seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
46525020186
import pygame from robot import Robot from manual_robot import ManualRobot from automated_robot import AutomatedRobot from automated_robots.robots_concursantes import * from automated_robots.robots_zimatek import * from robot_hub import RobotHub from coin import Coin import numpy as np import os class Combat: """ A class to represent a robot combat environment. ... Attributes ---------- dims : list with and height of the screen, dims = [width, height] robots : pygame.sprite.Group a sprite group containing the robot objects robot_list : list a list containing the robot objects left_robot : Robot the Robot that starts in the left-hand side right_robot : Robot the Robot that starts in the right-hand side robot_hubs : pygame.sprite.Group a sprite group containing the RobotHub objects coin_per_second : float estimated coin per second Methods ------- fix_bugs: fixes bugs in the position of the robot sprites run: runs the robot combat """ def __init__(self, left_robot: Robot, right_robot: Robot, coin_per_second: float): self.dims = (1050, 750) self.robots = pygame.sprite.Group() self.robots.add(left_robot) self.robots.add(right_robot) self.robot_list = [left_robot, right_robot] self.left_robot = left_robot self.right_robot = right_robot self.robot_hubs = pygame.sprite.Group() self.left_robot_hub = RobotHub(self.left_robot, RobotHub.DownLeft) self.right_robot_hub = RobotHub(self.right_robot, RobotHub.DownRight) self.robot_hubs.add(self.left_robot_hub) self.robot_hubs.add(self.right_robot_hub) self.coin_per_second = coin_per_second self.font = None self.font2 = None def fix_bugs(self): """ fixes bugs in the position of the robot sprites :return: """ if self.right_robot.living and self.left_robot.living: collide = self.left_robot.rect.colliderect(self.right_robot.rect) if collide: if self.left_robot.rect.x <= self.right_robot.rect.x: self.left_robot.move(dx=-self.left_robot.rect.width, combat=self) self.right_robot.move(dx=self.right_robot.rect.width, combat=self) else: self.left_robot.move(dx=self.left_robot.rect.width, combat=self) self.right_robot.move(dx=-self.right_robot.rect.width, combat=self) def run(self): """ runs the robot combat :return: """ pygame.init() pygame.font.init() self.font = pygame.font.Font("Resources/Pokemon_Classic.ttf", 16) self.font2 = pygame.font.Font("Resources/Pokemon_Classic.ttf", 28) background_image = pygame.image.load("Resources/background_mountains.jpg") background_image = pygame.transform.rotozoom(background_image, 0, 2.5) os.environ['SDL_VIDEO_CENTERED'] = '0' screen = pygame.display.set_mode(self.dims) pygame.display.set_caption("Robot Combat: {:s} vs {:s}".format(str(type(self.left_robot)).split(".")[-1][:-2], str(type(self.right_robot)).split(".")[-1][:-2])) for robot in self.robots: robot.set_up() for hub in self.robot_hubs: hub.set_up() # PRE LOOP sprites_all = pygame.sprite.Group() projectiles = pygame.sprite.Group() coins = pygame.sprite.Group() stop = False pause = False winner = None sprites_all.add(self.robots) sprites_all.add(projectiles) sprites_all.add(coins) clock = pygame.time.Clock() time = 1 count_down = 60*3 totalcoins = 0 # -------- Principal Loop of the Program ----------- while not stop: for event in pygame.event.get(): if event.type == pygame.QUIT: stop = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: pause = not pause winner = None if event.key == pygame.K_1: pause = True winner = 1 if event.key == pygame.K_0: pause = True winner = 0 if isinstance(self.left_robot, ManualRobot) and self.left_robot.living: projectile = self.left_robot.decide(event, self.left_robot_hub) if projectile is not None: sprites_all.add(projectile) projectiles.add(projectile) elif isinstance(self.right_robot, ManualRobot) and self.right_robot.living: projectile = self.right_robot.decide(event, self.right_robot_hub) if projectile is not None: sprites_all.add(projectile) projectiles.add(projectile) # --- The Logic if not pause and (time > count_down): np.random.shuffle(self.robot_list) for robot in self.robot_list: if robot == self.left_robot: other = self.right_robot else: other = self.left_robot if isinstance(robot, AutomatedRobot) and robot.living: projectile = robot.decide(other_robot_properties=other.get_properties(), coins=coins, projectiles=projectiles) if projectile is not None: sprites_all.add(projectile) projectiles.add(projectile) for robot in self.robot_list: if robot.living: robot_damaged = pygame.sprite.spritecollide(robot, projectiles, True) coins_captured = pygame.sprite.spritecollide(robot, coins, True) for projectile_hit in robot_damaged: robot.suffer(projectile_hit.damage) for coin in coins_captured: robot.claim_coin(coin) robot.update(combat=self) for projectile in projectiles: projectile.draw(screen) projectile.update(combat=self) coins.update() self.fix_bugs() if np.random.random() < self.coin_per_second / 60: totalcoins += 2 pos1 = 50 + np.random.random(2) * (np.array(self.dims)-100) * np.array([0.5, 1]) pos2 = np.array(self.dims) * np.array([1, 0]) + pos1 * np.array([-1, 1]) coin_left = Coin(pos1) coin_right = Coin(pos2) coins.add(coin_left) coins.add(coin_right) sprites_all.add(coin_left) sprites_all.add(coin_right) # --- The image screen.fill((255, 255, 255)) screen.blit(background_image, (0, 0)) sprites_all.draw(screen) for projectile in projectiles: projectile.draw(screen) for hub in self.robot_hubs: hub.draw(screen) time_text = self.font.render("{:02d}:{:02d}".format(int((time / 60) // 60), int((time / 60) % 60)), False, (0, 0, 0)) screen.blit(time_text, (self.dims[0] - 5 - time_text.get_width(), 5)) coin_text = self.font.render("# {:d}/{:d}".format(len(coins), int(totalcoins)), False, (0, 0, 0)) screen.blit(coin_text, (self.dims[0] - 5 - coin_text.get_width(), 5 + coin_text.get_height())) # Only for zimabot if (isinstance(self.left_robot, Zimabot) or isinstance(self.right_robot, Zimabot)): if isinstance(self.left_robot, Zimabot): zimabot = self.left_robot other = self.right_robot else: zimabot = self.right_robot other = self.left_robot if time < count_down or (zimabot.living and not other.living): belt_image = pygame.image.load("Resources/cinturon.png").convert_alpha() belt_image = pygame.transform.scale(belt_image, (2*zimabot.width, 2*zimabot.height)) screen.blit(belt_image, zimabot.pos - np.array([zimabot.width//2, int(zimabot.height*1.5)])) # ---- if self.left_robot.living and not self.right_robot.living: winner = 1 pause = True if not self.left_robot.living and self.right_robot.living: winner = 0 pause = True if pause: if winner == 1: pause_text = self.font2.render("The winner is {:s}".format(str(type(self.left_robot)).split(".")[-1][:-2]), False, (0, 0, 0)) center = (self.dims[0] // 2, self.dims[1] // 2) text_rect = pause_text.get_rect(center=center) screen.blit(pause_text, text_rect) elif winner == 0: pause_text = self.font2.render("The winner is {:s}".format(str(type(self.right_robot)).split(".")[-1][:-2]), False, (0, 0, 0)) center = (self.dims[0] // 2, self.dims[1] // 2) text_rect = pause_text.get_rect(center=center) screen.blit(pause_text, text_rect) else: pause_text = self.font.render("Paused", False, (0, 0, 0)) center = (self.dims[0] // 2, self.dims[1] // 2) text_rect = pause_text.get_rect(center=center) screen.blit(pause_text, text_rect) else: time += 1 pygame.display.flip() clock.tick(60) pygame.quit() if __name__ == '__main__': attributes = { "health": 500, "armor": 90, "health_regen": 19, "damage": 65, "self_speed": 3, "projectile_initial_speed": 4, "projectile_per_second": 0.6, "g_health": 80, "g_armor": 8, "g_health_regen": 2, "g_damage": 12, "g_projectile_per_second": 0.05, "max_self_speed": 5, "max_projectile_initial_speed": 10, "experience_for_level_up": 7, "g_experience_for_level_up": 3 } cps = 2 bots = pygame.sprite.Group() bot1 = stalin_t_pose(x=150, y=325, **attributes) bot2 = Zimabot(x=1050-150-4*32, y=325, turn_left=True, projectile_color=(38, 162, 149), image_path="Resources/simple_robot_green.png", **attributes) mg = Combat(bot1, bot2, coin_per_second=cps) mg.run()
zimatek/RobotCombat
combat.py
combat.py
py
11,303
python
en
code
0
github-code
6
42452241894
#!/usr/bin/python3 if __name__ == "__main__": import sys from calculator_1 import add, sub, mul, div args = sys.argv[1:] no_of_args = len(args) if no_of_args != 3: print("Usage: ./100-my_calculator.py <a> <operator> <b>") sys.exit(1) op = args[1] operators = {"+": add, "-": sub, "*": mul, "/": div} if op not in operators: print("Unknown operator. Available operators: +, -, * and /") sys.exit(1) a = int(args[0]) b = int(args[2]) res = operators[op](a, b) print(f"{a} {op} {b} = {res}")
timmySpark/alx-higher_level_programming
0x02-python-import_modules/100-my_calculator.py
100-my_calculator.py
py
575
python
en
code
0
github-code
6
32544533358
import json import glob from flask import Flask , send_file import os from flask_cors import CORS app = Flask (__name__) cors = CORS(app) @app.route('/') def DownloadMergedJson() -> str: result = {} logs = {} node_ids =[] for f in glob.glob(os.path.join("..", "history_*.json")): print(str(f)) node_ids.append(str(f).split('.')[2].split('_')[1]) result["all_nodes"] = node_ids for f in glob.glob(os.path.join("..", "history_*.json")): node_id = str(f).split('.')[2].split('_')[1] with open(f, "rb") as infile: result[node_id] = json.load(infile) return result app.run()
SiyiGuo/COMP90020
pythonproxy/getNodeData.py
getNodeData.py
py
648
python
en
code
0
github-code
6
25144954100
import requests import collections import csv from bs4 import BeautifulSoup from bs4.element import Tag class ParseAnimals: def __init__(self) -> None: self.animals_names = {} def parse(self) -> None: """ Make a while loop until calegory letter != Я Saves each animal data on the page in dict: key - letter, value - list of all animals on the page """ url = 'https://ru.wikipedia.org/wiki/Категория:Животные_по_алфавиту' letter = '' while letter != 'Я': data = self._get_page(url) self._parse_animal_on_page(data=data) url = self._check_end_page(data=data) letter = collections.deque(self.animals_names, maxlen=1)[0][0] print(letter) self._get_csv() def _get_page(self, url: str) -> Tag: """ Make a request on the page and gets all page data """ request = requests.get(url) soup = BeautifulSoup(request.text, 'lxml') return soup.find('div', id='mw-pages') def _parse_animal_on_page(self, data: Tag) -> None: """ Saves all animals on the page in a dict with key = category (letter) """ for el in data.find_all('div', class_='mw-category-group'): category = el.h3.text animal_names = [[i.text, f"https://ru.wikipedia.org{i.a['href']}"] for i in el.find_all('li')] if not self.animals_names.get(category): self.animals_names[category] = [] self.animals_names[category] = self.animals_names[category] + animal_names def _check_end_page(self, data: Tag) -> str: """ Return an url to the next page """ hrf = data.find_all('a')[-1] return f"https://ru.wikipedia.org{hrf['href']}" def _get_csv(self) -> None: """ Saves data (dict) into csv file """ with open('animals_names_count.csv', 'w') as f: writer = csv.writer(f) writer.writerows([[f'{k}, {len(v)}'] for k, v in self.animals_names.items()]) if __name__ == '__main__': parse = ParseAnimals() parse.parse()
enamsaraev/tetrika-test
task2/solution.py
solution.py
py
2,239
python
en
code
0
github-code
6
17650565567
import nltk from newspaper import Article # nltk.download('punkt') is a Python command that is used to download the "punkt" dataset or resource from the Natural Language Toolkit (NLTK) library. # NLTK is a popular library in Python for working with human language data, including tasks like tokenization, parsing, and text classification. # The "punkt" dataset in NLTK contains pre-trained models and data necessary for tokenization, which is the process of breaking down a text into individual words or tokens. # These pre-trained models can be used to tokenize text in various languages, making it easier to work with natural language data in your Python projects. nltk.download('punkt') url='https://indianexpress.com/article/technology/tech-news-technology/apple-event-2-things-wowed-us-8938618/' article = Article(url) article.download() article.parse() article.nlp() print(f'Title: {article.title}') print(f'Authors: {article.authors}') print(f'Publish Date: {article.publish_date}') print(f'Summary: {article.summary}')
AnukulSri/summarize-news-article
news.py
news.py
py
1,033
python
en
code
0
github-code
6
17669758792
"""2020_02_18 Revision ID: 000001 Revises: Create Date: 2020-02-18 03:57:38.958091 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "000001" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "users", sa.Column("added_on", sa.DateTime(), nullable=False), sa.Column("modified_on", sa.DateTime(), nullable=False), sa.Column("id", sa.BigInteger(), autoincrement=True, nullable=False), sa.Column("enabled", sa.Boolean(), nullable=False), sa.Column("last_auth_time", sa.DateTime(), nullable=True), sa.Column("username", sa.String(length=32), nullable=False), sa.Column("password_hash", sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint("id", name=op.f("pk_users")), ) op.create_index(op.f("ix_users_username"), "users", ["username"], unique=True) op.create_table( "user_accesses", sa.Column("added_on", sa.DateTime(), nullable=False), sa.Column("modified_on", sa.DateTime(), nullable=False), sa.Column("id", sa.BigInteger(), autoincrement=True, nullable=False), sa.Column("enabled", sa.Boolean(), nullable=False), sa.Column("ip_address", sa.String(length=15), nullable=False), sa.Column("external_app_id", sa.String(length=15), nullable=False), sa.Column("users_id", sa.BigInteger(), nullable=False), sa.ForeignKeyConstraint( ["users_id"], ["users.id"], name=op.f("fk_user_accesses_users_id_users"), onupdate="CASCADE", ondelete="CASCADE", ), sa.PrimaryKeyConstraint("id", name=op.f("pk_user_accesses")), sa.UniqueConstraint( "users_id", "ip_address", "external_app_id", name=op.f("uq_user_accesses_users_id"), ), ) op.create_index( op.f("ix_user_accesses_external_app_id"), "user_accesses", ["external_app_id"], unique=True, ) op.create_index( op.f("ix_user_accesses_ip_address"), "user_accesses", ["ip_address"], unique=False, ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_user_accesses_ip_address"), table_name="user_accesses") op.drop_index(op.f("ix_user_accesses_external_app_id"), table_name="user_accesses") op.drop_table("user_accesses") op.drop_index(op.f("ix_users_username"), table_name="users") op.drop_table("users") # ### end Alembic commands ###
ichux/elog
migrations/versions/000001_2020_02_18.py
000001_2020_02_18.py
py
2,743
python
en
code
2
github-code
6
73264679548
from pyglet.text import Label from audio import explosion from fonts.fonts import press_start_2p from interfaces.interface import Interface from system import system import menus.menu import menus.game_over_menu class GameOverInterface(Interface): game_over_label: Label = None game_over_menu: menus.menu.Menu = None def __init__(self): self.game_over_label = Label('GAME OVER', font_name=press_start_2p, font_size=48) self.game_over_label.anchor_x = 'center' self.game_over_label.anchor_y = 'center' self.game_over_menu = menus.game_over_menu.GameOverMenu() self.resize() window = system.get_window() window.on_key_press = self.game_over_menu.on_key_press self.game_over_menu.focused = True explosion.play() def on_draw(self): self.game_over_label.draw() self.game_over_menu.draw() def resize(self): window = system.get_window() self.game_over_menu.move(window.width / 2, 100) self.game_over_label.x = window.width / 2 self.game_over_label.y = window.height / 2
KimPalao/Headshot
interfaces/game_over_interface.py
game_over_interface.py
py
1,110
python
en
code
0
github-code
6
24363848040
# This script should be executed inside a NetAddiction Odoo 9 shell. import json def remove_duplicate_attributes(product): seen_ids = set() duplicate_list = [] for attr in product.attribute_value_ids: if attr.attribute_id.id not in seen_ids: seen_ids.add(attr.attribute_id.id) else: duplicate_list.append(attr) if duplicate_list: product.write({"attribute_value_ids": [(3, attr.id) for attr in duplicate_list]}) return duplicate_list duplicates = [] products = self.env["product.product"].search([]) for count, product in enumerate(products): duplicate = remove_duplicate_attributes(product) if duplicate: print(duplicate) duplicates.append( { "product_id": product.id, "duplicates": [{"name": a.name, "type": a.attribute_id.display_name} for a in duplicate], } ) if not count % 100: self._cr.commit() self._cr.commit() if duplicates: with open("~/duplicates_found.json", "w") as fp: json.dump(duplicates, fp, sort_keys=True, indent=4, separators=(",", ": "))
suningwz/netaddiction_addons
scripts/remove_duplicates_attribute.py
remove_duplicates_attribute.py
py
1,150
python
en
code
0
github-code
6
34879700956
import re from requests import get from sys import argv as cla from readabilipy import simple_json_from_html_string from ebooklib import epub def valid_url(url): regex = re.compile( r'^(?:http)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' #domain... r'localhost|' #localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) return re.match(regex, str(url)) is not None def slugify(s): s = s.lower().strip() s = ''.join(char for char in s if ord(char) < 128) #remove non-ascii characters s = re.sub(r'[^\w\s-]', '', s) s = re.sub(r'[\s_-]+', '-', s) s = re.sub(r'^-+|-+$', '', s) return s def main(): if not cla[1]: raise Exception("Invalid argument..") if len(cla) != 2: raise Exception("This script expects just one parameter.. Did you comma separate the URL's") links = str(cla[1]).split(',') for l in links: if not valid_url(l): raise Exception(str("This is not a valid url: "+l)) book = epub.EpubBook() book.set_language('en') chapters = ['nav'] epub_title = "" epub_author = "" toc = [] if len(links) > 1: print("You're trying to download {0} links. Please provide title and author.".format(len(links))) epub_title = input("ePub title: ") epub_author = input("ePub author: ") for idx, link in enumerate(links): try: request = get(link) if bool(request.text) == False: if input('Do you want to skip this URL and continue? [y/n]') == 'y': continue else: print('Script stopped') sys.exit(0) else: print('Extracting content from page..') page_content = simple_json_from_html_string(request.text, use_readability=False) chapter_content = page_content['plain_content'] if not epub_title: epub_title = page_content['title'] if not epub_author: epub_author = page_content['byline'] if page_content['byline'] else "Various authors" print('Adding content to ePub..') chapter = epub.EpubHtml(title=page_content['title'], file_name=str('chapter{}.xhtml'.format(idx+1)), lang='en') chapter.content = u'{}'.format(chapter_content) book.add_item(chapter) chapters.append(chapter) pass except Exception as e: raise e print("Finishing epub..") slug = slugify(epub_title) book.set_identifier(slug) book.set_title(epub_title) book.add_item(epub.EpubNcx()) book.add_item(epub.EpubNav()) book.spine = chapters if epub_author: book.add_author(epub_author) else: book.add_author("Unknown Author") try: epub.write_epub('{}.epub'.format(slug), book, {}) print("Done! Saved to {}.epub".format(slug)) except Exception as e: raise e if __name__ == "__main__": main()
eklop/web2epub
web2epub.py
web2epub.py
py
2,797
python
en
code
0
github-code
6
2600836089
# Import thư viện from sklearn.linear_model import LinearRegression import numpy as np import csv from vnstock import* data=[] cp=listing_companies() check='ngân hàng thương mại cổ phần' nh=[] for n in range(len(cp)): if check in cp.loc[n][2].lower(): nh.append(cp.loc[n][0]) print(len(nh)) for ticket in nh: linkfile='./nganhang/'+ticket+'.csv' with open(linkfile) as file: fp=csv.reader(file) header=next(fp) for row in fp: data.append(row) # Tạo dữ liệu giả định K=[] h=[] for i in range(len(data)): K.append([float(data[i][1]),float(data[i][2])]) h.append(float(data[i][4])) # Tạo mô hình hồi quy tuyến tính model = LinearRegression() # Huấn luyện mô hình với dữ liệu model.fit(K, h) # In ra các hệ số của mô hình print('Coefficients:', model.coef_) # Dự đoán giá trị mới x_new = np.array([[48850.0,48222.0]]) y_new = model.predict(x_new) print('Predicted value:', y_new)
vanvy102/code
Code-test/linear.py
linear.py
py
1,070
python
vi
code
0
github-code
6
22779752732
def create_triangle(size): triangle = "" # first part for r in range(1, size + 1): for c in range(1, r + 1): triangle += f"{c} " triangle += "\n" # second part for r in range(size - 1, -1, -1): for c in range(1, r + 1): triangle += f"{c} " triangle += "\n" return triangle def mathematical_operations(*args): first, operator, second = args operations = { "/": lambda x, y: x / y, "*": lambda x, y: x * y, "-": lambda x, y: x - y, "^": lambda x, y: x ** y, } return f"{operations[operator](float(first), float(second)):.2f}" def fibonacci_sequence_module(*args): # fibonacci logic def fibonacci_sequence(n): sequence = [0, 1] for i in range(n - 2): sequence.append(sequence[-1] + sequence[-2]) return sequence def locate_number(n, seq): try: return f"The number - {n} is at index {seq.index(n)}" except ValueError: return f"The number {n} is not in the sequence" action = args[0] if action == "Create": return fibonacci_sequence elif action == "Locate": return locate_number
DanieII/SoftUni-Advanced-2023-01
advanced/modules/module.py
module.py
py
1,228
python
en
code
0
github-code
6
30410142101
import CryptoCurrency import sqlite3 as sql import requests from datetime import datetime import time def get_crypto(): """Récupères la liste des cryptomonnaies tradable sur le marché futures de Bybit (!! 120 requests per second for 5 consecutive seconds maximum) Returns: list:liste des cryptomonnaies """ url = "https://api-testnet.bybit.com/v5/market/instruments-info?category=linear" payload = {} headers = {} response = requests.request( "GET", url, headers=headers, data=payload).json() baseCoins = [] for crypto in response['result']['list']: if crypto['baseCoin'][:5] == '10000' and crypto['quoteCoin'] == 'USDT' and crypto['baseCoin'] not in baseCoins: # baseCoins += [crypto['baseCoin'][5:]] # non traité pour le moment pass elif crypto['baseCoin'][:4] == '1000' and crypto['quoteCoin'] == 'USDT' and crypto['baseCoin'] not in baseCoins: # baseCoins += [crypto['baseCoin'][4:]] # non traité pour le moment pass elif crypto['quoteCoin'] == 'USDT' and crypto['baseCoin'] not in baseCoins and crypto['baseCoin'] != 'LUNA2' and crypto['baseCoin'] != 'PEOPLE': # exception LUNA2 et PEOPLE à traiter baseCoins += [crypto['baseCoin']] return baseCoins def get_price_history(interval, crypto): """renvoie un dicitonnaire qui permet de connaître le prix de la cryptomonnaie depuis l'apparition de son contrat futures sur l'échange de cryptomonnaie. Args: interval (string): interval de temps entre deux données (Kline interval. 1,3,5,15,30,60,120,240,360,720,D,M,W) crypto (CryptoCurrency): la crypto dont on veut le prix """ listeDictionnaires = [] listeDictionnaires.append(crypto.get_price(interval, 1500000000000, int(datetime.now().timestamp())*1000)) lastTimestamps = list(listeDictionnaires[0].keys()) lastTimestamps.sort() if len(lastTimestamps) < 200: return listeDictionnaires # intervalInTimestamp = int(lastTimestamps[2])-int(lastTimestamps[1]) # jusqu'ici on a récupéré les 200 derniers timestamps compteur = 1 while len(lastTimestamps) == 200: listeDictionnaires.append(crypto.get_price( interval, 1500000000000, int(lastTimestamps[0]))) # il ne faut pas dépasser les 120 requetes par 5 secondes if compteur % 119 == 0: time.sleep(5) lastTimestamps = (list(listeDictionnaires[compteur].keys())) lastTimestamps.sort() compteur += 1 print(listeDictionnaires) return listeDictionnaires if __name__ == "__main__": # fonctionnement normal # print(get_crypto()) cryptos = get_crypto() conn = sql.connect("cryptoDatabase.db") curs = conn.cursor() curs.execute("DROP TABLE IF EXISTS Crypto") curs.execute( "CREATE TABLE Crypto (nom VARCHAR, symbol VARCHAR PRIMARY KEY, whitepaperlink VARCHAR)") curs.execute("DROP TABLE IF EXISTS Prix") curs.execute( "CREATE TABLE Prix (symbol VARCHAR, date VARCHAR, open FLOAT, high FLOAT, low FLOAT, close FLOAT,PRIMARY KEY (symbol, date),FOREIGN KEY (symbol) REFERENCES Crypto(symbol))") cryptoCurrencies = [] for crypto in cryptos: cryptoCurrencies += [CryptoCurrency.Cryptocurrency(crypto)] for crypto in cryptoCurrencies: infos = crypto.get_name_and_whitepaperlink() # l'interval choisi ici est hebdomadaire si on veut plus de précision, on peut prendre un plus petit interval price_history = get_price_history( "W", crypto) curs.execute("INSERT INTO Crypto(nom,symbol,whitepaperlink) VALUES (?,?,?)", (infos["name"], crypto.symbol, infos["whitepaperLink"])) conn.commit() for prices in price_history: timestamps = list(prices.keys()) for date in timestamps: curs.execute("INSERT INTO Prix(symbol,date,open,high,low,close) VALUES (?,?,?,?,?,?)", (crypto.symbol, datetime.fromtimestamp(int(date)/1000), prices[date]["open"], prices[date]["high"], prices[date]["low"], prices[date]["close"])) conn.commit() conn.commit() conn.close() # test # nft = CryptoCurrency.Cryptocurrency('EOS') # print(get_price_history("D", nft)) # bitcoin = CryptoCurrency.Cryptocurrency("BTC") # get_price_history("D", bitcoin) # infos = bitcoin.get_name_and_whitepaperlink() # conn = sql.connect("cryptoDatabase.db") # curs = conn.cursor() # curs.execute("DROP TABLE IF EXISTS Crypto") # curs.execute( # "CREATE TABLE Crypto (nom VARCHAR PRIMARY KEY, symbole VARCHAR, whitepaperlink VARCHAR)") # curs.execute( # "INSERT INTO Crypto(nom,symbole,whitepaperlink) VALUES (?,?,?)", (infos["name"], bitcoin.symbol, infos["whitepaperLink"])) # conn.commit() # conn.close()
