seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
6425932746
# 회사원 Demi는 가끔은 야근을 하는데요, 야근을 하면 야근 피로도가 쌓입니다. # 야근 피로도는 야근을 시작한 시점에서 남은 일의 작업량을 제곱하여 더한 값입니다. # Demi는 N시간 동안 야근 피로도를 최소화하도록 일할 겁니다. # Demi가 1시간 동안 작업량 1만큼을 처리할 수 있다고 할 때, 퇴근까지 남은 N 시간과 각 일에 대한 작업량 works에 대해 # 야근 피로도를 최소화한 값을 리턴하는 함수 solution을 완성해주세요. # 제한 사항 # works는 길이 1 이상, 20,000 이하인 배열입니다. # works의 원소는 50000 이하인 자연수입니다. # n은 1,000,000 이하인 자연수입니다. # def solution(n: int, works: [int]) -> int: # if n>sum(works): return 0 # works.sort(reverse = True) # while n>0: # max_idx = works.index(max(works)) # works[max_idx]-=1 # n-=1 # return sum(item**2 for item in works) def no_overtime(n: int, works: [int]) -> int: if n>=sum(works): return 0 from heapq import heappush, heappop max_heap = [] for work in works: heappush(max_heap, (-work, work)) while n>0: tmp = heappop(max_heap)[1] heappush(max_heap, (1-tmp, tmp-1)) n-=1 return sum(item[1]**2 for item in max_heap)
script-brew/2019_KCC_Summer_Study
programmers/Lv_3/MaengSanha/noOvertime.py
noOvertime.py
py
1,382
python
ko
code
0
github-code
6
41409285856
import json estudantes = [] professores = [] disciplinas = [] turmas = [] matriculas = [] def main(): while True: print("Menu Principal") print("1. Estudantes") print("2. Disciplinas") print("3. Professores") print("4. Turmas") print("5. Matrículas") print("6. Sair") opcao_principal = input("Escolha uma opção: ") if opcao_principal == "1": print("Você escolheu a opção Estudantes.") menu_operacoes_estudantes() elif opcao_principal == "2": print("Você escolheu a opção Disciplinas.") menu_operacoes_disciplinas() elif opcao_principal == "3": print("Você escolheu a opção Professores.") menu_operacoes_professores() elif opcao_principal == "4": print("Você escolheu a opção Turmas.") menu_operacoes_turmas() elif opcao_principal == "5": print("Você escolheu a opção Matrículas.") menu_operacoes_matriculas() elif opcao_principal == "6": print("Saindo...") break else: print("Opção inválida. Tente novamente.") def menu_operacoes_estudantes(): while True: print("\nMenu de Operações - Estudantes") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_estudante() elif opcao_operacoes == "2": listar_estudantes() elif opcao_operacoes == "3": atualizar_estudante() elif opcao_operacoes == "4": excluir_estudante() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_estudante(): codigo = int(input("\nDigite o código do estudante: ")) nome = input("\nDigite o nome do estudante: ") cpf = input("\nDigite o CPF do estudante: ") estudantes = recuperar_estudantes() estudantes.append({"codigo": codigo, "nome": nome, "cpf": cpf}) salvar_estudantes(estudantes) print(f"Estudante {nome} incluído com sucesso!") def listar_estudantes(): estudantes = recuperar_estudantes() if len(estudantes) == 0: print("\nNão há estudantes cadastrados.") else: print("\nEstudantes cadastrados:") for estudante in estudantes: print(f"- Código: {estudante['codigo']}, Nome: {estudante['nome']}, CPF: {estudante['cpf']}") def atualizar_estudante(): codigo = int(input("\nDigite o código do estudante que deseja atualizar: ")) estudantes = recuperar_estudantes() for estudante in estudantes: if estudante["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código do estudante: ")) novo_nome = input("\nDigite o novo nome do estudante: ") novo_cpf = input("\nDigite o novo CPF do estudante: ") estudante["codigo"] = novo_codigo estudante["nome"] = novo_nome estudante["cpf"] = novo_cpf salvar_estudantes(estudantes) print(f"Estudante {codigo} atualizado com sucesso!") return print(f"Estudante com código {codigo} não encontrado.") def excluir_estudante(): codigo = int(input("\nDigite o código do estudante que deseja excluir: ")) estudantes = recuperar_estudantes() for i, estudante in enumerate(estudantes): if estudante["codigo"] == codigo: del estudantes[i] salvar_estudantes(estudantes) print(f"Estudante {codigo} excluído com sucesso!") return print(f"Estudante com código {codigo} não encontrado.") def salvar_estudantes(estudantes): with open('estudantes.json', 'w') as f: json.dump(estudantes, f) def recuperar_estudantes(): try: with open('estudantes.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_professores(): while True: print("\nMenu de Operações - Professores") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_professor() elif opcao_operacoes == "2": listar_professores() elif opcao_operacoes == "3": atualizar_professor() elif opcao_operacoes == "4": excluir_professor() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_professor(): codigo = int(input("\nDigite o código do professor: ")) nome = input("\nDigite o nome do professor: ") cpf = input("\nDigite o CPF do professor: ") professores = recuperar_professores() professores.append({"codigo": codigo, "nome": nome, "cpf": cpf}) salvar_professores(professores) print(f"Professor {nome} incluído com sucesso!") def listar_professores(): professores = recuperar_professores() if len(professores) == 0: print("\nNão há professores cadastrados.") else: print("\nProfessores cadastrados:") for professor in professores: print(f"- Código: {professor['codigo']}, Nome: {professor['nome']}, CPF: {professor['cpf']}") def atualizar_professor(): codigo = int(input("\nDigite o código do professor que deseja atualizar: ")) professores = recuperar_professores() for professor in professores: if professor["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código do professor: ")) novo_nome = input("\nDigite o novo nome do professor: ") novo_cpf = input("\nDigite o novo CPF do professor: ") professor["codigo"] = novo_codigo professor["nome"] = novo_nome professor["cpf"] = novo_cpf salvar_professores(professores) print(f"Professor {codigo} atualizado com sucesso!") return print(f"Professor com código {codigo} não encontrado.") def excluir_professor(): codigo = int(input("\nDigite o código do professor que deseja excluir: ")) professores = recuperar_professores() for i, professor in enumerate(professores): if professor["codigo"] == codigo: del professores[i] salvar_professores(professores) print(f"Professor {codigo} excluído com sucesso!") return print(f"Professor com código {codigo} não encontrado.") def salvar_professores(professores): with open('professores.json', 'w') as f: json.dump(professores, f) def recuperar_professores(): try: with open('professores.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_disciplinas(): while True: print("\nMenu de Operações - Disciplinas") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_disciplina() elif opcao_operacoes == "2": listar_disciplinas() elif opcao_operacoes == "3": atualizar_disciplina() elif opcao_operacoes == "4": excluir_disciplina() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_disciplina(): codigo = int(input("\nDigite o código da disciplina: ")) nome = input("\nDigite o nome da disciplina: ") disciplinas = recuperar_disciplinas() disciplinas.append({"codigo": codigo, "nome": nome}) salvar_disciplinas(disciplinas) print(f"Disciplina {nome} incluída com sucesso!") def listar_disciplinas(): disciplinas = recuperar_disciplinas() if len(disciplinas) == 0: print("\nNão há disciplinas cadastradas.") else: print("\nDisciplinas cadastradas:") for disciplina in disciplinas: print(f"- Código: {disciplina['codigo']}, Nome: {disciplina['nome']}") def atualizar_disciplina(): codigo = int(input("\nDigite o código da disciplina que deseja atualizar: ")) disciplinas = recuperar_disciplinas() for disciplina in disciplinas: if disciplina["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código da disciplina: ")) novo_nome = input("\nDigite o novo nome da disciplina: ") disciplina["codigo"] = novo_codigo disciplina["nome"] = novo_nome salvar_disciplinas(disciplinas) print(f"Disciplina {codigo} atualizada com sucesso!") return print(f"Disciplina com código {codigo} não encontrada.") def excluir_disciplina(): codigo = int(input("\nDigite o código da disciplina que deseja excluir: ")) disciplinas = recuperar_disciplinas() for i, disciplina in enumerate(disciplinas): if disciplina["codigo"] == codigo: del disciplinas[i] salvar_disciplinas(disciplinas) print(f"Disciplina {codigo} excluída com sucesso!") return print(f"Disciplina com código {codigo} não encontrada.") def salvar_disciplinas(disciplinas): with open('disciplinas.json', 'w') as f: json.dump(disciplinas, f) def recuperar_disciplinas(): try: with open('disciplinas.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_turmas(): while True: print("\nMenu de Operações - Turmas") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_turma() elif opcao_operacoes == "2": listar_turmas() elif opcao_operacoes == "3": atualizar_turma() elif opcao_operacoes == "4": excluir_turma() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_turma(): codigo = int(input("\nDigite o código da turma: ")) codigo_professor = int(input("\nDigite o código do professor: ")) codigo_disciplina = int(input("\nDigite o código da disciplina: ")) professores = recuperar_professores() if not any(professor["codigo"] == codigo_professor for professor in professores): print(f"Professor com código {codigo_professor} não encontrado.") return disciplinas = recuperar_disciplinas() if not any(disciplina["codigo"] == codigo_disciplina for disciplina in disciplinas): print(f"Disciplina com código {codigo_disciplina} não encontrada.") return turmas = recuperar_turmas() turmas.append({"codigo": codigo, "codigo_professor": codigo_professor, "codigo_disciplina": codigo_disciplina}) salvar_turmas(turmas) print(f"Turma {codigo} incluída com sucesso!") def listar_turmas(): turmas = recuperar_turmas() if len(turmas) == 0: print("\nNão há turmas cadastradas.") else: print("\nTurmas cadastradas:") for turma in turmas: print(f"- Código: {turma['codigo']}, Código do Professor: {turma['codigo_professor']}, Código da Disciplina: {turma['codigo_disciplina']}") def atualizar_turma(): codigo = int(input("\nDigite o código da turma que deseja atualizar: ")) turmas = recuperar_turmas() for turma in turmas: if turma["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código da turma: ")) novo_codigo_professor = int(input("\nDigite o novo código do professor: ")) novo_codigo_disciplina = int(input("\nDigite o novo código da disciplina: ")) professores = recuperar_professores() if not any(professor["codigo"] == novo_codigo_professor for professor in professores): print(f"Professor com código {novo_codigo_professor} não encontrado.") return disciplinas = recuperar_disciplinas() if not any(disciplina["codigo"] == novo_codigo_disciplina for disciplina in disciplinas): print(f"Disciplina com código {novo_codigo_disciplina} não encontrada.") return turma["codigo"] = novo_codigo turma["codigo_professor"] = novo_codigo_professor turma["codigo_disciplina"] = novo_codigo_disciplina salvar_turmas(turmas) print(f"Turma {codigo} atualizada com sucesso!") return print(f"Turma com código {codigo} não encontrada.") def excluir_turma(): codigo = int(input("\nDigite o código da turma que deseja excluir: ")) turmas = recuperar_turmas() for i, turma in enumerate(turmas): if turma["codigo"] == codigo: del turmas[i] salvar_turmas(turmas) print(f"Turma {codigo} excluída com sucesso!") return print(f"Turma com código {codigo} não encontrada.") def salvar_turmas(turmas): with open('turmas.json', 'w') as f: json.dump(turmas, f) def recuperar_turmas(): try: with open('turmas.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_matriculas(): while True: print("\nMenu de Operações - Matrículas") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_matricula() elif opcao_operacoes == "2": listar_matriculas() elif opcao_operacoes == "3": atualizar_matricula() elif opcao_operacoes == "4": excluir_matricula() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_matricula(): codigo_turma = int(input("\nDigite o código da turma: ")) codigo_estudante = int(input("\nDigite o código do estudante: ")) turmas = recuperar_turmas() if not any(turma["codigo"] == codigo_turma for turma in turmas): print(f"Turma com código {codigo_turma} não encontrada.") return estudantes = recuperar_estudantes() if not any(estudante["codigo"] == codigo_estudante for estudante in estudantes): print(f"Estudante com código {codigo_estudante} não encontrado.") return matriculas = recuperar_matriculas() matriculas.append({"codigo_turma": codigo_turma, "codigo_estudante": codigo_estudante}) salvar_matriculas(matriculas) print(f"Matrícula na turma {codigo_turma} incluída com sucesso!") def listar_matriculas(): matriculas = recuperar_matriculas() if len(matriculas) == 0: print("\nNão há matrículas cadastradas.") else: print("\nMatrículas cadastradas:") for matricula in matriculas: print(f"- Código da Turma: {matricula['codigo_turma']}, Código do Estudante: {matricula['codigo_estudante']}") def atualizar_matricula(): codigo_turma = int(input("\nDigite o código da turma da matrícula que deseja atualizar: ")) codigo_estudante = int(input("\nDigite o código do estudante da matrícula que deseja atualizar: ")) matriculas = recuperar_matriculas() for matricula in matriculas: if matricula["codigo_turma"] == codigo_turma and matricula["codigo_estudante"] == codigo_estudante: novo_codigo_turma = int(input("\nDigite o novo código da turma: ")) novo_codigo_estudante = int(input("\nDigite o novo código do estudante: ")) turmas = recuperar_turmas() if not any(turma["codigo"] == novo_codigo_turma for turma in turmas): print(f"Turma com código {novo_codigo_turma} não encontrada.") return estudantes = recuperar_estudantes() if not any(estudante["codigo"] == novo_codigo_estudante for estudante in estudantes): print(f"Estudante com código {novo_codigo_estudante} não encontrado.") return matricula["codigo_turma"] = novo_codigo_turma matricula["codigo_estudante"] = novo_codigo_estudante salvar_matriculas(matriculas) print(f"Matrícula na turma {codigo_turma} atualizada com sucesso!") return print(f"Matrícula na turma {codigo_turma} com estudante de código {codigo_estudante} não encontrada.") def excluir_matricula(): codigo_turma = int(input("\nDigite o código da turma da matrícula que deseja excluir: ")) codigo_estudante = int(input("\nDigite o código do estudante da matrícula que deseja excluir: ")) matriculas = recuperar_matriculas() for i, matricula in enumerate(matriculas): if matricula["codigo_turma"] == codigo_turma and matricula["codigo_estudante"] == codigo_estudante: del matriculas[i] salvar_matriculas(matriculas) print(f"Matrícula na turma {codigo_turma} excluída com sucesso!") return print(f"Matrícula na turma {codigo_turma} com estudante de código {codigo_estudante} não encontrada.") def salvar_matriculas(matriculas): with open('matriculas.json', 'w') as f: json.dump(matriculas, f) def recuperar_matriculas(): try: with open('matriculas.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] if __name__ == "__main__": main()
enzupain/Python-Projetos
sistema gerenciamento academico.py
sistema gerenciamento academico.py
py
18,786
python
pt
code
0
github-code
6
31221042600
'''num=int(input("the number below 30 is:")) if num>0 and num<10: print("the number is between 0to 10") if num>=10 and num<20: #PROMPT METHOD print("the number is between 10to 20") if num>=20 and num<30: print("the number is between 20to 30")''' a= int(input("enter a:")) b= int(input("enter b:")) c= int(input("enter c:")) if a>b and a>c: print("a is greater than all") if b>a and b>c: print("b is greater than all") if c>b and c>a: print("c is greater than all") else: print("a,b,c those all are equal")
Manikantakalla123/training-phase1
range.py
range.py
py
596
python
en
code
0
github-code
6
10620073145
#!/usr/bin/python import unittest import sys sys.path.insert(0, '../src') from Weapon import Weapon from Character import Character from Clock import Clock from Dice import Dice class WeaponTest(unittest.TestCase): def setUp(self): sut_skills = [] sut_ability_set = {} sut_cooldown_set = {} sut_cooldown_adj_set = {} sut_strength_set = {} sut_stats = {} sut_handed = [] self.sut = Weapon( weapon_type='sword', quality='common', color='white', skills=sut_skills, handed=sut_handed, damage='slash', stats=sut_stats, ability_set=sut_ability_set, cd_timer_set=sut_cooldown_set, cd_adj_set=sut_cooldown_adj_set, strength_set=sut_strength_set, weapon_id=1, dice=Dice(attack=2, defense=2, morale=2) ) def test_get_weapon_type(self): self.assertEqual('sword', self.sut.weapon_type) if __name__ == '__main__': unittest.main()
jaycarson/fun
app/tst/WeaponTest.py
WeaponTest.py
py
1,076
python
en
code
0
github-code
6
7160469481
import skfuzzy as fuzz from skfuzzy import control as ctrl import numpy as np import matplotlib.pyplot as plt def v(d, a): return np.sqrt((d * 9.81) / np.sin(2 * np.radians(a))) def main(): x_distance = np.arange(1, 100, 5) x_angle = np.arange(1, 90, 1) distance = ctrl.Antecedent(x_distance, 'distance') angle = ctrl.Antecedent(x_angle, 'angle') velocity = ctrl.Consequent(np.arange(0, 100, 1), 'velocity') distance.automf(3) angle.automf(5) velocity.automf(5) # poor # mediocre # average # decent # good rules = [ ctrl.Rule(distance['poor'], velocity['poor']), ctrl.Rule(distance['average'] & (angle['mediocre'] | angle['average'] | angle['decent']), velocity['mediocre']), ctrl.Rule(distance['average'] & (angle['poor'] | angle['good']), velocity['average']), ctrl.Rule(distance['good'] & (angle['mediocre'] | angle['average'] | angle['decent']), velocity['mediocre']), ctrl.Rule(distance['good'] & (angle['poor'] | angle['good']), velocity['good']), ] velocity_ctrl = ctrl.ControlSystemSimulation(ctrl.ControlSystem(rules=rules)) mse = 0 i = 0 preds = [] for ang in x_angle: for dst in x_distance: i += 1 true = v(dst, ang) velocity_ctrl.input['distance'] = dst velocity_ctrl.input['angle'] = ang velocity_ctrl.compute() preds.append(velocity_ctrl.output['velocity']) mse += (true - velocity_ctrl.output['velocity']) ** 2 mse /= i print(f'MSE: {mse}') X, Y = np.meshgrid(x_distance, x_angle) Z = v(X, Y) fig = plt.figure() ax = fig.add_subplot(1, 2, 1, projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.set_title('Prawdziwa funkcja mocu rzutu') ax.set_xlabel('dystans') ax.set_ylabel('kat') ax.set_zlabel('moc rzutu') Z = np.array(preds).reshape(Z.shape) ax = fig.add_subplot(1, 2, 2, projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.set_title('Predykcja funkcji mocu rzutu') ax.set_xlabel('dystans') ax.set_ylabel('kat') ax.set_zlabel('moc rzutu') plt.show() if __name__ == '__main__': main()
DonChaka/PSI
Fuzzy/fuzzy_easy.py
fuzzy_easy.py
py
2,354
python
en
code
0
github-code
6
72033875709
import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('forestfires.csv') pd.plotting.scatter_matrix(dataset) X = dataset.iloc[:,0:12].values y = dataset.iloc[:,-1].values dataset.isnull().sum() dataset.info() temp = pd.DataFrame(X[:,[2,3]]) temp_month = pd.get_dummies(temp[0]) temp_day = pd.get_dummies(temp[1]) del(temp) X = np.append(X,temp_month,axis = 1) X = np.append(X,temp_day,axis = 1) X = np.delete(X,2,axis =1) X = np.delete(X,2,axis =1) del(temp_month,temp_day) temp = pd.DataFrame(X[:,:]) from sklearn.preprocessing import StandardScaler st = StandardScaler() X = st.fit_transform(X) from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train,y_train) lr.score(X_test,y_test) from sklearn.ensemble import RandomForestRegressor ran = RandomForestRegressor(n_estimators = 5) ran.fit(X_train,y_train) ran.score(X_train,y_train) #this is complete
Manavendrasingh/ML-code
forestfire.py
forestfire.py
py
1,103
python
en
code
0
github-code
6
5345020806
import email.utils import json import os import smtplib import ssl from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from pathlib import Path import jinja2 from dotenv import load_dotenv send_user = "" load_dotenv() class SendEmailController: def __init__(self): pass @staticmethod def render_mail_template(template_params, template_name): html_template_url = Path(__file__).parents[1] / "mail_templates" html_template_loader = jinja2.FileSystemLoader(html_template_url) html_template = jinja2.Environment(loader=html_template_loader) email_template = html_template.get_template(template_name) compose_email_html = email_template.render(template_params) return compose_email_html @staticmethod def config_send_mail(subject, receive_email, compose_email_html): sender_email = os.getenv("SENDER_EMAIL") sender_name = os.getenv("SENDER_NAME") smtp_server = os.getenv("SMTP_SERVER") smtp_port = os.getenv("SMTP_PORT") password = os.getenv("MAIL_PASSWORD") list_email_cc = [] msg = MIMEMultipart("mixed") msg["Subject"] = subject msg["From"] = email.utils.formataddr((sender_name, sender_email)) if receive_email.upper() == "Undetermined".upper(): msg["To"] = sender_email else: msg["To"] = receive_email msg["Cc"] = ", ".join(list_email_cc) msg.attach(MIMEText(compose_email_html, "html")) context = ssl.create_default_context() with smtplib.SMTP(smtp_server, int(smtp_port)) as smtp: smtp.starttls(context=context) smtp.login(sender_email, password) smtp.send_message(msg) smtp.quit() @staticmethod def send_email(receive_email, subject, template_params, template_file_name): # subject, template_mail = SendEmailController.build_template(template_params) # subject = "send email test" # template_mail = {"text": "aloha"} template_mail = template_params compose_email_html = SendEmailController.render_mail_template( template_mail, template_file_name ) if subject and template_mail: SendEmailController.config_send_mail( subject, receive_email, compose_email_html ) @staticmethod def build_template(template_params): data = json.dumps(template_params) data = json.loads(data) id = data.get("id") time = data.get("time") # email_to = data.get("email_to") source_ip = data.get("source_ip", "") destination = data.get("destination") flow_count = data.get("flow_count", -1) tenant = data.get("tenant") vpc = data.get("vpc") body_data = "" subject = "[Violation]" if id == 1: category = "Policy violation" subject = subject + " " + category body_data = { "category": category, "time": time, "source_ip": source_ip, "destination": destination, "tenant": tenant, "vpc": vpc, } elif id == 2: category = "DDoS Attack" subject = subject + " " + category body_data = { "category": category, "time": time, "destination": destination, "flow_count": flow_count, "tenant": tenant, "vpc": vpc, } elif id == 3: category = "Possible Attack" subject = subject + " " + category body_data = { "category": category, "time": time, "destination": destination, "tenant": tenant, "vpc": vpc, } return subject, body_data
nguyendoantung/e-maintenance-system
back-end/service/utils/email/EmailController.py
EmailController.py
py
3,978
python
en
code
0
github-code
6
1633248512
from builtins import next from builtins import range import os import datetime from xml.sax.saxutils import quoteattr import sys import logging import random import glob from itertools import cycle from flask import Blueprint, url_for, Response, stream_with_context, send_file, \ jsonify from werkzeug.datastructures import Headers from werkzeug.security import safe_join from opendiamond.dataretriever.util import read_file_list, write_data BASEURL = 'augment' STYLE = False LOCAL_OBJ_URI = True # if true, return local file path, otherwise http. INDEXDIR = DATAROOT = None ITEMS_PER_ITERATION = int(1e4) KEYWORD = 'yellowthroat' """ Example url: /augment/root/<ROOT_DIR>/distributed/<id>of<N>/ \ keywords/<d/r ([d]eterminant/[r]andom)>_<random_seed>_<base_rate> /augment/root/STREAM/distributed/1of2/keywords/d_42_1.0 """ def init(config): global INDEXDIR, DATAROOT # pylint: disable=global-statement INDEXDIR = 'STREAM' DATAROOT = config.dataroot scope_blueprint = Blueprint('augment_store', __name__) _log = logging.getLogger(__name__) @scope_blueprint.route('/root/<rootdir>/distributed/<int:index>of<int:total>' + '/keywords/<params>') @scope_blueprint.route('/root/<rootdir>/keywords/<params>') @scope_blueprint.route('/root/<rootdir>/distributed/<int:index>of<int:total>' + '/keywords/<params>/start/<int:start>/limit/<int:limit>') @scope_blueprint.route('/root/<rootdir>/keywords/<params>' + '/start/<int:start>/limit/<int:limit>') def get_scope(rootdir, index=0, total=1, params=None, start=0, limit=sys.maxsize): global KEYWORD if rootdir == "0": rootdir = INDEXDIR rootdir = _get_obj_absolute_path(rootdir) seed = None percentage = 0. seed, percentage = decode_params(params) # Assuming the same positive list is present in all the servers # Always create a new index file base_list, KEYWORD = create_index(rootdir, percentage, seed, index, total) total_entries = len(base_list) start = start if start > 0 else 0 end = min(total_entries, start + limit) if limit > 0 else total_entries base_list = base_list[start:end] total_entries = end - start def generate(): yield '<?xml version="1.0" encoding="UTF-8" ?>\n' if STYLE: yield '<?xml-stylesheet type="text/xsl" href="/scopelist.xsl" ?>\n' yield '<objectlist count="{:d}">\n'.format(total_entries) for path in base_list: path = path.strip() yield _get_object_element(object_path=path) + '\n' yield '</objectlist>\n' headers = Headers([('Content-Type', 'text/xml')]) return Response(stream_with_context(generate()), status="200 OK", headers=headers) def decode_params(params): """ Decodes the params which are '_' seperated <[d]eterminant/[r]andom>_<random_seed>_<baserate> """ keywords = params.split('_') mix_type = keywords[0] seed = None if len(keywords) > 1: seed = int(keywords[1]) if mix_type == 'r' or seed is None: seed = random.randrange(10000) percentage = 0.1 # default base_rate = 0.1% if len(keywords) > 2: percentage = float(keywords[2]) return seed, round(percentage, 4) @scope_blueprint.route('/id/<path:object_path>') def get_object_id(object_path): headers = Headers([('Content-Type', 'text/xml')]) return Response(_get_object_element(object_path=object_path), "200 OK", headers=headers) def _get_object_element(object_path): path = _get_obj_absolute_path(object_path) meta = {'_gt_label': KEYWORD} if KEYWORD in path: return '<object id={} src={} meta={} />' \ .format(quoteattr(url_for('.get_object_id', object_path=object_path)), quoteattr(_get_object_src_uri(object_path)), quoteattr(url_for('.get_object_meta', present=True))) return '<object id={} src={} />' \ .format(quoteattr(url_for('.get_object_id', object_path=object_path)), quoteattr(_get_object_src_uri(object_path))) @scope_blueprint.route('/meta/<path:present>') def get_object_meta(present=False): attrs = dict() if present: attrs['_gt_label'] = KEYWORD return jsonify(attrs) def _get_object_src_uri(object_path): if LOCAL_OBJ_URI: return 'file://' + _get_obj_absolute_path(object_path) return url_for('.get_object_src_http', obj_path=object_path) def _get_obj_absolute_path(obj_path): return safe_join(DATAROOT, obj_path) @scope_blueprint.route('/obj/<path:obj_path>') def get_object_src_http(obj_path): path = _get_obj_absolute_path(obj_path) headers = Headers() # With add_etags=True, conditional=True # Flask should be smart enough to do 304 Not Modified response = send_file(path, cache_timeout=datetime.timedelta( days=365).total_seconds(), add_etags=True, conditional=True) response.headers.extend(headers) return response def create_index(base_dir, base_rate=0.05, seed=42, rank=0, total_servers=1): """ Creates Index List File: Assuming name of files NEGATIVE (e.g:subset YFCC), POSITIVE """ filepath_split = ['STREAM', "{:.2f}".format(base_rate), str(rank), str(total_servers), str(seed)] filepath = '_'.join(filepath_split) filepath = os.path.join(base_dir, filepath) positive_path = os.path.join(base_dir, 'POSITIVE') negative_path = os.path.join(base_dir, 'NEGATIVE') positive_firstline = open(positive_path).readline().rstrip() keyword = positive_firstline.split('/')[-2] # Assuming all positives are in the same parent dir _log.info("Dir {} BR: {} Seed:{} FP{}".format(base_dir, base_rate, seed, filepath)) sys.stdout.flush() if not os.path.exists(filepath): positive_data = read_file_list(positive_path) # same across servers negative_data = read_file_list(negative_path) # different across servers random.Random(seed).shuffle(positive_data) random.Random(seed).shuffle(negative_data) len_positive = len(positive_data) start_idx = int(rank * (1.0 / total_servers) * len_positive) end_idx = int((rank+1) * (1.0 / total_servers) * len_positive) positive_data = positive_data[start_idx:end_idx] len_positive = len(positive_data) negative_sample = int(len_positive * (100./base_rate -1)) negative_data = negative_data[:negative_sample] return write_data(filepath, [negative_data, positive_data], seed), keyword return read_file_list(filepath), keyword
cmusatyalab/opendiamond
opendiamond/dataretriever/augment_store.py
augment_store.py
py
6,831
python
en
code
19
github-code
6
655282827
import argparse import os import torch import torch_em from torch_em.model import AnisotropicUNet ROOT = '/scratch/pape/mito_em/data' def get_loader(datasets, patch_shape, batch_size=1, n_samples=None, roi=None): paths = [ os.path.join(ROOT, f'{ds}.n5') for ds in datasets ] raw_key = 'raw' label_key = 'labels' sampler = torch_em.data.MinForegroundSampler(min_fraction=0.05, p_reject=.75) label_transform = torch_em.transform.label.connected_components return torch_em.default_segmentation_loader( paths, raw_key, paths, label_key, batch_size=batch_size, patch_shape=patch_shape, label_transform=label_transform, sampler=sampler, n_samples=n_samples, num_workers=8*batch_size, shuffle=True, label_dtype=torch.int64 ) def get_model(large_model): n_out = 12 if large_model: print("Using large model") model = AnisotropicUNet( scale_factors=[ [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2] ], in_channels=1, out_channels=n_out, initial_features=128, gain=2, final_activation=None ) else: print("Using vanilla model") model = AnisotropicUNet( scale_factors=[ [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2] ], in_channels=1, out_channels=n_out, initial_features=64, gain=2, final_activation=None ) return model def train_embeddings(args, datasets): large_model = bool(args.large_model) model = get_model(large_model) # patch shapes: if large_model: # largest possible shape for A100 with mixed training and large model # patch_shape = [32, 320, 320] patch_shape = [32, 256, 256] else: # largest possible shape for 2080Ti with mixed training patch_shape = [24, 192, 192] train_sets = [f'{ds}_train' for ds in datasets] val_sets = [f'{ds}_val' for ds in datasets] if args.train_on_val: train_sets += val_sets train_loader = get_loader( datasets=train_sets, patch_shape=patch_shape, n_samples=1000 ) val_loader = get_loader( datasets=val_sets, patch_shape=patch_shape, n_samples=100 ) loss = torch_em.loss.ContrastiveLoss( delta_var=.75, delta_dist=2., impl='scatter' ) tag = 'large' if large_model else 'default' if args.train_on_val: tag += '_train_on_val' name = f"embedding_model_{tag}_{'_'.join(datasets)}" trainer = torch_em.default_segmentation_trainer( name=name, model=model, train_loader=train_loader, val_loader=val_loader, loss=loss, metric=loss, learning_rate=5e-5, mixed_precision=True, log_image_interval=50 ) if args.from_checkpoint: trainer.fit(args.iterations, 'latest') else: trainer.fit(args.iterations) def check(datasets, train=True, val=True, n_images=5): from torch_em.util.debug import check_loader patch_shape = [32, 256, 256] if train: print("Check train loader") dsets = [f'{ds}_train' for ds in datasets] loader = get_loader(dsets, patch_shape) check_loader(loader, n_images) if val: print("Check val loader") dsets = [f'{ds}_val' for ds in datasets] loader = get_loader(dsets, patch_shape) check_loader(loader, n_images) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--datasets', '-d', type=str, nargs='+', default=['human', 'rat']) parser.add_argument('--check', '-c', type=int, default=0) parser.add_argument('--iterations', '-i', type=int, default=int(1e5)) parser.add_argument('--large_model', '-l', type=int, default=0) parser.add_argument('--from_checkpoint', type=int, default=0) parser.add_argument('--train_on_val', type=int, default=0) dataset_names = ['human', 'rat'] args = parser.parse_args() datasets = args.datasets datasets.sort() assert all(ds in dataset_names for ds in datasets) if args.check: check(datasets, train=True, val=True) else: train_embeddings(args, datasets)
constantinpape/torch-em
experiments/unet-segmentation/mitochondria-segmentation/mito-em/challenge/embeddings/train_embeddings.py
train_embeddings.py
py
4,556
python
en
code
42
github-code
6
11499299532
import requests,json def ranking(duration="daily",ranking_type="break",offset=0,lim=20,unit=False): try: resp = requests.get(f'https://w4.minecraftserver.jp/api/ranking?type={ranking_type}k&offset={offset}&lim={lim}&duration={duration}') data_json = json.loads(resp.text) rank_list = list(data_json["ranks"]) rank = 1 for mcid_data in rank_list: get_mcid = mcid_data["player"] get_data = mcid_data["data"] seichi_ryo = get_data["raw_data"] name = get_mcid["name"] if unit == True: if len(str(seichi_ryo)) > 8: seichi_ryo_kugiri0 = str(seichi_ryo)[-4:] seichi_ryo_kugiri1 = str(seichi_ryo)[-8:-4] seichi_ryo_kugiri2 = str(seichi_ryo)[:-8] seichi_ryo = f"{seichi_ryo_kugiri2}億{seichi_ryo_kugiri1}万{seichi_ryo_kugiri0}" elif len(str(seichi_ryo)) > 4: seichi_ryo_kugiri0 = str(seichi_ryo)[-4:] seichi_ryo_kugiri1 = str(seichi_ryo)[:-4] seichi_ryo = seichi_ryo_kugiri1 + "万" + seichi_ryo_kugiri0 msg += f"{rank}位 {name} 整地量:{seichi_ryo}\n" rank += 1 return msg except: text = "引数が無効または整地鯖APIが死んでます" return text def get_data(mcid=None,uuid=None,data_type="break",type_data_type="data"): try: if mcid != None: resp = requests.get(f'https://api.mojang.com/users/profiles/minecraft/{mcid}') data_json = json.loads(resp.text) uuid_before = data_json["id"] uuid = uuid_before[0:8] uuid += "-" uuid += uuid_before[8:12] uuid += "-" uuid += uuid_before[12:16] uuid += "-" uuid += uuid_before[16:20] uuid += "-" uuid += uuid_before[20:32] print(uuid) print(f'https://w4.minecraftserver.jp/api/ranking/player/{uuid}?types={data_type}') resp = requests.get(f'https://w4.minecraftserver.jp/api/ranking/player/{uuid}?types={data_type}') data_json = json.loads(resp.text) if type_data_type == "data": data = data_json[0]["data"]["raw_data"] return data if type_data_type == "lastquit": return data_json[0]["lastquit"] elif uuid != None: resp = requests.get(f'https://w4.minecraftserver.jp/api/ranking/player/{uuid}?types={data_type}') data_json = json.loads(resp.text) if type_data_type == "data": return data_json[0]["data"]["raw_data"] if type_data_type == "lastquit": return data_json[0]["lastquit"] except: text = "引数が無効または整地鯖APIが死んでます" return text #必須ライブラリ #json #reqests #インストールコマンド #py -m pip install json #py -m pip install reqests #私のdiscord鯖 #https://discord.gg/Gs7VXE #私のdiscord垢 #neruhito#6113 #672910471279673358
nekorobi-0/seichi_ranking
seichi_ranking.py
seichi_ranking.py
py
3,146
python
en
code
2
github-code
6
26042467106
from __future__ import annotations import logging from abc import ABCMeta from dataclasses import dataclass from pants.core.util_rules.environments import EnvironmentNameRequest from pants.engine.environment import EnvironmentName from pants.engine.fs import MergeDigests, Snapshot, Workspace from pants.engine.goal import Goal, GoalSubsystem from pants.engine.rules import Get, MultiGet, collect_rules, goal_rule, rule from pants.engine.target import ( FieldSet, NoApplicableTargetsBehavior, TargetRootsToFieldSets, TargetRootsToFieldSetsRequest, ) from pants.engine.unions import UnionMembership, union logger = logging.getLogger(__name__) @union class GenerateSnapshotsFieldSet(FieldSet, metaclass=ABCMeta): """The fields necessary to generate snapshots from a target.""" @dataclass(frozen=True) class GenerateSnapshotsResult: snapshot: Snapshot @dataclass(frozen=True) class EnvironmentAwareGenerateSnapshotsRequest: """Request class to request a `GenerateSnapshotsResult` in an environment-aware fashion.""" field_set: GenerateSnapshotsFieldSet @rule async def environment_await_generate_snapshots( request: EnvironmentAwareGenerateSnapshotsRequest, ) -> GenerateSnapshotsResult: environment_name = await Get( EnvironmentName, EnvironmentNameRequest, EnvironmentNameRequest.from_field_set(request.field_set), ) result = await Get( GenerateSnapshotsResult, {request.field_set: GenerateSnapshotsFieldSet, environment_name: EnvironmentName}, ) return result class GenerateSnapshotsSubsystem(GoalSubsystem): name = "generate-snapshots" help = "Generate test snapshots." @classmethod def activated(cls, union_membership: UnionMembership) -> bool: return GenerateSnapshotsFieldSet in union_membership class GenerateSnapshots(Goal): subsystem_cls = GenerateSnapshotsSubsystem environment_behavior = Goal.EnvironmentBehavior.USES_ENVIRONMENTS @goal_rule async def generate_snapshots(workspace: Workspace) -> GenerateSnapshots: target_roots_to_field_sets = await Get( TargetRootsToFieldSets, TargetRootsToFieldSetsRequest( GenerateSnapshotsFieldSet, goal_description=f"the `{GenerateSnapshotsSubsystem.name}` goal", no_applicable_targets_behavior=NoApplicableTargetsBehavior.error, ), ) if not target_roots_to_field_sets.field_sets: return GenerateSnapshots(exit_code=0) snapshot_results = await MultiGet( Get(GenerateSnapshotsResult, EnvironmentAwareGenerateSnapshotsRequest(field_set)) for field_set in target_roots_to_field_sets.field_sets ) all_snapshots = await Get( Snapshot, MergeDigests([result.snapshot.digest for result in snapshot_results]) ) workspace.write_digest(all_snapshots.digest) for file in all_snapshots.files: logger.info(f"Generated {file}") return GenerateSnapshots(exit_code=0) def rules(): return collect_rules()
pantsbuild/pants
src/python/pants/core/goals/generate_snapshots.py
generate_snapshots.py
py
3,031
python
en
code
2,896
github-code
6
30827334271
import json import os class FileUtils: @staticmethod def readJsonFile(filePath): with open(filePath, 'r', encoding='utf-8') as file: jsonData = json.load(file) return jsonData @staticmethod def writeJsonFile(filePath, jsonData): with open(filePath, 'w', encoding='utf-8') as file: file.write(json.dumps(jsonData, sort_keys=False, indent=4, separators=(',', ': '))) @staticmethod def readLinesFromFile(filePath) -> list: with open(filePath, 'r', encoding='utf-8') as f: return [line.replace('\n', '') for line in f.readlines()]
Danny0515/Portfolio-crawler
src/main/utils/FileUtils.py
FileUtils.py
py
622
python
en
code
0
github-code
6
29852066628
__author__ = "Rohit N Dubey" from django.conf.urls import patterns, include, url from django.contrib import admin from views import Ignite from . import prod urlpatterns = patterns('', url(r'^ui/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': prod.UI_ROOT, }), url(r'^api/pool/', include('pool.urls')), url(r'^api/discoveryrule/', include('discoveryrule.urls')), url(r'^api/configuration/', include('configuration.urls')), # url(r'^api/usermanagement/', include('usermanagement.urls')), url(r'^api/fabric/', include('fabric.urls')), url(r'^api/resource/', include('resource.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^auth/', include('djoser.urls')), url(r'^api/ignite', Ignite.as_view(), name='home'), )
salran40/POAP
ignite/urls.py
urls.py
py
805
python
en
code
0
github-code
6
9777903968
import math from django.db import models from django.db.models.signals import pre_save, post_save from apps.addresses.models import Address from apps.carts.models import Cart from apps.billing.models import BillingProfile from main.utils import unique_order_id_generator # ORDER STATUS OPTIONS ORDER_STATUS_CHOICES = ( # (stored value, Displayed value) # ('created', 'Created'), ('paid', 'Paid'), ('shipped', 'Shipped'), ('delivered', 'Delivered'), ('refunded', 'Refunded'), ) class OrderManager(models.Manager): def new_or_get(self, billing_profile, cart_obj): created = False # QUERY for existing order qs = self.get_queryset().filter(billing_profile=billing_profile, cart=cart_obj, active=True, status='created') print("QS -> ", qs) # Found Order if qs.count() == 1: # created = False # variable OBJECT to assign queryset obj = qs.first() print("FOUND -> Obj -> ", obj) else: # Create object instance obj = self.model.objects.create(billing_profile=billing_profile, cart=cart_obj) created = True print("CREATED -> Obj -> ", obj) return obj, created class Order(models.Model): billing_profile = models.ForeignKey(BillingProfile, null=True, blank=True) shipping_address = models.ForeignKey(Address, related_name="shipping_address", null=True, blank=True) billing_address = models.ForeignKey(Address, related_name="billing_address", null=True, blank=True) cart = models.ForeignKey(Cart) # pk / id -> unique, random order_id = models.CharField(max_length=120, blank=True) status = models.CharField(max_length=120, default='created', choices=ORDER_STATUS_CHOICES) shipping_total = models.DecimalField(default=5.99, max_digits=7, decimal_places=2) total = models.DecimalField(default=0.00, max_digits=7, decimal_places=2) active = models.BooleanField(default=True) def __str__(self): return self.order_id # attach Manager to Order objects = OrderManager() # update total instance method def update_total(self): # object variables cart_total = self.cart.total shipping_total = self.shipping_total # Fixing data types -> (decimal, float) new_total = math.fsum([cart_total, shipping_total]) # Format output formatted_total = format(new_total, '.2f') # Assign instance self.total = formatted_total # Save instance self.save() return new_total # Method to check if the ORDER is complete def check_done(self): billing_profile = self.billing_profile billing_address = self.billing_address shipping_address = self.shipping_address total = self.total if billing_profile and billing_address and shipping_address and total > 0: return True return False def mark_paid(self): if self.check_done(): # Update ORDER status self.status = "paid" self.save() return self.status # GENERATE THE ORDER ID def pre_save_create_order_id(sender, instance, *args, **kwargs): if not instance.order_id: instance.order_id = unique_order_id_generator(instance) # Define Queryset --> Find any existing carts qs = Order.objects.filter(cart=instance.cart).exclude(billing_profile=instance.billing_profile) if qs.exists(): print("Found previous cart ... ") # update previous carts to be in-active qs.update(active=False) # Connect Signal pre_save.connect(pre_save_create_order_id, sender=Order) # GENERATE THE ORDER TOTAL def post_save_cart_total(sender, instance, created, *args, **kwargs): if not created: cart_obj = instance cart_total = cart_obj.total cart_id = cart_obj.id qs = Order.objects.filter(cart__id=cart_id) if qs.count() == 1: order_obj = qs.first() order_obj.update_total() # Connect Signal post_save.connect(post_save_cart_total, sender=Cart) def post_save_order(sender, instance, created, *args, **kwargs): print("Saving Order ...") if created: print("Updating ... Order Updated") instance.update_total() # Connect Signal post_save.connect(post_save_order, sender=Order)
ehoversten/Ecommerce_Django
main/apps/orders/models.py
models.py
py
4,469
python
en
code
2
github-code
6
73100458107
# Network Traffic Analyzer: # Analyze network packet captures for anomalies and threats. # pip install pyshark ''' Python script that reads a Wireshark PCAP file and performs basic security analysis, such as identifying suspicious traffic, detecting port scans, and checking for potential security threats. The script uses the pyshark library to parse the PCAP file. ''' import pyshark def analyze_pcap(pcap_file): # Create a PyShark capture object capture = pyshark.FileCapture(pcap_file) # Initialize variables for analysis suspicious_traffic = 0 port_scan_detected = False # Loop through each packet in the capture file for packet in capture: # Check for potential port scanning if "TCP" in packet and int(packet["TCP"].dstport) < 1024: port_scan_detected = True # Add more checks for specific threats or anomalies as needed # Analyze the results if port_scan_detected: print("Port scan detected in the network traffic.") else: print("No port scan detected.") if suspicious_traffic > 0: print(f"Detected {suspicious_traffic} suspicious packets in the network traffic.") else: print("No suspicious traffic detected.") if __name__ == "__main__": # Replace 'your_capture.pcap' with the path to your PCAP file pcap_file_path = 'your_capture.pcap' analyze_pcap(pcap_file_path)
Cnawel/greyhat-python
wireshark/traffice_analyzer.py
traffice_analyzer.py
py
1,415
python
en
code
0
github-code
6
41858795618
############################################################################################# # Foi feita uma estatística em cinco cidades brasileiras para coletar dados sobre acidentes # # de trânsito. Foram obtidos os seguintes dados: # # a) Código da cidade; # # b) Número de veículos de passeio (em 1999); # # c) Número de acidentes de trânsito com vítimas (em 1999). # # Deseja-se saber: # # d) Qual o maior e menor índice de acidentes de transito e a que cidade pertence; # # e) Qual a média de veículos nas cinco cidades juntas; # ############################################################################################# from datetime import date maior = código_maior = menor = código_menor = carros = acidentes_2000 = média_acidentes = 0 nc_2000 = 1 for c in range(1, 6): print('-' * 60) # Solicita Código da cidade código = int(input(f'Código da {c}ª cidade: ')) # Solicita Número de veículos de passeio veículos = int(input(f'Número de veículos de passeio (em {date.today().year - 1}): ')) # Solicita úmero de acidentes de trânsito com vítimas acidentes = int(input(f'Número de acidentes de trânsito com vítimas (em {date.today().year - 1}): ')) # Mostra o maior e menor índice de acidentes de transito e a que cidade pertence if acidentes > maior: maior = acidentes código_maior = código if código_menor == 0: menor = acidentes código_menor = código if acidentes < menor: menor = acidentes código_menor = código # Mostra a média de veículos nas cinco cidades juntas carros += veículos média_veículos = carros / c print('-' * 60) print(f"""O maior indíce de acidentes foi {maior} na cidade de código {código_maior} O menor indíce de acidentes foi {menor} na cidade de código {código_menor} A média de veículos nas {c} cidades foi {média_veículos}""")
nralex/Python
3-EstruturaDeRepeticao/exercício40.py
exercício40.py
py
2,234
python
pt
code
0
github-code
6
15363352723
# ABC095 - C a,b,c,x,y = [int(x) for x in input().split()] ans = 0 ans += min((a+b)*min(x,y),c*2*min(x,y)) # 先ずmin(x,y)個まで買うときのパターンを考える if x == y: print(ans) exit() if x > y: # 足りないピザの情報を記録 rest = ["x",max(x,y)-min(x,y)] else: rest = ["y",max(x,y)-min(x,y)] if rest[0] == "x": ans += min(a*rest[1],c*2*rest[1]) else: ans += min(b*rest[1],c*2*rest[1]) print(ans)
idylle-cynique/atcoder_problems
AtCoder Beginners Contest/ABC095-C.py
ABC095-C.py
py
513
python
en
code
0
github-code
6
12959904969
