [all_entity_names[i]] synthesize_asic_list(yosys_location, all_yosys_asic_synth_script, all_std_cells_libraries, selected_entity_names, all_timing_constraints, synthesis_output_folder) synthesize_simple_list(yosys_location, all_yosys_simple_synth_script, selected_entity_names, synthesis_output_folder) elif(sys.argv[1] == '-g'): generate_csv_with_all_results(all_yosys_asic_synth_script, all_std_cells_libraries, all_entity_names, all_timing_constraints, synthesis_output_folder) else: new_entity_name = [sys.argv[2]] synthesize_asic_list(yosys_location, all_yosys_asic_synth_script, all_std_cells_libraries, new_entity_name, all_timing_constraints, synthesis_output_folder) synthesize_simple_list(yosys_location, all_yosys_simple_synth_script, new_entity_name, synthesis_output_folder)
tintin10q/subterranean2digital
Reference_code/verilog_project/yosys_synth/synth.py
synth.py
py
11,689
python
en
code
0
github-code
6
26625188476
from django.conf import settings from django.core import urlresolvers from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render_to_response from django.template import RequestContext from django.utils.translation import ugettext_lazy as _ from product.modules.downloadable.models import DownloadLink from satchmo_store.shop.signals import sendfile_url_for_file import mimetypes import os import os.path import re from urlparse import urljoin SHA1_RE = re.compile('^[a-f0-9]{40}$') def _validate_key(download_key): """ Helper function to make sure the key is valid and all the other constraints on the download are still valid. Returns a tuple (False,"Error Message", None) or (True, None, dl_product) """ download_key = download_key.lower() if not SHA1_RE.search(download_key): error_message = _("The download key is invalid.") return (False, error_message, None) try: dl_product = DownloadLink.objects.get(key=download_key) except: error_message = _("The download key is invalid.") return (False, error_message, None) valid, msg = dl_product.is_valid() if not valid: return (False, msg, None) else: return (True, None, dl_product) def process(request, download_key): """ Validate that the key is good, then set a session variable. Redirect to the download view. We use this two step process so that we can easily display meaningful feedback to the user. """ valid, msg, dl_product = _validate_key(download_key) if not valid: context = RequestContext(request, {'error_message': msg}) return render_to_response('shop/download.html', context_instance=context) else: # The key is valid so let's set the session variable and redirect to the # download view request.session['download_key'] = download_key url = urlresolvers.reverse('satchmo_download_send', kwargs= {'download_key': download_key}) context = RequestContext(request, {'download_product': dl_product, 'dl_url' : url}) return render_to_response('shop/download.html', context_instance=context) def send_file(request, download_key): """ After the appropriate session variable has been set, we commence the download. The key is maintained in the url but the session variable is used to control the download in order to maintain security. """ if not request.session.get('download_key', False): url = urlresolvers.reverse('satchmo_download_process', kwargs = {'download_key': download_key}) return HttpResponseRedirect(url) valid, msg, dl_product = _validate_key(request.session['download_key']) if not valid: url = urlresolvers.reverse('satchmo_download_process', kwargs = {'download_key': request.session['download_key']}) return HttpResponseRedirect(url) # some temp vars file = dl_product.downloadable_product.file file_url = '/%s' % file.name # create an absolute/root url # poll listeners url_dict = {'url': file_url} sendfile_url_for_file.send( None, file=file, product=dl_product.downloadable_product, url_dict=url_dict, ) # url may have changed; update it file_url = url_dict['url'] # get file name from url file_name = os.path.basename(file_url) dl_product.num_attempts += 1 dl_product.save() del request.session['download_key'] response = HttpResponse() # For Nginx response['X-Accel-Redirect'] = file_url # For Apache and Lighttpd v1.5 response['X-Sendfile'] = file_url # For Lighttpd v1.4 response['X-LIGHTTPD-send-file'] = file_url response['Content-Disposition'] = "attachment; filename=%s" % file_name response['Content-length'] = file.size contenttype, encoding = mimetypes.guess_type(file_name) if contenttype: response['Content-type'] = contenttype return response
dokterbob/satchmo
satchmo/apps/product/modules/downloadable/views.py
views.py
py
4,066
python
en
code
30
github-code
6
40633067575
from django.urls import path from .views import ( add_to_cart, delete_from_cart, order_details, checkout, update_transaction_records, success ) app_name = 'cart' urlpatterns = [ path('^add-to-cart/<int:pk>/<slug:slug>/', add_to_cart, name="add_to_cart"), path('^order-summary/', order_details, name="order_summary"), path('^success/$', success, name='purchase_success'), path('^item/delete/<int:pk>/<slug:slug>/', delete_from_cart, name='delete_item'), path('^checkout/', checkout, name='checkout'), # path('^update-transaction/(?P<token>[-\w]+)/', update_transaction_records, # name='update_records') ]
sadakchap/cfe-ecom
cart/urls.py
urls.py
py
662
python
en
code
0
github-code
6
20164701509
import cv2 import mediapipe as mp from handLandmarksDefine import * from objectCoords import * import time import numpy as np import math import serial start_time = 0 end_time = 0 try: arduino = serial.Serial('COM3', 9600) except serial.serialutil.SerialException: print("Arduino not connected") # lm = landmark class HandLandmarkDetector: def __init__(self, static_image_mode, max_num_hands, model_complexity, min_detection_confidence, min_tracking_confidence): self.static_image_mode = static_image_mode self.max_num_hands = max_num_hands self.model_complexity = model_complexity self.min_detection_confidence = min_detection_confidence self.min_tracking_confidence = min_tracking_confidence self.mpHands = mp.solutions.hands self.hands = self.mpHands.Hands(self.static_image_mode, self.max_num_hands, self.model_complexity, self.min_detection_confidence, self.min_tracking_confidence) self.mpDraw = mp.solutions.drawing_utils self.results = None def draw_hand_landmarks(self, img): img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.hands.process(img_rgb) if self.results.multi_hand_landmarks: for self.handLMS in self.results.multi_hand_landmarks: self.mpDraw.draw_landmarks(img, self.handLMS, self.mpHands.HAND_CONNECTIONS) return img def find_hand_landmark_coordinates(self, img): landmark_list = [] if self.results.multi_hand_landmarks: for id, lm in enumerate(self.handLMS.landmark): print(id,lm) h, w, c = img.shape cx, cy = int(lm.x * w), int(lm.y * h) landmark_list.append([id, cx, cy]) cv2.circle(img, (cx, cy), 7, (255, 255, 255), cv2.FILLED) return landmark_list class HandTracker: def __init__(self, width, height, top_left_x, top_left_y, color, thickness): self.width = width self.height = height self.top_left_x = top_left_x self.top_left_y = top_left_y self.color = color self.thickness = thickness self.object_assembled = False def reset_sizes(self, width, height, top_left_x, top_left_y, color, thickness): self.width = width self.height = height self.top_left_x = top_left_x self.top_left_y = top_left_y self.color = color self.thickness = thickness def draw(self, img): cv2.rectangle(img, (self.top_left_x, self.top_left_y), (self.top_left_x + self.width, self.top_left_y + self.height), self.color, self.thickness) def set_green_color(self): self.color = (0, 255, 0) self.object_assembled = True def set_red_color(self): self.color = (0, 0, 255) self.object_assembled = False def set_object_assembled_false(self): self.object_assembled = False def set_object_assembled_true(self): self.object_assembled = True def detect_hand_inside_area(self, landmark_list): global start_time global end_time if len(landmark_list) != 0 and self.object_assembled is False: if self.top_left_x <= landmark_list[INDEX_FINGER_TIP][1] <= self.top_left_x + self.width and self.top_left_y <= landmark_list[INDEX_FINGER_TIP][2] <= self.top_left_y + self.height\ and self.top_left_x <= landmark_list[THUMB_TIP][1] <= self.top_left_x + self.width and self.top_left_y <= landmark_list[THUMB_TIP][2] <= self.top_left_y + self.height: self.color = (0, 255, 0) if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 3 # print("end time: ") # print(end_time) # print("current time: ") # print(time.time()) else: if time.time() > end_time: start_time = 0 end_time = 0 return 1 else: self.color = (0, 0, 255) def gesture_control(self, landmark_list, resized_frame, arduino): global start_time global end_time if len(landmark_list) != 0: x1, y1 = landmark_list[THUMB_TIP][1], landmark_list[THUMB_TIP][2] x2, y2 = landmark_list[INDEX_FINGER_TIP][1], landmark_list[INDEX_FINGER_TIP][2] cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 cv2.circle(resized_frame, (x1, y1), 15, (255, 0, 255), cv2.FILLED) cv2.circle(resized_frame, (x2, y2), 15, (255, 0, 255), cv2.FILLED) cv2.line(resized_frame, (x1, y1), (x2, y2), (255, 0, 255), 3) cv2.circle(resized_frame, (cx, cy), 15, (255, 0, 255), cv2.FILLED) length = math.hypot(x2 - x1, y2 - y1) vol = np.interp(length, [70, 250], [0, 250]) if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 1 # print("end time: ") # print(end_time) # print("current time: ") # print(time.time()) else: if time.time() > end_time: start_time = 0 end_time = 0 arduino.write(str(vol).encode()) class ObjectAssembler: def draw_work_area(self, resized_frame, work_area_top_left, work_area_bottom_right, work_area_color, work_area_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, work_area_top_left, work_area_bottom_right, work_area_color, work_area_thickness) text_x = work_area_top_left[0] + 5 text_y = work_area_top_left[1] + 30 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def draw_component_area(self, resized_frame,component_area_top_left, component_area_bottom_right, component_area_color, component_area_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, component_area_top_left, component_area_bottom_right, component_area_color, component_area_thickness) text_x = component_area_top_left[0] + 5 text_y = component_area_top_left[1] + 30 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def draw_breadboard_outline(self, resized_frame, breadboard_top_left, breadboard_bottom_right, breadboard_outline_color, breadboard_outline_thickness): cv2.rectangle(resized_frame, breadboard_top_left, breadboard_bottom_right, breadboard_outline_color, breadboard_outline_thickness) def draw_next_component(self, resized_frame, next_top_left, next_bottom_right, next_color, next_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, next_top_left, next_bottom_right, next_color, next_thickness) text_x = next_top_left[0] + 40 text_y = next_top_left[1] + 500 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def draw_previous_component(self, resized_frame, previous_top_left, previous_bottom_right, previous_color, previous_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, previous_top_left, previous_bottom_right, previous_color, previous_thickness) text_x = previous_top_left[0] + 10 text_y = previous_top_left[1] + 500 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def detect_finger_inside_next_component(self, landmark_list, next_top_left, next_bottom_right): global start_time global end_time if len(landmark_list) != 0: if next_top_left[0] <= landmark_list[PINKY_TIP][1] <= next_bottom_right[0] and \ next_top_left[1] <= landmark_list[PINKY_TIP][2] <= next_bottom_right[1]: if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 3 else: if time.time() > end_time: start_time = 0 end_time = 0 return 1 def detect_finger_inside_previous_component(self, landmark_list, previous_top_left, previous_bottom_right): global start_time global end_time if len(landmark_list) != 0: if previous_top_left[0] <= landmark_list[THUMB_TIP][1] <= previous_bottom_right[0] and \ previous_top_left[1] <= landmark_list[THUMB_TIP][2] <= previous_bottom_right[1]: if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 3 else: if time.time() > end_time: start_time = 0 end_time = 0 return 1 def resize_window(img, max_width, max_height): original_height, original_width, _ = img.shape scale_x = max_width / original_width scale_y = max_height / original_height scale = min(scale_x, scale_y) new_width = int(original_width * scale) new_height = int(original_height * scale) return new_width, new_height def main(): cap = cv2.VideoCapture(0) success, img = cap.read() new_width, new_height = resize_window(img, max_width=1680, max_height=1050) cv2.namedWindow('Scaled Video', cv2.WINDOW_NORMAL) cv2.resizeWindow('Scaled Video', new_width, new_height) cv2.setWindowProperty('Scaled Video', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) hand_detector = HandLandmarkDetector(static_image_mode=False, max_num_hands=1, model_complexity=1, min_detection_confidence=0.1, min_tracking_confidence=0.1) i = 0 gestureControl = False rectangle_width = [ARDUINO_WIDTH, LED_WIDTH, LED_BAR_WIDTH] rectangle_height = [ARDUINO_HEIGHT, LED_HEIGHT, LED_BAR_HEIGHT] rectangle_top_left_x = [ARDUINO_X, LED_X, LED_BAR_X] rectangle_top_left_y = [ARDUINO_Y, LED_Y, LED_BAR_Y] rectangle_color = (0, 0, 255) rectangle_thickness = 2 hand_tracker = HandTracker(rectangle_width[0], rectangle_height[0], rectangle_top_left_x[0], rectangle_top_left_y[0], rectangle_color, rectangle_thickness) component_name = ["Arduino", "LED to PIN D9", "LED bar", "LED dimming"] object_assembler = ObjectAssembler() while True: success, img = cap.read() resized_frame = cv2.resize(img, (new_width, new_height)) hand_tracker.draw(resized_frame) resized_frame = hand_detector.draw_hand_landmarks(resized_frame) landmark_list = hand_detector.find_hand_landmark_coordinates(resized_frame) if hand_tracker.detect_hand_inside_area(landmark_list) == 1: hand_tracker.set_green_color() hand_tracker.set_object_assembled_true() object_assembler.draw_previous_component(resized_frame=resized_frame, previous_top_left=(1, 1), previous_bottom_right=(146, 1061), previous_color=(0, 0, 255), previous_thickness = 20, text_content="Previous", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(0, 0, 255), text_thickness=2) object_assembler.draw_next_component(resized_frame=resized_frame, next_top_left=(1250, 1), next_bottom_right=(1395, 1061), next_color=(0, 255, 0), next_thickness=20, text_content="Next", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(0, 255, 0), text_thickness=2) object_assembler.draw_work_area(resized_frame=resized_frame, work_area_top_left=(145, 300), work_area_bottom_right=(1245, 1050), work_area_color=(255, 255, 255), work_area_thickness=3, text_content="Work Area", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(255, 255, 255), text_thickness=2) object_assembler.draw_breadboard_outline(resized_frame=resized_frame, breadboard_top_left=(550, 400), breadboard_bottom_right=(850, 850), breadboard_outline_color=(0, 0, 255), breadboard_outline_thickness=2) object_assembler.draw_component_area(resized_frame=resized_frame, component_area_top_left=(145, 1), component_area_bottom_right=(1245, 295), component_area_color=(255, 255, 255), component_area_thickness=2, text_content="Component Area", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(255, 255, 255), text_thickness=2) if object_assembler.detect_finger_inside_next_component(landmark_list, next_top_left=(1250, 1), next_bottom_right=(1395, 1061)) == 1: hand_tracker.set_object_assembled_false() if i < 2: i = i + 1 hand_tracker.reset_sizes(rectangle_width[i], rectangle_height[i], rectangle_top_left_x[i], rectangle_top_left_y[i], rectangle_color, rectangle_thickness) else: gestureControl = True if gestureControl == True: i=3 try: hand_tracker.gesture_control(landmark_list, resized_frame, arduino) except UnboundLocalError: cv2.putText(resized_frame, "Connect the Arduino and restart!", (170, 400), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 6) except serial.serialutil.SerialException: cv2.putText(resized_frame, "Connect the Arduino and restart!", (170, 400), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 6) except NameError: cv2.putText(resized_frame, "Connect the Arduino and restart!", (170, 400), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 6) if object_assembler.detect_finger_inside_previous_component(landmark_list, previous_top_left=(1, 1), previous_bottom_right=(146, 1061)) == 1: hand_tracker.set_object_assembled_false() gestureControl = False if i == 0: i = 2 else: i = i - 1 hand_tracker.reset_sizes(rectangle_width[i], rectangle_height[i], rectangle_top_left_x[i], rectangle_top_left_y[i], rectangle_color, rectangle_thickness) if hand_tracker.object_assembled == True: cv2.putText(resized_frame, component_name[i], (650, 280), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 255, 0), 4) else: cv2.putText(resized_frame, component_name[i], (650, 280), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 4) cv2.imshow('Scaled Video', resized_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break if __name__ == "__main__": main() # counter = 1 # a = 0 # b = 1 # print(a) # print(b) # # while counter < 10: # c = a+b # a = b # b = c # print(c) # counter = counter + 1
vladpasat/HandFlow0
handTrackingModule.py
handTrackingModule.py
py
16,607
python
en
code
0
github-code
6
8099648005
import pandas as pd import pydotplus from IPython.display import Image from sklearn import metrics from sklearn.externals.six import StringIO from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier, export_graphviz # nazwy wszystkich kolumn z CSV column_names = ['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology', 'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways', 'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm', 'Horizontal_Distance_To_Fire_Points', 'Wilderness_Area1', 'Wilderness_Area2', 'Wilderness_Area3', 'Wilderness_Area4', 'Soil_Type1', 'Soil_Type2', 'Soil_Type3', 'Soil_Type4', 'Soil_Type5', 'Soil_Type6', 'Soil_Type7', 'Soil_Type8', 'Soil_Type9', 'Soil_Type10', 'Soil_Type11', 'Soil_Type12', 'Soil_Type13', 'Soil_Type14', 'Soil_Type15', 'Soil_Type16', 'Soil_Type17', 'Soil_Type18', 'Soil_Type19', 'Soil_Type20', 'Soil_Type21', 'Soil_Type22', 'Soil_Type23', 'Soil_Type24', 'Soil_Type25', 'Soil_Type26', 'Soil_Type27', 'Soil_Type28', 'Soil_Type29', 'Soil_Type30', 'Soil_Type31', 'Soil_Type32', 'Soil_Type33', 'Soil_Type34', 'Soil_Type35', 'Soil_Type36', 'Soil_Type37', 'Soil_Type38', 'Soil_Type39', 'Soil_Type40', 'Cover_Type'] # wczytujemy dataset dataset = pd.read_csv("covtype.csv", header=None, names=column_names) # wydzielamy zmienne załeżne feature_cols = column_names[:-1] X = dataset[feature_cols] y = dataset.Cover_Type # dzielimy dataset na zbiory do uczenia się i testów X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # trenujemy model clf = DecisionTreeClassifier() clf = clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print("Dokładność: {}".format(metrics.accuracy_score(y_test, y_pred))) dot_data = StringIO() # generacja i eksport grafiki drzewka # głębokość ustawiamy na 5 bo przy wartości powyzęj generuje się godzinami export_graphviz(clf, max_depth=5, out_file=dot_data, filled=True, rounded=True, special_characters=True, feature_names=feature_cols) print('Graphviz wygenerowany') graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_png('trees.png') Image(graph.create_png()) print('End of script.')