ArthurOnWeb/l-historique-du-prix-d-une-cryptomonnaie
Main.py
Main.py
py
5,015
python
en
code
0
github-code
6
35445440233
from dexy.common import OrderedDict import dexy.database import dexy.doc import dexy.parser import dexy.reporter import inspect import json import logging import logging.handlers import os import shutil class Wrapper(object): """ Class that assists in interacting with Dexy, including running Dexy. """ DEFAULT_ARTIFACTS_DIR = 'artifacts' DEFAULT_CONFIG_FILE = 'dexy.conf' # Specification of dexy-wide config options. DEFAULT_DANGER = False DEFAULT_DB_ALIAS = 'sqlite3' DEFAULT_DB_FILE = 'dexy.sqlite3' DEFAULT_DISABLE_TESTS = False DEFAULT_DONT_USE_CACHE = False DEFAULT_DRYRUN = False DEFAULT_EXCLUDE = '' DEFAULT_GLOBALS = '' DEFAULT_HASHFUNCTION = 'md5' DEFAULT_IGNORE_NONZERO_EXIT = False DEFAULT_LOG_DIR = 'logs' DEFAULT_LOG_FILE = 'dexy.log' DEFAULT_LOG_FORMAT = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" DEFAULT_LOG_LEVEL = 'DEBUG' DEFAULT_RECURSE = True DEFAULT_REPORTS = 'output' DEFAULT_SILENT = False LOG_LEVELS = { 'DEBUG' : logging.DEBUG, 'INFO' : logging.INFO, 'WARN' : logging.WARN } RENAME_PARAMS = { 'artifactsdir' : 'artifacts_dir', 'conf' : 'config_file', 'dbalias' : 'db_alias', 'dbfile' : 'db_file', 'disabletests' : 'disable_tests', 'dryrun' : 'dry_run', 'ignore' : 'ignore_nonzero_exit', 'logfile' : 'log_file', 'logformat' : 'log_format', 'loglevel' : 'log_level', 'logsdir' : 'log_dir', 'nocache' : 'dont_use_cache' } SKIP_KEYS = ['h', 'help', 'version'] def __init__(self, *args, **kwargs): self.initialize_attribute_defaults() self.check_config_file_location(kwargs) self.load_config_file() self.update_attributes_from_config(kwargs) self.args = args self.docs_to_run = [] self.tasks = OrderedDict() self.pre_attrs = {} self.state = None def initialize_attribute_defaults(self): self.artifacts_dir = self.DEFAULT_ARTIFACTS_DIR self.config_file = self.DEFAULT_CONFIG_FILE self.danger = self.DEFAULT_DANGER self.db_alias = self.DEFAULT_DB_ALIAS self.db_file = self.DEFAULT_DB_FILE self.disable_tests = self.DEFAULT_DISABLE_TESTS self.dont_use_cache = self.DEFAULT_DONT_USE_CACHE self.dry_run = self.DEFAULT_DRYRUN self.exclude = self.DEFAULT_EXCLUDE self.globals = self.DEFAULT_GLOBALS self.hashfunction = self.DEFAULT_HASHFUNCTION self.ignore_nonzero_exit = self.DEFAULT_IGNORE_NONZERO_EXIT self.log_dir = self.DEFAULT_LOG_DIR self.log_file = self.DEFAULT_LOG_FILE self.log_format = self.DEFAULT_LOG_FORMAT self.log_level = self.DEFAULT_LOG_LEVEL self.recurse = self.DEFAULT_RECURSE self.reports = self.DEFAULT_REPORTS self.silent = self.DEFAULT_SILENT def check_config_file_location(self, kwargs): self.update_attributes_from_config(kwargs) def update_attributes_from_config(self, config): for key, value in config.iteritems(): if not key in self.SKIP_KEYS: corrected_key = self.RENAME_PARAMS.get(key, key) if not hasattr(self, corrected_key): raise Exception("no default for %s" % corrected_key) setattr(self, corrected_key, value) def load_config_file(self): """ Look for a config file in current working dir and loads it. """ if os.path.exists(self.config_file): with open(self.config_file) as f: try: conf = json.load(f) except ValueError as e: msg = inspect.cleandoc("""Was unable to parse the json in your config file '%s'. Here is information from the json parser:""" % self.config_file) msg += "\n" msg += str(e) raise dexy.exceptions.UserFeedback(msg) self.update_attributes_from_config(conf) @classmethod def default_config(klass): conf = klass().__dict__.copy() # Remove any attributes that aren't config options del conf['args'] del conf['docs_to_run'] del conf['tasks'] for cl_key, internal_key in klass.RENAME_PARAMS.iteritems(): conf[cl_key] = conf[internal_key] del conf[internal_key] return conf def db_path(self): return os.path.join(self.artifacts_dir, self.db_file) def log_path(self): return os.path.join(self.log_dir, self.log_file) def run(self): self.setup_run() self.log.debug("batch id is %s" % self.batch_id) self.state = 'populating' for doc in self.docs_to_run: for task in doc: task() self.state = 'settingup' for doc in self.docs_to_run: for task in doc: task() self.state = 'running' for doc in self.docs_to_run: for task in doc: task() self.state = 'complete' self.save_db() self.setup_graph() def setup_run(self): self.check_dexy_dirs() self.setup_log() self.setup_db() self.batch_id = self.db.next_batch_id() if not self.docs_to_run: self.setup_docs() def setup_read(self, batch_id=None): self.check_dexy_dirs() self.setup_log() self.setup_db() if batch_id: self.batch_id = batch_id else: self.batch_id = self.db.max_batch_id() def check_dexy_dirs(self): if not (os.path.exists(self.artifacts_dir) and os.path.exists(self.log_dir)): raise dexy.exceptions.UserFeedback("You need to run 'dexy setup' in this directory first.") def setup_dexy_dirs(self): if not os.path.exists(self.artifacts_dir): os.mkdir(self.artifacts_dir) if not os.path.exists(self.log_dir): os.mkdir(self.log_dir) def remove_dexy_dirs(self): shutil.rmtree(self.artifacts_dir) shutil.rmtree(self.log_dir) # TODO remove reports dirs def setup_log(self): try: loglevel = self.LOG_LEVELS[self.log_level.upper()] except KeyError: msg = "'%s' is not a valid log level, check python logging module docs." raise dexy.exceptions.UserFeedback(msg % self.log_level) self.log = logging.getLogger('dexy') self.log.setLevel(loglevel) handler = logging.handlers.RotatingFileHandler( self.log_path(), encoding="utf-8") formatter = logging.Formatter(self.log_format) handler.setFormatter(formatter) self.log.addHandler(handler) def setup_db(self): db_class = dexy.database.Database.aliases[self.db_alias] self.db = db_class(self) def setup_docs(self): for arg in self.args: self.log.debug("Processing arg %s" % arg) doc = self.create_doc_from_arg(arg) if not doc: raise Exception("no doc created for %s" % arg) doc.wrapper = self self.docs_to_run.append(doc) def create_doc_from_arg(self, arg, *children, **kwargs): if isinstance(arg, dexy.task.Task): return arg elif isinstance(arg, list): if not isinstance(arg[0], basestring): msg = "First arg in %s should be a string" % arg raise dexy.exceptions.UserFeedback(msg) if not isinstance(arg[1], dict): msg = "Second arg in %s should be a dict" % arg raise dexy.exceptions.UserFeedback(msg) if kwargs: raise Exception("Shouldn't have kwargs if arg is a list") if children: raise Exception("Shouldn't have children if arg is a list") alias, pattern = dexy.parser.AbstractSyntaxTree.qualify_key(arg[0]) return dexy.task.Task.create(alias, pattern, **arg[1]) elif isinstance(arg, basestring): alias, pattern = dexy.parser.AbstractSyntaxTree.qualify_key(arg[0]) return dexy.task.Task.create(alias, pattern, *children, **kwargs) else: raise Exception("unknown arg type %s for arg %s" % (arg.__class__.__name__, arg)) def save_db(self): self.db.save() ## DOCUMENTED above here.. def run_docs(self, *docs): """ Convenience method for testing to add docs and then run them. """ self.setup_dexy_dirs() self.docs_to_run = docs self.run() def register(self, task): """ Register a task with the wrapper """ self.tasks[task.key_with_class()] = task def registered_docs(self): return [d for d in self.tasks.values() if isinstance(d, dexy.doc.Doc)] def registered_doc_names(self): return [d.name for d in self.registered_docs()] def reports_dirs(self): return [c.REPORTS_DIR for c in dexy.reporter.Reporter.plugins] def report(self, *reporters): """ Runs reporters. Either runs reporters which have been passed in or, if none, then runs all available reporters which have ALLREPORTS set to true. """ if not reporters: reporters = [c() for c in dexy.reporter.Reporter.plugins if c.ALLREPORTS] for reporter in reporters: self.log.debug("Running reporter %s" % reporter.ALIASES[0]) reporter.run(self) def get_child_hashes_in_previous_batch(self, parent_hashstring): return self.db.get_child_hashes_in_previous_batch(self.batch_id, parent_hashstring) def load_doc_config(self): """ Look for document config files in current working dir and load them. """ parser_aliases = dexy.parser.Parser.aliases for k in parser_aliases.keys(): if os.path.exists(k): self.log.debug("found doc config file '%s'" % k) parser = parser_aliases[k](self) with open(k, "r") as f: self.doc_config = f.read() parser.parse(self.doc_config) break def setup_config(self): self.setup_dexy_dirs() self.setup_log() self.load_doc_config() def cleanup_partial_run(self): if hasattr(self, 'db'): # TODO remove any entries which don't have self.db.save() def setup_graph(self): """ Creates a dot representation of the tree. """ graph = ["digraph G {"] for task in self.tasks.values(): if hasattr(task, 'artifacts'): task_label = task.key_with_class().replace("|", "\|") label = """ "%s" [shape=record, label="%s\\n\\n""" % (task.key_with_class(), task_label) for child in task.artifacts: label += "%s\l" % child.key_with_class().replace("|", "\|") label += "\"];" graph.append(label) for child in task.children: if not child in task.artifacts: graph.append(""" "%s" -> "%s";""" % (task.key_with_class(), child.key_with_class())) elif "Artifact" in task.__class__.__name__: pass else: graph.append(""" "%s" [shape=record];""" % task.key_with_class()) for child in task.children: graph.append(""" "%s" -> "%s";""" % (task.key_with_class(), child.key_with_class())) graph.append("}") self.graph = "\n".join(graph)
gotosprey/dexy
dexy/wrapper.py
wrapper.py
py
11,970
python
en
code
null
github-code
6
14572312600
############## THESE SPLINES ARE USING CATMULL SPLINES ############## # https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline # # FOLLOWING javidx9's SPLINE VIDEOS: # https://www.youtube.com/watch?v=9_aJGUTePYo&t=898s&ab_channel=javidx9 from typing import List import pygame, math from code_modules.spline.spline_point_2D import Spline_Point2D ### THE FONT IS USED TO SHOW fOffset AND fMarker ### ############### class Spline: def __init__(self): self.points = [] self.activePoint = 0 self.isLooped = False self.RIGHT = False self.LEFT = False self.UP = False self.DOWN = False self.totalLineLength = 0 ############# DEBUG FONT ############# ### THE FONT IS USED TO SHOW fOffset AND fMarker ### self.font = pygame.font.SysFont(None, 20) def update(self): if self.RIGHT: self.points[self.activePoint].x += 5 if self.LEFT: self.points[self.activePoint].x -= 5 if self.UP: self.points[self.activePoint].y -= 5 if self.DOWN: self.points[self.activePoint].y += 5 ### CALCULATE TOTAL LENGTH ### self.totalLineLength = self.__getTotalLength() def draw(self, canvas): ##### DRAW SPLINE POINTS ##### ### LOOPED ### if self.isLooped: for t in range(0, len(self.points)*100, 1): pos = self.getSplinePoint(t / 100) pygame.draw.circle(canvas, (255,255,255), (pos.x, pos.y), 2) ### NOT LOOPED ### else: for t in range(0, (len(self.points)*100) - 300 , 1): pos = self.getSplinePoint(t / 100) pygame.draw.circle(canvas, (255,255,255), (pos.x, pos.y), 2) ##### DRAW CONTROL POINTS + TEXT ##### for i in range(len(self.points)): ### DRAW DISTANCE ### tempImg = self.font.render(str(self.points[i].length), True, (200,200,200)) canvas.blit(tempImg, (self.points[i].x + 20, self.points[i].y)) ########################## ##### CONTROL POINTS ##### if i == self.activePoint: pygame.draw.circle(canvas, (255,255,0), (self.points[i].x, self.points[i].y), 5) else: pygame.draw.circle(canvas, (255,0,0), (self.points[i].x, self.points[i].y), 5) tempImg = self.font.render(str(i), True, (255,255,255)) canvas.blit(tempImg, (self.points[i].x, self.points[i].y)) def getSplinePoint(self, t): if not self.isLooped: p1 = int(t) + 1 p2 = p1 + 1 p3 = p2 + 1 p0 = p1 - 1 else: p1 = int(t) p2 = (p1 + 1) % len(self.points) p3 = (p2 + 1) % len(self.points) if p1 >= 1: p0 = p1 - 1 else: p0 = len(self.points) - 1 t = t - int(t) tSquare = t * t tCube = tSquare * t q1 = -tCube + 2 * tSquare - t q2 = 3 * tCube - 5 * tSquare + 2 q3 = -3 * tCube + 4 * tSquare + t q4 = tCube - tSquare tx = 0.5 * (self.points[p0].x * q1 + self.points[p1].x * q2 + self.points[p2].x * q3 + self.points[p3].x * q4) ty = 0.5 * (self.points[p0].y * q1 + self.points[p1].y * q2 + self.points[p2].y * q3 + self.points[p3].y * q4) return Spline_Point2D(tx, ty) def getSplineGradient(self, t): if not self.isLooped: p1 = int(t) + 1 p2 = p1 + 1 p3 = p2 + 1 p0 = p1 - 1 else: p1 = int(t) p2 = (p1 + 1) % len(self.points) p3 = (p2 + 1) % len(self.points) if p1 >= 1: p0 = p1 - 1 else: p0 = len(self.points) - 1 t = t - int(t) tSquare = t * t tCube = tSquare * t q1 = -3*tSquare + 4*t - 1 q2 = 9*tSquare - 10*t q3 = -9*tSquare + 8*t + 1 q4 = 3*tSquare - 2*t tx = 0.5 * (self.points[p0].x * q1 + self.points[p1].x * q2 + self.points[p2].x * q3 + self.points[p3].x * q4) ty = 0.5 * (self.points[p0].y * q1 + self.points[p1].y * q2 + self.points[p2].y * q3 + self.points[p3].y * q4) return Spline_Point2D(tx, ty) def __getTotalLength(self): ### CALCULATE TOTAL LENGTH ### total = 0 if self.isLooped: for i in range(len(self.points)): self.points[i].length = self.__calculateSegmentLength(i) total += self.points[i].length else: for i in range(len(self.points)-3): self.points[i].length = self.__calculateSegmentLength(i) total += self.points[i].length return total def __calculateSegmentLength(self, node): fLength = 0 fStepSize = 3 old_point = self.getSplinePoint(node) for t in range(0, 100, fStepSize): new_point = self.getSplinePoint(node + t/100) fLength += math.sqrt((new_point.x - old_point.x) * (new_point.x - old_point.x) + (new_point.y - old_point.y)*(new_point.y - old_point.y)) old_point = new_point ### You need to recalculate the segment lengths if the spline changes. # which means its very innefficient to use splines dynamically. Preferrably # you use them Statically. return fLength def getNormalizedOffset(self, p): # Which node is the base? i = 0 while p > self.points[i].length: p -= self.points[i].length i += 1 # The fractional is the offset return i + (p / self.points[i].length)
EliasFredriksson/Tower_Defence_Reworked
code_modules/spline/spline.py
spline.py
py
6,006
python
en
code
0
github-code
6
42679468935
''' 經典題型,由於羅馬字母原則上是由大至小排列,故若是發現某一數字大於先前的數字,則代表大 - 小 (e.g., XV = 4) 故作答上只需使用一個迴圈由左掃至右,判斷一下目前的羅罵字與上一個的大小關係,若發現小的字母在大的字母左側,則記得要減去2倍的先前字母值 (不是挺好解釋的,詳情見程式碼) ''' class Solution: def eval_roman(self, symbol): answer = 0 if('I' == symbol): answer = 1 elif('V' == symbol): answer = 5 elif('X' == symbol): answer = 10 elif('L' == symbol): answer = 50 elif ('C' == symbol): answer = 100 elif ('D' == symbol): answer = 500 elif ('M' == symbol): answer = 1000 return answer def romanToInt(self, s): answer, previous_val, current_val = 0, 0, 0 for i in s: current_val = self.eval_roman(i) answer = answer + current_val if(current_val > previous_val): answer = answer - 2 * previous_val previous_val = current_val return answer # 本機端測試用 # sol = Solution() # print(sol.romanToInt("MCMXCIV")) # print(sol.romanToInt("XII")) # print(sol.romanToInt("IV")) # print(sol.romanToInt("IX"))
shawn2000100/LeetCode_Easy_Code
13. Roman to Integer.py
13. Roman to Integer.py
py
1,379
python
en
code
1
github-code
6
70439517629
import pyautogui import cv2 as cv import numpy as np import keyboard import time from math import sqrt from PIL import ImageGrab import win32api, win32con # https://stackoverflow.com/questions/5906693/how-to-reduce-the-number-of-colors-in-an-image-with-opencv def kmeans_color_quantization(image, clusters=8, rounds=1): h, w = image.shape[:2] samples = np.zeros([h*w,3], dtype=np.float32) count = 0 for x in range(h): for y in range(w): samples[count] = image[x][y] count += 1 compactness, labels, centers = cv.kmeans(samples, clusters, None, (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10000, 0.0001), rounds, cv.KMEANS_RANDOM_CENTERS) centers = np.uint8(centers) res = centers[labels.flatten()] return res.reshape((image.shape)) class GarticBot: def __init__(self, DEBUG=False): self.debug = DEBUG BOARD_ORIGIN = (692, 170) BOARD_RESOLUTION = (962, 530) PENCIL = (-150, 25) PENCIL_SLIDER = (-147, 772) PENCIL_SLIDER_MIN_RANGE = (790, 665) PALLETE = (-100, 570) # DRAWING_RESOLUTION = (120, 66) # DRAWING_RESOLUTION = (150, 82) DRAWING_RESOLUTION = (200, 110) COLOR_VARIANCE = 128 WHITE_THRESHOLD = 55 CLICK_DELAY = 1e-10 CLICK_DELAY_INTERVAL = 5 pyautogui.PAUSE = CLICK_DELAY def _getRelativePos(self, pos): return (pos[0] + self.BOARD_ORIGIN[0], pos[1] + self.BOARD_ORIGIN[1]) def _downScale(self, image): f1 = self.DRAWING_RESOLUTION[0] / image.shape[1] f2 = self.DRAWING_RESOLUTION[1] / image.shape[0] dim = (int(image.shape[1] * min(f1, f2)), int(image.shape[0] * min(f1, f2))) resized = cv.resize(image, dim) downscaled = kmeans_color_quantization(resized, clusters=self.COLOR_VARIANCE, rounds=1) if self.debug: cv.imshow("IMAGE", cv.resize(image, (600, int(image.shape[0]*600/image.shape[1])), interpolation=cv.INTER_AREA)) cv.waitKey(600) cv.imshow("IMAGE", cv.resize(resized, (600, int(resized.shape[0]*600/resized.shape[1])), interpolation=cv.INTER_AREA)) cv.waitKey(600) cv.imshow("IMAGE", cv.resize(downscaled, (600, int(downscaled.shape[0]*600/downscaled.shape[1])), interpolation=cv.INTER_AREA)) cv.waitKey(600) cv.destroyAllWindows() return downscaled def _getColorClusters(self, image): image = cv.cvtColor(image, cv.COLOR_BGR2RGB) clusters = {} for j in range(len(image)): for i in range(len(image[0])): color = f"{image[j][i][0]},{image[j][i][1]},{image[j][i][2]}" if color in clusters: clusters[color].append((i, j)) else: clusters.update({color: [(i, j)]}) return clusters def _equipPencil(self): pyautogui.click(self._getRelativePos(self.PENCIL)) def _setColor(self, color): pyautogui.click(self._getRelativePos(self.PALLETE)) time.sleep(0.1) color = color.split(",") keyboard.send('tab') time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.write(color[0]) time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.write(color[1]) time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.write(color[2]) time.sleep(0.01) keyboard.send('enter') time.sleep(0.1) def _getClickPosition(self, pos): upscale_factor_x = self.BOARD_RESOLUTION[0] / self.DRAWING_RESOLUTION[0] upscale_factor_y = self.BOARD_RESOLUTION[1] / self.DRAWING_RESOLUTION[1] pos = (int(pos[0]*upscale_factor_x), int(pos[1]*upscale_factor_y)) return pos def _setPencilThickness(self, thickness): pyautogui.moveTo(self._getRelativePos(self.PENCIL_SLIDER)) def draw(self, image): print("DOWNSCALING") downscaled = self._downScale(image) clusters = self._getColorClusters(downscaled) while True: if keyboard.is_pressed('alt+s'): print("STOPPING") return if keyboard.is_pressed('alt+q'): quit() if keyboard.is_pressed('alt+d'): break time.sleep(0.2) print("DRAWING") self._equipPencil() for color in clusters: channels = color.split(",") dist = sqrt(pow(int(channels[0])-255, 2) + pow(int(channels[1])-255, 2) + pow(int(channels[2])-255, 2)) if dist < self.WHITE_THRESHOLD: continue print(f'Color: {color}') self._setColor(color) for i, pixel in enumerate(clusters[color]): pos = self._getClickPosition(pixel) pos = self._getRelativePos(pos) win32api.mouse_event(win32con.MOUSEEVENTF_MOVE | win32con.MOUSEEVENTF_ABSOLUTE, int(pos[0]/win32api.GetSystemMetrics(0)*65535), int(pos[1]/win32api.GetSystemMetrics(1)*65535) ,0 ,0) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0) if i%self.CLICK_DELAY_INTERVAL==0: time.sleep(self.CLICK_DELAY) if keyboard.is_pressed('alt+s'): print("STOPED") return print("DONE") def run(self): while True: if keyboard.is_pressed('alt+q'): break if keyboard.is_pressed('alt+c'): image = np.array(ImageGrab.grabclipboard())[:,:,:3] image = cv.cvtColor(image, cv.COLOR_BGR2RGB) self.draw(image) bot = GarticBot(DEBUG=True) bot.run()
JirkaKlimes/gartic.io_bot
main.py
main.py
py
5,990
python
en
code
0
github-code
6
27066265033
#! /usr/bin/python def solutionOneChecker(combinedLetters: str, testWord: str, dictWordScores: dict) -> bool: """ Check if a word uses all letters of the box True = Valid Solution """ fullScore = len(combinedLetters) #fullScore = 7 if dictWordScores[testWord] > fullScore: return True return False def topScoringWords(combinedLetters: str, dictWordScores: dict) -> bool: """ Prints the top scoring words above or equal to 8 points """ fullScore = len(combinedLetters) for iScore in range(fullScore, 7, -1): for iWord in dictWordScores: if dictWordScores[iWord] == iScore: print(iWord, iScore) return True def run(): return None if __name__ == "__main__": run()
tmangan/PonderThis
2022_December/Solution_Checker.py
Solution_Checker.py
py
782
python
en
code
0
github-code
6
25528561437
import tensorflow as tf # Defince a "Computation Graph" a = tf.constant(1) # Defince a constant Tensor b = tf.constant(1) c = a + b # Equal to c = tf.add(a, b),c is a new Tensor created by Tensor a and Tesor b's add Operation sess = tf.Session() # Initailize a Session c_ = sess.run(c) # Session的run() will do actually computation to the nodes (Tensor) in the Computation Graph print(c_)
snowkylin/TensorFlow-cn
source/_static/code/en/basic/graph/1plus1.py
1plus1.py
py
407
python
en
code
854
github-code
6
225940000
from sqlalchemy import Column, Integer, String, ForeignKey from app.routers.db import Base class Task(Base): __tablename__ = 'tasks' id = Column(Integer, primary_key=True, index=True) title = Column(String) body = Column(String)
gitdarsh/todo
todo/app/models/model.py
model.py
py
248
python
en
code
0
github-code
6
31132813401