from .declarative import ( declarative, get_declared, get_members, ) from .dispatch import dispatch from .evaluate import ( evaluate, evaluate_recursive, evaluate_recursive_strict, evaluate_strict, get_callable_description, matches, ) from .namespace import ( EMPTY, flatten, flatten_items, getattr_path, Namespace, setattr_path, setdefaults_path, ) from .refinable import ( refinable, Refinable, RefinableObject, ) from .shortcut import ( class_shortcut, get_shortcuts_by_name, is_shortcut, shortcut, Shortcut, ) from .sort_after import ( LAST, sort_after, ) from .with_meta import with_meta __version__ = '5.7.0' __all__ = [ 'assert_kwargs_empty', 'class_shortcut', 'declarative', 'dispatch', 'EMPTY', 'evaluate', 'evaluate_strict', 'evaluate_recursive', 'evaluate_recursive_strict', 'filter_show_recursive', 'flatten', 'flatten_items', 'full_function_name', 'get_shortcuts_by_name', 'getattr_path', 'get_members', 'is_shortcut', 'LAST', 'matches', 'Namespace', 'remove_show_recursive', 'refinable', 'Refinable', 'RefinableObject', 'setattr_path', 'setdefaults_path', 'shortcut', 'Shortcut', 'should_show', 'sort_after', 'with_meta', ] def should_show(item): try: r = item.show except AttributeError: try: r = item['show'] except (TypeError, KeyError): return True if callable(r): assert False, "`show` was a callable. You probably forgot to evaluate it. The callable was: {}".format(get_callable_description(r)) return r def filter_show_recursive(item): if isinstance(item, list): return [filter_show_recursive(v) for v in item if should_show(v)] if isinstance(item, dict): # The type(item)(** stuff is to preserve the original type return type(item)(**{k: filter_show_recursive(v) for k, v in dict.items(item) if should_show(v)}) if isinstance(item, set): return {filter_show_recursive(v) for v in item if should_show(v)} return item def remove_keys_recursive(item, keys_to_remove): if isinstance(item, list): return [remove_keys_recursive(v, keys_to_remove) for v in item] if isinstance(item, set): return {remove_keys_recursive(v, keys_to_remove) for v in item} if isinstance(item, dict): return {k: remove_keys_recursive(v, keys_to_remove) for k, v in dict.items(item) if k not in keys_to_remove} return item def remove_show_recursive(item): return remove_keys_recursive(item, {'show'}) def assert_kwargs_empty(kwargs): if kwargs: import traceback function_name = traceback.extract_stack()[-2][2] raise TypeError('%s() got unexpected keyword arguments %s' % (function_name, ', '.join(["'%s'" % x for x in sorted(kwargs.keys())]))) def full_function_name(f): return '%s.%s' % (f.__module__, f.__name__) def generate_rst_docs(directory, classes, missing_objects=None): # pragma: no coverage """ Generate documentation for tri.declarative APIs :param directory: directory to write the .rst files into :param classes: list of classes to generate documentation for :param missing_objects: tuple of objects to count as missing markers, if applicable """ doc_by_filename = _generate_rst_docs(classes=classes, missing_objects=missing_objects) # pragma: no mutate for filename, doc in doc_by_filename: # pragma: no mutate with open(directory + filename, 'w') as f2: # pragma: no mutate f2.write(doc) # pragma: no mutate # noinspection PyShadowingNames def _generate_rst_docs(classes, missing_objects=None): if missing_objects is None: missing_objects = tuple() import re def docstring_param_dict(obj): # noinspection PyShadowingNames doc = obj.__doc__ if doc is None: return dict(text=None, params={}) return dict( text=doc[:doc.find(':param')].strip() if ':param' in doc else doc.strip(), params=dict(re.findall(r":param (?P<name>\w+): (?P<text>.*)", doc)) ) def indent(levels, s): return (' ' * levels * 4) + s.strip() # noinspection PyShadowingNames def get_namespace(c): return Namespace( {k: c.__init__.dispatch.get(k) for k, v in get_declared(c, 'refinable_members').items()}) for c in classes: from io import StringIO f = StringIO() def w(levels, s): f.write(indent(levels, s)) f.write('\n') def section(level, title): underline = { 0: '=', 1: '-', 2: '^', }[level] * len(title) w(0, title) w(0, underline) w(0, '') section(0, c.__name__) class_doc = docstring_param_dict(c) constructor_doc = docstring_param_dict(c.__init__) if class_doc['text']: f.write(class_doc['text']) w(0, '') if constructor_doc['text']: if class_doc['text']: w(0, '') f.write(constructor_doc['text']) w(0, '') w(0, '') section(1, 'Refinable members') # noinspection PyCallByClass for refinable_, value in sorted(dict.items(get_namespace(c))): w(0, '* `' + refinable_ + '`') if constructor_doc['params'].get(refinable_): w(1, constructor_doc['params'][refinable_]) w(0, '') w(0, '') defaults = Namespace() for refinable_, value in sorted(get_namespace(c).items()): if value not in (None,) + missing_objects: defaults[refinable_] = value if defaults: section(2, 'Defaults') for k, v in sorted(flatten_items(defaults)): if v != {}: if '<lambda>' in repr(v): import inspect v = inspect.getsource(v) v = v[v.find('lambda'):] v = v.strip().strip(',') elif callable(v): v = v.__module__ + '.' + v.__name__ if v == '': v = '""' w(0, '* `%s`' % k) w(1, '* `%s`' % v) w(0, '') shortcuts = get_shortcuts_by_name(c) if shortcuts: section(1, 'Shortcuts') for name, shortcut_ in sorted(shortcuts.items()): section(2, f'`{name}`') if shortcut_.__doc__: doc = shortcut_.__doc__ f.write(doc.strip()) w(0, '') w(0, '') yield '/%s.rst' % c.__name__, f.getvalue()
jlubcke/tri.declarative
lib/tri_declarative/__init__.py
__init__.py
py
6,981
python
en
code
17
github-code
6
30886261452
######### import statements for sample_models.py ########### from keras import backend as K from keras.models import Model from keras.layers import (BatchNormalization, Conv1D, Dense, Input, TimeDistributed, Activation, Bidirectional, SimpleRNN, GRU, LSTM) ################################ ########### import statements for train_utils.py ############# # from data_generator import AudioGenerator ## Now codes of data_generator.py are pasted here. So I think that this import is useless import _pickle as pickle from keras import backend as K from keras.models import Model from keras.layers import (Input, Lambda, BatchNormalization) from keras.optimizers import SGD, RMSprop from keras.callbacks import ModelCheckpoint import os ##################################################### ############ import and variable definitions for data_generator.py ############# import json import numpy as np import random from python_speech_features import mfcc import librosa import scipy.io.wavfile as wav import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from utils import calc_feat_dim, spectrogram_from_file, text_to_int_sequence from utils import conv_output_length RNG_SEED = 123 ###################################################################### ##################### all codes of data_generator.py starts here ############################3 class AudioGenerator(): def __init__(self, step=10, window=20, max_freq=8000, mfcc_dim=13, minibatch_size=20, desc_file=None, spectrogram=True, max_duration=10.0, sort_by_duration=False): """ Params: step (int): Step size in milliseconds between windows (for spectrogram ONLY) window (int): FFT window size in milliseconds (for spectrogram ONLY) max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned (for spectrogram ONLY) desc_file (str, optional): Path to a JSON-line file that contains labels and paths to the audio files. If this is None, then load metadata right away """ self.feat_dim = calc_feat_dim(window, max_freq) # spectogram self.mfcc_dim = mfcc_dim self.feats_mean = np.zeros((self.feat_dim,)) self.feats_std = np.ones((self.feat_dim,)) self.rng = random.Random(RNG_SEED) if desc_file is not None: self.load_metadata_from_desc_file(desc_file) self.step = step self.window = window self.max_freq = max_freq self.cur_train_index = 0 self.cur_valid_index = 0 self.cur_test_index = 0 self.max_duration=max_duration self.minibatch_size = minibatch_size self.spectrogram = spectrogram self.sort_by_duration = sort_by_duration def get_batch(self, partition): """ Obtain a batch of train, validation, or test data """ if partition == 'train': audio_paths = self.train_audio_paths cur_index = self.cur_train_index texts = self.train_texts elif partition == 'valid': audio_paths = self.valid_audio_paths cur_index = self.cur_valid_index texts = self.valid_texts elif partition == 'test': audio_paths = self.test_audio_paths cur_index = self.test_valid_index texts = self.test_texts else: raise Exception("Invalid partition. " "Must be train/validation") features = [self.normalize(self.featurize(a)) for a in audio_paths[cur_index:cur_index+self.minibatch_size]] # calculate necessary sizes max_length = max([features[i].shape[0] for i in range(0, self.minibatch_size)]) max_string_length = max([len(texts[cur_index+i]) for i in range(0, self.minibatch_size)]) # initialize the arrays X_data = np.zeros([self.minibatch_size, max_length, self.feat_dim*self.spectrogram + self.mfcc_dim*(not self.spectrogram)]) labels = np.ones([self.minibatch_size, max_string_length]) * 28 # blanks input_length = np.zeros([self.minibatch_size, 1]) label_length = np.zeros([self.minibatch_size, 1]) for i in range(0, self.minibatch_size): # calculate X_data & input_length feat = features[i] input_length[i] = feat.shape[0] X_data[i, :feat.shape[0], :] = feat # calculate labels & label_length label = np.array(text_to_int_sequence(texts[cur_index+i])) labels[i, :len(label)] = label label_length[i] = len(label) # return the arrays outputs = {'ctc': np.zeros([self.minibatch_size])} inputs = {'the_input': X_data, 'the_labels': labels, 'input_length': input_length, 'label_length': label_length } return (inputs, outputs) def shuffle_data_by_partition(self, partition): """ Shuffle the training or validation data """ if partition == 'train': self.train_audio_paths, self.train_durations, self.train_texts = shuffle_data( self.train_audio_paths, self.train_durations, self.train_texts) elif partition == 'valid': self.valid_audio_paths, self.valid_durations, self.valid_texts = shuffle_data( self.valid_audio_paths, self.valid_durations, self.valid_texts) else: raise Exception("Invalid partition. " "Must be train/validation") def sort_data_by_duration(self, partition): """ Sort the training or validation sets by (increasing) duration """ if partition == 'train': self.train_audio_paths, self.train_durations, self.train_texts = sort_data( self.train_audio_paths, self.train_durations, self.train_texts) elif partition == 'valid': self.valid_audio_paths, self.valid_durations, self.valid_texts = sort_data( self.valid_audio_paths, self.valid_durations, self.valid_texts) else: raise Exception("Invalid partition. " "Must be train/validation") def next_train(self): """ Obtain a batch of training data """ while True: ret = self.get_batch('train') self.cur_train_index += self.minibatch_size if self.cur_train_index >= len(self.train_texts) - self.minibatch_size: self.cur_train_index = 0 self.shuffle_data_by_partition('train') yield ret def next_valid(self): """ Obtain a batch of validation data """ while True: ret = self.get_batch('valid') self.cur_valid_index += self.minibatch_size if self.cur_valid_index >= len(self.valid_texts) - self.minibatch_size: self.cur_valid_index = 0 self.shuffle_data_by_partition('valid') yield ret def next_test(self): """ Obtain a batch of test data """ while True: ret = self.get_batch('test') self.cur_test_index += self.minibatch_size if self.cur_test_index >= len(self.test_texts) - self.minibatch_size: self.cur_test_index = 0 yield ret def load_train_data(self, desc_file='train_corpus.json'): self.load_metadata_from_desc_file(desc_file, 'train') self.fit_train() if self.sort_by_duration: self.sort_data_by_duration('train') def load_validation_data(self, desc_file='valid_corpus.json'): self.load_metadata_from_desc_file(desc_file, 'validation') if self.sort_by_duration: self.sort_data_by_duration('valid') def load_test_data(self, desc_file='test_corpus.json'): self.load_metadata_from_desc_file(desc_file, 'test') def load_metadata_from_desc_file(self, desc_file, partition): """ Read metadata from a JSON-line file (possibly takes long, depending on the filesize) Params: desc_file (str): Path to a JSON-line file that contains labels and paths to the audio files partition (str): One of 'train', 'validation' or 'test' """ audio_paths, durations, texts = [], [], [] with open(desc_file) as json_line_file: for line_num, json_line in enumerate(json_line_file): try: spec = json.loads(json_line) if float(spec['duration']) > self.max_duration: continue audio_paths.append(spec['key']) durations.append(float(spec['duration'])) texts.append(spec['text']) except Exception as e: # Change to (KeyError, ValueError) or # (KeyError,json.decoder.JSONDecodeError), depending on # json module version print('Error reading line #{}: {}' .format(line_num, json_line)) if partition == 'train': self.train_audio_paths = audio_paths self.train_audio_paths = self.train_audio_paths[:500] # changed self.train_durations = durations self.train_durations = self.train_durations[:500] # changed self.train_texts = texts self.train_texts = self.train_texts[:500] # changed elif partition == 'validation': self.valid_audio_paths = audio_paths self.valid_audio_paths = self.valid_audio_paths[:50] # changed self.valid_durations = durations self.valid_durations = self.valid_durations[:50] # changed self.valid_texts = texts self.valid_texts = self.valid_texts[:50] # changed elif partition == 'test': self.test_audio_paths = audio_paths self.test_durations = durations self.test_texts = texts else: raise Exception("Invalid partition to load metadata. " "Must be train/validation/test") def fit_train(self, k_samples=100): """ Estimate the mean and std of the features from the training set Params: k_samples (int): Use this number of samples for estimation """ k_samples = min(k_samples, len(self.train_audio_paths)) samples = self.rng.sample(self.train_audio_paths, k_samples) feats = [self.featurize(s) for s in samples] feats = np.vstack(feats) self.feats_mean = np.mean(feats, axis=0) self.feats_std = np.std(feats, axis=0) def featurize(self, audio_clip): """ For a given audio clip, calculate the corresponding feature Params: audio_clip (str): Path to the audio clip """ if self.spectrogram: return spectrogram_from_file( audio_clip, step=self.step, window=self.window, max_freq=self.max_freq) else: (rate, sig) = wav.read(audio_clip) return mfcc(sig, rate, numcep=self.mfcc_dim) def normalize(self, feature, eps=1e-14): """ Center a feature using the mean and std Params: feature (numpy.ndarray): Feature to normalize """ return (feature - self.feats_mean) / (self.feats_std + eps) def shuffle_data(audio_paths, durations, texts): """ Shuffle the data (called after making a complete pass through training or validation data during the training process) Params: audio_paths (list): Paths to audio clips durations (list): Durations of utterances for each audio clip texts (list): Sentences uttered in each audio clip """ p = np.random.permutation(len(audio_paths)) audio_paths = [audio_paths[i] for i in p] durations = [durations[i] for i in p] texts = [texts[i] for i in p] return audio_paths, durations, texts def sort_data(audio_paths, durations, texts): """ Sort the data by duration Params: audio_paths (list): Paths to audio clips durations (list): Durations of utterances for each audio clip texts (list): Sentences uttered in each audio clip """ p = np.argsort(durations).tolist() audio_paths = [audio_paths[i] for i in p] durations = [durations[i] for i in p] texts = [texts[i] for i in p] return audio_paths, durations, texts def vis_train_features(index=0): """ Visualizing the data point in the training set at the supplied index """ # obtain spectrogram audio_gen = AudioGenerator(spectrogram=True) audio_gen.load_train_data() vis_audio_path = audio_gen.train_audio_paths[index] vis_spectrogram_feature = audio_gen.normalize(audio_gen.featurize(vis_audio_path)) # obtain mfcc audio_gen = AudioGenerator(spectrogram=False) audio_gen.load_train_data() vis_mfcc_feature = audio_gen.normalize(audio_gen.featurize(vis_audio_path)) # obtain text label vis_text = audio_gen.train_texts[index] # obtain raw audio vis_raw_audio, _ = librosa.load(vis_audio_path) # print total number of training examples print('There are %d total training examples.' % len(audio_gen.train_audio_paths)) # return labels for plotting return vis_text, vis_raw_audio, vis_mfcc_feature, vis_spectrogram_feature, vis_audio_path def plot_raw_audio(vis_raw_audio): # plot the raw audio signal fig = plt.figure(figsize=(12,3)) ax = fig.add_subplot(111) steps = len(vis_raw_audio) ax.plot(np.linspace(1, steps, steps), vis_raw_audio) plt.title('Audio Signal') plt.xlabel('Time') plt.ylabel('Amplitude') plt.show() def plot_mfcc_feature(vis_mfcc_feature): # plot the MFCC feature fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) im = ax.imshow(vis_mfcc_feature, cmap=plt.cm.jet, aspect='auto') plt.title('Normalized MFCC') plt.ylabel('Time') plt.xlabel('MFCC Coefficient') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) ax.set_xticks(np.arange(0, 13, 2), minor=False); plt.show() def plot_spectrogram_feature(vis_spectrogram_feature): # plot the normalized spectrogram fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) im = ax.imshow(vis_spectrogram_feature, cmap=plt.cm.jet, aspect='auto') plt.title('Normalized Spectrogram') plt.ylabel('Time') plt.xlabel('Frequency') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) plt.show() ################################# all codes of data_generator.py ends here ###########################3 # from data_generator import vis_train_features # ## Now codes of data_generator.py are pasted here. So I think that this import is useless # extract label and audio features for a single training example vis_text, vis_raw_audio, vis_mfcc_feature, vis_spectrogram_feature, vis_audio_path = vis_train_features() # allocate 50% of GPU memory (if you like, feel free to change this) from keras.backend.tensorflow_backend import set_session from keras.optimizers import RMSprop, SGD import tensorflow as tf """ config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=config)) """ # watch for any changes in the sample_models module, and reload it automatically #%load_ext autoreload #%autoreload 2 # import NN architectures for speech recognition # from sample_models import * # I have pasted code of sample_models in this file. So no need to import this # import function for training acoustic model # from train_utils import train_model # I have pasted code of train_utils in this file. So no need to import this import numpy as np # from data_generator import AudioGenerator ## Now codes of data_generator.py are pasted here. So I think that this import is useless from keras import backend as K from utils import int_sequence_to_text from IPython.display import Audio ###################### All codes / model defined in sample_models.py start here ################ def simple_rnn_model(input_dim, output_dim=29): """ Build a recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # Add recurrent layer simp_rnn = GRU(output_dim, return_sequences=True, implementation=2, name='rnn')(input_data) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(simp_rnn) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def rnn_model(input_dim, units, activation, output_dim=29): """ Build a recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # Add recurrent layer simp_rnn = LSTM(units, activation=activation, return_sequences=True, implementation=2, name='rnn')(input_data) # TODO: Add batch normalization bn_rnn = BatchNormalization(name='bn_rnn_1d')(simp_rnn) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(bn_rnn) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def cnn_rnn_model(input_dim, filters, kernel_size, conv_stride, conv_border_mode, units, output_dim=29): """ Build a recurrent + convolutional network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # Add convolutional layer conv_1d = Conv1D(filters, kernel_size, strides=conv_stride, padding=conv_border_mode, activation='relu', name='conv1d')(input_data) # Add batch normalization bn_cnn = BatchNormalization(name='bn_conv_1d')(conv_1d) # Add a recurrent layer simp_rnn = GRU(units, activation='relu', return_sequences=True, implementation=2, name='rnn')(bn_cnn) # TODO: Add batch normalization bn_rnn = BatchNormalization(name='bn_rnn_1d')(simp_rnn) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(bn_rnn) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: cnn_output_length( x, kernel_size, conv_border_mode, conv_stride) print(model.summary()) return model def cnn_output_length(input_length, filter_size, border_mode, stride, dilation=1): """ Compute the length of the output sequence after 1D convolution along time. Note that this function is in line with the function used in Convolution1D class from Keras. Params: input_length (int): Length of the input sequence. filter_size (int): Width of the convolution kernel. border_mode (str): Only support `same` or `valid`. stride (int): Stride size used in 1D convolution. dilation (int) """ if input_length is None: return None assert border_mode in {'same', 'valid'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if border_mode == 'same': output_length = input_length elif border_mode == 'valid': output_length = input_length - dilated_filter_size + 1 return (output_length + stride - 1) // stride def deep_rnn_model(input_dim, units, recur_layers, output_dim=29): """ Build a deep recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # TODO: Add recurrent layers, each with batch normalization if recur_layers == 1: layer = LSTM(units, return_sequences=True, activation='relu')(input_data) layer = BatchNormalization(name='bt_rnn_1')(layer) else: layer = LSTM(units, return_sequences=True, activation='relu')(input_data) layer = BatchNormalization(name='bt_rnn_1')(layer) for i in range(recur_layers - 2): layer = LSTM(units, return_sequences=True, activation='relu')(layer) layer = BatchNormalization(name='bt_rnn_{}'.format(2+i))(layer) layer = LSTM(units, return_sequences=True, activation='relu')(layer) layer = BatchNormalization(name='bt_rnn_last_rnn')(layer) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(layer) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def bidirectional_rnn_model(input_dim, units, output_dim=29): """ Build a bidirectional recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # TODO: Add bidirectional recurrent layer bidir_rnn = Bidirectional(LSTM(units, return_sequences=True, activation='relu'), merge_mode='concat')(input_data) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(bidir_rnn) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def final_model(input_dim, filters, kernel_size, conv_stride, conv_border_mode, units, output_dim=29, dropout_rate=0.5, number_of_layers=2, cell=GRU, activation='tanh'): """ Build a deep network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # TODO: Specify the layers in your network conv_1d = Conv1D(filters, kernel_size, strides=conv_stride, padding=conv_border_mode, activation='relu', name='layer_1_conv', dilation_rate=1)(input_data) conv_bn = BatchNormalization(name='conv_batch_norm')(conv_1d) if number_of_layers == 1: layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='rnn_1', dropout=dropout_rate)(conv_bn) layer = BatchNormalization(name='bt_rnn_1')(layer) else: layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='rnn_1', dropout=dropout_rate)(conv_bn) layer = BatchNormalization(name='bt_rnn_1')(layer) for i in range(number_of_layers - 2): layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='rnn_{}'.format(i+2), dropout=dropout_rate)(layer) layer = BatchNormalization(name='bt_rnn_{}'.format(i+2))(layer) layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='final_layer_of_rnn')(layer) layer = BatchNormalization(name='bt_rnn_final')(layer) time_dense = TimeDistributed(Dense(output_dim))(layer) # TODO: Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) # TODO: Specify model.output_length model.output_length = lambda x: cnn_output_length( x, kernel_size, conv_border_mode, conv_stride) print(model.summary()) return model ##################################### code / model defined in sample_models.py ends here ############################## ########################## all codes of train_utils.py starts here ######################### def ctc_lambda_func(args): y_pred, labels, input_length, label_length = args #print("y_pred.shape = " + str(y_pred.shape)) #print("labels.shape = " + str(labels.shape)) #print("input_length.shape = " + str(input_length.shape)) #print("label_length.shape = " + str(label_length.shape)) return K.ctc_batch_cost(labels, y_pred, input_length, label_length) # input_length= seq length of each item in y_pred # label_length is the seq length of each item in labels def add_ctc_loss(input_to_softmax): the_labels = Input(name='the_labels', shape=(None,), dtype='float32') input_lengths = Input(name='input_length', shape=(1,), dtype='int64') label_lengths = Input(name='label_length', shape=(1,), dtype='int64') output_lengths = Lambda(input_to_softmax.output_length)(input_lengths) # output_length = BatchNormalization()(input_lengths) # CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')( [input_to_softmax.output, the_labels, output_lengths, label_lengths]) model = Model( inputs=[input_to_softmax.input, the_labels, input_lengths, label_lengths], outputs=loss_out) return model def train_model(input_to_softmax, pickle_path, save_model_path, train_json='train_corpus.json', valid_json='valid_corpus.json', minibatch_size=20, spectrogram=True, mfcc_dim=13, optimizer=SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5), epochs=20, verbose=1, sort_by_duration=False, max_duration=10.0): # create a class instance for obtaining batches of data audio_gen = AudioGenerator(minibatch_size=minibatch_size, spectrogram=spectrogram, mfcc_dim=mfcc_dim, max_duration=max_duration, sort_by_duration=sort_by_duration) # add the training data to the generator audio_gen.load_train_data(train_json) audio_gen.load_validation_data(valid_json) # calculate steps_per_epoch num_train_examples=len(audio_gen.train_audio_paths) steps_per_epoch = num_train_examples//minibatch_size # calculate validation_steps num_valid_samples = len(audio_gen.valid_audio_paths) validation_steps = num_valid_samples//minibatch_size # add CTC loss to the NN specified in input_to_softmax model = add_ctc_loss(input_to_softmax) # CTC loss is implemented elsewhere, so use a dummy lambda function for the loss model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=optimizer) # make results/ directory, if necessary if not os.path.exists('results'): os.makedirs('results') # add checkpointer checkpointer = ModelCheckpoint(filepath='results/'+save_model_path, verbose=0) # train the model hist = model.fit_generator(generator=audio_gen.next_train(), steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=audio_gen.next_valid(), validation_steps=validation_steps, callbacks=[checkpointer], verbose=verbose) # save model loss with open('results/'+pickle_path, 'wb') as f: pickle.dump(hist.history, f) ################################ all codes of train_utils.py ends here ####################################### """ model_0 = simple_rnn_model(input_dim=13) # change to 13 if you would like to use MFCC features """ """ train_model(input_to_softmax=model_0, pickle_path='model_0.pickle', save_model_path='model_0.h5', spectrogram=False) # change to False if you would like to use MFCC features """ model_end = final_model(input_dim=13, filters=200, kernel_size=11, conv_stride=2, conv_border_mode='valid', units=200, activation='relu', cell=GRU, dropout_rate=1, number_of_layers=2) train_model(input_to_softmax=model_end, pickle_path='model_end.pickle', save_model_path='model_end.h5', epochs=5, spectrogram=False) """ model_4 = bidirectional_rnn_model(input_dim=13, # change to 13 if you would like to use MFCC features units=200) train_model(input_to_softmax=model_4, pickle_path='model_4.pickle', save_model_path='model_4.h5', epochs=5, optimizer=SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=2), spectrogram=False) # change to False if you would like to use MFCC features """ def get_predictions(index, partition, input_to_softmax, model_path): """ Print a model's decoded predictions Params: index (int): The example you would like to visualize partition (str): One of 'train' or 'validation' input_to_softmax (Model): The acoustic model model_path (str): Path to saved acoustic model's weights """ # load the train and test data data_gen = AudioGenerator(spectrogram=False) data_gen.load_train_data() data_gen.load_validation_data() # obtain the true transcription and the audio features if partition == 'validation': transcr = data_gen.valid_texts[index] audio_path = data_gen.valid_audio_paths[index] data_point = data_gen.normalize(data_gen.featurize(audio_path)) elif partition == 'train': transcr = data_gen.train_texts[index] audio_path = data_gen.train_audio_paths[index] data_point = data_gen.normalize(data_gen.featurize(audio_path)) else: raise Exception('Invalid partition! Must be "train" or "validation"') # obtain and decode the acoustic model's predictions input_to_softmax.load_weights(model_path) prediction = input_to_softmax.predict(np.expand_dims(data_point, axis=0)) print("prediction.shape: " + str(prediction.shape)) output_length = [input_to_softmax.output_length(data_point.shape[0])] pred_ints = (K.eval(K.ctc_decode( prediction, output_length)[0][0])+1).flatten().tolist() print("pred_ints: " + str(pred_ints)) print("len(pred_ints): " + str(len(pred_ints))) # play the audio file, and display the true and predicted transcriptions print('-'*80) Audio(audio_path) print('True transcription:\n' + '\n' + transcr) print('-'*80) print('Predicted transcription:\n' + '\n' + ''.join(int_sequence_to_text(pred_ints))) print('-'*80) """ get_predictions(index=2, partition='validation', input_to_softmax=model_end, model_path='results/model_end.h5') """ """ get_predictions(index=1, partition='validation', input_to_softmax=model_0, model_path='results/model_0.h5') """
MdAbuNafeeIbnaZahid/English-Speech-to-Text-Using-Keras
speech-recognition-neural-network/train.py
train.py
py
31,706
python
en
code
6
github-code
6
28892210067
import os import time def log(filename, text): """ Writes text to file in logs/mainnet/filename and adds a timestamp :param filename: filename :param text: text :return: None """ path = "logs/mainnet/" if not os.path.isdir("logs/"): os.makedirs("logs/") if not os.path.isdir("logs/mainnet/"): os.makedirs("logs/mainnet/") f = open(path+filename, "a") f.write(time.strftime('[%Y-%m-%d %H:%M:%S]:', time.localtime(time.time()))+str(text)+"\n") f.flush() f.close() def log_and_print(filename, text): """ Writes text to file in logs/mainnet/filename, adds a timestamp and prints the same to the console :param filename: filename :param text: text :return: None """ log(filename, text) print(time.strftime('[%Y-%m-%d %H:%M:%S]:', time.localtime(time.time()))+str(text))
Devel484/Equalizer
API/log.py
log.py
py
871
python
en
code
4
github-code
6
32028505345
#x = int(input()) #y = int(input()) #z = int(input()) #n = int(input()) # #array = [] #for valuex in range(0,x+1): # for valuey in range (0,y+1): # for valuez in range (0,z+1): # if (valuex + valuey + valuez ==n): # continue # else: # array.append([valuex,valuey,valuez]) # #print(f"[{valuex},{valuey},{valuez}]") # # #print(array) """Version IA""" x = int(input()) y = int(input()) z = int(input()) n = int(input()) # Genera todas las combinaciones posibles de x, y y z -- Igual al tripe for anidado combinations = [(valuex, valuey, valuez) for valuex in range(0, x+1) for valuey in range(0, y+1) for valuez in range(0, z+1)] print(valuex) #Filtra la lista para incluir solo las combinaciones que cumplen la condición array = [combination for combination in combinations if sum(combination) != n] print(array)
Andreius-14/Notas_Mini
3.Python/Hackerrank/array.py
array.py
py
899
python
en
code
0
github-code
6
6309221669
# this sets your path correctly so the imports work import sys import os sys.path.insert(1, os.path.dirname(os.getcwd())) from api import QuorumAPI import json # this library will let us turn dictionaries into csv files import csv STATES = { 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } class MapAPI(QuorumAPI): def map(self, return_map=False): if return_map in [True, False]: self.filters["map"] = return_map else: raise Exception("Must be a Boolean value!") return self class MapVisualizer(object): # Since both the api_key and username stay the same so initialize API object once quorum_api = MapAPI(username="gwc", api_key="691e43c415d88cd16286edb1f78abb2e348688da") # Let's write a helper function that takes in a dictionary of (state, number) # key-value pairs and produces a csv file of the following format: # state,num # Alabama,9 # Alaska, 5 # ...etc. # We can use the csv class that we imported above. def save_state_csv(self, item_list, file_name): # we want to use python's 'with...as' syntax because # it is a safe way to open and write files. with open(file_name, 'w') as f: # w instead of wb in python 3 w = csv.writer(f, delimiter=',') w.writerow(('state', 'num')) for i in item_list: w.writerow((STATES[i['state'].upper()], i['value'])) def get_female_legislators_per_state(self, search_term): """ get the number of female legislators per state. Write this to the data.csv file that will then be used """ # An enum is a data type consisting of a set of named values called elements or numbers. A color enum may include # blue, green, and red. # class Gender(PublicEnum): # male = enum.Item( # 1, # 'Male', # slug="male", # pronoun="he", # pronoun_object="him", # pronoun_possessive="his", # honorific="Mr." # ) # female = enum.Item( # 2, # 'Female', # slug="female", # pronoun="she", # pronoun_object="her", # pronoun_possessive="her", # honorific="Ms." # How can we get the number of female legislators per state? quorum_api_females = self.quorum_api.set_endpoint("TODO") \ .map(True) \ .count(True) \ .filter( # TODO most_recent_person_type=1 # legislators ) # retrives the total females and assigns to dictionary total_females = quorum_api_females.GET() # Clears the API results before the next API call quorum_api_females.clear() # How can we get the total number of legislators per state? # TODO # Retrive the total number of legislators per state and assign to dictionary # Clear the API results before next API call # Now let's find the proportion of women over total legislators per state! self.save_state_csv(TODO, 'data.csv') # After you are done with implementing the code, initialize a map! cv = MapVisualizer() # And enter the search term that you are interested in, and go back to localhost:8000, # is the map what you expected it to be? cv.get_female_legislators_per_state()
wynonna/from_GWC_laptop
quorum-gwc-master/project_2/main.py
main.py
py
5,060
python
en
code
0
github-code
6
37559653754
from selenium import webdriver import time # Have to change the path according to where your chromedriver locate PATH = "C:\Program Files (x86)\chromedriver.exe" driver = webdriver.Chrome(PATH) driver.get("http://ec2-54-208-152-154.compute-1.amazonaws.com/") arrayOfBar = [] arrayLeftBowl = [] arrayRightBowl = [] n = 9; for i in range(n): arrayLeftBowl.append(driver.find_element_by_id("left_" + str(i))) arrayRightBowl.append(driver.find_element_by_id("right_" + str(i))) arrayOfBar.append(driver.find_element_by_id("coin_" + str(i))) """ This problem is best to divide and conquer. It is suited for Binary Search Algorithm. We can divide the array of gold bar into three locations. Left table, mid, and the right table. If the left table and right table are equal weight then it mean the mid is FAKE GOLD. But if the left table is less than the right table. Then we would toss everthing from mid + 1 to n (size of array). Or if the left table is greater than the right table, then we would toss everything from 0 to mid - 1. Doing this we are dividing the search item by half of the size of the array and conquer it by picking the table that is less than. This would give us time complexity of O(logn) time. """ low = 0 high = len(arrayOfBar) - 1 while(low < high): mid = int(low + ((high - low) / 2)) # reset the table driver.find_element_by_xpath("/html/body/div/div/div[1]/div[4]/button[1]").click() j = 0 for i in range (low, mid): # setting the left table arrayLeftBowl[j].send_keys(i) j += 1 j = 0 for i in range (mid + 1, high + 1): # setting the right table arrayRightBowl[j].send_keys(i) j += 1 # Weight the item driver.find_element_by_xpath("/html/body/div/div/div[1]/div[4]/button[2]").click() time.sleep(5) # getting the result after weight result = driver.find_element_by_xpath("/html/body/div/div/div[1]/div[2]/button").text if(j == 1): if(result == "<"): print("Fake gold is " + str(low)) arrayOfBar[low].click() break elif(result == ">"): print("Fake gold is " + str(high)) arrayOfBar[high].click() break if(result == "="): print("Fake gold is " + str(mid)) arrayOfBar[mid].click() break elif( result == ">"): low = mid; else: high = mid; time.sleep(3) driver.quit()
LiyaNorng/Fetch-Rewards-Coding-Exercise
FakeGold.py
FakeGold.py
py
2,344
python
en
code
1
github-code
6
60822349
""" scrapy1.5限制request.callback and request.errback不能为非None以外的任何非可调用对象,导致一些功能无法实现。这里解除该限制 """ from scrapy import Request as _Request from scrapy.http.headers import Headers class Request(_Request): def __init__(self, url, callback=None, method='GET', headers=None, body=None, cookies=None, meta=None, encoding='utf-8', priority=0, dont_filter=False, errback=None, flags=None, cb_kwargs=None): self._encoding = encoding # this one has to be set first self.method = str(method).upper() self._set_url(url) self._set_body(body) assert isinstance(priority, int), "Request priority not an integer: %r" % priority self.priority = priority assert callback or not errback, "Cannot use errback without a callback" self.callback = callback self.errback = errback self.cookies = cookies or {} self.headers = Headers(headers or {}, encoding=encoding) self.dont_filter = dont_filter self._meta = dict(meta) if meta else None self._cb_kwargs = dict(cb_kwargs) if cb_kwargs else None self.flags = [] if flags is None else list(flags)
ShichaoMa/structure_spider
structor/custom_request.py
custom_request.py
py
1,255
python
en
code
29
github-code
6
24452709455
import json import os import random from nonebot import on_keyword, logger from nonebot.adapters.mirai2 import MessageSegment, Bot, Event tarot = on_keyword({"塔罗牌"}, priority=5) @tarot.handle() async def send_tarot(bot: Bot, event: Event): """塔罗牌""" card, filename = await get_random_tarot() image_dir = random.choice(['normal', 'reverse']) card_type = '正位' if image_dir == 'normal' else '逆位' content = f"{card['name']} ({card['name-en']}) {card_type}\n牌意:{card['meaning'][image_dir]}" elements = [] img_path = os.path.join(f"{os.getcwd()}", "warfarin", "plugins", "Tarot", "resource", f"{image_dir}", f"{filename}.jpg") logger.debug(f"塔罗牌图片:{img_path}") if filename and os.path.exists(img_path): elements.append(MessageSegment.image(path=img_path)) elements.append(MessageSegment.plain(content)) await tarot.finish(elements) async def get_random_tarot(): # path = f"{os.getcwd()}/warfarin/plugins/Tarot/resource/tarot.json" path = os.path.join(f"{os.getcwd()}", "warfarin", "plugins", "Tarot", "resource", "tarot.json") with open(path, 'r', encoding='utf-8') as json_file: data = json.load(json_file) kinds = ['major', 'pentacles', 'wands', 'cups', 'swords'] cards = [] for kind in kinds: cards.extend(data[kind]) card = random.choice(cards) filename = '' for kind in kinds: if card in data[kind]: filename = '{}{:02d}'.format(kind, card['num']) break return card, filename
mzttsaintly/Warfarin-bot
warfarin/plugins/Tarot/__init__.py
__init__.py
py
1,590
python
en
code
1
github-code
6
32509281023
import torch import torch.nn as nn # nn.linear 라이브러리를 사용하기 위해 import # F.mse(mean squared error) <- linear regression, LOSS Function 존재 # Classification problem에서 사용하는 loss function : Cross-Entropy import torch.nn.functional as F import torch.optim as optim # SGD, Adam, etc.최적화 라이브러리 # 임의 데이터 생성 # 입력이 1, 출력이 1 # Multi-variable linear regression (입력 3, 출력 1) # input(x_train) 4x3 2D Tensor 생성 x_train = torch.FloatTensor([[90, 73, 89], [66, 92, 83], [86, 87, 78], [85, 96, 75]]) # y_train (GT) y_train = torch.FloatTensor([[152], [185], [100], [193]]) # 모델 선언 및 초기화 # y = WX (w1*x1 + w2*x2...wn*xn + b) # nn.Linear(input_dim, output_dim) # 초기화 # w = randn(1) # model.paramters (weight: 3, bias: 1) # weight, bias : 랜덤한 값으로 자동 셋팅 model = nn.Linear(3, 1) # get_weights()함수 참고.. # model.parameters() 최적화, w,b로 미분을 해야하므로 (requires_grad=True) 셋팅된 것을 확인할 수 있음. print(list(model.parameters())) optimizer = optim.SGD(model.parameters(), lr=0.01) # learning_rate 설정: 노가다하면서.. 구하세요. # iteration 횟수 지정 (epoch 횟수 지정) # epoch : 전체 훈련 데이터에 대해 경사 하강법을 적용하는 횟수 (2000번을 돌면서 w, b 값을 update) nb_epochs = 2000 for epoch in range(nb_epochs+1): # H(x) 계산 wx+b를 한번 계산한 결과값을 pred 변수에 assign # x_train = 입력 데이터 (1, 2, 3), w (0.6242), b (-0.1192) # 추정값 = w*x_train+b pred = model(x_train) # cost 계산 (loss function : Mean Square Error) # Cost fuction, loss Function --> Cost, Loss, Error # mse = mean(sum(pow(y, y^)))) cost = F.mse_loss(pred, y_train) # y_train (GT, 결과, 2, 4, 6) # SGD를 이용해서 최적값 도출하는 부분 (w,b 값을 조정) optimizer.zero_grad() # gradient 계산 시 zero 초기화가 들어가 있지 않으면 누적된 값으로 적용 cost.backward() # 실제 기울기 값 계산하는 부분 optimizer.step() # w, b 값을 update 하는 부분 # 100번 마다 로그 출력 if epoch % 100 == 0: tmp = list(model.parameters()) print(f'Epoch: {epoch:4d} Cost : {cost.item(): .6f}') print(f'w, b: {tmp[0]}, {tmp[1]}') new_var = torch.FloatTensor([[73, 80, 75]]) # 152에 근접한 값이 출력이 되면 학습이 잘 된 것으로 판단. pred_y = model(new_var) # model.forward(new_var)
JEONJinah/Shin
multi_varialbe_LR.py
multi_varialbe_LR.py
py
2,761
python
ko
code
0
github-code
6
38958650130
import os if not os.path.exists('./checkpoints'): os.makedirs('./checkpoints') if not os.path.exists('./model'): os.makedirs('./model') #Simulation configuration MAX_EPISODE = 500 TS = 1e-3 CLR_DECAY = 0 ALR_DECAY = 0 # Hyper-parameters WARMUP = False EPS_WARM = 5 #Learning strategies PANDA = True TRAIN = False
giuliomattera/Cartpole-RL-agents-control-ros-bridge-for-simulink
rl_connection/src/config.py
config.py
py
328
python
en
code
6
github-code
6
18307407152
import importlib.util as iutil import os from datetime import datetime from time import perf_counter from uuid import uuid4 import numpy as np import yaml from aequilibrae.distribution.ipf_core import ipf_core from aequilibrae.context import get_active_project from aequilibrae.matrix import AequilibraeMatrix, AequilibraeData from aequilibrae.project.data.matrix_record import MatrixRecord spec = iutil.find_spec("openmatrix") has_omx = spec is not None class Ipf: """Iterative proportional fitting procedure .. code-block:: python >>> from aequilibrae import Project >>> from aequilibrae.distribution import Ipf >>> from aequilibrae.matrix import AequilibraeMatrix, AequilibraeData >>> project = Project.from_path("/tmp/test_project_ipf") >>> matrix = AequilibraeMatrix() # Here we can create from OMX or load from an AequilibraE matrix. >>> matrix.load('/tmp/test_project/matrices/demand.omx') >>> matrix.computational_view() >>> args = {"entries": matrix.zones, "field_names": ["productions", "attractions"], ... "data_types": [np.float64, np.float64], "memory_mode": True} >>> vectors = AequilibraeData() >>> vectors.create_empty(**args) >>> vectors.productions[:] = matrix.rows()[:] >>> vectors.attractions[:] = matrix.columns()[:] # We assume that the indices would be sorted and that they would match the matrix indices >>> vectors.index[:] = matrix.index[:] >>> args = { ... "matrix": matrix, "rows": vectors, "row_field": "productions", "columns": vectors, ... "column_field": "attractions", "nan_as_zero": False} >>> fratar = Ipf(**args) >>> fratar.fit() # We can get back to our OMX matrix in the end >>> fratar.output.export("/tmp/to_omx_output.omx") >>> fratar.output.export("/tmp/to_aem_output.aem") """ def __init__(self, project=None, **kwargs): """ Instantiates the Ipf problem :Arguments: **matrix** (:obj:`AequilibraeMatrix`): Seed Matrix **rows** (:obj:`AequilibraeData`): Vector object with data for row totals **row_field** (:obj:`str`): Field name that contains the data for the row totals **columns** (:obj:`AequilibraeData`): Vector object with data for column totals **column_field** (:obj:`str`): Field name that contains the data for the column totals **parameters** (:obj:`str`, optional): Convergence parameters. Defaults to those in the parameter file **nan_as_zero** (:obj:`bool`, optional): If Nan values should be treated as zero. Defaults to True :Results: **output** (:obj:`AequilibraeMatrix`): Result Matrix **report** (:obj:`list`): Iteration and convergence report **error** (:obj:`str`): Error description """ self.cpus = 0 self.parameters = kwargs.get("parameters", self.__get_parameters("ipf")) # Seed matrix self.matrix = kwargs.get("matrix", None) # type: AequilibraeMatrix # NaN as zero self.nan_as_zero = kwargs.get("nan_as_zero", True) # row vector self.rows = kwargs.get("rows", None) self.row_field = kwargs.get("row_field", None) self.output_name = kwargs.get("output", AequilibraeMatrix().random_name()) # Column vector self.columns = kwargs.get("columns", None) self.column_field = kwargs.get("column_field", None) self.output = AequilibraeMatrix() self.error = None self.__required_parameters = ["convergence level", "max iterations", "balancing tolerance"] self.error_free = True self.report = [" ##### IPF computation ##### ", ""] self.gap = None self.procedure_date = "" self.procedure_id = "" def __check_data(self): self.error = None self.__check_parameters() # check data types if not isinstance(self.rows, AequilibraeData): raise TypeError("Row vector needs to be an instance of AequilibraeData") if not isinstance(self.columns, AequilibraeData): raise TypeError("Column vector needs to be an instance of AequilibraeData") if not isinstance(self.matrix, AequilibraeMatrix): raise TypeError("Seed matrix needs to be an instance of AequilibraeMatrix") # Check data type if not np.issubdtype(self.matrix.dtype, np.floating): raise ValueError("Seed matrix need to be a float type") row_data = self.rows.data col_data = self.columns.data if not np.issubdtype(row_data[self.row_field].dtype, np.floating): raise ValueError("production/rows vector must be a float type") if not np.issubdtype(col_data[self.column_field].dtype, np.floating): raise ValueError("Attraction/columns vector must be a float type") # Check data dimensions if not np.array_equal(self.rows.index, self.columns.index): raise ValueError("Indices from row vector do not match those from column vector") if not np.array_equal(self.matrix.index, self.columns.index): raise ValueError("Indices from vectors do not match those from seed matrix") # Check if matrix was set for computation if self.matrix.matrix_view is None: raise ValueError("Matrix needs to be set for computation") else: if len(self.matrix.matrix_view.shape[:]) > 2: raise ValueError("Matrix' computational view needs to be set for a single matrix core") if self.error is None: # check balancing: sum_rows = np.nansum(row_data[self.row_field]) sum_cols = np.nansum(col_data[self.column_field]) if abs(sum_rows - sum_cols) > self.parameters["balancing tolerance"]: self.error = "Vectors are not balanced" else: # guarantees that they are precisely balanced col_data[self.column_field][:] = col_data[self.column_field][:] * (sum_rows / sum_cols) if self.error is not None: self.error_free = False def __check_parameters(self): for i in self.__required_parameters: if i not in self.parameters: self.error = "Parameters error. It needs to be a dictionary with the following keys: " for t in self.__required_parameters: self.error = self.error + t + ", " if self.error: raise ValueError(self.error) def fit(self): """Runs the IPF instance problem to adjust the matrix Resulting matrix is the *output* class member """ self.procedure_id = uuid4().hex self.procedure_date = str(datetime.today()) t = perf_counter() self.__check_data() if self.error_free: max_iter = self.parameters["max iterations"] conv_criteria = self.parameters["convergence level"] if self.matrix.is_omx(): self.output = AequilibraeMatrix() self.output.create_from_omx( self.output.random_name(), self.matrix.file_path, cores=self.matrix.view_names ) self.output.computational_view() else: self.output = self.matrix.copy(self.output_name, memory_only=True) if self.nan_as_zero: self.output.matrix_view[:, :] = np.nan_to_num(self.output.matrix_view)[:, :] rows = self.rows.data[self.row_field] columns = self.columns.data[self.column_field] tot_matrix = np.nansum(self.output.matrix_view[:, :]) # Reporting self.report.append("Target convergence criteria: " + str(conv_criteria)) self.report.append("Maximum iterations: " + str(max_iter)) self.report.append("") self.report.append("Rows:" + str(self.rows.entries)) self.report.append("Columns: " + str(self.columns.entries)) self.report.append("Total of seed matrix: " + "{:28,.4f}".format(float(tot_matrix))) self.report.append("Total of target vectors: " + "{:25,.4f}".format(float(np.nansum(rows)))) self.report.append("") self.report.append("Iteration, Convergence") self.gap = conv_criteria + 1 seed = np.array(self.output.matrix_view[:, :], copy=True) iter, self.gap = ipf_core( seed, rows, columns, max_iterations=max_iter, tolerance=conv_criteria, cores=self.cpus ) self.output.matrix_view[:, :] = seed[:, :] self.report.append(str(iter) + " , " + str("{:4,.10f}".format(float(np.nansum(self.gap))))) self.report.append("") self.report.append("Running time: " + str("{:4,.3f}".format(perf_counter() - t)) + "s") def save_to_project(self, name: str, file_name: str, project=None) -> MatrixRecord: """Saves the matrix output to the project file :Arguments: **name** (:obj:`str`): Name of the desired matrix record **file_name** (:obj:`str`): Name for the matrix file name. AEM and OMX supported **project** (:obj:`Project`, Optional): Project we want to save the results to. Defaults to the active project """ project = project or get_active_project() mats = project.matrices record = mats.new_record(name, file_name, self.output) record.procedure_id = self.procedure_id record.timestamp = self.procedure_date record.procedure = "Iterative Proportional fitting" record.save() return record def __tot_rows(self, matrix): return np.nansum(matrix, axis=1) def __tot_columns(self, matrix): return np.nansum(matrix, axis=0) def __factor(self, marginals, targets): f = np.divide(targets, marginals) # We compute the factors f[f == np.NINF] = 1 # And treat the errors return f def __get_parameters(self, model): path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) with open(path + "/parameters.yml", "r") as yml: path = yaml.safe_load(yml) self.cpus = int(path["system"]["cpus"]) return path["distribution"][model]