fedoruka/fct_classification
main.py
main.py
py
2,347
python
en
code
0
github-code
6
34004358765
import numpy as np import pandas as pd class FillNa: params = [True, False] param_names = ["inplace"] def setup(self, inplace): N = 10 ** 6 rng = pd.date_range("1/1/2000", periods=N, freq="min") data = np.random.randn(N) data[::2] = np.nan self.ts = pd.Series(data, index=rng) def time_fillna(self, inplace): self.ts.fillna(0.0, inplace=inplace) def time_replace(self, inplace): self.ts.replace(np.nan, 0.0, inplace=inplace) class ReplaceDict: params = [True, False] param_names = ["inplace"] def setup(self, inplace): N = 10 ** 5 start_value = 10 ** 5 self.to_rep = dict(enumerate(np.arange(N) + start_value)) self.s = pd.Series(np.random.randint(N, size=10 ** 3)) def time_replace_series(self, inplace): self.s.replace(self.to_rep, inplace=inplace) class ReplaceList: # GH#28099 params = [(True, False)] param_names = ["inplace"] def setup(self, inplace): self.df = pd.DataFrame({"A": 0, "B": 0}, index=range(4 * 10 ** 7)) def time_replace_list(self, inplace): self.df.replace([np.inf, -np.inf], np.nan, inplace=inplace) def time_replace_list_one_match(self, inplace): # the 1 can be held in self._df.blocks[0], while the inf and -inf cant self.df.replace([np.inf, -np.inf, 1], np.nan, inplace=inplace) class Convert: params = (["DataFrame", "Series"], ["Timestamp", "Timedelta"]) param_names = ["constructor", "replace_data"] def setup(self, constructor, replace_data): N = 10 ** 3 data = { "Series": pd.Series(np.random.randint(N, size=N)), "DataFrame": pd.DataFrame( {"A": np.random.randint(N, size=N), "B": np.random.randint(N, size=N)} ), } self.to_replace = {i: getattr(pd, replace_data) for i in range(N)} self.data = data[constructor] def time_replace(self, constructor, replace_data): self.data.replace(self.to_replace) from .pandas_vb_common import setup # noqa: F401 isort:skip
Tommyhappy01/8-PANDAS
asv_bench/benchmarks/replace.py
replace.py
py
2,121
python
en
code
4
github-code
6
41682530680
"""add directory id to address Revision ID: 19e625982be8 Revises: a9adfd3c2eba Create Date: 2018-02-02 23:11:03.395662 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '19e625982be8' down_revision = 'a9adfd3c2eba' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('address', sa.Column('directory_id', sa.Integer(), nullable=True), schema='monday') op.create_index(op.f('ix_monday_address_directory_id'), 'address', ['directory_id'], unique=False, schema='monday') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_monday_address_directory_id'), table_name='address', schema='monday') op.drop_column('address', 'directory_id', schema='monday') # ### end Alembic commands ###
MondayHealth/provider-import
alembic/versions/19e625982be8_add_directory_id_to_address.py
19e625982be8_add_directory_id_to_address.py
py
973
python
en
code
0
github-code
6
8366348060
# /usr/bin/env python # -*- coding:utf-8 -*- import sys import math from dataclasses import dataclass from functools import reduce from functools import wraps """ 迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式。 迭代器是一个可以记住遍历的位置的对象。 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退 迭代器有两个基本的方法: iter() 创建迭代器 next() 获取迭代器的下一个元素 字符串、列表、元组对象 都可用于创建迭代器 迭代器结束的异常 StopIteration 创建迭代器 把一个类作为一个迭代器使用需要在类中实现两个方法__iter__() 与 __next__() __iter__()方法返回一个特殊的迭代器对象,这个迭代器对象实现了__next__()方法并通过StopIteration异常标识迭代的完成。 __next__()方法会返回下一个迭代器对象 只有实现了__iter__(),才能在使用iter()的时候创建一个迭代器 只有实现了__next__(),才能在使用next()的时候通过__next__()按照规则获取下一个值 注意 只有实现了__iter__()方法,才能使用iter(),对该类的对象创建迭代器。但是不是说实现了__iter__()方法,就已经创建了迭代器。这是单独的概念。 只有实现了__next__(),才能在使用next()的时候通过__next__()按照规则获取下一个值。但是不是说没有实现__next__(),就不能创建迭代器了。 """ """ 实现了迭代器函数的类 """ class iterationNum: def __iter__(self): self.num = 1 # 迭代器迭代的是对象。所以这里需要返回self。self表示对象 return self def __next__(self): # 需要先把self.a保存返回,再加1 # 需要先把self.num保存,用于后序返回,然后再+1。否则开始的地方就不是1了。就是2了 x = self.num self.num += 1 return x """ 迭代器的多种使用方式 """ def mapLearn(): list = [1, 2, 3, 4] # 列表 print("迭代器使用方式01") mapL01 = iter(list) # 使用列表创建迭代器 for mapl in mapL01: # print(mapl) # 使用end修改输出的最后字符,这里将换行替换为空格 print(mapl, end=" ") print("迭代器使用方式02") # 迭代器输出完后,不能在用next,否则会报错StopIteration mapL02 = iter(list) # 使用列表创建迭代器 print(next(mapL02)) print(next(mapL02)) print(next(mapL02)) print(next(mapL02)) # print(next(mapL02)) print("迭代器使用方式03") mapL03 = iter(list) # 使用列表创建迭代器 # i = True # while i: # try: # mapl03 = next(mapL03) # print(mapl03) # except StopIteration: # i = False # print("迭代器03已遍历结束") while True: try: print(next(mapL03)) except StopIteration: print("迭代器03已遍历结束") break print("迭代器对象创建及使用") itClass = iterationNum() itN = iter(itClass) # while True: # try: # b = next(itN) # if b == 10: # break; # else: # print(b) # except StopIteration: # break while True: try: print(next(itN)) except StopIteration: break """ 生成器 用于生成迭代器 在Python中,使用yield的函数被称为生成器(generator) 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作。 简单理解:生成器就是一个迭代器 调用一个生成器函数,返回的是一个迭代器对象 在调用生成器运行的过程中,每次遇到yield时函数会暂停并保存当前所有的运行信息,返回yield的值,并在下一次执行next()方法时从当前位置继续运行。 使用yield生成迭代器需要配合循环使用 所谓生成器就是利用循环将某个变量或某个值整合到一起,作为一个迭代器返回 也可以理解为将想要的数整合到一起,作为一个迭代器返回 """ """ 生成器函数 斐波那契数列 """ def fibonacci(n): a, b, counter = 0, 1, 0 while True: if (counter > n): return yield a a, b = b, a + b counter += 1 """ 生成器函数练习 使用yield生成迭代器,需要配合循环使用 """ def yieldTest(n): i = 0 while True: yield i if i <= n: i += 1 else: return """ 生成器的使用练习 """ def yieldLearn(): print("通过生成器实现:斐波那契数列") fi = fibonacci(10) while True: try: print(next(fi)) except StopIteration: break print("自定义生成器实现") yt = yieldTest(10) while True: try: print(next(yt)) except StopIteration: break """ map&filter&reduce 函数式编程的代表 内置函数map和filter是在列表(或类似的称为迭代的对象)上运行的非常有用的高阶函数 函数map接受一个函数和一个迭代器作为参数,并返回一个新的迭代器,该函数应用于每个参数 map() 使用迭代器按指定规则生成迭代器 根据提供的函数对指定序列做映射 语法: map(function, iterable, ...) 参数: function 函数 iterable 一个或多个序列 返回值: Python2.x 返回列表 Python3.x 返回迭代器 解释: 第一个参数function以参数序列iterable中的每一个元素调用function函数 返回包含每次function函数返回值的新列表 """ """ 函数式编程map()高阶函数的练习 """ """ 定义一个函数用于测试map 计算平方数 """ def square(x): return x ** 2 """ map()使用练习 """ def mapLearn(): list = [1, 2, 3, 4, 5] # 对list中的每一个元素按照square进行处理,并返回结果集,作为迭代器返回 print("使用函数实现map()") mL01 = map(square, list) for ml in mL01: print(ml) # 使用lambda实现 print("使用lambda表达式实现map()") mL02 = map(lambda x: x ** 2, list) while True: try: print(next(mL02)) except StopIteration: break """ 使用两个列表作为两个参数 使用lambda接受两个参数进行map()计算 """ print("使用lambda计算两个迭代器实现map()") listX = [1, 2, 3, 4, 5] listY = [-1, -2, -3, -4, -5] mL03 = map(lambda x, y: x + y, listX, listY) for ml03 in mL03: print(ml03) """ filter() filter()函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表 语法: filter(function, iterable) 参数: function 判断函数 iterable 可迭代对象 返回值: Python2.x 返回列表 Python3.x 返回可迭代对象 解释: 接收两个参数,第一个是函数,第二个是序列,序列的每个元素作为参数传递给函数进行判断。 然后返回True或False,最后将返回True的元素放到新列表中 """ """ 函数式编程filter()高阶函数的练习 """ """ 定义一个函数用于测试filter 判断是否单数 """ def isOdd(n): return n % 2 == 1 """ filter使用练习 """ def filterLearn(): list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] print("使用函数实现filter") fL01 = filter(isOdd, list) for fl in fL01: print(fl) print("使用lambda实现filter") fL02 = filter(lambda x: x % 2 == 1, list) while True: try: print(next(fL02)) except StopIteration: break print("使用filter过滤除1~100中平方根是整数的数") fL03 = filter(lambda x: math.sqrt(x) % 1 == 0, range(1, 101, 1)) for fl03 in fL03: print(fl03) """ reduce() reduce()函数会对参数序列中元素进行累积 语法: reduce(function, iterable[, initializer]) 参数: function 函数,有两个参数 iterable 可迭代对象 initializer 可选,初始参数 返回值: 函数计算结果 解释: 函数将一个数据集合(链表,元组等)中的所有数据进行下列操作: 用传给reduce中的函数function(有两个参数)先对集合中的第1、2个元素进行操作 得到的结果再与第三个数据用function函数运算,最后得到一个结果 也就是说把iterable中的所有值进行function计算,得到一个计算结果 注意: Python3.x reduce()已经被移动到functools模块里,如果要使用,需要引入functools模块来调用reduce()函数 from functools import reduce """ """ 函数式编程reduce()高阶函数的练习 """ """ 定义一个函数用于测试reduce 加法 """ def addRed(x, y): return x + y """ reduce使用练习 """ def reduceLearn(): list = [1, 2, 3, 4, 5] rL01 = reduce(addRed, list) print("使用函数实现reduce") print(rL01) print("使用lambda实现reduce") rL02 = reduce(lambda x, y: x + y, list) print(rL02) print("使用reduce计算1-100的和") rL03 = reduce(lambda x, y: x + y, range(1, 101, 1)) print(rL03) print("使用reduce计算1-100的积") rL04 = reduce(lambda x, y: x * y, range(1, 101, 1)) print(rL04) """ 装饰器 装饰器(Decorators)是Python的一个重要部分。 简单的说:他们是修改其他函数的功能的函数。 有助于让代码更简单,更Pythonic(Python范儿)。 需要知道在哪里使用装饰器,以及如何开发装饰器。 装饰器是得在一个函数的前后执行代码 工厂模式? 装饰器助力用更少、更简单的代码来实现复杂的逻辑,并在其他地方实现重用。 装饰器就是定义一个嵌套函数,已一个函数作为参数,在嵌套函数中把参数函数前后加一下语句,然后把嵌套函数作为返回值。这样就相当于修改了参数函数的功能 注意: 装饰器可以使用类的方式实现。在类中用下面的函数和标记实现装饰器类 __call__ @wraps(func) 装饰器包装 functools.wraps 装饰器修饰函数 @wraps 接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等功能。 这可以让我们在装饰器里面访问在装饰之前的函数的属性 @装饰器名称 在函数前面加@+装饰器名称,表示使用指定的装饰器对该函数进行装饰。 在后面使用该函数的是,就是已经经过装饰的功能了 装饰器常用实现 授权检查 日志实现 装饰器类 发送邮件 ... 装饰器定义及使用标准语句 from functools import wraps def decorator_name(f): @wraps(f) def decorated(*args, **kwargs): if not can_run: return "Function will not run" return f(*args, **kwargs) return decorated @decorator_name def func(): return("Function is running") can_run = True print(func()) # Output: Function is running can_run = False print(func()) # Output: Function will not run 常见装饰器 https://zhuanlan.zhihu.com/p/602457512 @classmethod: 声明一个类方法,可以通过类名直接调用。 python类中有三种方法类型: Instance methods(实例方法): 绑定一个实例的方法,利用这种方法可以访问和修改实例数据。 通过类的实例调用实例方法,通过self参数访问实例数据。 第一个参数是自身。 Class methods(类方法): @classmethod 绑定一个类的方法,无法利用该方法修改实例数据。 是调用类自身的一种方法,它将类作为第一个参数,通常将其命名为cls Static methods(静态方法): @staticmethod 不绑定实例或类的方法。仅仅因为他们在逻辑上属于那个类,才被包含进来。 静态方法通常用于执行一组相关任务的使用程序类中,如数学计算。通过将相关函数组织成类的静态方法,使代码变得更加有组织、更容易理解。 @staticmethod: 声明一个静态方法,可以通过类名直接调用。 @property: 为Python类设置处理程序和设置程序。 将一个方法转换为只读属性。也可以理解成,将一个方法改成了 __getter__方法。并且可以拿这个方法继续对后面的方法进行装饰。 用于对属性进行保护 Getters和Setters是面向对象编程(OOP)中的重要概念。 对于类中的每个实例变量,getter方法返回其值,而setter方法设置或更新其值。鉴于此,Getters和Setters又分别称为Accessors和Mutators。 它们用于保护数据不被直接意外访问或修改。 不同的OOP语言有不同的机制来定义获取器getters和setters。在Python中,可以简单地使用@property装饰器。 __getter__ __setter__ 通过property装饰后,可以直接取变量,也可以通过函数取变量。函数不能加() @abstractmethod: 声明一个抽象方法,子类必须实现它。 @wraps: 用于保留原始函数的元数据(如函数名、注释等)。 创建装饰器的时候使用。用于保留原始函数的元数据(如函数名、注释等)。 @lru_cache:利用缓存提速程序。是提速Python函数最简易的方法 此装饰器将函数的结果放入缓存,供后续具有相同参数的函数调用,无需再次执行具有相同参数的函数。 @total_ordering: 填充缺失排序方法的类装饰器 函数工具模块中的@total_sordeng装饰器为预定义Python类生成缺失比较方法。 在类中没有对__ge__、__gt__和__le__方法进行定义。对该类的对象进行比较是会有问题。这个装饰器会补充缺失的比较方法 一些旧的类可能未充分定义比较方法,将@total_ordering装饰器添加到其中之后,后续的使用更加安全。 @contextmanager:定制的语境管理器 可以使用with语句打开文件,在写入之后将自动关闭。无需显式地调用f.close()函数来关闭该文件。 @cached_property:将方法的结果作为属性放入缓存 Python 3.8的函数工具模块引入了一个新的功能强大的装饰器-@cached_property,它将类的方法转换为一个属性,计算出该属性的值之后,将其作为实例的普通属性放入缓存。 @dataclass:用更少的代码定义专用类 (在Python3.7中引入)可以自动为一个类生成几种专用的方法,如__init__、__repr__、__eq__、__lt__等。 @atexit.register:注册一个程序正常终止的函数 atexit模块的@register装饰器允许在Python解释器退出时执行一个函数。 @login_required: 用于限制需要用户登录才能访问的视图函数。 @cache: 缓存函数的结果,避免重复计算。 @retry: 在发生错误时自动重试代码块一定次数。 需要自己定义 函数 函数可以赋值 函数中可以定义函数(函数中定义的函数,在函数外无法访问) 函数可以返回函数 funcName() 执行函数 funcName() funcName 把函数整体赋值给另外一个变量 a1 = funcName a1() """ """ 一切皆对象 """ """ 函数赋值使用实例 """ def hi(name="renxw"): return "hi " + name """ 函数中定义函数 函数中定义的函数,在函数外不能被访问 """ def hiFun01(name="renxw"): print("now you are inside the hiFun01() function") def hiFun02(): return "now you are in the hiFun02() function" def hiFun03(): return "now you are in the hiFun03() function" print(hiFun02()) print(hiFun03()) print("now you are back in the hiFun01() function") """ 从函数中返回函数 """ def hiFun04(name="renxw"): print("now you are inside the hiFun04() function") def hiFun02(): return "now you are in the hiFun02() function" def hiFun03(): return "now you are in the hiFun03() function" if name == "renxw": return hiFun02 else: return hiFun03 """ 函数练习 """ def hiFunTest(): print("函数赋值") print(hi()) hi01 = hi print(hi01()) # 可以删除hi01,删除hi报错 # del hi01 # del hi # print(hi()) # print(hi01()) print("在函数中定义函数") hiFun01() print("从函数中返回函数") hiFun05 = hiFun04() print(hiFun05()) """ 装饰器练习 """ """ 装饰器函数定义 functools.wraps 指明装饰的函数 @wraps(a01Fun) 接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等功能。 这可以让我们在装饰器里面访问在装饰之前的函数的属性 """ def a01Decorator(a01Fun): @wraps(a01Fun) def wrapTheFunction(): print("I am doing some boring work before executing a01Fun()") a01Fun() print("I am doing some boring work after executing a01Fun()") return wrapTheFunction """ @指明装饰器 在指明装饰器后,在使用函数的时候就可以直接使用装饰后的功能,不需要再使用装饰器进行包装赋值了 """ @a01Decorator def a02Fun(): print("I am the function which needs some decoration to remove my foul smell") """ 装饰器练习 """ def decoratorLearn(): a02Fun() print(a02Fun.__name__) # a03Fun = a01Decorator(a02Fun) # a03Fun() # print(a03Fun.__name__) return """ 内置装饰器练习 """ class IterClass: def __init__(self): self._score = 0 @property def score1(self): return self._score @score1.setter def score(self, s): if 0 <= s <= 100: self._score = s else: raise Exception("参数太大,只允许0-100") @dataclass class Point: """@dataclass装饰器练习""" x: float y: float def point_func(): point = Point(1.0, 2.0) print(point) """自定义装饰器retry""" def retry(max_retries=3, timeout=1): """ 定义装饰:用于函数重试,和等待重试时长。 这里面的参数时装饰器函数本身的参数 :param max_retries: 最大重试次数 :param timeout: 设置超时重试时长 :return: """ def decorator(func): """ 定义装饰器和将装饰器返回 :param func: 以函数式编程的方式,使用参数接收被装饰函数的函数名,在装饰器中使用 func() 进行执行函数 :return: wrapper(被装饰之后的函数名,在函数被装饰之后,调用别装饰函数的时候,实际上调用的就是wrapper函数) """ @wraps(func) def wrapper(*args, **kwargs): """ 定义被装饰函数,被装饰之后的函数功能 这里的参数时被装饰函数的参数 @wraps(func): 这里可以使用wraps用来标识装饰器,并且接收func函数名。不写也可以 @wraps接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等等的功能。这可以让我们在装饰器里面访问在装饰之前的函数的属性。 :param args: (形参)(元组)用于接收被装饰函数的所有非关键字参数 :param kwargs: (形参)(字典)用于接收被装饰函数的所有关键字参数 :return: """ """使用循环的方式对被装饰函数进行重试""" retries = 0 exce_type = 0 while retries < max_retries: try: """ args: (实参)将通过wrapper函数接收到的被装饰函数的非关键字参数的参数集合(元组),使用*进行展开,将其中所有元素单独传递给被装饰函数 kwargs: (实参)将通过wrapper函数接收到的被装饰函数的关键字参数的参数集合(字典),使用**进行展开,将其中所有元素(键:值对)单独传递给被装饰函数 1、将被装饰函数所有参数传递给被装饰函数 2、执行被装饰函数 3、返回被装饰函数的return值(被装饰函数的返回值需要单独返回,要不然无法被引用) 注意点: 如果func执行没有异常,就会直接执行return语句将func结果返回,那就不会再进行循环了。而不会在func正常的情况下还将func循环执行三次 """ return func(*args, **kwargs) except BaseException as e: """重试次数+1""" retries += 1 """最后失败时,将失败原因进行保存,进行输出!""" exce_type = e if retries == max_retries else None """输出失败日志""" print(f"执行 {func.__name__} 失败,正在进行第 {retries} 次重试!") """失败重试,等待时间""" time.sleep(timeout) """ 最终失败后将异常抛出,并且将失败信息进行提示! 异常抛出的时候使用之前存储好的异常遍历,获取异常类型,准确的进行异常信息输出 """ raise exce_type.__class__(f"执行 {func.__name__} 失败,已达到最大重试次数,最终的失败原因是 {exce_type}!") """函数式编程:将被装饰器装饰后的的函数名返回""" return wrapper """函数式编程:将装饰器函数的函数名返回""" return decorator @retry(max_retries=3, timeout=1) def retry_test(): """ @retry: 使用装饰器retry对函数进行装饰 max_retries: 传递给装饰器的参数 timeout: 传递给装饰器的参数 :return: """ print("retry测试") raise(IOError, "主动抛出异常,用于装饰器测试!") return 1 @retry(max_retries=10, timeout=3) def sum_num(x, y): a = x + y # raise (IOError, "主动抛出异常,用于装饰器测试!") return a """ 递归练习 x! x的阶乘的实现 """ def factorial(x): if x == 1: return 1 else: return x * factorial(x - 1) """ 递归练习 """ def recursionLearn(): print(factorial(10)) if __name__ == "__main__": # print("迭代器练习") # mapLearn() # print("生成器练习") # yieldLearn() # print("函数式编程高阶函数-map练习") # mapLearn() # print("函数式编程高阶函数-filter练习") # filterLearn() # print("函数式编程高阶函数-reduce练习") # reduceLearn() # print("函数练习") # hiFunTest() # print("装饰器练习") # decoratorLearn() print("内置装饰器练习") ic = IterClass() ic.score = 10 print(ic.score) print(ic.score1) ic.score = 100 print(ic.score) print(ic.score1) point_func() # print("递归练习") # recursionLearn()
renxiaowei-1991/pythonLearn
a01PythonLearn/package/b01PythonLearn/c23ClassHighLearn.py
c23ClassHighLearn.py
py
24,298
python
zh
code
0
github-code
6
37176092039
import numpy as np import cv2 # Check available mouse events available with opencv library # events = [i for i in dir(cv2) if 'EVENT' in i] # print(events) # General Callback function used for handling mouse events def click_event(event, x, y, flags, param): # Show x and y coordinate if event == cv2.EVENT_LBUTTONDOWN: print(x, ', ', y) font = cv2.FONT_HERSHEY_SIMPLEX strXY = str(x) + ', ' + str(y) cv2.putText(img, strXY, (x, y), font, .5, (255, 255, 0), 2) cv2.imshow('image', img) # Show B, G and R channel if event == cv2.EVENT_RBUTTONDOWN: blue = img[y, x, 0] green = img[y, x, 1] red = img[y, x, 2] font = cv2.FONT_HERSHEY_SIMPLEX strBGR = str(blue) + ', ' + str(green) + ', ' + str(red) cv2.putText(img, strBGR, (x, y), font, .5, (0, 255, 255), 2) cv2.imshow('image', img) # Create image from numpy # img = np.zeros((512, 512, 3), np.uint8) img = cv2.imread('data/images/messi.jpg') img = cv2.resize(img, (512, 512)) # 'image' is windows title cv2.imshow('image', img) # setMouseCallback calls Function click_event cv2.setMouseCallback('image', click_event) cv2.waitKey(0) cv2.destroyAllWindows()