from abc import ABC from collections import OrderedDict, defaultdict import torch import torch.nn.functional as F from torch import flatten from torch.nn import Module, Conv2d, Dropout, Linear, BatchNorm2d, ReLU, Sequential, MaxPool2d from torch.optim import Optimizer from torch.optim.lr_scheduler import LRScheduler from torch.utils.data import DataLoader from tqdm.auto import tqdm class AbstractModule(Module, ABC): # TODO check that it's abstract def __init__(self): super().__init__() self._optim = None self._criterion = None self._scheduler = None self._pruner = None def optimizer(self, optim: callable(Optimizer), **kwargs): self._optim = optim(self.parameters(), **kwargs) return self def scheduler(self, scheduler: callable(LRScheduler), **kwargs): self._scheduler = scheduler(self._optim, **kwargs) return self def criterion(self, criterion: Module): self._criterion = criterion return self def fit(self, dataloader: DataLoader, epochs: int, callbacks=None ) -> None: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = self.to(device).train() for epoch in range(1, epochs + 1): loader_bar = tqdm(dataloader, desc='train', leave=False) for inputs, targets in loader_bar: inputs = inputs.to(device) targets = targets.to(device) # Reset the gradients (from the last iteration) self._optim.zero_grad() outputs = model(inputs) loss = self._criterion(outputs, targets) loss.backward() self._optim.step() if callbacks is not None: for callback in callbacks: callback() loader_bar.set_description(f"Epoch [{epoch}/{epochs}]") if self._scheduler is not None: self._scheduler.step() @torch.inference_mode() def evaluate(self, dataloader: DataLoader, verbose=True, ) -> float: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = self.to(device).eval() num_samples = 0 num_correct = 0 for inputs, targets in tqdm(dataloader, desc="eval", leave=False, disable=not verbose): inputs = inputs.to(device) targets = targets.to(device) outputs = model(inputs) outputs = outputs.argmax(dim=1) # Update metrics num_samples += targets.size(0) num_correct += (outputs == targets).sum() return (num_correct / num_samples * 100).item() class BaseLineNet(AbstractModule): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 32, 3, 1) # 1 x 32 x 3 x 3 = 288 parameters self.conv2 = Conv2d(32, 64, 3, 1) # 32 x 64 x 3 x 3=18,432 parameters self.dropout1 = Dropout(0.25) self.dropout2 = Dropout(0.5) self.fc1 = Linear(9216, 128) # 9216 x 128 = 1,179,648 parameters self.fc2 = Linear(128, 10) # 128 x 10 = 1,280 parameters def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output class VGG(AbstractModule): ARCH = [64, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] def __init__(self) -> None: super().__init__() layers = [] counts = defaultdict(int) def add(name: str, layer: Module) -> None: layers.append((f"{name}{counts[name]}", layer)) counts[name] += 1 in_channels = 3 for x in self.ARCH: if x != 'M': # conv-bn-relu add("conv", Conv2d(in_channels, x, 3, padding=1, bias=False)) add("bn", BatchNorm2d(x)) add("relu", ReLU(True)) in_channels = x else: add("pool", MaxPool2d(2)) self.backbone = Sequential(OrderedDict(layers)) self.classifier = Linear(512, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: # backbone: [N, 3, 32, 32] => [N, 512, 2, 2] x = self.backbone(x) # avgpool: [N, 512, 2, 2] => [N, 512] x = x.mean([2, 3]) # classifier: [N, 512] => [N, 10] x = self.classifier(x) return x
bnwiran/tinyml-benchmark
models/models.py
models.py
py
4,749
python
en
code
0
github-code
6
70396769467
""" JAX functions to Calculate moving average. Author: Toshinori Kitamura Affiliation: NAIST & OSX """ from __future__ import annotations import jax from chex import Array from jax import lax @jax.jit def calc_ma(lr: float, idx1: Array, idx2: Array, tb: Array, tb_targ: Array) -> Array: """Calculate moving average. The semantics of calc_ma are given by: def calc_ma(lr, idx1, idx2, tb, tb_targ): for s, a, targ in zip(idx1, idx2, tb_targ): tb[s, a] = (1 - lr) * tb[s, a] + lr * targ return tb Args: lr (float): Learning rate idx1 (Array): (?, ) or (?, 1) array idx2 (Array): (?, ) or (?, 1) array tb (Array): (?, ?) initial array tb_targ (Array): (?, ) or (?, 1) target array Returns: tb (Array): (?, ) array """ assert len(tb.shape) == 2 # dSxdA idx1 = idx1.squeeze(axis=1) if len(idx1) == 2 else idx1 idx2 = idx2.squeeze(axis=1) if len(idx2) == 2 else idx2 tb_targ = tb_targ.squeeze(axis=1) if len(tb_targ) == 2 else tb_targ def body_fn(i, tb): i1, i2, t = idx1[i], idx2[i], tb_targ[i] targ = (1 - lr) * tb[i1, i2] + lr * t return tb.at[i1, i2].set(targ) tb = lax.fori_loop(0, len(idx1), body_fn, tb) return tb
omron-sinicx/ShinRL
shinrl/_calc/moving_average.py
moving_average.py
py
1,289
python
en
code
42
github-code
6
17469039054
from bs4 import BeautifulSoup import requests import requests.packages.urllib3 requests.packages.urllib3.disable_warnings() fx=open('WEB.txt','r',encoding="utf-8") ## FILENAME me file ka name dalna line=fx.readline() l=open('email_mailto.txt','a',encoding='utf-8') def web_imrove(url): print(url) try: source = requests.get(url) except Exception : l.write('\n') return 0 plain_text = source.text soup = BeautifulSoup(plain_text, 'html.parser') emails = [a["href"] for a in soup.select('a[href^=mailto:]')] popo = str(emails) toto = popo.replace('mailto:', '') hoho = toto.replace('[', '') gogo = hoho.replace(']', '') mm = gogo.replace("'", "") if len(mm) is not 0: l.write(mm) l.write('\n') print(mm) return 1 else: l.write('\n') return 0 #print(mm) while line: if line is '\n': l.write('\n') line=fx.readline() continue p = line.strip() if( web_imrove('http://'+p) ): print('first') elif( web_imrove('http://' + p+'/contact-us') ): print('second') else: web_imrove('http://' + p+'/contactus') line = fx.readline()
akkiei/Web_Scrapper
Mail_to.py
Mail_to.py
py
1,282
python
en
code
0
github-code
6
17086061072
from datetime import datetime #convert date from YYYY-MM-DD-T to Date, Month, Year (in words) #dfdsf #dsfds datetime def date_convert(date): date=str(date) data=date.split('-') #year/month/day+time all separated by dash daydate=data[-1].split() #data[-1] is day+time, separated by a space day=daydate[0] #discard time, keep day day=day if day[0]!=0 else day[1] #otherwise single-digit days retain leading zero year=str(data[0]) #data is list containing the year and the month month=str(data[1]) #map month numbers to their names months={'01':'January', '02':'February', '03':'March', '04':'April', '05':'May', '06':'June', '07':'July', '08':'August', '09':'September', '10':'October', '11':'November', '12':'December'} #adds appropriate suffix to day if day[-1]=='1' and int(day)%100!=11: #checks if date ends with 1 and isn't 11 suffix='st' elif day[-1]=='2' and int(day)%100!=12: #checks if date ends with 1 and isn't 11 suffix='nd' elif day[-1]=='3': suffix='rd' else: suffix='th' #including special cases 11 and 12 which were previously excluded return day+suffix+' '+months[month]+', '+year #returns string with date in appropriate format #test case #date=datetime.now() #print date_convert(date)
veliakiner/SmogonQDB
date_convert.py
date_convert.py
py
1,428
python
en
code
0
github-code
6
19980146036
from pytube import YouTube from PySimpleGUI import PySimpleGUI as sg sg.theme("reddit") layout = [ [sg.Text("URL"), sg.Input(key="url")], [sg.Button("Fazer o Download")] ], janela = sg.Window("Video Downloader", layout) while True: eventos, valores = janela.read() if eventos == sg.WINDOW_CLOSED: break if eventos == "Fazer o Download": link = valores["url"] yt = YouTube(link) stream = yt.streams.get_highest_resolution() stream.download()
jopsfernandes/video_downloader
youtube.py
youtube.py
py
525
python
en
code
0
github-code
6
38791493575
from flask import Flask from flask_restful import Resource, Api import __init__ app=Flask(__name__) api=Api(app) class Quote(Resource): @app.route('/wifi/<int:id>') def get(id): x=main.main_(id) if x==-1: return 'Not found', 404 else: return x, 200 @app.route('/trace') def trace(): x=main.output() return x, 200 if __name__ == '__main__': app.run(host="0.0.0.0", port="8080",debug=True)
Kaedone/WI-FI_checker
api.py
api.py
py
510
python
en
code
0
github-code
6
11956903610
""" a pure python implementation of the heap sort algorithm """ def m_heap_sort(arr): """heap sort :type arr: array :rtype: array >>> m_heap_sort([3, 2, 1, 4, 5]) [1, 2, 3, 4, 5] >>> m_heap_sort([]) [] >>> m_heap_sort([1]) [1] """ n = len(arr) for i in range(n//2 - 1, -1, -1): heapify(arr, n, i) for i in range(n-1, -1, -1): arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) return arr def heapify(arr, n, i): """get max heap :type arr: array :type n: int, length :type i: index, subtree root :rtype: None """ largest = i left = 2*i + 1 right = 2*i + 2 if left < n and arr[left] > arr[largest]: largest = left if right < n and arr[right] > arr[largest]: largest = right if largest != i: arr[largest], arr[i] = arr[i], arr[largest] heapify(arr, n, largest)
wancong/leetcode
sort/m_heap_sort.py
m_heap_sort.py
py
1,074
python
en
code
0
github-code
6
10304764794
# Calculate how long it takes to save enough money make a down payment on a house def app(): # INPUTS annual_salary = float(input("Enter your annual salary: ")) portion_saved = float(input("Enter the percent of your salary to save, as a decimal: ")) total_cost = int(input("Enter the cost of your dream home: ")) portion_down_payment = 0.25 current_savings = 0 r = 0.04 # bonus = current_savings*r/12 monthly_salary = (annual_salary/12) goal = (total_cost * portion_down_payment) months = 0 while (current_savings <= goal): current_savings += current_savings*r/12 current_savings += (monthly_salary * portion_saved) months += 1 print(months) if __name__ == "__main__": app()
lsunl/cs60001-python
ps1a.py
ps1a.py
py
770
python
en
code
0
github-code
6
19772192847
# -*- coding: utf-8 -*- #----------- #@utool.indent_func('[harn]') @profile def test_configurations(ibs, acfgstr_name_list, test_cfg_name_list): r""" Test harness driver function CommandLine: python -m ibeis.expt.harness --exec-test_configurations --verbtd python -m ibeis.expt.harness --exec-test_configurations --verbtd --draw-rank-cdf --show Example: >>> # SLOW_DOCTEST >>> from ibeis.expt.harness import * # NOQA >>> import ibeis >>> ibs = ibeis.opendb('PZ_MTEST') >>> acfgstr_name_list = ut.get_argval(('--aidcfg', '--acfg', '-a'), type_=list, default=['candidacy:qsize=20,dper_name=1,dsize=10', 'candidacy:qsize=20,dper_name=10,dsize=100']) >>> test_cfg_name_list = ut.get_argval('-t', type_=list, default=['custom', 'custom:fg_on=False']) >>> test_configurations(ibs, acfgstr_name_list, test_cfg_name_list) >>> ut.show_if_requested() """ testres_list = run_test_configurations2(ibs, acfgstr_name_list, test_cfg_name_list) for testres in testres_list: if testres is None: return else: experiment_printres.print_results(ibs, testres) experiment_drawing.draw_results(ibs, testres) return testres_list #def get_cmdline_testres(): # ibs, qaids, daids = main_helpers.testdata_expanded_aids(verbose=False) # test_cfg_name_list = ut.get_argval('-t', type_=list, default=['custom', 'custom:fg_on=False']) # testres = run_test_configurations(ibs, qaids, daids, test_cfg_name_list) # return ibs, testres
smenon8/ibeis
_broken/old_test_harness.py
old_test_harness.py
py
1,586
python
en
code
null
github-code
6
33983748034
from django.shortcuts import render, redirect from django.views.generic import ListView, \ CreateView, DetailView, UpdateView, DeleteView from .models import Post, Review from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from accounts.models import UserFollows from .forms import PostForm, ReviewForm from django.template.defaulttags import register from django.contrib import messages @register.filter # helps us loop over the review's rating and # add stars for the range of the int variable; rating def get_range(value): return range(value) def flow(request): following = UserFollows.objects.filter(following=request.user) follower = UserFollows.objects.filter(follower=request.user) posts = [] reviews = [] for post in Post.objects.all().order_by('-date_posted'): posts.append(post) for review in Review.objects.all().order_by('-date_posted'): reviews.append(review) posts_reviews = [] for post in posts: if post.author == request.user: posts_reviews.append(post) print(post) for contact in follower: if post.author == contact.following: posts_reviews.append(post) for review in reviews: if review.author == request.user: posts_reviews.append(review) for contact in follower: if review.author == contact.following: posts_reviews.append(review) if review.ticket.author == request.user: posts_reviews.append(review) posts_reviews = list(set(posts_reviews)) posts_reviews.sort(key=lambda x: x.date_posted, reverse=True) for p in posts_reviews: print(p.type) context = { 'follower': follower, 'following': following, 'post_review': posts_reviews } return render(request, 'flow.html', context) class ReviewCreateView(LoginRequiredMixin, CreateView): model = Review fields = ['ticket', 'headline', 'rating', 'content', ] def form_valid(self, form): form.instance.author = self.request.user try: return super().form_valid(form) except ValueError: messages.add_message(self.request, messages.INFO, 'Hello world.') class ReviewDeleteView(LoginRequiredMixin, UserPassesTestMixin, DeleteView): model = Review success_url = '/' def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False class PostCreateView(LoginRequiredMixin, CreateView): model = Post fields = ['title', 'content', 'header_image'] def form_valid(self, form): form.instance.author = self.request.user return super().form_valid(form) class PostUpdateView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): model = Post fields = ['title', 'content', 'header_image'] def form_valid(self, form): form.instance.author = self.request.user self.object = form.save() return super().form_valid(form) def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False class PostDeleteView(LoginRequiredMixin, UserPassesTestMixin, DeleteView): model = Post success_url = '/' def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False class PostListView(ListView): model = Post context_object_name = 'posts' ordering = ['-date_posted'] class ReviewListView(ListView): model = Review context_object_name = 'reviews' ordering = ['-date_posted'] class PostDetailView(DetailView): model = Post class ReviewDetailView(DetailView): model = Review class ReviewUpdateView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): model = Review fields = ['headline', 'body', 'rating'] def form_valid(self, form): form.instance.author = self.request.user self.object = form.save() return super().form_valid(form) def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False def review_create_view(request): form2 = PostForm(request.POST, request.FILES or None) form = ReviewForm(request.POST or None) context = { "form2": form2, "form": form, } if all([form2.is_valid(), form.is_valid()]): current_user = request.user parent = form2.save(commit=False) parent.author_id = current_user.id parent.reviewed = 'true' parent.save() child = form.save(commit=False) child.author_id = current_user.id child.ticket = parent child.save() print("form", form.cleaned_data) print("form2", form2.cleaned_data) context['message'] = 'data saved' return redirect('flow') # return render(request, 'reviews/review_create.html', context) else: return render(request, 'reviews/review_create.html', context) def review_of_ticket(request, pk): instance = Post.objects.get(id=pk) form = ReviewForm(request.POST or None) review_form_ticket = instance context = { "form": form, "ticket": review_form_ticket, } if form.is_valid(): current_user = request.user child = form.save(commit=False) child.author_id = current_user.id child.ticket = instance instance.reviewed = 'true' child.save() instance.save() form.save() return redirect('flow') else: return render(request, "website/review_form.html", context,) def view_tickets_reviews(request): object1 = Post.objects.filter(author=request.user).order_by('-date_posted') object2 = Review.objects.filter( author=request.user).order_by('-date_posted') context = { 'object1': object1, 'object2': object2, } return render(request, "website/review_post_detail.html", context)
maximesoydas/maxweb
website/views.py
views.py
py
6,223
python
en
code
0
github-code
6
40132948104
import argparse from math import sqrt import Image import ImageDraw def color_map(v): assert 0 <= v <= 255 if v == 0: return (0, 0, 0) if v == 255: return (255, 255, 255) if v < 4 * 8: # 0 .. 31 return (0, 255 - (31 * 4) + v * 4, 0) if v < 16 * 8: # 32 .. 127 # 0 .. 95 return (128 + (v - 32) * 127 / 95, 0, 0) return (0, v, v) def convert(): if args.test: data = map(chr, range(256)) else: data = file(args.in_file).read() size = len(data) w = 1 while size / w > w * 8: w *= 2 h = size / w if size % w != 0: h += 1 image = Image.new('RGB', (w, h)) d = ImageDraw.Draw(image) for i, c in enumerate(data): d.point((i % w, i / w), color_map(ord(c))) image.save(args.out_file, 'PNG') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Show binary in color pattern') parser.add_argument('--test', action='store_true') parser.add_argument('in_file', action='store') parser.add_argument('--out_file', action='store', default='out.png') args = parser.parse_args() convert()
nishio/binary_color
binary_color.py
binary_color.py
py
1,161
python
en
code
1
github-code
6
39784068604
import filecmp, os, sys sys.path.append('c:\\dev\\pytWinc\\superpy') sys.path.append('c:\\dev\\pytWinc\\superpy\\utils_superpy') from utils.utils import calculate_inventory, get_path_to_directory_of_file directory_of_testcase = "fn_calculate_inventory" path_to_directory_of_testcase = get_path_to_directory_of_file(directory_of_testcase) # input test files: path_to_input_file_sold_test_01 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_sold_for_testcase_01.csv') path_to_input_file_cost_test_01 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_cost_for_testcase_01.csv') path_to_input_file_sold_test_02 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_sold_for_testcase_02.csv') path_to_input_file_cost_test_02 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_cost_for_testcase_02.csv') ''' about the data structure of expected testresult: list of lists is a common and convenient (but not the only) way to create tables in Python. This also applies to Rich. So expected test results take the shape of a list with lists. This has worked while testing fn calculate_expired_products_on_day. ''' def test_01_calculate_inventory_happy_flow(): filecmp.clear_cache() date_on_which_to_calculate_inventory = '2024-05-21' expected_test_result = [['b_3', 'candle', '3.1', '2024-01-11', 'does not expire'], ['b_6', 'book', '0.5', '2024-01-15', 'does not expire'], ['b_39', 'skeelers', '1.1', '2024-04-20', 'does not expire'], ['b_45', 'shoes', '1.4', '2024-04-30', 'does not expire'], ['b_48', 'fish', '2.5', '2024-05-08', '2024-05-23'], ['b_51', 'kiwi', '0.5', '2024-05-15', '2024-05-30'], ['b_54', 'onion', '1.1', '2024-05-21', '2024-06-05']] actual_result = calculate_inventory(date_on_which_to_calculate_inventory, path_to_input_file_sold_test_01, path_to_input_file_cost_test_01) assert actual_result == expected_test_result def test_02_calculate_inventory_happy_flow(): filecmp.clear_cache() date_on_which_to_calculate_inventory = '2023-11-15' expected_test_result = [['b_6', 'garbage_bag', '5.2', '2023-10-17', 'does not expire'], ['b_26', 'tomato', '2.5', '2023-10-31', '2023-11-15'], ['b_28', 'lettuce', '0.5', '2023-11-01', '2023-11-16'], ['b_30', 'lettuce', '4.0', '2023-11-02', '2023-11-17'], ['b_32', 'tomato', '5.2', '2023-11-03', '2023-11-18'], ['b_34', 'lightbulb', '4.0', '2023-11-06', 'does not expire'], ['b_36', 'tomato', '4.0', '2023-11-07', '2023-11-22'], ['b_38', 'rice', '0.5', '2023-11-08', '2023-11-23'], ['b_40', 'cheese', '1.4', '2023-11-09', '2023-11-24'], ['b_42', 'book', '5.2', '2023-11-11', 'does not expire'], ['b_44', 'oats', '0.5', '2023-11-14', '2023-11-29']] actual_result = calculate_inventory(date_on_which_to_calculate_inventory, path_to_input_file_sold_test_02, path_to_input_file_cost_test_02) assert actual_result == expected_test_result
davidjfk/David_Sneek_Superpy
test_utils/fn_calculate_inventory/test_calculate_inventory.py
test_calculate_inventory.py
py
2,936
python
en
code
0
github-code
6
35430795829
class odds_compare: def __init__(self, api_array): self.api_array = api_array # calculate odds comparisons for all available matches def calculate_comparisons(self): result = [] for i in self.api_array: result_dict = { "home": "", "away": "", "home_odds": [], "away_odds": [] } result_dict['home'] = i['home_team'] result_dict['away'] = [x for x in i['teams'] if x != i['home_team']][0] home_odds = [] away_odds = [] # return all odds for book in i['sites']: if result_dict['home'] == i['teams'][0]: home_odds.append((book['site_nice'], book['odds']['h2h'][0])) away_odds.append((book['site_nice'], book['odds']['h2h'][1])) else: home_odds.append((book['site_nice'], book['odds']['h2h'][1])) away_odds.append((book['site_nice'], book['odds']['h2h'][0])) result_dict['home_odds'] = sorted(home_odds, key=lambda tup: tup[1], reverse=True) result_dict['away_odds'] = sorted(away_odds, key=lambda tup: tup[1], reverse=True) result.append(result_dict) return result # calculate odds comparisons for a specific team def calculate_comparisons_team(self, team): # print(self.api_array) result = { "home": "", "away": "", "home_odds": [], "away_odds": [] } # look for particular match for i in self.api_array: if team in i['teams']: home_odds = [] away_odds = [] # return all odds for book in i['sites']: # print(book['site_nice']+ " - " +str(book['odds']['h2h'])) home_odds.append((book['site_nice'], book['odds']['h2h'][0])) away_odds.append((book['site_nice'], book['odds']['h2h'][1])) result['home_odds'] = sorted(home_odds, key=lambda tup: tup[1], reverse=True) result['away_odds'] = sorted(away_odds, key=lambda tup: tup[1], reverse=True) result['home'] = i['home_team'] result['away'] = [x for x in i['teams'] if x != i['home_team']][0] break # only want first game with selected team from API return result
abhid94/Compare_Odds_Bot
odds_compare.py
odds_compare.py
py
2,507
python
en
code
1
github-code
6
43626494196
# VIIRS packge from __future__ import division, print_function import datetime import numpy as np from osgeo import gdal from scipy import ndimage import core import env bumper = env.environment() class viirs(core.raster): def __init__(self): core.raster.__init__(self,'viirs') return def read(self,infile): out = self._copy() tree = '//HDFEOS/GRIDS/VNP_Grid_{}_2D/Data_Fields/' field = 'SurfReflect_{0}{1}_1' base = 'HDF5:"{0}":{1}{2}' m = [i for i in range(12) if i not in [0,6,9]] i = [i for i in range(1,4)] bands = [m,i] res = ['1km','500m'] mode = ['M','I'] band = gdal.Open(base.format(infile,tree.format('1km'),field.format('QF',1))) out.metadata = band.GetMetadata() cloudQA = self._extractBits(band.ReadAsArray(),2,3) hiresCloudQA = ndimage.zoom(cloudQA,2,order=0) band = None band = gdal.Open(base.format(infile,tree.format('1km'),field.format('QF',2))) shadowQA = self._extractBits(band.ReadAsArray(),3,3) hiresShadowQA = ndimage.zoom(shadowQA,2,order=0) # qa = (cloudQA>0)&(shadowQA<1) mask = ~(hiresCloudQA>0)&(hiresShadowQA<1) east,west = float(out.metadata['EastBoundingCoord']), float(out.metadata['WestBoundingCoord']) north,south = float(out.metadata['NorthBoundingCoord']), float(out.metadata['SouthBoundingCoord']) out.extent = [west,south,east,north] databands = {'mask':mask} bandNames = ['mask'] for i in range(2): for j in range(len(bands[i])): subdataset = base.format(infile,tree.format(res[i]),field.format(mode[i],bands[i][j])) band = gdal.Open(subdataset) if i == 0: data = ndimage.zoom(band.ReadAsArray(),2,order=0) else: data = band.ReadAsArray() data = np.ma.masked_where(data<0,data) data = np.ma.masked_where(data>10000,data) bName = '{0}{1}'.format(mode[i],bands[i][j]) databands[bName] = data.astype(np.int16) bandNames.append(bName) band = None data = None out.bands = databands out.bandNames = bandNames out.updateMask() coords = {} out.nativeCRS = {'init':'epsg:6974'} out.proj = '+proj=sinu +R=6371007.181 +nadgrids=@null +wktext' coords['lon'],coords['lat'] = self._geoGrid(out.extent,out.bands['I1'].shape,out.proj,wgsBounds=False) out.coords = coords out.gt = None date = '{0}{1}{2}'.format(out.metadata['RangeBeginningDate'],out.metadata['RangeBeginningTime'],' UTC') out.coords['date'] = datetime.datetime.strptime(date, '%Y-%m-%d %H:%M:%S.%f %Z') return out
Servir-Mekong/bump