AequilibraE/aequilibrae
aequilibrae/distribution/ipf.py
ipf.py
py
10,544
python
en
code
140
github-code
6
32483785153
import random from collections import Counter import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init from mmcv.runner import force_fp32 import nltk from nltk.cluster.kmeans import KMeansClusterer from mmdet.core import (anchor_inside_flags, bbox_overlaps, build_assigner, build_sampler, images_to_levels, multi_apply, reduce_mean, unmap) from mmdet.core.utils import filter_scores_and_topk class attention1d(nn.Module): def __init__(self, in_planes=1, ratios=16, K=4, temperature=1, init_weight=True): # quality map super(attention1d, self).__init__() assert temperature % 3 == 1 if in_planes != 3: hidden_planes = int(in_planes * ratios) else: hidden_planes = K self.fc1 = nn.Conv2d(in_planes, hidden_planes, 1, bias=False) # self.bn = nn.BatchNorm2d(hidden_planes) self.fc2 = nn.Conv2d(hidden_planes, K, 1, bias=True) self.temperature = temperature self.K = K if init_weight: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m ,nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def updata_temperature(self): if self.temperature!=1: self.temperature -= 3 print('Change temperature to:', str(self.temperature)) def forward(self, x): _N, _C, _H, _W = x.size() x = self.fc1(x) x = F.relu(x) x = self.fc2(x) return F.softmax(x / self.temperature, 1) class Dynamic_conv1d(nn.Module): ''' Args: x(Tensor): shape (batch, in_channel, height, width) quality_map(Tensor): shape (batch, 1, height, width) Return: output(Tensor): shape (batch, out_channel, height, width) Note: in_channel must eqal to out_channel ''' def __init__(self, in_planes, out_planes, ratio=16.0, stride=1, padding=0, dilation=1, bias=True, K=2,temperature=1, init_weight=True): super(Dynamic_conv1d, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.stride = stride self.padding = padding self.dilation = dilation self.bias = bias self.K = K self.attention = attention1d(1, ratio, K, temperature) self.weight = nn.Parameter(torch.randn(K, out_planes, in_planes), requires_grad=True) if bias: self.bias = nn.Parameter(torch.zeros(K, out_planes)) else: self.bias = None if init_weight: self._initialize_weights() #TODO 初始化 def _initialize_weights(self): # maybe problematic for i in range(self.K): nn.init.kaiming_uniform_(self.weight[i]) def update_temperature(self): self.attention.updata_temperature() def forward(self, x, quality_map):# a different version of dynamic convlution, is another kind of spatial attention residule = x batch_size, in_planes, height, width = x.size() softmax_attention = self.attention(quality_map) print(f'attention size {softmax_attention.size()}') print(f'attention {softmax_attention}') softmax_attention = softmax_attention.permute(0, 2, 3, 1) print(f'attention size after {softmax_attention.size()}') print(f'attention after {softmax_attention}') #x = x.view(1, -1, width, height)# 变化成一个维度进行组卷积 #weight = self.weight.view(self.K, -1) # 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同) #weight = weight.view(self.K, self.in_planes, self.out_planes) # print(f'softmax_attention {softmax_attention.size()}') # print(f'self.weight {self.weight.size()}') weight = self.weight.view(self.K, -1) print(f'weight size {weight.size()}') print(f'weight {weight}') aggregate_weight = torch.matmul(softmax_attention, weight).view(batch_size, height, width, self.out_planes, self.in_planes)# (N, H, W, C2, C1) print(f'aggregate_weight size {aggregate_weight.size()}') print(f'aggregate_weight {aggregate_weight}') aggregate_weight = aggregate_weight.permute(3, 0, 4, 1, 2) # (C2, N, C1, H, W) print(f'aggregate_weight after size {aggregate_weight.size()}') print(f'aggregate_weight after {aggregate_weight}') output = aggregate_weight * x[None, :, :, :, :] # if self.bias is not None: # aggregate_bias = torch.matmul(softmax_attention, self.bias).permute(0, 3, 1, 2) # (N, C1, H, W) # print(aggregate_bias.size()) # print(softmax_attention.size()) # output = output + aggregate_bias output = output.sum(dim=0) # (N, C1, H, W) return residule + output dy1 = Dynamic_conv1d(2, 1) x = torch.tensor([[[[1, 2],[3, 4]],[[5, 6],[7, 8]]]], dtype=torch.float32) y = torch.tensor([[[[1,2],[3,4]]]], dtype=torch.float32) print(f'x size {x.size()}') print(f'x {x}') print(f'y size {y.size()}') print(f'y {y}') result = dy1(x, y) print(f'output size {result.size()}') print(f'output {result}')
johnran103/mmdet
test_dy_conv.py
test_dy_conv.py
py
5,635
python
en
code
1
github-code
6
17940292131
from sklearn.metrics import confusion_matrix, roc_auc_score import json import numpy as np def general_result(y_true, y_score, threshold=0.6): def pred(score, best_thresh): label = 0 if score > best_thresh: label = 1 return label y_score = np.array(y_score) if len(y_score.shape) == 2: y_score = y_score[:,1] # best_thresh = select_threshold(y_true, y_score) best_thresh = threshold y_pred = [pred(score, best_thresh) for score in y_score] c_m = confusion_matrix(y_true, y_pred) print("model works on the data, the confusion_matrix is:(Threshold:{})".format(str(best_thresh)), c_m) acc = (c_m[0, 0]+c_m[1, 1])/(c_m[0, 0]+c_m[0, 1]+c_m[1, 0]+c_m[1, 1]) print("model works on the data, the accuracy is:", acc) pre = c_m[1, 1]/(c_m[1, 1]+c_m[0, 1]) print("model works on the data, the precision is:", pre) re = c_m[1, 1]/(c_m[1, 1]+c_m[1, 0]) print("model works on the data, the recall is:", re) f_score = (2*pre*re)/(pre+re) print("model works on the data, the F1-score is:", f_score) #train_label_binary = to_categorical(train_label) auc = roc_auc_score(y_true, y_score) print("model works on the data, the auc is:", auc) def select_threshold(y_true, y_score): def pred(score, threshold): label = 0 if score > threshold: label = 1 return label best_th = 0 f1_score = 0 output = {'Precision':[], 'Recall':[]} for i in range(1,100): threshold = i/100 y_pred = [pred(score, threshold) for score in y_score] c_m = confusion_matrix(y_true, y_pred) try: pre = c_m[1, 1]/(c_m[1, 1]+c_m[0, 1]) re = c_m[1, 1]/(c_m[1, 1]+c_m[1, 0]) output['Precision'].append(pre) output['Recall'].append((re)) f_score = (2*pre*re)/(pre+re) if f_score>f1_score : f1_score = f_score best_th = threshold except: continue if len(output['Precision']) != 99: print("Unknown Error occurred when generate results.") with open('Precision_Recall.txt','w') as w: w.write(json.dumps(output)) return best_th
jingmouren/antifraud
antifraud/metrics/normal_function.py
normal_function.py
py
2,233
python
en
code
0
github-code
6
71567880507
class Zoo: __animals = 0 def __init__(self, name): self.name = name self.mammals =[] self.fishes = [] self.birds = [] def add_animal(self, species, name): if species == 'mammal': self.mammals.append(name) elif species == 'fish': self.fishes.append(name) elif species == 'bird': self.birds.append(name) Zoo.__animals +=1 def get_info(self, species): result = '' if species == 'mammal': result += f"Mammals in {self.name}: {', '.join(self.mammals)}" elif species == 'fish': result += f"Fishes in {self.name}: {', '.join(self.fishes)}" elif species == 'bird': result += f"Birds in {self.name}: {', '.join(self.birds)}" result += f'\nTotal animals: {Zoo.__animals}' return result name_of_zoo = input() zoo = Zoo(name_of_zoo) number_of_lines = int(input()) for _ in range(number_of_lines): info = input().split(' ') species = info[0] type_of_animal = info[1] zoo.add_animal(species, type_of_animal) additional_info = input() print(zoo.get_info(additional_info))
lorindi/SoftUni-Software-Engineering
Programming-Fundamentals-with-Python/6.Objects and Classes/4_zoo.py
4_zoo.py
py
1,179
python
en
code
3
github-code
6
36396554295
""" Compare catalogs of candidates and benchmarks. """ from __future__ import annotations # __all__ = ['*'] __author__ = "Fernando Aristizabal" from typing import Iterable, Optional, Callable, Tuple import os import pandas as pd from rioxarray import open_rasterio as rxr_or import xarray as xr import dask.dataframe as dd def catalog_compare( candidate_catalog: pd.DataFrame | dd.DataFrame, benchmark_catalog: pd.DataFrame | dd.DataFrame, map_ids: str | Iterable[str], how: str = "inner", on: Optional[str | Iterable[str]] = None, left_on: Optional[str | Iterable[str]] = None, right_on: Optional[str | Iterable[str]] = None, suffixes: tuple[str, str] = ("_candidate", "_benchmark"), merge_kwargs: Optional[dict] = None, open_kwargs: Optional[dict] = None, compare_type: str | Callable = "continuous", compare_kwargs: Optional[dict] = None, agreement_map_field: Optional[str] = None, agreement_map_write_kwargs: Optional[dict] = None, ) -> pd.DataFrame | dd.DataFrame: """ Compare catalogs of candidate and benchmark maps. Parameters ---------- candidate_catalog : pandas.DataFrame | dask.DataFrame Candidate catalog. benchmark_catalog : pandas.DataFrame | dask.DataFrame Benchmark catalog. map_ids : str | Iterable of str Column name(s) where maps or paths to maps occur. If str is given, then the same value should occur in both catalogs. If Iterable[str] is given of length 2, then the column names where maps are will be in [candidate, benchmark] respectively. The columns corresponding to map_ids should have either str, xarray.DataArray, xarray.Dataset, rasterio.io.DatasetReader, rasterio.vrt.WarpedVRT, or os.PathLike objects. how : str, default = "inner" Type of merge to perform. See pandas.DataFrame.merge for more information. on : str | Iterable of str, default = None Column(s) to join on. Must be found in both catalogs. If None, and left_on and right_on are also None, then the intersection of the columns in both catalogs will be used. left_on : str | Iterable of str, default = None Column(s) to join on in left catalog. Must be found in left catalog. right_on : str | Iterable of str, default = None Column(s) to join on in right catalog. Must be found in right catalog. suffixes : tuple of str, default = ("_candidate", "_benchmark") Suffixes to apply to overlapping column names in candidate and benchmark catalogs, respectively. Length two tuple of strings. merge_kwargs : dict, default = None Keyword arguments to pass to pandas.DataFrame.merge. compare_type : str | Callable, default = "continuous" Type of comparison to perform. If str, then must be one of {"continuous", "categorical", "probabilistic"}. If Callable, then must be a function that takes two xarray.DataArray or xarray.Dataset objects and returns a tuple of length 2. The first element of the tuple must be an xarray.DataArray or xarray.Dataset object representing the agreement map. The second element of the tuple must be a pandas.DataFrame object representing the metrics. compare_kwargs : dict, default = None Keyword arguments to pass to the compare_type function. agreement_map_field : str, default = None Column name to write agreement maps to. If None, then agreement maps will not be written to file. agreement_map_write_kwargs : dict, default = None Keyword arguments to pass to xarray.DataArray.rio.to_raster when writing agreement maps to file. Raises ------ ValueError If map_ids is not str or Iterable of str. If compare_type is not str or Callable. If compare_type is str and not one of {"continuous", "categorical", "probabilistic"}. NotImplementedError If compare_type is "probabilistic". Returns ------- pandas.DataFrame | dask.DataFrame Agreement catalog. """ # unpack map_ids if isinstance(map_ids, str): candidate_map_ids, benchmark_map_ids = map_ids, map_ids elif isinstance(map_ids, Iterable): candidate_map_ids, benchmark_map_ids = map_ids else: raise ValueError("map_ids must be str or Iterable of str") # set merge_kwargs to empty dict if None if merge_kwargs is None: merge_kwargs = dict() # create agreement catalog agreement_catalog = candidate_catalog.merge( benchmark_catalog, how=how, on=on, left_on=left_on, right_on=right_on, suffixes=suffixes, **merge_kwargs, ) def compare_row( row, compare_type: str | Callable, compare_kwargs: dict, open_kwargs: dict, agreement_map_field: str, agreement_map_write_kwargs: dict, ) -> Tuple[xr.DataArray | xr.Dataset, pd.DataFrame]: """Compares catalog and benchmark maps by rows""" def loadxr(map, open_kwargs): """load xarray object if not already""" return ( map if isinstance(map, (xr.DataArray, xr.Dataset)) else rxr_or(map, **open_kwargs) ) # load maps candidate_map = loadxr(row[candidate_map_ids + suffixes[0]], open_kwargs) benchmark_map = loadxr(row[benchmark_map_ids + suffixes[1]], open_kwargs) # set compare_kwargs to empty dict if None if compare_kwargs is None: compare_kwargs = dict() # set agreement_map_write_kwargs to empty dict if None if agreement_map_write_kwargs is None: agreement_map_write_kwargs = dict() if isinstance(compare_type, str): if compare_type == "categorical": results = candidate_map.gval.categorical_compare( benchmark_map, **compare_kwargs ) # results is a tuple of length 3 or 4 # agreement_map, crosstab_df, metrics_df, attrs_df = results # where attrs_df is optional agreement_map, metrics_df = results[0], results[2] elif compare_type == "continuous": results = candidate_map.gval.continuous_compare( benchmark_map, **compare_kwargs ) # results is a tuple of length 2 or 3 # agreement_map, metrics_df, attrs_df = results # where attrs_df is optional agreement_map, metrics_df = results[:2] elif compare_type == "probabilistic": raise NotImplementedError( "probabilistic comparison not implemented yet" ) else: raise ValueError( "compare_type of type str must be one of {'continuous', 'categorical', 'probabilistic'}" ) elif isinstance(compare_type, Callable): agreement_map, metrics_df = compare_type( candidate_map, benchmark_map, **compare_kwargs ) else: raise ValueError("compare_type must be str or Callable") # write agreement map to file if (agreement_map_field is not None) & isinstance( agreement_map, (xr.DataArray, xr.Dataset) ): if isinstance(row[agreement_map_field], (str, os.PathLike)): agreement_map.rio.to_raster( row[agreement_map_field], **agreement_map_write_kwargs ) return metrics_df # make kwargs for dask apply if isinstance(agreement_catalog, dd.DataFrame): dask_kwargs = {"meta": ("output", "f8")} else: dask_kwargs = {} # set open_kwargs to empty dict if None if open_kwargs is None: open_kwargs = dict() # apply compare_row to each row of agreement_catalog metrics_df = agreement_catalog.apply( compare_row, axis=1, **dask_kwargs, compare_type=compare_type, open_kwargs=open_kwargs, compare_kwargs=compare_kwargs, agreement_map_field=agreement_map_field, agreement_map_write_kwargs=agreement_map_write_kwargs, ) def nested_merge(i, sub_df) -> pd.DataFrame: """Duplicated agreement row for each row in sub_df""" try: agreement_row = agreement_catalog.iloc[i].to_frame().T except NotImplementedError: agreement_row = agreement_catalog.loc[agreement_catalog.index == i] sub_df.index = [i] * len(sub_df) return agreement_row.join(sub_df) # merge agreement_catalog with metrics_df if isinstance(metrics_df, dd.Series): return dd.concat( [nested_merge(i, sub_df) for i, sub_df in enumerate(metrics_df)] ).reset_index(drop=True) if isinstance(metrics_df, pd.Series): return pd.concat( [nested_merge(i, sub_df) for i, sub_df in enumerate(metrics_df)] ).reset_index(drop=True)
NOAA-OWP/gval
src/gval/catalogs/catalogs.py
catalogs.py
py
9,027
python
en
code
14
github-code
6
1547074247
from settings import * # Import Data df = pd.read_csv("data/mpg_ggplot2.csv") # Draw Stripplot fig, ax = plt.subplots(figsize=(16, 10), dpi=80) sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5) # Decorations plt.title('Use jittered plots to avoid overlapping of points', fontsize=22) plt.show()
Rygor83/Plotting_with_python
05.py
05.py
py
320
python
en
code
1
github-code
6
29643271631
# -*- coding: utf-8 -*- # (c) 2015 Alfredo de la Fuente - AvanzOSC # License AGPL-3 - See http://www.gnu.org/licenses/agpl-3.0.html from openerp import models, fields, api from dateutil.relativedelta import relativedelta class ProcurementOrder(models.Model): _inherit = 'procurement.order' @api.multi def _compute_protect_date_planned(self): for proc in self: proc.protect_date_planned = False if (proc.purchase_line_id and proc.purchase_line_id.order_id.state != 'draft'): proc.protect_date_planned = True plan = fields.Many2one('procurement.plan', string='Plan') location_type = fields.Selection([ ('supplier', 'Supplier Location'), ('view', 'View'), ('internal', 'Internal Location'), ('customer', 'Customer Location'), ('inventory', 'Inventory'), ('procurement', 'Procurement'), ('production', 'Production'), ('transit', 'Transit Location')], string='Location Type', related="location_id.usage", store=True) protect_date_planned = fields.Boolean( string='Protect Date Planned', compute='_compute_protect_date_planned') @api.model def create(self, data): if 'plan' in self.env.context and 'plan' not in data: data['plan'] = self.env.context.get('plan') procurement = super(ProcurementOrder, self).create(data) return procurement @api.multi def button_remove_plan(self): self.ensure_one() template_obj = self.env['product.template'] result = template_obj._get_act_window_dict( 'procurement_plan.action_procurement_plan') result['domain'] = "[('id', '=', " + str(self.plan.id) + ")]" result['res_id'] = self.plan.id result['view_mode'] = 'form' result['views'] = [] self.plan.write({'procurement_ids': [[3, self.id]]}) return result @api.multi def button_run(self, autocommit=False): for procurement in self: procurement.with_context(plan=procurement.plan.id).run( autocommit=autocommit) procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def button_check(self, autocommit=False): for procurement in self: procurement.with_context(plan=procurement.plan.id).check( autocommit=autocommit) procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def cancel(self): super(ProcurementOrder, self).cancel() for procurement in self: if procurement.plan: procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def reset_to_confirmed(self): super(ProcurementOrder, self).reset_to_confirmed() for procurement in self: if procurement.plan: procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def _change_date_planned_from_plan_for_po(self, days_to_sum): for proc in self: new_date = (fields.Datetime.from_string(proc.date_planned) + (relativedelta(days=days_to_sum))) proc.write({'date_planned': new_date}) if (proc.purchase_line_id and proc.purchase_line_id.order_id.state == 'draft'): proc.purchase_line_id.write({'date_planned': new_date})
odoomrp/odoomrp-wip
procurement_plan/models/procurement.py
procurement.py
py
5,931
python
en
code
119
github-code
6
35093472448
import pygame, sys, operator, random, time from pygame.locals import * # Global variables WIDTH = 800 HEIGHT = 500 SUB_SPEED = 3 BUBBLE_MAX_SPEED = 1 TIME_LIMIT = 30 BONUS_SCORE = 1500 BLACK = (0, 0, 0) BLUE = (12,34,56) RED = (255,0,0) WHITE = (255,255,255) x_sub = 40 y_sub = 250 score = 0 game_end = time.time() + TIME_LIMIT bonus = 0 # bubbles_id = list() bubbles_pos = list() bubbles_speed = list() bubbles_state = list() bubbles_size = list() # Quit the game def leave_game(): pygame.display.quit() pygame.quit() sys.exit() # Update the screen display def update_screen (): screen.blit(background_image, (0,0)) screen.blit(sub, (x_sub, y_sub)) for i in range(len(bubbles_pos) - 1, -1, -1): if bubbles_state[i] == "Good": screen.blit(pygame.transform.scale(blue_bubble, (bubbles_size[i], bubbles_size[i])), bubbles_pos[i]) else: screen.blit(pygame.transform.scale(bad_bubble, (bubbles_size[i], bubbles_size[i])), bubbles_pos[i]) message = "Score : " + str(score) display_text (message, BLACK, 'Calibri', 20, 10, 15) # print ("Time : ", int(game_end - time.time())) message = "Time : " + str(int(game_end - time.time())) display_text (message, BLACK, 'Calibri', 20, 700, 15) pygame.display.flip() # Move the submarine on the scene def sub_control(): global x_sub, y_sub key = pygame.key.get_pressed() if key[pygame.K_RIGHT]: x_sub += SUB_SPEED if key[pygame.K_LEFT]: x_sub -= SUB_SPEED if key[pygame.K_UP]: y_sub -= SUB_SPEED if key[pygame.K_DOWN]: y_sub += SUB_SPEED sub_in_scene() # Check if the sub is still on the visible part of the screen def sub_in_scene(): global x_sub, y_sub if x_sub < 0: x_sub = 0 if y_sub < 0: y_sub = 0 if x_sub + sub.get_width() > WIDTH: x_sub = WIDTH - sub.get_width() if y_sub + sub.get_height() > HEIGHT: y_sub = HEIGHT - sub.get_height() # Create many bubbles def create_bubbles(state) : x_bubble = WIDTH y_bubble = random.randint(0, HEIGHT) if state == "Good": #bubble = pygame.image.load("Ressources/bulle.png") size_bubble = random.randint(blue_bubble.get_width() / 3, blue_bubble.get_width() * 2) else: #bubble = pygame.image.load("Ressources/red_bulle.png") size_bubble = random.randint(bad_bubble.get_width(), bad_bubble.get_width() * 3) # bubble = pygame.transform.scale (bubble, (size_bubble, size_bubble)) # bubbles_id.append(bubble) bubbles_pos.append((x_bubble, y_bubble)) bubbles_speed.append(random.randint(1, BUBBLE_MAX_SPEED)) bubbles_state.append(state) bubbles_size.append(size_bubble) # Move the bubble on the screen at set speed def move_bubbles(): for i in range (len(bubbles_pos) - 1, -1, -1) : bubbles_pos[i] = tuple(map(operator.sub, bubbles_pos[i], (bubbles_speed[i], 0))) # Update bubble position def update_game(): global bonus, game_end if (random.randint(1, 20) == 1): create_bubbles("Good") if (random.randint(1, 60) == 1): create_bubbles("Bad") collision() if (int(score / BONUS_SCORE)) > bonus: bonus += 1 game_end += TIME_LIMIT move_bubbles() clean_bubbles() # Collision between the sub and the bubbles def collision () : global score, game_end for bubble in range(len(bubbles_pos) -1, -1, -1): if (x_sub < bubbles_pos[bubble][0] + bubbles_size[bubble] and x_sub + sub.get_width() > bubbles_pos[bubble][0] and y_sub < bubbles_pos[bubble][1] + bubbles_size[bubble] and y_sub + sub.get_height() > bubbles_pos[bubble][1]) : # print ("La bulle ", bubble, "se superpose au sous-marin") print("etat de la bulle : ", bubbles_state[bubble]) if bubbles_state[bubble] == "Good": score += bubbles_size[bubble] + bubbles_speed[bubble] else: game_end -= 5 # print ("points : ", score) pop_sound.play(0) delete_bubble (bubble) # Delete Bubble when it collides with the submarine def delete_bubble (bubble): del bubbles_state[bubble] del bubbles_speed[bubble] del bubbles_pos[bubble] del bubbles_size[bubble] # del bubbles_id[bubble] # Remove bubbles who leave the screen def clean_bubbles (): for i in range (len(bubbles_pos) - 1, -1, -1) : if (bubbles_pos[i][0] + bubbles_size[i] < 0) : delete_bubble(i) # Display colored text in position X and Y def display_text(text, color, font, font_size, x, y): myfont = pygame.font.SysFont(font, font_size, True) message = myfont.render(text, True, color) screen.blit(message, (x,y)) # Game Over Screen def game_over_message(): pygame.mixer.stop() lose_sound.play(0) screen.fill(BLUE) display_text("GAME OVER !", RED, 'Calibri', 40, WIDTH * 0.4, HEIGHT * 0.2 ) message = "Ton Score : " + str(score) display_text(message, RED, 'Calibri', 40, WIDTH * 0.37, HEIGHT * 0.4 ) display_text("Appuie sur R pour rejouer !", WHITE, 'Calibri', 30, WIDTH * 0.33, HEIGHT * 0.6) # Initialize game variables when restart def init_game(): global score, x_sub, y_sub, game_end, bubbles_pos, bubbles_size, bubbles_speed, bubbles_state game_end = time.time() + TIME_LIMIT score = 0 x_sub = 40 y_sub = 250 # bubbles_id = list() bubbles_pos = list() bubbles_size = list() bubbles_speed = list() bubbles_state = list() # Window Init pygame.init() # Display creation screen = pygame.display.set_mode ((WIDTH, HEIGHT)) # Set the repetition rate of the key pygame.key.set_repeat(1, 1) # Window Name pygame.display.set_caption("Bubble Blaster") # The Background image background_image = pygame.image.load("Ressources/ocean.jpg") # The submarine sub = pygame.image.load("Ressources/submarine.png") # The bubble blue_bubble = pygame.image.load("Ressources/blue_bubble.png") bad_bubble = pygame.image.load("Ressources/red_bubble.png") pop_sound = pygame.mixer.Sound("Ressources/collect.wav") ambient_sound = pygame.mixer.Sound("Ressources/ambient_music.wav") lose_sound = pygame.mixer.Sound("Ressources/lose.wav") ambient_sound.set_volume(0.05) #create_bubble() # Main loop while True: pygame.mixer.stop() ambient_sound.play(-1) # Time loop while time.time() < game_end: # move_bubble() update_game() update_screen() # Main event loop for event in pygame.event.get() : if event.type == pygame.QUIT: leave_game() sub_control() game_over_message() pygame.display.flip() restart = False while not restart: # Event Manager Loop for event in pygame.event.get() : if event.type == pygame.QUIT: leave_game() if not hasattr (event, 'key'): continue if event.key == K_r: restart = True init_game() ## if event.key == K_ESCAPE: ## leave_game()
nicoseng/bubble_blaster
test.py
test.py
py
7,112
python
en
code
0
github-code
6
9799846415
# CSC_120 Logbook : Pg 9, Exercise 4 # Start Program # Variable declaration and initialization v = 512 w = 282 x = 47.48 y = 5 # Calculation phase z = (v - w) / (x + y) # Outputs the result of the computation print("The result of the computation is : ", z) # End Program
Muhdal-Amin/CSC_120_pg9
compute/compute.py
compute.py
py
277
python
en
code
0
github-code
6
20269902024
import os.path import math import numpy import json import bz2 import platereader from platereader.replicate import Replicate from platereader.statusmessage import StatusMessage, Severity from platereader.csvunicode import CsvFileUnicodeWriter, CsvFileUnicodeReader from platereader.parser import tecan, bioscreen class Plate(object): """ Class containing the wells and holding plate-wide parameters. """ _parser2module = platereader.parser.modulenameToModule( list(platereader.parser.getModulesOfNamespace(platereader.parser)), replace='platereader.parser.', lower=True) _isNotPlateParameter={ 'allowMaxGrowthrateAtLowerCutoff': True, 'allowGrowthyieldSlopeNStderrAwayFromZero': True, } def __init__(self,filename=None,fileformat=None, time=None,rawOds=None, sampleIds=None,conditions=None,wellids=None,plateId=None): """ Constructor. If filename is not None and fileformat is None some heuristics are used to identify the file format. :param filename: name of serialised Plate or ascii file exported by the plate reader. :type filename: str :param fileformat: string indicating the format ('gat', 'tecan') :type fileformat: str :param time: array of timepoints when optical density was measured :type time: numpy.array(float) :param rawOds: list of optical density arrays :type rawOds: list( numpy.array(float) ) :param sampleIds: list of sample names corresponding to the array of optical densities :type sampleIds: list(str) :param conditions: list of conditions under which the samples where grown :type conditions: list(str) :param plateId: name of this plate :type plateId: str """ self.plateId=None self._rawOd=None self.wells=None self.time=None self.temperature=None self.timeunit=None self._inheritableParameters={} # default parameters self._inheritableParameters['maxGrowthLowerTimeCutoff']=None self._inheritableParameters['maxGrowthUpperTimeCutoff']=None self._inheritableParameters['allowMaxGrowthrateAtLowerCutoff']=False self._inheritableParameters['allowGrowthyieldSlopeNStderrAwayFromZero']=1 # pure plate parameters self._inheritableParameters['logOdCutoff']=None self._inheritableParameters['lagAtLogOdEquals']=-5 self._inheritableParameters['slidingWindowSize']=10 self._inheritableParameters['hdCorrectionLinear']=None self._inheritableParameters['hdCorrectionQuadratic']=None self._inheritableParameters['hdCorrectionCubic']=None self._inheritableParameters['smoothingK']=5 self._inheritableParameters['smoothingS']=0.01 self._loadStatus=StatusMessage() self._capitaliseBackgroundIds=['blank','background'] self._clearMetadata() if filename is not None: if not os.path.exists(filename): raise IOError("No such file or directory: '"+filename+"'") if fileformat is None: if filename.endswith('.gat'): fileformat='gat' else: scorefileformat=[] for fileformat in Plate._parser2module: score=Plate._parser2module[fileformat].isPlateFormat(filename) if score > 0.: scorefileformat.append({'score': score, 'fileformat': fileformat}) scorefileformat = sorted(scorefileformat, key=lambda k: k['score'],reverse=True) if not len(scorefileformat): raise Plate.UnknownFileFormat(filename,detailedError='Cannot determine file format') fileformat=scorefileformat[0]['fileformat'] if fileformat == 'gat': self._load(filename) elif fileformat in Plate._parser2module: time, rawOd, sampleIds, conditions, plateId, temperature, wellids=Plate._parser2module[fileformat].parse(filename) self._initFromArrays(time,rawOd,sampleIds,conditions,plateId=plateId,temperature=temperature,wellids=wellids) else: raise Plate.UnknownFileFormat(filename,serFormat=fileformat) self.readfileformat=fileformat elif rawOds is not None: self._initFromArrays(time,rawOds,sampleIds,conditions,plateId=plateId,wellids=wellids) else: raise RuntimeError('could not construct Plate, neither filename nor arrays given') self.modified=False def _clearReplicateGroups(self): if hasattr(self,'replicateGroups'): for tc in self.replicateGroups: # NOTE invalidating here so code holding references to these fails tc._invalidate() self.replicateGroups=None self._backgroundGroupIndices=None self._sampleConditionToReplicateGroupIdcs=None # an associative array mapping replicate groups by sample ID to a list of Replicate object indices self._conditionToReplicateGroupIdx=None # an associative array mapping condition to a list of replicate group object indices def _clearMetadata(self): self._clearReplicateGroups() self._setBackgroundForAllReplicates(None) self._conditionToWellIdx=None # an associative array mapping condition to a list of Replicate objects self._sampleConditionToWellIdcs=None # an associative array mapping wells (sample IDs) to a list of Replicate object indices def _load(self,filename): with bz2.BZ2File(filename, 'r') as rfile: pickled=rfile.read().decode("utf-8") try: unpickled = json.loads(pickled) except ValueError as err: raise Plate.UnknownFileFormat(filename,detailedError=str(err)) return self._deserialise(unpickled,filename) def _deserialise(self,unpickled,filename): if 'format' not in unpickled: raise Plate.UnknownFileFormat(filename,detailedError='no "format" keyword found in file') serFormatVersion=unpickled['formatversion'] if 'formatversion' in unpickled else 'undefined' if unpickled['format'] != 'opticaldensityplate' or serFormatVersion != '1': raise Plate.UnknownFileFormat(filename,serFormat=unpickled['format'],serFormatVersion=serFormatVersion) parkeys=[ # default parameters 'maxGrowthLowerTimeCutoff', 'maxGrowthUpperTimeCutoff', 'allowMaxGrowthrateAtLowerCutoff', 'allowGrowthyieldSlopeNStderrAwayFromZero', # pure plate parameters 'logOdCutoff', 'lagAtLogOdEquals', 'slidingWindowSize', 'hdCorrectionLinear', 'hdCorrectionQuadratic', 'hdCorrectionCubic', 'smoothingK', 'smoothingS' ] # reset these to make sure defaults given to constructor are not used for serialised plate for par in self._inheritableParameters: self._inheritableParameters[par]=None self.plateId=unpickled['plateId'] self.time=numpy.array(unpickled['time'],dtype=float) self.timeunit=unpickled['timeunit'] # defaut parameters, some of which can be overridden by the individual replicates for par in parkeys: self._inheritableParameters[par]=unpickled[par] if 'temperature' in unpickled: self.temperature=numpy.array(unpickled['temperature'],dtype=float) self._rawOd=[] for lst in unpickled['rawOd']: self._rawOd.append(numpy.array(lst,dtype=float)) self.wells=[] for tcup in unpickled['wells']: self.wells.append(Replicate(_unpickled=tcup,parentPlate=self,_serialiseFormat=unpickled['format'])) self.replicateGroups=[] for tcup in unpickled['replicateGroup']: comptc=Replicate(_unpickled=tcup,parentPlate=self,_serialiseFormat=unpickled['format'],isReplicateGroup=True) self.replicateGroups.append(comptc) # set parental replicate group of the children for childtc in comptc.childWells(): childtc._setReplicateGroupParent(comptc) # deferred to here: set the background index for tc in self.wells: if tc._tmp_backgroundIndex is not None: tc._setBackgroundIndex(tc._tmp_backgroundIndex) for tc in self.replicateGroups: if tc._tmp_backgroundIndex is not None: tc._setBackgroundIndex(tc._tmp_backgroundIndex) # reset background indices, as these have been initialised # before setting the replicate's backgrounds self._backgroundWellIndices=None self._backgroundGroupIndices=None self._setBackgroundStatus() def _serialise(self): """ Generates a dictionary of the plate data and parameters. For internal use only. """ parkeys=[ # default parameters 'maxGrowthLowerTimeCutoff', 'maxGrowthUpperTimeCutoff', 'allowMaxGrowthrateAtLowerCutoff', 'allowGrowthyieldSlopeNStderrAwayFromZero', # pure plate parameters 'logOdCutoff', 'lagAtLogOdEquals', 'slidingWindowSize', 'hdCorrectionLinear', 'hdCorrectionQuadratic', 'hdCorrectionCubic', 'smoothingK', 'smoothingS' ] sr=dict() sr["format"]='opticaldensityplate' sr["formatversion"]='1' # this is an unsigned integer sr['plateId']=self.plateId sr['time']=self.time.tolist() sr['timeunit']=self.timeunit for key in parkeys: sr[key]=self._inheritableParameters[key] if self.temperature is not None: sr['temperature']=self.temperature.tolist() sr['rawOd']=[] for raw in self._rawOd: sr['rawOd'].append(raw.tolist()) sr['wells']=[] for tc in self.wells: sr['wells'].append(tc._serialise()) sr['replicateGroup']=[] for tc in self.replicateGroups: sr['replicateGroup'].append(tc._serialise()) return sr def save(self,filename): """ Saves the plate content in a file. :param filename: Name of the file. :type filename: str :return: StatusMessage/None -- non-fatal notifications. """ status=None if not filename.endswith('.gat'): root, ext = os.path.splitext(filename) status=StatusMessage( key='Saving file',shortmsg='wrongExtension', longmsg=('GATHODE uses a file extension that is different from"'+ext+'". ' +'This means that a future version of this program will not be able to open this file with the graphical user interface. ' +'Please make save the file with the ".gat" extension.'), severity=Severity.warning) sr=self._serialise() pickled = json.dumps(sr) with bz2.BZ2File(filename, 'w') as wfile: wfile.write(pickled.encode('utf-8')) self.modified=False return status def _explicitlySetParsInChildWells(self,par): """ Explicitly set parameters in wells to their inherited values. This can be used when replicate groups get removed (e.g. setting new metadata) but the parameters should be preserved. You most likely want to call _reduceExplicitParameter once new replicate groups have been created. For internal use only. """ for tc in self.replicateGroups: for child in tc.childWells(): # copy parameters from replicate group to the child child._setExplicitParameter(par,child.getParameter(par)) def _reduceExplicitParameter(self,par): """ Sets the parameter par of self and wells such that it is shared by most of its children. For internal use only. :param par: the parameter for which a smaller set of values is created :type par: string """ # check what could be the plate default for this parameter parvals=Plate._getChildParvalOccurrence(self,par) platedefault=Plate._chooseDefaultFromOccurrences(parvals) # set parameters in replicate groups; if one of a groups's children has the same value # as the platedefault use that one, otherwise try find another value for the group for tc in self.replicateGroups: Plate._reduceExplicitParametersHelper(tc,par,platedefault) # now set the plate default (important: this has to be done *after* the Replicates are changed!) Plate._reduceExplicitParametersHelper(self,par,platedefault) return platedefault @staticmethod def _reduceExplicitParametersHelper(obj,par,parentdefault): """ Helper function for _reduceExplicitParameter For internal use only. :param obj: the parameter for that a smaller set of values is created :type obj: Plate/Replicates :param par: the parameter for that a smaller set of values is created :type par: string Will be called with plate and Replicate objects. """ # gather occurrence of each value for this parameter in children parvals=Plate._getChildParvalOccurrence(obj,par) # the value that occurs most often will become the replicate group's value newdefaultval=Plate._chooseDefaultFromOccurrences(parvals,parentdefault) # only if none of the children got value None we can copy values up if newdefaultval is None: return # delete consensus value from children for child in Plate._getChildren(obj): if newdefaultval == child.getParameter(par): child._setExplicitParameter(par,None) # set consensus value for replicate group parent obj._setExplicitParameter(par,newdefaultval) @staticmethod def _getChildParvalOccurrence(obj,par): """ Return count of parameter values of all leaf children (at the lowest level of the hierarchy). For internal use only. :return: dict -- { value1: countValue1, value2: countValue2, ...} """ if isinstance(obj, Replicate) and not obj.isReplicateGroup(): # this is a single well val=obj.getParameter(par) return {val: 1} else: parvals={} for child in Plate._getChildren(obj): childparvals=Plate._getChildParvalOccurrence(child,par) # assemble childrens' results into the main dictionary for val in childparvals: if val not in parvals: parvals[val]=0 parvals[val]+=childparvals[val] return parvals @staticmethod def _chooseDefaultFromOccurrences(parvals,parentdefault=None): """ Return the value of a parameter that occurs most often in leaf children. For internal use only. Can be called both without parentdefault (for the whole plate) and with parentdefault (for ReplicateGroups). :param parvals: output from _getChildParvalOccurrence :type parvals: dict :return: float -- the most occuring parameter value for this plate or ReplicateGroup """ if None in parvals: return None maxcnt=0 maxval=None parvalkeys=list(parvals.keys()) parvalkeys.sort() for val in parvalkeys: # if there is a value corresponding to the plate default choose that one if parentdefault is not None and val == parentdefault: return parentdefault # choose maximal occurring as default if parvals[val] > maxcnt: maxval=val maxcnt=parvals[val] return maxval @staticmethod def _getChildren(obj): if isinstance(obj, Plate): # this is a plate return obj.replicateGroups else: # this is a replicate group return obj.childWells() @staticmethod def capitaliseId(sampleId,capitaliseThese): """ Capitalise id if in given list. :param sampleId: sample id; if this matches capitaliseThese it will be capitalised :type sampleId: str :param capitaliseThese: list of sample ids that correspond to samples that should be capitalised :type capitaliseThese: list(str) :return: str -- sample id (capitalised if it matches one of capitaliseThese) """ for bgid in capitaliseThese: if sampleId.upper() == bgid.upper(): return bgid.upper() return sampleId def _initFromArrays(self,time,rawOd,sampleIds,conditions,plateId=None,temperature=None,wellids=None): """ Initialises a plate from numpy arrays. For internal use only. :param time: array of timepoints when optical density was measured :type time: numpy.array(float) :param rawOd: list of optical density arrays :type rawOd: list( numpy.array(float) ) :param sampleIds: list of sample names corresponding to the array of optical densities :type sampleIds: list(str) :param conditions: list of conditions under which the samples where grown :type conditions: list(str) :param plateId: name of this plate :type plateId: str :param temperature: array of the temperature :type time: numpy.array(float) :param wellids: array of ids for the wells (e.g. A1 to P24) :type wellids: list(str) """ if len(rawOd) != len(sampleIds): raise RuntimeError('number of raw optical density arrays is different from number of sample ids') if len(sampleIds) != len(conditions): raise RuntimeError('number of sample ids is different from number of conditions') if wellids is not None and len(wellids) != len(set(wellids)): raise RuntimeError('ids in wellids are not unique') self.plateId=plateId self.time=time/3600. self.timeunit="h" self._rawOd=rawOd # make sure that background is correctly identified even if case is different newSampleIds=[] for sampleid in sampleIds: newSampleIds.append(Plate.capitaliseId(sampleid,self._capitaliseBackgroundIds)) # create replicate objects for single wells from data (NOTE ids may exist multiple times, therefore this is not an associative array) self.wells=[] tcidx=0 for sampleid in newSampleIds: wellid = [wellids[tcidx]] if wellids is not None else None self.wells.append(Replicate(self,[tcidx],sampleid,conditions[tcidx],wellid)) # NOTE that on purpose this index is only increased for samples (not for time, temperature, ...) tcidx+=1 self._createReplicateGroupsFromSampleIdsNConditions() # use guessed background sampleIds to set background of single well and replicate groups self._setBackgroundForAllReplicates(self._guessBackgroundSampleIds()) def wellMetadataOk(self,metadata): """ Check that the given metadata (i.e. sample id, growth condition) is valid and can be applied. This basically checks that there is the right amount of metadata entries and these contain sample ids and conditions. :param metadata: array of metadata dictionaries :type metadata: list(dict) :return: bool, StatusMessage -- True if ok, False otherwise (and a StatusMessage with details) """ if len(metadata) != len(self.wells): return False, StatusMessage( key='Wrong metadata length:',shortmsg='metadata:wrongLength', longmsg=('Number of metadata entries ('+str(len(metadata))+ ') is different from number of wells '+str(len(self.wells))), severity=Severity.failed) idx=0 for metdat in metadata: idx+=1 if len(metdat.keys()) != 2 or 'sample' not in metdat or 'condition' not in metdat: thekeys='"'+('" "'.join(sorted(metdat.keys())))+'"' if len(metdat.keys()) else 'nothing' return False, StatusMessage( key='Wrong metadata elements:',shortmsg='metadata:wrongLength', longmsg=('metadata for entry '+str(idx)+' contains '+thekeys+ ', but should contain "condition" and "sample"'), severity=Severity.failed) return True, StatusMessage() def setWellMetadata(self,metadata): """ Set the metadata (e.g. sample id, growth condition) of the wells. :param metadata: array of metadata dictionaries :type metadata: list(dict) """ metok, message = self.wellMetadataOk(metadata) if not metok: raise Plate.BadMetadata(str(message)) # propagate parameters to the wells before deleting replicate groups for par in self.wells[0]._inheritableParameters.keys(): self._explicitlySetParsInChildWells(par) # clear everything that depends on metadata self._clearMetadata() # set metadata of the wells wellit=self.wells.