sbhrwl/object_detection
src/opencv/mouse_events/handle_mouse_event.py
handle_mouse_event.py
py
1,226
python
en
code
0
github-code
6
8101165169
import requests import json from config import keys class ConvertionException(Exception): pass class CryptoConverter: @staticmethod def get_price(quote: str, base: str, amount: str): if quote == base: raise ConvertionException(f'Вы ввели одинаковые валюты {base}.') try: quote_ticker = keys[quote] except KeyError: raise ConvertionException(f'Не удалось обработать валюту {quote}') try: base_ticker = keys[base] except KeyError: raise ConvertionException(f'Не удалось обработать валюту {base}') try: amount = float(amount) except ValueError: raise ConvertionException(f'Не удалось обработать колличество {amount}.') r = requests.get(f'https://min-api.cryptocompare.com/data/price?fsym={quote_ticker}&tsyms={base_ticker}') total_base = json.loads(r.content) new_price = total_base[keys[base]] * amount new_price = round(new_price, 3) message = f"Цена {amount} {keys[quote]} в {keys[base]} : {new_price}" return message
voxvt/botexam
utils.py
utils.py
py
1,270
python
ru
code
0
github-code
6
70968292347
import cv2 import numpy as numpy import os detector = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml') recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read("trainer/trainer.yml") font = cv2.FONT_HERSHEY_SIMPLEX id = 0 name = ['none', 'Godswill', 'Ebere', 'Godswill', 'handle'] cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = detector.detectMultiScale(gray, 1.1, 2) for (x,y,w,h) in faces: cv2.rectangle(frame, (x,y), (x+w, y+h), (255, 0, 0), 3) id, confidence = recognizer.predict(gray[y:y+h, x:x+y]) if (confidence <= 100): id = name[id] confidence = "{0}%".format(round(100-confidence)) else: id = "Unknown" confidence = "{}%".format(round(100-confidence)) cv2.putText(frame, str(id), (x+5, y-5), font, 1, (255, 0, 0), 2) cv2.putText(frame, str(confidence), (x+5, y+h-5), font, 1, (255, 0, 0), 2) cv2.imshow("Frame", frame) k = cv2.waitKey(30) & 0xff if k == "q": break cap.release() cv2.destroyAllWindows()
awesomegusS/cv
recognizer.py
recognizer.py
py
1,158
python
en
code
0
github-code
6
21141233312
import datetime import json import os import time import pandas as pd import requests from mystockdata import config, db from mystockdata.db import DatetimeIndexMixin, PrefixedDfDb from mystockdata.exceptions import HistoryDataError class ShSeDb(DatetimeIndexMixin, PrefixedDfDb): prefix = 'sh_se_' class CybSeDb(DatetimeIndexMixin, PrefixedDfDb): prefix = 'cyb_se_' class SzSeDb(DatetimeIndexMixin, PrefixedDfDb): prefix = 'sz_se_' class SzzbSeDb(DatetimeIndexMixin, PrefixedDfDb,): prefix = 'szzb_se_' class ZxqySeDb(DatetimeIndexMixin, PrefixedDfDb, ): prefix = 'zxqy_se_' class SSE: sedb = ShSeDb() def read_cache(self): df = self.sedb.read() return df def write_cache(self, df): df = self.sedb.save(df) def get_sse_overview_day(self): ''' source: http://www.sse.com.cn/market/stockdata/overview/day/ ''' def _fetch(date): url = ('http://query.sse.com.cn/marketdata/tradedata', '/queryTradingByProdTypeData.do?jsonCallBack=jsonpCallback74321', '&searchDate=[DAY]&prodType=gp&_=1456558103149') headers = { 'Host': 'www.sse.com.cn', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36', 'Referer': 'http://www.sse.com.cn/market/stockdata/overview/day/', } real_url = ''.join(url).replace('[DAY]', date.strftime("%Y-%m-%d")) rst = requests.get(url=real_url, headers=headers).text json_str = rst[19:len(rst) - 1] rst_list = json.loads(json_str) rst_list = rst_list['result'] headers = ['istVol', 'SH_profitRate1', 'SH_negotiableValue1', 'SH_trdAmt1', 'SH_trdVol1', 'SH_trdTm1', 'A_istVol', 'A_profitRate1', 'A_negotiableValue1', 'A_trdAmt1', 'A_trdVol1', 'A_trdTm1', 'B_istVol', 'B_profitRate1', 'B_negotiableValue1', 'B_trdAmt1', 'B_trdVol1', 'B_trdTm1'] tmp_dict = dict() for key, value in rst_list[0].items(): tmp_dict['A_' + key] = value if value else None for key, value in rst_list[1].items(): tmp_dict['B_' + key] = value if value else None for key, value in rst_list[2].items(): tmp_dict['SH_' + key] = value if value else None return pd.DataFrame([tmp_dict, ], index=[date, ]) def _fetch_dates(begin, end, to_df=True): tmp = [] print(begin, end) dates = pd.date_range(begin, end) if len(dates) == 1: return None for date in dates: tmp.append(_fetch(date)) # print(tmp[-1]) if len(dates) > 1: print('sleep') time.sleep(0.5) # print(pd.concat(tmp)) return pd.concat(tmp) cache_df = self.read_cache() if cache_df is None or cache_df.empty: raise HistoryDataError() else: start = max(cache_df.index) + datetime.timedelta(days=-1) new_df = _fetch_dates( start, datetime.datetime.now()) if new_df is not None: cache_df = cache_df.drop(new_df.index, errors='ignore') df = pd.concat([cache_df, new_df]) if len(df) > len(cache_df): self.write_cache(df) return df class SZSE: dbs = {'sz': SzSeDb(), 'cyb': CybSeDb(), 'zxqy': ZxqySeDb(), 'szzb': SzzbSeDb()} def read_cache(self, category): df = self.dbs[category].read() return df def write_cache(self, df, category): df = self.dbs[category].save(df) def get_szse_overview_day(self, category): ''' source: http://www.szse.cn/main/marketdata/tjsj/jbzb/ ''' def _fetch(date, category): urls = { 'sz': ('http://www.szse.cn/szseWeb/ShowReport.szse?', 'SHOWTYPE=EXCEL&CATALOGID=1803&txtQueryDate=%s&ENCODE=1&TABKEY=tab1'), # 深圳主板 'szzb': ('http://www.szse.cn/szseWeb/ShowReport.szse?', 'SHOWTYPE=EXCEL&CATALOGID=1803&txtQueryDate=%s&ENCODE=1&TABKEY=tab2'), # 中小企业板 'zxqy': ('http://www.szse.cn/szseWeb/ShowReport.szse?', 'SHOWTYPE=EXCEL&CATALOGID=1803&txtQueryDate=%s&ENCODE=1&TABKEY=tab3'), # 创业板 'cyb': ('http://www.szse.cn/szseWeb/ShowReport.szse?', 'SHOWTYPE=EXCEL&CATALOGID=1803&txtQueryDate=%s&ENCODE=1&TABKEY=tab4')} df = pd.read_html(''.join(urls[category]) % date.strftime( "%Y-%m-%d"), encoding='gbk', header=0)[0] if df.columns[0] == '没有找到符合条件的数据!': return None if category in ('szzb', 'cyb', 'zxqy'): del df['比上日增减'] del df['本年最高'] del df['最高值日期'] if category == 'sz': del df['比上日增减'] del df['幅度%'] del df['本年最高'] del df['最高值日期'] df = pd.pivot_table(df, columns='指标名称') df.index = pd.DatetimeIndex([date.strftime("%Y-%m-%d")]) return df def _fetch_dates(begin, end, category): tmp = [] print(begin, end) dates = pd.date_range(begin, end) if len(dates) == 1: return None for date in dates: tmp.append(_fetch(date, category)) if len(dates) > 1: print('sleep') time.sleep(0.5) return pd.concat(tmp) cache_df = self.read_cache(category) if cache_df is None or cache_df.empty: raise HistoryDataError() else: start = max(cache_df.index) + datetime.timedelta(days=-1) new_df = _fetch_dates(start, datetime.datetime.now(), category) if new_df is not None: cache_df = cache_df.drop(new_df.index, errors='ignore') df = pd.concat([cache_df, new_df]) if len(df) > len(cache_df): self.write_cache(df, category) return df class SE: @classmethod def get_overview_day_field(cls, f_sha, f_shb, f_sh, f_sz, f_cyb, f_zxqy, f_szzb): sh, sz, cyb, zxqy, szzb = ShSeDb(), SzSeDb(), CybSeDb(), ZxqySeDb(), SzzbSeDb() sh = sh.read(columns=[f_sha, f_shb, f_sh]) sh.columns = ['SHA', 'SHB', 'SH'] sz = sz.read(columns=[f_sz]) sz.columns = ['SZ'] cyb = cyb.read([f_cyb]) cyb.columns = ['CYB'] zxqy = zxqy.read([f_zxqy]) zxqy.columns = ['ZXQY'] szzb = szzb.read([f_szzb]) szzb.columns = ['SZZB'] df = pd.concat([sh, sz, cyb, zxqy, szzb, ], axis=1) df = df.fillna(method='bfill') return df @classmethod def get_pe(cls): return cls.get_overview_day_field('A_profitRate1', 'B_profitRate1', 'SH_profitRate1', '股票平均市盈率', '平均市盈率(倍)', '平均市盈率(倍)', '平均市盈率(倍)',) @classmethod def get_market_val(cls): df = cls.get_overview_day_field('A_marketValue1', 'B_marketValue1', 'SH_marketValue1', '股票总市值(元)', '上市公司市价总值(元)', '上市公司市价总值(元)', '上市公司市价总值(元)',) df[['SZ', 'CYB', 'ZXQY']] = df[['SZ', 'CYB', 'ZXQY']] / 100000000 return df @classmethod def get_negotiable_val(cls): df = cls.get_overview_day_field('A_negotiableValue', 'B_negotiableValue', 'SH_negotiableValue', '股票流通市值(元)', '上市公司流通市值(元)', '上市公司流通市值(元)', '上市公司流通市值(元)',) df[['SZ', 'CYB', 'ZXQY']] = df[['SZ', 'CYB', 'ZXQY']] / 100000000 return df @classmethod def get_avg_price(cls): sh, sz, cyb, zxqy, szzb = self.get_overview_day() sh_a = sh['A_trdAmt'].apply( float) * 10000 / sh['A_trdVol'].apply(float) sh_a.name = 'SHA' sh_b = sh['B_trdAmt'].apply( float) * 10000 / sh['B_trdVol'].apply(float) sh_b.name = 'SHB' sh_sh = sh['SH_trdAmt'].apply( float) * 10000 / sh['SH_trdVol'].apply(float) sh_sh.name = 'SH' sz = sz['平均股票价格(元)'] sz.name = 'SZ' cyb = cyb['总成交金额(元)'] / cyb['总成交股数'] cyb.name = 'CYB' zxqy = zxqy['总成交金额(元)'] / zxqy['总成交股数'] zxqy.name = 'ZXQY' szzb = szzb['总成交金额(元)'] / szzb['总成交股数'] szzb.name = 'SZZB' df = pd.concat([sh_a, sh_b, sh_sh, sz, cyb, zxqy, szzb, ], axis=1) return df def load_old_file(): def read_file(file): path = os.path.abspath(os.path.dirname(__file__)) df = pd.read_csv(os.path.join(path, file)) df.index = pd.DatetimeIndex(df.date) del df['date'] return df ShSeDb().save(read_file('files/se/sh_sse_day_overview.csv')) SzSeDb().save(read_file('files/se/sz_day_overview.csv')) CybSeDb().save(read_file('files/se/cyb_day_overview.csv')) SzzbSeDb().save(read_file('files/se/szzb_day_overview.csv')) ZxqySeDb().save(read_file('files/se/zxqy_day_overview.csv')) for key in db.DfDb().keys(): print(key)
onecans/my
mystockdata/mystockdata/se.py
se.py
py
9,831
python
en
code
2
github-code
6
72226014269
from flask import Flask from flask_sqlalchemy import SQLAlchemy import os import datetime from sqlalchemy.dialects.postgresql import ARRAY app = Flask(__name__) SECRET_KEY = os.urandom(32) app.config['SECRET_KEY'] = SECRET_KEY app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///db.sqlite" app.config['RECAPTCHA_USE_SSL'] = False app.config['RECAPTCHA_PUBLIC_KEY'] = '6LfkN-EUAAAAAMEUxpQGg7DdGHqhz0eY0_2S5aKu' app.config['RECAPTCHA_PRIVATE_KEY'] = '6LfkN-EUAAAAADXeLuqzoBOAg0F3f-b_oQEPiSzL' app.config['RECAPTCHA_OPTIONS'] = {'theme': 'white'} GOOGLEMAPS_KEY = "AIzaSyAsRuG0NnFmLNZlg6CWUTV8D2FA8gQo5xk" app.config['GOOGLEMAPS_KEY'] = GOOGLEMAPS_KEY db = SQLAlchemy(app) class User(db.Model): id = db.Column(db.Integer, primary_key=True) city = db.Column(db.String(100)) state = db.Column(db.String(100)) age = db.Column(db.Integer) symptoms = db.Column(db.String(), default=[]) ip_address = db.Column(db.String(255)) tested = db.Column(db.String(255)) in_contact = db.Column(db.String(255)) created_date = db.Column(db.DateTime, default=datetime.datetime.utcnow) coordinates = db.Column(db.String(255)) def __init__(self, city, state, age, symptoms, ip_address, tested, in_contact, coordinates): self.city = city self.state = state self.age = age self.symptoms = symptoms self.ip_address = ip_address self.tested = tested self.in_contact = in_contact self.coordinates = coordinates def __repr__(self): return "<Location %r>" % (self.location) # db.drop_all() db.create_all()
dananguyenucsb/ithinkihavecovid-19
model.py
model.py
py
1,606
python
en
code
1
github-code
6
20972559660
import torch from tools.image import transforms, cv from tools.image.index_map import default_map from tools import tensor def to_rgb(hex): return ((hex >> 16) & 255, (hex >> 8) & 255, (hex >> 0) & 255) def draw_box(image, box, scale=1.0, name=None, confidence=None, thickness=2, color=(255, 0, 0), text_color=None): text_color = text_color or color image = cv.rectangle(image, box[:2], box[2:], color=color, thickness=int(thickness * scale)) if not (name is None): image = cv.putText(image, name, (box[0], box[1] + int(8 * scale)), scale = 0.7 * scale, color=text_color, thickness=int(1*scale)) if not (confidence is None): str = "{:.2f}".format(confidence) image = cv.putText(image, str, (box[0], box[3] - 2), scale = 0.7 * scale, color=text_color, thickness=int(1*scale)) return image def overlay(eval, mode='target', threshold = 0.5, scale=1.0, classes=None): image = eval.image.clone() def overlay_prediction(): for detection in eval.detections._sequence(): if detection.confidence < threshold: break label_class = classes[detection.label] draw_box(image, detection.bbox, scale=scale, confidence=detection.confidence, name=label_class.name, color=to_rgb(label_class.colour)) def overlay_target(): for target in eval.target._sequence(): label_class = classes[target.label] draw_box(image, target.bbox, scale=scale, name=label_class.name, color=to_rgb(label_class.colour)) def overlay_anchors(): overlay_target() for anchor in eval.anchors: label_class = classes[anchor.label] draw_box(image, anchor.bbox, scale=scale, color=to_rgb(label_class.colour), thickness=1) def overlay_matches(): unmatched = dict(enumerate(eval.target._sequence())) # print(unmatched) for m in eval.matches: if m.confidence < threshold: break if m.match is not None: k, _ = m.match del unmatched[k] for (i, target) in enumerate(eval.target._sequence()): label_class = classes[target.label] color = (255, 0, 0) if i in unmatched else (0, 255, 0) draw_box(image, target.bbox, scale=scale, name=label_class.name, color=color) for m in eval.matches: if m.confidence < threshold: break color = (255, 0, 0) if m.match is not None: color = (0, 255, 0) label_class = classes[m.label] draw_box(image, m.bbox, scale=scale, color=color, confidence=m.confidence, name=label_class.name, thickness=1) target = { 'matches' : overlay_matches, 'prediction' : overlay_prediction, 'target' : overlay_target } if mode in target: target[mode]() if eval.debug is not None: image = cv.blend_over(image, eval.debug) cv.putText(image, eval.id, (0, int(24 * scale)), scale = 2*scale, color=(64, 64, 192), thickness=int(2*scale)) cv.putText(image, "[email protected] " + str(eval.mAP), (0, int(48 * scale)), scale = 2*scale, color=(64, 64, 192), thickness=int(2*scale)) return image def overlay_batch(batch, mode='target', scale=1.0, threshold = 0.5, cols=6, classes=None): images = [] for eval in batch: images.append(overlay(eval, scale=scale, mode=mode, threshold=threshold, classes=classes)) return tensor.tile_batch(torch.stack(images, 0), cols)
oliver-batchelor/detection
detection/display.py
display.py
py
3,548
python
en
code
0
github-code
6
21712175054
# -*- coding: utf-8 -*- from django.core.management.base import BaseCommand, CommandError from optparse import make_option from ...scraper import Scrap class Command(BaseCommand): option_list = BaseCommand.option_list + (make_option( '--url', action='store', dest='url', help='Subject of the email'),) def handle(self, *args, **options): #try: Scrap(options.get('url')) #except: # raise CommandError('Broken does not exist')
jms/FlyNi-API
flyni_api/flyni/management/commands/get_data.py
get_data.py
py
500
python
en
code
0
github-code
6
73364821308
# 通过读取ssr-> txt的文件中查找对应的文字片段而导出对应的时间戳 """ 1. 读取文件 1.1 输入需要查找的类型(包括:字幕) 1.2 输入需要查找的文件 1.3 读取对应文件 2. 输入需要查找的文字内容 2.1 同时查找3个词 3. 进行自动化查找对应的内容 3.1 进行同时查找1.0版本,针对3个词进行同一匹配 4. 输出对应的内容的时间戳 4.1 时间戳聚合 4.2 输出对应的文件 """ def zimu_time(search_letter_list,file_name,sum_time): # 1.0 读取本项目中的文件 f = open(file_name,"r",encoding='utf-8') # 2.1 同时查找3个词。 pp_list = search_letter_list # 查找词列表 pp_num = len(pp_list) # 要查找词的数量 pp_num_list = [0 for a in range(pp_num)] # 对应匹配词数量计数 buffer_form = [] # 每一个部分的文本的缓存列表 count_txt = 0 # 每一个部分的文本的缓冲计数器 # 每个搜索关键词对应的时间戳缓存合集 buffer_search = [] for search_num in range(pp_num): buffer_search.append([]) # 3.1 进行同时查找1.0版本,针对3个词进行同一匹配 for each_line in f: if count_txt == 4: for pp_num_s in range(pp_num): if pp_list[pp_num_s] in buffer_form[2]: buffer_search[pp_num_s].append(buffer_form[1]) pp_num_list[pp_num_s] += 1 buffer_form.clear() count_txt = 0 # 记录每个部分文本和计数器 buffer_form.append(each_line) count_txt += 1 # 4.输出对应的内容的时间戳即对应内容 # 4.1 时间戳聚合 time_stamp_list = time_stamp_polymerization(pp_num,pp_num_list, buffer_search,sum_time) #print(time_stamp_list) # print(buffer_search,pp_num_list) #4.2 输出对应的文件 print('\n查找完成\n结果在result文件夹中。\n文件名为:字幕_‘查找词’_‘匹配数量’') return time_stamp_list # 4.1 时间戳聚合函数 def time_stamp_polymerization(search_number,search_count,buffer_search,sum_time): time_polymerization_mark_list = [] for letter_number in range(search_number): time_polymerization_mark = [0 for a in range(search_count[letter_number])] time_polymerization_mark_list.append(time_polymerization_mark) # 对字幕时间戳格式处理以及聚合标记 for letter_number in range(search_number): # 对字幕的时间戳处理 buffer_time = [[], []] buffer_mark_count =1 for timestamp_str in buffer_search[letter_number]: timestamp_start = int(timestamp_str[0:2]) * 3600 + int(timestamp_str[3:5]) * 60 + int(timestamp_str[6:8]) timestamp_end = int(timestamp_str[-13:-11]) * 3600 + int(timestamp_str[-10:-8]) * 60 + int( timestamp_str[-7:-5]) #print(timestamp_start,timestamp_end) buffer_time[0].append(timestamp_start) buffer_time[1].append(timestamp_end) # 字幕时间戳聚合标签标注 buffer_time_count = len(buffer_time[0]) # print(buffer_time[0][0],buffer_time[0][1]) if buffer_time_count>=2: for x in range(1,buffer_time_count): if buffer_time[0][x] - buffer_time[1][x-1] < sum_time: # print(buffer_time[1][x-1]) time_polymerization_mark_list[letter_number][x-1] = buffer_mark_count time_polymerization_mark_list[letter_number][x] = buffer_mark_count # print(buffer_mark_count) else: buffer_mark_count += 1 # 对字幕时间戳进行聚合 # print(time_polymerization_mark_list) time_stamp_list = [[] for a in range(search_number)] for letter_number in range(search_number): result = {} for index,kw in enumerate(time_polymerization_mark_list[letter_number]): if kw not in result.keys(): result[kw] = [index] else: result.get(kw).append(index) for k,v in result.items(): if (len(v) != 1)&(k!=0): tamp_str = buffer_search[letter_number][v[0]][0:12] + '-->' + buffer_search[letter_number][v[-1]][-13:-2] time_stamp_list[letter_number].append(tamp_str) time_stamp_list[letter_number].append(str(len(v))+'\n') return time_stamp_list if __name__ == '__main__': pass
ExplosiveElements/letter_time