bump/viirs.py
viirs.py
py
2,977
python
en
code
0
github-code
6
25497427443
import numpy as np from PIL import Image import matplotlib.pyplot as plt import matplotlib.image as mpimg class TinyImageNet: def __init__(self, root, train=True, transform=None, target_transform=None, test_transform=None, target_test_transform=None): self.transform = transform self.target_transform = target_transform self.target_test_transform = target_test_transform self.test_transform = test_transform self.TrainData = [] self.TrainLabels = [] self.TestData = [] self.TestLabels = [] if train: path = root + '/TinyImageNet/train/' else: path = root + '/TinyImageNet/val/' self.data = np.load(path + 'data.npy') self.targets = np.load(path + 'targets.npy') def concatenate(self, datas, labels): con_data = datas[0] con_label = labels[0] for i in range(1, len(datas)): con_data = np.concatenate((con_data, datas[i]), axis=0) con_label = np.concatenate((con_label, labels[i]), axis=0) con_label = np.array(con_label, dtype=np.int64) return con_data, con_label def getTestData(self, classes): datas, labels = [], [] for label in range(classes[0], classes[1]): data = self.data[np.array(self.targets) == label] datas.append(data) labels.append(np.full((data.shape[0]), label)) datas, labels = self.concatenate(datas, labels) self.TestData = datas if self.TestData == [] else np.concatenate((self.TestData, datas), axis=0) self.TestLabels = labels if self.TestLabels == [] else np.concatenate((self.TestLabels, labels), axis=0) print("the size of test set is %s" % (str(self.TestData.shape))) print("the size of test label is %s" % str(self.TestLabels.shape)) def getTestData_up2now(self, classes): datas, labels = [], [] for label in range(classes[0], classes[1]): data = self.data[np.array(self.targets) == label] datas.append(data) labels.append(np.full((data.shape[0]), label)) datas, labels = self.concatenate(datas, labels) self.TestData = datas self.TestLabels = labels print("the size of test set is %s" % (str(datas.shape))) print("the size of test label is %s" % str(labels.shape)) def getTrainData(self, classes): datas, labels = [], [] for label in range(classes[0], classes[1]): data = self.data[np.array(self.targets) == label] datas.append(data) labels.append(np.full((data.shape[0]), label)) self.TrainData, self.TrainLabels = self.concatenate(datas, labels) print("the size of train set is %s" % (str(self.TrainData.shape))) print("the size of train label is %s" % str(self.TrainLabels.shape)) def getTrainItem(self, index): img, target = Image.fromarray(self.TrainData[index]), self.TrainLabels[index] if self.transform: img = self.transform(img) if self.target_transform: target = self.target_transform(target) return index, img, target def getTestItem(self, index): img, target = Image.fromarray(self.TestData[index]), self.TestLabels[index] if self.test_transform: img = self.test_transform(img) if self.target_test_transform: target = self.target_test_transform(target) return index, img, target def __getitem__(self, index): if self.TrainData != []: return self.getTrainItem(index) elif self.TestData != []: return self.getTestItem(index) def __len__(self): if self.TrainData != []: return len(self.TrainData) elif self.TestData != []: return len(self.TestData) def get_image_class(self, label): return self.data[np.array(self.targets) == label]
ruixiang-wang/Incremental-Learning-Research
PRE-master/TinyImageNet.py
TinyImageNet.py
py
4,064
python
en
code
4
github-code
6
40565109992
# 1-Escribe un programa que pida al usuario una palabra y luego imprima cada # letra de la palabra en una línea separada def programa(): usuario = list(input('Ingresa una palabra: ')) contador = 0 while len(usuario) > contador: print(usuario[contador]) contador += 1 programa()
maximiliano1997/informatorio-2023
Week-3/Ejercicios Estructuras de Datos Loops/ejercicio1.py
ejercicio1.py
py
313
python
es
code
0
github-code
6
38365303311
from datetime import datetime, timedelta import logging import os import json import pandas as pd import requests try: from .exceptions import ApexApiException except: from exceptions import ApexApiException class Apex_API: def __init__(self, api_key: str): self.api_key = api_key logging.basicConfig( level=logging.INFO, format="[%(levelname)s] %(asctime)s %(message)s", datefmt="%Y-%m-%d %I:%M:%S %p", # this defines the date format for the (asctime) part above handlers=[logging.StreamHandler()], # this means store logs to a example.log file as well as print them to the terminal ) logging.getLogger("requests").setLevel( logging.WARNING ) # get rid of https debug gahbage def ___iter__(self): logging.info("what") def __str__(self): return "Apex API Client Object" def __repr__(self): return "Apex API" def get_apex_player_stats(self, player: str) -> pd.DataFrame: try: data = requests.get( f"https://api.mozambiquehe.re/bridge?version=5&platform=PC&player={player}&auth={self.api_key}" ) logging.info( f"Grabbing data for Player {player}, Status Code was {data.status_code}" ) df = data.json() return df except BaseException as e: logging.error(e) raise ApexApiException def get_apex_map_rotation(self) -> pd.DataFrame: try: data = requests.get( f"https://api.mozambiquehe.re/maprotation?version=2&auth={self.api_key}" ) logging.info( f"Grabbing data for current Map Rotation, Status Code was {data.status_code}" ) df = data.json() df_current = pd.DataFrame([df["battle_royale"]["current"]]) df_current["type"] = "current" df_next = pd.DataFrame([df["battle_royale"]["next"]]) df_next["remainingSecs"] = 0 df_next["remainingMins"] = 0 df_next["remainingTimer"] = "00:00:00" df_next["type"] = "next" df_combo = pd.concat([df_current, df_next]) logging.info(f"Grabbing {len(df_combo)} Records for Apex Map Rotation") return df_combo except BaseException as e: logging.error(e) raise ApexApiException
jyablonski/apex_api_scraper
src/utils.py
utils.py
py
2,484
python
en
code
0
github-code
6
71634094907
################### PRACTICAL_ EMAIL SLICING ########################## name = input('please enter your name: ') email = input('please enter your email: ') name = name.strip().capitalize() username = email[:email.index('@')] username = username.strip().capitalize() website = email[email.index('@') + 1:] print(f'Hello {name} we are happy to meet you, ') print(f'your username is {username} and your website is {website}')
AhmadFouda/Python-proplem-solving
email_slicing.py
email_slicing.py
py
425
python
en
code
0
github-code
6
40129830394
""" Get Distances of Shortest Path (Dijkstra) edges: dict<from:int, dict<to:int, cost:number>> """ from heapq import heappush, heappop def one_to_one( start, goal, num_vertexes, edges, INF=9223372036854775807, UNREACHABLE=-1): distances = [INF] * num_vertexes distances[start] = 0 queue = [(0, start)] while queue: d, frm = heappop(queue) if distances[frm] < d: # already know shorter path continue if frm == goal: return d for to in edges[frm]: new_cost = distances[frm] + edges[frm][to] if distances[to] > new_cost: # found shorter path distances[to] = new_cost heappush(queue, (distances[to], to)) return UNREACHABLE def one_to_all( start, num_vertexes, edges, INF=9223372036854775807): distances = [INF] * num_vertexes distances[start] = 0 queue = [(0, start)] while queue: d, frm = heappop(queue) if distances[frm] < d: # already know shorter path continue for to in edges[frm]: new_cost = distances[frm] + edges[frm][to] if distances[to] > new_cost: # found shorter path distances[to] = new_cost heappush(queue, (distances[to], to)) return distances def one_to_all_bfs(start, num_vertexes, edges, INF=9223372036854775807): """ when all cost is 1, BFS is faster (ABC170E) """ distances = [INF] * num_vertexes distances[start] = 0 to_visit = [start] while to_visit: next_visit = [] for frm in to_visit: for to in edges[frm]: new_cost = distances[frm] + 1 if new_cost < distances[to]: distances[to] = new_cost next_visit.append(to) to_visit = next_visit return distances # --- end of library --- def debug(*x, msg=""): import sys print(msg, *x, file=sys.stderr) def solve(N, M, edges): INF = 9223372036854775807 ret = INF for start in range(N): distances = one_to_all(start, N, edges) debug(distances, msg=":distances") ret = min(ret, max(distances)) return ret def main(): # verified https://atcoder.jp/contests/abc012/tasks/abc012_4 N, M = map(int, input().split()) from collections import defaultdict edges = defaultdict(dict) for _i in range(M): A, B, T = map(int, input().split()) edges[A - 1][B - 1] = T edges[B - 1][A - 1] = T print(solve(N, M, edges)) # tests T1 = """ 3 2 1 2 10 2 3 10 """ TEST_T1 = """ >>> as_input(T1) >>> main() 10 """ T2 = """ 5 5 1 2 12 2 3 14 3 4 7 4 5 9 5 1 18 """ TEST_T2 = """ >>> as_input(T2) >>> main() 26 """ T3 = """ 4 6 1 2 1 2 3 1 3 4 1 4 1 1 1 3 1 4 2 1 """ TEST_T3 = """ >>> as_input(T3) >>> main() 1 """ def _test(): import doctest doctest.testmod() g = globals() for k in sorted(g): if k.startswith("TEST_"): print(k) doctest.run_docstring_examples(g[k], g, name=k) def as_input(s): "use in test, use given string as input file" import io f = io.StringIO(s.strip()) g = globals() g["input"] = lambda: bytes(f.readline(), "ascii") g["read"] = lambda: bytes(f.read(), "ascii") if __name__ == "__main__": import sys input = sys.stdin.buffer.readline read = sys.stdin.buffer.read sys.setrecursionlimit(10 ** 6) if sys.argv[-1] == "-t": print("testing") _test() sys.exit() main() # end of snippets/main.py
nishio/atcoder
libs/dijkstra.py
dijkstra.py
py
3,668
python
en
code
1
github-code
6
75189168508
import ALU, I_MEM, CLK, PC, REG_BANK, D_MEM, threading #OpCode = 0000 0000 # Im[-1] instr class CONTROL_UNIT(threading.Thread): def __init__(self, LongRegFtoD, OpCode): self.OpCode = OpCode self.MyLongRegFtoD = LongRegFtoD self.ALUControl = OpCode[4:8] #indica si usa la Dir_B o si usa Reg[Dir_B] #if(type(OpCode) == str): self.Imm = int(OpCode[3:4],2) #para mux de WB self.MemOrRegW = int(OpCode[2:3],2) #MemW/WE habilita a D_Mem para escritura self.MemW = int(OpCode[1:2],2) #RegW/WE habilita a REG_BANK para escritura self.RegW = int(OpCode[0:1],2) threading.Thread.__init__(self, target = self.setSignals, args = ()) #cuidado con el clock def setSignals(self): while True: self.Imm = int(self.MyLongRegFtoD.OpCode[2:3],2) self.MemW = int(self.MyLongRegFtoD.OpCode[1:2],2) self.MemOrRegW = int(self.MyLongRegFtoD.OpCode[2:3],2) self.RegW = int(self.MyLongRegFtoD.OpCode[2:3],2) self.ALUControl = self.MyLongRegFtoD.OpCode[4:8]
ger534/Proyecto2Arqui2
procesador/CONTROL_UNIT.py
CONTROL_UNIT.py
py
1,126
python
en
code
0
github-code
6
72579615228
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 17 11:47:02 2019 @author: hwan - Took out relevant code from dolfin's plotting.py _plot_matplotlib code - To enter dolfin's own plotting code, use dl.plot(some_dolfin_object) wheresome_dolfin_object is a 3D object and an error will be thrown up """ import matplotlib.pyplot as plt import dolfin.cpp as cpp import pdb #Equivalent of keyboard in MATLAB, just add "pdb.set_trace()" def plot_3D(obj, title, angle_1, angle_2): # Importing this toolkit has side effects enabling 3d support from mpl_toolkits.mplot3d import Axes3D # noqa # Enabling the 3d toolbox requires some additional arguments plt.title(title) ax = plt.gca(projection='3d') ax.set_aspect('auto') ax.view_init(angle_1, angle_2) # For dolfin.function.Function, extract cpp_object if hasattr(obj, "cpp_object"): obj = obj.cpp_object() if isinstance(obj, cpp.function.Function): return my_mplot_function(ax, obj,) elif isinstance(obj, cpp.mesh.Mesh): return my_mplot_mesh(ax, obj) def my_mplot_mesh(ax, mesh): tdim = mesh.topology().dim() gdim = mesh.geometry().dim() if gdim == 3 and tdim == 3: bmesh = cpp.mesh.BoundaryMesh(mesh, "exterior", order=False) my_mplot_mesh(ax, bmesh) elif gdim == 3 and tdim == 2: xy = mesh.coordinates() return ax.plot_trisurf(*[xy[:, i] for i in range(gdim)], triangles=mesh.cells()) def my_mplot_function(ax, f): mesh = f.function_space().mesh() gdim = mesh.geometry().dim() C = f.compute_vertex_values(mesh) X = [mesh.coordinates()[:, i] for i in range(gdim)] return ax.scatter(*X, c=C)
cotran2/Thermal_Fin_Heat_Simulator
Utilities/plot_3D.py
plot_3D.py
py
1,852
python
en
code
0
github-code
6
19554797850
import sys sys.setrecursionlimit(2500) def dfs(graph, depth, node): parent = graph[node] - 1 if -2 == parent or depth[node] + 1 <= depth[parent]: return depth[parent] = depth[node] + 1 dfs(graph, depth, parent) def solution(n, managers): depth = [1 for _ in range(n)] for i in range(n): dfs(managers, depth, i) answer = max(depth) return answer if __name__ == "__main__": n = int(input()) managers = [int(input()) for _ in range(n)] print(solution(n, managers))
jiyoulee/problem-solving-v1
graph/115A.py
115A.py
py
554
python
en
code
0
github-code
6
73785815229
"""empty message Revision ID: 391b24b33343 Revises: e4338c095afb Create Date: 2021-06-24 16:47:10.434392 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '391b24b33343' down_revision = 'e4338c095afb' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('comments', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('post_id', sa.Integer(), nullable=False), sa.Column('body', sa.String(length=1000), nullable=False), sa.ForeignKeyConstraint(['post_id'], ['posts.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.add_column('post_reactions', sa.Column('reaction', sa.Boolean(), nullable=True)) op.drop_constraint('post_reactions_post_id_fkey', 'post_reactions', type_='foreignkey') op.create_foreign_key(None, 'post_reactions', 'posts', ['post_id'], ['id'], ondelete='CASCADE') op.drop_column('post_reactions', '_reaction') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('post_reactions', sa.Column('_reaction', sa.BOOLEAN(), autoincrement=False, nullable=True)) op.drop_constraint(None, 'post_reactions', type_='foreignkey') op.create_foreign_key('post_reactions_post_id_fkey', 'post_reactions', 'posts', ['post_id'], ['id']) op.drop_column('post_reactions', 'reaction') op.drop_table('comments') # ### end Alembic commands ###
composerben/flask-group-project
migrations/versions/20210624_164710_fix_migration.py
20210624_164710_fix_migration.py
py
1,640
python
en
code
13
github-code
6
29827630738
#This file will only be needed to run import pandas as pd import numpy as numpy from datetime import date import datetime import os class box: def __init__(self): self.task_done = "" self.no_of_day = (datetime.date.today() - date(1997, 8, 21)).days self.dest = "" self.wake_up = "" #should change in future self.sleep = "" self.social_media_time = 0 self.self_time = "" self.breakfast = False self.food_type = False self.GRE_quant = False self.GRE_quant_count = 0 self.GRE_verbal = False self.GRE_verbal_count = 0 self.ML = False self.articles_read = 0 self.words_learned = 0 self.anger = False self.exercise = False self.sad_day = False self.happy_day = False self.got_love = False self.pain = False def log(self): print("Enter your daily achievement: ") self.task_done = str(input()) print("Did you go anywhere? (Leave blank if nowhere) :") self.dest = str(input()) print("What time did you wake up? : ") self.wake_up = str(input()) print("What time did you go to sleep? : ") self.sleep = str(input()) print("How many hours on social media did you spend?") self.social_media_time = float(input()) print("How many hours for self time did you take out?") self.self_time = float(input()) #Health print("Did you have breakfast? :") self.breakfast = self._conv_bool(input()) print("Did I eat sufficiently? :") self.food_type = self._conv_bool(input()) #Studies print("Did you study Machine Learning? :") self.ML = self._conv_bool(input()) #GREStudies print("Did you study GRE_quant today? :") self.GRE_quant = self._conv_bool(input()) self.GRE_quant_count = self._get_GRE(self.GRE_quant) print("Did you study GRE verbal today? :") self.GRE_verbal = self._conv_bool(input()) self.GRE_verbal_count = self._get_GRE(self.GRE_verbal) print("How many articles did you read today? :") self.articles_read = int(input()) print("How many words did you learn today? :") self.words_learned = int(input()) #Day Review print("Did you feel anger today? :") self.anger = self._conv_bool(input()) print("Did you feel sad today? :") self.sad_day = self._conv_bool(input()) print("Were you happy today? :") self.happy_day = self._conv_bool(input()) print("Did someone love you today? :") self.got_love = self._conv_bool(input()) print("Did you exercise today? :") self.exercise = self._conv_bool(input()) print("Was your body in pain? :") self.pain = self._conv_bool(input()) def _get_GRE(self, ip): if self._conv_bool(ip): print("How many questions did you solve?") return int(input()) else: return 0 def _conv_bool(self, x): if x == 'Y' or x == 'y': return True else : return False if __name__ == '__main__': import os if not os.path.exists('./logs.csv'): df = pd.DataFrame(data = None, columns = ['no_of_day', 'task_done', 'destination', 'wake_up_time', 'sleep_time', 'social_media_time', 'self_time', 'breakfast', 'food_type', 'GRE_quant', 'GRE_quant_count', 'GRE_verbal', 'GRE_verbal_count', 'Machine_Learning', 'articles_read', 'words_learned', 'anger', 'exercise', 'sad_day', 'happy_day', 'got_love', 'pain']) print('File doesnt exist') print(df.head()) else: df = pd.read_csv('./logs.csv') print('File exists') print(df.head) b = box() b.log() df_2 = pd.DataFrame(data = [[b.no_of_day, b.task_done, b.dest, b.wake_up, b.sleep, b.social_media_time, b.self_time, b.breakfast, b.food_type, b.GRE_quant , b.GRE_quant_count, b.GRE_verbal, b.GRE_verbal_count, b.ML, b.articles_read, b.words_learned, b.anger, b.exercise, b.sad_day, b.happy_day, b.got_love, b.pain]], columns = [ 'no_of_day', 'task_done', 'destination', 'wake_up_time', 'sleep_time', 'social_media_time', 'self_time', 'breakfast', 'food_type', 'GRE_quant', 'GRE_quant_count', 'GRE_verbal', 'GRE_verbal_count', 'Machine_Learning', 'articles_read', 'words_learned', 'anger', 'exercise', 'sad_day', 'happy_day', 'got_love', 'pain']) result = df.append(df_2) result.to_csv('./logs.csv', index = False) result.head() print(os.getcwd())
Geeks-Sid/habit_organizer
main.py
main.py
py
4,237
python
en
code
0
github-code
6
40370617674
''' Leer un número entero de dos dígitos y determinar si los dos dígitos son iguales. ''' def numero(n): if int(n) >= 10 and int(n) <= 99: if int(n[0]) == int(n[1]): return True else: return False Dosdigitos = input("Ingrese un número: ") respuesta = numero(Dosdigitos) if respuesta == True: print("El número tiene dos digitos iguales") else: print("El número no tiene los dos digitos iguales")
Natacha7/Python
Ejercicios_unidad2.py/DosDigitos_iguales.py
DosDigitos_iguales.py
py
451
python
es
code
0
github-code
6
2580004662
from odoo import models, fields class AccountTaxWithholdingRule(models.Model): _name = "account.tax.withholding.rule" _description = "account.tax.withholding.rule" _order = "sequence" sequence = fields.Integer( default=10, ) # name = fields.Char( # required=True, # ) domain = fields.Char( required=True, default="[]", help='Write a domain over account voucher module' ) tax_withholding_id = fields.Many2one( 'account.tax', 'Tax Withholding', required=True, ondelete='cascade', ) percentage = fields.Float( 'Percentage', digits=(16, 4), help="Enter % ratio between 0-1." ) fix_amount = fields.Float( 'Amount', digits='Account', help="Fixed Amount after percentaje" )
ingadhoc/account-payment
account_withholding_automatic/models/account_tax_withholding_rule.py
account_tax_withholding_rule.py
py
854
python
en
code
42
github-code
6
73750770109
from operator import index from meal import Meal import json import sqlite3 class Meal_Data: """Data layer to be used in conjunction with the Meal class""" def __init__(self, filename = "foodinfo.json"): """Initializes Meal_Data""" self.filename = filename def meal_add(self, meal:Meal): """Stores an instance of the Meal class inside foodinfo.json""" dupe_check = self.meal_find(meal.name) if dupe_check == None: meals = self.meal_get() meals.append(meal) self.meal_save(meals) else: error_message = f"A meal by the name '{meal.name.title()}' already exists." print(error_message) return def meal_save(self, meals:list) -> None: """Saves a list of meals to the JSON""" jsonmeals = [] # -- Following for loop converts objects in meal list (jsonmeals) into dictionaries -- for mealobj in meals: jsonmeal = mealobj.as_dict() jsonmeals.append(jsonmeal) # -- Following two lines converts the list of dictionaries made above into JSON format and saves to foodinfo.json -- # TODO: Handle Missing File f = open(self.filename, 'w') f.flush() json.dump(jsonmeals, f, indent=2) f.close() # -- Next two lines print out to string the list of Meals in JSON format -- # jsondump = json.dumps(jsonmeals, indent=2) # print(jsondump) return # -- TODO : make a function to delete a Meal object that is stored inside foodinfo.json -- def meal_del(self, name:str): """Removes an instance of the Meal class inside foodinfo.json""" meals = self.meal_get() # Loop over all meals and remove for meal in meals: if meal.name == name: index = meals.index(meal) del meals[index] else: pass # END FOR self.meal_save(meals) def meal_get(self) -> list[Meal]: """Returns a list of meals""" try: f = open(self.filename) # TODO : If the foodinfo.json is not found it should make a .json file by that name -- except FileNotFoundError: error_message = f"\nFile {self.filename} was not found.\n" print(error_message) return [] # Explicit flush to ensure we have the latest version of the file on disk f.flush() try: jsondata = json.load(f) # -- When the following error occurs, the list of meals is simply left as an empty list -- except json.JSONDecodeError: # crete empty JSONData for following loop jsondata = [] # Close file handle f.close() # -- The folowing for loop takes the JSON objects found in foodinfo.json and turns them into Python objects -- # -- and then appends those objects into the meals list meals = [] for item in jsondata: meal = Meal(item['name'],item['protein'],item['cost'],item['difficulty']) meals.append(meal) return meals def meal_find(self, name:str) -> Meal: """Returns a specific meal object when searching for a meal by name""" meals = self.meal_get() # -- The following for loop cycles through the meals list looking for a matching meal name # -- If the meal name inquired is not found - the loop will return None for obj in meals: if obj.name == name: return obj return None
zaepho/DinnerDecider
mealdata.py
mealdata.py
py
3,719
python
en
code
0
github-code
6
22807758362
import time import random import threading """ 信号量(英语:Semaphore)又称为信号标,是一个同步对象,用于保持在0至指定最大值之间的一个计数值。 当线程完成一次对该semaphore对象的等待(wait)时,该计数值减一; 当线程完成一次对semaphore对象的释放(release)时,计数值加一。 当计数值为0,则线程等待该semaphore对象不再能成功直至该semaphore对象变成signaled状态。 semaphore对象的计数值大于0,为signaled状态;计数值等于0,为nonsignaled状态. semaphore对象适用于控制一个仅支持有限个用户的共享资源,是一种不需要使用忙碌等待(busy waiting)的方法。 """ semaphore = threading.Semaphore(value=0) # 默认值为1, 赋值小于0会ValueError异常 def consumer(): print("consumer is waiting.") semaphore.acquire() # 获取信号量 print("Consumer notify: consumered item number %s" %item) def producer(): global item time.sleep(3) item = random.randint(0, 1000) print("Producer notify: producer item number %s" %item) # 释放信号量, 将内部的counter值加1, 当其值等于0时, 另一个线程会在此等待它的值变为大于0, 并唤醒该线程. semaphore.release() if __name__ == "__main__": for _ in range(5): th1 = threading.Thread(target=producer) th2 = threading.Thread(target=consumer) th1.start() th2.start() th1.join() th2.join() print("program terminated.")