__iter__() for metdat in metadata: metdat['sample']=Plate.capitaliseId(metdat['sample'],self._capitaliseBackgroundIds) well=next(wellit) well._setMetadata(metdat) # create replicate groups based on sample ids and conditions self._createReplicateGroupsFromSampleIdsNConditions() # use guessed background sampleIds to set background of single well and replicate groups self._setBackgroundForAllReplicates(self._guessBackgroundSampleIds()) # propagate parameters from the wells to the replicate groups (or plate) if possible for par in self.wells[0]._inheritableParameters.keys(): self._reduceExplicitParameter(par) def wellMetadata(self): """ Return the metadata of the wells. :return: list(dict) -- metadata """ metadata=[] for well in self.wells: metadata.append(well._getMetadata()) return metadata def _setupBackgroundIndices(self): """ Set self._backgroundGroupIndices and self._backgroundWellIndices. Records the indices of tc.background (which are rpelicate groups) for all wells and replicateGroups and also the indices of the underlying background wells. For internal use only. """ self._backgroundGroupIndices=set() self._backgroundWellIndices=set() if self.wells: for tc in self.wells: if tc.background: self._backgroundGroupIndices.add(self._indexOfReplicateGroup(tc.background)) if self.replicateGroups: for tc in self.replicateGroups: if tc.background: self._backgroundGroupIndices.add(self._indexOfReplicateGroup(tc.background)) for idx in self._backgroundGroupIndices: for chldidx in self.replicateGroups[idx].childWellIndices(): self._backgroundWellIndices.add(chldidx) def _guessBackgroundSampleIds(self): """ Guess sample ids of background wells ("BLANK" or "BACKGROUND") For internal use only. """ backgroundKeys={} for tc in self.wells: if tc.sampleid == "BLANK" or tc.sampleid == "BACKGROUND": backgroundKeys[tc.sampleid]=1 backgroundSampleIds=sorted(list(backgroundKeys.keys())) return backgroundSampleIds def _setBackgroundStatus(self): """ Add conditions/samples for which no background was found to self._loadStatus This should be called when the background was set for some wells/replicate groups. For internal use only. """ self._loadStatus.removeStatusesWithKey('No background samples:') self._loadStatus.removeStatusesWithKey('No background for some samples:') backgroundSampleIds=set() for idx in self.backgroundReplicateGroupIndices(): backgroundSampleIds.add(self.replicateGroups[idx].sampleid) for idx in self.backgroundWellIndices(): backgroundSampleIds.add(self.wells[idx].sampleid) if len(backgroundSampleIds) < 1: self._loadStatus.addStatus( StatusMessage( key='No background samples:',shortmsg='plateinit:noBackground', longmsg=('No background (blank) wells could be identified.'+ ' This means no growth parameters will be extracted'), severity=Severity.warning) ) return noBackground={} for tc in self.nonBackgroundWells(): if tc.background is None: if tc.condition not in noBackground: noBackground[tc.condition]={} if tc.sampleid not in noBackground[tc.condition]: noBackground[tc.condition][tc.sampleid]=[] noBackground[tc.condition][tc.sampleid].append(tc) for tc in self.nonBackgroundReplicates(): if tc.background is None: if tc.condition not in noBackground: noBackground[tc.condition]={} if tc.sampleid not in noBackground[tc.condition]: noBackground[tc.condition][tc.sampleid]=[] noBackground[tc.condition][tc.sampleid].append(tc) if len(noBackground.keys()): affected='' for condition in sorted(noBackground): if condition is None or condition == '': affected+='no condition:' else: affected+=condition+':' for sampleid in sorted(noBackground[condition]): affected+=' '+sampleid affected+='\n' self._loadStatus.addStatus( StatusMessage( key='No background for some samples:',shortmsg='plateinit:noBackgroundForSomeSamples', longmsg=('For some conditions no background (blank) could be identified.'+ ' This means no growth parameters will be extracted. The affected samples are:\n'+ affected), severity=Severity.warning) ) def backgroundReplicateGroupIndices(self): """ Return indices into self.replicateGroups for replicate groups being listed as background. :return: list(int) -- indices of background replicate groups """ if self._backgroundGroupIndices is None: self._setupBackgroundIndices() return self._backgroundGroupIndices def backgroundReplicateGroups(self): """ Return replicate groups being listed as background. :return: list(Replicate) -- replicate groups listed as background """ tcs=[] for idx in self.backgroundReplicateGroupIndices(): tcs.append(self.replicateGroups[idx]) return tcs def backgroundWellIndices(self): """ Return indices into self.wells for wells being listed as background. :return: list(int) -- indices of background wells """ if self._backgroundWellIndices is None: self._setupBackgroundIndices() return self._backgroundWellIndices def backgroundWells(self): """ Return wells being listed as background. :return: list(Replicate) -- wells listed as background """ tcs=[] for idx in self.backgroundWellIndices(): tcs.append(self.wells[idx]) return tcs def _createSampleConditionToWellIndices(self): """ Create a mapping to quickly find single-well objects based on sample id and condition. For internal use only. """ # gather sampleids and conditions self._conditionToWellIdx={} self._sampleConditionToWellIdcs={} tcidx=0 for tc in self.wells: # add well to the condition mapping if tc.condition not in self._conditionToWellIdx: self._conditionToWellIdx[tc.condition]=[] self._conditionToWellIdx[tc.condition].append(tcidx) # add well to the replicate mapping (sampleid and condition) if tc.sampleid not in self._sampleConditionToWellIdcs: self._sampleConditionToWellIdcs[tc.sampleid]={} if tc.condition not in self._sampleConditionToWellIdcs[tc.sampleid]: self._sampleConditionToWellIdcs[tc.sampleid][tc.condition]=[] self._sampleConditionToWellIdcs[tc.sampleid][tc.condition].append(tcidx) tcidx+=1 def _createReplicateGroupsFromSampleIdsNConditions(self): """ Create replicate groups by grouping wells of the same sample id and condition. For internal use only. """ if self._sampleConditionToWellIdcs is None: self._createSampleConditionToWellIndices() sampleids=list(self._sampleConditionToWellIdcs.keys()) sampleids.sort() self.replicateGroups=[] for sampleid in sampleids: conditions=list(self._sampleConditionToWellIdcs[sampleid].keys()) conditions.sort() for condition in conditions: comptc=Replicate(self,self._sampleConditionToWellIdcs[sampleid][condition], None,condition,isReplicateGroup=True) self.replicateGroups.append(comptc) # set parental replicate group of the children for childtc in comptc.childWells(): childtc._setReplicateGroupParent(comptc) def _createSampleConditionToReplicateGroupIndices(self): """ Create a mapping to quickly find replicate groups based on sample id and condition. For internal use only. """ self._sampleConditionToReplicateGroupIdcs={} coidx=0 for tc in self.replicateGroups: if tc.sampleid not in self._sampleConditionToReplicateGroupIdcs: self._sampleConditionToReplicateGroupIdcs[tc.sampleid]={} if tc.condition not in self._sampleConditionToReplicateGroupIdcs[tc.sampleid]: self._sampleConditionToReplicateGroupIdcs[tc.sampleid][tc.condition]=[] self._sampleConditionToReplicateGroupIdcs[tc.sampleid][tc.condition].append(coidx) coidx+=1 def _createConditionToReplicateGroupIndices(self): """ Create a mapping to quickly find all replicate groups for a specific condition. For internal use only. """ self._conditionToReplicateGroupIdx={} coidx=0 for tc in self.replicateGroups: # add replicate group to the condition mapping if tc.condition not in self._conditionToReplicateGroupIdx: self._conditionToReplicateGroupIdx[tc.condition]=[] self._conditionToReplicateGroupIdx[tc.condition].append(coidx) coidx+=1 def _setBackgroundForAllReplicates(self,backgroundSampleIds): """ Set background replicate group for single-wells and replicate groups. Currently, if there are multiple background ids, an exception is raised. For internal use only. """ self._backgroundWellIndices=None self._backgroundGroupIndices=None if backgroundSampleIds is None or not len(backgroundSampleIds): if self.wells is not None: for tc in self.wells: tc._setBackgroundIndex(None) if self.replicateGroups is not None: for tc in self.replicateGroups: tc._setBackgroundIndex(None) self._setBackgroundStatus() return if len(backgroundSampleIds) > 1: raise Plate.MultipleBackgroundIdsError(backgroundSampleIds) backgroundSampleId=backgroundSampleIds[0] if self._sampleConditionToReplicateGroupIdcs is None: self._createSampleConditionToReplicateGroupIndices() # set background index for the single (non-averaged) wells for tc in self.wells: if tc.sampleid not in backgroundSampleIds: if tc.condition in self._sampleConditionToReplicateGroupIdcs[backgroundSampleId]: # NOTE there should be only one element in self._sampleConditionToReplicateGroupIdcs[backgroundSampleId][tc.condition] tc._setBackgroundIndex(self._sampleConditionToReplicateGroupIdcs[backgroundSampleId][tc.condition][0]) # set background for replicate groups for tc in self.replicateGroups: if tc.sampleid not in backgroundSampleIds: if tc.condition in self._sampleConditionToReplicateGroupIdcs[backgroundSampleId]: # NOTE there should be only one element in self._sampleConditionToReplicateGroupIdcs[backgroundSampleId][tc.condition] tc._setBackgroundIndex(self._sampleConditionToReplicateGroupIdcs[backgroundSampleId][tc.condition][0]) # append warnings to self._loadStatus if for some replicates no background was set self._setBackgroundStatus() def replicateGroupIdxForSampleCondition(self,sampleid,condition): """ Return index of replicate group with the given sample Id and condition. :param sampleid: Id of the sample. :type sampleid: string :param condition: Condition under which the sample was grown. :type condition: string :return: int -- Index (into self.replicateGroups) of Replicate with given id and condition. """ if self._sampleConditionToReplicateGroupIdcs is None: self._createSampleConditionToReplicateGroupIndices() if sampleid not in self._sampleConditionToReplicateGroupIdcs: return None if condition not in self._sampleConditionToReplicateGroupIdcs[sampleid]: return None if len(self._sampleConditionToReplicateGroupIdcs[sampleid][condition]) != 1: raise RuntimeError('more than one replicate group for '+sampleid+' '+condition) return self._sampleConditionToReplicateGroupIdcs[sampleid][condition][0] def replicateGroupForSampleCondition(self,sampleid,condition): """ Return index of replicate group with the given sample Id and condition. :param sampleid: Id of the sample. :type sampleid: string :param condition: Condition under which the sample was grown. :type condition: string :return: Replicate -- replicate group with given id and condition. """ idx=self.replicateGroupIdxForSampleCondition(sampleid,condition) if idx is None: return None return self.replicateGroups[idx] def replicateGroupIdcsForCondition(self,condition): """ Return a list of indices of replicate groups with the given condition. :param condition: Condition under which the samples were grown. :type condition: string :return: list(int) -- Indices (into self.replicateGroups) of replicate groups with the given condition. """ if self._conditionToReplicateGroupIdx is None: self._createConditionToReplicateGroupIndices() if condition not in self._conditionToReplicateGroupIdx: return None return self._conditionToReplicateGroupIdx[condition] def replicateGroupsForCondition(self,condition): """ Return a list of replicate groups with the given condition. :param condition: Condition under which the samples were grown. :type condition: string :return: list(Replicate) -- Replicate groups with given condition. """ idcs=self.replicateGroupIdcsForCondition(condition) if idcs is None: return None tcs=[] for idx in idcs: tcs.append(self.replicateGroups[idx]) return tcs def conditions(self): """ Return a list of conditions. :return: list(str) -- Conditions. """ if self._conditionToReplicateGroupIdx is None: self._createConditionToReplicateGroupIndices() conditions=list(self._conditionToReplicateGroupIdx.keys()) conditions.sort() return conditions def nonBackgroundReplicates(self): """ :return: list(Replicate) -- replicate groups that are not background samples. """ backgroundIndices=self.backgroundReplicateGroupIndices() nbckg=[] idx=0 for tc in self.replicateGroups: if idx not in backgroundIndices: nbckg.append(tc) idx+=1 return nbckg def nonBackgroundReplicateIndices(self): """ :return: list(Replicate) -- Indices of replicate groups that are not background samples. """ backgroundIndices=self.backgroundReplicateGroupIndices() nbckgidcs=[] idx=0 for tc in self.replicateGroups: if idx not in backgroundIndices: nbckgidcs.append(idx) idx+=1 return nbckgidcs def nonBackgroundWells(self): """ :return: list(Replicate) -- wells that are not background samples. """ backgroundIndices=self.backgroundWellIndices() nbckg=[] idx=0 for tc in self.wells: if idx not in backgroundIndices: nbckg.append(tc) idx+=1 return nbckg def _indexOfReplicateGroup(self,ctc): """ Determine the index of the given replicate group. For internal use only. :return: int -- Index of replicate group. """ if self.replicateGroups is None: return None idx=0 idxOfTc=None for ttc in self.replicateGroups: if ttc._wellIndices == ctc._wellIndices: if idxOfTc is not None: raise RuntimeError("multiple similar replicate groups?") else: idxOfTc=idx idx+=1 return idxOfTc def _parametersUpdated(self,par=None): """ Notify replicate(s) that a parameter changed and memoised results should be deleted. For internal use only. :param par: The name of the parameter that was changed. :type par: str The Replicate objects memoise some results that are expensive to calculate. When a parameter is updated, the results may not be valid anymore and should get removed from the "cache". If par is given, this method can decide which results should be removed. """ # only needed for non-background replicate groups (as background does not depend on parameters) for tc in self.nonBackgroundWells(): tc._parametersUpdated(par,dontRecurse=True) for tc in self.nonBackgroundReplicates(): tc._parametersUpdated(par,dontRecurse=True) self.modified=True def _replicateChanged(self,tc,par=None): """ Update replicates that depend on the given replicate. For internal use only. """ if self.replicateGroups is None: # for startup code: there are no replicate groups yet return idxOfTc=self._indexOfReplicateGroup(tc) if idxOfTc is None: raise RuntimeError("no matching tc for "+tc.fullId()) for ptc in self.wells: if ptc._backgroundIndex == idxOfTc: ptc._parametersUpdated(par='backgroundRawOd') for ctc in self.replicateGroups: if ctc._backgroundIndex == idxOfTc: ctc._parametersUpdated(par='backgroundRawOd') def _getDefaultParameter(self,par): """ Get default value of parameter. For internal use only. :param par: The name of the parameter. :type par: str The Plate stores values of plate-wide parameters and default parameters. """ if par not in self._inheritableParameters: raise RuntimeError('_getDefaultParameter: unknown parameter '+par) return self._inheritableParameters[par] def _getExplicitParameter(self,par): """ Get explicit value of parameter (alias for _getDefaultParameter). For internal use only. :param par: The name of the parameter. :type par: str """ return self._getDefaultParameter(par) def getParameter(self,par): """ Return the requested parameter. :param par: The name of the parameter. :type par: str If the parameter is explicitly set for the plate, this value returned. Otherwise return None. See chapter :ref:`parameters <gat parameters>` for details of parameter handling and available parameters. """ return self._getDefaultParameter(par) def parameterIsEditible(self,par): """ Return True if this is a parameter can have a plate-wide default. :return: bool -- True if parameter can be edited. Some parameters can only be changed per Replicate, some only per Plate. This method is used to distinguish between them. See chapter :ref:`parameters <gat parameters>` for details of parameter handling and available parameters. """ if par in Plate._isNotPlateParameter and Plate._isNotPlateParameter[par]: return False if par not in self._inheritableParameters: raise RuntimeError("parameterIsEditible: unknown parameter "+par) return True def parameterIsExplicitlySet(self,par): """ Return True if this is parameter is explicitly set. :param par: The name of the parameter. :type par: str :return: bool -- True if parameter is explicitly set. If a parameter is explicitly set for a replicate it overrides an inherited value. This method is used to tell whether this is the case. Since this object is a plate it tells whether a default value has been set. See chapter :ref:`parameters <gat parameters>` for details of parameter handling and available parameters. """ return self._getExplicitParameter(par) is not None def activeChildReplicatesHaveExplicitParameter(self,par): """ Return True if for at least one of the replicate groups the given parameter is explicitly set. :param par: The name of the parameter. :type par: str :return: bool -- True if parameter is explicitly set in one of the replicate groups. See chapter :ref:`parameters <gat parameters>` for details of parameter handling and available parameters. """ for childtc in self.nonBackgroundReplicates(): if childtc._getExplicitParameter(par) is not None: return True if childtc.activeChildReplicatesHaveExplicitParameter(par): return True return False def _setDefaultParameter(self,par,val): """ Change the (default) value of the given parameter. For internal use only. :param par: The name of the parameter that will be changed. :type par: str :param val: The new value. """ if par not in self._inheritableParameters: raise RuntimeError('_setDefaultParameter: unknown parameter '+par) self._inheritableParameters[par]=val self._parametersUpdated(par) def _setExplicitParameter(self,par,val): """ Change the value of the given parameter (alias for _setDefaultParameter). For internal use only. :param par: The name of the parameter that will be changed. :type par: str :param val: The new value. """ self._setDefaultParameter(par,val) def setMaxGrowthLowerTimeCutoff(self,t): """Set lower limit of interval in which the maximal growth should be searched.""" self._setDefaultParameter('maxGrowthLowerTimeCutoff',t) def setMaxGrowthUpperTimeCutoff(self,t): """Set upper limit of interval in which the maximal growth should be searched.""" self._setDefaultParameter('maxGrowthUpperTimeCutoff',t) def setLogOdCutoff(self,lod): """Set cutoff value of log(OD).""" self._setDefaultParameter('logOdCutoff',lod) def setLagAtLogOdEquals(self,lagat): """Set value of log(OD) used to define the lag time.""" self._setDefaultParameter('lagAtLogOdEquals',lagat) def setHighDensityCorrectionLinear(self,hdCorrectionLinear=None): """Set coefficient of linear term of high density correction.""" self._setDefaultParameter('hdCorrectionLinear',hdCorrectionLinear) def setHighDensityCorrectionQuadratic(self,hdCorrectionQuadratic=None): """Set coefficient of quadratic term of high density correction.""" self._setDefaultParameter('hdCorrectionQuadratic',hdCorrectionQuadratic) def setHighDensityCorrectionCubic(self,hdCorrectionCubic=None): """Set coefficient of cubic term of high density correction.""" self._setDefaultParameter('hdCorrectionCubic',hdCorrectionCubic) def setSmoothingK(self,k): """Set degree of the smoothing spline.""" self._setDefaultParameter('smoothingK',k) def setSmoothingS(self,s): """Set smoothing factor used to choose the number of knots.""" self._setDefaultParameter('smoothingS',s) def setSlidingWindowSize(self,win): """ Set number of datapoints of sliding windows. The value that is used for local exponential fit (growth rate) and linear regression (growth yield). """ self._setDefaultParameter('slidingWindowSize',win) @staticmethod def guessWellIds(numberOfWells): """ Return well ids by guessing the plate layout based on number of wells. This function will return A1-P24 or A1-H12. :param numberOfWells: number of wells of the plate :type numberOfWells: int :return: list(str) -- the guessed well ids (None if layout could not be guessed) """ # some "heuristics" about well ids: A1-P24 or A1-H12 if numberOfWells == 384: labeldivisor=24 elif numberOfWells == 96: labeldivisor=12 else: return None rowlabels=[chr(x) for x in range(ord('A'), ord('P') + 1)] wellids=[] for i in range(numberOfWells): (lblchar,lblnum)=divmod(i, labeldivisor) wellids.append(str(rowlabels[lblchar])+str(lblnum+1)) return wellids @staticmethod def availableColumnsForCsvExport(logOdDerivativeProperties=True): """ List the available properties that can be chosen for csv export. :param logOdDerivativeProperties: include properties determined from log(OD) derivative :type logOdDerivativeProperties: bool :return: list(str), list(str) -- fixed columns (ids), properties The 'fixed columns' list contains the sample/condition tuples which should always be exported in order to identify the replicates. For the other properties (except 'wellids') the variance can be chosen by adding '_var' to the property name. """ fixedcolumns=['sample','condition'] columns=[] columns.extend(['slope_linear', 'intercept_linear', 'timeOfMax_linear', 'lag_linear']) columns.extend(['doublingtime_expfit', 'growthrate_expfit', 'od0_expfit', 'timeOfMax_expfit', 'lag_expfit']) if logOdDerivativeProperties: columns.extend(['doublingtime_local', 'growthrate_local', 'od0_local', 'timeOfMax_local', 'lag_local']) columns.extend(['yield', 'timeOfYield']) columns.extend(['wellids']) return fixedcolumns, columns def growthParametersToCsv(self,filename,addVarianceColumns=True,singleWells=False, columns=None, progressCall=None, **csvkwargs): """ Write a "comma seperated values" (csv) file of properties for all replicate groups. :param filename: Filename. :type filename: string :param columns: List of properties that shall get exported (in that order). :type columns: list(str) :param addVarianceColumns: For each entry in columns add the corresponding variance :type addVarianceColumns: bool :param singleWells: Export properties of single well replicates instead of replicate groups :type singleWells: bool :param progressCall: Function that will be called on each iteration. :type progressCall: @fun(int) :param csvkwargs: Parameters which are passed on to the csv module; defaults to { 'dialect': 'excel' } :type csvkwargs: dict() """ if 'dialect' not in csvkwargs: csvkwargs['dialect']='excel' col2collabel={ 'lag_expfit': 'lag_expfit (ln(OD) == lagAtCutoff)', 'lag_expfit_var': 'lag_expfit_var (ln(OD) == lagAtCutoff)', 'lag_local': 'lag_local (ln(OD) == lagAtCutoff)', 'lag_local_var': 'lag_local_var (ln(OD) == lagAtCutoff)', } if columns is None: columns, morecolumns=Plate.availableColumnsForCsvExport() columns.extend(morecolumns) if addVarianceColumns and not singleWells: newcolums=[] for col in columns: newcolums.append(col) if col in ['sample','condition','wellids']: continue if not col.endswith('_var') and col+'_var' not in columns: newcolums.append(col+'_var') columns=newcolums if singleWells: replicates=self.nonBackgroundWells() else: replicates=self.nonBackgroundReplicates() with CsvFileUnicodeWriter(filename,**csvkwargs) as sliwriter: descrow=[] for col in columns: if col in col2collabel: descrow.append(col2collabel[col]) else: descrow.append(col) sliwriter.writerow(descrow) allcnt=-1 for tc in replicates: allcnt+=1 if progressCall is not None: progressCall(allcnt) if tc.od() is not None: doublingtime_ef=None doublingtimevar_ef=None doublingtime_nls=None doublingtimevar_nls=None lag_linear=None lagVar_linear=None mu_ef, mu_ef_var, od0_ef, od0_ef_var, maxt_ef, maxt_ef_var, lag_ef, lag_ef_var, method_ef, status = tc.maxGrowthrate() mu_nls, mu_nls_var, od0_nls, od0_nls_var, maxt_nls, maxt_nls_var, lag_nls, lag_nls_var, method_nls, status = tc.maxGrowthrateFromLogOdDerivative() growthyield, growthyield_var, tgrowthyield, tgrowthyield_var, status=tc.growthyield() slope_linear, slopeVar_linear, intercept_linear, interceptVar_linear, timeOfMax_linear, timeOfMaxVar_linear, timeOfMaxIndices_linear, plainSlopeStatus=tc.odSlopemaxIntercept() doublingtime_ef, doublingtimevar_ef=Replicate.growthrateToDoublingTime(mu_ef,mu_ef_var) doublingtime_nls, doublingtimevar_nls=Replicate.growthrateToDoublingTime(mu_nls,mu_nls_var) if slope_linear is not None and slope_linear != 0: lag_linear=-intercept_linear/(slope_linear) if slopeVar_linear is not None and interceptVar_linear is not None: lagVar_linear=((intercept_linear/(slope_linear**2))**2 * slopeVar_linear + 1/slope_linear**2 * interceptVar_linear) else: (doublingtime_ef, doublingtimevar_ef, doublingtime_nls, doublingtimevar_nls)=(None,None,None,None) (mu_ef, mu_ef_var, od0_ef, od0_ef_var, maxt_ef, maxt_ef_var, lag_ef, lag_ef_var)=([None,None,None,None,None,None,None,None]) (mu_nls, mu_nls_var, od0_nls, od0_nls_var, maxt_nls, maxt_nls_var, lag_nls, lag_nls_var)=([None,None,None,None,None,None,None,None]) (growthyield,growthyield_var,tgrowthyield,tgrowthyield_var)=([None,None,None,None]) (slope_linear, slopeVar_linear, intercept_linear, interceptVar_linear, timeOfMax_linear, timeOfMaxVar_linear, lag_linear, lagVar_linear)=([None,None,None,None,None,None,None,None]) thisrow=[] for col in columns: if col == 'sample': thisrow.append(tc.sampleid) elif col == 'condition': thisrow.append(tc.condition) elif col == 'slope_linear': thisrow.append(slope_linear) elif col == 'slope_linear_var': thisrow.append(slopeVar_linear) elif col == 'intercept_linear': thisrow.append(intercept_linear) elif col == 'intercept_linear_var': thisrow.append(interceptVar_linear) elif col == 'timeOfMax_linear': thisrow.append(timeOfMax_linear) elif col == 'timeOfMax_linear_var': thisrow.append(timeOfMaxVar_linear) elif col == 'lag_linear': thisrow.append(lag_linear) elif col == 'lag_linear_var': thisrow.append(lagVar_linear) elif col == 'doublingtime_expfit': thisrow.append(doublingtime_ef) elif col == 'doublingtime_expfit_var': thisrow.append(doublingtimevar_ef) elif col == 'growthrate_expfit': thisrow.append(mu_ef) elif col == 'growthrate_expfit_var': thisrow.append(mu_ef_var) elif col == 'od0_expfit': thisrow.append(od0_ef) elif col == 'od0_expfit_var': thisrow.append(od0_ef_var) elif col == 'timeOfMax_expfit': thisrow.append(maxt_ef) elif col == 'timeOfMax_expfit_var': thisrow.append(maxt_ef_var) elif col == 'lag_expfit': thisrow.append(lag_ef) elif col == 'lag_expfit_var': thisrow.append(lag_ef_var) elif col == 'doublingtime_local': thisrow.append(doublingtime_nls) elif col == 'doublingtime_local_var': thisrow.append(doublingtimevar_nls) elif col == 'growthrate_local': thisrow.append(mu_nls) elif col == 'growthrate_local_var': thisrow.append(mu_nls_var) elif col == 'od0_local': thisrow.append(od0_nls) elif col == 'od0_local_var': thisrow.append(od0_nls_var) elif col == 'timeOfMax_local': thisrow.append(maxt_nls) elif col == 'timeOfMax_local_var': thisrow.append(maxt_nls_var) elif col == 'lag_local': thisrow.append(lag_nls) elif col == 'lag_local_var': thisrow.append(lag_nls_var) elif col == 'yield': thisrow.append(growthyield) elif col == 'yield_var': thisrow.append(growthyield_var) elif col == 'timeOfYield': thisrow.append(tgrowthyield) elif col == 'timeOfYield_var': thisrow.append(tgrowthyield_var) elif col == 'wellids': thisrow.append(tc.activeChildWellIdStr()) else: raise RuntimeError('unknown property '+col) sliwriter.writerow(thisrow) def timeseriesToCsv(self,filename, addVarianceColumns=True, singleWells=False, columns=None, fullId=False, progressCall=None, **csvkwargs): """ Write a "comma seperated values" (csv) file of time series for all replicate groups. :param filename: Filename. :type filename: string :param columns: List of time series that shall get exported for each replicate. :type columns: list(str) :param addVarianceColumns: For each entry in columns add the corresponding variance :type addVarianceColumns: bool :param singleWells: Export time series of single well replicates instead of replicate groups :type singleWells: bool :param fullId: Label the columns with the full id (including well ids) instead of "sample condition" :type fullId: bool :param progressCall: Function that will be called on each iteration. :type progressCall: @fun(int) :param csvkwargs: Parameters which are passed on to the csv module; defaults to { 'dialect': 'excel' } :type csvkwargs: dict() """ if 'dialect' not in csvkwargs: csvkwargs['dialect']='excel' col2collabel={ 'od': 'OD', 'od_var': 'var(OD)', 'lnod': 'ln(OD)', } if columns is None: columns=['od'] if addVarianceColumns and not singleWells: newcolums=[] for col in columns: newcolums.append(col) if col in ['lnod']: continue if not col.endswith('_var') and col+'_var' not in columns: newcolums.append(col+'_var') columns=newcolums if singleWells: replicates=self.nonBackgroundWells() else: replicates=self.nonBackgroundReplicates() with CsvFileUnicodeWriter(filename,**csvkwargs) as sliwriter: # header descrow=['t'] for tc in replicates: for col in columns: if col in col2collabel: lbl=col2collabel[col] else: lbl=col if fullId: lbl+=' '+tc.fullId() else: lbl+=' '+tc.sampleid+' '+tc.condition if singleWells: lbl+=' '+tc.activeChildWellIdStr() descrow.append(lbl) sliwriter.writerow(descrow) # data allcnt=-1 for ti in range(len(self.time)): allcnt+=1 if progressCall is not None: progressCall(allcnt) thisrow=[] thisrow.append(self.time[ti]) for tc in replicates: for col in columns: if col == 'od': if tc.od() is not None: thisrow.append(tc.od()[ti]) else: thisrow.append(None) elif col == 'od_var': if tc.odVar() is not None: thisrow.append(tc.odVar()[ti]) else: thisrow.append(None) elif col == 'lnod': if tc.logOd() is not None: thisrow.append(tc.logOd()[ti]) else: thisrow.append(None) else: raise RuntimeError('unknown property '+col) sliwriter.writerow(thisrow) @staticmethod def _numWellsToFormatString(numWells): """ Return a string uniquely identifying a plate format. NOTE this function is subject to change. """ if numWells == 100: return '100honeycomb' elif numWells == 200: return '200honeycomb' return str(numWells) @staticmethod def writeMetadata(filename,metadata,metadataKeys,plateformat='96',**csvkwargs): """ :param metadata: the metadata :type metadata: list(dict) """ columnMajorOrder=False if plateformat == '96': if len(metadata) != 96: raise RuntimeError('metadata is not of length 96') numcols=12 numrows=8 elif plateformat == '384': if len(metadata) != 384: raise RuntimeError('metadata is not of length 384') numcols=24 numrows=16 elif plateformat == '200honeycomb': if len(metadata) != 200: raise RuntimeError('metadata is not of length 200') columnMajorOrder=True numcols=20 # number of columns in the layout of the exported metadata numrows=10 # number of rows if plateformat == '96' or plateformat == '384': rowlabels=[chr(x) for x in range(ord('A'), ord('A') + numrows)] collabels=[str(i+1) for i in range(numcols)] elif plateformat == '200honeycomb': rowlabels=[str(i) for i in range(1,numrows+1)] collabels=[str(i+1) for i in range(0,len(metadata),numrows)] else: raise RuntimeError('not implemented for format other than 96, 384 or 200 honeycomb') if columnMajorOrder: reordered=[] # transpose for rowidx in range(numrows): for colidx in range(numcols): metentryidx=rowidx + colidx * numrows reordered.append(metadata[metentryidx]) else: reordered=metadata # keep order if 'dialect' not in csvkwargs: csvkwargs['dialect']='excel' with CsvFileUnicodeWriter(filename,**csvkwargs) as writer: # header: just the name of the metadata for key in metadataKeys: row=[key] writer.writerow(row) # the column ids row=['<>'] row.extend(collabels) writer.writerow(row) # now the data, divided into rows of numcols columns colit=reordered.__iter__() for rowlab in rowlabels: row=[rowlab] for j in range(numcols): thismeta=next(colit) val=thismeta[key] if key in thismeta else None row.append(val) writer.writerow(row) # an empty row row=[] writer.writerow(row) @staticmethod def readMetadata(filename,plateformat='96',**csvkwargs): """ Read metadata from a csv file. For each metadata key a table is read. The table should be laid out as according to the plate layout. To get a template, call writeMetadata(outfile,[{} for i in range(numOfColumns)],Plate.metadataKeys) """ columnMajorOrder=False if plateformat == '96': numcols=12 numrows=8 elif plateformat == '384': numcols=24 numrows=16 elif plateformat == '200honeycomb': columnMajorOrder=True numcols=20 # number of columns in the layout of the exported metadata numrows=10 # number of rows if plateformat == '96' or plateformat == '384': rowlabels=[chr(x) for x in range(ord('A'), ord('A') + numrows)] collabels=[str(i+1) for i in range(numcols)] elif plateformat == '200honeycomb': rowlabels=[str(i) for i in range(1,numrows+1)] collabels=[str(i+1) for i in range(0,numcols*numrows,numrows)] else: raise RuntimeError('not implemented for format other than 96, 384 or 200 honeycomb') # initialise the metadata list metadata=[{} for i in range(numcols*numrows)] if 'dialect' not in csvkwargs: csvkwargs['dialect']='excel' with CsvFileUnicodeReader(filename,**csvkwargs) as odreader: nextlinemode='nada' metkey=None lineno=0 for row in odreader: lineno+=1 if nextlinemode == 'nada': if len(row) == 0 or row[0] == '': # skip empty row continue else: metkey=row[0] nextlinemode='starttable' elif nextlinemode == 'starttable': if len(row) == 0: raise Plate.BadMetadata('Row at start of table is empty',lineno,filename=filename) if row[0] != '<>' or row[1] != '1' or len(row) != numcols+1: raise Plate.BadMetadata('This does not look like the beginning of a table'+ ', expected row[0] == "<>", row[1] == "1" and len(row) == '+str(numcols+1)+ ', but got row[0]=="'+str(row[0])+'", row[1] == "'+str(row[1])+ '" and len(row) == '+str(len(row)), lineno,filename=filename) nextlinemode='intable' rowcnt=0 metit=metadata.__iter__() elif nextlinemode == 'intable': rowcnt+=1 if len(row) == 0: raise Plate.BadMetadata('Row '+str(rowcnt)+' is empty',lineno,filename=filename) if row[0].upper() != rowlabels[rowcnt-1]: raise Plate.BadMetadata('Row '+str(rowcnt)+' does not start with '+rowlabels[rowcnt-1]+ ' (found "'+row[0].upper()+'")',lineno,filename=filename) row.pop(0) numOfValsThisRow=len(row) if numOfValsThisRow > numcols: numOfValsThisRow=numcols # read the columns of this row colit=row.__iter__() for i in range(numOfValsThisRow): val=next(colit) if val == '': # map empty sting to None val=None metentry=next(metit) metentry[metkey]=val # if the last columns are empty, fill them up with None for i in range(numcols-numOfValsThisRow): metentry=next(metit) metentry[metkey]=None if rowcnt == numrows: nextlinemode='nada' if columnMajorOrder: reordered=[] for colidx in range(numcols): for rowidx in range(numrows): metentryidx=rowidx * numcols + colidx reordered.append(metadata[metentryidx]) metadata=reordered return metadata class Error(Exception): """Base class for exceptions in this module.""" pass class MultipleBackgroundIdsError(Error): """Exception raised if there are different IDs for background wells.""" def __init__(self, backgroundSampleIds): self._backgroundSampleIds = backgroundSampleIds def __str__(self): return str('multiple keys were found that could be background (blank) samples, make sure there is only one.' + '\nThe keys are:\n'+str(self._backgroundSampleIds)) class UnknownFileFormat(Error): """Exception raised when an unsupported serialisation format is opened.""" def __init__(self,filename,serFormat=None,serFormatVersion=None,detailedError=None): self.filename = filename self.serFormat = serFormat self.serFormatVersion = serFormatVersion self.detailedError = detailedError def __str__(self): if self.serFormat is not None: if self.serFormat.startswith('clsplates'): message= 'You tried to open a Chronological Life Span (CLS) file ("'+self.filename+'"), please use the CLS analyser for this' else: message = 'Unsupported file format "'+self.serFormat+'"' if self.serFormatVersion is not None: message += ' version "'+self.serFormatVersion+'"' message += ' in file "'+self.filename+'"' else: message = 'Unsupported file format in file "'+self.filename+'"' if self.detailedError is not None: message+=': '+self.detailedError+'.' else: message+='.' return message class BadMetadata(Error): """Exception raised when an unsupported serialisation format is opened.""" def __init__(self,detailedError=None,lineno=None,filename=None): self.detailedError = detailedError self.filename = filename self.lineno = lineno def __str__(self): message = self.detailedError if self.lineno is not None: message += ' around line '+str(self.lineno) if self.filename is not None: message += ' in file '+str(self.filename) return message
platereader/gathode
platereader/plate.py
plate.py
py
71,939
python
en
code
4
github-code
6
648697707
import numbers import time from itertools import product import numpy as np import torch try: from tqdm import tqdm except ImportError: def tqdm(x): return x def product1d(inrange): for ii in inrange: yield ii def slice_to_start_stop(s, size): """For a single dimension with a given size, normalize slice to size. Returns slice(None, 0) if slice is invalid.""" if s.step not in (None, 1): raise ValueError('Nontrivial steps are not supported') if s.start is None: start = 0 elif -size <= s.start < 0: start = size + s.start elif s.start < -size or s.start >= size: return slice(None, 0) else: start = s.start if s.stop is None or s.stop > size: stop = size elif s.stop < 0: stop = (size + s.stop) else: stop = s.stop if stop < 1: return slice(None, 0) return slice(start, stop) def int_to_start_stop(i, size): """For a single dimension with a given size, turn an int into slice(start, stop) pair.""" if -size < i < 0: start = i + size elif i >= size or i < -size: raise ValueError('Index ({}) out of range (0-{})'.format(i, size - 1)) else: start = i return slice(start, start + 1) def normalize_slices(slices, shape): """ Normalize slices to shape. Normalize input, which can be a slice or a tuple of slices / ellipsis to be of same length as shape and be in bounds of shape. Args: slices (int or slice or ellipsis or tuple[int or slice or ellipsis]): slices to be normalized Returns: tuple[slice]: normalized slices (start and stop are both non-None) tuple[int]: which singleton dimensions should be squeezed out """ type_msg = 'Advanced selection inappropriate. ' \ 'Only numbers, slices (`:`), and ellipsis (`...`) are valid indices (or tuples thereof)' if isinstance(slices, tuple): slices_lst = list(slices) elif isinstance(slices, (numbers.Number, slice, type(Ellipsis))): slices_lst = [slices] else: raise TypeError(type_msg) ndim = len(shape) if len([item for item in slices_lst if item != Ellipsis]) > ndim: raise TypeError("Argument sequence too long") elif len(slices_lst) < ndim and Ellipsis not in slices_lst: slices_lst.append(Ellipsis) normalized = [] found_ellipsis = False squeeze = [] for item in slices_lst: d = len(normalized) if isinstance(item, slice): normalized.append(slice_to_start_stop(item, shape[d])) elif isinstance(item, numbers.Number): squeeze.append(d) normalized.append(int_to_start_stop(int(item), shape[d])) elif isinstance(item, type(Ellipsis)): if found_ellipsis: raise ValueError("Only one ellipsis may be used") found_ellipsis = True while len(normalized) + (len(slices_lst) - d - 1) < ndim: normalized.append(slice(0, shape[len(normalized)])) else: raise TypeError(type_msg) return tuple(normalized), tuple(squeeze) def blocking(shape, block_shape, roi=None, center_blocks_at_roi=False): """ Generator for nd blocking. Args: shape (tuple): nd shape block_shape (tuple): nd block shape roi (tuple[slice]): region of interest (default: None) center_blocks_at_roi (bool): if given a roi, whether to center the blocks being generated at the roi's origin (default: False) """ assert len(shape) == len(block_shape), "Invalid number of dimensions." if roi is None: # compute the ranges for the full shape ranges = [range(sha // bsha if sha % bsha == 0 else sha // bsha + 1) for sha, bsha in zip(shape, block_shape)] min_coords = [0] * len(shape) max_coords = shape else: # make sure that the roi is valid roi, _ = normalize_slices(roi, shape) ranges = [range(rr.start // bsha, rr.stop // bsha if rr.stop % bsha == 0 else rr.stop // bsha + 1) for rr, bsha in zip(roi, block_shape)] min_coords = [rr.start for rr in roi] max_coords = [rr.stop for rr in roi] need_shift = False if roi is not None and center_blocks_at_roi: shift = [rr.start % bsha for rr, bsha in zip(roi, block_shape)] need_shift = sum(shift) > 0 # product raises memory error for too large ranges, # because input iterators are cast to tuple # so far I have only seen this for 1d "open-ended" datasets # and hence just implemented a workaround for this case, # but it should be fairly easy to implement an nd version of product # without casting to tuple for our use case using the imglib loop trick, see also # https://stackoverflow.com/questions/8695422/why-do-i-get-a-memoryerror-with-itertools-product try: start_points = product(*ranges) except MemoryError: assert len(ranges) == 1 start_points = product1d(ranges) for start_point in start_points: positions = [sp * bshape for sp, bshape in zip(start_point, block_shape)] if need_shift: positions = [pos + sh for pos, sh in zip(positions, shift)] if any(pos > maxc for pos, maxc in zip(positions, max_coords)): continue yield tuple(slice(max(pos, minc), min(pos + bsha, maxc)) for pos, bsha, minc, maxc in zip(positions, block_shape, min_coords, max_coords)) def ensure_5d(tensor): if tensor.ndim == 3: tensor = tensor[None, None] elif tensor.ndim == 4: tensor = tensor[None] elif tensor.ndim == 5: pass return tensor # we don't save any output, because this is just for benchmarking purposes def run_inference(input_dataset, model, block_shape, halo, preprocess, precision): dtype = torch.float32 if precision == 'single' else torch.float16 device = torch.device('cuda') model.to(device, dtype=dtype) model.eval() shape = input_dataset.shape full_block_shape = tuple(bs + 2 * ha for bs, ha in zip(block_shape, halo)) local_bb = tuple(slice(ha, bsh - ha) for bsh, ha in zip(block_shape, halo)) def grow_bounding_box(bb): grown_bb = tuple(slice(max(b.start - ha, 0), min(sh, b.stop + ha)) for b, ha, sh in zip(bb, halo, shape)) return grown_bb def ensure_block_shape(input_): if input_.shape != full_block_shape: pad_shape = [(0, bsh - sh) for bsh, sh in zip(full_block_shape, input_.shape)] input_ = np.pad(input_, pad_shape) return input_ blocks = list(blocking(shape, block_shape)) per_block_times = [] t_tot = time.time() with torch.no_grad(): for bb in tqdm(blocks): bb = grow_bounding_box(bb) input_ = input_dataset[bb] input_ = ensure_block_shape(input_) input_ = preprocess(input_) input_ = ensure_5d(input_) t0 = time.time() input_ = torch.from_numpy(input_).to(device, dtype=dtype) output = model(input_) output = output.cpu().to(dtype=torch.float32).numpy() per_block_times.append(time.time() - t0) # this is where we would save the output ... output = output[0] output = output[(slice(None),) + local_bb] t_tot = time.time() - t_tot return t_tot, per_block_times
constantinpape/3d-unet-benchmarks
bench_util/inference.py
inference.py
py
7,760
python
en
code
3
github-code
6
29007933984
# Databricks notebook source from pyspark.sql.functions import expr, col import pyspark.sql.functions as fn sampleEmployee = spark.read.format("csv").option("header","true").load("dbfs:/FileStore/shared_uploads/[email protected]/us_500.csv") # COMMAND ---------- employeeDF = sampleEmployee.withColumn('web', expr('explode(array_repeat(web,100))')) # COMMAND ---------- employeeDF_grouped = employeeDF.groupby(['city']) CityEmployeeDensity = employeeDF_grouped.agg(fn.count(col('email')).alias('countOfEmployees')) # COMMAND ---------- employeeDF.createOrReplaceTempView("employeeDataFrame") CityEmployeeDensity.createOrReplaceTempView("CityEmpDensity") sequenceOfCityDF = sqlContext.sql(" select city, countOfEmployees, rank() over(order by countOfEmployees desc, city) as Sequence from CityEmpDensity ") sequenceOfCityDF.createOrReplaceTempView("sequenceOfCityDataFrame") VaccinationDrivePlan = sqlContext.sql(" SELECT EDF.*, SDF.Sequence FROM employeeDataFrame EDF INNER JOIN sequenceOfCityDataFrame SDF ON EDF.city = SDF.city ") VaccinationDrivePlan.show() # COMMAND ---------- VaccinationDrivePlan.createOrReplaceTempView("VaccinationlPlan") noOfDaysVaccineDrive = sqlContext.sql("SELECT city, countOfEmployees, CEILING(countOfEmployees/100) as noOfDaysToCompleteVaccination FROM CityEmpDensity") filnalVaccineDrive = noOfDaysVaccineDrive.withColumn('noOfDaysToCompleteVaccination', expr('explode(array_repeat(noOfDaysToCompleteVaccination,int(noOfDaysToCompleteVaccination)))')) filnalVaccineDrive.createOrReplaceTempView("filnalVaccineDrive") # COMMAND ---------- filnalVaccineSchedule_Sequential = sqlContext.sql("SELECT city,countOfEmployees AS countOfEmployeesOfCity, current_date() + ROW_NUMBER() OVER(order by countOfEmployees desc ) - 1 AS VaccineScheduleDate FROM filnalVaccineDrive") filnalVaccineSchedule_Sequential.show() # COMMAND ---------- filnalVaccineSchedule_Parallel = sqlContext.sql("SELECT city,countOfEmployees AS countOfEmployeesOfCity, current_date() + ROW_NUMBER() OVER(partition by city order by countOfEmployees desc ) - 1 AS VaccineScheduleDate FROM filnalVaccineDrive") filnalVaccineSchedule_Parallel.show() # COMMAND ---------- noOfDaysVaccineDriveForCity = noOfDaysVaccineDrive noOfDaysVaccineDriveForCity.show() # COMMAND ----------
bhaskar553/DatabricksAssignment
Vaccine Drive Assignment.py
Vaccine Drive Assignment.py
py
2,302
python
en
code
0
github-code
6
31273796258
#This file contains helpers that help the process of the assembler #Helps to get the name of the new file def fix_name(line, op = "//"): opIndx = line.find(op) if opIndx == -1: #Doesnt found the op return line elif opIndx == 0: #The comment is on the beginning of the line return '' #Return nothing because it is ignored else: if op == "//": line = line[:opIndx-1] #Because there are two elements else: line = line[:opIndx] #If it is other element just remove it return line #Functions to check if is a A command or C command or Label def isLabel(line): if line.find("(") != -1 and line.find(")") != -1: if line[1:-1].strip() != '': return True else: return False else: return False #Function that checks if it is a A Command def isA(line): if line.find('@') != -1: if line[1:].strip() != '': return True else: return False else: return False #Function that checks if it is a C Command def isC(line): if line.find("(") == -1 and line.find("@") == -1 and line != '': return True else: return False #Translate number to binary convertion def binaryConverter(num): binaryNum = "{:016b}".format(num) return binaryNum binaryNumber = lambda x: x >= 0 and str(bin(x))[2:] or "-" + str(bin(x))[3:] #First we get the number itself #Try to parse an Integer for evaluatin porpuses def parseInt(num): try: return int(num) except ValueError: return None #Find if the a bit is from the A(0) or M(1) def set_aBit(comp): if comp.find('M') != -1: return "1" else: return "0"
fcortesj/Computer_Architecture
proyectos/06/src/utils.py
utils.py
py
1,823
python
en
code
0
github-code
6
43734225885
# -*- coding: utf-8 -*- """ Created on Mon May 10 19:03:44 2021 @author: Samael Olascoaga @email: [email protected] """ import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('drugbank.csv') overlap = [] for i in range(0, 1000000): set1 = set(df['ID'].sample(n=550, replace=True)) set2 = set(df['ID'].sample(n=409, replace=True)) overlap.append(len(set1.intersection(set2))) overlap = np.asarray(overlap, dtype=float) p = ((overlap >= 182).sum() / i) print(p) sns.set_style("white") sns.despine() #sns.distplot(degree_list, kde=False, rug=False) g = sns.histplot(overlap, log_scale=False, fill=False, color='k', bins=17) sns.despine() plt.ylabel("Frequency") plt.xlabel("Overlap") #plt.title("") sns.despine() fig = g.get_figure() fig.savefig(r'target_bootstrap' + '.svg', format='svg', dpi=600, bbox_inches="tight")
Olascoaga/Senotherapy