zimu.py
zimu.py
py
4,494
python
en
code
0
github-code
6
8245327650
from pymongo import MongoClient from fastapi import HTTPException from datetime import datetime class ModekenSystemManager: def __init__(self, username, password): self.client = MongoClient(f'mongodb://{username}:{password}@db.modeken-system.com:27017') self.db = self.client['modeken-system'] self.collections = self.db['collections'] self.manager = {} def new(self, item_type): self.manager[f'{item_type}'] = Manager(self.db[f'tickets-{item_type}'], self.collections, item_type) if not self.collections.find_one({'item_type': item_type}): self.collections.insert_one({'item_type': item_type, 'count': 0}) return self.manager[f'{item_type}'] class CollectionManager: def __init__(self, collections, item_type): self.collections = collections self.item_type = item_type def add_collection(self): if not self.collections.update_one({'item_type': self.item_type}, {'$inc': {'count':1}}): raise HTTPException(status_code=500, detail='Internal Server Error') def get_collection(self): d = self.collections.find_one({'item_type': self.item_type}) if not d: raise HTTPException(status_code=500, detail='Internal Server Error') del d['_id'] del d['item_type'] return d def reset_collection(self): if not self.collections.update_one({'item_type': self.item_type}, {'$set': {'count':0}}): raise HTTPException(status_code=500, detail='Internal Server Error') class TicketManager: def __init__(self, tickets): self.tickets = tickets self.last_ticket = 0 def get_tickets_wait(self, item_type): data = [] for i in self.tickets.find({'status': 'wait'}): del i['_id'] del i['status'] i['item_number'] = item_type + str(i['item_number']) data.append(i) return data def get_tickets_ready(self, item_type): data = [] for i in self.tickets.find({'status': 'ready'}): del i['_id'] del i['status'] i['item_number'] = item_type + str(i['item_number']) data.append(i) return data def get_tickets(self): data = [] for i in self.tickets.find(): del i['_id'] data.append(i) return data def to_ready_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') time = t['created_time'] return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}, {'$set': {'status': 'ready'}}), time def to_wait_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') time = t['created_time'] return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}, {'$set': {'status': 'wait'}}), time def cancel_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}, {'$set': {'status': 'cancel'}}) def delete_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}, {'$set': {'status': 'delete'}}) def add_ticket(self): self.last_ticket += 1 item_number = self.last_ticket now = datetime.now().strftime('%H:%M') data = {'item_number': item_number, 'status': 'wait', 'created_time': now} if self.tickets.find_one({'item_number': item_number}): return self.add_ticket() else: if not self.tickets.insert_one(data): raise HTTPException(status_code=500, detail='Internal Server Error') return item_number, now def reset_tickets(self): if not self.tickets.delete_many({}): raise HTTPException(status_code=500, detail='Internal Server Error') else: self.last_ticket = 0 class Manager(CollectionManager, TicketManager): def __init__(self, tickets, collections, item_type): CollectionManager.__init__(self, collections, item_type) TicketManager.__init__(self, tickets) def delete_ticket(self, item_number): super().delete_ticket(item_number) super().add_collection()
tochiman/modeken-ticket-system
backend/src/mongo.py
mongo.py
py
5,068
python
en
code
0
github-code
6
74796405626
import torch import torchvision from torch import nn from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter train_dataset = torchvision.datasets.CIFAR10(root="../dataset_CIFAR10", train=True, download=True, transform=torchvision.transforms.ToTensor()) test_dataset = torchvision.datasets.CIFAR10(root="../dataset_CIFAR10", train=False, download=True, transform=torchvision.transforms.ToTensor()) train_dataloader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True, drop_last=True) class CIFAR10_Model(nn.Module): def __init__(self): super(CIFAR10_Model, self).__init__() self.model = Sequential(Conv2d(3, 32, 5, stride=1, padding=2), MaxPool2d(2), Conv2d(32, 32, 5, stride=1, padding=2), MaxPool2d(2), Conv2d(32, 64, 5, stride=1, padding=2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10)) def forward(self, x): output = self.model(x) return output model1 = CIFAR10_Model() print(model1) input = torch.ones(64, 3, 32, 32) print(input.shape) output = model1(input) print(output.shape) writer = SummaryWriter("../logs/model") writer.add_graph(model1, input) writer.close()
ccbit1997/pytorch_learning
src/cifar10_model.py
cifar10_model.py
py
1,591
python
en
code
0
github-code
6
6250184169
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 19 12:46:12 2018 @author: CTF Team """ from PyQt5 import uic,QtCore, QtGui, QtWidgets from PyQt5.QtCore import QSize, Qt import CompanyTaxUI import sys import pandas as pd import csv import numpy as np class ApplicationWindow(QtWidgets.QMainWindow): def __init__(self): super(ApplicationWindow, self).__init__() self.ui = CompanyTaxUI.Ui_MainWindow() self.ui.setupUi(self) # Connects the calculate button in CompanyTaxUI to CompanyTaxSavingsApp.py self.ui.calculate.clicked.connect(self.taxCalculate) def taxCalculate(self): # Gets the string input from company_netIncome companySGDIncome = self.ui.company_netIncome.text() # Checks if companySGDIncome is empty if not companySGDIncome: self.ui.list_top10.setColumnCount(1) self.ui.list_top10.setHorizontalHeaderLabels(["Output"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeader().setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem("You have not inputted any SGD Net Income !")) else: # Gets the category input from list_companyindustry selectedCategoryData = self.ui.list_companyindustry.currentText() calCountriesTaxAmt = ApplicationWindow.taxComputation(companySGDIncome, selectedCategoryData) # Gets the option 1 - 5 to indicate the option to generate the tax output if self.ui.option1.isChecked(): # Filter countries that have 0% tax rates for the respective tax rates # Looking at 0 index value for national + branch rate filteredCountries1 = {k:v for k, v in calCountriesTaxAmt.items() if v[0] > 0} minimumTaxCountry1 = min(filteredCountries1.items(), key = lambda x : x[1][0]) # Set ui list to the following parameters for the required output for option 5 self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 1 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry1[0])) value = '%.3f' % minimumTaxCountry1[1][0] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 1")) elif self.ui.option2.isChecked(): # Looking at index 1 value for min tax filteredCountries2 = {k:v for k, v in calCountriesTaxAmt.items() if v[1] > 0} minimumTaxCountry2 = min(filteredCountries2.items(), key = lambda x: x[1][1]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 2 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry2[0])) value = '%.3f' % minimumTaxCountry2[1][1] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 2")) elif self.ui.option3.isChecked(): # Looking at index 2 value for progressive tax filteredCountries3 = {k:v for k, v in calCountriesTaxAmt.items() if v[2] > 0} minimumTaxCountry3 = min(filteredCountries3.items(), key = lambda x: x[1][2]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 3 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry3[0])) value = '%.3f' % minimumTaxCountry3[1][2] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 3")) elif self.ui.option4.isChecked(): # Looking at index 3 value for category tax filteredCountries4 = {k:v for k, v in calCountriesTaxAmt.items() if v[3] > 0} # If Category is not inputted if bool(filteredCountries4) == False : self.ui.list_top10.setColumnCount(1) self.ui.list_top10.setHorizontalHeaderLabels(["Output"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeader().setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem("You have not chosen any category !")) # Else shows the category data else: minimumTaxCountry4 = min(filteredCountries4.items(), key=lambda x: x[1][3]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 4 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry4[0])) value = '%.3f' % minimumTaxCountry4[1][3] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 3")) elif self.ui.option5.isChecked(): # Loops through calCountrieTaxAmt and store least tax amount and index as a tuple for key countryName topTenCountriesLowestTaxes = {} for value in calCountriesTaxAmt.items(): val = min((x for x in value[1] if x > 0), default = 0) index = value[1].index(val) topTenCountriesLowestTaxes[value[0]] = (val,index) # Filters countries with 0 values filteredCountries5 = {k:v for k, v in topTenCountriesLowestTaxes.items() if v[0] > 0} minimumTaxCountry5 = sorted(filteredCountries5.items(), key=lambda x:x[1]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(10) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting the top 10 least minimum tax and their options onto the output for row in range(10): self.ui.list_top10.setItem(row, 0, QtWidgets.QTableWidgetItem(minimumTaxCountry5[row][0])) value = '%.3f' % minimumTaxCountry5[row][1][0] self.ui.list_top10.setItem(row , 1, QtWidgets.QTableWidgetItem(value)) option = minimumTaxCountry5[row][1][1] + 1 option = "Tax Option " + '%.f' % + option self.ui.list_top10.setItem(row, 2, QtWidgets.QTableWidgetItem(option)) # Convert SGD Net Income to USD Net Income def convertSGDToUSD(companySGDIncome): usdIncome = companySGDIncome * 0.75 return usdIncome # Generate dictionary with key as Country and tuple with 4 spaces containing the different tax rates def generateTaxForOptions(taxData, companyUSDIncome, companyCode): countryTaxAmount = {} for row in taxData.itertuples(index=False, name="None"): # Initialize 4 taxes amount to be stored # 1st tax amount is normal rate + branch rate # 2nd tax amount is minimum tax rate # 3rd tax amount is progressive tax rate # 4th tax amount is pertaining to the specific type of industry differentTaxAmount = [0,0,0,0] # 1st Tax # Finding the tax in USD for tax amount # 1 with normal rate + branch rate differentTaxAmount[0] = round(companyUSDIncome * (row[1] + row[8]), 3) # 2nd Tax # Find the tax in USD for tax amount # 2 with minimum tax rate differentTaxAmount[1] = round(companyUSDIncome * (row[4]), 3) # 3rd Tax # If native currency is not in USD, find the tax in USD and convert to native currency for progressive tax computation nativeCurrency = companyUSDIncome if row[2] != "USD": nativeCurrency = (1.0 / row[3]) * nativeCurrency # Evaluates for fields that are not empty in ProgressiveTaxRate if row[7]: # Split by , for progressive tax condition progressiveTax = row[7].split(',') # For loop inside the progressiveTax and split by white space conditionStatement = [x.split() for x in progressiveTax] # For loop through the condition statement for each list of conditions for x in conditionStatement: # If value is present, break out of loop valuePresent = False # Round off native currency to 3 decimal places and declare it as a string roundedNativeCurrency = round(nativeCurrency, 3) strRoundedNativeCurrency = '%.3f' % roundedNativeCurrency # Use if condition to check for the length of the list of conditionStatement if len(x) == 5: # Evaluate the conditions before final statement lowerBound = x[0] evaluationCondition = x[1] upperBound = x[2] taxPercentage = x[4] # Use eval function to test the test case lowerBoundStatement = "> " + lowerBound upperBoundStatement = evaluationCondition + " " + upperBound # 1st condition to check if figure is bigger than amount lowerCondition = strRoundedNativeCurrency + " " + lowerBoundStatement # 2nd condition to check if figure is smaller than or equal to amount upperCondition = strRoundedNativeCurrency + " " + upperBoundStatement # Checks if 1st and 2nd condition is fulfilled to know if nativeCurrency falls within this range if (eval(lowerCondition)) and (eval(upperCondition)): nativeCalculatedTax = roundedNativeCurrency * float(taxPercentage) # Calculate back the amount in USD USDCalTax1 = nativeCalculatedTax * (row[3]) USDCalTax1 = round(USDCalTax1, 3) # Assign the CalTax into differentTaxAmount differentTaxAmount[2] = USDCalTax1 valuePresent = True break if (valuePresent == True): break elif len(x) == 4: # Evaluate the conditions for final statement lastEvaluationCondition = x[0] lastLowerBound = x[1] lastTaxPercentage = x[3] # last condition to check if figure is bigger than last lower bound lastLowerBoundStatement = lastEvaluationCondition + " " + lastLowerBound # Adding strRoundedNativeCurrency to lastCondition lastCondition = strRoundedNativeCurrency + " " + lastLowerBoundStatement # Checks if last condition is fulfilled if eval(lastCondition): nativeCalculatedTax = roundedNativeCurrency * float(lastTaxPercentage) # Calculate back the amount in USD USDCalTax2 = nativeCalculatedTax * (row[3]) USDCalTax2 = round(USDCalTax2, 3) # Assign the CalTax into differentTaxAmount differentTaxAmount[2] = USDCalTax2 valuePresent = True break # 4th Tax # Calculates the tax amount if categoryTaxCondition1 fulfils the companyCode defined by the user if row[9]: if "," in row[9]: # Split the string by , to get the string statement out categoryStatement1 = row[9].split(',') # For loop inside the categoryStatement and split by white space categoryTaxCondition1 = [x.split() for x in categoryStatement1] # For loop inside the tuple and retrieve dictCode for comparison and multiplication by assigned tax rate if it matches for x in categoryTaxCondition1: dictCode1 = x[0] categoryTax1 = x[2] if (companyCode == dictCode1): categoryTaxAmount1 = companyUSDIncome * float(categoryTax1) differentTaxAmount[3] = categoryTaxAmount1 break # For loop inside the tuple and multiply by taxRate if it matches else: # Account for countries with only 1 type of category special tax rate categoryTaxCondition2 = row[9].split() dictCode2 = categoryTaxCondition2[0] categoryTax2 = categoryTaxCondition2[2] if (companyCode == dictCode2): categoryTaxAmount2 = companyUSDIncome * float(categoryTax2) differentTaxAmount[3] = categoryTaxAmount2 # Assigning the countryName as key, the differentTaxAmount tuple as the value countryTaxAmount[row[0]] = differentTaxAmount return countryTaxAmount # Generate dictionary with key as CategoryName and value as 3 characters code for category def generateCategoryData(categoryData): # Use list comprehension to assign key and data to categoryDict categoryDict = {x['CategoryName']: x['CategoryCode'] for x in categoryData.to_dict(orient="records")} return categoryDict def taxComputation(companySGDIncome, selectedCategoryData): # Load csv data into pandas and na values are not being evaluated as NaN taxData = pd.read_csv('countryTax.csv', keep_default_na=False) # Fill empty fields with blank spaces taxData.fillna({'ProgressiveTaxRange':'', 'CategoryRate': ''}) # Load csv data for company category and load into companyDict dictionary categoryData = pd.read_csv('categoryDict.csv', keep_default_na=False) # Generate categoryDict for categoryData categoryDict = ApplicationWindow.generateCategoryData(categoryData) companyCode = categoryDict.get(selectedCategoryData) companySGDIncome = float(companySGDIncome) companyUSDIncome = ApplicationWindow.convertSGDToUSD(companySGDIncome) # Assign countryName as key, and calculate the value for differentTaxAmount in option 1, 2, 3, 4 in USD countriesTaxAmt = ApplicationWindow.generateTaxForOptions(taxData, companyUSDIncome, companyCode) return countriesTaxAmt if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) application = ApplicationWindow() application.show() sys.exit(app.exec_())