sola1121/practice_code
python3/python并行编程手册/ch02/P42_使用信号量实现线程同步_生产者-消费者模型.py
P42_使用信号量实现线程同步_生产者-消费者模型.py
py
1,558
python
zh
code
0
github-code
6
12056898935
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Code for this script is originally at: https://github.com/dfm/george/blob/master/docs/_code/model.py """ from __future__ import division, print_function import emcee import triangle import numpy as np import cPickle import matplotlib.pyplot as pl import george from george import kernels def model(params, t): amp, loc, sig2 = params return amp * np.exp(-0.5 * (t - loc) ** 2 / sig2) def lnprior_base(p): """ notice how the p are inferred in the original scale """ amp, loc, sig2 = p if not -10 < amp < 10: return -np.inf if not -5 < loc < 5: return -np.inf if not 0 < sig2 < 3.0: return -np.inf return 0.0 def fit_ind(initial, data, nwalkers=32): ndim = len(initial) p0 = [np.array(initial) + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob_ind, args=data) print("Running burn-in") p0, _, _ = sampler.run_mcmc(p0, 500) sampler.reset() print("Running production") p0, _, _ = sampler.run_mcmc(p0, 1000) return sampler def lnlike_gp(p, t, y, yerr): """ notice how a and tau needs to be exponentiated meaning that a and tau are supplied in the log scale """ a, tau = np.exp(p[:2]) gp = george.GP(a * kernels.Matern32Kernel(tau)) gp.compute(t, yerr) return gp.lnlikelihood(y - model(p[2:], t)) def lnprior_gp(p): """more obvious that p is initiated in the log scale """ lna, lntau = p[:2] if not -5 < lna < 5: return -np.inf if not -5 < lntau < 5: return -np.inf return lnprior_base(p[2:]) def lnprob_gp(p, t, y, yerr): lp = lnprior_gp(p) if not np.isfinite(lp): return -np.inf return lp + lnlike_gp(p, t, y, yerr) def fit_gp(initial, data, nwalkers=32): ndim = len(initial) # start chains at slightly different places in parameter space p0 = [np.array(initial) + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob_gp, args=data) print("Running burn-in") p0, lnp, _ = sampler.run_mcmc(p0, 500) sampler.reset() print("Running second burn-in") p = p0[np.argmax(lnp)] p0 = [p + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] p0, _, _ = sampler.run_mcmc(p0, 500) sampler.reset() print("Running production") p0, _, _ = sampler.run_mcmc(p0, 1000) return sampler def generate_data(params, N, rng=(-5, 5)): gp = george.GP(params[0] * kernels.ExpSquaredKernel(params[1])) # initialize t for drawing the data points t = rng[0] + np.diff(rng) * np.sort(np.random.rand(N)) ## modify the following y = gp.sample(t) y += model(params[2:], t) yerr = 0.05 + 0.05 * np.random.rand(N) y += yerr * np.random.randn(N) # y = model(params[2:], t) # yerr = gp.sample(t) # 0.05 + 0.05 * np.random.rand(N) #y += yerr * np.random.randn(N) return t, y, yerr if __name__ == "__main__": np.random.seed(1234) #truth = [0.1, 1.0, 0, 0.1, 0.4] truth = [0.1, 3.3, -1.0, 0.1, 0.4] t, y, yerr = generate_data(truth, 50) pl.errorbar(t, y, yerr=yerr, fmt=".k", capsize=0) pl.ylabel(r"$y$") pl.xlabel(r"$t$") pl.xlim(-5, 5) pl.title("simulated data") pl.savefig("data.png", dpi=150) ## Fit assuming independent. # print("Fitting independent") # data = (t, y, 1.0 / yerr ** 2) # truth_ind = [0.0, 0.0] + truth # sampler = fit_ind(truth_ind, data) ## Plot the samples in data space. # print("Making plots") # samples = sampler.flatchain # x = np.linspace(-5, 5, 500) # for s in samples[np.random.randint(len(samples), size=24)]: # pl.plot(x, model(s[2:], x)+s[0]*x+s[1], color="#4682b4", alpha=0.3) # pl.title("results assuming uncorrelated noise") # pl.savefig("ind-results.png", dpi=150) ## Make the corner plot. # fig = triangle.corner(samples[:, 2:], truths=truth, labels=labels) # fig = triangle.corner(samples[:, :], truths=truth, labels=labels) # fig.savefig("ind-corner.png", dpi=150) # Fit assuming GP. print("Fitting GP") data = (t, y, yerr) # truth is originally set to be [0.0, 0.0] by dfm, in log scale truth_gp = truth + 1e-8 * np.random.randn(len(truth)) # [0.0, 0.0] + truth[2:] sampler = fit_gp(truth_gp, data) # Plot the samples in data space. print("Making plots") samples = sampler.flatchain x = np.linspace(-5, 5, 500) pl.figure() pl.errorbar(t, y, yerr=yerr, fmt=".k", capsize=0) for s in samples[np.random.randint(len(samples), size=24)]: # sampled parameters have to be exponentiated gp = george.GP(np.exp(s[0]) * kernels.Matern32Kernel(np.exp(s[1]))) gp.compute(t, yerrtruth) m = gp.sample_conditional(y - model(s[2:], t), x) + model(s[2:], x) pl.plot(x, m, color="#4682b4", alpha=0.3) pl.ylabel(r"$y$") pl.xlabel(r"$t$") pl.xlim(-5, 5) pl.title("results with Gaussian process noise model") pl.savefig("gp-results.png", dpi=150) # Make the corner plot. labels = [r"$\ln a^2$", r"$\ln \tau$", r"$\alpha$", r"$\ell$", r"$\sigma^2$"] #fig = triangle.corner(samples[:, 2:], truths=truth, labels=labels) # follow the original script to plot the hp in log space truth[0] = np.log(truth[0]) truth[1] = np.log(truth[1]) cPickle.dump(truth, open("truth.pkl", "w")) cPickle.dump(samples, open("samples.pkl", "w")) # only plot the hyperparameters fig = triangle.corner(samples, truths=truth, labels=labels, size=30) fig.savefig("gp-corner.png", dpi=150)
karenyyng/shear_gp
george_examples/model.py
model.py
py
5,729
python
en
code
1
github-code
6
27330667755
import requests import time from bs4 import BeautifulSoup import urllib.request import re import json start_time = time.time() link_3 = [] link_4 = [] link_5 = [] link_6 = [] links = [] g = "" b = "" d = "" y = "" ya = "" ask = "" domain = "" emails = [] new_emails = [] mails = [] def crawl(request_url): try: response = requests.get(request_url) new_emails = re.findall(r"[a-z0-9\.\-+_]+@" + domain, response.text) if new_emails: emails.append(new_emails) except: pass return emails def get_links(url): link_result = [] request = urllib.request.Request(url) response = urllib.request.urlopen(request) html_page = response.read() soup = BeautifulSoup(html_page, "lxml") for link in soup.findAll('a'): d = link.get('href') link_result.append(d) return link_result if __name__ == '__main__': domain = input("enter the domain:") url_d = 'https://duckduckgo.com/?q=email+"%40"+++'+domain+'+++""&ia=web&count=50&first=51' link_3 = get_links(url_d) url_y = 'https://in.search.yahoo.com/search?p=%5B%40"%20+%20'+domain+'%20+%20"%5D&pz=100' link_4 = get_links(url_y) url_ya = 'https://yandex.com/search/?text="%40"%20%20%20'+domain+'%20%20%20""&lr=20983' link_5 = get_links(url_ya) url_ask = "https://www.ask.com/web?q=email+"+domain+"&o=0&qo=homepageSearchBox" link_6 = get_links(url_ask) links = link_3 + link_4 + link_5 + link_6 nodup_link = list(set(links)) filtered_links = [i for i in nodup_link if re.search("http", i)] final_links = list(set(filtered_links)) mails = [crawl(f) for f in final_links] final_emails = [] for flat_lists in mails: for flat_list in flat_lists: item_list = list(set(flat_list)) for item in item_list: if item not in final_emails: final_emails.append(item) print(final_emails) data = {} data.update({ 'domain': domain, 'mails': final_emails }) print(data) with open('data.json', 'w') as outfile: json.dump(data, outfile) # print("--- %s seconds ---" % (time.time() - start_time))
realchief/EmailScraping-BeautifulSoup
filter_crwl_dft_srchegn_updated.py
filter_crwl_dft_srchegn_updated.py
py
2,298
python
en
code
0
github-code
6
39792208434
from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import utils from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.ciphers.aead import AESGCM from cryptography.hazmat.primitives import hashes, cmac from cryptography.exceptions import InvalidSignature from cryptography.exceptions import InvalidTag import os class Security: def __init__(self,path,BackupPath): """ Initialize the security module loading,using the path passed as argument,if present the private and public key, otherwise generating and saving it :type path: String :param path: The path of the pem file in which the private key must be written :type backupPath: String :param backupPath: The path of the pem file in which the private key must be written """ try: with open(path,"rb") as pem: try: self.privateKey = serialization.load_pem_private_key(pem.read(),password=b'ServerMPSprivatekey',backend=default_backend()) self.publicKey = self.privateKey.public_key() except ValueError: try: with open(BackupPath,"rb") as backup: backup_key = serialization.load_pem_private_key(backup.read(),password=b'ServerMPSprivatekey',backend=default_backend()) with open(path,"wb") as pem_write: self.privateKey = backup_key self.publicKey = self.privateKey.public_key() serializedPrivateKey = backup_key.private_bytes(encoding=serialization.Encoding.PEM,format=serialization.PrivateFormat.PKCS8,encryption_algorithm=serialization.BestAvailableEncryption(b'ServerMPSprivatekey')) pem_write.write(serializedPrivateKey) except FileNotFoundError: self.generate_key(path,BackupPath) except FileNotFoundError: try: with open(BackupPath,"rb") as backup,open (path,"wb") as pem: try: backup_key = serialization.load_pem_private_key(backup.read(),password=b'ServerMPSprivatekey',backend=default_backend()) SerializedPrivateKey = backup_key.private_bytes(encoding=serialization.Encoding.PEM,format=serialization.PrivateFormat.PKCS8,encryption_algorithm=serialization.BestAvailableEncryption(b'ServerMPSprivatekey')) self.privateKey = backup_key self.publicKey = self.privateKey.public_key() pem.write(SerializedPrivateKey) except ValueError: self.generate_key(path,BackupPath) except FileNotFoundError: with open(path,"wb") as pem, open(BackupPath,"wb") as backup: self.generate_key(path,BackupPath) def generate_key(self,path,backupPath): """ Generate and write the private key :type path: String :param path: The path of the pem file in which the private key must be written :type backupPath: String :param backupPath: The path of the pem file in which the private key must be written """ with open(path,"wb") as pem, open(backupPath,"wb") as backup: self.privateKey = rsa.generate_private_key(public_exponent=65537,\ key_size=8196,\ backend=default_backend()) self.publicKey = self.privateKey.public_key() serializedPrivateKey = self.privateKey.private_bytes(encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.BestAvailableEncryption(b'ServerMPSprivatekey')) pem.write(serializedPrivateKey) backup.write(serializedPrivateKey) def RSAEncryptText(self,text): """ Encrypt the text using RSA with the public key of the handled client :type text: Bytes :param text: The plain text that must be encrypted :rtype: Bytes :return: The cipher text relative to the plain text passed as argument """ cipherText = self.ClientPublicKey.encrypt(text, padding.OAEP(mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None ) ) return cipherText def RSADecryptText(self,cipherText): """ Decrypt the message using your own private key :type cipherText: Bytes :param cipherText: The cipher text that must be decrypted :rtype: Bytes :return plaintext: the plain text obtained by decriptying the plain text passed as argument """ plaintext = self.privateKey.decrypt(cipherText, padding.OAEP(mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None ) ) return plaintext def splitMessage(self,data,len): """ Split the message in two part, usefull when you need to compare a message with a digest or a signature :type data: Bytes :param data: The Data that must be divided in two parts :type len: Int :param len: The point in which the list must be divided :rtype: <Bytes,Bytes> :return: The touple of lists obtained by dividing in two part the original data : """ return [data[0:len*(-1)],data[len*(-1):]] def generateDigest(self,data): """ Generate the digest of the message (in bytes) using SHA-256 :type data: Bytes :param data: The data of which we want generate the digest :rtype: Bytes :return: The digest of the data passed as argument """ digest = hashes.Hash(hashes.SHA256(), backend=default_backend()) digest.update(data) return digest.finalize() def getSignature(self,data): """ Generate a signature by the private key :type data: Bytes :param data: The data we want to sign :rtype: Bytes :return:The signature of the data passed as argument """ signature = self.privateKey.sign(data, padding.PSS(mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH ), hashes.SHA256() ) return signature def VerifySignature(self,data,signature): """ Verify if the signature,generated by the private key of the client,is associated to the data :type data: Bytes :param data: The data we want to verify :type signature: Bytes :param signature: The signature used to check :rtype: Boolean :return: If the signature is correct or not """ try: self.ClientPublicKey.verify(signature,data,padding.PSS(mgf=padding.MGF1(hashes.SHA256()),salt_length=padding.PSS.MAX_LENGTH),hashes.SHA256()) return True except InvalidSignature: return False def AddClientKey(self,key): """ Add the public key of the client, in order to use them when it is necessary to encrypt using RSA, pass the key encoded by 'utf-8' :type key: Bytes :param key: The public key of the client we want to add """ self.ClientPublicKey = serialization.load_pem_public_key(key,backend=default_backend()) def getSerializedPublicKey(self): """ Get the server public key serializable (it must be decoded) in order to get it printable and sendable :rtype: Bytes :return: The public key of the client """ return self.publicKey.public_bytes(encoding=serialization.Encoding.PEM,format=serialization.PublicFormat.SubjectPublicKeyInfo) def getSerializedClientPublicKey(self): """ Get the server public key serializable (it must be decoded) in order to get it printable and sendable :rtype: Bytes :return: The public key of the client """ return self.ClientPublicKey.public_bytes(encoding=serialization.Encoding.PEM,format=serialization.PublicFormat.SubjectPublicKeyInfo) def generateSymmetricKey(self,len,nonce): """ Generate a symmetric key used in AESGCM with a lenght (suggested 192/256 bit ) and pass a nonce used with the key to cipher a text (each operation has its own couple of <key,nonce> in order to guarantee security) :type len: Int :param len: The lenght of the symmetric key (in bit) :type nonce: Int :param nonce: The nonce used to encrypt/decrypt :rtype: Int :return: The operations are done correctly """ self.nonce = nonce self.len = len self.SymmetricKey = AESGCM.generate_key(bit_length=self.len); return 0 def getSymmetricKey(self): """ Get the symmetric key as bytes, if you want to serialize it you have to transform it (suggested in integer with a number of intger nessary = bit_length of key / 8, becaues each integer reppresent a byte) :rtype: Bytes :return: The symmetric key used to encrypt/decrypt """ return self.SymmetricKey def AddPacketNonce(self,nonce): """ Add the nonce used in the AES when is necessary to encapsulate some information about the starter of the conversation between two user :type nonce: Int :param nonce: The nonce used to encrypt the packets necessary to exchange key from two clients """ self.packetNonce = nonce def AESDecryptText(self,ct): """ Cipher text with AES and GCM in order to guarantee autenthicity and integrity of the message, the handling of the nonce is provided by the function itself (each encyption/decryption must increment the nonce in order to maintain it always synchronized on the two side ) :type ct: Bytes :param ct: The cipher text to decrypt :rtype: Bytes or None :return: The plain text obtained by decrypting the cipher text passed as parameter """ try: aescgm = AESGCM(self.SymmetricKey) self.nonce = self.nonce+1 pt = aescgm.decrypt(self.nonce.to_bytes(16,byteorder='big'),ct,None) return pt except: return None def AESEncryptText(self,pt): """ Cipher text with AES and GCM in order to guarantee autenthicity and integrity of the message, the handling of the nonce is provided by the function itself (each encyption/decryption must increment the nonce in order to maintain it always synchronized on the two side ) :type pt: Bytes :param pt: The plain text to encrypt :type ct: Bytes or None :param ct: The cipher text obtained by encrypting the plain text passed as argument """ try: aesgcm = AESGCM(self.SymmetricKey) self.nonce = self.nonce + 1 return aesgcm.encrypt(self.nonce.to_bytes(16,byteorder='big'), pt, None) except: return None def PacketAESEncryptText(self,pt): """ Cipher text with AES and a special nonce (sended by the client during the login procedure) in order to encapsulate some information useful for the exchange of key between two online user :type pt: Bytes :param pt: The plain text to encrypt :rtype: Bytes or None :return: The cipher text obtained by encrypting the plain text passed as argument """ try: aesgcm = AESGCM(self.SymmetricKey) self.packetNonce = self.packetNonce + 1 return aesgcm.encrypt(self.packetNonce.to_bytes(16,byteorder='big'), pt, None) except: return None def addDHparameters(self,p,g): """ Add the DH parameter, in orde to retrieve efficiently when necessary :type p: Int :param p: the Diffie Hellman P parameter :type g: Int :param g: The Diffie Hellman G parameter """ self.p = p self.g = g def getDHparameters(self): """ Get the DH parameters as a list [p,g] :rtype: [Int,Int] :return: The tuple composed by the two DH parameters """ return [self.p,self.g] def generateNonce(self,size): """ Generate a nonce of a dimension chosed (in bytes) a get it as an Integer encoded in Big Endian :type size: Int :param size: The size (in Bytes) of the nonce :rtype: Int :return: A nonce generated using the system call specific for cryptography purpose of the dimensione passed as argument """ return int.from_bytes(os.urandom(size),byteorder='big')
SieniAlessandro/E2E-Secure-Chat
Server/Security/Security.py
Security.py
py
14,411
python
en
code
1
github-code
6
33346153360
# -*- coding: utf-8 -*- """ Created on Wed Aug 05 11:52:00 2015 @author: Vahndi """ import pandas as pd from numpy import float64, random, inf class Optimiser(object): def __init__(self, categoricalSettings, oldResultsDataFrame = None, resultsColumn = 'Results', noImprovementStoppingRounds = None, floatRounding = 3): ''' Arguments: :categoricalSettings: a {dict of settingName, [setting1, setting2, ...]} :oldResultsDataFrame: a pandas DataFrame of existing results to use in the selection of new settings :resultsColumn: the name of the results column in the results DataFrame :floatRounding: the number of decimal places to round float values to ''' self.categoricalSettings = categoricalSettings self.resultsColumn = resultsColumn self.resultsDataFrame = oldResultsDataFrame self.floatRounding = floatRounding self.categories = sorted(list(self.categoricalSettings.keys())) self.numCategories = len(self.categories) self.currentCategoryIndex = 0 self.noImprovementStoppingRounds = noImprovementStoppingRounds # Initialise current settings to random values self.initialiseRandomSettings() def initialiseRandomSettings(self): ''' Randomly set the settings to different values ''' self.roundsNoImprovement = 0 self.currentSettings = {} for category in self.categories: self.currentSettings[category] = Optimiser._getRandomValue(self.categoricalSettings[category]) @classmethod def _getRandomValue(cls, fromList): return fromList[random.randint(len(fromList))] def isFinished(self): return False def hasResultFor(self, settings): if self.resultsDataFrame is None: return False else: dfSub = self.resultsDataFrame for category in settings.keys(): categoryValue = settings[category] dfSub = dfSub[dfSub[category] == categoryValue] return dfSub.shape[0] > 0 def getNextSettings(self): ''' Returns a list of settings to try next ''' if self.noImprovementStoppingRounds is not None: if self.roundsNoImprovement == self.noImprovementStoppingRounds: return None # Get a list of settings across the dimension of the current category nextSettings = [] numCategoriesTried = 0 # Loop until some new settings have been acquired or all categories have been tried while not nextSettings and numCategoriesTried < self.numCategories: loopCategory = self.categories[self.currentCategoryIndex] for val in self.categoricalSettings[loopCategory]: setting = {} for category in self.categories: if category == loopCategory: setting[category] = val else: setting[category] = self.currentSettings[category] nextSettings.append(setting) # Remove any settings which already have results for nonDuplicates = [] for setting in nextSettings: if not self.hasResultFor(setting): nonDuplicates.append(setting) nextSettings = nonDuplicates # Update loop and category parameters numCategoriesTried += 1 self.currentCategoryIndex += 1 self.currentCategoryIndex = self.currentCategoryIndex % self.numCategories # Return the list of settings or None if the run is finished if not nextSettings: return None else: self._currentSettingsParameter = self.categories[(self.currentCategoryIndex - 1) % self.numCategories] return nextSettings def getCurrentSettingsParameter(self): return self._currentSettingsParameter def currentBestResult(self): if self.resultsDataFrame is None: return -inf else: return self.resultsDataFrame[self.resultsColumn].max() def addResults(self, resultsDataFrame): ''' Adds a list of results to the existing results and changes the current settings to the best result so far ''' # Add results to any existing results if self.resultsDataFrame is None: self.resultsDataFrame = resultsDataFrame else: # Check for improvement if self.currentBestResult() >= resultsDataFrame[self.resultsColumn].max(): self.roundsNoImprovement += 1 else: self.roundsNoImprovement = 0 # Merge results with existing results self.resultsDataFrame = pd.concat([self.resultsDataFrame, resultsDataFrame], ignore_index=True) df = self.resultsDataFrame # Get the best result so far and change the current settings to the settings that produced it bestResult = df[self.resultsColumn].max() bestSettingsRow = df[df[self.resultsColumn] == bestResult].iloc[0] for category in self.categories: categoryValue = bestSettingsRow[category] if type(categoryValue) in (float64, float): categoryValue = round(categoryValue, self.floatRounding) if categoryValue == round(categoryValue, 0): categoryValue = int(round(categoryValue, 0)) self.currentSettings[category] = categoryValue def saveResults(self, filePath): self.resultsDataFrame.to_csv(filePath)
vahndi/mazurka_classifier
ncd/optimiser.py
optimiser.py
py
5,947
python
en
code
0
github-code
6
31036686251
tampungan_barang = [] # Tambah barang def tambah_barang(): print(' TAMBAH BARANG ') while True : barang = input('Masukkan barang : ') if barang in tampungan_barang: print('Barang sudah tersedia') pass elif barang not in tampungan_barang: tampungan_barang.append(barang) pilihan = input("Tambahkan barang lagi? (y/n) : ") print("LIST BARANG".center(44,'=')) if pilihan == 'y' : print("|","Kode".center(12, ' '),"|", "Nama Barang".center(15, ' '),"|","\n") for i in tampungan_barang : print("+ ",(tampungan_barang.index(i)+1) ," |", (i).center(16, ' '),"+") else : break # Menghapus barang def hapus_barang(): print('Hapus barang'.center(44,'=')) while True : hapus = input('Masukkan nama barang yang akan dihapus : ') if hapus in tampungan_barang : tampungan_barang.remove(hapus) lanjut = input('Tekan y jika lanjut : ').upper() if lanjut == "y" : hapus_barang() else : break else : print('Barang tidak tersedia') hapus_barang() # mengedit barang : def edit_barang() : print("LIST BARANG".center(44,'=')) for i in tampungan_barang : print("+ Kode Barang ",(tampungan_barang.index(i)+1) ,"|", (i).center(15, ' '),"+") while True : print('MENU EDIT BARANG'.center(44,'=')) caribarang = input('Masukkan nama barang yang mau di edit : ') if caribarang in tampungan_barang : ubah_ke = input('Ubah ke : ') tampungan_barang[tampungan_barang.index(caribarang)] = ubah_ke for i in tampungan_barang : print("+ Kode Barang ".center(28," "),(tampungan_barang.index(i)+1) ,"|", (i).center(15, ' '),"+") print("\n",'-'*50) else : print('Barang tidak ditemukan!') pass lanjut() # lanjut def lanjut(): lanjut = input('Lanjut (y/n) : ') if lanjut == 'y' : pass else : menu() # Cek Nama Barang def nama_barang(): print("LIST BARANG".center(44,'=')) for i in tampungan_barang : print("+ Kode Barang ",(tampungan_barang.index(i)+1) ,"|", (i).center(15, ' '),"+") exit = input('Tekan enter untuk keluar : ') if exit == ' ': menu() else : menu() # Lihat barang def daftar_barang(): while True : print('MENU CEK BARANG'.center(44,'=')) cek = input('Nama barang : ') if cek in tampungan_barang : print(cek,'Tersedia!') else : print(cek,'Tidak tersedia!') lanjut = input('Cek lagi? (y/n) :') if lanjut == 'y' : daftar_barang() else : break # Cek indeks def cek_indeks(): while True : print('MENU CEK INDEKS BARANG'.center(44,'=')) cek = input('Masukkan nama barang : ') if cek in tampungan_barang : print('Barang berada pada indeks :', tampungan_barang.index(cek)) else : print('Barang tidak ada!') lanjut = input('Cek lagi? (y/n) :').upper() if lanjut == 'y' : pass else : break # menu def menu(): while True : print('-'*44) print("PROGRAM BARANG".center(44,'=')) print(''' 1. Tambah Barang 2. Hapus Barang 3. Edit Barang 4. Cek Nama Barang 5. Daftar Barang 6. Indeks Barang ''') print('-'*44) pilihan = input("Pilih menu : ") print('-'*44) if pilihan == "1" : tambah_barang() elif pilihan == "2" : hapus_barang() elif pilihan == "3" : edit_barang() elif pilihan == "4" : daftar_barang() elif pilihan == "5" : nama_barang() elif pilihan == "6" : cek_indeks() A = False exit = input('Enter untuk keluar : ') if exit == ' ': break else : print(' TERIMA KASIH '.center(44,"+")) break menu()
Mage29/Codingan_ASD_3
Program_Barang.py
Program_Barang.py
py
4,389
python
id
code
0
github-code
6
7545685477
import psycopg2 DBNAME = "news" def fetch_all(query, params): """ execute a query and fetch all result from it :param query: the query to execute :param params: parameters of the query :return: result of this query """ # it's kind time consuming every time we open and close a connection db = psycopg2.connect(database=DBNAME) c = db.cursor() c.execute(query, params) ret = c.fetchall() db.close() return ret def article_views(cnt=None): """ statistics about article views, article is consider a view if exists a http request for the article path with GET method and 200 status code :param cnt: int, optional max number of articles :return: list of (article name, view_cnt) pair ordered by views in desc order """ query = """ select title, view_cnt from articles, view_stat where concat('/article/', slug) = path order by view_cnt desc """ if cnt is not None: query += "limit (%s)" params = (cnt,) else: params = () return fetch_all(query, params) def author_views(cnt=None): """ statistics about author's all articles views :param cnt: int, optional max number of authors :return: list of (author name, view_cnt) pair ordered by views in desc order """ query = """ select name, sum(view_cnt) as view_cnt from articles, view_stat, authors where concat('/article/', slug) = path and articles.author = authors.id group by authors.id order by view_cnt desc """ if cnt is not None: query += "limit (%s)" params = (cnt,) else: params = () return fetch_all(query, params) def error_stat(threshold): """ error rate stat by day, error rate is defined as total number of failed requests(status is not 200) divided by the total number of requests a day. if a day don't have any requests it will be ignored :param threshold: double error rate bigger or equal threshold will be returned :return: list of (date, error rate) """ query = """ select date(time) as stat_date, sum(cast(status != '200 OK' as integer)) / cast(count(*) as real) as error_rate from log group by stat_date having sum(cast(status != '200 OK' as integer)) / cast(count(*) as real) >= (%s); """ return fetch_all(query, (threshold,))
akudet/fsnd-proj3
reporter_db.py
reporter_db.py
py
2,454
python
en
code
0
github-code
6
14785766794