bootstrapping_targets.py
bootstrapping_targets.py
py
938
python
en
code
1
github-code
6
21419147973
import numpy as np from os.path import join from psbody.mesh import Mesh from fitting.landmarks import load_embedding, landmark_error_3d, mesh_points_by_barycentric_coordinates, load_picked_points from fitting.util import load_binary_pickle, write_simple_obj, safe_mkdir, get_unit_factor import open3d as o3d import argparse, os from tqdm import tqdm import logging logger = logging.getLogger(__name__) def get_config(): parser = argparse.ArgumentParser(description='modify mean and std and orientation') parser.add_argument("--scans", type=str, default= "mesh", help='path of the scan') # for a mesh path, replace 'mesh' to 'lmk' get its corresponding lmk path parser.add_argument("--lmks", type=str, default= "lmk", help='path of the output') parser.add_argument("--save", type=str, default= "lx_result", help='path of the output') args = parser.parse_args() return args def x_rotate(v): return v*[1, -1, -1] def transl(v, old_mean, new_mean): return v-old_mean+new_mean def transl_scale(v, old_mean, old_std, new_mean, new_std): return (v-old_mean)/old_std*new_std+new_mean def modify_face(face): return face def get_vertice_mean_std(v): return np.mean(v, axis=0), np.std(v) def get_mean_std(filename): mesh = Mesh(filename=filename) if hasattr(mesh, 'f'): mesh.f = modify_face(mesh.f) # TODO: 尚未确定是否需要扭转面片方向 mean = np.mean(mesh.v, axis=0) std = np.std(mesh.v) return mean, std, mesh def flamefit_test(): eg = './data/scan.obj' lmk = './data/scan_lmks.npy' eg_mean, eg_std, eg_mesh = get_mean_std(eg) # mean x-y-z分开算, std整体算 eg_lmk = np.load(lmk) print(f'my example scan mean: {eg_mean}, std: {eg_std}') my_scan = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/test/mesh/3_pointcloud.obj" my_lmk = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/test/lmk/3_pointcloud.npy" mean, std, mesh = get_mean_std(my_scan) lmk = np.load(my_lmk) v = mesh.v print(f'my origina scan mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x.obj')) np.save(my_lmk.replace('.npy', '_x.npy'), lmk) mean, std = get_vertice_mean_std(v) print(f'my rotated scan mean: {mean}, std: {std}') v_transl = transl(v, mean, eg_mean) lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl.obj')) np.save(my_lmk.replace('.npy', '_x_transl.npy'), lmk_transl) mean_transl, std_transl = get_vertice_mean_std(v_transl) print(f'my transla scan mean: {mean_transl}, std: {std_transl}') v = transl_scale(v, mean, std, eg_mean, eg_std) lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale.obj')) np.save(my_lmk.replace('.npy', '_x_transl_scale.npy'), lmk) mean, std = get_vertice_mean_std(v) print(f'my tra_sca scan mean: {mean}, std: {std}') # scale to similar size based on lmk eg_lmk = eg_lmk - eg_mean lmk = lmk - mean # 关键点相对于原点的坐标 times = np.mean(np.mean(eg_lmk/lmk, axis=1)) # 关键点的avg倍数 v = (v - mean)*times lmk = lmk*times mean, std = get_vertice_mean_std(v) print(f'my fang_da scan mean: {mean}, std: {std}') v = transl_scale(v, mean, std, eg_mean, eg_std) lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale_fangda.obj')) np.save(my_lmk.replace('.npy', '_x_transl_scale_fangda.npy'), lmk) mean, std = get_vertice_mean_std(v) print(f'my finally scan mean: {mean}, std: {std}') # 只需要旋转并平移一下就ok了,调这个函数 def liuxu_flamefit(): eg = './data/scan.obj' lmk = './data/scan_lmks.npy' eg_mean, eg_std, eg_mesh = get_mean_std(eg) # mean x-y-z分开算, std整体算 eg_lmk = np.load(lmk) print(f'my example scan mean: {eg_mean}, std: {eg_std}') my_scan = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/new_cap/mesh/0_face.obj" my_lmk = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/new_cap/lmk/0_face.npy" mean, std, mesh = get_mean_std(my_scan) lmk = np.load(my_lmk)[-51:] v = mesh.v print(f'my origina scan mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) # write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x.obj')) # np.save(my_lmk.replace('.npy', '_x.npy'), lmk) mean, std = get_vertice_mean_std(v) # print(f'my rotated scan mean: {mean}, std: {std}') v_transl = transl(v, mean, eg_mean) # 到这一步得到的obj,fit效果最好 lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl.obj')) np.save(my_lmk.replace('.npy', '_x_transl.npy'), lmk_transl) mean_transl, std_transl = get_vertice_mean_std(v_transl) print(f'my transla scan mean: {mean_transl}, std: {std_transl}') # v = transl_scale(v, mean, std, eg_mean, eg_std) # lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) # write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale.obj')) # np.save(my_lmk.replace('.npy', '_x_transl_scale.npy'), lmk) # mean, std = get_vertice_mean_std(v) # print(f'my tra_sca scan mean: {mean}, std: {std}') def get_lmk_meanstd(lmk): mean = np.mean(lmk, axis=0) std = np.std(lmk) return mean, std # 只需要旋转并平移一下就ok了,调这个函数 def liuxu_modify_basedon_lmk(): eg = 'data/scan.obj' lmk = 'data/scan_lmks.npy' eg_lmk = np.load(lmk) eg_mean, eg_std = get_lmk_meanstd(eg_lmk) # mean x-y-z分开算, std整体算 print(f'my example lmk mean: {eg_mean}, std: {eg_std}') my_scan = "data/lizhenliang2/lizhenliang2_down10.ply" my_lmk = "data/lizhenliang2/lizhenliang2_picked_points.pp" lmk = get_lmk(my_lmk)[-51:] mean, std = get_lmk_meanstd(lmk) mesh = Mesh(filename=my_scan) v = mesh.v print(f'my origina lmk mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) mean, std = get_lmk_meanstd(lmk) v_transl = transl(v, mean, eg_mean) # 到这一步得到的obj,fit效果最好 lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.ply', '_x_transl_by_lmk.obj')) np.save(my_lmk.replace('.pp', '_x_transl_by_lmk.npy'), lmk_transl) mean_transl, std_transl = get_lmk_meanstd(lmk_transl) print(f'my transla lmk mean: {mean_transl}, std: {std_transl}') # v = transl_scale(v, mean, std, eg_mean, eg_std) # lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) # write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale_by_lmk.obj')) # np.save(my_lmk.replace('.npy', '_x_transl_scale_by_lmk.npy'), lmk) # mean, std = get_lmk_meanstd(lmk) # print(f'my tra_sca lmk mean: {mean}, std: {std}') # print(f'the 13th lmk of example: {eg_lmk[13]}, my: {lmk[13]}') def get_lmk(lmk_path): if lmk_path.endswith('.npy'): lmk = np.load(lmk_path) elif lmk_path.endswith('.pp'): lmk = load_picked_points(lmk_path) return lmk def stupid_test(): eg = './data/scan.obj' eg_mean, eg_std, eg_mesh = get_mean_std(eg) args = get_config() save_root = join('data', args.save) os.makedirs(save_root, exist_ok=True) save_scan = join(save_root, args.scans) os.makedirs(save_scan, exist_ok=True) save_lmk = join(save_root, args.lmks) os.makedirs(save_lmk, exist_ok=True) scans = join('./data/test', args.scans) for r, ds, fs in os.walk(scans): for f in tqdm(fs): if f.endswith("obj"): scan_path = os.path.join(r,f) print(scan_path) output = join(save_scan, f) mean, std, mesh = get_mean_std(scan_path) moved_v = (mesh.v - mean) # 把自己的mesh移到原点并归一化 avg_v = np.mean(moved_v, axis=0) eg_v = (eg_mesh.v - eg_mean) # 把参考mesh移到原点并归一化 avg_eg_v = np.mean(eg_v, axis=0) print(f'my origin scan mean: {mean}, origin example mean: {eg_mean}') print(f'my scan mean: {np.mean(moved_v, axis=0)}, example mean: {np.mean(eg_v, axis=0)}') avg_scale = np.mean(avg_eg_v/avg_v) * 8.5 print("scale times: ", avg_scale) scaled_v = moved_v * avg_scale # 这时的mesh应该和示例大小差不多 v = moved_v + eg_mean # 没有放大,只是移动了位置 print(f"my new mean: {np.mean(v, axis=0)}, eg_mean: {eg_mean}") write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, output) # 对应修改关键点坐标 lmk_path = scan_path.replace(args.scans, args.lmks).replace('obj', 'npy') ori_lmk = np.load(lmk_path) ori_lmk *= [1, -1, -1] lmk_output = join(save_lmk, f.replace('obj', 'npy')) moved_lmk = (ori_lmk - mean) scaled_lmk = moved_lmk * avg_scale modified_lmk = moved_lmk + eg_mean np.save(lmk_output, modified_lmk) # res_lmk = o3d.geometry.PointCloud() # res_lmk.points = o3d.utility.Vector3dVector(modified_lmk) # res_mesh = o3d.io.read_triangle_mesh(output) # o3d.visualization.draw_geometries([res_mesh, res_lmk, eg_mesh]) # 只需要旋转并平移一下就ok了,调这个函数 def modify(my_scan, my_lmk): eg = 'data/scan.obj' lmk = 'data/scan_lmks.npy' eg_lmk = np.load(lmk) eg_mean, eg_std = get_lmk_meanstd(eg_lmk) # mean x-y-z分开算, std整体算 logger.info(f'my example lmk mean: {eg_mean}, std: {eg_std}') lmk = get_lmk(my_lmk)[-51:] mean, std = get_lmk_meanstd(lmk) mesh = Mesh(filename=my_scan) v = mesh.v logger.info(f'my origina lmk mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) mean, std = get_lmk_meanstd(lmk) v_transl = transl(v, mean, eg_mean) # 到这一步得到的obj,fit效果最好 lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.ply', '_x_transl_by_lmk.obj')) np.save(my_lmk.replace('.pp', '_x_transl_by_lmk.npy'), lmk_transl) mean_transl, std_transl = get_lmk_meanstd(lmk_transl) logger.info(f'my transla lmk mean: {mean_transl}, std: {std_transl}') trans = -mean + eg_mean logger.info(f"trans: {trans}") return my_scan.replace('.ply', '_x_transl_by_lmk.obj'), my_lmk.replace('.pp', '_x_transl_by_lmk.npy'), trans if __name__ == '__main__': # flamefit_test() # liuxu_flamefit() liuxu_modify_basedon_lmk()
qdmy/flame-fitting
modify_pointcloud.py
modify_pointcloud.py
py
11,254
python
en
code
0
github-code
6
30353219011
from os.path import abspath from io import BytesIO import copy # Local imports. from common import TestCase, get_example_data class TestOptionalCollection(TestCase): def test(self): self.main() def do(self): ############################################################ # Imports. script = self.script from mayavi.sources.vtk_file_reader import VTKFileReader from mayavi.filters.contour import Contour from mayavi.filters.optional import Optional from mayavi.filters.collection import Collection from mayavi.filters.api import PolyDataNormals from mayavi.modules.api import Surface ############################################################ # Create a new scene and set up the visualization. s = self.new_scene() # Read a VTK (old style) data file. r = VTKFileReader() r.initialize(get_example_data('heart.vtk')) script.add_source(r) c = Contour() # `name` is used for the notebook tabs. n = PolyDataNormals(name='Normals') o = Optional(filter=n, label_text='Compute normals') coll = Collection(filters=[c, o], name='IsoSurface') script.add_filter(coll) s = Surface() script.add_module(s) ######################################## # do the testing. def check(coll): """Check if test status is OK given the collection.""" c, o = coll.filters c = c.filter n = o.filter assert coll.get_output_dataset().point_data.scalars.range == (127.5, 127.5) # Adding a contour should create the appropriate output in # the collection. c.contours.append(200) assert coll.get_output_dataset().point_data.scalars.range == (127.5, 200.0) # the collection's output should be that of the normals. assert coll.get_output_dataset() is n.get_output_dataset() # disable the optional filter and check. o.enabled = False assert 'disabled' in o.name assert coll.get_output_dataset() is c.get_output_dataset() # Set back everything to original state. c.contours.pop() o.enabled = True assert coll.get_output_dataset().point_data.scalars.range == (127.5, 127.5) assert coll.get_output_dataset() is n.get_output_dataset() assert 'disabled' not in o.name check(coll) ############################################################ # Test if saving a visualization and restoring it works. # Save visualization. f = BytesIO() f.name = abspath('test.mv2') # We simulate a file. script.save_visualization(f) f.seek(0) # So we can read this saved data. # Remove existing scene. engine = script.engine engine.close_scene(s) # Load visualization script.load_visualization(f) s = engine.current_scene # Now do the check. coll = s.children[0].children[0] check(coll) ############################################################ # Test if the Mayavi2 visualization can be deep-copied. # Pop the source object. source = s.children.pop() # Add it back to see if that works without error. s.children.append(source) # Now do the check. coll = s.children[0].children[0] check(coll) # Now deepcopy the source and replace the existing one with # the copy. This basically simulates cutting/copying the # object from the UI via the right-click menu on the tree # view, and pasting the copy back. source1 = copy.deepcopy(source) s.children[0] = source1 # Now do the check. coll = s.children[0].children[0] check(coll) # If we have come this far, we are golden! if __name__ == "__main__": t = TestOptionalCollection() t.test()
enthought/mayavi
integrationtests/mayavi/test_optional_collection.py
test_optional_collection.py
py
4,072
python
en
code
1,177
github-code
6
28300388553
import pandas as pd from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the datasets regular_season_results = pd.read_csv('MRegularSeasonDetailedResults.csv') tournament_results = pd.read_csv('MNCAATourneyDetailedResults.csv') # Merge regular season and tournament results all_game_results = pd.concat([regular_season_results, tournament_results], ignore_index=True) # Feature engineering and dataset preparation all_game_results['point_diff'] = all_game_results['WScore'] - all_game_results['LScore'] all_game_results['team1_shooting_percentage'] = all_game_results['WFGM'] / all_game_results['WFGA'] all_game_results['team2_shooting_percentage'] = all_game_results['LFGM'] / all_game_results['LFGA'] all_game_results['rebounds_diff'] = all_game_results['WOR'] + all_game_results['WDR'] - (all_game_results['LOR'] + all_game_results['LDR']) all_game_results['turnovers_diff'] = all_game_results['WTO'] - all_game_results['LTO'] X = all_game_results[['point_diff', 'team1_shooting_percentage', 'team2_shooting_percentage', 'rebounds_diff', 'turnovers_diff']] y = (all_game_results['WTeamID'] < all_game_results['LTeamID']).astype(int) # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train a Gradient Boosting Classifier model = GradientBoostingClassifier(random_state=42) model.fit(X_train, y_train) # Evaluate the model y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f'Model accuracy: {accuracy:.2f}') def predict_winner(team1_id, team2_id, input_data, model): prediction = model.predict(input_data) return team1_id if prediction == 1 else team2_id def calculate_team_average_stats(team_id, all_game_results): team_games = all_game_results[(all_game_results['WTeamID'] == team_id) | (all_game_results['LTeamID'] == team_id)] team_stats = { 'point_diff': [], 'team_shooting_percentage': [], 'rebounds_diff': [], 'turnovers_diff': [] } for index, row in team_games.iterrows(): if row['WTeamID'] == team_id: team_stats['point_diff'].append(row['WScore'] - row['LScore']) team_stats['team_shooting_percentage'].append(row['WFGM'] / row['WFGA']) team_stats['rebounds_diff'].append(row['WOR'] + row['WDR'] - (row['LOR'] + row['LDR'])) team_stats['turnovers_diff'].append(row['WTO'] - row['LTO']) else: team_stats['point_diff'].append(row['LScore'] - row['WScore']) team_stats['team_shooting_percentage'].append(row['LFGM'] / row['LFGA']) team_stats['rebounds_diff'].append(row['LOR'] + row['LDR'] - (row['WOR'] + row['WDR'])) team_stats['turnovers_diff'].append(row['LTO'] - row['WTO']) average_stats = { key: sum(values) / len(values) for key, values in team_stats.items() } return average_stats def predict_game(team1_id, team2_id, model, all_game_results): team1_average_stats = calculate_team_average_stats(team1_id, all_game_results) team2_average_stats = calculate_team_average_stats(team2_id, all_game_results) input_data = pd.DataFrame([{ 'point_diff': team1_average_stats['point_diff'] - team2_average_stats['point_diff'], 'team1_shooting_percentage': team1_average_stats['team_shooting_percentage'], 'team2_shooting_percentage': team2_average_stats['team_shooting_percentage'], 'rebounds_diff': team1_average_stats['rebounds_diff'] - team2_average_stats['rebounds_diff'], 'turnovers_diff': team1_average_stats['turnovers_diff'] - team2_average_stats['turnovers_diff'] }]) winner = predict_winner(team1_id, team2_id, input_data, model) return winner # Main loop for user input while True: print("Enter the team IDs for the two teams you want to predict (e.g. 1101 1102) or type 'exit' to quit:") user_input = input() if user_input.lower() == 'exit': break try: team1_id, team2_id = map(int, user_input.split()) except ValueError: print("Invalid input. Please enter two team IDs separated by a space.") continue winner = predict_game(team1_id, team2_id, model, all_game_results) print(f'The predicted winner is: {winner}')
lakshayMahajan/March-Madness-ML
madness.py
madness.py
py
4,404
python
en
code
0
github-code
6
30138290765
# !/usr/local/python/bin/python # -*- coding: utf-8 -*- # (C) Wu Dong, 2020 # All rights reserved # @Author: 'Wu Dong <[email protected]>' # @Time: '2020-04-09 14:39' """ 演示自定义响应类 """ # sys import json # 3p from flask import Flask from pre_request import BaseResponse from pre_request import pre, Rule class CustomResponse(BaseResponse): def __call__(self, fuzzy=False, formatter=None, error=None): """ :type error: 错误 :return: """ result = { "code": error.code, "rst": {} } from flask import make_response # pylint: disable=import-outside-toplevel response = make_response(json.dumps(result)) response.headers["Content-Type"] = "application/json; charset=utf-8" return response app = Flask(__name__) app.config["TESTING"] = True filter_params = { "email": Rule(email=True) } @app.route("/email", methods=['get', 'post']) @pre.catch(filter_params) def email_resp_handler(params): """ 测试邮件验证 """ return str(params) if __name__ == "__main__": pre.add_response(CustomResponse) resp = app.test_client().get("/email", data={ "email": "wudong@@eastwu.cn" }) print(resp.get_data(as_text=True))
Eastwu5788/pre-request
examples/example_flask/example_response.py
example_response.py
py
1,281
python
en
code
55
github-code
6
14149751216
def freq_table(sentence): """Returns a table with occurences of each letter in the string. Case insensitive""" sentence = sentence.lower() sentence = sentence.replace(" ", "") letter_dict = {} for letter in sentence: letter_dict[letter] = letter_dict.get(letter, 0) + 1 keys_list = list(letter_dict.keys()) keys_list.sort() for key in keys_list: print("{0} {1}".format(key, letter_dict[key])) freq_table("Test case of the first sentence in this function")
Tomasz-Kluczkowski/Education-Beginner-Level
THINK LIKE A COMPUTER SCIENTIST FOR PYTHON 3/CHAPTER 20 DICTIONARIES/string frequency table.py
string frequency table.py
py
505
python
en
code
0
github-code
6
37091297903
#!/usr/bin/python from __future__ import print_function import negspy.coordinates as nc import sys import argparse from itertools import tee def pairwise(iterable): "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a) def main(): parser = argparse.ArgumentParser(description=""" python chr_pos_to_genome_pos.py -t 1,2:3,4 Convert chromosome,position pairs to genome_positions. Assumes that the coordinates refer to the hg19 assembly (unless otherwise specified). Example: 2 NM_000014 chr12 - 9220303 9268825 -> python scripts/chr_pos_to_genome_pos.py -c 3:5,3:6 2 NM_000014 genome - 2115405269 2115453791 -------------------------------- This also works with space-delimited fields: chr5 56765,56766 ->python scripts/chr_pos_to_genome_pos.py -c 1:2 genome 881683465,881683466 """) parser.add_argument('-a', '--assembly', default='hg19') parser.add_argument('-s', '--chromsizes-file', default=None) parser.add_argument('-n', '--new-chrom', default=None) parser.add_argument('-c', '--columns', default='1,2', help="Which columns to translate to genome positions. " "Column pairs should be 1-based and separated by colons") #parser.add_argument('-u', '--useless', action='store_true', # help='Another useless option') args = parser.parse_args() if args.chromsizes_file is not None: chrom_info = nc.get_chrominfo_from_file(args.chromsizes_file) else: chrom_info = nc.get_chrominfo(args.assembly) for line in sys.stdin: try: line_output = [] line_parts = line.strip().split() translated_positions = {} translated_chroms = {} for translate_pair in [[int (y) for y in x.split(':')] for x in args.columns.split(',')]: # go through the pairs of columns that need to be translated to genome position # assume that the position column is comma separated list of values (although it doesn't # actually need to be) chrom,poss = line_parts[translate_pair[0]-1], line_parts[translate_pair[1]-1].strip(",").split(',') genome_pos = ",".join(map(str,[nc.chr_pos_to_genome_pos( chrom, int(pos), chrom_info) for pos in poss])) #line_output += [genome_pos] # note that we've translated these columns and shouldn't include them in the output translated_positions[translate_pair[1]-1] = genome_pos translated_chroms[translate_pair[0]-1] = chrom for i,part in enumerate(line_parts): if i in translated_chroms: # replace chromosome identifiers (e.g. 'chr1') with 'genome' to indicate the positions if args.new_chrom is None: line_output += ['genome({})'.format(chrom)] else: line_output += [args.new_chrom] elif i in translated_positions: # this column used to contain a position so we need to replace it with a translated # position line_output += [translated_positions[i]] else: # if this column didn't contain a translated position output it as is line_output += [part] try: print("\t".join(map(str, line_output))) except BrokenPipeError: # Output is probably being run through "head" or something similar break except KeyError as ke: print("KeyError:", ke, line.strip(), file=sys.stderr) if __name__ == '__main__': main()
pkerpedjiev/negspy
scripts/chr_pos_to_genome_pos.py
chr_pos_to_genome_pos.py
py
3,851
python
en
code
9
github-code
6
13767499463
import os import pytest from stips import stips_data_base # from stips.utilities import SelectParameter # from stips.utilities.utilities import GetParameter @pytest.fixture(autouse=True) def pre_post_test(): # Setup config file environment variable config_param = None if "stips_config" in os.environ: config_param = os.environ["stips_config"] del os.environ["stips_config"] # Setup stips_data_base by renaming any possible file if os.path.exists(os.path.join(stips_data_base, "stips_config.yaml")): os.rename(os.path.join(stips_data_base, "stips_config.yaml"), os.path.join(stips_data_base, "stips_config_notused.yaml")) # this is where the test function runs yield # Teardown config file environment variable if config_param is not None: os.environ["stips_config"] = config_param # Teardown stips_data_base config file if os.path.exists(os.path.join(stips_data_base, "stips_config_notused.yaml")): os.rename(os.path.join(stips_data_base, "stips_config_notused.yaml"), os.path.join(stips_data_base, "stips_config.yaml")) def test_local_file(data_base): config_file = os.path.join(data_base, "override_config.yaml") with open(config_file, "w") as conf: conf.write("observation_distortion_enable : true") if os.path.exists(config_file): os.remove(config_file) def test_environment_variable(data_base): config_file = os.path.join(data_base, "override_config.yaml") with open(config_file, "w") as conf: conf.write("observation_distortion_enable : true") os.environ['stips_config'] = config_file if os.path.exists(config_file): os.remove(config_file) if 'stips_config' in os.environ: del os.environ['stips_config'] def test_data_variable(data_base): config_file = os.path.join(stips_data_base, "stips_config.yaml") with open(config_file, "w") as conf: conf.write("observation_distortion_enable : true") if os.path.exists(config_file): os.remove(config_file)
spacetelescope/STScI-STIPS
stips/utilities/tests/test_config.py
test_config.py
py
2,091
python
en
code
12
github-code
6
10211319525
# -*- coding: utf8 -*- from django.test import TestCase from django.apps import apps from blog.models import ExecuteStatus, Tag from blog.models import TestCase as TC from django.contrib.auth.models import User import datetime import os class TestCaseModelTestCase(TestCase): def setUp(self): #apps.get_app_config() #user = User.objects.create_superuser() from django.utils import timezone created_time = timezone.now() tags = Tag.objects.order_by('?') tag1 = tags.first() tag2 = tags.last() status = ExecuteStatus.objects.create(name='Testing') #user = User.objects.get_by_natural_key('admin') user = User.objects.create_superuser( username='admin1', email='[email protected]', password='admin') self.testcase = TC.objects.create( name='1234', created_time=created_time, abstract='This is the', execute_status=status, author=user, ) #testcase.tags.add(tag1, tag2) #testcase.save() def test_str_representation(self): self.assertEqual(self.testcase.__str__(), self.testcase.name)
charleszh/rf-web
DjangoDemo/blog/tests/test_models.py
test_models.py
py
1,209
python
en
code
0
github-code
6
15565393240
import logging import os from typing import List from plumbum import cmd, local from pathlib import Path import doit from doit.action import CmdAction from constants import DEFAULT_DB, DB_USERNAME, DB_PASSWORD, VERBOSITY_DEFAULT logging.basicConfig() logger = logging.getLogger("dodo") logger.setLevel(logging.DEBUG) NOISEPAGE_PATH = Path.joinpath(Path.home(), "noisepage-pilot").absolute() ARTIFACTS_PATH = Path.joinpath(NOISEPAGE_PATH, "artifacts/benchbase") PROJECT_PATH = Path.joinpath(NOISEPAGE_PATH, "artifacts/project") POSTGRES_PATH = str(Path.joinpath(Path.home(), "postgres/build/bin")) POSTGRES_DATA_PATH = str(Path.joinpath(Path.home(), "postgresql/data")) ARTIFACT_benchbase = Path.joinpath(ARTIFACTS_PATH, "benchbase.jar") ARTIFACT_benchbase_results = ARTIFACT_benchbase / "results" PSQL = "/home/kramana2/postgres/build/bin/psql" BENCHBASE_CONFIG_TAGS = { "scalefactor": "/parameters/scalefactor", "time": "/parameters/works/work/time", "rate": "/parameters/works/work/rate", "terminals": "/parameters/terminals", } def task_hello(): return {"actions": ["echo 'Hello world!'"], "verbosity": VERBOSITY_DEFAULT} def get_config_path(benchmark, config=None) -> str: """ Fetches the path to the config file of the given benchmark. """ if config is None: config = PROJECT_PATH / f"{benchmark}_config.xml" elif not config.startswith("/"): config = Path(NOISEPAGE_PATH / config).absolute() return str(config) def task_update_log_collection(): sql_list = [ "ALTER SYSTEM SET log_destination='csvlog'", "ALTER SYSTEM SET logging_collector='on'", "ALTER SYSTEM SET log_statement='all'", "ALTER SYSTEM SET log_connections='on'", "ALTER SYSTEM SET log_disconnections='on'", "ALTER SYSTEM SET log_directory='%(log_directory)s'", ] return { "actions": [ f"mkdir -p {POSTGRES_DATA_PATH}/%(log_directory)s", *[ f'PGPASSWORD={DB_PASSWORD} {PSQL} --host=localhost --dbname={DEFAULT_DB} --username={DB_USERNAME} --command="{sql}"' for sql in sql_list ], ], "params": [ { "name": "log_directory", "long": "log_directory", "default": "log", }, { "name": "log_file", "long": "log_file", "default": "postgresql-%Y-%m-%d_%H%M%S.log", }, ], "verbosity": VERBOSITY_DEFAULT, } def task_perform_vacuum(): """ Postgres: Performs vacuuming on the database system. """ return { "actions": [ *[ f'PGPASSWORD={DB_PASSWORD} {PSQL} --host=localhost --dbname={DEFAULT_DB} --username={DB_USERNAME} --command="VACUUM;"' ], ], "params": [], "verbosity": VERBOSITY_DEFAULT, } def task_update_config(): def update_xml(benchmark, scalefactor=1, time=60, rate=10, terminals=1): kwargs = locals().copy() del kwargs["benchmark"] config = get_config_path(benchmark) logger.info(f"Updating arguments in config file {config} with values: {kwargs}") actions = [] for param in kwargs: # We're assuming that all keys in kwargs are in BENCHBASE_CONFIG_TAGS key = BENCHBASE_CONFIG_TAGS[param] value = locals()[param] cmd = f"xmlstarlet edit --inplace --update '{key}' --value \"{value}\" {config}" actions.append(cmd) return "; \n".join(actions) return { "actions": [ CmdAction(update_xml), ], "params": [ { "name": "benchmark", "long": "benchmark", "help": "The benchmark to run.", "default": "epinions", }, { "name": "scalefactor", "long": "scalefactor", "default": 1, }, { "name": "time", "long": "time", "default": 60, # 60s }, { "name": "rate", "long": "rate", "default": 10, }, { "name": "terminals", "long": "terminals", "default": 1, }, ], "verbosity": VERBOSITY_DEFAULT, } def task_benchbase_workload_create(): """ Benchbase: initializes the specified benchmark. """ def invoke_benchbase(benchmark, config, directory): config = get_config_path(benchmark, config) return f"echo {config}; java -jar benchbase.jar -b {benchmark} -c {config} -d {directory} --create=true --load=true" return { "actions": [ lambda: os.chdir(str(ARTIFACTS_PATH)), # Invoke BenchBase. CmdAction(invoke_benchbase), # Reset working directory. lambda: os.chdir(doit.get_initial_workdir()), ], "file_dep": [ARTIFACT_benchbase], "uptodate": [False], "verbosity": VERBOSITY_DEFAULT, "params": [ { "name": "benchmark", "long": "benchmark", "help": "The benchmark to run.", "default": "epinions", }, { "name": "config", "long": "config", "help": ( "The config file to use for BenchBase." "Defaults to the config in the artifacts folder for the selected benchmark." ), "default": None, }, { "name": "directory", "long": "directory", "default": f"{ARTIFACT_benchbase_results}", }, ], } def task_benchbase_run(): """ BenchBase: run a specific benchmark. """ def invoke_benchbase(benchmark, config, directory, args): config = get_config_path(benchmark, config) return f"echo {config}; java -jar benchbase.jar -b {benchmark} -c {config} -d {directory} {args}" return { "actions": [ lambda: os.chdir(str(ARTIFACTS_PATH)), # Invoke BenchBase. CmdAction(invoke_benchbase), # Reset working directory. lambda: os.chdir(doit.get_initial_workdir()), ], "file_dep": [ARTIFACT_benchbase], "uptodate": [False], "verbosity": VERBOSITY_DEFAULT, "params": [ { "name": "benchmark", "long": "benchmark", "help": "The benchmark to run.", "default": "epinions", }, { "name": "config", "long": "config", "help": ( "The config file to use for BenchBase." "Defaults to the config in the artifacts folder for the selected benchmark." ), "default": None, }, { "name": "directory", "long": "directory", "default": f"{ARTIFACT_benchbase_results}", }, { "name": "args", "long": "args", "help": "Arguments to pass to BenchBase invocation.", "default": "--create=false --load=false --execute=false", }, ], }
karthik-ramanathan-3006/15-799-Special-Topics-in-Database-Systems
dodos/dodo.py
dodo.py
py
7,577
python
en
code
0
github-code
6
8927274924
from datetime import datetime as dt from datetime import timedelta import pickle import time import dask.dataframe as dd from dask.distributed import as_completed, worker_client import numpy as np import pandas as pd import requests import s3fs BUCKET = "insulator-citi-bikecaster" INSULATOR_URLS = [ "https://api-dev.insulator.ai/v1/time_series", "https://ybcbwoz3w6.execute-api.us-east-1.amazonaws.com/staging/v1/time_series" ] s3 = s3fs.S3FileSystem() def model_key(station_id): return f"models/station_{station_id}.pkl" def load_model(station_id): with s3.open(f"{BUCKET}/{model_key(station_id)}", "rb") as f: return pickle.loads(f.read()) def load_local_model(station_id): with open(f"models/station_{station_id}.pkl", "rb") as f: return pickle.load(f) def ts_to_unixtime(series): return series.astype(np.int64) // 10 ** 9 def post_outcome(df, station_id, usernames, api_keys): two_hours_ago = dt.now() - timedelta(hours=2) past_two_hours = df[df["last_reported"] >= two_hours_ago] past_two_hours = past_two_hours.sort_values("last_reported") series_timestamps = ts_to_unixtime(past_two_hours["last_reported"]).tolist() series_values = past_two_hours["num_bikes_available"].astype("int").tolist() post_event(station_id, series_timestamps, series_values, "outcome", usernames, api_keys) def post_event(station_id, series_timestamps, series_values, event_type, usernames, api_keys): payload = { "service_name": "bikecaster", "model_name": "lin_reg", "model_version": "0.1.0", "timestamp": time.time(), "entities": {"station_id": station_id}, "series_timestamps": series_timestamps, "series_values": series_values } assert event_type in ("prediction", "outcome") for username, api_key, insulator_url in zip(usernames, api_keys, INSULATOR_URLS): url = f"{insulator_url}/{event_type}" try: response = requests.post(url, auth=(username, api_key), json=payload) if not response: print(f"Error posting to insulator ingest API: {response.text}") except Exception as e: print(e) def make_forecast(df, station_id, usernames, api_keys): station_df = df[df["station_id"] == station_id] post_outcome(station_df, station_id, usernames, api_keys) station_df = ( station_df .set_index("last_reported") .sort_index() .resample("5T", label="right", closed="right") .last() .fillna(method="ffill") ) y = station_df["num_bikes_available"].values.copy() X = y.reshape(-1, 1).copy() try: model = load_local_model(station_id) except: print(f"There's no model for station {station_id}") return False try: series_values = np.squeeze(model.predict(X, start_idx=len(X) - 1)) except: print(f"Error predicting for station {station_id}") return False series_values = np.clip(series_values.astype(int), 0, None).astype("int").tolist() series_timestamps = pd.date_range( station_df.index[-1], periods=len(series_values) + 1, freq="5T" ) # Remove the first value because it's the last value in the original data. series_timestamps = series_timestamps[1:] series_timestamps = ts_to_unixtime(series_timestamps).astype("int").tolist() post_event(station_id, series_timestamps, series_values, "prediction", usernames, api_keys) return True def pipeline(s3_path, usernames, api_keys): df = dd.read_csv(s3_path).compute() df["last_reported"] = pd.to_datetime(df["last_reported"]) MIN_DATE = "2016-01-01" df = df[df.last_reported >= MIN_DATE] with worker_client() as client: df_future = client.scatter(df) futures = [] for station_id in sorted(df["station_id"].unique().tolist()): futures.append(client.submit(make_forecast, df_future, station_id, usernames, api_keys)) total = len(futures) success = 0 for result in as_completed(futures): if result.result(): success += 1 if success % 50 == 0: print(f"{success} / {total} tasks successfully completed") print(f"Done. Final tally: {success} / {total} tasks successfully completed") return True
EthanRosenthal/citi-bikecaster-model
calcs.py
calcs.py
py
4,374
python
en
code
0
github-code
6
27646567910
import http.server from colorama import Fore, Style import os import cgi HOST_NAME = '127.0.0.1' # Kali IP address PORT_NUMBER = 80 # Listening port number class MyHandler(http.server.BaseHTTPRequestHandler): # MyHandler defines what we should do from the client / target def do_GET(s): # If we got a GET request, we will:- s.send_response(200,message=None) # return HTML status 200 (OK) s.send_header("Content-type", "text/html") # Inform the target that content type head s.end_headers() cmd = input(f"{Fore.LIGHTCYAN_EX}(Abuqasem)>{Style.RESET_ALL} ") # take user input s.wfile.write(cmd.encode("utf-8")) # send the command which we got from the user input def do_POST(s): # If we got a POST, we will:- s.send_response(200) # return HTML status 200 (OK) s.end_headers() length = int(s.headers['Content-Length']) # Define the length which means how many bytes # value has to be integer postVar = s.rfile.read(length) # Read then print the posted data print(postVar.strip().decode("utf-8"), end="") def getfile(s): if s.path == '/store': try: ctype, pdict = cgi.parse_header(s.headers.getheader('content-type')) if ctype == 'multipart/form-data': fs = cgi.FieldStorage(fp=s.rfile,headers=s.headers,environ={'REQUEST_METHOD': 'POST'}) else: print("[-] Unexpected POST request") fs_up = fs['file'] with open('/proof.txt', 'wb') as o: o.write(fs_up.file.read()) s.send_response(200) s.end_headers() except Exception as e: print (e) return if __name__ == '__main__': # We start a server_class and create httpd object and pass our kali IP,port number and cl server_class = http.server.HTTPServer httpd = server_class((HOST_NAME, PORT_NUMBER), MyHandler) try: print(f"{Fore.LIGHTGREEN_EX}(Listening on port)->[{PORT_NUMBER}]{Style.RESET_ALL}") httpd.serve_forever() # start the HTTP server, however if we got ctrl+c we will Inter except KeyboardInterrupt: print(f"{Fore.RED}[!] Server is terminated{Style.RESET_ALL}") httpd.server_close()
zAbuQasem/Misc
http reverse shell/Server.py
Server.py
py
2,367
python
en
code
6
github-code
6
9238631713
# -*- coding: utf-8 -*- """ Created on Wed Mar 6 17:18:39 2019 @author: akshaf """ import numpy as np data1 = [[1,2,3,4],[5,6,7,8],["ab","c","d","d"]] print("data1",data1) type(data1) a = np.array(data1) a type(a) # This give numpy array data1.__class__ # similar to type(data1) function a.__class__ # similar to type(a) function a.ndim # gives dimension of rows a.shape # gives shape in the form of (row,column) a.dtype # shows which all different datatypes are present in a a1 = np.arange(15).reshape(3,5) # arrange will create a sequence and reshape will shape in (row,column) structure a1 type(a1) a1.ndim a1.shape a1.dtype z= np.zeros((3,6)) z a = np.arange(50) a a.ndim a[0] a[6] # 6th element a[0:3] # first 3 elements a[4:8] # 5th to 8th element a[2:] # All elements that start from 2 a[:] # all elements from start to end a[-3:] # last 3 ekements a1 = np.arange(15).reshape(3,5) a1 a1[0] a1[1] a1[2] a1[1:] a1[1][2]
akshafmulla/PythonForDataScience
Basics_of_Python/Code/16 Numpy.py
16 Numpy.py
py
936
python
en
code
0
github-code
6
32312362218
from osgeo import gdal import numpy as np # calculating SAVI and NDVI noDataVal = -28672 def calculate_ndvi(nir, red): valid_mask = (nir != noDataVal) & (red != noDataVal) ndvi_band = np.where(valid_mask, (nir - red) / (nir + red), np.nan) return ndvi_band # Function to calculate SAVI def calculate_savi(nir, red): soil_factor = 0.5 valid_mask = (nir != noDataVal) & (red != noDataVal) savi_band = np.where(valid_mask,((1 + soil_factor) * (nir - red)) / (nir + red + soil_factor),np.nan) return savi_band def export_geotiff(src_dataset, band, output_path): # Get the geotransform from the NIR dataset geotransform = src_dataset.GetGeoTransform() # Create the output GeoTIFF driver = gdal.GetDriverByName('GTiff') output_dataset = driver.Create(output_path, src_dataset.RasterXSize, src_dataset.RasterYSize, 1, gdal.GDT_Float32) # Set the geotransform and projection output_dataset.SetGeoTransform(geotransform) output_dataset.SetProjection(src_dataset.GetProjection()) # Write the SAVI band to the output GeoTIFF output_band = output_dataset.GetRasterBand(1) output_band.WriteArray(band) # Flush data to disk and close the output GeoTIFF output_band.FlushCache() output_dataset.FlushCache() output_dataset = None def export_savi_ndvi(nir_path, red_path): savi_output_path = nir_path.replace("nir", "savi") ndvi_output_path = nir_path.replace("nir", "ndvi") # Open NIR and red GeoTIFF files nir_dataset = gdal.Open(nir_path) red_dataset = gdal.Open(red_path) # Read NIR and red bands as NumPy arrays nir_band = nir_dataset.GetRasterBand(1).ReadAsArray() red_band = red_dataset.GetRasterBand(1).ReadAsArray() savi_band = calculate_savi(nir_band, red_band) ndvi_band = calculate_ndvi(nir_band, red_band) export_geotiff(nir_dataset, savi_band, savi_output_path) export_geotiff(nir_dataset, ndvi_band, ndvi_output_path) print('exported', savi_output_path) print('exported', ndvi_output_path) # Paths to NIR and red GeoTIFF files # nir_path = r'C:\Users\dusti\Desktop\GCERlab\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\nir_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # red_path = r'C:\Users\dusti\Desktop\GCERlab\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\red_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # nir_path = r'C:\Users\dnv22\Desktop\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\nir_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # red_path= r'C:\Users\dnv22\Desktop\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\red_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # export_savi_ndvi(nir_path, red_path)
dustnvan/ET_goes16
goes_export_geotiff/export_savi_ndvi.py
export_savi_ndvi.py
py
2,866
python
en
code
0
github-code
6
10389322209
import glob import os from os import path as op import cv2 import numpy as np from torch.utils.data import DataLoader from pathlib import Path from PIL import Image, ImageFilter from detection.dummy_cnn.dataset import BaseBillOnBackGroundSet from tqdm import tqdm from sewar.full_ref import sam as sim_measure from itertools import combinations, product import time from matplotlib import pyplot as plt from multiprocessing import Pool import pandas as pd repo = Path(os.getcwd()) im_dir_gen = os.path.join(repo, "processed_data", "genbills") im_dir_real = os.path.join(repo, "processed_data", "realbills") im_dir_unseen = os.path.join(repo, "processed_data", "realbills", "unseen") def resize(list_of_images, size): outp = [] for im in tqdm(list_of_images): copy = im.copy() copy.thumbnail(size=(size, size), resample=Image.ANTIALIAS) if copy.width > copy.height: copy = copy.rotate(90, fillcolor=(0,), expand=True) outp.append(copy) return outp def combs_self(list_of_images): return np.array(list(combinations(range(len(list_of_images)), r=2))).astype(int) def combs_between(list_of_images1, list_of_images2): return np.array(list(product(range(len(list_of_images1)), range(len(list_of_images2))))).astype(int) def simil(pair): # subfunction to put in parallel loop im_1, im_2 = pair m = "" if im_1.width != im_2.width or im_1.height != im_2.height: m = f"crop happened\n im1 dims = {im_1.width},{im_1.height},\n im2 dims = {im_2.width},{im_2.height}" min_w = min(im_1.width, im_2.width) min_h = min(im_1.height, im_2.height) im_1 = im_1.crop((1, 1, min_w-1, min_h-1)) im_2 = im_2.crop((1, 1, min_w-1, min_h-1)) m+= f"\n crop dims = 1to{min_w-1}, 1to{min_h-1}" m+= f"\n final dims = {im_1.width},{im_1.height}" try: score = sim_measure(np.array(im_1), np.array(im_2)) except Exception as e: score = 0.5 print(e) print(m) return score def similarity(list_of_images1, list_of_images2, combs): similarity_score = 0 list_of_images1 = [list_of_images1[idx] for idx in combs[:,0]] list_of_images2 = [list_of_images2[idx] for idx in combs[:,1]] with Pool(12) as pool: for score in tqdm(pool.imap(simil, zip(list_of_images1, list_of_images2)), total=len(list_of_images1)): similarity_score += score pool.close() similarity_score /= len(combs) return similarity_score def edgin(image): #task function to put in Pool loop corners = cv2.goodFeaturesToTrack(np.array(image.convert("L")), int(1e+6), 1e-6, 1e-6) return len(corners) def edginess(list_of_images): score = 0 with Pool(12) as pool: for corners in tqdm(pool.imap(edgin, list_of_images), total=len(list_of_images)): score += corners score /= len(list_of_images) return score # This script is meant do discover which size for training corner_cnn is the best generated_images = BaseBillOnBackGroundSet(image_dir=im_dir_gen) loader = DataLoader(dataset=generated_images, batch_size=1, num_workers=12, shuffle=True) temp = [] for im, _ in tqdm(loader, total=200): im = im[0].numpy() where_0 = np.sum(im, axis=2) > 0 for row, element in enumerate(where_0): if np.all(element == 0): break for col, element in enumerate(where_0.T): if np.all(element == 0): break im = im[:row, :col, :] try: temp.append(Image.fromarray(im)) except: print("Error occured") if len(temp) == 200: break generated_images = temp real_images = glob.glob(op.join(im_dir_real, "*.jpg"), recursive=False) real_images = [Image.open(file) for file in real_images if not "mask" in file]#[:8] test_images = glob.glob(op.join(im_dir_unseen, "*.jpg"), recursive=False) test_images = [Image.open(file) for file in test_images if not "mask" in file]#[:8] sizes = np.geomspace(1000, 10, 100).astype(int) scores = {'sim_gen': [], 'sim_real': [], 'sim_test': [], 'sim_gen_vs_real': [], 'sim_gen_vs_test': [], 'sim_test_vs_real': [], "edg_gen": [], "edg_real": [], "edg_test": []} print("#" * 100) print() for size in sizes: images_of_size = {"gen": [], "real": [], "test": []} print(f"Resizing {size}") images_of_size['gen'] = resize(generated_images, size) images_of_size['real'] = resize(real_images, size) images_of_size['test'] = resize(test_images, size) time.sleep(2) print(f"\nCollect similarity inside every set {size}") for k in images_of_size.keys(): sim = similarity(list_of_images1=images_of_size[k], list_of_images2=images_of_size[k], combs=combs_self(images_of_size[k])) scores[f'sim_{k}'].append(sim) time.sleep(2) print(f"\nCollect similarity inbetween sets {size}") for k_pair in [("gen", "real"), ("gen", "test"), ("test", "real")]: sim = similarity(list_of_images1=images_of_size[k_pair[0]], list_of_images2=images_of_size[k_pair[1]], combs=combs_between(list_of_images1=images_of_size[k_pair[0]], list_of_images2=images_of_size[k_pair[1]])) scores[f'sim_{k_pair[0]}_vs_{k_pair[1]}'].append(sim) time.sleep(2) print(f"\nCollect edginess of every set {size}") for k in images_of_size.keys(): edg = edginess(list_of_images=images_of_size[k]) scores[f'edg_{k}'].append(edg) time.sleep(2) # plotting current results num_el = len(scores["sim_gen"]) f, ax = plt.subplots(nrows=3, ncols=1, figsize=(10, 15)) ax[0].set_title("Dissimilarity of images within each set") ax[0].set_xlabel("Size of image") ax[0].plot(sizes[:num_el][::-1], scores["sim_gen"][::-1], label="generated images", c="red") ax[0].plot(sizes[:num_el][::-1], scores["sim_real"][::-1], label="real images", c="blue") ax[0].plot(sizes[:num_el][::-1], scores["sim_test"][::-1], label="test images", c="blue", ls=":") ax[1].set_title("Dissimilarity of images between sets") ax[1].set_xlabel("Size of image") ax[1].plot(sizes[:num_el][::-1], scores["sim_gen_vs_real"][::-1], label="generated vs real images", c="blue") ax[1].plot(sizes[:num_el][::-1], scores["sim_gen_vs_test"][::-1], label="generated vs test images", c="blue", ls=":") ax[1].plot(sizes[:num_el][::-1], scores["sim_test_vs_real"][::-1], label="real vs test images", c="green") ax[2].set_title("Number of corners detected of images within each set") ax[2].set_xlabel("Size of image") ax[2].plot(sizes[:num_el][::-1], scores["edg_gen"][::-1], label="generated images", c="red") ax[2].plot(sizes[:num_el][::-1], scores["edg_real"][::-1], label="real images", c="blue") ax[2].plot(sizes[:num_el][::-1], scores["edg_test"][::-1], label="test images", c="blue", ls=":") ax[2].set_yscale('log') for a in ax: a.legend() a.grid(axis="x", which="both") a.invert_xaxis() a.set_xscale('log') plt.tight_layout() plt.savefig("/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/0_stats.png", dpi=150) plt.close("all") # save examples of images images_of_size['gen'][0].save(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/generated_{size}.png") images_of_size['real'][0].save(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/real_{size}.png") images_of_size['test'][0].save(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/test_{size}.png") #save scores frame = pd.DataFrame(scores) frame.set_index(sizes[:num_el], inplace=True) frame.to_csv(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/0_scores.csv", sep=";") print("#" * 100)