larry2967/academic-projects
taxcalculator/CompanyTaxSavingsApp.py
CompanyTaxSavingsApp.py
py
14,683
python
en
code
0
github-code
6
10423167833
from __future__ import annotations import dataclasses from random import Random from unittest.mock import MagicMock import pytest from randovania.game_description.game_patches import GamePatches from randovania.game_description.resources.pickup_index import PickupIndex from randovania.game_description.resources.resource_type import ResourceType from randovania.games.common.prime_family.layout.lib.prime_trilogy_teleporters import ( PrimeTrilogyTeleporterConfiguration, ) from randovania.games.prime2.generator.bootstrap import EchoesBootstrap from randovania.games.prime2.generator.pickup_pool import sky_temple_keys from randovania.games.prime2.layout.echoes_configuration import LayoutSkyTempleKeyMode from randovania.generator.pickup_pool import pool_creator _GUARDIAN_INDICES = [ PickupIndex(43), # Dark Suit PickupIndex(79), # Dark Visor PickupIndex(115), # Annihilator Beam ] _SUB_GUARDIAN_INDICES = [ PickupIndex(38), # Morph Ball Bomb PickupIndex(37), # Space Jump Boots PickupIndex(75), # Boost Ball PickupIndex(86), # Grapple Beam PickupIndex(102), # Spider Ball PickupIndex(88), # Main Power Bombs ] @pytest.mark.parametrize("vanilla_teleporters", [False, True]) def test_misc_resources_for_configuration( echoes_resource_database, default_echoes_configuration, vanilla_teleporters: bool, ): # Setup teleporters = MagicMock(spec=PrimeTrilogyTeleporterConfiguration) configuration = dataclasses.replace(default_echoes_configuration, teleporters=teleporters) teleporters.is_vanilla = vanilla_teleporters gfmc_resource = echoes_resource_database.get_by_type_and_index(ResourceType.MISC, "VanillaGFMCGate") torvus_resource = echoes_resource_database.get_by_type_and_index(ResourceType.MISC, "VanillaTorvusTempleGate") great_resource = echoes_resource_database.get_by_type_and_index(ResourceType.MISC, "VanillaGreatTempleEmeraldGate") # Run result = dict( configuration.game.generator.bootstrap.misc_resources_for_configuration( configuration, echoes_resource_database, ) ) relevant_tricks = {trick: result[trick] for trick in [gfmc_resource, torvus_resource, great_resource]} # Assert assert relevant_tricks == { gfmc_resource: 0, torvus_resource: 0, great_resource: 0 if not vanilla_teleporters else 1, } @pytest.mark.parametrize("stk_mode", LayoutSkyTempleKeyMode) def test_assign_pool_results(echoes_game_description, default_echoes_configuration, stk_mode: LayoutSkyTempleKeyMode): patches = GamePatches.create_from_game( echoes_game_description, 0, dataclasses.replace(default_echoes_configuration, sky_temple_keys=stk_mode) ) pool_results = pool_creator.calculate_pool_results(patches.configuration, patches.game) # Run result = EchoesBootstrap().assign_pool_results( Random(1000), patches, pool_results, ) # Assert shuffled_stks = [ pickup for pickup in pool_results.to_place if pickup.pickup_category == sky_temple_keys.SKY_TEMPLE_KEY_CATEGORY ] assert result.starting_equipment == pool_results.starting if stk_mode == LayoutSkyTempleKeyMode.ALL_BOSSES: assert len(shuffled_stks) == 0 assert set(result.pickup_assignment.keys()) == set(_GUARDIAN_INDICES + _SUB_GUARDIAN_INDICES) elif stk_mode == LayoutSkyTempleKeyMode.ALL_GUARDIANS: assert len(shuffled_stks) == 0 assert set(result.pickup_assignment.keys()) == set(_GUARDIAN_INDICES) else: assert len(shuffled_stks) == stk_mode.num_keys
randovania/randovania
test/games/prime2/generator/test_echoes_bootstrap.py
test_echoes_bootstrap.py
py
3,634
python
en
code
165
github-code
6
8385237281
from __future__ import absolute_import from __future__ import print_function import os import sys from argparse import ArgumentParser if 'SUMO_HOME' in os.environ: sys.path.append(os.path.join(os.environ['SUMO_HOME'], 'tools')) import sumolib # noqa def get_options(args=None): parser = ArgumentParser(description="Sample routes to match counts") parser.add_argument("-t", "--turn-file", dest="turnFile", help="Input turn-count file") parser.add_argument("-o", "--output-file", dest="out", help="Output edgeRelations file") parser.add_argument("--turn-attribute", dest="turnAttr", default="probability", help="Write turning 'probability' to the given attribute") options = parser.parse_args(args=args) if options.turnFile is None or options.out is None: parser.print_help() sys.exit() return options def main(options): with open(options.out, 'w') as outf: sumolib.writeXMLHeader(outf, "$Id$", "data", "datamode_file.xsd") # noqa for interval in sumolib.xml.parse(options.turnFile, 'interval'): outf.write(' <interval begin="%s" end="%s">\n' % ( interval.begin, interval.end)) if interval.fromEdge: for fromEdge in interval.fromEdge: for toEdge in fromEdge.toEdge: outf.write(' ' * 8 + '<edgeRelation from="%s" to="%s" %s="%s"/>\n' % ( fromEdge.id, toEdge.id, options.turnAttr, toEdge.probability)) outf.write(' </interval>\n') outf.write('</edgeRelations>\n') if __name__ == "__main__": main(get_options())
ngctnnnn/DRL_Traffic-Signal-Control
sumo-rl/sumo/tools/turn-defs/turnFile2EdgeRelations.py
turnFile2EdgeRelations.py
py
1,716
python
en
code
17
github-code
6
14205921043
import collections class Node: def __init__(self, value): self.value = value self.neighbours = [] def make_graph(n_of_nodes, edges): graph = [] for i in range(n_of_nodes): node = Node(i+1) graph.append(node) for first_node, second_node in edges: graph[first_node-1].neighbours.append(graph[second_node-1]) graph[second_node-1].neighbours.append(graph[first_node-1]) return graph def calculate_distances_with_bfs(starting_node, n_of_nodes): visited = set() distances = [-1]*n_of_nodes queue = collections.deque() queue.append((starting_node, 0)) while queue: current_node, distance = queue.popleft() if current_node not in visited: visited.add(current_node) distances[current_node.value-1] = distance for neighbour in current_node.neighbours: queue.append((neighbour, distance+6)) return distances def get_distances(n_of_nodes, edges, starting_node_value): graph = make_graph(n_of_nodes, edges) starting_node = graph[starting_node_value-1] distances = calculate_distances_with_bfs(starting_node, n_of_nodes) distances.remove(0) return distances
jdalbosco/hackerrank
preparation-kits/one-week/d6-mock_test.py
d6-mock_test.py
py
1,287
python
en
code
0
github-code
6
37430288968
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: 票友机票预订系统10处SQL注入 referer: http://www.wooyun.org/bugs/wooyun-2010-0118867 author: Lucifer description: multi sqli。 ''' import sys import requests class piaoyou_ten_sqli_BaseVerify: def __init__(self, url): self.url = url def run(self): headers = { "User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50" } urls = ["/Other/train_input.aspx?memberid=1", "/Other/hotel_input.aspx?memberid=1", "/Other/input.aspx?memberid=1", "/flight/Print_url_sel.aspx?id=2", "/flight/Xcd_selected.aspx?id=111", "/System/history.aspx?id=1", "/flight/scgq.aspx?id=1", "/Other/Edit.aspx?id=1", "/flight/Html.aspx?id=1", "/info/zclist_new.aspx?id=1"] try: for url in urls: vulnurl = self.url + url + "AnD/**/1=Sys.Fn_VarBinToHexStr(HashBytes(%27Md5%27,%271234%27))--" req = requests.get(vulnurl, headers=headers, timeout=10, verify=False) if r"81dc9bdb52d04dc20036dbd8313ed055" in req.text: return "[+]存在票友机票预订系统10处SQL注入漏洞...(高危)\tpayload: "+vulnurl except: return "[-]connect timeout" if __name__ == "__main__": testVuln = piaoyou_ten_sqli_BaseVerify(sys.argv[1]) testVuln.run()
iceyhexman/onlinetools
scanner/plugins/cms/piaoyou/piaoyou_ten_sqli.py
piaoyou_ten_sqli.py
py
1,575
python
en
code
1,626
github-code
6
74725395066
from datetime import datetime from pynamodb.models import Model from pynamodb.attributes import UnicodeAttribute, NumberAttribute, UTCDateTimeAttribute from flask_blog.lib.utils import is_production import os class Entry(Model): class Meta: table_name = "serverless_blog_entries" region = 'ap-northeast-1' # 本番環境用の設定 if is_production(): aws_access_key_id = os.environ.get('SERVERLESS_AWS_ACCESS_KEY_ID') aws_secret_access_key = os.environ.get('SERVERLESS_AWS_SECRET_KEY') # 開発環境用の設定 else: aws_access_key_id = 'AWS_ACEESS_KEY_ID' aws_secret_access_key = 'AWS_SECRET_ACCESS_KEY' host = "http://localhost:8000" # カラムの定義 id = NumberAttribute(hash_key=True, null=False) # 数値 title = UnicodeAttribute(null=True) # 文字列 text = UnicodeAttribute(null=True) # 文字列 created_at = UTCDateTimeAttribute(default=datetime.now) # UTCベースの Datetime
uni51/serverless_python_tutorial
application/flask_blog/models/entries.py
entries.py
py
1,030
python
en
code
0
github-code
6
72995183868
import os import sys import time import struct import debug import eosapi from eosapi import N, push_transactions from common import prepare, Sync from tools import cpp2wast def init_debug(wasm=True): def init_decorator(func): def func_wrapper(*args, **kwargs): if wasm: _src_dir = os.path.dirname(os.path.abspath(__file__)) cpp2wast.set_src_path(_src_dir) cpp2wast.build_native('lab.cpp', 'lab', debug=False) lib_file = os.path.join(_src_dir, 'liblab.dylib') # debug.set_debug_contract('lab', lib_file) return func(*args, **kwargs) return func_wrapper return init_decorator def init(wasm=True): def init_decorator(func): def func_wrapper(*args, **kwargs): if wasm: prepare('lab', 'lab.wast', 'lab.abi', __file__) return func(*args, **kwargs) else: prepare('lab', 'lab.py', 'lab.abi', __file__) return func(*args, **kwargs) return func_wrapper return init_decorator _dir = os.path.dirname(os.path.abspath(__file__)) sync = Sync(_account = 'lab', _dir = _dir, _ignore = ['lab.py']) @init(True) def test(msg='hello,world'): r = eosapi.push_action('lab', 'sayhello', msg, {'lab':'active'}) assert r @init() def deploy(): sync.deploy_all() @init() def deploy_mpy(): sync.deploy_all_mpy() @init() def test2(count=100): import time import json actions = [] for i in range(count): action = ['lab', 'sayhello', str(i), {'lab':'active'}] actions.append(action) ret, cost = eosapi.push_actions(actions) assert ret print(ret['elapsed']) print(cost) print('total cost time:%.3f s, cost per action: %.3f ms, actions per second: %.3f'%(cost/1e6, cost/count/1000, 1*1e6/(cost/count))) def set_contract(account, src_file, abi_file, vmtype=1, sign=True): '''Set code and abi for the account Args: account (str) : account name src_file (str) : source file path abi_file (str) : abi file path vmtype : virtual machine type, 0 for wasm, 1 for micropython, 2 for evm sign (bool) : True to sign transaction Returns: JsonStruct|None: ''' account = eosapi.N(account) code = struct.pack('QBB', account, vmtype, 0) if vmtype == 0: with open(src_file, 'rb') as f: wasm = eosapi.wast2wasm(f.read()) code += eosapi.pack_bytes(wasm) setcode = [N('eosio'), N('setcode'), [[account, N('active')]], code] return push_transactions([[setcode]], sign, compress = True) def build_native(): _src_dir = os.path.dirname(os.path.abspath(__file__)) cpp2wast.set_src_path(_src_dir) cpp2wast.build_native('lab.cpp', 'lab', debug=False) lib_file = os.path.join(_src_dir, 'liblab.dylib') debug.set_debug_contract('lab', lib_file) @init() #@init_debug() def test3(count=200): actions = [] for i in range(count): action = ['counter', 'count', str(i), {'counter':'active'}] actions.append([action]) ret, cost = eosapi.push_transactions(actions) assert ret print('total cost time:%.3f s, cost per action: %.3f ms, transaction per second: %.3f'%(cost/1e6, cost/count/1000, 1*1e6/(cost/count)))
learnforpractice/pyeos
programs/pyeos/tests/wasm/lab/t.py
t.py
py
3,368
python
en
code
131
github-code
6
10966117387
import os import clip import torch.nn as nn from datasets import Action_DATASETS from torch.utils.data import DataLoader from tqdm import tqdm import wandb import argparse import shutil from pathlib import Path import yaml from dotmap import DotMap import pprint import numpy from modules.Visual_Prompt import visual_prompt from utils.Augmentation import get_augmentation import torch from utils.Text_Prompt import * import pdb from sklearn.metrics import f1_score from sklearn.metrics import balanced_accuracy_score import pandas as pd import numpy as np import logging class TextCLIP(nn.Module): def __init__(self, model): super(TextCLIP, self).__init__() self.model = model def forward(self, text): return self.model.encode_text(text) class ImageCLIP(nn.Module): def __init__(self, model): super(ImageCLIP, self).__init__() self.model = model def forward(self, image): return self.model.encode_image(image) def val_metrics(pred, logger): # pdb.set_trace() test_num_each = [5464, 5373, 27014, 4239, 3936, 6258, 10474, 6273, 10512, 6667, 22131, 4661, 8855, 14047, 28896, 4209] test_num_snippet = [43, 42, 212, 34, 31, 49, 82, 50, 83, 53, 173, 37, 70, 110, 226, 33] # test_num_rem = [88, 125, 6, 15, 96, 114, 106, 1, 16, 11, 115, 53, 23, 95, 96, 113] mean_weighted_f1 = 0.0 mean_unweighted_f1 = 0.0 mean_global_f1 = 0.0 mean_balanced_acc = 0.0 each_wf1 = [] each_unf1 = [] each_gf1 = [] each_bacc = [] test_labels_pth = '' for i in range(16): predi = pred[sum(test_num_snippet[:i]): sum(test_num_snippet[:i+1])] predi = [p for p in predi for _ in range(128)] predi = predi[:test_num_each[i]] tl_pth = test_labels_pth + '/test_video_' + str(i).zfill(4) + '.csv' ls = np.array(pd.read_csv(tl_pth, usecols=['frame_label'])) label = [] predict = [] for idx, l in enumerate(ls): if not np.isnan(l): label.append(int(l)) predict.append(predi[idx]) # pdb.set_trace() mean_weighted_f1 += f1_score(label, predict, average='weighted')/16.0 mean_unweighted_f1 += f1_score(label, predict, average='macro') / 16.0 mean_global_f1 += f1_score(label, predict, average='micro') / 16.0 mean_balanced_acc += balanced_accuracy_score(label, predict) / 16.0 each_wf1.append(f1_score(label, predict, average='weighted')) each_unf1.append(f1_score(label, predict, average='macro')) each_gf1.append(f1_score(label, predict, average='micro')) each_bacc.append(balanced_accuracy_score(label, predict)) # print('video: ', i, 'label: ', label, 'predict: ', predict) logger.info('wf1: {}'.format(each_wf1)) logger.info('unf1:{}'.format(each_unf1)) logger.info('gf1:{}'.format(each_gf1)) logger.info('bacc:{}'.format(each_bacc)) return mean_weighted_f1, mean_unweighted_f1, mean_global_f1, mean_balanced_acc def validate_val(epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug): model.eval() fusion_model.eval() num = 0 corr_1 = 0 corr_5 = 0 predict_list = [] label_list = [] label2 = [] pred2 = [] with torch.no_grad(): text_inputs = classes.to(device) text_features = model.encode_text(text_inputs) # (bs*num_classes, 512) for iii, (image, class_id) in enumerate(tqdm(val_loader)): # image: (bs, 24, 224, 224) image = image.view((-1, config.data.num_segments, 3) + image.size()[-2:]) # image: (16, 8, 3, 224, 224) b, t, c, h, w = image.size() class_id = class_id.to(device) image_input = image.to(device).view(-1, c, h, w) image_features = model.encode_image(image_input).view(b, t, -1) image_features = fusion_model(image_features) # (bs, 512) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T) similarity = similarity.view(b, num_text_aug, -1) # pdb.set_trace() similarity = similarity.softmax(dim=-1) similarity = similarity.mean(dim=1, keepdim=False) values_1, indices_1 = similarity.topk(1, dim=-1) # values_5, indices_5 = similarity.topk(5, dim=-1) num += b # print(indices_1) # print(class_id) # pdb.set_trace() for i in range(b): if values_1[i] < 0.5: indices_1[i] = -1 # pdb.set_trace() label_list.append(int(class_id[i].cpu().numpy())) predict_list.append(indices_1[i].cpu().numpy()[0]) # if indices_1[i] == class_id[i]: # corr_1 += 1 # if class_id[i] in indices_5[i]: # corr_5 += 1 # pdb.set_trace() # f1score = f1_score(label2, pred2, average='weighted') # acc = accuracy_score(label2, pred2) # pdb.set_trace() bacc = balanced_accuracy_score(label_list, predict_list) print('Epoch: [{}/{}]: bacc:{}'.format(epoch, config.solver.epochs, bacc)) return bacc def validate(epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug, logger): model.eval() fusion_model.eval() num = 0 corr_1 = 0 corr_5 = 0 predict_list = [] label_list = [] label2 = [] pred2 = [] with torch.no_grad(): text_inputs = classes.to(device) text_features = model.encode_text(text_inputs) # (bs*num_classes, 512) for iii, (image, class_id) in enumerate(tqdm(val_loader)): # image: (bs, 24, 224, 224) image = image.view((-1, config.data.num_segments, 3) + image.size()[-2:]) # image: (16, 8, 3, 224, 224) b, t, c, h, w = image.size() class_id = class_id.to(device) image_input = image.to(device).view(-1, c, h, w) image_features = model.encode_image(image_input).view(b, t, -1) image_features = fusion_model(image_features) # (bs, 512) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T) similarity = similarity.view(b, num_text_aug, -1) # pdb.set_trace() similarity = similarity.softmax(dim=-1) similarity = similarity.mean(dim=1, keepdim=False) values_1, indices_1 = similarity.topk(1, dim=-1) # values_5, indices_5 = similarity.topk(5, dim=-1) num += b # print(indices_1) # print(class_id) # pdb.set_trace() for i in range(b): # if values_1[i] < 0.5: # indices_1[i] = -1 # pdb.set_trace() # label_list.append(int(class_id[i].cpu().numpy())) predict_list.append(indices_1[i].cpu().numpy()[0]) # if indices_1[i] == class_id[i]: # corr_1 += 1 # if class_id[i] in indices_5[i]: # corr_5 += 1 # pdb.set_trace() # f1score = f1_score(label2, pred2, average='weighted') # acc = accuracy_score(label2, pred2) wf1, unf1, gf1, bacc = val_metrics(predict_list, logger) # top1 = f1score # top5 = float(corr_5) / num * 100 # wandb.log({"top1": top1}) # wandb.log({"top5": top5}) # print('Epoch: [{}/{}]: Top1: {}, Top5: {}'.format(epoch, config.solver.epochs, top1, top5)) logger.info('Epoch: [{}/{}]: wf1:{:.3f} unf1:{:.3f} gf1:{:.3f} bacc:{:.3f}'.format(epoch, config.solver.epochs, wf1, unf1, gf1, bacc)) return wf1 def main(): global args, best_prec1 global global_step parser = argparse.ArgumentParser() parser.add_argument('--config', '-cfg', default='') parser.add_argument('--log_time', default='') args = parser.parse_args() with open(args.config, 'r') as f: config = yaml.load(f) working_dir = os.path.join('./exp', config['network']['type'], config['network']['arch'], config['data']['dataset'], args.log_time) wandb.init(project=config['network']['type'], name='{}_{}_{}_{}'.format(args.log_time, config['network']['type'], config['network']['arch'], config['data']['dataset'])) print('-' * 80) print(' ' * 20, "working dir: {}".format(working_dir)) print('-' * 80) print('-' * 80) print(' ' * 30, "Config") pp = pprint.PrettyPrinter(indent=4) pp.pprint(config) print('-' * 80) config = DotMap(config) Path(working_dir).mkdir(parents=True, exist_ok=True) shutil.copy(args.config, working_dir) shutil.copy('test.py', working_dir) device = "cuda" if torch.cuda.is_available() else "cpu" # If using GPU then use mixed precision training. model, clip_state_dict = clip.load(config.network.arch, device=device, jit=False, tsm=config.network.tsm, T=config.data.num_segments, dropout=config.network.drop_out, emb_dropout=config.network.emb_dropout) # Must set jit=False for training ViT-B/32 transform_val = get_augmentation(False, config) fusion_model = visual_prompt(config.network.sim_header, clip_state_dict, config.data.num_segments) model_text = TextCLIP(model) model_image = ImageCLIP(model) model_text = torch.nn.DataParallel(model_text).cuda() model_image = torch.nn.DataParallel(model_image).cuda() fusion_model = torch.nn.DataParallel(fusion_model).cuda() wandb.watch(model) wandb.watch(fusion_model) val_data = Action_DATASETS(config.data.val_list, config.data.label_list, num_segments=config.data.num_segments, image_tmpl=config.data.image_tmpl, transform=transform_val, random_shift=config.random_shift) val_loader = DataLoader(val_data, batch_size=config.data.batch_size, num_workers=config.data.workers, shuffle=False, pin_memory=True, drop_last=True) if device == "cpu": model_text.float() model_image.float() else: clip.model.convert_weights( model_text) # Actually this line is unnecessary since clip by default already on float16 clip.model.convert_weights(model_image) start_epoch = config.solver.start_epoch if config.pretrain: if os.path.isfile(config.pretrain): print(("=> loading checkpoint '{}'".format(config.pretrain))) checkpoint = torch.load(config.pretrain) model.load_state_dict(checkpoint['model_state_dict']) fusion_model.load_state_dict(checkpoint['fusion_model_state_dict']) del checkpoint else: print(("=> no checkpoint found at '{}'".format(config.pretrain))) classes, num_text_aug, text_dict = text_prompt(val_data) best_prec1 = 0.0 prec1 = validate(start_epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug) if __name__ == '__main__': main()
Lycus99/SDA-CLIP
test.py
test.py
py
11,801
python
en
code
0
github-code
6
3469450468
# As per the requirements: # Marshall Christian 001520145 # This table was inspired with the help of Cemel Tepe as well as Cemel Tepe - "Let's go hashing" # Space complexity = O(n) class HashTable(object): def __init__(self, size=10): self._struct = self.struct_creation(size) # insert() hashes the key. Then finds the modular # Then, uses the modular to find the appropriate bucket to append # Time complexity: O(n) - 'n' being the size of the bucket def insert(self, key, value): hashed_key = hash(key) bucket = self.find_bucket(hashed_key) mod = self.look_up_key_value_pair(hashed_key, bucket) if len(mod) == 0: bucket.append([hashed_key, value]) else: mod[1] = value return True # remove() will find a key in the bucket and remove it. # Time complexity: O(1) def remove(self, key): bucket = self.find_bucket(key) if key in bucket: bucket.remove(key) # struck_creation() loops through the hash table and creates buckets for later # Time complexity: O(n) def struct_creation(self, size): struct = [] for i in range(size): struct.append([]) return struct # find() takes a key, hashes it and finds the matching bucket # Then, loops through the bucket to find the key-value pair # Time complexity: O(n) - 'n' being the size of the bucket def look_up(self, key): hashed_key = hash(key) bucket = self.find_bucket(hashed_key) key_value_pair = self.look_up_key_value_pair(hashed_key, bucket) if key_value_pair: return key_value_pair[1] raise Exception("Key-Value pair does not exist") # find_key_value_pair() loops through the bucket to find the needed key with value pair # Time complexity: O(n) def look_up_key_value_pair(self, key, bucket): for keey_value_pair in bucket: if keey_value_pair[0] == key: return keey_value_pair return [] # find_bucket() uses hashed key to find the needed bucket # Time complexity: O(1) def find_bucket(self, key): return self._struct[key % len(self._struct)]
MarsTheProgrammer/Delivery-System-for-Packages
HashTable.py
HashTable.py
py
2,237
python
en
code
0
github-code
6
44091100190
import os import os.path import numpy as np from PIL import Image from PIL import ImageDraw from PIL import ImageFont _logo_fonts = { "Arial" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arial.ttf", 200), "ArialBold" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arialbd.ttf", 200), "Courier" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/cour.ttf", 200) } _lettercache_unsized = {} _lettercache = {} def _autocrop(I): I = np.array(I) # Cut out all the rows/columns that are all white I = I[np.where(np.any(I[:,:,:3].min(axis=1)!=255,axis=1))[0],:,:] # Crop vertical I = I[:,np.where(np.any(I[:,:,:3].min(axis=0)!=255,axis=1))[0],:] # Crop horizontal # Add white border. Helps avoid edge artifacts when resizing down with anti-aliasing pad1 = 255*np.ones_like(I[:1,:,:]); pad1[:,:,3] = 0 I = np.vstack([pad1, I, pad1]) pad2 = 255*np.ones_like(I[:,:3,:]); pad2[:,:,3] = 0 I = np.hstack([pad2, I, pad2]) return Image.fromarray(I) uparrow_chr = u'\u25B2' def _get_letterimg_unsized(letter, font): global _lettercache_unsized global _logo_fonts colors = { "A" : (0,200,0), "C" : (0,0,200), "G" : (235,140,0), "T" : (200,0,0), "U" : (200,0,0), "N" : (128,128,128), uparrow_chr : (128,128,128) } assert letter in colors, "Unrecognized letter" assert font in _logo_fonts, "Unrecognized font" if (letter,font) not in _lettercache_unsized: # Draw full-sized versions of this letter letterimg = 255*np.ones((256,256,4), np.uint8) letterimg[:,:,3] = 0 # Transparent by default letterimg = Image.fromarray(letterimg) draw = ImageDraw.Draw(letterimg) draw.text((1,1), letter, colors[letter], font=_logo_fonts[font]) letterimg = _autocrop(letterimg) _lettercache_unsized[(letter,font)] = letterimg return _lettercache_unsized[(letter,font)] def get_letterimg(letter, width, height, font="ArialBold"): global _lettercache assert width and height # If we've never been asked for a letter of this width/zheight before, # then we use Image.resize to generate a new one. if (letter,width,height,font) not in _lettercache: letterimg = _get_letterimg_unsized(letter, font) letterimg = letterimg.resize((width, height), Image.ANTIALIAS) _lettercache[(letter,width,height,font)] = np.array(letterimg).reshape((height,width,4)) return _lettercache[(letter,width,height,font)] def tape2logo(tape, height=51, letterwidth=6, bufferzoom=4, refseq=None, vmax=None, style=None, rna=False, transparent=False, complement=False): # Styles "stack" "grow" "growclip" "growfade" "bars" "bar" tapedim,tapelen = tape.shape # n = number of filters if tapedim != 4: raise NotImplementedError("Expected tape with 4 rows") if vmax is not None: tape = np.maximum(-vmax, np.minimum(vmax, tape)) zheight = height*bufferzoom zletterwidth = letterwidth*bufferzoom mid1 = (zheight-bufferzoom)//2 mid2 = (zheight-bufferzoom)//2 + bufferzoom if refseq: assert len(refseq) == tapelen refseq_height = int(letterwidth*bufferzoom*1.1) # Create an up-arrow image arrowheight = int(refseq_height*0.15) uparrow_img = get_letterimg(uparrow_chr, zletterwidth//2, arrowheight, font="Arial") pad1 = 255*np.ones((arrowheight, zletterwidth//4, 4)) pad1[:,:,3] = 0 uparrow_img = np.hstack([pad1, uparrow_img]) pad2 = 255*np.ones((arrowheight, zletterwidth-uparrow_img.shape[1], 4)) pad2[:,:,3] = 0 uparrow_img = np.hstack([uparrow_img, pad2]) mid1 -= refseq_height//2+2*bufferzoom mid2 = mid1+refseq_height+4*bufferzoom positive_only = bool(np.all(tape.ravel() >= 0)) or (style in ("grow", "growfade","bar")) if positive_only: mid1 = zheight mid2 = zheight translate = { "A":"A", "C":"C", "G":"G", "T":"T", "U":"U", "N":"N" } if complement: translate = { "A":"T", "C":"G", "G":"C", "T":"A", "U":"A", "N":"N" } lettertable = ["A","C","G","U" if rna else "T"] barcolors = { "A" : (128,220,128), "C" : (128,128,220), "G" : (245,200,90), "T" : (220,128,128), "U" : (220,128,128), "N" : (192,192,192) } def make_lettercol(t, colheight, reverse): # Only show letters with positive coefficient in f idx = [i for i in range(4) if t[i] > 0] # Put largest positive value first in "above", and put largest negative value last in "below" idx = sorted(idx, key=lambda i: t[i]) # Calculate the individual zheight of each letter in pixels zheights = [int(round(t[i]/sum(t[idx])*colheight)) for i in idx] idx = [i for i,h in zip(idx,zheights) if h > 0] zheights = [h for h in zheights if h > 0] # While the stack of letters is too tall, remove pixel rows from the smallest-zheight entries #print sum(zheights) - mid1 while sum(zheights) > mid1: zheights[-1] -= 1 if zheights[-1] == 0: zheights.pop() idx.pop() # Make the individual images, reversing their order if so requested imgs = [get_letterimg(lettertable[i], zletterwidth, h) for i,h in zip(idx, zheights)] if reverse: imgs = [img for img in reversed(imgs)] return np.vstack(imgs) if imgs else np.empty((0, zletterwidth, 4)) if style == "seqlogo": assert positive_only L = 255*np.ones((zheight,tapelen*zletterwidth,4), np.uint8) L[:,:,3] = 0 # Transparent for j in range(tapelen): bits = 2 + np.sum(tape[:,j] * np.log2(tape[:,j])) letterimg = make_lettercol( tape[:,j], mid1 * bits/2., reverse=True) L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg # Rescale it down to the original requested size L = np.array(Image.fromarray(L).resize((tapelen*letterwidth, height), Image.ANTIALIAS)) if not transparent: L[:,:,3] = 255 # full opacity return L pos_tape = np.maximum(1e-16, tape) neg_tape = np.maximum(1e-16,-tape) pos_colheights = pos_tape.max(axis=0) neg_colheights = neg_tape.max(axis=0) #max_colheight = np.maximum(pos_colheights, neg_colheights).max() #max_colheight = (pos_colheights + neg_colheights).max() max_colheight = neg_colheights.max() #neg_colheights = np.minimum(max_colheight,neg_colheights) pos_colheights /= max_colheight neg_colheights /= max_colheight # If we've been told to scale everything relative to a certain maximum, then adjust our scales accordinly if vmax: pos_colheights *= pos_tape.max() / vmax neg_colheights *= neg_tape.max() / vmax L = 255*np.ones((zheight,tapelen*zletterwidth,4), np.uint8) L[:,:,3] = 0 # Start transparent # For each column of the filter, generate a stack of letters for the logo for j in range(tapelen): if style in (None,"stack"): # Generate the stack of letters that goes above, and below, the dividing ling aboveimg = make_lettercol( tape[:,j], mid1 * pos_colheights[j], reverse=True) belowimg = make_lettercol(-tape[:,j], mid1 * neg_colheights[j], reverse=False) if not positive_only else None # Insert the stacked images into column j of the logo image L[mid1-aboveimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg if not positive_only: L[mid2:mid2+belowimg.shape[0],j*zletterwidth:(j+1)*zletterwidth,:] = belowimg if refseq: letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="ArialBold") L[mid1+2*bufferzoom:mid2-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg elif style == "growclip": # Grow the height of each letter based on binding zletterheight = int(mid1 * neg_colheights[j]) if zletterheight: letterimg = get_letterimg(refseq[j] if refseq else "N", zletterwidth, zletterheight, font="ArialBold") L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg elif style == "refseq": letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial") L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg elif style == "growfade" or style == "grow": # Grow the height of each letter based on binding arrowpad_top = 3*bufferzoom arrowpad_btm = 4*bufferzoom arrowheight_padded = 0#arrowheight+arrowpad_top+arrowpad_btm growheight = int((mid1-arrowheight_padded-refseq_height) * neg_colheights[j]) fademin = refseq_height fademax = refseq_height+0.333*(mid1-arrowheight_padded-refseq_height) zletterheight = refseq_height + growheight fade = max(0, min(0.85, (fademax-zletterheight)/(fademax-fademin))) letterimg = get_letterimg(translate[refseq[j]] if refseq else "N", zletterwidth, zletterheight, font="ArialBold") if style == "growfade": letterimg = letterimg*(1-fade) + 255*fade mid0 = mid1-letterimg.shape[0] L[mid0:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg[::-1,::] if complement else letterimg """ #aboveimg = make_lettercol(tape[:,j], (mid1-bufferzoom*2) * pos_colheights[j], reverse=True) #intensity = max(0, min(1.0, (pos_colheights[j]-0.4*refseq_height/mid1)/(1.5*refseq_height/mid1))) #aboveimg = aboveimg*intensity + 255*(1-intensity) tapej = tape[:,j].copy() tapej[tapej < 0.10*abs(tape).max()] = 0.0 #if pos_colheights[j] >= 0.15*max(pos_colheights.max(),neg_colheights[j].max()): if np.any(tapej > 0): aboveimg = make_lettercol(tapej, (mid1-bufferzoom*3) * pos_colheights[j], reverse=True) aboveimg = np.minimum(255,aboveimg*0.61 + 255*0.4) assert mid0-arrowheight-arrowpad_btm >= 0 assert mid0-arrowheight_padded-aboveimg.shape[0] >= 0 L[mid0-arrowheight-arrowpad_btm:mid0-arrowpad_btm,j*zletterwidth:(j+1)*zletterwidth,:] = uparrow_img L[mid0-arrowheight_padded-aboveimg.shape[0]:mid0-arrowheight_padded,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg #grey = aboveimg.mean(axis=2).reshape(aboveimg.shape[:2]+(1,)) #aboveimg[:,:,:] = np.minimum(255,grey.astype(np.float32)*160./grey.min()) #L[mid0-arrowpad_btm-aboveimg.shape[0]:mid0-arrowpad_btm,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg """ elif style == "bar": assert refseq, "style topbar needs refseq" # Put the refseq letter, with fixed height letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial") L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg # Draw a bar plot along the top based on neg_colheights barheight = int((mid1-refseq_height-2*bufferzoom) * neg_colheights[j]) L[mid1-letterimg.shape[0]-barheight-2*bufferzoom:mid1-letterimg.shape[0]-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4)) elif style == "bars": assert refseq, "style topbar needs refseq" # Put the refseq letter, with fixed height letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial") L[mid1+2*bufferzoom:mid2-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg # Draw a bar plot along the top based on neg_colheights aboveheight = int(mid1 * neg_colheights[j]) belowheight = int(mid1 * pos_colheights[j]) L[mid1-aboveheight:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4)) L[mid2:mid2+belowheight,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4)) else: raise NotImplementedError("Unrecognzied style type") if style in (None, "stack") and not refseq: # Put a horizontal line across the middle of this logo L[mid1:mid1+bufferzoom,:,:] = 100 if not positive_only: L[mid2-bufferzoom:mid2,:,:] = 100 if not transparent: L[:,:,3] = 255 # full opacity # Rescale it down to the original requested size L = np.array(Image.fromarray(L).resize((tapelen*letterwidth, height), Image.ANTIALIAS)) if complement: L = L[::-1,:,:] # vertical flip return L