"""User model tests.""" # run these tests like: # # python -m unittest test_user_model.py import os from unittest import TestCase from models import db, User, Message, Follows, Likes os.environ['DATABASE_URL'] = "postgresql:///warbler-test" # Now we can import app from app import app # Create our tables (we do this here, so we only create the tables # once for all tests --- in each test, we'll delete the data # and create fresh new clean test data db.drop_all() db.create_all() class MessageModelTestCase(TestCase): """Test views for messages.""" def setUp(self): """Create test client, add sample data.""" User.query.delete() Message.query.delete() Follows.query.delete() self.client = app.test_client() u = User( email="[email protected]", username="testuser", password="HASHED_PASSWORD" ) db.session.add(u) db.session.commit() self.u = u.id def test_message_model(self): """Does our Basic model work?""" # print('*********************') # print(self.u) # print('*********************') m = Message(text="Test message", user_id=self.u) db.session.add(m) db.session.commit() u = User.query.get(self.u) #Confirming that our user does indeed have a message now self.assertEqual(len(u.messages), 1) # def test_user_must_exist(self): # """Testing that a user_id must exist or a message will not submnit (will throw an error)""" # m = Message(text="Test message", user_id=10) # db.session.add(m) # db.session.commit() # all_messages = Message.query.all() # self.assertEqual(len(all_messages), 1) def test_multiple_messages(self): """Testing that a single user may indeed have mutiple messages""" m = Message(text="Test message", user_id=self.u) m2 = Message(text="Test message Take 2", user_id=self.u) db.session.add_all([m,m2]) db.session.commit() u = User.query.get(self.u) self.assertEqual(len(u.messages), 2) def test_message_date_time(self): """Testing our default date time creation if none is passed in.""" m = Message(text="Test message", user_id=self.u) db.session.add(m) db.session.commit() # print('*********************') new_message = Message.query.get(m.id) # print(new_message.timestamp) # print('*********************') self.assertIsNotNone(new_message.timestamp) def test_delete_a_msg(self): """Testing if a user is deleted than associated messages will be as well""" m = Message(text="Test message", user_id=self.u) db.session.add(m) db.session.commit() all_messages = Message.query.all() self.assertEqual(len(all_messages),1) new_message = Message.query.get(m.id) db.session.delete(new_message) db.session.commit() new_total_messages = Message.query.all() self.assertEqual(len(new_total_messages),0) def test_message_user_relationship(self): """Testing if we can gather which user the message was created by via the user relationship""" m = Message(text="Test message", user_id=self.u) db.session.add(m) db.session.commit() u = User.query.get(self.u) new_message = Message.query.get(m.id) # print('*********************') # print(new_message.user) # print('*********************') self.assertEqual(new_message.user, u)
mahado13/Twitter-Clone
test_message_model.py
test_message_model.py
py
3,685
python
en
code
0
github-code
6
36282438996
import datetime import requests from bs4 import BeautifulSoup as bs4 from flask import Flask from flask_restful import Resource, Api OYK_URL = "https://oulunkylanyhteiskoulu.fi/" def get_food() -> list: with requests.Session() as s: g = s.get(OYK_URL) bs = bs4(g.text, 'html.parser') today = datetime.date.today().weekday() day = bs.select(".food__list")[today] foods = day.find_all("p")[1].text.split("\n",) clean_food = list(filter(None, foods)) return clean_food app = Flask(__name__) api = Api(app) class Food(Resource): def get(self): try: foods = get_food() alfred = {"items": [{"title": food} for food in foods]} return alfred, 200 except: return {}, 500 api.add_resource(Food, '/food') if __name__ == "__main__": app.run(debug=True, port=5000)
drstuggels/oyk-food
main.py
main.py
py
908
python
en
code
0
github-code
6
74530223548
import numpy as np class Board: def __init__(self): self.grid = np.zeros((12, 26), dtype=int) self.score = 0 def check_in_console(self): for j in range(0, 26): for i in range(0, 12): print(self.grid[i][j], end='') print() def insert_block(self, x, y, block, sizeX, sizeY): for i in range(0, sizeX): for j in range(0, sizeY): try: if block.grid[i][j] > 0: self.grid[x + i][y + j] = block.grid[i][j] except: pass def delete_block(self, x, y, block, sizeX, sizeY): for i in range(0, sizeX): for j in range(0, sizeY): try: if block.grid[i][j] > 0: self.grid[x + i][y + j] = 0 except: pass def can_move_left(self, x, y, block, sizeX, sizeY): result = True for i in range(0, sizeY): if x <= 0: if block.grid[0 - x][i] != 0: result = False for j in range(0, sizeY): for i in range(0, sizeX - 1): if block.grid[i][j] != 0 and self.grid[x + i - 1][y + j] > 10: result = False # print("result = ", result) return result def can_move_right(self, x, y, block, sizeX, sizeY): result = True for i in range(0, sizeY): if x >= 12 - sizeX: if block.grid[11 - x][i] != 0: result = False for j in range(0, sizeY): for i in range(1, sizeX): try: if block.grid[sizeX - i][j] != 0 and self.grid[x + sizeX - i + 1][y + j] > 10: result = False except: pass # print("result = ", result) return result def check_board(self): canMoveDown = True for j in range(0, 26): for i in range(0, 12): if 10 > self.grid[i][j] > 0: if j == 25: canMoveDown = False return canMoveDown if self.grid[i][j + 1] > 10: canMoveDown = False return canMoveDown def delete_row(self, number): for i in range(0, 12): self.grid[i][number] = 0 for j in range(0, number): for i in range(0, 12): self.grid[i][number - j] = self.grid[i][number - 1 - j] for i in range(0, 12): self.grid[i][0] = 0 def upgrade_board(self): scoreCalculated = 0 for j in range(0, 26): for i in range(0, 12): if 10 > self.grid[i][j] > 0: self.grid[i][j] += 10 for j in range(0, 26): completed = True for i in range(0, 12): if self.grid[i][j] == 0: completed = False if completed: self.delete_row(j) scoreCalculated += 1 completed = True self.score = self.score + 2 ** scoreCalculated - 1 print('Score: ', self.score) def print_board_console(self): for j in range(0, 26): for i in range(0, 12): print(self.grid[i][j], end=' ') print()
Jurand76/Z2J
tetris/board.py
board.py
py
3,436
python
en
code
0
github-code
6
29457010542
#!/usr/bin/env python import sys import commands import string import datetime import logging import logging.handlers from optparse import OptionParser from random import choice def print_error(ret, do_exit=False, msg=""): """ ret is the tuple returned by commands.getstatusoutput. If ret[0] is not 0, then msg (if passed) or ret[1] is printed as an error. If do_exit is True, the program also exits """ if ret[0] != 0: if not msg: msg = ret[1] logging.error("Check the following information:") logging.error(msg) if do_exit: sys.exit(ret[0]) def check_lcg_ce(ce): """Do the tests for a lcg-CE""" # I will not waste much effort on this, since lcg-CE are condemned # to disappear. rets = [] ce, queue = ce.split("/", 1) logging.info("\t\tchecking globus-job-run to ce") cmd = "globus-job-run %s /bin/hostname" % ce logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) logging.info("\t\tchecking globus-job-run to fork") cmd = "globus-job-run %s/jobmanager-fork /bin/pwd" % ce logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) logging.info("\t\tchecking globus-job-run to queue") queue = queue.split("-") cmd = "globus-job-run %s/%s-%s -queue %s /bin/pwd" % tuple([ce] + queue) logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) return rets def check_cream_ce(ce): """Do the tests for a CREAM CE""" rets = [] ce_hostport, dummy = ce.split("/", 1) logging.info("\t\tchecking glite-ce-allowed-submission") cmd = "glite-ce-allowed-submission -n %s" % ce_hostport logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) logging.info("\t\tchecking glite-ce-job-submit") cmd = "glite-ce-job-submit -n -a -r %s test_submission.jdl" % ce # XXX logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) if ret[0] == 0: url = ret[1].splitlines()[-1] else: return # XXX logging.info("\t\t\tJob ID: %s", url) while True: cmd = "glite-ce-job-status -n %s" % url logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) if "[DONE-OK]" in ret[1]: logging.info("\t\tsubmission ok, check the following job " + \ "id for further details %s", url) break elif "[DONE-FAILED]" in ret[1]: ret = (1, ret[1]) print_error(ret) break print_error(ret) rets.append(ret) return rets def check_gridftp(host): """Check gridftp on host""" cmd = "uberftp %s ls" % host logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) if ret[0] != 0: print_error(ret) else: logging.info("\t\tGridFTP OK") def check_ces(bdii, vo): """Query the bdii for the available CE for VO vo, then check them""" logging.info("Checking Computing Elements") logging.info("\tQuerying the BDII for the CEs") cmd = "lcg-info --list-ce --bdii %(bdii)s --sed --vo %(vo)s" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret, do_exit=True) ces = ret[-1].splitlines() logging.info("\t\tFound: " + ",\n\t\t\t".join(ces)) checked = [] for ce in ces: if ce in checked: continue rets = [] checked.append(ce) ce_host = ce.split(":")[0] logging.info("\tChecking %s", ce_host) # Check the GridFTP check_gridftp(ce_host) if "8443" in ce: rets.extend(check_cream_ce(ce)) else: # lcf-CE rets.extend(check_lcg_ce(ce)) if not any([i[0] for i in rets]): logging.info("\t\tJob submission seems OK") else: logging.critical("\t\tJob submission has problems, check errors") def filter_and_join_ldap(data, query): """Filter results to only those of query and join line breaks from ldapsearch.""" got = False aux = [] for i in data.splitlines(): if i.startswith(query): got = True aux.append([i.split(":", 1)[-1].strip()]) elif i.startswith(" ") and got: aux[-1].append(i.strip()) elif got: got = False return ["".join(i) for i in aux] def check_ses(bdii, vo): """Query the bdii for the available SE for VO, then check them""" logging.info("Checking Storage Elements") logging.info("\tQuerying the BDII for the SEs") cmd = "lcg-info --list-se --bdii %(bdii)s --sed --vo VO:%(vo)s" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret, do_exit=True) ses = ret[-1].splitlines() logging.info("\t\tFound: " + ",\n\t\t\t".join(ses)) checked = ["gridce05.ifca.es"] for se in ses: if se in checked: continue rets = [] checked.append(se) logging.info("\tChecking %s", se) cmd = "uberftp %s ls" % se logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) if ret[0] != 0: print_error(ret) else: logging.info("\t\tGridFTP is up") rets.append(ret) cmd = "ldapsearch -x -LLL -H ldap://%(bdii)s -b o=grid \ '(&(objectClass=GlueSATop) \ (GlueVOInfoAccessControlBaseRule=VO:%(vo)s) \ (GlueChunkKey=GlueSEUniqueID=%(se)s))' \ GlueVOInfoPath" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) se_paths = filter_and_join_ldap(ret[1], "GlueVOInfoPath") cmd = "ldapsearch -x -LLL -H ldap://%(bdii)s -b o=grid \ '(&(objectClass=GlueSEControlProtocol) \ (GlueChunkKey=GlueSEUniqueID=%(se)s) \ (GlueSEControlProtocolType=SRM) \ (GlueSEControlProtocolVersion=2.2.0))' \ GlueSEControlProtocolEndpoint" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) endpt = [i.replace("httpg", "srm") for i in filter_and_join_ldap( ret[1], "GlueSEControlProtocolEndpoint")] for endpoint in endpt: for se_path in se_paths: logging.info("\t\tUploading to %(endpoint)s/%(se_path)s", locals()) randfile = ''.join([choice(string.letters + string.digits) \ for i in range(15)]) cmd = "lcg-cp -v -b --vo %(vo)s -D srmv2 file:/etc/issue \ %(endpoint)s/\?SFN=%(se_path)s/%(randfile)s" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) if ret[0] == 0: logging.info("\t\tRemoving uploaded file") cmd = "lcg-del -l -v -b --vo %(vo)s -D srmv2 \ %(endpoint)s/\?SFN=%(se_path)s/%(randfile)s" % \ locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) if not any([i[0] for i in rets]): logging.info("\t\tData management seems OK") else: logging.critical("\t\tData management has problems, check errors") def check_bdii(bdii): """Check bdii for correctness""" logging.info("Checking BDII '%s' information (TBD)", bdii) def get_proxy(): """Check for proxy validity and return VO""" ret = commands.getstatusoutput("voms-proxy-info -exists") print_error(ret, do_exit=True, msg="VOMS: No valid proxy found!") ret = commands.getstatusoutput("voms-proxy-info -vo") print_error(ret, do_exit=True) vo = ret[1] return vo def set_logging(level=logging.INFO): """Set up logging""" outfile = "%s.log" % datetime.datetime.now().strftime("%Y%m%d_%H%M%S.%f") logging.basicConfig(level=logging.DEBUG, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%m-%d %H:%M", filename=outfile, filemode="w") console = logging.StreamHandler() console.setLevel(level) formatter = logging.Formatter('%(levelname)-8s %(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) logging.info("Detailed output for this run will be on '%s'", outfile) def main(): """Main program""" usage = """%prog [options] <siteBDII host>:<port>""" parser = OptionParser(usage=usage) # parser.add_option("-v", "--verbose", dest="verbose", action="store_true", # default="False", help="Print verbose results") parser.add_option("-c", "--ces", dest="onlyce", action="store_true", default=False, help="Check only Computing Elements") parser.add_option("-s", "--ses", dest="onlyse", action="store_true", default=False, help="Check only Storage Elements") (opts, args) = parser.parse_args() if opts.onlyse and opts.onlyce: parser.error("-s and -c options are mutually exclusive") elif opts.onlyse or opts.onlyse: all_ = False else: all_ = True if len(args) != 1: parser.error("Error, you have to specify one (and only one) siteBDII") set_logging() vo = get_proxy() logging.info("Checking with VO '%s'", vo) bdii = args[-1] check_bdii(bdii) if all_ or opts.onlyce: check_ces(bdii, vo) if all_ or opts.onlyse: check_ses(bdii, vo) if __name__ == "__main__": main() sys.exit(0)
alvarolopez/egi-certool
run_tests.py
run_tests.py
py
10,232
python
en
code
1
github-code
6
72592445628
import numpy as np from .lanczos import lanczos_resample_one, lanczos_resample_three def coadd_psfs( se_psfs, se_wcs_objs, coadd_wgts, coadd_scale, coadd_dim): """Coadd the PSFs. Note that this routine assumes that the PSFs in the SE image have their centers at the image origin and that they should be interpolated to the coadd plane so they are centered at the world origin. Parameters ---------- se_psfs : list of np.ndarray The list of SE PSF images to coadd. se_wcs_objs : list of galsim.BaseWCS or children The WCS objects for each of the SE PSFs. coadd_wgts : 1d array-like object of floats The relative coaddng weights for each of the SE PSFs. coadd_scale : float The pixel scale of desired coadded PSF image. coadd_dim : int The number of pixels desired for the final coadd PSF. Returns ------- psf : np.ndarray The coadded PSF image. """ # coadd pixel coords y, x = np.mgrid[0:coadd_dim, 0:coadd_dim] u = x.ravel() * coadd_scale v = y.ravel() * coadd_scale coadd_image = np.zeros((coadd_dim, coadd_dim), dtype=np.float64) wgts = coadd_wgts / np.sum(coadd_wgts) for se_psf, se_wcs, wgt in zip(se_psfs, se_wcs_objs, wgts): se_x, se_y = se_wcs.toImage(u, v) im, _ = lanczos_resample_one(se_psf / se_wcs.pixelArea(), se_y, se_x) coadd_image += (im.reshape((coadd_dim, coadd_dim)) * wgt) coadd_image *= (coadd_scale**2) return coadd_image def coadd_image_noise_interpfrac( se_images, se_noises, se_interp_fracs, se_wcs_objs, coadd_wgts, coadd_scale, coadd_dim): """Coadd a set of SE images, noise fields, and interpolation fractions. Parameters ---------- se_images : list of np.ndarray The list of SE images to coadd. se_noises : list of np.ndarray The list of SE noise images to coadd. se_interp_fracs : list of np.ndarray The list of SE interpolated fraction images to coadd. se_wcs_objs : list of galsim.BaseWCS or children The WCS objects for each of the SE images. coadd_wgts : 1d array-like object of floats The relative coaddng weights for each of the SE images. coadd_scale : float The pixel scale of desired coadded image. coadd_dim : int The number of pixels desired for the final coadd image.. Returns ------- img : np.ndarray, shape (coadd_dim, coadd_dim) The coadd image. nse : np.ndarray, shape (coadd_dim, coadd_dim) The coadd noise image. intp : np.ndarray, shape (coadd_dim, coadd_dim) The interpolated flux fraction in each coadd pixel. """ # coadd pixel coords y, x = np.mgrid[0:coadd_dim, 0:coadd_dim] u = x.ravel() * coadd_scale v = y.ravel() * coadd_scale coadd_image = np.zeros((coadd_dim, coadd_dim), dtype=np.float64) coadd_noise = np.zeros((coadd_dim, coadd_dim), dtype=np.float64) coadd_intp = np.zeros((coadd_dim, coadd_dim), dtype=np.float32) wgts = coadd_wgts / np.sum(coadd_wgts) for se_im, se_nse, se_intp, se_wcs, wgt in zip( se_images, se_noises, se_interp_fracs, se_wcs_objs, wgts): se_x, se_y = se_wcs.toImage(u, v) im, nse, intp, _ = lanczos_resample_three( se_im / se_wcs.pixelArea(), se_nse / se_wcs.pixelArea(), se_intp, se_y, se_x) coadd_image += (im.reshape((coadd_dim, coadd_dim)) * wgt) coadd_noise += (nse.reshape((coadd_dim, coadd_dim)) * wgt) coadd_intp += (intp.reshape((coadd_dim, coadd_dim)) * wgt) coadd_image *= (coadd_scale**2) coadd_noise *= (coadd_scale**2) return coadd_image, coadd_noise, coadd_intp
beckermr/metadetect-coadding-sims
coadd_mdetsims/coadd.py
coadd.py
py
3,790
python
en
code
0
github-code
6
32456637613
# The purpose of this function is to take the vertex property map returned when using gt.add_edge_list() with the option hashed=True and add it as an internal vertex property. # - For some reason I have only gotten this to consistently work when I define the vertex property map by looping over vertices. I had issues with using get_2d_array([0]) when the ids are strings (e.g. for jids or occ2Xmesos) def add_ids_as_veertex_property(graph, ids): id_prop = graph.new_vertex_property("string") graph.vp["ids"] = id_prop for g in graph.vertices(): id_prop[g] = ids[g] return graph, id_prop new, id_prop = add_ids_as_property(g_jid, vmap) new.vp.ids.get_2d_array([0])
jamiefogel/Networks
Code/Modules/add_ids_as_vertex_property.py
add_ids_as_vertex_property.py
py
693
python
en
code
0
github-code
6
39269323605
from sqlalchemy import create_engine from tests.util import RPCTest class PDNSTest(RPCTest): def cleanup_pdns_db(self, db_uri): with create_engine(db_uri).begin() as conn: conn.execute('delete from domains') conn.execute('delete from domainmetadata') conn.execute('delete from records') def create_output_for_zone(self, zone, output, zone_group, db_uri): self.r.output_create(output, plugin='pdns-db', db_uri=db_uri) self.r.zone_group_create(zone_group) self.r.zone_group_add_zone(zone_group, zone) self.r.output_add_group(output, zone_group)
1and1/dim
dim-testsuite/tests/pdns_test.py
pdns_test.py
py
631
python
en
code
39
github-code
6
74472078906
import os import pickle import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from openpyxl import Workbook def save_pickle(data, filename): with open(filename, 'wb') as file: pickle.dump(data, file) def load_pickle(filename): with open(filename, 'rb') as file: data = pickle.load(file) return data def save_parquet(data, filename): df = pd.DataFrame(data) table = pa.Table.from_pandas(df) pq.write_table(table, filename) def load_parquet(filename): table = pq.read_table(filename) df = table.to_pandas() data = df.to_dict(orient='records') return data def save_xlsx(data, filename): wb = Workbook() ws = wb.active for i, item in enumerate(data, start=1): for j, value in enumerate(item.values(), start=1): ws.cell(row=i, column=j, value=value) wb.save(filename) def load_xlsx(filename): wb = pd.read_excel(filename) data = wb.to_dict(orient='records') return data # Przykładowa kolekcja danych collection = [{'id': i, 'value': i*2} for i in range(1, 101)] # Zapisywanie i odczytywanie kolekcji za pomocą modułu pickle save_pickle(collection, 'collection.pickle') loaded_pickle = load_pickle('collection.pickle') # Zapisywanie i odczytywanie kolekcji za pomocą Parquet save_parquet(collection, 'collection.parquet') loaded_parquet = load_parquet('collection.parquet') # Zapisywanie i odczytywanie kolekcji za pomocą XLSX save_xlsx(collection, 'collection.xlsx') loaded_xlsx = load_xlsx('collection.xlsx') print(f"Liczba elementów w kolekcji: {len(collection)}") print("Moduł pickle:") print(f" Zapis: {len(pickle.dumps(collection))} bajtów") print(f" Odczyt: {len(pickle.dumps(loaded_pickle))} bajtów") print("Parquet:") print(f" Zapis: {os.path.getsize('collection.parquet')} bajtów") print(f" Odczyt: {os.path.getsize('collection.parquet')} bajtów") print("XLSX:") print(f" Zapis: {os.path.getsize('collection.xlsx')} bajtów") print(f" Odczyt: {os.path.getsize('collection.xlsx')} bajtów")
Lisiozmur/Njpo
Ćwiczenie5/Zadanie1.py
Zadanie1.py
py
2,117
python
en
code
0
github-code
6
24510539081
import json import frappe from frappe.model.document import Document from frappe.utils.safe_exec import get_safe_globals, safe_exec from frappe.integrations.utils import make_post_request from frappe.desk.form.utils import get_pdf_link from frappe.utils.background_jobs import enqueue def validate(self, method): if self.channel == "WhatsApp": fields = frappe.get_doc("DocType", self.document_type).fields fields += frappe.get_all( "Custom Field", filters={"dt": self.document_type}, fields=["fieldname"] ) # if not any(field.fieldname == self.custom_receiver_mobile for field in fields): # noqa # frappe.throw(f"Field name {self.custom_receiver_mobile} does not exists") def on_trash(self, method): pass # if self.channel == "WhatsApp": # if self.notification_type == "Scheduler Event": # frappe.delete_doc("Scheduled Job Type", self.name) # frappe.cache().delete_value("whatsapp_notification_map") def after_insert(self, method): pass # if self.channel == "WhatsApp": # if self.notification_type == "Scheduler Event": # method = f"whatsapp_erpnext.utils.trigger_whatsapp_notifications_{self.event_frequency.lower().replace(' ', '_')}" # noqa # job = frappe.get_doc( # { # "doctype": "Scheduled Job Type", # "method": method, # "frequency": self.event_frequency # } # ) # job.insert() def format_number(self, number): if (number.startswith("+")): number = number[1:len(number)] return number def send_scheduled_message(self) -> dict: safe_exec( self.condition, get_safe_globals(), dict(doc=self) ) language_code = frappe.db.get_value( "WhatsApp Templates", self.template, fieldname='language_code' ) if language_code: for contact in self._contact_list: data = { "messaging_product": "whatsapp", "to": self.format_number(contact), "type": "template", "template": { "name": self.template, "language": { "code": language_code }, "components": [] } } self.notify(data) # return _globals.frappe.flags def send_template_message(self, doc: Document, contact_no = None): """Specific to Document Event triggered Server Scripts.""" if not self.enabled: return doc_data = doc.as_dict() if self.condition: # check if condition satisfies if not frappe.safe_eval( self.condition, get_safe_globals(), dict(doc=doc_data) ): return template = frappe.db.get_value( "WhatsApp Templates", self.custom_whatsapp_template, fieldname='*' ) if template: for row in self.recipients: if row.receiver_by_document_field != "owner": if not contact_no: contact_no = doc.get(row.receiver_by_document_field) if contact_no: data = { "messaging_product": "whatsapp", "to": contact_no, "type": "template", "template": { "name": self.custom_whatsapp_template, "language": { "code": template.language_code }, "components": [] } } # Pass parameter values if self.fields: parameters = [] for field in self.fields: parameters.append({ "type": "text", "text": doc.get_formatted(field.field_name) }) data['template']["components"] = [{ "type": "body", "parameters": parameters }] if self.attach_print: key = doc.get_document_share_key() frappe.db.commit() link = get_pdf_link( doc_data['doctype'], doc_data['name'], print_format=self.print_format or "Standard" ) filename = f'{doc_data["name"]}.pdf' url = f'{frappe.utils.get_url()}{link}&key={key}' data['template']['components'].append({ "type": "header", "parameters": [{ "type": "document", "document": { "link": url, "filename": filename } }] }) label = f"{doc_data['doctype']} - {doc_data['name']}" notify(self, data, label) def notify(self, data, label = None): """Notify.""" settings = frappe.get_doc( "WhatsApp Settings", "WhatsApp Settings", ) token = settings.get_password("token") headers = { "authorization": f"Bearer {token}", "content-type": "application/json" } try: response = make_post_request( f"{settings.url}/{settings.version}/{settings.phone_id}/messages", headers=headers, data=json.dumps(data) ) message_id = response['messages'][0]['id'] enqueue(save_whatsapp_log, data = data, message_id = message_id, label = label) frappe.msgprint("WhatsApp Message Triggered", indicator="green", alert=True) except Exception as e: response = frappe.flags.integration_request.json()['error'] error_message = response.get('Error', response.get("message")) frappe.msgprint( f"Failed to trigger whatsapp message: {error_message}", indicator="red", alert=True ) finally: status_response = frappe.flags.integration_request.json().get('error') frappe.get_doc({ "doctype": "Integration Request", "integration_request_service": self.custom_whatsapp_template, "output": str(frappe.flags.integration_request.json()), "status": "Failed" if status_response else "Completed" }).insert(ignore_permissions=True) def format_number(self, number): if (number.startswith("+")): number = number[1:len(number)] return number @frappe.whitelist() def send_notification(notification, ref_doctype, ref_docname, mobile_no = None): noti_doc = frappe.get_doc("Notification", notification) ref_doc = frappe.get_doc(ref_doctype, ref_docname) send_template_message(noti_doc, ref_doc, mobile_no) def save_whatsapp_log(data, message_id, label = None): frappe.get_doc({ "doctype": "WhatsApp Message", "type": "Outgoing", "message": str(data['template']), "to": data['to'], "message_type": "Template", "message_id": message_id, "content_type": "document", "label": label }).save(ignore_permissions=True)
finbyz/whatsapp_erpnext
whatsapp_erpnext/whatsapp_erpnext/doc_events/notification.py
notification.py
py
5,911
python
en
code
0
github-code
6
6727912141
""" Module for parsing arguments. """ import sys import argparse import os from pathlib import Path from typing import Any __author__ = "Stijn Arends" __version__ = "v0.1" __data__ = "21-8-2022" class ArgumentParser: """ Class to parse the input arguments. """ def __init__(self) -> None: self.parser = self._create_argument_parser() # Print help if no arguments are supplied and stop the program if len(sys.argv) == 1: self.parser.print_help(sys.stderr) sys.exit(1) self.arguments = self.parser.parse_args() @staticmethod def _create_argument_parser(): """ Create an argument parser. :returns -------- parser - ArgumentParser """ parser = argparse.ArgumentParser(prog=f"python {os.path.basename(__file__)}", description="Python script to parse NetWas results.", epilog="Contact: [email protected]") # Set version parser.version = __version__ parser.add_argument('-f', '--file', dest="file", help='Input NetWas file - tab seperated txt or csv file', required=True) parser.add_argument('-t', '--threshold', dest="threshold", help='NetWas score threshold to select \'good\' reprioritized genes., default = None', default=None, type=float) parser.add_argument('-o', '--output', dest="output", help='Location and name of the ouput file.', required=True) parser.add_argument('--gene_list', dest="gene_list", help='Specify if only gene symbols are written out."\ "Default is NetWas file with filtered genes', action="store_true") parser.add_argument('-v', '--version', help='Displays the version number of the script and exitst', action='version') return parser def get_argument(self, argument_key: str) -> Any: """ Method to get an input argument. :parameters ----------- argument_key - str Full command line argument (so --config for the configuration file argument). :returns -------- value - List or boolean """ if self.arguments is not None and argument_key in self.arguments: value = getattr(self.arguments, argument_key) else: value = None return value def get_parser(self) -> argparse.ArgumentParser: """ Get the argument parser :returns -------- parser - argparse.ArgumentParser Argument parser """ return self.parser class CLIArgValidator: """ Class to check if arguments are valid. """ def validate_input_file(self, input_path: str) -> None: """ Validate the input files by checking if they actually exists and the which extention they have. :parameters ----------- input_path - str Path to a file """ input_path = Path(input_path) self._validate_input_exists(input_path) self._validate_input_extension(input_path) @staticmethod def _validate_input_exists(input_path: Path) -> None: """ Check if a file exists. :parameters ----------- input_path - str Path to a file """ if not input_path.is_file(): raise FileNotFoundError('Input file does not exist!') @staticmethod def _validate_input_extension(input_path: Path) -> None: """ Check if a file has the right extension. :parameters ----------- input_path - str Path to a file """ if not input_path.suffix in [".txt", ".csv"]: raise FileNotFoundError('Input file should be either a .txt or .csv')