KaraLandes/BachelorsProject
Repo/compare_data_similarity.py
compare_data_similarity.py
py
8,019
python
en
code
0
github-code
6
23396456749
''' locals() 函数会以字典类型返回当前位置的全部局部变量。 对于函数, 方法, lambda 函式, 类, 以及实现了 __call__ 方法的类实例, 它都返回 True。 语法 locals() 函数语法: locals() 参数 无 返回值 返回字典类型的局部变量 1 不要修改locals()返回的字典中的内容;改变可能不会影响解析器对局部变量的使用。 2 在函数体内调用locals(),返回的是自由变量。修改自由变量不会影响解析器对变量的使用。 3 不能在类区域内返回自由变量。 ''' def test_py(arg): z=1 print(locals()) test_py(6) #输出 {'z': 1, 'arg': 6} def foo(arg, a): x = 100 y = 'hello python!' for i in range(10): j = 1 k = i print(locals()) foo(1, 2) #输出 {'k': 9, 'j': 1, 'i': 9, 'y': 'hello python!', 'x': 100, 'a': 2, 'arg': 1} #参考博客 https://blog.csdn.net/sxingming/article/details/52061630
tyutltf/Python_funs
locals函数详解.py
locals函数详解.py
py
952
python
zh
code
20
github-code
6
71345155708
#!/usr/bin/env python import unittest import copy from ct.cert_analysis import base_check_test from ct.cert_analysis import extensions from ct.crypto.asn1 import oid from ct.crypto.asn1 import types from ct.crypto import cert def remove_extension(certificate, ex_oid): # If given extension exists in certificate, this function will remove it extensions = certificate.get_extensions() for i, ext in enumerate(extensions): if ext["extnID"] == ex_oid: del extensions[i] break def set_extension_criticality(certificate, ex_oid, value): extensions = certificate.get_extensions() for ext in extensions: if ext["extnID"] == ex_oid: ext["critical"] = types.Boolean(value) CORRECT_LEAF = cert.Certificate.from_pem_file("ct/crypto/testdata/youtube.pem") CORRECT_CA = cert.Certificate.from_pem_file("ct/crypto/testdata/subrigo_net.pem") CORRECT_SUBORDINATE = cert.Certificate.from_pem_file("ct/crypto/testdata/" "verisign_intermediate.pem") class ExtensionsTest(base_check_test.BaseCheckTest): def test_good_leaf_cert(self): check = extensions.CheckCorrectExtensions() result = check.check(CORRECT_LEAF) self.assertEqual(len(result), 0) def test_good_ca_cert(self): check = extensions.CheckCorrectExtensions() result = check.check(CORRECT_CA) self.assertEqual(len(result), 0) def test_good_subordinate_cert(self): check = extensions.CheckCorrectExtensions() result = check.check(CORRECT_SUBORDINATE) self.assertEqual(len(result), 0) def test_ca_missing_extension(self): certificate = copy.deepcopy(CORRECT_CA) remove_extension(certificate, oid.ID_CE_BASIC_CONSTRAINTS) check = extensions.CheckCorrectExtensions() result = check.check(certificate) self.assertObservationIn( extensions.LackOfRequiredExtension(extensions._ROOT, extensions._oid_to_string( oid.ID_CE_BASIC_CONSTRAINTS)), result) self.assertEqual(len(result), 1) if __name__ == '__main__': unittest.main()
kubeup/archon
vendor/github.com/google/certificate-transparency/python/ct/cert_analysis/extensions_test.py
extensions_test.py
py
2,258
python
en
code
194
github-code
6
33229423614
# For each cylinder in the scan, find its ray and depth. # 03_c_find_cylinders # Claus Brenner, 09 NOV 2012 from pylab import * from lego_robot import * # Find the derivative in scan data, ignoring invalid measurements. def compute_derivative(scan, min_dist): jumps = [ 0 ] for i in xrange(1, len(scan) - 1): l = scan[i-1] r = scan[i+1] if l > min_dist and r > min_dist: derivative = (r - l) / 2.0 jumps.append(derivative) else: jumps.append(0) jumps.append(0) return jumps # For each area between a left falling edge and a right rising edge, # determine the average ray number and the average depth. def find_cylinders(scan, scan_derivative, jump, min_dist): cylinder_list = [] on_cylinder = False sum_ray, sum_depth, rays = 0.0, 0.0, 0 for i in xrange(len(scan_derivative)): # --->>> Insert your cylinder code here. # Whenever you find a cylinder, add a tuple # (average_ray, average_depth) to the cylinder_list. # If I find a strong negative value for the derivative # then you have found a landmark's left edge. See Scan0.png for visual reference. if(scan_derivative[i] < -jump): on_cylinder = True rays = 0 sum_ray = 0.0 sum_depth = 0 # Each time you detect a landmark's right edge two consecutive values for the derivative # above the detection threshold appear. Only the first derivative value is valid and is # assocciated with the last suitable laser beam of the current analyzed scan. elif(scan_derivative[i] > jump and on_cylinder): on_cylinder = False # Add the values assocciated to the laser # beam that detects the landmark's right edge. rays += 1 sum_ray += i sum_depth += scan[i] cylinder_list.append((sum_ray/rays, sum_depth/rays)) if(on_cylinder and scan[i] > min_dist): rays += 1 sum_ray += i sum_depth += scan[i] return cylinder_list if __name__ == '__main__': minimum_valid_distance = 20.0 depth_jump = 100.0 # Read the logfile which contains all scans. logfile = LegoLogfile() logfile.read("robot4_scan.txt") # Pick one scan. scan = logfile.scan_data[8] # Find cylinders. der = compute_derivative(scan, minimum_valid_distance) cylinders = find_cylinders(scan, der, depth_jump, minimum_valid_distance) # Plot results. plot(scan) scatter([c[0] for c in cylinders], [c[1] for c in cylinders], c='r', s=200) show()
jfrascon/SLAM_AND_PATH_PLANNING_ALGORITHMS
01-GETTING_STARTED/CODE/slam_03_c_find_cylinders_question.py
slam_03_c_find_cylinders_question.py
py
2,747
python
en
code
129
github-code
6
31282202503
# pylint: disable=missing-docstring # pylint: disable=invalid-name import functools import re # import unicodedata from string import punctuation as PUNCTUATIONS import numpy as np from doors.dates import get_timestamp SPECIAL_PUNCTUATIONS = PUNCTUATIONS.replace("_", "") def not_is_feat(col): return not is_feat(col) def is_feat(col): return "feat:" in col def clean_string(string): return string.lower().rstrip().replace(" ", "_").replace("'", "") def to_lowercase(strings): strings = [string.lower() for string in strings] return strings def get_pronounceable_name(): consonants = ["b", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "r", "s", "t"] vowels = ["a", "e", "i", "o", "u"] final_consonants = ["b", "f", "k", "l", "m", "n", "r", "s", "t"] return ( np.random.choice(consonants) + np.random.choice(vowels) + np.random.choice(consonants) + np.random.choice(vowels) + np.random.choice(final_consonants) ) def get_unique_id(): """Pronounceable hash to be pronounced more or less ecclesiastically. More details: https://www.ewtn.com/expert/answers/ecclesiastical_latin.htm """ return get_pronounceable_name() + "_" + get_timestamp("%y%m%d_%H%M%S") def add_as_strings(*args, **kwargs): result = args[0].astype(str) sep = kwargs.get("sep") if sep: seperator = np.repeat(sep, len(result)) else: seperator = None for arr in args[1:]: if seperator is not None: result = _add_strings(result, seperator) result = _add_strings(result, arr.astype(str)) return result def _add_strings(v, w): return np.core.defchararray.add(v, w) def camelcase_to_underscore(string): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", string) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def remove_punctuation(string): for punctuation in SPECIAL_PUNCTUATIONS: string = string.replace(punctuation, "") return string # def utf_to_ascii(string): # uni_string = unicode(string, "utf") # ascii_string = unicodedata.normalize("NFKD", uni_string).encode("ascii", "ignore") # return ascii_string def is_ascii(string): try: string.decode("ascii") return True except UnicodeDecodeError: return False def as_string(obj): if hasattr(obj, "__name__"): representation = obj.__name__ elif isinstance(obj, functools.partial): representation = _get_partial_representation(obj) elif hasattr(obj, "__dict__"): representation = get_class_representation(obj) elif hasattr(obj, "__name__"): representation = obj.__name__ else: representation = str(obj) return representation def _get_partial_representation(obj): func_rep = as_string(obj.func) input_rep = "func=" + func_rep if _args_provided(obj): arg_rep = _get_arg_representation(obj.args) input_rep += ", " + arg_rep if _kwargs_provided(obj): kwarg_rep = get_dict_string_representation(obj.keywords) input_rep += ", " + kwarg_rep partial_rep = "partial({})".format(input_rep) return partial_rep def _kwargs_provided(obj): return len(obj.keywords) > 0 def _args_provided(obj): return len(obj.args) > 0 def _get_arg_representation(args): return ", ".join([str(arg) for arg in args]) def get_class_representation(obj): joint_str_rep = get_dict_string_representation(obj.__dict__) cls_name = obj.__class__.__name__ return "{}({})".format(cls_name, joint_str_rep) def get_dict_string_representation(dct): str_rep = [] for key, value in dct.items(): if key[0] != "_": value_representation = as_string(value) str_rep.append("{}={}".format(key, value_representation)) joint_str_rep = ", ".join(str_rep) return joint_str_rep def convert_camelcase(camelcase): """ Credit to: http://stackoverflow.com/questions/1175208/elegant-python-function-to-convert- camelcase-to-snake-case """ s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camelcase) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def clean_white_space(array): array = np.array([_clean_white_space(i) for i in array]) return array def _clean_white_space(v): if isinstance(v, str): v = v.strip(" ") return v
chechir/doors
doors/strings.py
strings.py
py
4,406
python
en
code
0
github-code
6
8963786234
#!/usr/bin/env python3 import multiprocessing from queue import Empty import subprocess import Robocode import os, os.path from datetime import datetime import sys import time # This class knows about Robocode and the Database. def recommendedWorkers(): cpus = multiprocessing.cpu_count() if cpus > 12: return cpus-2 elif cpus > 6: return cpus-1 else: return cpus def BattleWorker( robocode, battledb, job_q, result_q ): print('[{who}] Started:\n {db}\n {robo}'.format( who = multiprocessing.current_process().name, db = battledb, robo = robocode ), file=sys.stderr) try: while True: battle = job_q.get() if battle.__class__ != Robocode.Battle: # sentinel: no more jobs print('[{0}] EndOfWork!'.format( multiprocessing.current_process().name, ), file=sys.stderr) break start_time = datetime.now() try: battledb.MarkBattleRunning(battle.id) print('[{who}] Running battle {id} between: {comps}'.format( who = multiprocessing.current_process().name, id = battle.id, comps = ' '.join(battle.competitors), ), file=sys.stderr) battle.run() print('[{who}] Finished: {id}'.format( who = multiprocessing.current_process().name, id = battle.id, ), file=sys.stderr) except subprocess.CalledProcessError as e: print('[{who}] Battle invocation fails: {exc}\n{output}'.format( who = multiprocessing.current_process().name, exc = e.cmd, output = e.output, ), file=sys.stderr) if not battle.error: # Only record the data if the battle succeeded. battledb.BattleCompleted(battle.id, battle.dbData(), battle.result.dbData()) elapsed = datetime.now() - start_time result_q.put(battle.id) except Exception as e: print('[{who}] Exception: {exc}'.format( who = multiprocessing.current_process().name, exc = e, ), file=sys.stderr) raise e print('[{0}] Finished!'.format( multiprocessing.current_process().name, ), file=sys.stderr) class BattleRunner: def __init__( self, battledb, robocode, maxWorkers=None ): self.battledb = battledb self.robocode = robocode self.job_q = multiprocessing.JoinableQueue() self.result_q = multiprocessing.JoinableQueue() self.workers = maxWorkers if maxWorkers is not None else recommendedWorkers() self.job_count = 0 def start( self ): # Start the workers. self.pool = [ multiprocessing.Process( target = BattleWorker, args=(self.robocode, self.battledb, self.job_q, self.result_q) ) for i in range(self.workers) ] for p in self.pool: p.start() def finish( self ): print('[{0}] Sending EndOfWork signals'.format( multiprocessing.current_process().name, ), file=sys.stderr) for p in self.pool: self.job_q.put(0) # Consume everything in the result_q while self.job_count > 0: battleid = self.result_q.get() self.job_count -= 1 for p in self.pool: p.join() def submit( self, battle ): print('[{0}] Submitting battle #{1} '.format( multiprocessing.current_process().name, battle.id, ), file=sys.stderr) self.job_q.put(battle) self.job_count += 1 def running(self): ''' check to see if any of the workers are still running ''' for p in self.pool: if p.is_alive(): return True return False def getResults(self): ''' check to see if there are any results ''' results = [] try: results.append(self.result_q.get_nowait()) except Empty: pass return results
mojomojomojo/di-arena
lib/BattleRunner.py
BattleRunner.py
py
4,617
python
en
code
0
github-code
6
34688027576
#!/usr/bin/python def modular_helper(base, exponent, modulus, prefactor=1): c = 1 for k in range(exponent): c = (c * base) % modulus return ((prefactor % modulus) * c) % modulus def fibN(n): phi = (1 + 5 ** 0.5) / 2 return int(phi ** n / 5 ** 0.5 + 0.5) # Alternate problem solutions start here def problem0012a(): p = primes(1000) n, Dn, cnt = 3, 2, 0 while cnt <= 500: n, n1 = n + 1, n if n1 % 2 == 0: n1 = n1 // 2 Dn1 = 1 for pi in p: if pi * pi > n1: Dn1 = 2 * Dn1 break exponent = 1 while n1 % pi == 0: exponent += 1 n1 = n1 / pi if exponent > 1: Dn1 = Dn1 * exponent if n1 == 1: break cnt = Dn * Dn1 Dn = Dn1 return (n - 1) * (n - 2) // 2 def problem0013a(): with open('problem0013.txt') as f: s = f.readlines() return int(str(sum(int(k[:11]) for k in s))[:10]) # solution due to veritas on Project Euler Forums def problem0014a(ub=1000000): table = {1: 1} def collatz(n): if not n in table: if n % 2 == 0: table[n] = collatz(n // 2) + 1 elif n % 4 == 1: table[n] = collatz((3 * n + 1) // 4) + 3 else: table[n] = collatz((3 * n + 1) // 2) + 2 return table[n] return max(xrange(ub // 2 + 1, ub, 2), key=collatz) # 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 # 13 -(3)-> 10 -(1)-> 5 -(3)-> 4 -(1)-> 2 -(1)-> 1 def veritas_iterative(ub=1000000): table = {1: 1} def collatz(n): seq, steps = [], [] while not n in table: seq.append(n) if n % 2 and n % 4 == 1: n, x = (3 * n + 1) // 4, 3 elif n % 2: n, x = (3 * n + 1) // 2, 2 else: n, x = n // 2, 1 steps.append(x) x = table[n] while seq: n, xn = seq.pop(), steps.pop() x = x + xn table[n] = x return x return max(xrange(ub // 2 + 1, ub, 2), key=collatz) def problem0026a(n=1000): return max(d for d in primes(n) if not any(10 ** x % d == 1 for x in range(1, d - 1))) def problem0031a(): def tally(*p): d = (100, 50, 20, 10, 5, 2, 1) return 200 - sum(k * v for k, v in zip(p, d)) c = 2 for p100 in range(2): mp50 = int(tally(p100) / 50) + 1 for p50 in range(mp50): mp20 = int(tally(p100, p50) / 20) + 1 for p20 in range(mp20): mp10 = int(tally(p100, p50, p20) / 10) + 1 for p10 in range(mp10): mp5 = int(tally(p100, p50, p20, p10) / 5) + 1 for p5 in range(mp5): mp2 = int(tally(p100, p50, p20, p10, p5) / 2) + 1 for p2 in range(mp2): c += 1 return c def problem0089a(): n2r = [(1000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I')] r2n = {b: a for a, b in n2r} def to_roman(x): s = [] while x: n, c = next((n, c) for n, c in n2r if x >= n) s.append(c) x = x - n return ''.join(s) def from_roman(r): k, s = 0, 0 while k < len(r): if r[k] not in ('I', 'X', 'C') or k == len(r) - 1: s = s + r2n[r[k]] elif r[k:k+2] in r2n: s = s + r2n[r[k:k+2]] k = k + 1 else: s = s + r2n[r[k]] k = k + 1 return s return sum(len(r) - len(to_roman(from_roman(r))) for r in data.readRoman()) def problem0097a(): # Note 7830457 = 29 * 270015 + 22 # (10 ** 10 - 1) * 2 ** 29 does not overflow a 64 bit integer p, b, e = 28433, 2, 7830457 d, m = divmod(e, 29) prefactor = 28433 * 2 ** m return modular_helper(2 ** 29, 270015, 10 ** 10, 28433 * 2 ** m) + 1
pkumar0508/project-euler
alternate_solutions.py
alternate_solutions.py
py
4,179
python
en
code
0
github-code
6
40409186941
#!/usr/bin/env python3 # unit_test/cisco/nxos/unit_test_nxos_vlan.py our_version = 107 from ask.common.playbook import Playbook from ask.common.log import Log from ask.cisco.nxos.nxos_vlan import NxosVlan ansible_module = 'nxos_vlan' ansible_host = 'dc-101' # must be in ansible inventory log = Log('unit_test_{}'.format(ansible_module), 'INFO', 'DEBUG') def playbook(): pb = Playbook(log) pb.profile_nxos() pb.ansible_password = 'mypassword' pb.file = '/tmp/{}.yaml'.format(ansible_module) pb.name = '{} task'.format(ansible_module) pb.add_host(ansible_host) return pb def add_task_name(task): task.append_to_task_name('v{}, {}'.format(our_version, ansible_host)) for key in sorted(task.scriptkit_properties): task.append_to_task_name(key) def add_task(pb): task = NxosVlan(log) task.admin_state = 'up' task.delay = 20 task.interfaces = ['Ethernet1/7', 'Ethernet1/8'] task.name = "my_vlan_2001" task.mapped_vni = 20001 task.state = 'present' task.vlan_id = 2001 task.vlan_state = 'active' add_task_name(task) task.commit() pb.add_task(task) def add_aggregate_task(pb): task = NxosVlan(log) task.admin_state = 'up' task.delay = 20 task.interfaces = ['Ethernet1/9', 'Ethernet1/10'] task.name = "my_vlan_2002" task.mapped_vni = 20002 task.state = 'present' task.vlan_id = 2002 task.vlan_state = 'active' task.add_vlan() task.admin_state = 'down' task.delay = 20 task.interfaces = ['Ethernet1/11', 'Ethernet1/12'] task.name = "my_vlan_2003" task.mapped_vni = 20003 task.state = 'present' task.vlan_id = 2003 task.vlan_state = 'active' task.add_vlan() task.task_name = 'aggregate vlans' task.commit() pb.add_task(task) pb = playbook() add_task(pb) add_aggregate_task(pb) pb.append_playbook() pb.write_playbook() log.info('wrote playbook {}'.format(pb.file))
allenrobel/ask
unit_test/cisco/nxos/unit_test_nxos_vlan.py
unit_test_nxos_vlan.py
py
1,944
python
en
code
2
github-code
6
22461213731
import xarray as xr import numpy as np #Este script baixa os dados do hycom para os períodos selecionados para o experimento GLBv0.08/expt_53.X #Importante: Por conta da estruturas dos servidores OpenDAP, e preciso baixar o dado por cada passo de tempo para postriormente concaternar #Para concatenar, selecionar os arquivos desejados e utilizar o CDO, portando, este processamento é melhor realizado numa máquina Linux. #Comando: cdo cat <*.nc> <saidamodeloteste.nc> expt = ['http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_56.3', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_57.2', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_57.7', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_92.8', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_92.9', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_93.0', ] #Parametros de entrada - Lembrando que as coordenadas deve ser passadas em WGS84 graus decimais x = -73.575979 y = 11.552520 prof_ini = 0 prof_max = 1000 #Opcao para exportar area ao redor do ponto #celulas ao redor. 0 para extrair apenas a localização mais proxima ao ponto cell = 2 area = 0 + cell for ex in expt: hycom = xr.open_dataset(ex,decode_times=False,decode_cf=False) if '_9' in ex: hycom['lon'] = hycom.lon-360 #extraindo area ou pontos do HYCOM if area ==0: hycom = hycom.sel(lon=x, lat=y,method='nearest') hycom = hycom.sel(depth = slice(prof_ini,prof_max)) if area >0: #matriz de distancias dist = ((hycom.lon-x)**2 + (hycom.lat-y)**2)**0.5 #procurar pelo indice do modelo com as coordenadas mais proximas ao dado ind = np.unravel_index(np.argmin(dist, axis=None), dist.shape) hycom = hycom.isel(lon=slice(ind[0]-area,ind[0]+area), lat=slice(ind[1]-area,ind[1]+area)) hycom = hycom.sel(depth = slice(prof_ini,prof_max)) #dropando informações nao necessarias hycom = hycom.drop(['tau','surf_el','water_temp_bottom','salinity_bottom','water_u_bottom','water_v_bottom']) for i in list(range(0,len(hycom.time))): try: hyc = hycom.isel(time = i) hyc = hyc.load() hyc.to_netcdf('Hycom_Expt{}_{}.nc'.format(ex[-4:],i)) except: pass
Igoratake/Hycom_Opendap
baixa_hycom_2014_frente_Pontual.py
baixa_hycom_2014_frente_Pontual.py
py
2,248
python
pt
code
0
github-code
6
73789786749
valores = [[],[]] for n in range(0,7): v = int(input('digite um valor: ')) if v%2==0: valores[0].append(v) elif v%2!=0: valores[1].append(v) valores[0].sort() valores[1].sort() print(f'os valores pares foram: {valores[0]}' ) print(f'os valores impares foram: {valores[1]}' )
Kaue-Marin/Curso-Python
pacote dowlond/curso python/exercicio85.py
exercicio85.py
py
302
python
pt
code
0
github-code
6
71971288509
from kubeflow.fairing.cloud.docker import get_docker_secret from kubeflow.fairing.constants import constants import json import os def test_docker_secret_spec(): os.environ["DOCKER_CONFIG"] = "/tmp" config_dir = os.environ.get('DOCKER_CONFIG') config_file_name = 'config.json' config_file = os.path.join(config_dir, config_file_name) with open(config_file, 'w+') as f: json.dump({'config': "config"}, f) docker_secret = get_docker_secret() assert docker_secret.metadata.name == constants.DOCKER_CREDS_SECRET_NAME os.remove(config_file)
kubeflow/fairing
tests/unit/cloud/test_docker.py
test_docker.py
py
578
python
en
code
336
github-code
6
69894822589
from airflow import DAG from airflow.operators.bash_operator import BashOperator import datetime as dt from airflow.utils.dates import days_ago default_args = { 'owner': 'gregh', 'start_date': days_ago(0), 'email': ['[email protected]'], 'email_on_failure': True, 'email_on_retry': True, 'retries': 2, 'retry_delay': dt.timedelta(minutes=5) } dag = DAG( dag_id='process_web_log', schedule_interval=dt.timedelta(days=1), default_args=default_args, description='Airflow Web Log Daily Processor' ) extract_data = BashOperator( task_id='extract', bash_command='cut -d "-" -f1 /home/project/airflow/dags/capstone/accesslogs.txt > /home/project/airflow/dags/capstone/extracted_data.txt', dag=dag ) transform_data = BashOperator( task_id='transform', bash_command='sed "/198.46.149.143/d" /home/project/airflow/dags/capstone/extracted_data.txt > /home/project/airflow/dags/capstone/transformed_data.txt', dag=dag ) load_data = BashOperator( task_id='load', bash_command='tar -cvf /home/project/airflow/dags/capstone/weblog.tar /home/project/airflow/dags/capstone/transformed_data.txt', dag=dag ) extract_data >> transform_data >> load_data
gregh13/Data-Engineering
Projects/Capstone Project/Task 5/Part Two - Apache Airflow ETL/process_web_log.py
process_web_log.py
py
1,221
python
en
code
0
github-code
6
21354655285
# # @lc app=leetcode.cn id=438 lang=python3 # # [438] 找到字符串中所有字母异位词 # # @lc code=start class Solution: def findAnagrams(self, s: str, p: str) -> List[int]: def s2vec(s): vec = [0]*26 for c in s: vec[ord(c)-ord('a')] += 1 return tuple(vec) pvec = s2vec(p) n = len(s) b = 0 e = len(p)-1 if e>n: return [] tvec = list(s2vec(s[b:e+1])) ans = [] while e<n: if tuple(tvec) == pvec: ans.append(b) tvec[ord(s[b])-ord('a')] -= 1 if e+1 == n: break tvec[ord(s[e+1])-ord('a')] += 1 b += 1 e += 1 return ans # @lc code=end
Alex-Beng/ojs
FuckLeetcode/438.找到字符串中所有字母异位词.py
438.找到字符串中所有字母异位词.py
py
801
python
en
code
0
github-code
6
72056615229
spend_data = open("env_spending_ranks.csv") ranks = [[] for _ in range(5)] for i, line in enumerate(spend_data): if i == 0: continue else: temp = line.strip().split(',') for j, element in enumerate(temp): if j % 3 == 0: ranks[j//3].append(element) # 0: 2011, 4: 2015 ranks.reverse() for year in ranks: print(year) states = [] state_rank_change = [0 for _ in range(50)] for state in ranks[0]: states.append(state) states.sort() yearly_ranks = [[0 for _ in range(50)] for _ in range(5)] print(states) for i, year in enumerate(ranks): for j, state in enumerate(year): for s, entry in enumerate(states): if state == entry: yearly_ranks[i][s] = j differences = [0 for _ in range(50)] for year in yearly_ranks: print(year) for i in range(50): for j in range(1, 5): diff = yearly_ranks[j-1][i] - yearly_ranks[j][i] differences[i] += diff # print(differences) for_output = [] for i in range(50): temp_str = states[i] + ": " + str(differences[i]) for_output.append(temp_str) for out in for_output: print(out) spend_data.close()
jamesryan094/us_aqi_data_wrangling
ranks_per_year.py
ranks_per_year.py
py
1,172
python
en
code
1
github-code
6
20444657924
from selenium import webdriver from selenium.webdriver.chrome.options import Options from bs4 import BeautifulSoup import time import csv class Scraper: def __init__(self, url): self.driver = webdriver.Chrome("./chromedriver", options=self.set_chrome_options()) self.url = url self.open_url() self.content = self.get_content() def set_chrome_options(self): chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument("--disable-gpu") return chrome_options def open_url(self): self.driver.get(self.url) def get_content(self): content = self.driver.page_source soup = BeautifulSoup(content, "html.parser") return soup # retrieves all elements with a chosen html tag def get_all_tags(self, tag="h1"): all_tags = [] for element in self.content.select(tag): all_tags.append(element.text.strip()) return all_tags def get_items(self, product_container='div.thumbnail'): top_items = [] products = self.content.select(product_container) for elem in products: title = elem.select('h4 > a.title')[0].text review_label = elem.select('div.ratings')[0].text info = { "title": title.strip(), "review": review_label.strip() } top_items.append(info) print(top_items) # return(top_items) def get_all_products(self, content_container='div.thumbnail'): all_products = [] products = self.content.select(content_container) for product in products: name = product.select('h4 > a')[0].text.strip() description = product.select('p.description')[0].text.strip() price = product.select('h4.price')[0].text.strip() reviews = product.select('div.ratings')[0].text.strip() image = product.select('img')[0].get('src') all_products.append({ "name": name, "description": description, "price": price, "reviews": reviews, "image": image }) # print(all_products) return all_products def quit(self): self.driver.quit() def save_product_csv(self, all_products): keys = all_products[0].keys() with open('products.csv', 'w', newline='') as output_file: dict_writer = csv.DictWriter(output_file, keys) dict_writer.writeheader() dict_writer.writerows(all_products) if __name__ == "__main__": urls = [ "https://webscraper.io/test-sites/e-commerce/allinone", "https://webscraper.io/test-sites/e-commerce/allinone/computers", "https://webscraper.io/test-sites/e-commerce/allinone/computers/laptops", "https://webscraper.io/test-sites/e-commerce/allinone/computers/tablets", "https://webscraper.io/test-sites/e-commerce/allinone/phones", "https://webscraper.io/test-sites/e-commerce/allinone/phones/touch" ] start_time = time.time() for url in urls: scraper = Scraper(url) print("products:", scraper.get_all_products()) scraper.quit() total_time = time.time() - start_time print("time:", total_time)
RasbeeTech/Web-Scraper
scraper.py
scraper.py
py
3,381
python
en
code
1
github-code
6
6606609236
class Solution: def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: candirow = len(matrix) - 1 for row in range(len(matrix)): if(matrix[row][0] > target): if(row == 0): return False candirow = row - 1 break elif(matrix[row][0] == target): return True for i in range(1, len(matrix[0])): if(matrix[candirow][i] == target): return True if(matrix[candirow][i] > target): return False
JeongGod/Algo-study
leehyowonzero/12week/search-a-2d-matrix.py
search-a-2d-matrix.py
py
603
python
en
code
7
github-code
6
19705123014
# -*- coding: utf-8 -*- case = 0 while True: N, Q = [int(x) for x in input().split()] if not Q and not N: break case += 1 print(f"CASE# {case}:") marbles = [] for _ in range(N): marbles.append(int(input())) marbles.sort() for i in range(Q): finding = int(input()) print(f"{finding} found at {marbles.index(finding) + 1}" if finding in marbles else f"{finding} not found")
caioopra/4o-Semestre-CCO
paradigmas/2-python_multiparadigma/atividade2/1025.py
1025.py
py
526
python
en
code
0
github-code
6
43216721070
import os import shlex import subprocess import numpy as np import pandas as pd from SentiCR.SentiCR.SentiCR import SentiCR def clean_data(df): df = df.copy() # fill all rows with corresponding discussion link df[df['discussion_link'] == ""] = np.NaN df['discussion_link'] = df['discussion_link'].fillna(method='ffill') # keep only analyzed comments df = df[df['comment_ok'].notnull()] # identify contributors' comments df['contributor_comment'] = df['removed'].str.contains("contributor's comment") # save dataframe df_complete = df.copy() # remove all rows where change_ok is different than 'yes' or 'no' df = df[(df['change_ok'] == 'yes') | (df['change_ok'] == 'no')] # concatenate all answers to a discussion, as well as the last answer in the discussion, in a column answers = [] last_answers = [] last_answer_is_from_contributor = [] for index, row in df.iterrows(): row_answers = df_complete[(df_complete['discussion_link'] == row['discussion_link']) & (df_complete['filename'] == row['filename']) & (df_complete['commented_line'] == row['commented_line']) & (df_complete['comment'] != row['comment'])] if not row_answers.empty: last_answers.append(row_answers['comment'].iloc[-1]) last_answer_is_from_contributor.append(row_answers['contributor_comment'].iloc[-1]) else: last_answers.append(np.NaN) last_answer_is_from_contributor.append(np.NaN) answers.append(' '.join(row_answers['comment'])) df['answers'] = answers df['last_answer'] = last_answers df['last_answer_is_from_contributor'] = last_answer_is_from_contributor # keep only one instance per discussion df = df.drop_duplicates(subset=['discussion_link', 'filename', 'method_signature', 'commented_line'], keep='first') # discard rows without answers df = df[df['answers'].str.len() > 0] return df def merge_and_clean_data(df, df_complete): # fill all rows with corresponding discussion link df[df['discussion_link'] == ""] = np.NaN df['discussion_link'] = df['discussion_link'].fillna(method='ffill') # keep only analyzed comments df = df[df['comment_ok'].notnull()] # remove all rows where change_ok is different than 'yes' or 'no' df = df[(df['change_ok'] == 'yes') | (df['change_ok'] == 'no')] # add original commented line to dataframe for index, row in df.iterrows(): match = df_complete[(df_complete['url'] == row['discussion_link']) & (df_complete['filename'] == row['filename']) & (df_complete['message'] == row['comment'])] if len(match) > 0: df.loc[index, 'commented_line'] = match['original_line'].iloc[0] # concatenate all answers to a discussion, as well as the last answer in the discussion, in a column answers = [] last_answers = [] last_answer_is_from_contributor = [] for _, row in df.iterrows(): row_answers = df_complete[(df_complete['url'] == row['discussion_link']) & (df_complete['filename'] == row['filename']) & (df_complete['original_line'] == row['commented_line']) & (df_complete['message'] != row['comment'])] # sort by creation date row_answers = row_answers.sort_values(by='created_at') if not row_answers.empty: last_answers.append(row_answers['message'].iloc[-1]) last_answer_is_from_contributor.append(row_answers['owner_id'].iloc[-1] == row_answers['user_id'].iloc[-1]) else: last_answers.append(np.NaN) last_answer_is_from_contributor.append(np.NaN) answers.append(' '.join(row_answers['message'])) df['answers'] = answers df['last_answer'] = last_answers df['last_answer_is_from_contributor'] = last_answer_is_from_contributor # keep only one instance per discussion df = df.drop_duplicates(subset=['discussion_link', 'filename', 'method_signature', 'commented_line'], keep='first') # discard rows without answers df = df[df['answers'].str.len() > 0] return df def extract_polarity(df, strategy, sa_tool='sentistrength'): # extract text to analyze depending on strategy df[strategy] = df[strategy].replace(r'[\n\t\r]', ' ', regex=True).replace(r'\"', '', regex=True) # run sentiment analysis if sa_tool == 'sentistrength': df.to_csv(f'{strategy}.tsv', sep='\t', columns=[strategy], index=True, header=False) sentiment_analysis_process = subprocess.Popen(shlex.split('java uk/ac/wlv/sentistrength/SentiStrength ' f'sentidata {os.getcwd()}/SentiStrength-SE/ConfigFiles/ ' f'input ../{strategy}.tsv ' 'annotateCol 2 overwrite ' 'trinary'), cwd="SentiStrength-SE/") sentiment_analysis_process.communicate() # read results polarities = pd.read_csv(f'{strategy}.tsv', sep='\t', names=['original_index', 'text', 'polarity_sentistrength']) os.remove(f'{strategy}.tsv') return df.merge(polarities, left_index=True, right_on='original_index') else: sentiment_analyzer = SentiCR() df[f'polarity_senticr'] = df[strategy].apply(lambda x: sentiment_analyzer.get_sentiment_polarity(x)[0]) return df def build_oracle(): df_all = clean_data(pd.read_csv('manual_analysis_all.csv')) df_filtered = merge_and_clean_data(pd.read_csv('manual_analysis_filtered.csv'), pd.read_csv('manual_analysis_filtered_complete.csv')) # add polarity to dataframe (separately because indexes overlap) df_all = extract_polarity(df_all, 'last_answer') df_filtered = extract_polarity(df_filtered, 'last_answer') df_all = extract_polarity(df_all, 'last_answer', 'senticr') df_filtered = extract_polarity(df_filtered, 'last_answer', 'senticr') # remove unnecessary columns df_all = df_all.drop(['original_index', 'removed', 'commented_file'], axis=1) df_filtered = df_filtered.drop(['can be identified as accepted'], axis=1) # combine the two dataframes df = pd.concat([df_all, df_filtered]) df.to_csv('oracle.csv', index=False) return df if __name__ == '__main__': build_oracle()
saramangialavori/AutomatingCodeReview3.0
manual_inspection/build_oracle.py
build_oracle.py
py
6,785
python
en
code
0
github-code
6
18388623624
## Első feladat for i in range(1,10): print(1/i) ## Második feladat hatvany=int(input("Kérem a hatvány alapot:")) kitevo=int(input("Kérem a hatvány kitevőt:")) hatvanyertek=(hatvany**kitevo) print(hatvanyertek) ## Harmadik feladat while True: szam=int(input("Kérek egy pozitív számot: ")) if szam<=0: print("Nem tudsz olvasni?? Pozitív szám!") else: print("Ügyes vagy!") break ## Negyedik feladat a=int(input("Kérem az első számot: ")) b=int(input("Kérek a második számot: ")) if a>b: print("A két szám közötti távolság: "+str(-(b-a))) else: print("A két szám közötti távolság: "+str(-(a-b))) ## Negyedik feladat
matyast/estioraimunka
feladat.py
feladat.py
py
700
python
hu
code
0
github-code
6
43597436816
# string: ordered, ____, text representation # init from timeit import default_timer as timer movie_name = "The murder on the orient express" # single quote fav_quote = 'That\'s what she said' # print(fav_quote) # double quote fav_quote = "That's what she said" # print(fav_quote) quote = "Where should I go? \ To the left where nothing is right \ or to the right where nothing is left." # print(quote) # triple quote quote = """Where should I go? To the left where nothing is right or to the right where nothing is left.""" # print(quote) # indexing movie_name = "The murder on the orient express" # reverse string # print(movie_name[::-1]) # slicing # print(movie_name[4:10]) # print(movie_name[11:17]) # print(movie_name[-4]) # print(movie_name[9:3:-1]) # concate greetings = "Good morning" student_name = "John" greetings = greetings + " " + student_name # print(greetings) # interation # for char in student_name: # if char == 'o': # print("o in name") # else: # print("o not in name") # print(char) # check # if 'o' in student_name: # print('o in name') # else: # print('o not in name') # white space hello = " hello " # print(hello.strip()) # upper lower # print(hello.upper()) upper_hello = "HELLO" # print(upper_hello.lower()) # startswith akshit_email = "[email protected]" aditya_name = "techbullsaditya" anushka_name = "techbullsanushka" # print(anushka_name.startswith("techbulls")) # domain_name = [".com", ".in"] # print(akshit_email.endswith(".com")) # find akshit_name = "akshit" # print(akshit_name.find('s')) # SHIT s_index = akshit_name.find('s') shit_name = akshit_name[s_index:] upper_shit = shit_name.upper() # print(upper_shit) # print(akshit_name[akshit_name.find('s'):].upper()) # count series_name = "The Woman in the House Across the Street from the Girl in the Window" # print(series_name.count('the')) # replace # series_name = series_name.replace('the', 'anything') # print(series_name) # split series_name_list = series_name.split(" ") # print(series_name_list) # join series_name_join_with_comma = ",".join(series_name_list) # print(series_name_join_with_comma) # print(series_name.replace(" ", ",")) number_of_a = ['a'] * 100 # print(number_of_a) # 01 start = timer() a_join = "".join(number_of_a) end = timer() print(end-start) # 02 start = timer() a_join_using_loop = "" for char_a in number_of_a: a_join_using_loop += char_a end = timer() print(end-start) # print(a_join) # print(a_join_using_loop) # % .format() f-string name = "akshit" greetings = "Good morning" student_roll_no = 123 print(f"{greetings}, this is my name: {name} roll no: {student_roll_no}") # print("{} yello {}".format(greetings, name)) # print(greetings + " " + name + " " + str(student_roll_no)) # print(1+student_roll_no)
akshitone/fy-mca-class-work
DivB/string.py
string.py
py
2,834
python
en
code
1
github-code
6
18757756190
import argparse import cv2 # ArgParse é usado para captar argumentos passados na chamada do .py no CMD ap = argparse.ArgumentParser() # Aqui definimos a label do argumento esperado ap.add_argument("-i", "--image", required=True, help= "Path to the image") # Criamos um dicionário que receberá os valores dos argumentos # As chaves do dicionário serão as labels criadas no na definição do argumento args = vars(ap.parse_args()) # A função vars() retorna os valores correspondente ao atributo __dict__ do objeto # Aqui lemos a imagem que é acessada através do caminho no disco passado como argumento. # Acessamos o valor em args usando como chave do dicionário args o mesmo valor que a definição do argumento image = cv2.imread(args["image"]) print("width: {} pixels".format(image.shape[1])) print("height: {} pixels".format(image.shape[0])) print("channels: {}".format(image.shape[2])) print("Matrix shape: {}".format(image.shape)) cv2.imshow("Image", image) cv2.waitKey(0) cv2.imwrite("newimage.jpg", image)
CarlosAlfredoOliveiraDeLima/Practical-Python-and-OpenCV-Book
01 - load_display_save.py
01 - load_display_save.py
py
1,041
python
pt
code
0
github-code
6
6118401140
''' Урок 2. Парсинг HTML. BeautifulSoup, MongoDB Необходимо собрать информацию о вакансиях на вводимую должность (используем input) с сайтов Superjob(необязательно) и HH(обязательно). Приложение должно анализировать несколько страниц сайта (также вводим через input). Получившийся список должен содержать в себе минимум: Наименование вакансии. Предлагаемую зарплату (отдельно минимальную и максимальную). Ссылку на саму вакансию. Сайт, откуда собрана вакансия. По желанию можно добавить ещё параметры вакансии (например, работодателя и расположение). Структура должна быть одинаковая для вакансий с обоих сайтов. Общий результат можно вывести с помощью dataFrame через pandas. ''' from bs4 import BeautifulSoup as bs import requests import json class HHscraper: def __init__(self, start_url, headers, params): self.start_url = start_url self.start_headers = headers self.start_params = params self.info_vacance = [] def get_html_string(self, url, headers='', params=''): try: response = requests.get(url, headers=headers, params=params) if response.ok: return response.text except Exception as e: sleep(1) print(e) return None @staticmethod def get_dom(html_string): return bs(html_string, "html.parser") def run(self): next_butten_hh = '' while next_butten_hh != None: if next_butten_hh == '': html_string = self.get_html_string(self.start_url + '/search/vacancy', self.start_headers, self.start_params) else: html_string = self.get_html_string(next_butten_hh) soup = HHscraper.get_dom(html_string) vacance_list = soup.findAll('div', attrs={'class': 'vacancy-serp-item'}) self.get_info_from_element(vacance_list) try: next_butten_hh = self.start_url + soup.find('a', attrs={'data-qa': 'pager-next'}).attrs["href"] except Exception as e: next_butten_hh = None def get_info_from_element(self, vacance_list): for vacance in vacance_list: vacance_data = {} vacance_name = vacance.find('a', {'class': 'bloko-link'}).getText() vacance_city = vacance.find('div', {'data-qa': 'vacancy-serp__vacancy-address'}).getText() vacance_link = vacance.find('a', {'class': 'bloko-link'}).attrs["href"] vacance_data['имя вакансии'] = vacance_name vacance_data['город'] = vacance_city vacance_data['ссылка на вакансию'] = vacance_link vacance_data['источник'] = self.start_url self.get_salary(vacance_data, vacance) self.info_vacance.append(vacance_data) def get_salary(self, vacance_data, vacance): try: vacance_salary = vacance.find('span', {'data-qa': 'vacancy-serp__vacancy-compensation'}).getText() vacance_salary = vacance_salary.replace('\u202f', '').split() if '–' in vacance_salary: vacance_data['мин зарплата'] = float(vacance_salary[0]) vacance_data['макс зарплата'] = float(vacance_salary[2]) vacance_data['валюта'] = vacance_salary[-1] elif 'от' in vacance_salary: vacance_data['мин зарплата'] = float(vacance_salary[1]) vacance_data['валюта'] = vacance_salary[-1] elif 'до' in vacance_salary: vacance_data['макс зарплата'] = float(vacance_salary[1]) vacance_data['валюта'] = vacance_salary[-1] except Exception as e: vacance_data['зарплата'] = None def save_info_vacance(self): with open("vacancy_hh.json", 'w', encoding="utf-8") as file: json.dump(self.info_vacance, file, indent=2, ensure_ascii=False) class SJscraper: def __init__(self, start_url, headers, params): self.start_url = start_url self.start_headers = headers self.start_params = params self.info_sj_vacance = [] def get_html_string(self, url, headers='', params=''): try: response = requests.get(url, headers=headers, params=params) if response.ok: return response.text except Exception as e: sleep(1) print(e) return None @staticmethod def get_dom(html_string): return bs(html_string, "html.parser") def run(self): next_butten_sj = '' while next_butten_sj != None: if next_butten_sj == '': html_string = self.get_html_string(self.start_url + "vacancy/search/", self.start_headers, self.start_params) else: html_string = self.get_html_string(next_butten_sj) soup = SJscraper.get_dom(html_string) vacance_list = soup.findAll('div', attrs={'class': 'Fo44F QiY08 LvoDO'}) self.get_info_from_element(vacance_list) try: next_butten_sj = main_link_sj + soup.find('a', attrs={'class': 'f-test-button-dalshe'}).attrs["href"] except Exception as e: next_butten_sj = None def get_info_from_element(self, vacance_list): for vacancy in vacance_list: vacancy_sj_data = {} vacancy_sj_name = vacancy.find('a', {'class': 'icMQ_'}).getText() # vacance_sj_city = vacancy.find('span', {'class': 'f-test-text-company-item-location _2LcRC _1_rZy dXrZh Ml4Nx'}).getText() vacancy_sj_link = main_link_sj + vacancy.find('a', {'class': 'icMQ_'}).attrs["href"] vacancy_sj_data['имя вакансии'] = vacancy_sj_name # vacance_sj_city['город'] = vacance_sj_city vacancy_sj_data['ссылка на вакансию'] = vacancy_sj_link vacancy_sj_data['источник'] = self.start_url self.get_salary(vacancy_sj_data, vacancy) self.info_sj_vacance.append(vacancy_sj_data) def get_salary(self, vacancy_sj_data, vacancy): try: vacancy_sj_salary = vacancy.find("span", {'class': "_1OuF_ _1qw9T f-test-text-company-item-salary"}).getText() if '—' in vacancy_sj_salary: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[0].isdigit() and sal[1].isdigit(): mim_sal = sal[0] + sal[1] vacancy_sj_data['мин зарплата'] = float(mim_sal) else: vacancy_sj_data['мин зарплата'] = float(sal[0]) if sal[-3].isdigit() and sal[-2].isdigit(): max_sal = sal[-3] + sal[-2] vacancy_sj_data['макс зарплата'] = float(max_sal) else: vacancy_sj_data['макс зарплата'] = float(sal[-3]) vacancy_sj_data['валюта'] = sal[-1] elif 'По' in vacancy_sj_salary: vacancy_sj_data['зарплата'] = "По договоренности" vacancy_sj_data['валюта'] = None elif 'от' in vacancy_sj_salary: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[1].isdigit() and sal[2].isdigit(): mim_sal = sal[1] + sal[2] vacancy_sj_data['мин зарплата'] = float(mim_sal) else: vacancy_sj_data['мин зарплата'] = float(sal[1]) vacancy_sj_data['валюта'] = sal[-1] elif 'до' in vacancy_sj_salary: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[1].isdigit() and sal[2].isdigit(): max_sal = sal[1] + sal[2] vacancy_sj_data['макс зарплата'] = float(max_sal) else: vacancy_sj_data['макс зарплата'] = float(sal[1]) vacancy_sj_data['валюта'] = sal[-1] else: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[0].isdigit() and sal[1].isdigit(): user_sal = sal[0] + sal[1] vacancy_sj_data['макс зарплата'] = float(user_sal) except: vacancy_sj_data['зарплата'] = None def save_info_vacance(self): with open("vacancy_sj.json", 'w', encoding="utf-8") as file: json.dump(self.info_sj_vacance, file, indent=2, ensure_ascii=False) if __name__ == '__main__': user_find = input('Введите вакансию: ') #user_find = 'python' headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36"} main_link_hh = "https://hh.ru" params_main_hh = {"area": "1", "fromSearchLine": "true", "st": "searchVacancy", "text": user_find, "page": "0"} scraper_hh = HHscraper(main_link_hh, headers, params_main_hh) scraper_hh.run() scraper_hh.save_info_vacance() main_link_sj = "https://www.superjob.ru/" params_sj = {"keywords": user_find, "geo[t][0]": "4"} scraper_sj = SJscraper(main_link_sj, headers, params_sj) scraper_sj.run() scraper_sj.save_info_vacance()
XYI7I/GeekBrains
AI/Method_collecting_Internet_data/Lesson2/lesson2.py
lesson2.py
py
10,254
python
ru
code
0
github-code
6
21998861864
n=int(input()) arr=list(map(int,input().split())) sof=0 sos=0 for i in range(n): if(i<n//2): sof+=arr[i] else: sos+=arr[i] print(abs(sof-sos))
Lavanya18901/codemind-python
difference_between_sum_of_first_half_and_second_half_in_an_array.py
difference_between_sum_of_first_half_and_second_half_in_an_array.py
py
158
python
en
code
0
github-code
6
71484733948
def is_finish(x, y): return x == 4 l = list(range(4)) cnt = 0 a = set(range(10)) assert(len(a & set(l)) == 4) print(*l) cnt += 1 X, Y = map(int, input().split()) if is_finish(X, Y): exit(0) for i in range(4): not_in = a - set(l) for n in not_in: tmpl = l[:] tmpl[i] = n assert(len(a & set(tmpl)) == 4) print(*tmpl) cnt += 1 assert(cnt <= 100) tmpx, tmpy = map(int, input().split()) if is_finish(tmpx, tmpy): exit(0) if tmpx > X: l = tmpl[:] X, Y = tmpx, tmpy break elif tmpx < X: break else: for j in range(i+1, 4): tmpl = l[:] tmpl[i], tmpl[j] = tmpl[j], tmpl[i] assert(len(a & set(tmpl)) == 4) print(*tmpl) cnt += 1 assert(cnt <= 100) tmpx, tmpy = map(int, input().split()) if is_finish(tmpx, tmpy): exit(0) if tmpx > X: l = tmpl[:] X, Y = tmpx, tmpy break else: assert(0)
knuu/competitive-programming
yukicoder/yuki355.py
yuki355.py
py
1,137
python
en
code
1
github-code
6
31356164054