jisraeli/DeepBind
code/libs/deepity/deepity/tape2logo.py
tape2logo.py
py
13,154
python
en
code
85
github-code
6
14038264100
from app.email_body import EmailBody class User: def __init__(self, name, nickname, email, locations): self.name = name self.nickname = nickname self.email = email self.locations = locations self.artists = [] self.venues = [] self.promoters = [] self.email_body = EmailBody(name) self.number_of_new_events = 0 def add_artist(self, artist_name, artist_tag): self.artists.append({"name": artist_name, "tag": artist_tag}) def add_venue(self, venue_name, venue_tag): self.venues.append({"name": venue_name, "tag": venue_tag}) def add_promoter(self, promoter_name, promoter_tag): self.promoters.append({"name": promoter_name, "tag": promoter_tag}) def add_to_email(self, event): if event.event_type == "venue": if any(venue["name"] == event.venue for venue in self.venues): self.email_body.add_venue_event(event) self.email_body.add_tickets(event.tickets) self.number_of_new_events += 1 elif event.event_type == "artist": if any(artist["name"] == event.artist for artist in self.artists): if not self.locations: # notify if no location preference specified self.email_body.add_artist_event(event) self.email_body.add_tickets(event.tickets) self.number_of_new_events += 1 return for location in self.locations: # notify if location preference matches if location in event.venue: self.email_body.add_artist_event(event) self.email_body.add_tickets(event.tickets) self.number_of_new_events += 1 elif event.event_type == "promoter": if any(promoter["name"] == event.promoter for promoter in self.promoters): self.email_body.add_promoter_event(event) self.email_body.add_tickets(event.tickets) self.number_of_new_events += 1 def add_email_ending(self): venues_list = ", ".join(venue["name"] for venue in self.venues) artists_list = ", ".join(artist["name"] for artist in self.artists) promoters_list = ", ".join(promoter["name"] for promoter in self.promoters) if not self.locations: locations_list = "Worldwide" else: locations_list = ", ".join(self.locations) self.email_body.add_ending( venues_list, artists_list, promoters_list, locations_list )
polyccon/ra-events-notifier
app/user.py
user.py
py
2,621
python
en
code
1
github-code
6
43243820127
from PyQt5.QtCore import QThread, pyqtSignal from simplekml import Kml, Snippet, Types from math import radians, cos, sin, asin, degrees, atan2 import os class PlotFiles(QThread): progressSignal = pyqtSignal(int) threadMessage = pyqtSignal(str) def __init__(self, results, issilist, google, gps): QThread.__init__(self) self.gps = gps self.results = results self.issilist = issilist self.google = google self.maxRange = len(self.issilist) self.stopped = 0 def __del__(self): self.wait() def plot_the_files(self, results, issi, google, gps, firstplot): """ Receives the results and an issi's to plot :param firstplot: :param gps: :param google: :param results: :param issi: :return: """ when = [] coord = [] speeds = [] headings = [] times = [] year = results[issi][0][1][6:10] month = results[issi][0][1][3:5] day = results[issi][0][1][0:2] kml = Kml(name="{}_{}-{}-{}".format(issi, year, month, day), open=1) doc = kml.newdocument(name="{}".format(issi), snippet=Snippet('Created {}-{}-{}'.format(year, month, day))) for x in range(0, len(results[issi])): tup = (results[issi][x][3], results[issi][x][2]) theTime = results[issi][x][1][11:] when.append("{}-{}-{}T{}Z".format(year, month, day, theTime)) coord.append(tup) speeds.append(int(results[issi][x][4])) headings.append(int(results[issi][x][5])) times.append(results[issi][x][1]) # Create circle track if gps[0] != 0 and firstplot: R = 6378.1 d = float(gps[2]) # distance circle_coords = [] lat1 = radians(float(gps[0])) lon1 = radians(float(gps[1])) for b in range(1, 360): brng = radians(b) lat2 = asin(sin(lat1) * cos(d / R) + cos(lat1) * sin(d / R) * cos(brng)) lon2 = lon1 + atan2(sin(brng) * sin(d / R) * cos(lat1), cos(d / R) - sin(lat1) * sin(lat2)) lat2 = degrees(lat2) lon2 = degrees(lon2) circle_coords.append((lon2, lat2)) doc2 = kml.newdocument(name="Search Area", snippet=Snippet('{}-{}-{}'.format(gps[0], gps[1], gps[2]))) fol2 = doc2.newfolder(name='Search Area') trk2 = fol2.newgxtrack(name='search area') trk2.newgxcoord(circle_coords) trk2.stylemap.normalstyle.linestyle.color = '641400FF' trk2.stylemap.normalstyle.linestyle.width = 6 # Folder fol = doc.newfolder(name='Tracks') # schema for extra data schema = kml.newschema() schema.newgxsimplearrayfield(name='speed', type=Types.int, displayname='Speed') schema.newgxsimplearrayfield(name='heading', type=Types.int, displayname='Heading') schema.newgxsimplearrayfield(name='time', type=Types.string, displayname='Time') # New Track trk = fol.newgxtrack(name=issi) # Apply Schema trk.extendeddata.schemadata.schemaurl = schema.id # add all info to track trk.newwhen(when) trk.newgxcoord(coord) trk.extendeddata.schemadata.newgxsimplearraydata('time', times) trk.extendeddata.schemadata.newgxsimplearraydata('speed', speeds) trk.extendeddata.schemadata.newgxsimplearraydata('heading', headings) # Styling trk.stylemap.normalstyle.iconstyle.icon.href = 'http://maps.google.com/mapfiles/kml/shapes/track.png' trk.stylemap.normalstyle.linestyle.color = '99ffac59' trk.stylemap.normalstyle.linestyle.width = 6 trk.stylemap.highlightstyle.iconstyle.icon.href = 'http://maps.google.com/mapfiles/kml/shapes/track.png' trk.stylemap.highlightstyle.iconstyle.scale = 1.2 trk.stylemap.highlightstyle.linestyle.color = '99ffac59' trk.stylemap.highlightstyle.linestyle.width = 8 kml.save("results/{}_{}-{}-{}.kml".format(issi, year, month, day)) if google: try: os.system("start " + "results/{}_{}-{}-{}.kml".format(issi, year, month, day)) except: pass def run(self): firstplot = 1 maxPercent = len(self.issilist) for i in range(len(self.issilist)): if not self.stopped: self.plot_the_files(self.results, self.issilist[i], self.google, self.gps, firstplot) update = ((i + 1) / maxPercent) * 100 self.progressSignal.emit(update) if firstplot: self.sleep(4) firstplot = 0 else: break self.threadMessage.emit('Plotting completed') def stop(self): self.stopped = 1 self.threadMessage.emit('Plotting stopped')
stephenmhall/Coordinator_parser
plotfile.py
plotfile.py
py
5,066
python
en
code
0
github-code
6
73712875067
import pandas as pd import os def splitByDay(): for num in range(1,9,1): print("now is working in---"+"HO_",num,".csv") print('\n') #df=pd.read_csv("HO_{}.csv".format(str(num) ) ) data_train=pd.read_csv("I:\Anacoda3\AcondaProject\dataOfOrderAnalysis\HO_{}.csv".format(str(num) ) ) data_train['dates'] = pd.to_datetime(data_train['dates']) df = data_train.set_index('dates') year='2017' Month=df['month'] Day=df['day'] monthMin=Month.min() monthMax=Month.max() dayMin=Day.min() dayMax=Day.max() spl(df,year,monthMin,monthMax,dayMin,dayMax) def spl(df,year,monthMin,monthMax,dayMin,dayMax): df=df year=year monthMin=monthMin monthMax=monthMax dayMin=dayMin dayMax=dayMax for month in range(monthMin,monthMax+1,1): if month==6 or month==9: dayMax=30 for day in range(dayMin,dayMax+1,1): date=year+'-'+ str(month)+'-'+ str(day) #date='2017-8-{}'.format( str( day)) print(date) a=df[date] print('\n') for column in list(a.columns[a.isnull().sum() > 0]): mean_val = a[column].mean() a[column].fillna(mean_val, inplace=True) #I:\Anacoda3\AcondaProject\dataOfOrderAnalysis\subList\ a=a.reset_index(drop = True) columns=['type','start_dest_distance', 'arrive_time', 'departure_time', 'pre_total_fee', 'normal_time'] a=a[columns] filename = '{}.csv'.format( str(date) ) print('now is split --- '+filename ) mergeOrJustWrite(a,filename) #a.to_csv(filename) print('save '+filename+' over!' ) print('\n') def mergeOrJustWrite(a,filenameBeChecked): a=a samefilename=filenameBeChecked #path='I:/Anacoda3/AcondaProject/dataOfOrderAnalysis/subList' path='I:/Anacoda3/AcondaProject/dataOfOrderAnalysis/subList/tomysqlFinished' #os.getcwd() #os.chdir(path) files = file_name(path) # for fname in files: # print(fname) if str(samefilename) in files: print(samefilename+' already exist!') a.to_csv('{}/re/{}'.format( path,str( samefilename))) #os.chdir(path) else: print('a new file!') a.to_csv('{}/{}'.format( path,str ( samefilename))) def file_name(file_dir): for root, dirs, files in os.walk(file_dir): return files #print(root) #当前目录路径 #print(dirs) #当前路径下所有子目录 #print(files) #当前路径下所有非目录子文件 if __name__ == "__main__": splitByDay()
jasscical/pythonLearning
06_按每天切成184张表.py
06_按每天切成184张表.py
py
3,149
python
en
code
0
github-code
6
7847083907
#!/usr/bin/env python """ .. module::robot_state :platform: Unix :synopsis: Python module for the state machine ROS node which keeps track of the robot pose and battery status. Being a simpler version, for the documentation please refer to `the original code <https://github.com/buoncubi/arch_skeleton>`_ """ import rospy import random import threading import time from std_msgs.msg import String, Bool from assignment_1.msg import Point from assignment_1.srv import GetPose, GetPoseResponse, SetPose, SetPoseResponse class RobotState: def __init__(self): # Initialise this node rospy.init_node('robot_state') # Initialise robot position. self._pose = Point(x=0.0, y=0.0) # Initialise battery level self._battery_low = False print('robot_state') # Initialise randomness self._random_battery_time = rospy.get_param("/battery_time", [15.0, 40.0]) # Define services rospy.Service("/get_pose", GetPose, self.get_pose) rospy.Service("/set_pose", SetPose, self.set_pose) # Start publisher on a separate thread th = threading.Thread(target=self._battery_status) th.start() def set_pose(self, request): if request.pose is not None: self._pose = request.pose else: rospy.logerr('Cannot set an unspecified robot position') return SetPoseResponse() def get_pose(self, request): response = GetPoseResponse() response.pose = self._pose return response def _battery_status(self): # Define a publisher pub = rospy.Publisher('battery_status', Bool, queue_size=1) while not rospy.is_shutdown(): # Publish battery level pub.publish(Bool(self._battery_low)) # Wait for simulate battery usage. delay = random.uniform(self._random_battery_time[0], self._random_battery_time[1]) rospy.sleep(delay) # Change battery state. self._battery_low = not self._battery_low if __name__ == "__main__": # Instantiate the node manager class and wait RobotState() rospy.spin()
SamueleD98/assignment_1
scripts/robot_state.py
robot_state.py
py
2,198
python
en
code
0
github-code
6
32381382238
import string import os import random import bs4 from urllib import request url = "http://reddit.com" urlPage = request.urlopen(url).read() soup = bs4.BeautifulSoup(urlPage, "html.parser") img_list = [] for img in soup.find_all('img'): img_item = str(img.get('src')).split('//') img_list.append(img_item[1]) #print(img_list) r = 8 all_chars = string.ascii_letters # replace this folder_address variable to the directory which you wish to save # the image files on your computer folder_address = "C:\\Users\\User\\Documents\\Codes\\Python Scripts\\Reddit\\Pics\\" for item in img_list: request.urlretrieve("http://" + item, + ''.join(random.choice(all_chars) for x in range(0, r)) + ".jpg") print("finished downloading images")
techreign/Webscraping
ImageScraper.py
ImageScraper.py
py
739
python
en
code
0
github-code
6
27520740533
import os import datetime import netCDF4 def handle_netcdf_scheme_wrf(var_names, file_name, run, model, st): # try: if os.path.exists(file_name): data_list = [] file = netCDF4.Dataset(file_name) var1 = file.variables[var_names[0]][:] var2 = file.variables[var_names[1]][:] times = file.variables["Times"][:].astype("str") var_latlon = (file.variables["XLAT"][0, :, :], file.variables["XLONG"][0, :, :]) file.close() # file de log log = open(st["ensemble_log_directory"][0] + "Loaded_%s_%s.log" % (model, run.strftime("%Y%m%d%H")), 'w') for t in range(times.shape[0]): var_date = datetime.datetime.strptime( "".join(list(times[t])), "%Y-%m-%d_%H:00:00") if var_date <= (st['run'][0] + datetime. timedelta(hours=int(st['hours_ensemble'][0]))): var_value = var1[t, :, :] + var2[t, :, :] accumulation = t if t == 0: data_list.append((model, run, var_date, (var_value, accumulation), "latlon", var_latlon)) else: data_list.append((model, run, var_date, (var_value, accumulation))) log.write("run: %s --- Data: %s --- file: %s \n" % (run.strftime("%Y%m%d%H"), var_date.strftime("%Y%m%d%H"), file_name)) log.close() return data_list # except: # return None
RevertonLuis/Ensemble
lib/handle_netcdfs.py
handle_netcdfs.py
py
2,022
python
en
code
1
github-code
6
10502966682
from rest_framework.test import APITestCase from ...services.notification_service import NotificationService from django.urls import reverse class TestNotificationAPI(APITestCase): def setUp(self): self.payload = { "title": "Winter discount sale started", "description": "Enter coupon-code to get flat 10% discount" } self.notification_id = NotificationService().create(self.payload).id self.url = reverse("notification") def test_create_notification(self): data = { "title": "Summer discount sale started", "description": "Enter coupon-code to get flat 10% discount" } notification = self.client.post(self.url, data=data, format='json') self.assertEqual(notification.data.get('title'), data.get('title')) def test_get_all_notification(self): notification = self.client.get(self.url) self.assertNotEqual(len(notification.data), 0) def test_get_notification_by_id(self): notification = NotificationService().get_by_id(self.notification_id) self.assertEqual(notification.id, self.notification_id) def test_delete_notification_by_id(self): response = self.client.delete(self.url+"?id={}".format(self.notification_id), data={}, format='json') self.assertEqual(response.data.get('success'), True)
anojkr/onboarding-project
push_notification/apps/notification/tests/unit/test_notification.py
test_notification.py
py
1,381
python
en
code
0
github-code
6
43447073770
import sys, re from argparse import ArgumentParser parser = ArgumentParser(description = 'Calculate the percentage of each nucleotide in the sequence') parser.add_argument("-s", "--seq", type = str, required = True, help = "Input sequence") args = parser.parse_args() seq = seq.upper() if re.search('^[ACGTU]+$', args.seq): u= seq.count("U") #this counts the U Percentage a= seq.count("A") #this counts the A Percentage c= seq.count("C") #this counts the C Percentage t= seq.count("T") #this counts the T Percentage g= seq.count("G") #this counts the G Percentage u_content= (u/len(seq)) * 100 #Calculate the U percentage a_content= (a/len(seq)) * 100 #Calculate the A percentage c_content= (c/len(seq)) * 100 #Calculate the C percentage t_content= (t/len(seq)) * 100 #Calculate the T percentage g_content= (g/len(seq)) * 100 #Calculate the G percentage print (f"The % of U in sequence is: {u_content}") #Print the U Percentage print (f"The % of A in sequence is: {a_content}") #Print the A Percentage print (f"The % of C in sequence is: {c_content}") #Print the C Percentage print (f"The % of T in sequence is: {t_content}") #Print the T Percentage print (f"The % of G in sequence is: {g_content}") #Print the G Percentage else: print ('The sequence is not DNA or RNA')
stepsnap/git_HandsOn
Percentage.py
Percentage.py
py
1,350
python
en
code
0
github-code
6
44855918296
class Solution: def countBits(self, num): """ :type num: int :rtype: List[int] """ if num < 0: return [0] ans = [] for i in range(0,num+1): ans.append(len(bin(i)[2:].replace('0',''))) return ans
sandeepjoshi1910/Algorithms-and-Data-Structures
countbits.py
countbits.py
py
308
python
en
code
0
github-code
6
4582056106