molgenis/benchmark-gwas-prio
prioritization_methods/NetWAS/arg_parser.py
arg_parser.py
py
3,976
python
en
code
0
github-code
6
43266096059
import discord import os from keep_alive import keep_alive from discord.ext import commands from better_profanity import profanity os.system('python3 -m commands') profanity.load_censor_words_from_file('./profanity.txt') client = commands.Bot(command_prefix = '$') money_registry = [] list1 = ['myself', 'me', 'i'] @client.event async def on_ready(): print('Bot is ready!') await client.change_presence(activity=discord.Game('$help')) @client.command() async def displayembed(ctx, *, Title): embed = discord.Embed(title= Title, description= Title, color = 6400 ) #,color=Hex code await ctx.send(embed=embed) @client.command() async def ping(ctx): await ctx.send(f'Pong! {round (client.latency * 1000)}ms') @client.command() async def kill(ctx, *, WhoToKill): embed = discord.Embed(description=f'{WhoToKill} eats some mushrooms from the wild. Too bad they were poisonous...', color= 6400) #,color=Hex code await ctx.send(embed=embed) @client.event async def on_message(message): mention = f'<@!{client.user.id}>' if mention in message.content: embed = discord.Embed(description=f"_{message.author.mention} :bell: You ping me, I ping you._", color= 6400 ) await message.channel.send(embed=embed) if str(message.channel) == "pictures" and message.content != '': if message.author != client.user: await message.channel.purge(limit=1) embed = discord.Embed(description= f"Sorry{message.author.mention}! Only Pictures!", color = 6400) await message.channel.send(embed=embed) else: pass if '' in message.content: embed = discord.Embed(title= "Self Roles", description = "React to this message to get these roles! ") if not message.author.bot: if profanity.contains_profanity(message.content): await message.delete() embed = discord.Embed(description= f"{message.author.mention} :octagonal_sign: Mind your language!", color = 6400) await message.channel.send(embed=embed) await client.process_commands(message) @client.event async def on_member_join(member): print(f'{member} has joined the server! Welcome!') @client.event async def on_member_remove(member): print(f'{member} has left! Goodbai! GLHF') keep_alive() client.run(os.getenv('TOKEN'))
LittlRayRay/Censorbot
main.py
main.py
py
2,297
python
en
code
0
github-code
6
11458247441
# 首先要导入一个Select类 from selenium.webdriver.support.select import Select from selenium import webdriver import time # 打开浏览器,进入携程旅行官网 driver = webdriver.Chrome() driver.get('https://www.ctrip.com/?sid=155952&allianceid=4897&ouid=index') driver.maximize_window() # 最大化窗口 # 休眠5秒钟 time.sleep(5) # 通过Select类选择下拉框选项,只能是控件类型(tag_name)为select的控件 # 下拉框的选项都是属于下拉选择框,所以先要定位下拉选择框,然后再进行选择 # 如果下拉框的控件类型是dt(是一个表格),那么先要定位点击下拉选择框,然后再定位选项,点击选项 # 选择select标签类型下拉框的选项的方法: # ① 通过选择项可见文本进行选择:Select(下拉框控件定位).select_by_visible_text(option标签的文本) s = driver.find_element_by_id('J_roomCountList') Select(s).select_by_visible_text('6间') # 选择6间 time.sleep(5) # ② 通过option标签的value属性值进行选择:Select(下拉框控件定位).select_by_value(option标签的value属性值) Select(s).select_by_value("5") time.sleep(5) # ③ 通过选项下标(所有选项当成一个列表,从0开始)进行选择,Select(下拉框控件定位).select_by_index(选项下标) Select(s).select_by_index(7) time.sleep(5) driver.quit()
Ailian482/WebSelenium
Auto_Test/20_下拉框选择处理.py
20_下拉框选择处理.py
py
1,363
python
zh
code
0
github-code
6
21368489956
import numpy as np import matplotlib.pyplot as plt import glob import os import ruamel.yaml import matplotlib.colors as colors import matplotlib.cm as cmx from matplotlib import rc rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) plt.rc('text', usetex=True) plt.rc('font', family='serif') def _get_measurement_range_for_output(output_key, output, method): # method = output['method'] # config = output[method] # return np.arange(config['start'], config['stop'], config['step']) method_keys = method.split('.') # e.g. ['freq_mod', 'span'] config = output # find the method configuration inside the output-config for key in method_keys: config = config[key] return np.arange(config['start'], config['stop'], config['step']) def color_generator(N, colormap='gnuplot'): """ Color generator for a given matplotlib colormap. Usage: ------------------------------------------ import matplotlib.pylab as plt import matplotlib.cm as cmx import matplotlib.colors as colors N = 20 color_gen = color_generator(N) for i in N: color = next(color_gen) # do something with the color ... """ cm_map = plt.get_cmap(colormap) c_norm = colors.Normalize(vmin=0, vmax=N) scalar_map = cmx.ScalarMappable(norm=c_norm, cmap=cm_map) for i in xrange(N): yield scalar_map.to_rgba(i) cell='4' measno='3' filename='N:/data/emily/magnetometer_test/cell{1:s}/remote/meas{0:s}'.format(str(measno), str(cell)) files=glob.glob(filename+"/*.csv") files=sorted(files) start=100 steps=100 a=np.loadtxt(files[0], delimiter=',') a_fft=np.abs(np.fft.rfft(a, axis=0)) b=np.sum(a_fft[start::steps,:], axis=1) color_gen = color_generator(len(b)) config_name = glob.glob(filename+'/config*.yaml') with open(config_name[0], 'r') as ymlfile: cfg = ruamel.yaml.load(ymlfile) stack = cfg['stack'] meas_ranges = [None] * len(stack) keys = [None] * len(stack) outputs = [None] * len(stack) methods = [None] * len(stack) for i, stack_entry in enumerate(stack): keys[i], method_index = stack_entry.split('.') # e.g. key='B1', method_index = '0' method_index = int(method_index) # index gives the position of the method in the methods array outputs[i] = cfg['outputs'][keys[i]] methods[i] = outputs[i]['methods'][method_index] meas_ranges[i] = _get_measurement_range_for_output(keys[i], outputs[i], methods[i]) b0_amp = cfg['outputs']['B0']['amp']['start'] b1_freq_center = cfg['outputs']['B1']['freq_mod']['center'] b1_freq_span = cfg['outputs']['B1']['freq_mod']['span']['start'] downsampling_factor = cfg['devices']['nidaq']['downsampling_factor'] measurement_time = cfg['devices']['nidaq']['measurement_time_s'] sample_rate = cfg['devices']['nidaq']['sample_rate'] x_axis_label = cfg['outputs'][keys[0]][methods[0]]['label'] data_points = sample_rate*measurement_time/downsampling_factor datanew=np.zeros([len(b), len(files)]) plt.clf() # for j in range(len(b)-1): # #if j!=9: continue # color = next(color_gen) # plt.plot(a_fft[:,j], label=str(meas_ranges[1][j]), color=color) # plt.title("$B_1$ frequency (Hz)", fontsize=16) # plt.ylabel("FFT signal (a.u).", fontsize=16) # plt.xlabel("Frequency (Hz)", fontsize=16) # plt.ylim((0,8)) # plt.legend(ncol=3, prop={'size':10}) # plt.show() # plt.savefig(filename+"/fft_0mV_{}.png".format(measno), dpi=300) # plt.savefig(filename+"/fft_0mV_{}.pdf".format(measno)) # plt.clf() # plt.plot(b) # plt.ylabel("FFT signal a.u.", fontsize=16) # plt.xlabel("Frequency (Hz)", fontsize=16) # plt.ylim((0,9)) # plt.savefig(filename+"/fft_sum_0mV_{}.png".format(measno), dpi=300) # plt.savefig(filename+"/fft_sum_0mV_{}.pdf".format(measno)) # plt.clf() # raise for i in range(len(files)): data=np.loadtxt(files[i], delimiter=',') data_fft=np.abs(np.fft.rfft(data, axis=0)) datanew[:,i]=np.sum(data_fft[start::steps,:], axis=1) plt.imshow(datanew[-1::-1], aspect='auto', interpolation='nearest', extent=[meas_ranges[0][0]*1000, meas_ranges[0][-1]*1000, start/1000, data_fft.shape[0]/1000], cmap='gnuplot') plt.xlabel('R$_4$ offset (mV)', fontsize=20) plt.ylabel('Frequency (kHz)', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=20) plt.colorbar() plt.show() plt.savefig(filename+"/all_together{0:s}_steps{1:s}.png".format(measno, str(steps)), dpi=300) plt.savefig(filename+"/all_together{0:s}_steps{1:s}.pdf".format(measno, str(steps)))
physikier/magnetometer
src/analysis.py
analysis.py
py
4,786
python
en
code
0
github-code
6
37985935295
#! /usr/bin/env python3 import audioInterface import os import yaml import sys from datetime import datetime from gpiozero import Button from signal import pause from pydub import AudioSegment from pydub.playback import play try: with open("config.yaml") as f: config = yaml.load(f, Loader=yaml.FullLoader) except FileNotFoundError as e: print( f"Could not find the config.yaml file. FileNotFoundError: {e}. Check config location and retry." ) sys.exit(1) hook = Button(config["hook_gpio"]) def off_hook() -> None: print("Phone off hook, ready to begin!") audio_interface = audioInterface.AudioInterface(config, hook) # playback voice message through speaker print("Playing voicemail message...") play( AudioSegment.from_wav( os.path.dirname(os.path.abspath(config["source_file"])) + "/sounds/voicemail.wav" ) - config["playback_reduction"] ) # start recording beep print("Playing beep...") play( AudioSegment.from_wav( os.path.dirname(os.path.abspath(config["source_file"])) + "/sounds/beep.wav" ) - config["beep_reduction"] ) # now, while phone is off the hook, record audio from the microphone print("recording") audio_interface.record() audio_interface.stop() output_file = ( os.path.dirname(os.path.abspath(config["source_file"])) + "/recordings/" + f"{datetime.now().isoformat()}" ) audio_interface.close(output_file + ".wav") print("Finished recording!") def on_hook() -> None: print("Phone on hook.\nSleeping...") def main(): hook.when_pressed = off_hook hook.when_released = on_hook pause() if __name__ == "__main__": main()
nickpourazima/rotary-phone-audio-guestbook
audioGuestBook.py
audioGuestBook.py
py
1,781
python
en
code
13
github-code
6
74637154747
import time import redis cache = redis.StrictRedis(host='redis', decode_responses=True, db=0, port=6379) def update_and_get_hit_count(): """""" print('In utils/update_and_get_hit_count') retries = 5 while True: try: return cache.incr('hits') except redis.exceptions.ConnectionError as err: if retries == 0: raise err retries -= 1 time.sleep(0.5) def clear_hit_count(): """""" print('in utils/clear_hit_count') retries = 5 while True: try: return cache.set('hits', 0) except redis.exceptions.ConnectionError as err: if retries == 0: raise err retries -= 1 time.sleep(0.5)
ShukujiNeel13/composetest
utils.py
utils.py
py
770
python
en
code
1
github-code
6
26135102637
import cv2 as cv import numpy as np img = cv.imread('/home/ai3/Desktop/common/ML/Day13/girl.jpg',0) kernel = np.ones((2,2),np.uint8) open1 = cv.morphologyEx(img,cv.MORPH_OPEN,kernel) open2 = cv.morphologyEx(img,cv.MORPH_CLOSE,kernel) open3 = cv.morphologyEx(open1,cv.MORPH_CLOSE,kernel) img=np.hstack((open1,open2,open3)) img = cv.imshow('dst',img) cv.waitKey(0)
94akshayraj/AI-program
ML ans/day13/3.py
3.py
py
365
python
en
code
0
github-code
6
5471431928
""" Design-of-Experiments Driver. """ from __future__ import print_function import traceback import inspect from openmdao.core.driver import Driver, RecordingDebugging from openmdao.core.analysis_error import AnalysisError from openmdao.utils.mpi import MPI from openmdao.recorders.sqlite_recorder import SqliteRecorder class DOEGenerator(object): """ Base class for a callable object that generates cases for a DOEDriver. Attributes ---------- _num_samples : int The number of samples generated (available after generator has been called). """ def __init__(self): """ Initialize the DOEGenerator. """ self._num_samples = 0 def __call__(self, design_vars): """ Generate case. Parameters ---------- design_vars : dict Dictionary of design variables for which to generate values. Returns ------- list list of name, value tuples for the design variables. """ return [] class DOEDriver(Driver): """ Design-of-Experiments Driver. Attributes ---------- _name : str The name used to identify this driver in recorded cases. _recorders : list List of case recorders that have been added to this driver. """ def __init__(self, generator=None, **kwargs): """ Constructor. Parameters ---------- generator : DOEGenerator or None The case generator. **kwargs : dict of keyword arguments Keyword arguments that will be mapped into the Driver options. """ if generator and not isinstance(generator, DOEGenerator): if inspect.isclass(generator): raise TypeError("DOEDriver requires an instance of DOEGenerator, " "but a class object was found: %s" % generator.__name__) else: raise TypeError("DOEDriver requires an instance of DOEGenerator, " "but an instance of %s was found." % type(generator).__name__) super(DOEDriver, self).__init__(**kwargs) if generator is not None: self.options['generator'] = generator self._name = '' self._recorders = [] def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ self.options.declare('generator', types=(DOEGenerator), default=DOEGenerator(), desc='The case generator. If default, no cases are generated.') self.options.declare('parallel', default=False, types=(bool, int), lower=0, desc='True or number of cases to run in parallel. ' 'If True, cases will be run on all available processors. ' 'If an integer, each case will get COMM.size/<number> ' 'processors and <number> of cases will be run in parallel') def _setup_comm(self, comm): """ Perform any driver-specific setup of communicators for the model. Parameters ---------- comm : MPI.Comm or <FakeComm> or None The communicator for the Problem. Returns ------- MPI.Comm or <FakeComm> or None The communicator for the Problem model. """ parallel = self.options['parallel'] if MPI and parallel: self._comm = comm if parallel == 1: # True == 1 size = 1 color = self._color = comm.rank else: comm_size = comm.size size = comm_size // parallel if comm_size != size * parallel: raise RuntimeError("The number of processors is not evenly divisable by " "the specified number of parallel cases.\n Provide a " "number of processors that is a multiple of %d, or " "specify a number of parallel cases that divides " "into %d." % (parallel, comm_size)) color = self._color = comm.rank % size model_comm = comm.Split(color) else: self._comm = None model_comm = comm return model_comm def _set_name(self): """ Set the name of this DOE driver and its case generator. Returns ------- str The name of this DOE driver and its case generator. """ generator = self.options['generator'] gen_type = type(generator).__name__.replace('Generator', '') if gen_type == 'DOEGenerator': self._name = 'DOEDriver' # Empty generator else: self._name = 'DOEDriver_' + gen_type return self._name def _get_name(self): """ Get the name of this DOE driver and its case generator. Returns ------- str The name of this DOE driver and its case generator. """ return self._name def run(self): """ Generate cases and run the model for each set of generated input values. Returns ------- boolean Failure flag; True if failed to converge, False is successful. """ self.iter_count = 0 # set driver name with current generator self._set_name() if self._comm: case_gen = self._parallel_generator else: case_gen = self.options['generator'] for case in case_gen(self._designvars): self._run_case(case) self.iter_count += 1 return False def _run_case(self, case): """ Run case, save exception info and mark the metadata if the case fails. Parameters ---------- case : list list of name, value tuples for the design variables. """ metadata = {} for dv_name, dv_val in case: self.set_design_var(dv_name, dv_val) with RecordingDebugging(self._name, self.iter_count, self) as rec: try: failure_flag, _, _ = self._problem.model._solve_nonlinear() metadata['success'] = not failure_flag metadata['msg'] = '' except AnalysisError: metadata['success'] = 0 metadata['msg'] = traceback.format_exc() except Exception: metadata['success'] = 0 metadata['msg'] = traceback.format_exc() print(metadata['msg']) # save reference to metadata for use in record_iteration self._metadata = metadata def _parallel_generator(self, design_vars): """ Generate case for this processor when running under MPI. Parameters ---------- design_vars : dict Dictionary of design variables for which to generate values. Yields ------ list list of name, value tuples for the design variables. """ size = self._comm.size // self.options['parallel'] color = self._color generator = self.options['generator'] for i, case in enumerate(generator(design_vars)): if i % size == color: yield case def add_recorder(self, recorder): """ Add a recorder to the driver. Parameters ---------- recorder : BaseRecorder A recorder instance. """ # keep track of recorders so we can flag them as parallel # if we end up running in parallel self._recorders.append(recorder) super(DOEDriver, self).add_recorder(recorder) def _setup_recording(self): """ Set up case recording. """ parallel = self.options['parallel'] if MPI and parallel: for recorder in self._recorders: recorder._parallel = True # if SqliteRecorder, write cases only on procs up to the number # of parallel DOEs (i.e. on the root procs for the cases) if isinstance(recorder, SqliteRecorder): if parallel is True or self._comm.rank < parallel: recorder._record_on_proc = True else: recorder._record_on_proc = False super(DOEDriver, self)._setup_recording() def record_iteration(self): """ Record an iteration of the current Driver. """ if not self._rec_mgr._recorders: return # Get the data to record (collective calls that get across all ranks) opts = self.recording_options filt = self._filtered_vars_to_record if opts['record_desvars']: des_vars = self.get_design_var_values(filt['des']) else: des_vars = {} if opts['record_objectives']: obj_vars = self.get_objective_values(filt['obj']) else: obj_vars = {} if opts['record_constraints']: con_vars = self.get_constraint_values(filt['con']) else: con_vars = {} if opts['record_responses']: # res_vars = self.get_response_values(filt['res']) # not really working yet res_vars = {} else: res_vars = {} model = self._problem.model sys_vars = {} in_vars = {} outputs = model._outputs inputs = model._inputs views = outputs._views views_in = inputs._views sys_vars = {name: views[name] for name in outputs._names if name in filt['sys']} if self.recording_options['record_inputs']: in_vars = {name: views_in[name] for name in inputs._names if name in filt['in']} outs = des_vars outs.update(res_vars) outs.update(obj_vars) outs.update(con_vars) outs.update(sys_vars) data = { 'out': outs, 'in': in_vars } self._rec_mgr.record_iteration(self, data, self._metadata)
rowhit/OpenMDAO-1
openmdao/drivers/doe_driver.py
doe_driver.py
py
10,428
python
en
code
null
github-code
6
74668147066
import numpy as np with open('in.txt') as f: lines = f.read().strip().splitlines() s = set([0]) h = 10 * [0] for line in lines: dir, cnt = line.split() cnt = int(cnt) for _ in range(cnt): h[0] += { 'U': -1j, 'D': 1j, 'R': 1, 'L': -1 }[dir] for i in range(9): if abs(h[i + 1] - h[i]) < 2: break delta = h[i] - h[i + 1] h[i + 1] += np.sign(delta.real) + 1j * np.sign(delta.imag) s.add(h[-1]) print(len(s))
dionyziz/advent-of-code
2022/9/9b.py
9b.py
py
482
python
en
code
8
github-code
6
26238931261
#! /usr/bin/env python ''' A script that will compare two Dawn IMG files. ''' import sys import os import os.path import dawn def main(argv=None): ''' Receives two dawn image filenames from the command line and compares the data areas. ''' if argv is None: argv = sys.argv direcory_name1 = argv[1] direcory_name2 = argv[2] compare_directories(direcory_name1, direcory_name2) def compare_directories(directory1, directory2): ''' Compares two directories of dawn image files. Both directories must have the same structure. ''' dirlist1 = get_dir_list(directory1) dirlist2 = get_dir_list(directory2) dirdict1 = dict(dirlist1) dirdict2 = dict(dirlist2) merged_dict = merge_dicts(dirdict1, dirdict2) compare_contents(directory1, directory2, merged_dict) def strip_version(filename): return filename[:-5] def merge_dicts(dirdict1, dirdict2): result = {} for dirname in dirdict1.keys() + dirdict2.keys(): if dirname in dirdict1 and dirname in dirdict2: filedict1 = dict([(strip_version(x), x) for x in dirdict1[dirname]]) filedict2 = dict([(strip_version(x), x) for x in dirdict2[dirname]]) result[dirname] = dict([ (filedict1[x], filedict2[x]) for x in filedict1.keys() if x in filedict1 and x in filedict2 ]) return result def compare_contents(directory1, directory2, dirdict): for dirname in dirdict.keys(): filepairs = dirdict[dirname] for filename1 in filepairs.keys(): filename2 = filepairs[filename1] file1 = os.path.join(directory1, dirname, filename1) file2 = os.path.join(directory2, dirname, filename2) if os.path.exists(file1) and os.path.exists(file2): dawn.compare_files(file1, file2) elif os.path.exists(file1): print(file1 + " <- " + file2) elif os.path.exists(file2): print(file1 + " -> " + file2) else: print("No files exist") def is_dawn(filename): return filename.lower().endswith('.img') def get_dir_list(directory): walkresult = [(dirpath, [x for x in filenames if is_dawn(x)]) for dirpath, _, filenames in os.walk(directory)] return [(dirpath.replace(directory, '') , filenames) for dirpath, filenames in walkresult if filenames] if __name__ == '__main__': sys.exit(main())
sbn-psi/data-tools
dawn/dawndirdiff.py
dawndirdiff.py
py
2,520
python
en
code
0
github-code
6
12688443618
# https://leetcode.com/problems/reverse-linked-list/ from typing import Optional class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def reverseList_(self, head: Optional[ListNode]) -> ListNode: # input as list # empty head if len(head) <= 1: return head # first element in head first_node = ListNode(val = head[0], next=None) prev_node = first_node list_val = [first_node.val] # len(head) > 1 if len(head) > 1: for i in range(1, len(head)): curr_node = ListNode(val = head[i], next=None) list_val.append(curr_node.val) prev_node.next = curr_node prev_node = curr_node # # traverse forward # next_node = first_node.next # while next_node != None: # # print("Next: ", next_node.val) # next_node = next_node.next # traverse reverse return list_val[::-1] def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]: # input as Listnode; only works on leetcode prev = None curr = head while curr: nxt = curr.next curr.next = prev prev = curr curr = nxt return prev solved = Solution() # print(solved.reverseList_(head = [1,2,3,4,5])) # print(solved.reverseList_(head = [1,2])) # print(solved.reverseList_(head = [-1])) # print(solved.reverseList_(head = []))
zvovov/competitive_coding
leetcode/neetcode_150/reverse_linked_list.py
reverse_linked_list.py
py
1,637
python
en
code
0
github-code
6
6770936001
''' Write a Python program to calculate the area of regular polygon. Input number of sides: 4 Input the length of a side: 25 The area of the polygon is: 625 ''' from math import * n=int(input()) lenght=int(input()) perimetr=n*lenght apothem=lenght/(2*(tan(pi/n))) area=(apothem*perimetr)/2 print(round(area))
AigerimKubeyeva/pp2
Week4/Lab4/math/3.py
3.py
py
313
python
en
code
0
github-code
6
70435413308
import re import emoji def preprocess_string(text): """ 입력받은 text 를 전처리 하는 함수. :param text: str :return : str """ # 이모티콘부터 제거 no_emoticon = '' for char in text: if char not in emoji.UNICODE_EMOJI: no_emoticon += char # 특수문자 기준 split no_punctuation = re.split(r'([!,?]+)|([.]+)|([,]+)|(["])|([\'])|([&]+)|([(]+)|([)]+)|([~]+)|([♡]+)|([☆,★]+)', no_emoticon.strip()) no_punctuation_text = [] for string in no_punctuation: if (string == '') or (string is None): continue no_punctuation_text.append(string) no_punctuation_text = ' '.join(no_punctuation_text) # 단독으로 쓰인 자모음 분리 split_char = re.split(r'([ㄱ-ㅣ0-9]+)', no_punctuation_text.strip()) split_char = ' '.join(split_char) # 한국어에서 단독으로 자주 쓰이는 자모음 뭉치 분리 split_char = re.split(r'([ㅎ]{2,})|([ㅜ,ㅠ]{2,})|([ㅗ]+)|([ㅋ,ㄱ,ㄲ]{2,})|\s+', split_char.strip()) final_text = [] for string in split_char: if (string == '') or (string is None): continue final_text.append(string) return ' '.join(final_text)
teammatmul/project-purifier
purifier/preprocess.py
preprocess.py
py
1,254
python
ko
code
78
github-code
6
37601085068
from sqlwrapper import gensql, dbget, dbput import json import datetime def HOTEL_FD_POST_UPDATE_CheckinGuestArrivals(request): d = request.json res_id = d.get("Res_id") unique_id = d.get("Res_unique_id") pf_id = d.get("pf_id") a = {} RES_Log_Time = datetime.datetime.utcnow()+datetime.timedelta(hours=5, minutes=30) RES_Log_Time = RES_Log_Time.time().strftime("%H:%M:%S") print(RES_Log_Time) RES_Log_Date = datetime.datetime.utcnow().date() print(RES_Log_Date) RES_Log_Date = str(RES_Log_Date) arrival = dbget("select res_arrival, res_adults,res_room from reservation.res_reservation where res_id = '"+res_id+"' and pf_id = '"+pf_id+"' and res_unique_id = '"+unique_id+"'") arrival = json.loads(arrival) print(arrival) print(arrival[0]['res_arrival'],type(arrival[0]['res_arrival'])) today_arrival = (arrival[0]['res_arrival']) adult = arrival[0]['res_adults'] room = arrival[0]['res_room'] print(room,type(room)) print(today_arrival) if RES_Log_Date == today_arrival: p = {} p['res_id'] = res_id p['res_unique_id'] = unique_id sql_value = gensql('select','room_management.rm_queue_room','rm_queue',p) sql_value = json.loads(sql_value) if len(sql_value) != 0: psql = dbput("delete from room_management.rm_queue_room where res_id = '"+res_id+"' and res_unique_id = '"+unique_id+"'") print(psql) else: pass e = {} e['Res_id'] = res_id e['pf_id'] = pf_id e['res_unique_id'] = unique_id a['Res_guest_status'] = "checkin" sql_value = gensql('update','reservation.res_reservation',a,e) print(sql_value) res_id = e.get("Res_id") Emp_Id = '121' Emp_Firstname = "daisy" s = {} s['Emp_Id'] = Emp_Id s['Emp_Firstname'] = Emp_Firstname s['RES_Log_Date'] = RES_Log_Date s['RES_Log_Time'] = RES_Log_Time s['RES_Action_Type'] = "Checkin a guest" s['RES_Description'] = "Checked in a guest" s['Res_id'] = res_id sql_value = gensql('insert','reservation.res_activity_log',s) fo_status = "occupied" res_status = "checkin" sql_value = dbput("update room_management.rm_room_list set rm_fo_status = '"+fo_status+"',rm_reservation_status = '"+res_status+"',rm_fo_person = "+str(adult)+" where rm_room in ("+str(room)+")") print(sql_value) alertcount = json.loads(dbget("select count(*) from reservation.res_alert where res_id = '"+str(res_id)+"' \ and res_unique_id = '"+str(unique_id)+"'")) print(alertcount) if alertcount[0]['count'] !=0: alertvalue = json.loads(dbget("select * from reservation.res_alert where res_id = '"+str(res_id)+"' \ and res_unique_id = '"+str(unique_id)+"'")) return(json.dumps({'Status': 'Success', 'StatusCode': '200', 'alertvalue':alertvalue,'Return': 'Alert Got Successfully','ReturnCode':'AGS'}, sort_keys=True, indent=4)) else: return(json.dumps({'Status': 'Success', 'StatusCode': '200','Return': 'Record Updated Successfully','ReturnCode':'RUS'}, sort_keys=True, indent=4)) else: return(json.dumps({'Status': 'Success', 'StatusCode': '200','Return': 'Checkin a Today Guest arrivals only','ReturnCode':'CTG'}, sort_keys=True, indent=4))
infocuittesting/hotel360-second-version
HOTEL_FD_POST_UPDATE_CheckinGuestArrivals.py
HOTEL_FD_POST_UPDATE_CheckinGuestArrivals.py
py
3,531
python
en
code
0
github-code
6
2501424452
from os import listdir from PIL import Image #list src pic DIR = 'pic' #print listing of images img_list = listdir("pic") #enter and calculate ratio sh_ent = int(input("Shakal ratio (compress ratio):")) sh = 100 - sh_ent #work with image for filename in img_list: outname = "out/" + filename filename = "pic/" + filename print(filename) img = Image.open(filename) #save with compress img.save(outname, "JPEG", quality=sh)
vakarianplay/Pic_tools
shakal (compress)/shak.py
shak.py
py
505
python
en
code
0
github-code
6
20423188987
#Give the Big-O performance of the following code fragment: def findRepeated(L): """ determines whether all elements in a given list L are distinct """ n=len(L) for i in range(n): for j in range(i+1, n): if L[i]==L[j]: return True return False