import os import argparse import re import textwrap default_mpi_function_list = [ "int MPI_Init(int *argc, char ***argv)", "int MPI_Finalize(void)", "int MPI_Comm_rank(MPI_Comm comm, int *rank)", "int MPI_Comm_size(MPI_Comm comm, int *size)", "int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)", "int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status)" ] def extract_between(text, sub1, sub2, nth=1): """ extract a substring from text between two given substrings sub1 (nth occurrence) and sub2 (nth occurrence) arguments are case sensitive """ # prevent sub2 from being ignored if it's not there if sub2 not in text.split(sub1, nth)[-1]: return None return text.split(sub1, nth)[-1].split(sub2, nth)[0] def get_args_list(args_name, args_type, args_post): d = {} d["pargs"] = "" d["args"] = "" for idy,function_name in enumerate(args_name): d["pargs"] += args_type[idy] d["pargs"] += " " d["pargs"] += args_name[idy] d["pargs"] += args_post[idy] d["pargs"] += ", " d["args"] += args_name[idy] d["args"] += ", " if(len((d["pargs"])) > 0): if(d["pargs"][-2] == ','): d["pargs"] = d["pargs"][:-2] if(d["args"][-2] == ','): d["args"] = d["args"][:-2] return d def get_ret_list(rtype): d = {} dec_ret_val = "" get_ret_val = "" ret_ret_val = "return" if(rtype != "void"): dec_ret_val += rtype + " val = ("+rtype+") 0;" get_ret_val += "val = " ret_ret_val += " val" ret_ret_val += ";" d["dec"] = dec_ret_val d["get"] = get_ret_val d["ret"] = ret_ret_val return d def parse_mpi_functions(mpi_functions_list): d={} d["name"] = [] d["type"] = [] d["args"] = {} d["args"]["type"] = [] d["args"]["name"] = [] d["args"]["post"] = [] for function in mpi_functions_list: d["name"] += [function.split()[1].split('(')[0]] d["type"] += [function.split()[0]] args_list = extract_between(function, '(', ')') name_list = [] type_list = [] post_list = [] tmp = "" for mpi_args in args_list.split(','): mpi_arg = mpi_args.split() if(len(mpi_arg) > 1): tmp_idx = mpi_arg[-1].strip('*').find("[") if(tmp_idx < 0): tmp_idx = len(mpi_arg[-1].strip('*')) name_list += [mpi_arg[-1].strip('*')[0:tmp_idx]] tmp = mpi_arg[0] if(tmp == "const"): tmp += " " + mpi_arg[1] for idx in range(0,mpi_args.count('*')): tmp += ' *' type_list += [tmp] if("[" in mpi_arg[-1]): post_list += ["[]"] else: post_list += [""] d["args"]["name"] += [name_list] d["args"]["type"] += [type_list] d["args"]["post"] += [post_list] return d def get_mpi_proto_list(d): l = [] for idx,function in enumerate(d["name"]): proto = d["type"][idx]+" "+d["name"][idx]+"(" for idy,function_name in enumerate(d["args"]["name"][idx]): proto += d["args"]["type"][idx][idy] proto += " " proto += d["args"]["name"][idx][idy] proto += d["args"]["post"][idx][idy] proto += ", " if(proto[-2] == ','): proto = proto[:-2] proto += ")" l += [proto] return l def print_selfie_h_header(): s = "" s += '''#ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <cstring> #include <execinfo.h> #include <dlfcn.h> #include <cstdarg> #include <fenv.h> #pragma STDC FENV_ACCESS ON typedef void (*function_type)(...); ''' return s def print_selfie_h_footer(): s = "" s += ''' } ''' return s def print_selfie_h_n_mpi(d, plugin_name): s = ''' /// \\brief Total number of {1} functions #define N_{1}_FUNCTIONS {0} '''.format(str(len(d["name"])), plugin_name.upper()) return s def print_selfie_h_get_name(d,plugin_name): s = "" s +='''/// \\brief Return a string containing name of functions /// \\param[in] i Index /// \\return Return a string containing name of functions /// char *selfie_get_{0}_function_name(int i) {{ char const *{0}_functions_name[] = {{ '''.format(plugin_name) for name in d["name"]: s += ''' "{0}",\n'''.format(name) for name in d["name"]: s += ''' "P{0}",\n'''.format(name) s += ''' NULL }}; return strdup({0}_functions_name[i]); }}; '''.format(plugin_name) return s def print_selfie_h_builtin_function(idx, name, symbol, rtype, plugin_name): d_ret = get_ret_list(rtype) s = ''' #ifdef __SELFIE_MPI_BUILTIN__ /// \\brief {1} /// /// \\param ... /// \\return {3} /// /// \details /// {3} {1}(...) {{ double f_start = 0.0; function_type selfie_function = NULL; int ap_except = 0; selfie_function = selfie_{4}_pointer_functions[{0}]; if(selfie_function == NULL) {{ selfie_function = (function_type) dlsym(RTLD_NEXT,"{2}"); }} selfie_{4}_global_data[{0}].function_count++; f_start = selfie_mysecond(); ap_except = fedisableexcept(FE_INVALID); void* ret = __builtin_apply(selfie_function, __builtin_apply_args(), 1024); feclearexcept(FE_INVALID); feenableexcept(ap_except); selfie_{4}_global_data[{0}].function_time += selfie_mysecond() - f_start; __builtin_return(ret); }}; #endif '''.format(idx, name, symbol, rtype, plugin_name) return s def print_selfie_h_functions(d,plugin_name): s = "" for idx,name in enumerate(d["name"]): s += print_selfie_h_builtin_function(idx, name, name, d["type"][idx], plugin_name) s += print_selfie_h_builtin_function(idx, "P"+name, name, d["type"][idx], plugin_name) return s def print_selfie_h_global_array(d,plugin_name): s = ''' /// \\brief Array of pointers of functions function_type selfie_{1}_orig_pointer_functions[{0}] = {{NULL}}; /// \\brief Array of pointers of functions function_type *selfie_{1}_pointer_functions = selfie_{1}_orig_pointer_functions; '''.format(len(d["name"]),plugin_name) return s def print_selfie_h(d,pname): s = "" s += print_selfie_h_header() s += print_selfie_h_n_mpi(d, pname) s += print_selfie_h_get_name(d, pname) s += print_selfie_h_global_array(d, pname) s += "\nextern \"C\" {\n\n" s += print_selfie_h_functions(d, pname) s += print_selfie_h_footer() return s def read_inputfile(inputfile): function_list = [] with open(inputfile,"r") as fdi: for line in fdi: if (len(line) > 1): function_list += [line[:-1]] return function_list def main(): parser = argparse.ArgumentParser( description="Generate list of MPI functions") parser.add_argument("-p","--proto",action="store_true", default=False, help="Print list of MPI functions prototypes") parser.add_argument("-i","--input",action="store", default=None, help="File containing MPI functions list") parser.add_argument("-n","--name",action="store", default="mpi", help="Name of plugin") parser.add_argument("-o","--output",action="store", default=None, help="File where to print "+ "result (If None, print to stdout)") args = parser.parse_args() print("") print(parser.description) print("") header = True # Print proto or not if(args.proto == True): header = False # Input file if(args.input != None): mpi_function_list = read_inputfile(args.input) else: mpi_function_list = default_mpi_function_list # Output file if(args.output != None): outfile = args.output else: outfile = None pname = args.name # Parse functions d = parse_mpi_functions(mpi_function_list) # Print prototypes if(header == False): if(outfile == None): for proto_name in get_mpi_proto_list(d): print(proto_name) else: with open(outfile,"w") as fd: for proto_name in get_mpi_proto_list(d): fd.write(proto_name) print("File "+outfile+" written") # Print header else: if(outfile == None): print(print_selfie_h(d,pname)) else: with open(outfile,"w") as fd: fd.write(print_selfie_h(d,pname)) print("File "+outfile+" written") if __name__ == "__main__": main()
cea-hpc/selFIe
src/parse_mpi.py
parse_mpi.py
py
9,164
python
en
code
16
github-code
6
18798291843
import matplotlib.pyplot as plt import random import numpy as np from IPython.display import display, clear_output import time def head_home(x, y): """ Head home down and to the left. Parameters ---------- x : float Horizontal coordinate. y : float Vertical coordinate. Returns ------- x : float Updated horizontal coordinate. y : float Updated vertical coordinate. """ pick = np.zeros(x + y) pick[0:x] = 1 if (np.random.choice(pick) == 1): x -= 1 else: y -= 1 if (x < 0): x = 0 if (y < 0): y = 0 return x, y def search_for_food(x, y, smell): """ Search for food by following the smell. Parameters ---------- x : float Horizontal coordinate. y : float Vertical coordinate. smell : numpy.ndarray 2D array of smells Returns ------- x : float Updated horizontal coordinate. y : float Updated vertical coordinate. """ directions = ['up', 'left', 'down', 'right'] x_dim = smell.shape[0] y_dim = smell.shape[1] # First check to see if there is food up and to the right. g = [] # follow gradient m = [] if (x + 1 < x_dim): if (smell[x + 1, y] > 0): m.append(smell[x + 1, y]) g.append('right') if (y + 1 < y_dim): if (smell[x, y + 1] > 0): m.append(smell[x, y + 1]) g.append('up') if (g != []): grad = g[m.index(max(m))] # print("Following smell", grad) else: # else just pick a random direction. grad = random.choice(directions) # print("Choosing ",grad) # move the ant if (grad == 'up'): y = y + 1 elif (grad == 'right'): x = x + 1 elif (grad == 'down'): y = y - 1 elif (grad == 'left'): x = x - 1 else: print(grad) print("ERROR!!!!!!!!!!!!") # make sure we don't go off the gird. if (x < 0): x = 0 if (y < 0): y = 0 if (x > x_dim - 1): x = x_dim - 1 if (y > y_dim - 1): y = y_dim - 1 return x, y def run(num_ants=100, x_dim=70, y_dim=30): """ Run the simulation Parameters ---------- num_ants : int Initial number of ants to simulate. Dafualt =100 x_dim : int Horizontal dimension of the board. Default = 70 y_dim : int Vertical dimension of the board. Default = 30 """ smell = np.zeros((x_dim, y_dim)) food = np.zeros((x_dim, y_dim)) # place food food[45:50, 25:30] = 10 food[45:50, 25:30] = 10 food[65:70, 0:5] = 10 x_loc = np.random.randint(0, x_dim, size=(num_ants, 1)) y_loc = np.random.randint(0, y_dim, size=(num_ants, 1)) ant_loc = np.concatenate((x_loc, y_loc), axis=1) has_food = np.zeros((num_ants, 1)) fig, ax = plt.subplots(figsize=(10, 5)) # Main simulation loop for i in range(0, 100): # Loop over ants for a in range(0, num_ants): x = ant_loc[a, 0] y = ant_loc[a, 1] if (x == 0 and y == 0): has_food[a] = 0 if has_food[a] > 0: x, y = head_home(x, y) smell[x, y] = smell[x, y] + 100 else: x, y = search_for_food(x, y, smell) if food[x, y] > 0: food[x, y] -= 1 has_food[a] = 1 ant_loc[a, 0] = x ant_loc[a, 1] = y smell = smell - 1 smell[smell < 0] = 0 # plot world plt.imshow(food.T, origin='lower', aspect='equal', cmap="magma") for a in range(0, num_ants): color = 'r' if (has_food[a] > 0): color = 'g' plt.scatter(ant_loc[a, 0], ant_loc[a, 1], color=color) # Animaiton part (dosn't change) clear_output(wait=True) # Clear output for dynamic display display(fig) # Reset display fig.clear() # Prevent overlapping and layered plots time.sleep(0.0001) # Sleep for a fraction of a second to allow animation to catch up
msu-cmse-courses/cmse202-F22-data
code_samples/ant_function.py
ant_function.py
py
4,304
python
en
code
1
github-code
6
14868890436
from django.views.generic.base import TemplateView from albums.forms import FileForm from albums.models import Album, File from core.decorators import view_decorator from core.views import ResourceView class AlbumPage(TemplateView): template_name = "albums/main.html" def expose(view): view.expose = True return view @view_decorator(expose) class AlbumView(ResourceView): model = Album @view_decorator(expose) class FileView(ResourceView): create_form = FileForm model = File
qrees/backbone-gallery
albums/views.py
views.py
py
508
python
en
code
0
github-code
6
20156935479
from flask import request def validate_id(id): # if not found in params if (id is None): raise TypeError("Request params (id) not found") # if description params is empty if not id: raise ValueError("id is empty") # if not integer if not isinstance(id, int): raise TypeError("id is not integer") def validate_latitude(latitude): # if not found in params if (latitude is None): raise TypeError("Request params (latitude) not found") # if not float if not isinstance(latitude, float): raise TypeError("latitude is not float") def validate_longtitude(longtitude): # if not found in params if (longtitude is None): raise TypeError("Request params (longtitude) not found") # if not float if not isinstance(longtitude, float): raise TypeError("longtitude is not float") def point_read_contract(request): id = request.args.get('id', type=int) validate_id(id) return { 'id': int(id) } def point_create_contract(request): latitude = request.args.get('latitude', type=float) longtitude = request.args.get('longtitude', type=float) validate_latitude(latitude) validate_longtitude(longtitude) return { 'latitude': float(latitude), 'longtitude': float(longtitude) }
adriangohjw/cz2006-software-engineering
contracts/point_contracts.py
point_contracts.py
py
1,360
python
en
code
0
github-code
6
38815716976
import argparse import asyncio import csv import functools import gc import hashlib import http.client import importlib import io import math import platform import re import socket import statistics import sys import textwrap import time import urllib.parse from typing import Callable, Awaitable, Tuple, Iterable, Optional _Method = Callable[[str], bytes] _AMethod = Callable[[str], Awaitable[bytes]] METHODS = {} CHECKSUMS = { 10**6 + 128: 'fa82243e0db587af04504f5d3229ff7227f574f8f938edaad8be8e168bc2bc87', 10**7 + 128: '128ceaac08362426bb7271ed6202d11c6830587a415bd7868359725c22d2fe88', 10**9 + 128: 'd699e2c306b897609be6222315366b25137778e18f8634c75b006cef50647978' } def method(name: str, requires: Iterable[str] = ()) -> Callable[[_Method], _Method]: def decorate(func: _Method) -> _Method: for mod in requires: try: importlib.import_module(mod) except ImportError: return func METHODS[name] = func return func return decorate def run_async(func: _AMethod) -> _Method: @functools.wraps(func) def wrapper(url: str) -> bytes: loop = asyncio.new_event_loop() try: asyncio.set_event_loop(loop) return loop.run_until_complete(func(url)) finally: loop.run_until_complete(loop.shutdown_asyncgens()) loop.close() return wrapper @method('httpclient') def load_httpclient(url: str) -> bytes: parts = urllib.parse.urlparse(url) conn = http.client.HTTPConnection(parts.netloc) conn.request('GET', parts.path) resp = conn.getresponse() return resp.read(resp.length) # type: ignore @method('httpclient-na') def load_httpclient_na(url: str) -> bytes: parts = urllib.parse.urlparse(url) conn = http.client.HTTPConnection(parts.netloc) conn.request('GET', parts.path) resp = conn.getresponse() return resp.read() @method('requests', ['requests']) def load_requests(url: str) -> bytes: import requests return requests.get(url).content @method('requests-c1M', ['requests']) def load_requests_c1M(url: str) -> bytes: import requests old_chunk = requests.models.CONTENT_CHUNK_SIZE try: requests.models.CONTENT_CHUNK_SIZE = 1024 * 1024 return requests.get(url).content finally: requests.models.CONTENT_CHUNK_SIZE = old_chunk @method('requests-stream', ['requests']) def load_requests_stream(url: str) -> bytes: import requests with requests.get(url, stream=True) as resp: return resp.raw.read() @method('requests-stream-fp-read', ['requests']) def load_requests_stream_fp_read(url: str) -> bytes: import requests with requests.get(url, stream=True) as resp: return resp.raw._fp.read() @method('requests-np', ['requests', 'numpy']) def load_requests_np(url: str) -> bytes: import requests import numpy as np with requests.get(url, stream=True) as resp: data = np.empty(int(resp.headers['Content-length']), np.uint8) resp.raw.readinto(memoryview(data)) return data @method('requests-np-fp', ['requests', 'numpy']) def load_requests_np(url: str) -> bytes: import requests import numpy as np with requests.get(url, stream=True) as resp: data = np.empty(int(resp.headers['Content-length']), np.uint8) resp.raw._fp.readinto(memoryview(data)) return data @method('urllib3', ['urllib3']) def load_urllib3(url: str) -> bytes: import urllib3 return urllib3.PoolManager().request('GET', url).data @method('tornado', ['tornado']) @run_async async def load_tornado(url: str) -> bytes: import tornado.simple_httpclient client = tornado.simple_httpclient.SimpleAsyncHTTPClient(max_body_size=10**10) response = await client.fetch(url) return response.body @method('aiohttp', ['aiohttp']) @run_async async def load_aiohttp(url: str) -> bytes: import aiohttp async with aiohttp.ClientSession() as session: async with session.get(url) as resp: return await resp.read() @method('httpx', ['httpx']) def load_httpx(url: str) -> bytes: import httpx return httpx.get(url).content @method('httpx-async', ['httpx']) @run_async async def load_httpx_async(url: str) -> bytes: import httpx async with httpx.AsyncClient() as client: r = await client.get(url) return r.content def prepare_socket(url: str) -> Tuple[io.BufferedIOBase, int]: parts = urllib.parse.urlparse(url) address = (parts.hostname, parts.port) sock = socket.socket() sock.connect(address) req_header = textwrap.dedent(f'''\ GET {parts.path} HTTP/1.1 Host: {parts.hostname}:{parts.port} User-Agent: python Connection: close Accept: */* ''').replace('\n', '\r\n').encode('ascii') fh = sock.makefile('rwb') fh.write(req_header) fh.flush() content_length: Optional[int] = None while True: line = fh.readline() if line == b'\r\n': if content_length is None: raise RuntimeError('Did not receive Content-Length header') return fh, content_length # type: ignore else: text = line.decode('latin-1').rstrip().lower() if text.startswith('content-length: '): content_length = int(text.split(' ')[1]) @method('socket-read') def load_socket_read(url: str) -> bytes: fh, content_length = prepare_socket(url) return fh.read(content_length) @method('socket-readinto') def load_socket_readinto(url: str) -> bytes: fh, content_length = prepare_socket(url) raw = bytearray(content_length) n = fh.readinto(raw) assert n == content_length return memoryview(raw)[:n] def validate(data: bytes): size = len(data) try: checksum = CHECKSUMS[size] except KeyError: print('No checksum found') else: actual_checksum = hashlib.sha256(data).hexdigest() if actual_checksum != checksum: print(f'Checksum mismatch ({actual_checksum} != {checksum})') def measure_method(method: str, args: argparse.Namespace) -> None: # Warmup pass METHODS[method](args.url) rates = [] size = 0 for i in range(args.passes): gc.collect() start = time.monotonic() data = METHODS[method](args.url) stop = time.monotonic() elapsed = stop - start rates.append(len(data) / elapsed) if i == 0: validate(data) size = len(data) del data mean = statistics.mean(rates) std = statistics.stdev(rates) / math.sqrt(args.passes - 1) return mean, std, size def main(): parser = argparse.ArgumentParser() parser.add_argument('--passes', type=int, default=5) parser.add_argument('--csv', action='store_true') parser.add_argument('method') parser.add_argument('url') args = parser.parse_args() if args.method not in METHODS and args.method != 'all': parser.error('Method must be "all" or one of {}'.format(set(METHODS.keys()))) if args.csv: writer = csv.DictWriter(sys.stdout, ['Python', 'Method', 'Size', 'mean', 'std']) writer.writeheader() match = re.search(r'PyPy \S+', sys.version) if match: version = match.group(0) else: version = platform.python_version() if args.method == 'all': methods = METHODS else: methods = [args.method] for method in methods: mean, std, size = measure_method(method, args) if args.csv: writer.writerow( { 'Python': version, 'Method': method, 'Size': size, 'mean': mean, 'std': std } ) else: print('{}: {:.1f} ± {:.1f} MB/s'.format(method, mean / 1e6, std / 1e6)) if __name__ == '__main__': main()
ska-sa/pyconza2020-httpbench
httpbench.py
httpbench.py
py
8,026
python
en
code
4
github-code
6
25073375848
import math def f(a:float, b:float, c:float) -> float: if a==0: raise Exception("a no puede ser cero") if b*b< 4*a*c: raise Exception("Esos valores dan un resultado complejo") try: d=(-b + math.sqrt(b*b - 4*a*c))/(2*a) except: print("Hay un error") return d a=0 b=3 c=-3 print(f(a,b,c))
Gohan2021/ProgAplicada
tarea_2023_0227.py
tarea_2023_0227.py
py
313
python
es
code
0
github-code
6
10819469391
import numpy as np import argparse import imutils import cv2 ap = argparse.ArgumentParser() ap.add_argument("-i","--image",required = True, help="Path of Image File") args = vars(ap.parse_args()) #image = cv2.imread("image.png") print("Path: ", args["image"]) image = cv2.imread(args["image"]) # find all the 'black' shapes in the image upper = np.array([15,15,15]) lower = np.array([0,0,0]) shapeMask = cv2.inRange(image,lower,upper) # find the contours in the mask cnts = cv2.findContours(shapeMask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) print("Found {} black shapes".format(len(cnts))) cv2.imshow("Mask", shapeMask) # loop over the contours for c in cnts: # draw the contour and show it cv2.drawContours(image, [c], -1, (0, 255, 0), 2) cv2.imshow("Image", image) cv2.waitKey(0)
Pallavi04/ComputerVision
FindShapes/shape.py
shape.py
py
837
python
en
code
0
github-code
6
27022143594
from pymongo import MongoClient import pprint from urllib.request import urlopen from bs4 import BeautifulSoup class Data_extraction_creation: def __init__(self): self.source="" self.search="" self.search_length=0 def getting_source(self): #client=MongoClient("mongodb://127.0.0.1:27017") #database=client['testing'] self.file_name=input("Enter the name of the text file to read the source code :\n") self.file_name = self.file_name + ".txt" self.file_open=open(self.file_name, 'r') self.file2=self.file_open.read() self.file=BeautifulSoup(self.file2) print(self.file + "\n\n") self.search="small text-uber-white" search_length=len(self.search) c=0 for i in range(0, len((self.file))-search_length): # for total counting part substr = self.file[i:i+search_length] if self.search == substr: c = c + 1 if c == 3: # got the total time of the day self.time_total = self.file[i+search_length+2: i+search_length+12] if c==4: # got the total distance of the day self.distance_total = self.file[i+search_length+2:i+search_length+7] + " km" if c==5: # got the total cash collection self.cash_collection_total = self.file[i+search_length+2:i+search_length+10] if c==6: # got the total earnings self.earnings_total = self.file[i+search_length+2: i+search_length+10] break #print(self.time_total + self.distance_total + self.cash_collection_total + self.earnings_total) self.search='<p class="portable-soft-huge--right submenu__item__link layout cursor--pointer"><span class="layout__item portable-one-half one-half">' # first day search_length=len(self.search) c=0 day="" #collection=database[day] day_last_left=0 for i in range(0, len((self.file))-search_length): # counting individual trip of that day. substr = self.file[i:i+search_length] if self.search == substr: trip_number=-1 pos=i pos_span_ending=0 ending_span="" for oo in range(1, 1000): ss=self.file[pos + oo: pos+oo+7] if ss=="</span>": pos_span_ending=pos+oo c = c + 1 # day count day = self.file[i+search_length+1:pos_span_ending+1] s_trip_start='<span class="trip-list__date layout__item one-quarter">' s_trip_time='<span class="trip-list__duration layout__item one-quarter">' s_trip_distance='<span class="trip-list__distance layout__item one-quarter"' s_trip_earning='<span class="soft-tiny--left"' span_endings='</span>' s_trip_start_l=len(s_trip_start) s_trip_time_l=len(s_trip_time) s_trip_distance_l=len(s_trip_distance) s_trip_earning_l=len(s_trip_earning) e_trip_start=0 e_trip_time=0 e_trip_distance=0 e_trip_earning=0 check=2 trip_number = trip_number + 1 # trip time for r in range(e_trip_time, len(self.file)- s_trip_time_l): t = self.file[ e_trip_time + r : e_trip_time + r + s_trip_time_l ] check=2 if t == s_trip_time: start = r + s_trip_time_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_time=r+m+7 self.trip_time=self.file[start : e_trip_time + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break # trip start time for r in range(e_trip_start, len(self.file)- s_trip_start_l): t = self.file[ e_trip_start + r : e_trip_start + r + s_trip_start_l ] check=2 if t == s_trip_start: start = r + s_trip_start_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_start=r+m+7 self.trip_start=self.file[start : e_trip_start + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break #trip distance for r in range(e_trip_distance, len(self.file)- s_trip_distance_l): t = self.file[ e_trip_distance + r : e_trip_distance + r + s_trip_distance_l ] check=2 if t== s_trip_distance: start = r + s_trip_distance_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_distance=r+m+7 self.trip_distance=self.file[start : e_trip_distance + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break # trip earnings for r in range(e_trip_earning, len(self.file)- s_trip_earning_l): t = self.file[ e_trip_earning + r : e_trip_earning + r + s_trip_earning_l ] check=2 if t==s_trip_earning: start = r + s_trip_earning_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_earning=r+m+7 self.trip_earning=self.file[start : e_trip_earning + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break # completed trips calcultaion for one trip. print("Day "+day) print("Trip number "+str(trip_number)) print("Trip starting "+self.trip_start) print("Trip time "+self.trip_time) print("Trip distance "+self.trip_distance) print("Trip earnings "+self.trip_earning) object= Data_extraction_creation() object.getting_source()
Harkishen-Singh/Uber-App-Record-Analysis
creating databasse copy.py
creating databasse copy.py
py
7,444
python
en
code
0
github-code
6
21892483057
#!/bin/python3 import os import sys # # Complete the xorMatrix function below. # #define GET_BIT(x, bit) (((x)>>(bit)) & 1ULL) def xorMatrix(m, first_row): m = m - 1 for j in range(63, -1, -1): if((m>>j) & 1 == 1): intialRow = first_row.copy() for i in range(0, len(first_row)): first_row[i] ^= intialRow[(i + (1<<j)) % len(first_row)]; return first_row if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nm = input().split() n = int(nm[0]) m = int(nm[1]) first_row = list(map(int, input().rstrip().split())) last_row = xorMatrix(m, first_row) fptr.write(' '.join(map(str, last_row))) fptr.write('\n') fptr.close()
shady236/HackerRank-Solutions
Algorithms/XOR Matrix/XOR Matrix.py
XOR Matrix.py
py
803
python
en
code
0
github-code
6
29381018111
import copy import tempfile import yaml import re import os import constellation.vault as vault from constellation.util import ImageReference def read_yaml(filename): with open(filename, "r") as f: dat = yaml.load(f, Loader=yaml.SafeLoader) dat = parse_env_vars(dat) return dat def config_build(path, data, extra=None, options=None): data = copy.deepcopy(data) if extra: data_extra = read_yaml("{}/{}.yml".format(path, extra)) config_check_additional(data_extra) combine(data, data_extra) if options: if isinstance(options, list): options = collapse(options) config_check_additional(options) combine(data, options) return data # Utility function for centralising control over pulling information # out of the configuration. def config_value(data, path, data_type, is_optional, default=None): if type(path) is str: path = [path] for i, p in enumerate(path): try: data = data[p] if data is None: raise KeyError() except KeyError as e: if is_optional: return default e.args = (":".join(path[:(i + 1)]),) raise e expected = {"string": str, "integer": int, "boolean": bool, "dict": dict, "list": list} if type(data) is not expected[data_type]: raise ValueError("Expected {} for {}".format( data_type, ":".join(path))) return data # TODO: This can be made better with respect to optional values (e.g., # if url is present other keys are required). def config_vault(data, path): url = config_string(data, path + ["addr"], True) auth_method = config_string(data, path + ["auth", "method"], True) auth_args = config_dict(data, path + ["auth", "args"], True) return vault.vault_config(url, auth_method, auth_args) def config_string(data, path, is_optional=False, default=None): return config_value(data, path, "string", is_optional, default) def config_integer(data, path, is_optional=False, default=None): return config_value(data, path, "integer", is_optional, default) def config_boolean(data, path, is_optional=False, default=None): return config_value(data, path, "boolean", is_optional, default) def config_dict(data, path, is_optional=False, default=None): return config_value(data, path, "dict", is_optional, default) def config_dict_strict(data, path, keys, is_optional=False, default=None): d = config_dict(data, path, is_optional) if not d: return default if set(keys) != set(d.keys()): raise ValueError("Expected keys {} for {}".format( ", ".join(keys), ":".join(path))) for k, v in d.items(): if type(v) is not str: raise ValueError("Expected a string for {}".format( ":".join(path + [k]))) return d def config_list(data, path, is_optional=False, default=None): return config_value(data, path, "list", is_optional, default) def config_enum(data, path, values, is_optional=False, default=None): value = config_string(data, path, is_optional, default) if value not in values: raise ValueError("Expected one of [{}] for {}".format( ", ".join(values), ":".join(path))) return value def config_image_reference(dat, path, name="name"): if type(path) is str: path = [path] repo = config_string(dat, path + ["repo"]) name = config_string(dat, path + [name]) tag = config_string(dat, path + ["tag"]) return ImageReference(repo, name, tag) def config_check_additional(options): if "container_prefix" in options: raise Exception("'container_prefix' may not be modified") def combine(base, extra): """Combine exactly two dictionaries recursively, modifying the first argument in place with the contets of the second""" for k, v in extra.items(): if k in base and type(base[k]) is dict and v is not None: combine(base[k], v) else: base[k] = v def collapse(options): """Combine a list of dictionaries recursively, combining from left to right so that later dictionaries override values in earlier ones""" ret = {} for o in options: combine(ret, o) return ret def parse_env_vars(data): if isinstance(data, (dict, list)): for k, v in (data.items() if isinstance(data, dict) else enumerate(data)): if isinstance(v, (dict, list)): data[k] = parse_env_vars(v) if isinstance(v, str) and re.search("^\\$[0-9A-Z_]+$", v): data[k] = get_envvar(v[1:]) return data def get_envvar(name): try: return os.environ[name] except KeyError: raise KeyError("Did not find env var '{}'".format( name))
reside-ic/constellation
constellation/config.py
config.py
py
4,914
python
en
code
0
github-code
6
10252651311
from secuenciales.colaprioridad import * from secuenciales.pila import Pila import copy class nodoGrafo: def __init__(self, nodo_padre, torreA, torreB, torreC): self.torreA = torreA self.torreB = torreB self.torreC = torreC self.padre = nodo_padre self.nivel = self.calcularNivelNodo() self.funcion_heuristica = self.CalcularFuncionHeuristica() def calcularNivelNodo(self): if self.padre is not None: return self.padre.nivel + 1 else: return 0 def calcularFuncionHeuristicaTorre(self, torre, idTorre): iteracion = 0 aux_disco = 0 valor_heuristico_torre = 0 if len(torre) > 0: for disco in torre: if iteracion == 0: aux_disco = disco iteracion += 1 elif aux_disco < disco: if idTorre == "A": valor_heuristico_torre += 1 if idTorre == "B": valor_heuristico_torre += 15 if idTorre == "C": valor_heuristico_torre += 10 aux_disco = disco elif aux_disco > disco: valor_heuristico_torre -= 1000 if idTorre == "A": valor_heuristico_torre += 1 if idTorre == "B": valor_heuristico_torre += 15 if idTorre == "C": valor_heuristico_torre += 10 return valor_heuristico_torre def CalcularFuncionHeuristica(self): valor_heuristico = 0 valor_heuristico += self.calcularFuncionHeuristicaTorre(self.torreA, "A") valor_heuristico += self.calcularFuncionHeuristicaTorre(self.torreB, "B") valor_heuristico += self.calcularFuncionHeuristicaTorre(self.torreC, "C") if len(self.torreC) > 0: actual = 0 for disco in self.torreC: actual = disco if actual == 4: valor_heuristico += 15 if actual == 3: valor_heuristico += 10 if actual == 2: valor_heuristico += 5 if actual == 1: valor_heuristico += 1 if self.nivel > 15: valor_heuristico -= 15 return valor_heuristico - self.nivel def convertirEnLista(self, torre): auxTorre = copy.deepcopy(torre) lista = [] if len(auxTorre) > 0: for disco in auxTorre: lista.append(disco) auxTorre.desapilar() return lista def generarEstadosSucesores(self): lista_sucesores = [] if not (self.torreA.cima() is None): lista_sucesores += self.generarSucesores("A") if not (self.torreB.cima() is None): lista_sucesores += self.generarSucesores("B") if not (self.torreC.cima() is None): lista_sucesores += self.generarSucesores("C") return lista_sucesores def generarSucesores(self, idTorre): if idTorre == "A": lista_sucesoresA = [] copia_estado1 = copy.deepcopy(self) copia_estado2 = copy.deepcopy(self) copia_estado1.torreB.apilar(copia_estado1.torreA.cima()) copia_estado1.torreA.desapilar() self.recalcularParametros(copia_estado1) lista_sucesoresA.append(copia_estado1) copia_estado2.torreC.apilar(copia_estado2.torreA.cima()) copia_estado2.torreA.desapilar() self.recalcularParametros(copia_estado2) lista_sucesoresA.append(copia_estado2) return lista_sucesoresA if idTorre == "B": lista_sucesoresB = [] copia_estado1 = copy.deepcopy(self) copia_estado2 = copy.deepcopy(self) copia_estado1.torreA.apilar(copia_estado1.torreB.cima()) copia_estado1.torreB.desapilar() self.recalcularParametros(copia_estado1) lista_sucesoresB.append(copia_estado1) copia_estado2.torreC.apilar(copia_estado2.torreB.cima()) copia_estado2.torreB.desapilar() self.recalcularParametros(copia_estado2) lista_sucesoresB.append(copia_estado2) return lista_sucesoresB if idTorre == "C": lista_sucesoresC = [] copia_estado1 = copy.deepcopy(self) copia_estado2 = copy.deepcopy(self) copia_estado1.torreB.apilar(copia_estado1.torreC.cima()) copia_estado1.torreC.desapilar() self.recalcularParametros(copia_estado1) lista_sucesoresC.append(copia_estado1) copia_estado2.torreA.apilar(copia_estado2.torreC.cima()) copia_estado2.torreC.desapilar() self.recalcularParametros(copia_estado2) lista_sucesoresC.append(copia_estado2) return lista_sucesoresC def recalcularParametros(self, estado): estado.padre = self estado.nivel = estado.calcularNivelNodo() estado.funcion_heuristica = estado.CalcularFuncionHeuristica() def __eq__(self, other) -> bool: if self.convertirEnLista(self.torreA) == self.convertirEnLista(other.torreA) and self.convertirEnLista(self.torreB) == self.convertirEnLista(other.torreB) and self.convertirEnLista(self.torreC) == self.convertirEnLista(other.torreC): return True return False def __str__(self) -> str: estado = "" for disco in reversed(self.convertirEnLista(self.torreA)): estado += str(disco) + " " estado += "\n" for disco in reversed(self.convertirEnLista(self.torreB)): estado += str(disco) + " " estado += "\n" for disco in reversed(self.convertirEnLista(self.torreC)): estado += str(disco) + " " estado += "\n" estado += "FH = " + str(self.funcion_heuristica) return estado def backtracking(self, list_solucion): list_solucion.append(self) if self.padre is not None: return self.padre.backtracking(list_solucion) else: return 0 def inAbiertos(abiertos, estado): flag = False for abierto in abiertos: if abierto.dato.__eq__(estado): flag = True break return flag if __name__ == "__main__": abiertos = Colaprioridad() cerrados = [] torreA = Pila() torreA.apilar(4) torreA.apilar(3) torreA.apilar(2) torreA.apilar(1) torreB = Pila() torreC = Pila() torreAo = Pila() torreBo = Pila() torreCo = Pila() torreCo.apilar(4) torreCo.apilar(3) torreCo.apilar(2) torreCo.apilar(1) estado_inicial = nodoGrafo(None, torreA, torreB, torreC) estado_objetivo = nodoGrafo(None, torreAo, torreBo, torreCo) abiertos.encolar(estado_inicial, estado_inicial.funcion_heuristica) estado_actual = estado_inicial iteraciones = 0 while not (estado_actual.__eq__(estado_objetivo)) and len(abiertos) > 0: estado_actual = abiertos.desencolar().dato # print(estado_actual) # print("=======================") sucesores = estado_actual.generarEstadosSucesores() for estado in sucesores: if not inAbiertos(abiertos, estado) and estado not in cerrados: abiertos.encolar(estado, estado.funcion_heuristica) cerrados.append(estado_actual) iteraciones += 1 if estado_actual.__eq__(estado_objetivo): print("Exito") print("Nivel : " + str(estado_actual.nivel)) print("Iteraciones : " + str(iteraciones)) list_solucion = [] estado_actual.backtracking(list_solucion) for solucion in reversed(list_solucion): print("=======================") print(solucion) else: print("No se pudo encontrar una solucion")
difer19/Estructuras-de-Datos
GrafosA_Star.py
GrafosA_Star.py
py
7,942
python
es
code
0
github-code
6
26040958016
from __future__ import annotations import logging from dataclasses import dataclass from pants.backend.python.subsystems.twine import TwineSubsystem from pants.backend.python.target_types import PythonDistribution from pants.backend.python.util_rules.pex import PexRequest, VenvPex, VenvPexProcess from pants.core.goals.publish import ( PublishFieldSet, PublishOutputData, PublishPackages, PublishProcesses, PublishRequest, ) from pants.core.util_rules.config_files import ConfigFiles, ConfigFilesRequest from pants.engine.env_vars import EnvironmentVars, EnvironmentVarsRequest from pants.engine.fs import CreateDigest, Digest, MergeDigests, Snapshot from pants.engine.process import InteractiveProcess, Process from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.engine.target import BoolField, StringSequenceField from pants.option.global_options import GlobalOptions from pants.util.strutil import help_text logger = logging.getLogger(__name__) class PythonRepositoriesField(StringSequenceField): alias = "repositories" help = help_text( """ List of URL addresses or Twine repository aliases where to publish the Python package. Twine is used for publishing Python packages, so the address to any kind of repository that Twine supports may be used here. Aliases are prefixed with `@` to refer to a config section in your Twine configuration, such as a `.pypirc` file. Use `@pypi` to upload to the public PyPi repository, which is the default when using Twine directly. """ ) # Twine uploads to 'pypi' by default, but we don't set default to ["@pypi"] here to make it # explicit in the BUILD file when a package is meant for public distribution. class SkipTwineUploadField(BoolField): alias = "skip_twine" default = False help = "If true, don't publish this target's packages using Twine." class PublishPythonPackageRequest(PublishRequest): pass @dataclass(frozen=True) class PublishPythonPackageFieldSet(PublishFieldSet): publish_request_type = PublishPythonPackageRequest required_fields = (PythonRepositoriesField,) repositories: PythonRepositoriesField skip_twine: SkipTwineUploadField def get_output_data(self) -> PublishOutputData: return PublishOutputData( { "publisher": "twine", **super().get_output_data(), } ) # I'd rather opt out early here, so we don't build unnecessarily, however the error feedback is # misleading and not very helpful in that case. # # @classmethod # def opt_out(cls, tgt: Target) -> bool: # return not tgt[PythonRepositoriesField].value def twine_upload_args( twine_subsystem: TwineSubsystem, config_files: ConfigFiles, repo: str, dists: tuple[str, ...], ca_cert: Snapshot | None, ) -> tuple[str, ...]: args = ["upload", "--non-interactive"] if ca_cert and ca_cert.files: args.append(f"--cert={ca_cert.files[0]}") if config_files.snapshot.files: args.append(f"--config-file={config_files.snapshot.files[0]}") args.extend(twine_subsystem.args) if repo.startswith("@"): # Named repository from the config file. args.append(f"--repository={repo[1:]}") else: args.append(f"--repository-url={repo}") args.extend(dists) return tuple(args) def twine_env_suffix(repo: str) -> str: return f"_{repo[1:]}".replace("-", "_").upper() if repo.startswith("@") else "" def twine_env_request(repo: str) -> EnvironmentVarsRequest: suffix = twine_env_suffix(repo) env_vars = [ "TWINE_USERNAME", "TWINE_PASSWORD", "TWINE_REPOSITORY_URL", ] req = EnvironmentVarsRequest(env_vars + [f"{var}{suffix}" for var in env_vars]) return req def twine_env(env: EnvironmentVars, repo: str) -> EnvironmentVars: suffix = twine_env_suffix(repo) return EnvironmentVars( {key.rsplit(suffix, maxsplit=1)[0] if suffix else key: value for key, value in env.items()} ) @rule async def twine_upload( request: PublishPythonPackageRequest, twine_subsystem: TwineSubsystem, global_options: GlobalOptions, ) -> PublishProcesses: dists = tuple( artifact.relpath for pkg in request.packages for artifact in pkg.artifacts if artifact.relpath ) if twine_subsystem.skip or not dists: return PublishProcesses() # Too verbose to provide feedback as to why some packages were skipped? skip = None if request.field_set.skip_twine.value: skip = f"(by `{request.field_set.skip_twine.alias}` on {request.field_set.address})" elif not request.field_set.repositories.value: # I'd rather have used the opt_out mechanism on the field set, but that gives no hint as to # why the target was not applicable.. skip = f"(no `{request.field_set.repositories.alias}` specified for {request.field_set.address})" if skip: return PublishProcesses( [ PublishPackages( names=dists, description=skip, ), ] ) twine_pex, packages_digest, config_files = await MultiGet( Get(VenvPex, PexRequest, twine_subsystem.to_pex_request()), Get(Digest, MergeDigests(pkg.digest for pkg in request.packages)), Get(ConfigFiles, ConfigFilesRequest, twine_subsystem.config_request()), ) ca_cert_request = twine_subsystem.ca_certs_digest_request(global_options.ca_certs_path) ca_cert = await Get(Snapshot, CreateDigest, ca_cert_request) if ca_cert_request else None ca_cert_digest = (ca_cert.digest,) if ca_cert else () input_digest = await Get( Digest, MergeDigests((packages_digest, config_files.snapshot.digest, *ca_cert_digest)) ) pex_proc_requests = [] twine_envs = await MultiGet( Get(EnvironmentVars, EnvironmentVarsRequest, twine_env_request(repo)) for repo in request.field_set.repositories.value ) for repo, env in zip(request.field_set.repositories.value, twine_envs): pex_proc_requests.append( VenvPexProcess( twine_pex, argv=twine_upload_args(twine_subsystem, config_files, repo, dists, ca_cert), input_digest=input_digest, extra_env=twine_env(env, repo), description=repo, ) ) processes = await MultiGet( Get(Process, VenvPexProcess, request) for request in pex_proc_requests ) return PublishProcesses( PublishPackages( names=dists, process=InteractiveProcess.from_process(process), description=process.description, data=PublishOutputData({"repository": process.description}), ) for process in processes ) def rules(): return ( *collect_rules(), *PublishPythonPackageFieldSet.rules(), PythonDistribution.register_plugin_field(PythonRepositoriesField), PythonDistribution.register_plugin_field(SkipTwineUploadField), )
pantsbuild/pants
src/python/pants/backend/python/goals/publish.py
publish.py
py
7,218
python
en
code
2,896
github-code
6
24957977468