import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns from scipy import stats import collections import time from sklearn import cluster from sklearn.metrics import adjusted_rand_score import scipy as sp from tqdm import tqdm from sklearn.manifold import MDS from run_dist_mat import * from scipy.cluster.hierarchy import dendrogram, linkage import itertools from mpl_toolkits.mplot3d import Axes3D from multiprocessing import Pool from itertools import repeat def get_sex_of_cell(cell_data): assert cell_data.loc[cell_data.chr == 20].shape[0] > 1, print("data matrix must have sex chromosomes") if cell_data.loc[cell_data.chr == 21].shape[0] > 1: return 'm' ##check this else: return 'f' def make_groups_by_bins(cell_data, bin_size, cum_lens, include_sex_chromosomes = False): if include_sex_chromosomes == False: bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs = 19) num_bins = np.sum(list(num_bins_per_chr.values())) cell_data = cell_data.loc[cell_data.chr < 20].copy() cell_data['abs_pos'] = -1 cell_data['abs_pos'] = cell_data.pos.copy() + [cum_lens[ch-1] for ch in cell_data.chr] #encodes the absolute position of the reads along the linear genome groups = cell_data.groupby([pd.cut(cell_data.abs_pos, bins),pd.cut(cell_data.pckmeans_cluster, [-0.1,0.9,2])]).mean().reindex(pd.MultiIndex.from_product([bins[1:], [0,1]]), fill_value = np.nan) assert groups.shape[0] == 2 * num_bins return groups elif include_sex_chromosomes == True: cell_data = cell_data.loc[cell_data.chr < 22].copy() if get_sex_of_cell(cell_data) == 'f': print("female cell") bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs = 20) autosome_num_bins = np.sum(list(num_bins_per_chr.values())[0:20]) #sum of all autosome chromosomes x_num_bins = num_bins_per_chr[20] cell_data = cell_data.loc[cell_data.chr != 21] #getting rid of the noisy y chromosome reads assert cell_data.loc[cell_data.chr == 20, 'pckmeans_cluster'].unique().shape[0] == 2, "x chromosome must have 2 clusters" assert cell_data.loc[cell_data.chr == 21, 'pckmeans_cluster'].unique().shape[0] == 0, "y chromosome must have no clusters" cell_data['abs_pos'] = -1 cell_data['abs_pos'] = cell_data.pos.copy() + [cum_lens[ch-1] for ch in cell_data.chr] #encodes the absolute position of the reads along the linear genome groups = cell_data.groupby([pd.cut(cell_data.abs_pos, bins),pd.cut(cell_data.pckmeans_cluster, [-0.1,0.9,2])]).mean().reindex(pd.MultiIndex.from_product([bins[1:], [0,1]]), fill_value = np.nan) assert groups.shape[0] == 2 * autosome_num_bins + x_num_bins return groups else: #male cells assert cell_data.loc[cell_data.chr == 20, 'pckmeans_cluster'].unique().shape[0] == 1, "x chromosome must have 2 clusters in male embryo" assert cell_data.loc[cell_data.chr == 21, 'pckmeans_cluster'].unique().shape[0] == 1, "y chromosome must have 2 clusters in male embryo" cell_data['abs_pos'] = -1 cell_data['abs_pos'] = cell_data.pos.copy() + [cum_lens[ch-1] for ch in cell_data.chr] #encodes the absolute position of the reads along the linear genome bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs = 21) autosome_num_bins = np.sum(list(num_bins_per_chr.values())[0:20]) #sum of all autosome chromosomes x_num_bins = num_bins_per_chr[20] y_num_bins = num_bins_per_chr[21] autosome_bins = bins[0:autosome_num_bins+1] x_bins = bins[autosome_num_bins: autosome_num_bins+x_num_bins+1] y_bins = bins[autosome_num_bins+x_num_bins:] autosome_chrs = cell_data.loc[cell_data.chr <= 19] x_chr = cell_data.loc[cell_data.chr == 20] y_chr = cell_data.loc[cell_data.chr == 21] autosome_chr_groups = autosome_chrs.groupby([pd.cut(autosome_chrs.abs_pos, autosome_bins),pd.cut(autosome_chrs.pckmeans_cluster, [-0.1,0.9,2])]).mean().reindex(pd.MultiIndex.from_product([autosome_bins[1:], [0,1]]), fill_value = np.nan) x_chr_groups = x_chr.groupby([pd.cut(x_chr.abs_pos, x_bins),pd.cut(x_chr.pckmeans_cluster, [-0.5,0.5])]).mean().reindex( pd.MultiIndex.from_product([x_bins[1:], [0]]), fill_value = np.nan) y_chr_groups = y_chr.groupby([pd.cut(y_chr.abs_pos, y_bins),pd.cut(y_chr.pckmeans_cluster, [-0.5,0.5])]).mean().reindex(pd.MultiIndex.from_product([y_bins[1:], [0]]), fill_value = np.nan) groups = pd.concat([autosome_chr_groups,x_chr_groups, y_chr_groups], axis = 0) assert groups.shape[0] == 2 * autosome_num_bins + x_num_bins + y_num_bins return groups else: raise ValueError print("please indicate whether sex chromosomes should be included or not") def get_inter_cell_dist(m0,m1): n = m0.shape[0] k = 1 #we don't want to include the diagonal for the 38x38 representations!!!! b/c the 0s on the diagonal artifically raise the correlation value! ut_ind = np.triu_indices(n, k) assert ut_ind[0].shape[0] == n*(n-1)/2 m0_unrav = m0[ut_ind] #len is n*(n+1)/2 m1_unrav = m1[ut_ind] #find indices where both unraveled matrices are not nan filt = (np.isnan(m0_unrav)+np.isnan(m1_unrav))==0 #reduce the matrices to only indices that are not nan for both m0_filt = m0_unrav[filt] m1_filt = m1_unrav[filt] #if the two matrices share one or no indices that are not nan, return nan. Otherwise, findn the pearson correlation. if sum(~np.isnan(m0_filt))<=1: r=np.nan else: #get pearson's r r = sp.stats.pearsonr(m0_filt,m1_filt)[0] return 1 - r, np.sum(filt) #r is the correlation, len(filt) is the size of the intersection """wrapper (utility) function. using this to do data parallelism""" def align_cell_i(cell_id_i, bin_size, sample_from_bin): # random_state = 500 num_samples = 50 print("aligning cell {}".format(cell_id_i)) bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs) cell_i = data.loc[(data.cell_index==cell_id_i) & (data.chr <= num_chrs)].copy() #encodes the absolute position of the reads along the linear genome--> used for binning cell_i['abs_pos'] = -1 cell_i['abs_pos'] = cell_i.pos.copy() + [cum_lens[ch-1] for ch in cell_i.chr] cell_i_dist_mat, _ = pckmeans_get_dist_mat_binned(cell_i, bins, num_bins_per_chr, sample_from_bin) cell_i_dists = [] cell_i_intersection_sizes = [] cids_after_i = data.loc[data.cell_index >= cell_id_i, 'cell_index'].unique() for cell_id_j in cids_after_i: cell_j = data.loc[(data.cell_index==cell_id_j) & (data.chr <= num_chrs)].copy() cell_j['abs_pos'] = -1 cell_j['abs_pos'] = cell_j.pos.copy() + [cum_lens[ch-1] for ch in cell_j.chr] cell_j_dist_mat, _ = pckmeans_get_dist_mat_binned(cell_j, bins, num_bins_per_chr, sample_from_bin) cell_j_dists = [] cell_j_intersection_sizes = [] for sample in range(num_samples): #in order to align cell j with cell i, we run the sequential algorithm on 50 random sequences order = np.arange(1,20) np.random.shuffle(order) #bit_seq is something like x = [0,1,1,1,0,...] of length 19 where x[i]=0 means that in cell j we don't swap the copies of chromosome i. #bin_seq is something like [23,24,12,11,...] which has the actual sequnce of the aligned bins (dist, intersection_size), bit_seq, bin_seq, _ = get_aligned_inter_cell_dist(cell_i_dist_mat, cell_j_dist_mat, num_bins_per_chr, chr_seq = order) #np.arange(19,0,-1) cell_j_dists.append(dist) cell_j_intersection_sizes.append(intersection_size) cell_i_dists.append(np.min(cell_j_dists)) cell_i_intersection_sizes.append(cell_j_intersection_sizes[np.argmin(cell_j_dists)]) np.save("data/temp/aligned_dist_{}_bin_size_{}_{}_numchrs_{}_cell{}.npy".format(reads_to_include, int(bin_size/1e6), sample_from_bin, num_chrs, cell_id_i),np.array(cell_i_dists)) np.save("data/temp/aligned_dist_{}_intersection_size_bin_size_{}_{}_numchrs_{}_cell{}.npy".format(reads_to_include, int(bin_size/1e6), sample_from_bin, num_chrs, cell_id_i),np.array(cell_i_intersection_sizes)) return def read_data(clustering_method, reads_to_inlcude): if clustering_method == "igs": data = pd.read_csv('data/embryo_data.csv') data = data.loc[~data.cell_index.isin([ 80., 84., 105., 113.])] #getting rid of cells with less than 150 reads if reads_to_inlcude == "inliers": data = data.loc[data.inlier == 1] elif clustering_method == "pckmeans": data = pd.read_csv('data/pckmeans_embryo_data.csv') data = data.loc[~data.cell_index.isin([ 80., 84., 105., 113.])] if reads_to_inlcude == "inliers": data = data.loc[data.outlier == 0] return data #the order of chromosomes to consider is 0,1,2,3... """ finds the best chromosome alignment sequentially, for now considering the chromosomes in the order chr_seq num_bins_per_chr: dictionary holding the number or bins for each chromosome (first element is 0:0) {0: 0, 1: 2, 2: 2, 3: 2, 4: 2, 5: 2,...} num_chrs: the number of chromosomes to align assumes the distance matrices to have the following order: chr 1 cluster 0 bin 1 chr 1 cluster 0 bin 2 chr 1 cluster 1 bin 1 chr 1 cluster 1 bin 2 ... chr 19 cluster 0 bin 1 chr 19 cluster 0 bin 2 chr 19 cluster 1 bin 1 chr 19 cluster 1 bin 2 """ def get_aligned_inter_cell_dist(cell_i_dist, cell_j_dist, num_bins_per_chr, num_chrs= 19, chr_seq = None, visualize = False): if chr_seq is None: print("default chromosome sequence") chr_seq = np.arange(1,20) if visualize: fig, axes = plt.subplots(num_chrs,2, figsize = (7,15)) total_haploid_bins = np.sum([val for key,val in num_bins_per_chr.items()][:num_chrs+1]) #total number of bins for the first num_chrschromosomes cum_num_bins = np.cumsum([val for key,val in num_bins_per_chr.items()]) #[0,bins_chr1, bins_chr1+chr2,...] HAPLOID number of bins cell_i_seq = [] cell_j_seq = [] bit_wise_seq = {} # i: 0 --> chromosome i hasn't been switched, 1 means it has been switched for i in chr_seq: i = int(i) if visualize: sns.heatmap(cell_i_dist_subset, square = True, ax = axes[i,0], vmin = 0, vmax = 22, cbar = False) sns.heatmap(cell_j_dist_subset, square = True, ax = axes[i,1], vmin = 0, vmax = 22, cbar = False) cell_i_seq = cell_i_seq + list(np.arange(2*cum_num_bins[i-1], 2*cum_num_bins[i-1] + 2*num_bins_per_chr[i])) #this is the default sequence where we don't touch the order of copies seq1 = cell_j_seq + list(np.arange(2*cum_num_bins[i-1], 2*cum_num_bins[i-1] + 2*num_bins_per_chr[i])) seq2 = cell_j_seq + list(np.arange(2*cum_num_bins[i-1] + num_bins_per_chr[i], 2*cum_num_bins[i-1] + 2*num_bins_per_chr[i])) +\ list(np.arange(2*cum_num_bins[i-1] , 2*cum_num_bins[i-1] + num_bins_per_chr[i])) dist1, inter_size1 = get_inter_cell_dist(cell_i_dist[np.ix_(cell_i_seq, cell_i_seq)], cell_j_dist[np.ix_(seq1, seq1)]) dist2, inter_size2 = get_inter_cell_dist(cell_i_dist[np.ix_(cell_i_seq, cell_i_seq)], cell_j_dist[np.ix_(seq2, seq2)]) # print(seq1, seq2) if dist1 <= dist2: bit_wise_seq[i] = 0 cell_j_seq = seq1 elif dist2 < dist1: bit_wise_seq[i] = 1 cell_j_seq = seq2 else: #dists will be nan when we only have one value in each distance matrix cell_j_seq = seq1 bit_wise_seq[i] = 0 bit_wise_seq_list = [bit_wise_seq[i] for i in np.arange(1, 20)] return get_inter_cell_dist(cell_i_dist[np.ix_(cell_i_seq, cell_i_seq)], cell_j_dist[np.ix_(cell_j_seq, cell_j_seq)]), bit_wise_seq_list, cell_j_seq, cell_i_seq ##############EXTEA OUTPUT def main(): global cum_lens global num_chrs global data global reads_to_include num_chrs = 19 cum_lens = get_chr_cumulative_lengths() clustering_method = "pckmeans" reads_to_include = "inliers" print("clustering method: ", clustering_method) print("including {} reads".format(reads_to_include)) data = read_data(clustering_method, reads_to_include) #global variables data = data.loc[data.stage == "4cell"] cids_4cell = data.cell_index.unique() for bin_size in [30e6]:#200e6, 100e6, 50e6, for sample in ["mean", "first", "last"]: print("bin size: {}, sample {}, Number of chromosomes: {}".format(int(bin_size/1e6), sample, num_chrs)) with Pool(6) as p: p.starmap(align_cell_i, zip(cids_4cell, repeat(bin_size), repeat(sample))) def consistency_analysis(): reads_to_inlcude = "inliers" #"all" clustering_method = "pckmeans" # "igs" num_chrs = 19 data = read_data(clustering_method, reads_to_inlcude) #cells with less than 150 reads are deleted: 80., 84., 105., 113. cum_lens = get_chr_cumulative_lengths() fig, axes = plt.subplots(4,4, figsize = (20,20)) for i, bin_size in tqdm(enumerate([50e6, 25e6, 10e6, 1e6])): for j, num_samples in tqdm(enumerate([5, 25, 50, 75])): print("\n bin size: ", bin_size) print("\n num samples: ", num_samples) proportion_matching = [] variances = [] cell_i_index = 91 cell_j_index = 93 # for cell_i_index in tqdm(data.loc[data.stage == '4cell', 'cell_index'].unique()[0:2]): # cids_after_i = data.loc[data.cell_index >= cell_i_index, 'cell_index'].unique()[1:3] # for cell_j_index in cids_after_i: cell_i = data.loc[(data.cell_index==cell_i_index) & (data.chr < 20)].copy() cell_i['abs_pos'] = -1 cell_i['abs_pos'] = cell_i.pos.copy() + [cum_lens[ch-1] for ch in cell_i.chr] #encodes the absolute position of the reads along the linear genome cell_j = data.loc[(data.cell_index==cell_j_index) & (data.chr < 20)].copy() cell_j['abs_pos'] = -1 cell_j['abs_pos'] = cell_j.pos.copy() + [cum_lens[ch-1] for ch in cell_j.chr] #encodes the absolute position of the reads along the linear genome bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs) cell_i_dist,_ = pckmeans_get_dist_mat_binned(cell_i, bins, num_bins_per_chr) cell_j_dist,_ = pckmeans_get_dist_mat_binned(cell_j, bins, num_bins_per_chr) # print("intra cell distance matrix shape: ", cell_i_dist.shape) min_dists = [] num_trials = 100 for trial in range(num_trials): dists = [] for sample in range(num_samples): if sample == 0: order = np.arange(1,20) elif sample == 1: order = np.arange(19,0,-1) else: order = np.arange(1,20) np.random.shuffle(order) d, bit_seq, bin_seq, _ = get_aligned_inter_cell_dist(cell_i_dist, cell_j_dist, num_bins_per_chr, chr_seq = order) #np.arange(19,0,-1) dists.append(d[0]) min_dists.append(np.round(np.min(dists), 4)) # proportion_matching.append(np.mean(dists < np.min(dists) +0.05)) # variances.append(np.var(dists)) print(min_dists) axes[j,i].hist(min_dists, bins = 8) axes[j,i].set_title("bin size {}".format(bin_size/1e6)) axes[j,i].set_ylabel("sample size: {}".format(num_samples)) # axes[1,i].hist(variances, bins = 20) # axes[1,i].set_xlabel("variances") plt.suptitle("cell indeces {} and {}".format(cell_i_index, cell_j_index)) plt.savefig("figures/sequential_algorithm_consistency_min_distance_distribution_cells{}_{}.png".format(cell_i_index, cell_j_index)) if __name__ == "__main__": main() # consistency_analysis()
pdavar/Analysis-of-3D-Mouse-Genome-Organization
chromosome_alignment.py
chromosome_alignment.py
py
16,670
python
en
code
0
github-code
6
200126759
import torch import torchvision.transforms as transforms from PIL import Image from model import LeNet device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def main(): transform = transforms.Compose( [transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') net = LeNet() net = net.to(device) net.load_state_dict(torch.load('Lenet.pth')) im = Image.open(r'data/plane1.jpg') im = transform(im) # [C, H, W] im = torch.unsqueeze(im, dim=0).to(device) # [N, C, H, W] with torch.no_grad(): outputs = net(im) predict = torch.max(outputs, dim=1)[1].cpu().numpy() print(classes[int(predict)]) if __name__ == '__main__': main()
ChengZhangX/Deeplearning-for-cv
LetNet model/predict.py
predict.py
py
893
python
en
code
0
github-code
6
73983128507
import numpy as np import sys matrix = None def main(): global matrix matrix = np.array([[1,1,-1],[6,2,2],[-3,4,1]],dtype=float) aug_matrix = np.concatenate((matrix,identity_matrix(3)),axis=1) #gaussian2(aug_matrix) #gaussian elimination with maximum pivoting LUdecomp(matrix) #LU decompose a square matrix def identity_matrix(n): m = np.empty([n,n],dtype=float) for i in range (0,n): for j in range (0,n): if(i==j): m[i][j] = 1 else: m[i][j] = 0 return m def gaussian2(m): print() print("Gaussian Elimination 2.0:") print() for j in range (0,m.shape[0]): max_pivot_row = j max_pivot = m[j][j] for a in range (1, m.shape[0]-j): if(m[j+a][j]>max_pivot): max_pivot_row = j+a print("maximum pivoting: R",(j+1),"<->","R",(max_pivot_row+1)) print() m[[j,max_pivot_row]] = m[[max_pivot_row,j]] if(m[j][j]==0): print("no unique solution") break for i in range (j+1, m.shape[0]): c = (m[i][j])/(m[j][j]) if(c==0): print("c==0!!") continue for a in range (0, m[j].shape[0]): m[i][a]=m[i][a]-c*(m[j][a]) print("row operation: R",(i+1),"-",c,"*R",(j+1)) print(m) print() def LUdecomp(m): L = identity_matrix(m.shape[0]) for j in range (0, m.shape[0]): for i in range (j+1, m.shape[0]): c = (m[i][j])/(m[j][j]) if(c==0): continue for a in range (0, m[j].shape[0]): m[i][a]=m[i][a]-c*(m[j][a]) L[i][j] = c print("row operation: R",(i+1),"-",c,"*R",(j+1)) print(m) print() print("matrix L is:") print(L) print("matrix U is:") print(m) main()
akiraminase/numerical_methods
matrix_calc.py
matrix_calc.py
py
2,023
python
en
code
0
github-code
6