#!/usr/bin/python3 '''Post the compositions in a given directory filtered or not by a basename now one ehr per composition ''' import json import logging import requests from url_normalize import url_normalize import sys import argparse import os from typing import Any,Callable import re from json_tools import diff import collections import uuid def compare(firstjson:json,secondjson:json)->None: ''' compare the given jsons ''' one=flatten(firstjson) two=flatten(secondjson) return json.dumps((diff(one,two)),indent=4) def change_naming(myjson:json)->json: '''change naming convention on the json''' return change_dict_naming_convention(myjson,convertcase) def flatten(d:dict, parent_key:str='', sep:str='_')->dict: items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.abc.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def change_dict_naming_convention(d:Any, convert_function:Callable[[str],str])->dict: """ Convert a nested dictionary from one convention to another. Args: d (dict): dictionary (nested or not) to be converted. convert_function (func): function that takes the string in one convention and returns it in the other one. Returns: Dictionary with the new keys. """ if not isinstance(d,dict): return d new = {} for k, v in d.items(): new_v = v if isinstance(v, dict): new_v = change_dict_naming_convention(v, convert_function) elif isinstance(v, list): new_v = list() for x in v: new_v.append(change_dict_naming_convention(x, convert_function)) new[convert_function(k)] = new_v return new def convertcase(name:str)->str: s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def analyze_comparison(comparison_results:list)->int: ndifferences=0 for l in comparison_results: if "add" in l: if("_uid" in l['add']): #ignore if it is _uid continue else: ndifferences+=1 logging.debug(f"difference add:{l['add']} value={l['value']}") elif "remove" in l: ndifferences+=1 logging.debug(f"difference remove:{l['remove']} value={l['value']}") elif "replace" in l: if(l['replace'].endswith("time")): if(l['value'][:18]==l['prev'][:18]): continue ndifferences+=1 logging.debug(f"difference replace:{l['replace']} value={l['value']} prev={l['prev']}") elif(l['value'].startswith('P') and l['value'].endswith('D')): continue else: ndifferences+=1 logging.debug(f"difference replace:{l['replace']} value={l['value']} prev={l['prev']}") return ndifferences def create_ehr(client,EHR_SERVER_BASE_URL, auth,patientid): logging.debug('----POST EHR----') body1=''' { "_type" : "EHR_STATUS", "name" : { "_type" : "DV_TEXT", "value" : "EHR Status" }, "subject" : { "_type" : "PARTY_SELF", "external_ref" : { "_type" : "PARTY_REF", "namespace" : "BBMRI", "type" : "PERSON", "id" : { "_type" : "GENERIC_ID", ''' body2=f' "value" : "{patientid}",' body3=''' "scheme" : "BBMRI" } } }, "archetype_node_id" : "openEHR-EHR-EHR_STATUS.generic.v1", "is_modifiable" : true, "is_queryable" : true } ''' body=body1+body2+body3 logging.debug(f'body={body}') # sys.exit(0) ehrs = client.post(EHR_SERVER_BASE_URL + 'ehr', \ params={},headers={'Authorization':auth,'Content-Type':'application/JSON','Accept': 'application/json','Prefer': 'return={representation|minimal}'},\ data=body) print(f'create ehr status_code={ehrs.status_code}') logging.info(f'create ehr: status_code={ehrs.status_code}') logging.debug(f'ehr url={ehrs.url}') logging.debug(f'ehrs.headers={ehrs.headers}') logging.debug(f'ehrs.text={ehrs.text}') logging.debug(f'ehrs.json={ehrs.json}') if(ehrs.status_code==409 and 'Specified party has already an EHR set' in json.loads(ehrs.text)['message']): #get ehr summary by subject_id , subject_namespace payload = {'subject_id':patientid,'subject_namespace':'BBMRI'} ehrs = client.get(EHR_SERVER_BASE_URL + 'ehr', params=payload,headers={'Authorization':auth,'Content-Type':'application/JSON','Accept': 'application/json'}) print('ehr already existent') logging.info('ehr already existent') logging.debug('----GET EHR----') print(f'get ehr: status_code={ehrs.status_code}') logging.info(f'get ehr: status_code={ehrs.status_code}') logging.debug(f'ehr url={ehrs.url}') logging.debug(f'ehr.headers={ehrs.headers}') logging.debug(f'ehr.text={ehrs.text}') logging.debug(f'ehr.json={ehrs.json}') ehrid=json.loads(ehrs.text)["ehr_id"]["value"] print(f'Patient {patientid}: retrieved ehrid={ehrid}') logging.info(f'Patient {patientid}: retrieved ehrid={ehrid}') return ehrid # print(f'ehrheaders={ehrs.headers}') urlehrstring = ehrs.headers['Location'] ehridstring = "{"+urlehrstring.split("v1/ehr/",2)[2] ehrid=uuid.UUID(ehridstring) print(f'Patient {patientid}: ehrid={str(ehrid)}') logging.info(f'Patient {patientid}: ehrid={str(ehrid)}') return ehrid def main(): print('COMPOSITIONS UPLOADER') parser = argparse.ArgumentParser() parser.add_argument('--loglevel',help='the logging level:DEBUG,INFO,WARNING,ERROR or CRITICAL',default='WARNING') parser.add_argument('--inputdir',help='dir containing the compositions',default='RESULTS') parser.add_argument('--basename',help='basename to filter compositions') parser.add_argument('--templatename',help='template to use when posting',default='crc_cohort') parser.add_argument('--check',action='store_true', help='check the missing leafs for leafs that should be there but are not') args=parser.parse_args() loglevel=getattr(logging, args.loglevel.upper(),logging.WARNING) if not isinstance(loglevel, int): raise ValueError('Invalid log level: %s' % loglevel) logging.basicConfig(filename='./CompositionUploader.log',filemode='w',level=loglevel) inputdir=args.inputdir print(f'inputdir given: {inputdir}') logging.info(f'inputdir given: {inputdir}') if not os.path.exists(inputdir): print(f'directory {inputdir} does not exist') logging.error(f'directory {inputdir} does not exist') sys.exit(1) basename=args.basename if(basename): logging.info(f'basename given: {basename}') print(f'basename given: {basename}') check=False if args.check: check=True print ('Check is set to true') logging.info('Check is set to true') #get the list of files filelist=[] if basename: for file in os.listdir(inputdir): if file.startswith(basename) and file.endswith(".json"): logging.debug(f'file added {os.path.join(inputdir, file)}') filelist.append(file) else: for file in os.listdir(inputdir): if file.endswith(".json"): logging.debug(f'file added {os.path.join(inputdir, file)}') filelist.append(file) # Now sort the list filelist.sort(key=lambda a: int(a.split('_')[1])) for i,f in enumerate(filelist): logging.info(f'file {i+1} = {f}') # Initialize the connection to ehrbase EHR_SERVER_BASE_URL = 'http://localhost:8080/ehrbase/rest/openehr/v1/' EHR_SERVER_BASE_URL_FLAT = 'http://localhost:8080/ehrbase/rest/ecis/v1/composition/' client = requests.Session() client.auth = ('ehrbase-user','SuperSecretPassword') auth="Basic ZWhyYmFzZS11c2VyOlN1cGVyU2VjcmV0UGFzc3dvcmQ=" nfiles=len(filelist) print(f'{nfiles} to insert') logging.info(f'{nfiles} to insert') #check if the template is already in the db templatename=args.templatename myurl=url_normalize(EHR_SERVER_BASE_URL + 'definition/template/adl1.4') response = client.get(myurl,params={'format': 'JSON'},headers={'Authorization':auth,'Content-Type':'application/JSON'}) templates=[a["template_id"] for a in json.loads(response.text)] if(templatename not in templates): print(f'Missing template {templatename}') logging.error(f'Missing template {templatename}') sys.exit(1) # loop over files and upload the compositions myurl=url_normalize(EHR_SERVER_BASE_URL_FLAT) compinserted=0 compok=0 for i,file in enumerate(filelist): print(f'********FILE {i+1}/{nfiles} {file}********') logging.info(f'********FILE {i+1}/{nfiles} {file}********') filename=os.path.join(inputdir, file) with open(filename) as json_file: compositionjson = json.load(json_file) patientid='Patient'+compositionjson[templatename.lower()+'/context/case_identification/patient_pseudonym'] print(f'Patientid={patientid}') logging.info(f'Patientid={patientid}') # create ehr ehrid=create_ehr(client,EHR_SERVER_BASE_URL, auth,patientid) # post composition compositionjson=json.dumps(compositionjson) response = client.post(myurl, params={'ehrId':str(ehrid),'templateId':templatename,'format':'FLAT'}, \ headers={'Authorization':auth,'Content-Type':'application/json','Prefer':'return=representation'}, \ data=compositionjson \ ) if(response.status_code != 200 and response.status_code != 201): print(f"Couldn't post the composition. Error={response.status_code}") print(f'response.text {response.text}') logging.info(f"Couldn't post the composition. Error={response.status_code}") logging.info(f'response.headers {response.headers}') logging.info(f'response.text {response.text}') else: compinserted+=1 print(f'Composition inserted') compositionUid=json.loads(response.text)["compositionUid"] print(f'compositionUid={compositionUid}') logging.info(f'compositionUid={compositionUid}') if(check): print(f'checking...') logging.info(f'checking...') #get composition created and compare with the one posted myurlu=url_normalize(EHR_SERVER_BASE_URL_FLAT+compositionUid) response = client.get(myurlu, \ params={'ehrId':str(ehrid),'templateId':templatename,'format':'FLAT'}, \ headers={'Authorization':auth,'Content-Type':'application/json'}, \ ) if(response.status_code != 200 and response.status_code != 201): print(f"Couldn't retrieve the composition. Error{response.status_code}") logging.info(f"Couldn't retrieve the composition. Error{response.status_code}") logging.info(f'response.headers {response.headers}') logging.info(f'response.text {response.text}') else: origjson=json.loads(compositionjson) retrievedjson=json.loads(response.text)["composition"] origchanged=change_naming(origjson) retrchanged=change_naming(retrievedjson) comparison_results=compare(origchanged,retrchanged) ndiff=analyze_comparison(comparison_results) if(ndiff>0): print('original and retrieved json differ') logging.info('original and retrieved json differ') logging.debug(f'comparison_results:') logging.debug(comparison_results) else: print('original and retrieved json do not differ') logging.info('original and retrieved json do not differ') compok+=1 print(f'{compinserted}/{nfiles} compositions inserted successfully') logging.info(f'{compinserted}/{nfiles} compositions inserted successfully') print(f'{nfiles-compinserted}/{nfiles} compositions with errors') if(check): print(f'{compok}/{compinserted} checked successfully') logging.info(f'{compok}/{compinserted} checked successfully') print(f'{compinserted-compok}/{compinserted} checked unsuccessfully') logging.info(f'{compinserted-compok}/{compinserted} checked unsuccessfully') if __name__ == '__main__': main()
crs4/TO_OPENEHR_CONVERTER
COMPOSITIONS_UPLOADER/CompositionUploader.py
CompositionUploader.py
py
11,566
python
en
code
0
github-code
6
23213929420
""" IMU 6-DOF Acceleration - imu_accel_x - imu_accel_y - imu_accel_z Angular speed - imu_gyro_x - imu_gyro_y - imu_gyro_z """ import numpy as np from numpy.linalg import inv from scipy.spatial.transform import Rotation as rot """ X: states: - pitch - roll - yaw (not used) - bias angular rate pitch - bias angular rate roll - bias angular rate yaw Note: In order to compute yaw, an additional sensor like a magnetometer is required. u: inputs - Euler angles """ class INS_filter: def __init__(self, data): dt = 1e-2 self.X = np.zeros([6,1]) # error in Euler angles, gyro biases self.X[0] = -np.arctan2(data["imu_accel_y"], np.sqrt(data["imu_accel_y"]**2+data["imu_accel_z"]**2)) self.X[1] = np.arctan2(data["imu_accel_x"], np.sqrt(data["imu_accel_x"]**2+data["imu_accel_z"]**2)) self.Cnb = rot.from_euler("xyz", self.X[0:3].transpose()).as_matrix()[0] self.P = np.identity(6) # Process model self.F = np.identity(6) self.F[0:3,3:6] = -dt*self.Cnb # Control action model self.B = np.zeros([6,3]) self.B[0:3, 0:3] = np.identity(3)*dt # Observation matrix self.H = np.zeros([3,6]) self.H[0:3, 0:3] = np.identity(3) # Process noise matrix self.gyro_psd = 3.5e-4 self.gyro_bias_psd = 1e-7 self.Q = np.zeros([6,6]) self.updateQ(dt) # Sensor noise matrix (accel) self.R = np.zeros([3,3]) self.R[0][0] = 5 self.R[1][1] = 5 self.R[2][2] = 5 def updateQ(self, dt): self.Q[0:3, 0:3] = np.identity(3)*self.gyro_psd*dt self.Q[3:6, 3:6] = np.identity(3) * self.gyro_bias_psd * dt def predict(self, w, dt): # w is the angular rate vector self.Cnb = rot.from_euler("xyz", self.X[0:3].transpose()).as_matrix()[0] u = w.transpose() self.updateQ(dt) #update dt self.F[0:3,3:6] = -dt*self.Cnb self.B[0:3, 0:3] = dt*self.Cnb # build pseudo control var u self.X = [email protected] + self.B@u self.P = [email protected]@self.F.transpose() + self.Q def updateAttitude(self, a_bib): z = self.getEulerAnglesFromAccel(a_bib.transpose()) y = z - [email protected] S = [email protected]@self.H.transpose() + self.R K = ([email protected]())@inv(S) self.X = self.X+K@y I = np.identity(6) self.P = ([email protected])@self.P def getEulerAnglesFromAccel(self, a_bib): eul_nb = np.zeros([3,1]) eul_nb[0] = -np.arctan2(a_bib[1], np.sqrt(a_bib[1]**2+a_bib[2]**2)) eul_nb[1] = np.arctan2(a_bib[0], np.sqrt(a_bib[0]**2+a_bib[2]**2)) return eul_nb def get_states(self): return {"roll": np.asscalar(self.X[0])*180/np.pi, "pitch": np.asscalar(self.X[1])*180/np.pi, "yaw": np.asscalar(self.X[2])*180/np.pi, "gyro_bias_roll": np.asscalar(self.X[3])*180/np.pi, "gyro_bias_pitch": np.asscalar(self.X[4])*180/np.pi} def run_filter_simulation(df): import time start = time.time() init = False kf_ins_res = {"roll": [], "pitch":[], "yaw":[], "gyro_bias_roll":[], "gyro_bias_pitch":[]} last_time = 0 for index, row in df.iterrows(): if not init: ins_kf = INS_filter(row) init = True last_time = row["time"] - 1e-2 # Note: in a real-time system, the prediction step should run at each iteration # This hack is only used here for simulation purposes if row["imu_new_data"]: dt = row["time"] - last_time ins_kf.predict(np.matrix([row["imu_gyro_x"], row["imu_gyro_y"], row["imu_gyro_z"]]), dt) last_time = row["time"] if row["imu_new_data"]: ins_kf.updateAttitude(np.matrix([row["imu_accel_x"], row["imu_accel_y"], row["imu_accel_z"]])) res = ins_kf.get_states() kf_ins_res["roll"].append(res["roll"]) kf_ins_res["pitch"].append(res["pitch"]) kf_ins_res["yaw"].append(res["yaw"]) kf_ins_res["gyro_bias_roll"].append(res["gyro_bias_roll"]) kf_ins_res["gyro_bias_pitch"].append(res["gyro_bias_pitch"]) end = time.time() print(f"Execution time: {end - start} s") import matplotlib.pyplot as plt f, ax = plt.subplots(4, 1) ax[0].set_title("Roll") ax[0].plot(df["time"], kf_ins_res["roll"], label="roll") ax[1].set_title("Pitch") ax[1].plot(df["time"], kf_ins_res["pitch"], label="pitch") ax[2].set_title("Gyro bias roll") ax[2].plot(df["time"], kf_ins_res["gyro_bias_roll"], label="gyro_bias_roll") ax[3].set_title("Gyro bias pitch") ax[3].plot(df["time"], kf_ins_res["gyro_bias_pitch"], label="gyro_bias_pitch") plt.subplots_adjust(hspace=0.4) f.canvas.set_window_title('Kalman Filter INS') f.suptitle("Kalman Filter INS") # f.legend() plt.show() if __name__ == "__main__": import pandas as pd data = pd.read_csv("gns_ins_data2.csv") run_filter_simulation(data)
toshiharutf/Kalman_Filter_GNS_INS
ins_filter_full_state_demo.py
ins_filter_full_state_demo.py
py
5,133
python
en
code
6
github-code
6
28800553771
import os import pytest import pathlib import numpy as np import pandas as pd from math import isclose from cytominer_eval.operations import mp_value from cytominer_eval.utils.mpvalue_utils import ( calculate_mp_value, calculate_mahalanobis, ) # Load CRISPR dataset example_file = "SQ00014610_normalized_feature_select.csv.gz" example_file = pathlib.Path( "{file}/../../example_data/gene/{eg}".format( file=os.path.dirname(__file__), eg=example_file ) ) df = pd.read_csv(example_file) meta_features = [ x for x in df.columns if (x.startswith("Metadata_") or x.startswith("Image_")) ] features = df.drop(meta_features, axis="columns").columns.tolist() control_perts = ["Luc-2", "LacZ-2", "LacZ-3"] replicate_id = "Metadata_pert_name" def test_calculate_mahalanobis(): sub_df = df[(df.Metadata_WellRow == "A") & (df.Metadata_pert_name == "EMPTY")][ features ] control_df = df[df[replicate_id].isin(control_perts)][features] maha = calculate_mahalanobis(pert_df=sub_df, control_df=control_df) assert isinstance(maha, float) # The following value is empirically determined # and not theoretically justified but avoids unwanted # changes in the implementation of the Mahalanobis distance assert isclose(maha, 3.62523778789, abs_tol=1e-09) maha = calculate_mahalanobis(pert_df=control_df, control_df=control_df) # Distance to itself should be approximately zero assert isclose(maha, 0, abs_tol=1e-05) def test_calculate_mp_value(): # The mp-values are empirical p-values # so they range from 0 to 1, with low values # showing a difference to the control condition. sub_df = df[(df.Metadata_WellRow == "A") & (df.Metadata_pert_name == "EMPTY")][ features ] control_df = df[df[replicate_id].isin(control_perts)][features] # Avoid fluctuations in permutations np.random.seed(2020) result = calculate_mp_value(pert_df=sub_df, control_df=control_df) assert isinstance(result, float) assert result > 0 assert result < 1 # Distance to itself should be approximately zero # So mp-value should be 1 result = calculate_mp_value( pert_df=control_df, control_df=control_df, params={"nb_permutations": 2000} ) assert isclose(result, 1, abs_tol=1e-02) with pytest.raises(AssertionError) as ae: result = calculate_mp_value( pert_df=control_df, control_df=control_df, params={"not_a_parameter": 2000} ) assert "Unknown parameters provided. Only" in str(ae.value) def test_mp_value(): result = mp_value( df=df, control_perts=control_perts, replicate_id=replicate_id, features=features, ) assert "mp_value" in result.columns assert all(result.mp_value <= 1) assert all(result.mp_value >= 0) assert len(np.unique(df[replicate_id])) == len(result) with pytest.raises(AssertionError) as ae: result = mp_value( df=df, control_perts=control_perts, replicate_id=replicate_id, features=features, params={"not_a_parameter": 2000}, ) assert "Unknown parameters provided. Only" in str(ae.value)
cytomining/cytominer-eval
cytominer_eval/tests/test_operations/test_mp_value.py
test_mp_value.py
py
3,230
python
en
code
7
github-code
6
34218646786
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 6 12:31:40 2023 @author: tillappel """ from arc import * from IPython.display import display, HTML import numpy as np import scipy.constants as sc import matplotlib.pyplot as plt def find_largest_c3(n,n_2, l0, j0): largest_c3_d0 = 0 largest_c3_d1 = 0 largest_i_d0 = 0 largest_i_d1 = 0 largest_j_d0 = 0 largest_j_d1 = 0 largest_transition_d0 = "" largest_transition_d1 = "" atom = Rubidium() # Iterate over combinations of i and j for i in range(1, 4): for j in range(1, 4): # Calculate the dipole matrix element for pi/pi transition with d=0 dsDME_pi_d0 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(j0-1), np.abs(j0), 0) dpDME_pi_d0 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, j0, j0, 0) c3_pi_d0 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_pi_d0 * dpDME_pi_d0 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Calculate the dipole matrix element for sigma+/sigma- transition with d=0 dsDME_sigma_d0 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(j0-1), np.abs(j0), -1) dpDME_sigma_d0 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, j0, j0, 1) c3_sigma_d0 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_sigma_d0 * dpDME_sigma_d0 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Compare the calculated c3 coefficients with d=0 and update the largest values if abs(c3_pi_d0) > abs(largest_c3_d0): largest_c3_d0 = c3_pi_d0 largest_i_d0 = i largest_j_d0 = j largest_transition_d0 = "pi/pi" if abs(c3_sigma_d0) > abs(largest_c3_d0): largest_c3_d0 = c3_sigma_d0 largest_i_d0 = i largest_j_d0 = j largest_transition_d0 = "sigma+/sigma-" # Calculate the dipole matrix element for pi/pi transition with d=1 dsDME_pi_d1 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(j0-1), np.abs(j0-1), 0) dpDME_pi_d1 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, j0+1, j0+1, 0) c3_pi_d1 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_pi_d1 * dpDME_pi_d1 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Calculate the dipole matrix element for sigma+/sigma- transition with d=1 dsDME_sigma_d1 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(-1+j0), np.abs(-1+j0), -1) dpDME_sigma_d1 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, 1+j0, 1+j0, 1) c3_sigma_d1 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_sigma_d1 * dpDME_sigma_d1 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Compare the calculated c3 coefficients with d=1 and update the largest values if abs(c3_pi_d1) > abs(largest_c3_d1): largest_c3_d1 = c3_pi_d1 largest_i_d1 = i largest_j_d1 = j largest_transition_d1 = "pi/pi" if abs(c3_sigma_d1) > abs(largest_c3_d1): largest_c3_d1 = c3_sigma_d1 largest_i_d1 = i largest_j_d1 = j largest_transition_d1 = "sigma+/sigma-" return ( largest_i_d0, largest_j_d0, largest_transition_d0, abs(largest_c3_d0) / C_h * 1.0e9, largest_i_d1, largest_j_d1, largest_transition_d1, abs(largest_c3_d1) / C_h * 1.0e9 ) # Specify the value of n, l0, and j0 n = 59 n_2 = 59 l = 0 j = 0.5 # Find the largest C3 coefficients for d=0 and d=1, and their corresponding i, j, and transition largest_i_d0, largest_j_d0, largest_transition_d0, largest_c3_d0, largest_i_d1, largest_j_d1, largest_transition_d1, largest_c3_d1 = find_largest_c3(n, n_2, l, j) # Print the results print("For d=0:") print("Largest C3 of Rb(%dP -> %dS/%dD) = %.3f GHz (µm)^3 (i = %d, j = %d, Transition = %s)" % (n, n-largest_i_d0, n+largest_j_d0, largest_c3_d0, largest_i_d0, largest_j_d0, largest_transition_d0)) print("For d=1:") print("Largest C3 of Rb(%dP -> %dS/%dD) = %.3f GHz (µm)^3 (i = %d, j = %d, Transition = %s)" % (n, n-largest_i_d1, n+largest_j_d1, largest_c3_d1, largest_i_d1, largest_j_d1, largest_transition_d1)) '--------------------------------------------------' #resonant interaction of groundstate to excited state with opposite parity atom = Rubidium(cpp_numerov=False) dme = atom.getDipoleMatrixElement(63, 1, 1/2, 1/2, 40, 0, 1/2, 1/2, +1) c3_2 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dme * dme * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) print("C_3 of Rb(63 S -> 61P) = %.3f GHz (mu m)^3 " % (abs(c3_2) / C_h * 1.0e9)) '=================================================' # Evaluation of the Cs 60S_1/2 C6 coefficient using perturbation theory (Theta=0,phi=0) l0 = 0 j0 = 0.5 mj0 = 0.5 # Target State theta = 0 # Polar Angle [0-pi] phi = 0 # Azimuthal Angle [0-2pi] dn = 5 # Range of n to consider (n0-dn:n0+dn) deltaMax = 25e9 # Max pair-state energy difference [Hz] # Set target-state and extract value calculation = PairStateInteractions( Rubidium(), n, l0, j0, n, l0, j0, mj0, mj0 ) C6 = calculation.getC6perturbatively(theta, phi, dn, deltaMax) print("C6 [%s] = %.2f GHz (mum)^6" % (printStateString(n, l0, j0), C6)) '--------------------------------------------------' # Define a range of values for n n_values = range(30, 80) a_1 = 1 #µm # Lists to store the C3 and C6 coefficients for d=0 and d=1 c3_values_d0 = [] c3_values_d1 = [] c6_values = [] # Iterate over the values of n for n in n_values: # Find the largest C3 coefficients for d=0 and d=1, and their corresponding i, j, and transition largest_i_d0, largest_j_d0, largest_transition_d0, largest_c3_d0, largest_i_d1, largest_j_d1, largest_transition_d1, largest_c3_d1 = find_largest_c3(n, n_2, l0, j0) # Append the largest C3 coefficients to the respective c3_values lists c3_values_d0.append(largest_c3_d0 / a_1**3) c3_values_d1.append(largest_c3_d1 / a_1**3) # Calculate the C6 coefficient calculation = PairStateInteractions( Rubidium(), n, l0, j0, n, l0, j0, mj0, mj0 ) C6 = calculation.getC6perturbatively(theta, phi, dn, deltaMax) # Append the C6 coefficient to the c6_values list c6_values.append(np.abs(C6) / a_1**6) #Plotting the C3 and C6 coefficientsplt.plot(n_values, c3_values_d1, label="Largest C3 Coefficient") #plt.plot(n_values, c3_values_d1, label="C3 Coefficient (d=1)") #plt.plot(n_values, c6_values, label="C6 Coefficient") '-------------------' plt.semilogy(n_values, c3_values_d0, label="Largest C3 Coefficient") #CURRENTLY: d=1 plt.semilogy(n_values, c6_values, label="C6 Coefficient") '-------------------' plt.xlabel("n") plt.ylabel("C3, C6 [GHz]") plt.legend(fontsize = "large", loc="upper left") plt.title("C3 & C6 coefficients of Rb |n,S>") plt.savefig('log plot S c3,c6.png', dpi=300) plt.show()
tappelnano/RydbergPTG
ARC C3_C6 calc.py
ARC C3_C6 calc.py
py
7,589
python
en
code
0
github-code
6
34565307158
from random import random, randint from collections import deque from math import sin, cos MAXVAL = 200 MAXINSTR = 12 def new_random_code(length): return [ (randint(0, MAXINSTR)) if random() > 0.5 else (randint(MAXINSTR + 1, MAXVAL)) for _ in range(length) ] def point_mutate(code): code[randint(0, len(code) - 1)] = ( (randint(0, MAXINSTR)) if random() > 0.5 else (randint(MAXINSTR + 1, MAXVAL)) ) def safe_pop(stack, default=0): try: return stack.pop() except IndexError: return default def grow_bud(pos, code, n): offspring = [] history = deque() ang = 0 stack = deque() x, y = pos for instruction in code: if instruction > 12: # number stack.append(instruction - 13) else: if instruction == 1: # rotCW history.append((x, y, ang)) ang += safe_pop(stack) elif instruction == 2: # rotCCW history.append((x, y, ang)) ang -= safe_pop(stack) elif instruction == 3: # undo x, y, ang = safe_pop(history, (x, y, ang)) elif instruction == 4: # move history.append((x, y, ang)) dist = safe_pop(stack) x -= sin(ang) * dist y += cos(ang) * dist elif instruction == 5: # place offspring.append((x, y)) elif instruction == 6: # ref n stack.append(n) elif instruction == 7: # + stack.append(safe_pop(stack) + safe_pop(stack)) elif instruction == 8: # - stack.append(safe_pop(stack) - safe_pop(stack)) elif instruction == 9: # * stack.append(safe_pop(stack) * safe_pop(stack)) elif instruction == 10: # / try: stack.append(safe_pop(stack) / safe_pop(stack, 1)) except ZeroDivisionError: pass elif instruction == 11: # ref x stack.append(x) elif instruction == 12: # ref y stack.append(y) return offspring def grow_tree(code, iters=3): bud_positions = [(0, 0)] branch_positions = [] for n in range(iters): new_bud_positions = [] for bud_pos in bud_positions: for new_pos in grow_bud(bud_pos, code, n): branch_positions.append((*bud_pos, *new_pos)) new_bud_positions.append(new_pos) bud_positions = new_bud_positions return bud_positions, branch_positions
gwfellows/trees
grow.py
grow.py
py
2,644
python
en
code
0
github-code
6
5355406850
from odoo import models, fields, api class StockProductionLot(models.Model): _inherit = "stock.production.lot" is_flower = fields.Boolean(related='product_id.is_flower', readonly=True) water_ids = fields.One2many("flower.water", "serial_id") @api.model_create_multi def create(self, vals_list): for vals in vals_list: product = self.env["product.product"].browse(vals["product_id"]) if product.sequence_id: vals["name"] = product.sequence_id.next_by_id() return super().create(vals_list) def action_water_flower(self): flowers = self.filtered(lambda rec: rec.is_flower) for record in flowers: if record.water_ids: last_watered_date = record.water_ids[0].watering_date frequency = record.product_id.flower_id.watering_frequency today = fields.Date.today() if (today - last_watered_date).days < frequency: continue self.env["flower.water"].create({ "flower_id": record.product_id.flower_id.id, "watering_date" :fields.Date.today(), "serial_id": record.id, }) def action_open_watering_times(self): self.ensure_one() action = { 'name': 'Watering Times', 'type': 'ir.actions.act_window', 'res_model': 'flower.water', 'view_mode': 'tree,form', 'domain': [('serial_id', '=', self.id)], } return action
omar99emad/flower-shop
models/stock_production_lot.py
stock_production_lot.py
py
1,586
python
en
code
0
github-code
6
74190845628
# -*- coding: utf-8 -*- __author__ = "ALEX-CHUN-YU ([email protected])" from word2vec import Word2Vec as w2v import MySQLdb import numpy as np from bert_embedding import BertEmbedding import codecs import re # Entity to Vector class E2V_BERT: # init def __init__(self): self.db = MySQLdb.connect(host = "127.0.0.1", user = "root", passwd = "wmmkscsie", db = "recommender_system", charset = "utf8") self.cursor = self.db.cursor() self.articles_ner_tag = [] self.movies_ner_tag = [] # 產生詞典以供後序 experiment 使用 self.entity_and_vector = [] # main function def e2v_bert(self): # 透過 bert embedding 產生向量並將生成的 relationship feature 和 scenario feature 存入 self.load_data() self.extract_vector_and_save_vector(dimension = 768) # self.produce_entity_vector_table() # load data def load_data(self): # articles ner 221269 self.cursor.execute("SELECT a.id, a.content_ner_tag FROM articles_ner as a, articles as b Where a.id = b.id and a.id >= 0 and a.id <= 0 and b.relationship_type != ''") self.articles_ner_tag = self.cursor.fetchall() # movies ner 3722 self.cursor.execute("SELECT a.id, a.storyline_ner_tag FROM movies_ner as a, movies as b Where a.id = b.id and a.id >= 1 and a.id <= 3722 and b.scenario_type != ''") self.movies_ner_tag = self.cursor.fetchall() # 取得向量(Using bert) 並產生 relationship feature 和 scenario feature 存入 def extract_vector_and_save_vector(self, dimension): bert_embedding = BertEmbedding(model = 'bert_12_768_12', dataset_name='wiki_cn', max_seq_length = 50) # self.articles_ner_tag = [[1, "人:none 失戀:em 悲觀:em 房間:lo 感到:none 難過:em @ 戀情:em 感到:none 傷心:em 值得:none 人:none 人:none 失戀:em@後會:none 傷害自己:ev 事業:none 失敗:ev 事情:none 失敗:em 忘:ev 走:ev"]] # self.movies_ner_tag = [[1, "戀情:ev 感到:none "], [2, "人:none 失戀:em 悲觀:em 房間:lo 感到:none 難過:em @ 戀情:ev 感到:none "]] for article_ner_tag in self.articles_ner_tag: article_id = article_ner_tag[0] sentences_ner_tag = article_ner_tag[1] print("article_id:", end = '') print(article_id) relationship_e2v_bert = [] scenario_e2v_bert = [] sentences = [] entity_type_position_length_in_sentences = [] for sentence_ner_tag in sentences_ner_tag.split('@'): if sentences_ner_tag != "": sentence = "" entity_type_position_length_in_sentence = [] for term_ner_tag in sentence_ner_tag.split(' '): if " " not in term_ner_tag and term_ner_tag != "": # print(term_ner_tag) term_ner_tag = term_ner_tag.split(':') term = term_ner_tag[0] tag = term_ner_tag[1] position = int(term_ner_tag[2]) length = int(term_ner_tag[3]) entity_type_position_length_in_sentence.append([term, tag, position, length]) sentence += term sentences.append(sentence) # print(len(entity_type_position_length_in_sentence)) entity_type_position_length_in_sentences.append(entity_type_position_length_in_sentence) print(sentences) print(entity_type_position_length_in_sentences) results = bert_embedding(sentences) print("文章長度:", end = "") print(len(results)) po_vector = np.zeros(dimension) em_vector = np.zeros(dimension) ev_vector = np.zeros(dimension) lo_vector = np.zeros(dimension) ti_vector = np.zeros(dimension) po_count = 0 em_count = 0 ev_count = 0 lo_count = 0 ti_count = 0 for i, result in enumerate(results): print(sentences[i]) print(entity_type_position_length_in_sentences[i]) print(result[0]) for i, entity in enumerate(entity_type_position_length_in_sentences[i]): entity_vector = np.zeros(dimension) try: for i in range(entity[3]): entity_vector += result[1][entity[2] + 1 + i] except: print("some illegal characters") break if entity[1] == 'none': pass elif entity[1] == 'po': po_vector += entity_vector po_count += 1 elif entity[1] == 'em': em_vector += entity_vector em_count += 1 elif entity[1] == 'ev': ev_vector += entity_vector ev_count += 1 elif entity[1] == 'lo': lo_vector += entity_vector lo_count += 1 elif entity[1] == 'ti': ti_vector += entity_vector ti_count += 1 # 建立 Bert Table # self.entity_and_vector.append([entity[0], entity_vector]) print(po_vector[:5]) print(em_vector[:5]) print(ev_vector[:5]) print(lo_vector[:5]) print(ti_vector[:5]) # print(po_count) # print(em_count) # print(ev_count) # print(lo_count) # print(ti_count) if po_count == 0: po_count = 1 if em_count == 0: em_count = 1 if ev_count == 0: ev_count = 1 if lo_count == 0: lo_count = 1 if ti_count == 0: ti_count = 1 relationship_e2v_bert = np.append(relationship_e2v_bert, po_vector/po_count) relationship_e2v_bert = np.append(relationship_e2v_bert, em_vector/em_count) relationship_e2v_bert = np.append(relationship_e2v_bert, ev_vector/ev_count) relationship_e2v_bert = np.append(relationship_e2v_bert, lo_vector/lo_count) relationship_e2v_bert = np.append(relationship_e2v_bert, ti_vector/ti_count) scenario_e2v_bert = np.append(scenario_e2v_bert, em_vector/em_count) scenario_e2v_bert = np.append(scenario_e2v_bert, ev_vector/ev_count) print(relationship_e2v_bert.shape) print(scenario_e2v_bert.shape) # print(relationship_e2v_bert[1536]) # print(relationship_e2v_bert[2304]) sql = "UPDATE articles_vector SET relationship_e2v_bert=%s, scenario_e2v_bert=%s WHERE id=%s" val = (str(list(relationship_e2v_bert)), str(list(scenario_e2v_bert)), article_id) self.cursor.execute(sql, val) self.db.commit() print("="*10) for movie_ner_tag in self.movies_ner_tag: movie_id = movie_ner_tag[0] sentences_ner_tag = movie_ner_tag[1] print("movie_id:", end = '') print(movie_id) scenario_e2v_bert = [] sentences = [] entity_type_position_length_in_sentences = [] for sentence_ner_tag in sentences_ner_tag.split('@'): if sentence_ner_tag != "": sentence = "" entity_type_position_length_in_sentence = [] for term_ner_tag in sentence_ner_tag.split(' '): if " " not in term_ner_tag and term_ner_tag != "": term_ner_tag = term_ner_tag.split(':') term = term_ner_tag[0] tag = term_ner_tag[1] position = int(term_ner_tag[2]) length = int(term_ner_tag[3]) entity_type_position_length_in_sentence.append([term, tag, position, length]) sentence += term sentences.append(sentence) # print(len(entity_type_position_length_in_sentence)) entity_type_position_length_in_sentences.append(entity_type_position_length_in_sentence) print(sentences) print(entity_type_position_length_in_sentences) results = bert_embedding(sentences) print("故事情節長度:", end = "") print(len(results)) em_vector = np.zeros(dimension) ev_vector = np.zeros(dimension) em_count = 0 ev_count = 0 for i, result in enumerate(results): print(sentences[i]) print(entity_type_position_length_in_sentences[i]) print(result[0]) for i, entity in enumerate(entity_type_position_length_in_sentences[i]): entity_vector = np.zeros(dimension) try: for i in range(entity[3]): entity_vector += result[1][entity[2] + 1 + i] except: print("some illegal characters") break if entity[1] == 'none': pass elif entity[1] == 'po': pass elif entity[1] == 'em': em_vector += entity_vector em_count += 1 elif entity[1] == 'ev': ev_vector += entity_vector ev_count += 1 elif entity[1] == 'lo': pass elif entity[1] == 'ti': pass # self.entity_and_vector.append([entity[0], entity_vector]) print(em_vector[:5]) print(ev_vector[:5]) # print(em_count) # print(ev_count) if em_count == 0: em_count = 1 if ev_count == 0: ev_count = 1 scenario_e2v_bert = np.append(scenario_e2v_bert, em_vector/em_count) scenario_e2v_bert = np.append(scenario_e2v_bert, ev_vector/ev_count) print(scenario_e2v_bert.shape) sql = "UPDATE movies_vector SET scenario_e2v_bert=%s WHERE id=%s" val = (str(list(scenario_e2v_bert)), movie_id) self.cursor.execute(sql, val) self.db.commit() print("="*10) # 產生 entity 對應的 vector 表(entity 不可重複) def produce_entity_vector_table(self): entity_dict = {} entity_count = {} mode = "w" file = "e2v_bert_table.txt" with codecs.open(file, mode = mode, encoding = 'utf8') as vector_table: for entity_vector in self.entity_and_vector: if entity_vector[0] not in entity_dict.keys(): entity_dict[entity_vector[0]] = entity_vector[1] entity_count[entity_vector[0]] = 1 else: entity_dict[entity_vector[0]] = entity_dict[entity_vector[0]] + entity_vector[1] entity_count[entity_vector[0]] = entity_count[entity_vector[0]] + 1 for entity, count in entity_count.items(): entity_dict[entity] = entity_dict[entity]/count for entity, vector in entity_dict.items(): vector_table.write(entity + ":") vector_table.write(str(list(vector))) vector_table.write("\n") vector_table.close() if __name__ == "__main__": e2v_bert = E2V_BERT() e2v_bert.e2v_bert()
Alex-CHUN-YU/Recommender-System
main_embedding/e2v_bert.py
e2v_bert.py
py
9,420
python
en
code
0
github-code
6
31237691124
# 3: Создайте программу “Медицинская анкета”, где вы запросите у пользователя следующие данные: имя, фамилия, возраст и вес. # Выведите результат согласно которому: # Пациент в хорошем состоянии, если ему до 30 лет и вес от 50 и до 120 кг, # Пациенту требуется заняться собой, если ему более 30 и вес меньше 50 или больше 120 кг # Пациенту требуется врачебный осмотр, если ему более 40 и вес менее 50 или больше 120 кг. # Все остальные варианты вы можете обработать на ваш вкус и полет фантазии. name = input('Введите свое имя: ') last_name = input('Введите свою фамилию: ') age = int(input('введите свой возраст: ')) weight = int(input('введите свой вес: ')) if age <= 30 and weight >= 50 and weight <= 120: print(f'{name}{last_name}, {age} лет, вес {weight} - хорошее состояние') elif age > 30 and age <= 40 and (weight < 50 or weight > 120): print(f'{name}{last_name}, {age} лет, вес {weight} - стоит задуматься о здоровье') elif age > 40 and (weight < 50 or weight > 120): print(f'{name}{last_name}, {age} лет, вес {weight} - беги е врачу утырок')
dreaminkv/python-basics
practical-task-1/practical-task-3.py
practical-task-3.py
py
1,573
python
ru
code
0
github-code
6
36522225710
from sys import setrecursionlimit import threading RECURSION_LIMIT = 10 ** 9 STACK_SIZE = 2 ** 26 setrecursionlimit(RECURSION_LIMIT) threading.stack_size(STACK_SIZE) def dfs(v, used, g, answer): used[v] = 1 for u in g[v]: if used[u] == 0: dfs(u, used, g, answer) answer.append(v) def dfs_2(v, color, cur, g_back): color[v] = cur for u in g_back[v]: if color[u] == 0: dfs_2(u, color, cur, g_back) def main(): n, m = map(int , input().split()) g = [] g_back = [] for _ in range(n): g.append([]) g_back.append([]) for _ in range(m): pair = list(map(int, input().split())) g[pair[0] - 1].append(pair[1] - 1) g_back[pair[1] - 1].append(pair[0] - 1) used = [0] * n color = [0] * n answer = [] for v in range(n): if used[v] == 0: dfs(v, used, g, answer) answer.reverse() cnt = 0 for v in answer: if color[v] == 0: cnt += 1 dfs_2(v, color, cnt, g_back) ribs = [] for _ in range(max(color)): ribs.append(set()) for v in range(n): for u in g[v]: if color[v] != color[u]: ribs[color[v]].add(color[u]) result = 0 for r in ribs: result += len(r) print(result) if __name__ == "__main__": threading.Thread(target=main).start()
AverPower/Algorithms_and_Structures
10. Graphs - 1/Task D.py
Task D.py
py
1,435
python
en
code
0
github-code
6
30354475241
import setuptools from setuptools import Command try: import numpy from numpy.distutils.command import build, install_data, build_src from numpy.distutils.core import setup HAS_NUMPY = True except ImportError: HAS_NUMPY = False from distutils.command import build, install_data from distutils.core import setup import io import os import time import subprocess import shutil import re import sys import traceback from os.path import (abspath, basename, dirname, exists, getmtime, isdir, join, split) from distutils.command import clean from distutils import log from setuptools.command import develop MODE = 'normal' if len(sys.argv) >= 2 and \ ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean', 'sdist')): MODE = 'info' info = {} fname = join('mayavi', '__init__.py') exec(compile(open(fname).read(), fname, 'exec'), info) DEFAULT_HTML_TARGET_DIR = join('docs', 'build') DEFAULT_INPUT_DIR = join('docs', 'source',) class GenDocs(Command): description = ( "This command generates generated part of the documentation " "when needed. It's run automatically before a build_docs, and that's " "the only time it needs to be run." ) user_options = [ ('None', None, 'this command has no options'), ] def latest_modified(self, the_path, filetypes='', ignore_dirs=''): """Traverses a path looking for the most recently modified file Parameters ---------- the_path : string Contains path to be traversed or filename to be inspected. filetypes : string Regular expression pattern of files to examine. If specified, other files are ignored. Otherwise, all files are examined. ignore_dirs : string Regular expression pattern of directories to be ignored. If ignore specified, all directories are walked. Returns ------- latest_time : float Modification time of latest_path. latest_path : string Most recently modified file. Description ----------- """ file_re = re.compile(filetypes) dir_re = re.compile(ignore_dirs) if not exists(the_path): return 0, the_path if isdir(the_path): latest_time = 0 latest_path = the_path for root, dirs, files in os.walk(the_path): if ignore_dirs != '': # This needs to iterate over a copy of the list. Otherwise, # as things get removed from the original list, the indices # become invalid. for dir in dirs[:]: if dir_re.search(dir): dirs.remove(dir) for file in files: if filetypes != '': if not file_re.search(file): continue current_file_time = getmtime(join(root, file)) if current_file_time > latest_time: latest_time = current_file_time latest_path = join(root, file) return latest_time, latest_path else: return getmtime(the_path), the_path def mlab_reference(self): """ If mayavi is installed, run the mlab_reference generator. """ # XXX: This is really a hack: the script is not made to be used # for different projects, but it ended up being. This part is # mayavi-specific. mlab_ref_dir = join(DEFAULT_INPUT_DIR, 'mayavi', 'auto') source_path = 'mayavi' sources = '(\.py)|(\.rst)$' excluded_dirs = '^\.' target_path = mlab_ref_dir target_time = self.latest_modified(target_path, ignore_dirs=excluded_dirs)[0] if (self.latest_modified(source_path, filetypes=sources, ignore_dirs=excluded_dirs)[0] > target_time or self.latest_modified('mlab_reference.py')[0] > target_time or not exists(join('docs', 'source', 'mayavi', 'auto', 'mlab_reference.rst'))): try: from mayavi import mlab from mayavi.tools import auto_doc print("Generating the mlab reference documentation") os.system('python mlab_reference.py') except: pass def example_files(self): """ Generate the documentation files for the examples. """ mlab_ref_dir = join(DEFAULT_INPUT_DIR, 'mayavi', 'auto') source_path = join('examples', 'mayavi') sources = '(\.py)|(\.rst)$' excluded_dirs = '^\.' target_path = mlab_ref_dir target_time = self.latest_modified(target_path, ignore_dirs=excluded_dirs)[0] script_file_name = join('docs', 'source', 'render_examples.py') if (self.latest_modified(source_path, filetypes=sources, ignore_dirs=excluded_dirs)[0] > target_time or self.latest_modified(script_file_name)[0] > target_time or not exists(join('docs', 'source', 'mayavi', 'auto', 'examples.rst')) ): try: from mayavi import mlab from mayavi.tools import auto_doc print("Generating the example list") subprocess.call('python %s' % basename(script_file_name), shell=True, cwd=dirname(script_file_name)) except: pass def run(self): self.mlab_reference() self.example_files() def initialize_options(self): pass def finalize_options(self): pass class BuildDocs(Command): description = \ "This command generates the documentation by running Sphinx. " \ "It then zips the docs into an html.zip file." user_options = [ ('None', None, 'this command has no options'), ] def make_docs(self): if os.name == 'nt': print("Please impelemnt sphinx building on windows here.") else: subprocess.call(['make', 'html'], cwd='docs') def run(self): self.make_docs() def initialize_options(self): pass def finalize_options(self): pass # Functions to generate the docs def list_doc_projects(): """ List the different source directories under DEFAULT_INPUT_DIR for which we have docs. """ source_dir = join(abspath(dirname(__file__)), DEFAULT_INPUT_DIR) source_list = os.listdir(source_dir) # Check to make sure we're using non-hidden directories. source_dirs = [listing for listing in source_list if isdir(join(source_dir, listing)) and not listing.startswith('.')] return source_dirs def list_docs_data_files(project): """ List the files to add to a project by inspecting the documentation directory. This works only if called after the build step, as the files have to be built. returns a list of (install_dir, [data_files, ]) tuples. """ project_target_dir = join(DEFAULT_HTML_TARGET_DIR, project, 'html') return_list = [] for root, dirs, files in os.walk(project_target_dir, topdown=True): # Modify inplace the list of directories to walk dirs[:] = [d for d in dirs if not d.startswith('.')] if len(files) == 0: continue install_dir = root.replace(project_target_dir, join(project, 'html')) return_list.append((install_dir, [join(root, f) for f in files])) return return_list def _tvtk_built_recently(zipfile, delay): """Returns True if the TVTK classes in zipfile was built in the last delay seconds. """ if not os.path.exists(zipfile): return False ctime = os.stat(zipfile).st_ctime tdiff = time.time() - ctime return tdiff < delay # Our custom distutils hooks def build_tvtk_classes_zip(): MY_DIR = os.path.dirname(__file__) zipfile = os.path.join(MY_DIR, 'tvtk', 'tvtk_classes.zip') if _tvtk_built_recently(zipfile, delay=120): print("Already built tvtk_classes.zip") return else: print("Building tvtk_classes.zip") sys.path.insert(0, MY_DIR) import tvtk tvtk_dir = 'tvtk' sys.path.insert(0, tvtk_dir) from setup import gen_tvtk_classes_zip gen_tvtk_classes_zip() sys.path.remove(tvtk_dir) sys.path.remove(MY_DIR) class MyBuild(build.build): """ A build hook to generate the documentation. We sub-class numpy.distutils' build command because we're relying on numpy.distutils' setup method to build python extensions. """ def run(self): build_tvtk_classes_zip() build.build.run(self) class MyBuildSrc(build_src.build_src): """Build hook to generate the TVTK ZIP files. We do it here also because for editable installs, setup.py build is not called. """ def run(self): build_tvtk_classes_zip() build_src.build_src.run(self) class MyDevelop(develop.develop): """ A hook to build the TVTK ZIP file on develop. Subclassing setuptools' command because numpy.distutils doesn't have an implementation. """ def run(self): # Make sure that the 'build_src' command will # always be inplace when we do a 'develop'. self.reinitialize_command('build_src', inplace=1) # tvtk_classes.zip always need to be created on 'develop'. build_tvtk_classes_zip() develop.develop.run(self) class MyInstallData(install_data.install_data): """ An install hook to copy the generated documentation. We subclass numpy.distutils' command because we're relying on numpy.distutils' setup method to build python extensions. """ def run(self): install_data_command = self.get_finalized_command('install_data') for project in list_doc_projects(): install_data_command.data_files.extend( list_docs_data_files(project)) # make sure tvtk_classes.zip always get created before putting it # in the install data. build_tvtk_classes_zip() tvtk_dir = 'tvtk' install_data_command.data_files.append( (tvtk_dir, [join(tvtk_dir, 'tvtk_classes.zip')])) install_data.install_data.run(self) class MyClean(clean.clean): """Reimplements to remove the extension module array_ext to guarantee a fresh rebuild every time. The module hanging around could introduce problems when doing develop for a different vtk version.""" def run(self): MY_DIR = os.path.dirname(__file__) ext_file = os.path.join( MY_DIR, "tvtk", "array_ext" + (".pyd" if sys.platform == "win32" else ".so") ) if os.path.exists(ext_file): print("Removing in-place array extensions {}".format(ext_file)) os.unlink(ext_file) clean.clean.run(self) # Configure our extensions to Python def configuration(parent_package=None, top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) config.set_options( ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True, ) config.add_subpackage('tvtk') config.add_data_dir('mayavi/core/lut') config.add_data_dir('mayavi/tests/data') config.add_data_dir('mayavi/tests/csv_files') config.add_data_dir('mayavi/tools/static') # Image files. for pkgdir in ('mayavi', 'tvtk'): for root, dirs, files in os.walk(pkgdir): if split(root)[-1] == 'images': config.add_data_dir(root) # *.ini files. config.add_data_dir('tvtk/plugins/scene') config.add_data_dir('mayavi/preferences') return config ########################################################################### # Similar to package_data, but installed before build build_package_data = {'mayavi.images': ['docs/source/mayavi/_static/m2_about.jpg']} # Install our data files at build time. This is iffy, # but we need to do this before distutils kicks in. for package, files in build_package_data.items(): target_path = package.replace('.', os.sep) for filename in files: shutil.copy(filename, target_path) ########################################################################### # Build the full set of packages by appending any found by setuptools' # find_packages to those discovered by numpy.distutils. if HAS_NUMPY: config = configuration().todict() else: # This is just a dummy so the egg_info command works. config = {'packages': []} packages = setuptools.find_packages(exclude=config['packages'] + ['docs', 'examples']) config['packages'] += packages if MODE != 'info' and not HAS_NUMPY: msg = ''' Numpy is required to build Mayavi correctly, please install it first. ''' print('*'*80) print(msg) print('*'*80) raise RuntimeError(msg) # The actual setup call if __name__ == '__main__': setup( name='mayavi', version=info['__version__'], author="Prabhu Ramachandran, et al.", author_email="[email protected]", maintainer='ETS Developers', python_requires='>=3.8', maintainer_email='[email protected]', url='http://docs.enthought.com/mayavi/mayavi/', classifiers=[c.strip() for c in """\ Development Status :: 5 - Production/Stable Intended Audience :: Developers Intended Audience :: Science/Research License :: OSI Approved :: BSD License Operating System :: MacOS Operating System :: Microsoft :: Windows Operating System :: OS Independent Operating System :: POSIX Operating System :: Unix Programming Language :: C Programming Language :: Python Topic :: Scientific/Engineering Topic :: Software Development Topic :: Software Development :: Libraries """.splitlines() if len(c.split()) > 0], cmdclass={ # Work around a numpy distutils bug by forcing the use of the # setuptools' sdist command. 'sdist': setuptools.command.sdist.sdist, 'build': MyBuild, 'build_src': MyBuildSrc, 'clean': MyClean, 'develop': MyDevelop, 'install_data': MyInstallData, 'gen_docs': GenDocs, 'build_docs': BuildDocs, }, description='3D scientific data visualization library and application', download_url=('https://www.github.com/enthought/mayavi'), entry_points={ 'gui_scripts': [ 'mayavi2 = mayavi.scripts.mayavi2:main', 'tvtk_doc = tvtk.tools.tvtk_doc:main' ], 'envisage.plugins': [ 'tvtk.scene = tvtk.plugins.scene.scene_plugin:ScenePlugin', 'tvtk.scene_ui = tvtk.plugins.scene.ui.scene_ui_plugin:SceneUIPlugin', 'tvtk.browser = tvtk.plugins.browser.browser_plugin:BrowserPlugin', 'mayavi = mayavi.plugins.mayavi_plugin:MayaviPlugin', 'mayavi_ui = mayavi.plugins.mayavi_ui_plugin:MayaviUIPlugin' ], 'tvtk.toolkits': [ 'qt4 = tvtk.pyface.ui.qt4.init:toolkit_object', 'qt = tvtk.pyface.ui.qt4.init:toolkit_object', 'wx = tvtk.pyface.ui.wx.init:toolkit_object', 'null = tvtk.pyface.ui.null.init:toolkit_object', ] }, extras_require=info['__extras_require__'], include_package_data=True, install_requires=info['__requires__'], license="BSD", long_description=io.open('README.rst', encoding='utf-8').read(), platforms=["Windows", "Linux", "Mac OS-X", "Unix", "Solaris"], zip_safe=False, **config )
enthought/mayavi
setup.py
setup.py
py
16,576
python
en
code
1,177
github-code
6