tsaoalbert/test.tensor.flow
1.weekend.asymptotic,stack.queue.deque.recursion.sorting/t.py
t.py
py
277
python
en
code
0
github-code
6
650532287
#! /bin/python import os import sys import json import luigi import numpy as np import nifty.tools as nt import nifty import nifty.graph.rag as nrag from vigra.analysis import relabelConsecutive from elf.segmentation.clustering import mala_clustering, agglomerative_clustering import cluster_tools.utils.volume_utils as vu import cluster_tools.utils.function_utils as fu from cluster_tools.cluster_tasks import SlurmTask, LocalTask, LSFTask # # Agglomerate Tasks # # TODO it would be nice to be able to change the block shape compared to ws task # so that we can agglomerate block boundaries. # However, I am not sure how this interacts with the id-offsets, so haven't # implemented this yet. class AgglomerateBase(luigi.Task): """ Agglomerate base class """ task_name = 'agglomerate' src_file = os.path.abspath(__file__) # input and output volumes input_path = luigi.Parameter() input_key = luigi.Parameter() output_path = luigi.Parameter() output_key = luigi.Parameter() have_ignore_label = luigi.BoolParameter() dependency = luigi.TaskParameter() def requires(self): return self.dependency @staticmethod def default_task_config(): # parameter: # use_mala_agglomeration: whether to use thresholding based mala agglomeration # or element number based agglomerative clustering # threshold: threshold up to which to agglomerate (mala) or fraction of nodes # after agglomeration (agglomerative clustering) # size_regularizer: size regularizer in agglomerative clustering (wardness) # invert_inputs: do we need to invert the inputs? # offsets: offsets for affinities, set to None for boundaries config = LocalTask.default_task_config() config.update({'use_mala_agglomeration': True, 'threshold': .9, 'size_regularizer': .5, 'invert_inputs': False, 'offsets': None}) return config def clean_up_for_retry(self, block_list): super().clean_up_for_retry(block_list) # TODO remove any output of failed blocks because it might be corrupted def run_impl(self): # get the global config and init configs shebang, block_shape, roi_begin, roi_end = self.global_config_values() self.init(shebang) # get shape and make block config shape = vu.get_shape(self.input_path, self.input_key) if len(shape) == 4: shape = shape[1:] # load the agglomerate config config = self.get_task_config() # update the config with input and output paths and keys # as well as block shape config.update({'input_path': self.input_path, 'input_key': self.input_key, 'output_path': self.output_path, 'output_key': self.output_key, 'block_shape': block_shape, 'have_ignore_label': self.have_ignore_label}) if self.n_retries == 0: block_list = vu.blocks_in_volume(shape, block_shape, roi_begin, roi_end) else: block_list = self.block_list self.clean_up_for_retry(block_list) self._write_log('scheduling %i blocks to be processed' % len(block_list)) n_jobs = min(len(block_list), self.max_jobs) # prime and run the jobs self.prepare_jobs(n_jobs, block_list, config) self.submit_jobs(n_jobs) # wait till jobs finish and check for job success self.wait_for_jobs() self.check_jobs(n_jobs) class AgglomerateLocal(AgglomerateBase, LocalTask): """ Agglomerate on local machine """ pass class AgglomerateSlurm(AgglomerateBase, SlurmTask): """ Agglomerate on slurm cluster """ pass class AgglomerateLSF(AgglomerateBase, LSFTask): """ Agglomerate on lsf cluster """ pass # # Implementation # def _agglomerate_block(blocking, block_id, ds_in, ds_out, config): fu.log("start processing block %i" % block_id) have_ignore_label = config['have_ignore_label'] use_mala_agglomeration = config.get('use_mala_agglomeration', True) threshold = config.get('threshold', 0.9) size_regularizer = config.get('size_regularizer', .5) invert_inputs = config.get('invert_inputs', False) offsets = config.get('offsets', None) bb = vu.block_to_bb(blocking.getBlock(block_id)) # load the segmentation / output seg = ds_out[bb] # check if this block is empty if np.sum(seg) == 0: fu.log_block_success(block_id) return # load the input data ndim_in = ds_in.ndim if ndim_in == 4: assert offsets is not None assert len(offsets) <= ds_in.shape[0] bb_in = (slice(0, len(offsets)),) + bb input_ = vu.normalize(ds_in[bb_in]) else: assert offsets is None input_ = vu.normalize(ds_in[bb]) if invert_inputs: input_ = 1. - input_ id_offset = int(seg[seg != 0].min()) # relabel the segmentation _, max_id, _ = relabelConsecutive(seg, out=seg, keep_zeros=True, start_label=1) seg = seg.astype('uint32') # construct rag rag = nrag.gridRag(seg, numberOfLabels=max_id + 1, numberOfThreads=1) # extract edge features if offsets is None: edge_features = nrag.accumulateEdgeMeanAndLength(rag, input_, numberOfThreads=1) else: edge_features = nrag.accumulateAffinityStandartFeatures(rag, input_, offsets, numberOfThreads=1) edge_features, edge_sizes = edge_features[:, 0], edge_features[:, -1] uv_ids = rag.uvIds() # set edges to ignore label to be maximally repulsive if have_ignore_label: ignore_mask = (uv_ids == 0).any(axis=1) edge_features[ignore_mask] = 1 # build undirected graph n_nodes = rag.numberOfNodes graph = nifty.graph.undirectedGraph(n_nodes) graph.insertEdges(uv_ids) if use_mala_agglomeration: node_labels = mala_clustering(graph, edge_features, edge_sizes, threshold) else: node_ids, node_sizes = np.unique(seg, return_counts=True) if node_ids[0] != 0: node_sizes = np.concatenate([np.array([0]), node_sizes]) n_stop = int(threshold * n_nodes) node_labels = agglomerative_clustering(graph, edge_features, node_sizes, edge_sizes, n_stop, size_regularizer) # run clusteting node_labels, max_id, _ = relabelConsecutive(node_labels, start_label=1, keep_zeros=True) fu.log("reduced number of labels from %i to %i" % (n_nodes, max_id + 1)) # project node labels back to segmentation seg = nrag.projectScalarNodeDataToPixels(rag, node_labels, numberOfThreads=1) seg = seg.astype('uint64') # add offset back to segmentation seg[seg != 0] += id_offset ds_out[bb] = seg # log block success fu.log_block_success(block_id) def agglomerate(job_id, config_path): fu.log("start processing job %i" % job_id) fu.log("reading config from %s" % config_path) with open(config_path, 'r') as f: config = json.load(f) # read the input cofig input_path = config['input_path'] input_key = config['input_key'] shape = list(vu.get_shape(input_path, input_key)) if len(shape) == 4: shape = shape[1:] block_shape = list(config['block_shape']) block_list = config['block_list'] # read the output config output_path = config['output_path'] output_key = config['output_key'] # get the blocking blocking = nt.blocking([0, 0, 0], shape, block_shape) # submit blocks with vu.file_reader(input_path, 'r') as f_in, vu.file_reader(output_path) as f_out: ds_in = f_in[input_key] assert ds_in.ndim in (3, 4) ds_out = f_out[output_key] assert ds_out.ndim == 3 for block_id in block_list: _agglomerate_block(blocking, block_id, ds_in, ds_out, config) # log success fu.log_job_success(job_id) if __name__ == '__main__': path = sys.argv[1] assert os.path.exists(path), path job_id = int(os.path.split(path)[1].split('.')[0].split('_')[-1]) agglomerate(job_id, path)
constantinpape/cluster_tools
cluster_tools/watershed/agglomerate.py
agglomerate.py
py
8,389
python
en
code
32
github-code
6
10623814818
from asyncio import sleep from discord import Forbidden from discord.ext import commands from Utils.domain_tester import get_domain_embed from Utils.file_tester import get_file_embed class DmCommands(commands.Cog, name="Dm Commands"): """ Cog including all Commands that are dm only """ def __init__(self, b): self.b = b print("Dm Commands succesfully added to the bot!") @commands.command(name="check", help="Takes given Input and runs a test over it. Only Dm Channels. Accepts URLs", brief="Checks Input", aliases=["test"]) async def check(self, ctx, *arg): if ctx.guild is not None: try: await ctx.message.delete() await ctx.author.send("Only DM Available") except Forbidden: await ctx.reply("Only DM Available! Warning! The Above message might be milicious. " "Dont click the file/url until you trust it! (for some reason i cant delete it)") return if arg is None and not ctx.message.attachments: await ctx.send("Missing an url") return if ctx.message.attachments: await ctx.reply("Starting testing of files. This takes some time") for i in ctx.message.attachments: msgn = await ctx.reply("Stand by...") await msgn.edit(content=None, embed=await get_file_embed(i, ctx)) await sleep(30) if len(arg) > 0: domain = arg[0] await ctx.reply(embed=get_domain_embed(domain, ctx))
veni-vidi-code/VirusTotalDiscordBot
Cogs/DmCommands.py
DmCommands.py
py
1,634
python
en
code
3
github-code
6
5285437188
from ...robot import Robot from stt_watson.SttWatsonLogListener import SttWatsonLogListener from recording.Record import Record from watson_client.Client import Client from utils.SignalHandler import SignalHandler import threading import signal import os class WatsonRobot(Robot): def __init__(self, config, speaker, actions): super(WatsonRobot, self).__init__(config, speaker, actions) config['audio-chunk'] = 8000 config['audio-rate'] = 44100 config['channels'] = 1 self.listeners = [] sttWatsonLogListener = SttWatsonLogListener() self.listeners.append(sttWatsonLogListener) self.stopper = threading.Event() self.record = Record(config, self.stopper) self.workers = [self.record] self.watsonClient = Client(config) self.handler = SignalHandler(self.stopper, self.workers) signal.signal(signal.SIGINT, self.handler) def name(self): return 'Watson' def listen(self): audioFd, writer = os.pipe() self.record.setWriter(writer) self.record.start() self.watsonClient.setListeners(self.listeners) self.watsonClient.startStt(audioFd)
lowdev/alfred
robot/stt/watson/watson.py
watson.py
py
1,199
python
en
code
0
github-code
6
23932735079
import torch from torch import nn from torch.autograd import Variable import numpy as np from util import get_data from torch.utils.data import DataLoader from torch.nn import functional as F from torch.optim import Adam from variables import* from matplotlib import pyplot as plt class MnistRegression(object): def __init__(self, train_data, test_data): self.train_data = train_data self.test_data = test_data self.model = self.MnistModel() class MnistModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear( in_features=input_shape, out_features=output_shape ) def forward(self, x): x = x.reshape(-1, input_shape) x = self.linear(x) x = F.log_softmax(x, dim=1) return x def loss_fnc(self, Ypred, Y): return F.cross_entropy(Ypred, Y) def optimizer(self, learning_rate=0.1): return Adam(self.model.parameters(), lr=learning_rate) def evaluate(self, Y, Ypred): P = torch.argmax(Ypred, dim=1).numpy() Y = Y.numpy() return np.sum(Y == P) def train(self, num_epochs=100): opt = self.optimizer() total_train_loss = [] total_test_loss = [] for i in range(1,num_epochs+1): n_correct = 0 n_total = 0 for X, Y in self.train_data: Y = Y.to(dtype=torch.int64) Ypred = self.model(X) loss = self.loss_fnc(Ypred, Y) loss.backward() # calculate gradients total_train_loss.append(loss.item()) n_correct += self.evaluate(Y, Ypred) n_total += batch_size opt.step() # update parameters using claculated gradients opt.zero_grad() # use to avoid accumilating the gradients train_acc = round(n_correct/n_total, 3) with torch.no_grad(): n_correct = 0 n_total = 0 for X, Y in self.test_data: Y = Y.to(dtype=torch.int64) Ypred = self.model(X) loss = self.loss_fnc(Ypred, Y) total_test_loss.append(loss.item()) n_correct += self.evaluate(Y, Ypred) n_total += batch_size test_acc = round(n_correct/n_total, 3) print("Train Acc : {} Test Acc : {}".format(train_acc, test_acc)) plt.plot(total_train_loss, label='Train loss') plt.plot(total_test_loss , label='Test loss') plt.legend() plt.show() if __name__ == "__main__": train_data, test_data = get_data() model = MnistRegression(train_data, test_data) model.train()
1zuu/Pytroch-Examples
Mnist/mnist_regression.py
mnist_regression.py
py
2,842
python
en
code
2
github-code
6
72151412028
from python_celery_worker.services.db import db_engine def update_task(id): """ Update the task status in the database :param id: :return: """ conn = db_engine.connect() conn.execute( 'update tasks set status = %s, message = %s, updated_at = NOW() where id = %s', 'completed', 'Updated by celery worker!', id )
fraserreed/blog-samples
laravel-tasks-celery-worker/python_celery_worker/python_celery_worker/services/db_tasks.py
db_tasks.py
py
378
python
en
code
9
github-code
6
40071040492
from collections import Counter class Solution(object): def findAnagrams(self, s, p): """ :type s: str :type p: str :rtype: List[int] """ # anagram: str with same histgram res = [] lp = len(p) -1 ls = len(s) pCount = Counter(p) mCount = Counter(s[:lp]) # from 0 to lp - 2 for i in range(lp, ls): mCount[s[i]]+=1 if mCount == pCount: res.append(i-lp) mCount[s[i-lp]]-=1 if mCount[s[i-lp]] == 0: del mCount[s[i-lp]] return res
lucy9215/leetcode-python
438_findAllAnagramsInAString.py
438_findAllAnagramsInAString.py
py
619
python
en
code
0
github-code
6
31653842077
#!/usr/bin/env python3 """ Problem 8.7 in CtCI book """ def permute(my_str): _permute("", my_str) def _permute(so_far, remaining): if len(remaining) == 0: print(so_far) else: for i in range(len(remaining)): following = so_far + remaining[i] rest = remaining[:i] + remaining[i+1:] _permute(following, rest)
ilee38/practice-python
coding_problems/CTCI_recursion_dp/perms_no_dups.py
perms_no_dups.py
py
338
python
en
code
0
github-code
6
1112499487
""" VirtualMachineHandler provides remote access to VirtualMachineDB The following methods are available in the Service interface: - insertInstance - declareInstanceSubmitted - declareInstanceRunning - instanceIDHeartBeat - declareInstanceHalting - getInstancesByStatus - declareInstancesStopping - getUniqueID( instanceID ) return cloud manager uniqueID form VMDIRAC instanceID """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import os from subprocess import Popen, PIPE import six # DIRAC from DIRAC import gLogger, S_ERROR, S_OK from DIRAC.Core.DISET.RequestHandler import RequestHandler from DIRAC.Core.Utilities.ThreadScheduler import gThreadScheduler from DIRAC.ConfigurationSystem.Client.Helpers.Operations import Operations # VMDIRAC from VMDIRAC.WorkloadManagementSystem.DB.VirtualMachineDB import VirtualMachineDB from VMDIRAC.Security import VmProperties from VMDIRAC.Resources.Cloud.Utilities import STATE_MAP from VMDIRAC.Resources.Cloud.ConfigHelper import getVMTypeConfig, getVMTypes from VMDIRAC.Resources.Cloud.EndpointFactory import EndpointFactory from VMDIRAC.WorkloadManagementSystem.Utilities.Utils import getProxyFileForCE __RCSID__ = '$Id$' # This is a global instance of the VirtualMachineDB class gVirtualMachineDB = False def initializeVirtualMachineManagerHandler(_serviceInfo): global gVirtualMachineDB gVirtualMachineDB = VirtualMachineDB() haltStalledInstances() checkStalledInstances() if gVirtualMachineDB._connected: gThreadScheduler.addPeriodicTask(60 * 15, checkStalledInstances) return S_OK() return S_ERROR() def haltStalledInstances(): result = gVirtualMachineDB.getInstancesByStatus('Stalled') if not result['OK']: return result uList = [] for image in result['Value']: uList += result['Value'][image] stallingList = [] for uID in uList: result = gVirtualMachineDB.getInstanceID(uID) if not result['OK']: continue stallingList.append(result['Value']) return haltInstances(stallingList) def getCEInstances(siteList=None, ceList=None, vo=None): result = getVMTypes(siteList=siteList, ceList=ceList, vo=vo) if not result['OK']: return S_ERROR('Failed to get images from the CS') imageDict = result['Value'] ceList = [] for site in imageDict: for ce in imageDict[site]: result = EndpointFactory().getCE(site, ce) if not result['OK']: continue ceList.append((site, ce, result['Value'])) nodeDict = {} for site, ceName, ce in ceList: result = ce.getVMNodes() if not result['OK']: continue for node in result['Value']: if not node.name.startswith('DIRAC'): continue ip = (node.public_ips[0] if node.public_ips else 'None') nodeState = node.state.upper() if not isinstance(node.state, six.integer_types) else STATE_MAP[node.state] nodeDict[node.id] = {"Site": site, "CEName": ceName, "NodeName": node.name, "PublicIP": ip, "State": nodeState} return S_OK(nodeDict) def checkStalledInstances(): """ To avoid stalling instances consuming resources at cloud endpoint, attempts to halt the stalled list in the cloud endpoint """ result = gVirtualMachineDB.declareStalledInstances() if not result['OK']: return result stallingList = result['Value'] return haltInstances(stallingList) def stopInstance(site, endpoint, nodeID): result = getVMTypeConfig(site, endpoint) if not result['OK']: return result ceParams = result['Value'] ceFactory = EndpointFactory() result = ceFactory.getCEObject(parameters=ceParams) if not result['OK']: return result ce = result['Value'] result = ce.stopVM(nodeID) return result def createEndpoint(uniqueID): result = gVirtualMachineDB.getEndpointFromInstance(uniqueID) if not result['OK']: return result site, endpoint = result['Value'].split('::') result = getVMTypeConfig(site, endpoint) if not result['OK']: return result ceParams = result['Value'] ceFactory = EndpointFactory() result = ceFactory.getCEObject(parameters=ceParams) return result def haltInstances(vmList): """ Common haltInstances for Running(from class VirtualMachineManagerHandler) and Stalled(from checkStalledInstances periodic task) to Halt """ failed = {} successful = {} for instanceID in vmList: instanceID = int(instanceID) result = gVirtualMachineDB.getUniqueID(instanceID) if not result['OK']: gLogger.error('haltInstances: on getUniqueID call: %s' % result['Message']) continue uniqueID = result['Value'] result = createEndpoint(uniqueID) if not result['OK']: gLogger.error('haltInstances: on createEndpoint call: %s' % result['Message']) continue endpoint = result['Value'] # Get proxy to be used to connect to the cloud endpoint authType = endpoint.parameters.get('Auth') if authType and authType.lower() in ['x509', 'voms']: siteName = endpoint.parameters['Site'] ceName = endpoint.parameters['CEName'] gLogger.verbose("Getting cloud proxy for %s/%s" % (siteName, ceName)) result = getProxyFileForCE(endpoint) if not result['OK']: continue endpoint.setProxy(result['Value']) result = endpoint.stopVM(uniqueID) if result['OK']: gVirtualMachineDB.recordDBHalt(instanceID, 0) successful[instanceID] = True else: failed[instanceID] = result['Message'] return S_OK({"Successful": successful, "Failed": failed}) def getPilotOutput(pilotRef): if not pilotRef.startswith('vm://'): return S_ERROR('Invalid pilot reference %s' % pilotRef) # Get the VM public IP diracID, nPilot = os.path.basename(pilotRef).split(':') result = gVirtualMachineDB.getUniqueIDByName(diracID) if not result['OK']: return result uniqueID = result['Value'] result = gVirtualMachineDB.getInstanceID(uniqueID) if not result['OK']: return result instanceID = result['Value'] result = gVirtualMachineDB.getInstanceParameter("PublicIP", instanceID) if not result['OK']: return result publicIP = result['Value'] op = Operations() privateKeyFile = op.getValue('/Cloud/PrivateKey', '') diracUser = op.getValue('/Cloud/VMUser', '') ssh_str = '%s@%s' % (diracUser, publicIP) cmd = ['ssh', '-i', privateKeyFile, ssh_str, "cat /etc/joboutputs/vm-pilot.%s.log" % nPilot] inst = Popen(cmd, stdout=PIPE, stderr=PIPE, stdin=PIPE) output, stderr = inst.communicate() if inst.returncode: return S_ERROR('Failed to get pilot output: %s' % stderr) else: return S_OK(output) class VirtualMachineManagerHandler(RequestHandler): def initialize(self): credDict = self.getRemoteCredentials() self.rpcProperties = credDict['properties'] @staticmethod def __logResult(methodName, result): ''' Method that writes to log error messages ''' if not result['OK']: gLogger.error('%s: %s' % (methodName, result['Message'])) types_getCEInstances = [(list, type(None)), (list, type(None)), six.string_types] def export_getCEInstances(self, siteList, ceList, vo): if not siteList: siteList = None return getCEInstances(siteList=siteList, ceList=ceList, vo=vo) types_stopInstance = [six.string_types, six.string_types, six.string_types] def export_stopInstance(self, site, endpoint, nodeID): return stopInstance(site, endpoint, nodeID) types_getPilotOutput = [six.string_types] def export_getPilotOutput(self, pilotReference): return getPilotOutput(pilotReference) types_checkVmWebOperation = [six.string_types] def export_checkVmWebOperation(self, operation): """ return true if rpc has VM_WEB_OPERATION """ if VmProperties.VM_WEB_OPERATION in self.rpcProperties: return S_OK('Auth') return S_OK('Unauth') types_insertInstance = [six.string_types, six.string_types, six.string_types, six.string_types, six.string_types] def export_insertInstance(self, uniqueID, imageName, instanceName, endpoint, runningPodName): """ Check Status of a given image Will insert a new Instance in the DB """ res = gVirtualMachineDB.insertInstance(uniqueID, imageName, instanceName, endpoint, runningPodName) self.__logResult('insertInstance', res) return res types_getUniqueID = [six.string_types] def export_getUniqueID(self, instanceID): """ return cloud manager uniqueID from VMDIRAC instanceID """ res = gVirtualMachineDB.getUniqueID(instanceID) self.__logResult('getUniqueID', res) return res types_getUniqueIDByName = [six.string_types] def export_getUniqueIDByName(self, instanceName): """ return cloud manager uniqueID from VMDIRAC name """ result = gVirtualMachineDB.getUniqueIDByName(instanceName) self.__logResult('getUniqueIDByName', result) return result types_setInstanceUniqueID = [six.integer_types, six.string_types] def export_setInstanceUniqueID(self, instanceID, uniqueID): """ Check Status of a given image Will insert a new Instance in the DB """ res = gVirtualMachineDB.setInstanceUniqueID(instanceID, uniqueID) self.__logResult('setInstanceUniqueID', res) return res types_declareInstanceSubmitted = [six.string_types] def export_declareInstanceSubmitted(self, uniqueID): """ After submission of the instance the Director should declare the new Status """ res = gVirtualMachineDB.declareInstanceSubmitted(uniqueID) self.__logResult('declareInstanceSubmitted', res) return res types_declareInstanceRunning = [six.string_types, six.string_types] def export_declareInstanceRunning(self, uniqueID, privateIP): """ Declares an instance Running and sets its associated info (uniqueID, publicIP, privateIP) Returns S_ERROR if: - instanceName does not have a "Submitted" entry - uniqueID is not unique """ gLogger.info('Declare instance Running uniqueID: %s' % (uniqueID)) if VmProperties.VM_RPC_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized declareInstanceRunning RPC") publicIP = self.getRemoteAddress()[0] gLogger.info('Declare instance Running publicIP: %s' % (publicIP)) res = gVirtualMachineDB.declareInstanceRunning(uniqueID, publicIP, privateIP) self.__logResult('declareInstanceRunning', res) return res types_instanceIDHeartBeat = [six.string_types, float, six.integer_types, six.integer_types, six.integer_types] def export_instanceIDHeartBeat(self, uniqueID, load, jobs, transferredFiles, transferredBytes, uptime=0): """ Insert the heart beat info from a running instance It checks the status of the instance and the corresponding image Declares "Running" the instance and the image It returns S_ERROR if the status is not OK """ if VmProperties.VM_RPC_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized declareInstanceIDHeartBeat RPC") try: uptime = int(uptime) except ValueError: uptime = 0 res = gVirtualMachineDB.instanceIDHeartBeat(uniqueID, load, jobs, transferredFiles, transferredBytes, uptime) self.__logResult('instanceIDHeartBeat', res) return res types_declareInstancesStopping = [list] def export_declareInstancesStopping(self, instanceIdList): """ Declares "Stopping" the instance because the Delete button of Browse Instances The instanceID is the VMDIRAC VM id When next instanceID heat beat with stopping status on the DB the VM will stop the job agent and terminates properly It returns S_ERROR if the status is not OK """ if VmProperties.VM_WEB_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized VM Stopping") for instanceID in instanceIdList: gLogger.info('Stopping DIRAC instanceID: %s' % (instanceID)) result = gVirtualMachineDB.getInstanceStatus(instanceID) if not result['OK']: self.__logResult('declareInstancesStopping on getInstanceStatus call: ', result) return result state = result['Value'] gLogger.info('Stopping DIRAC instanceID: %s, current state %s' % (instanceID, state)) if state == 'Stalled': result = gVirtualMachineDB.getUniqueID(instanceID) if not result['OK']: self.__logResult('declareInstancesStopping on getUniqueID call: ', result) return result uniqueID = result['Value'] result = gVirtualMachineDB.getEndpointFromInstance(uniqueID) if not result['OK']: self.__logResult('declareInstancesStopping on getEndpointFromInstance call: ', result) return result endpoint = result['Value'] result = self.export_declareInstanceHalting(uniqueID, 0) elif state == 'New': result = gVirtualMachineDB.recordDBHalt(instanceID, 0) self.__logResult('declareInstanceHalted', result) else: # this is only aplied to allowed trasitions result = gVirtualMachineDB.declareInstanceStopping(instanceID) self.__logResult('declareInstancesStopping: on declareInstanceStopping call: ', result) return result types_declareInstanceHalting = [six.string_types, float] def export_declareInstanceHalting(self, uniqueID, load): """ Insert the heart beat info from a halting instance The VM has the uniqueID, which is the Cloud manager VM id Declares "Halted" the instance and the image It returns S_ERROR if the status is not OK """ if VmProperties.VM_RPC_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized declareInstanceHalting RPC") endpoint = gVirtualMachineDB.getEndpointFromInstance(uniqueID) if not endpoint['OK']: self.__logResult('declareInstanceHalting', endpoint) return endpoint endpoint = endpoint['Value'] result = gVirtualMachineDB.declareInstanceHalting(uniqueID, load) if not result['OK']: if "Halted ->" not in result["Message"]: self.__logResult('declareInstanceHalting on change status: ', result) return result else: gLogger.info("Bad transition from Halted to something, will assume Halted") haltingList = [] instanceID = gVirtualMachineDB.getInstanceID(uniqueID) if not instanceID['OK']: self.__logResult('declareInstanceHalting', instanceID) return instanceID instanceID = instanceID['Value'] haltingList.append(instanceID) return haltInstances(haltingList) types_getInstancesByStatus = [six.string_types] def export_getInstancesByStatus(self, status): """ Get dictionary of Image Names with InstanceIDs in given status """ res = gVirtualMachineDB.getInstancesByStatus(status) self.__logResult('getInstancesByStatus', res) return res types_getAllInfoForUniqueID = [six.string_types] def export_getAllInfoForUniqueID(self, uniqueID): """ Get all the info for a UniqueID """ res = gVirtualMachineDB.getAllInfoForUniqueID(uniqueID) self.__logResult('getAllInfoForUniqueID', res) return res types_getInstancesContent = [dict, (list, tuple), six.integer_types, six.integer_types] def export_getInstancesContent(self, selDict, sortDict, start, limit): """ Retrieve the contents of the DB """ res = gVirtualMachineDB.getInstancesContent(selDict, sortDict, start, limit) self.__logResult('getInstancesContent', res) return res types_getHistoryForInstanceID = [six.integer_types] def export_getHistoryForInstanceID(self, instanceId): """ Retrieve the contents of the DB """ res = gVirtualMachineDB.getHistoryForInstanceID(instanceId) self.__logResult('getHistoryForInstanceID', res) return res types_getInstanceCounters = [six.string_types, dict] def export_getInstanceCounters(self, groupField, selDict): """ Retrieve the contents of the DB """ res = gVirtualMachineDB.getInstanceCounters(groupField, selDict) self.__logResult('getInstanceCounters', res) return res types_getHistoryValues = [int, dict] def export_getHistoryValues(self, averageBucket, selDict, fields2Get=None, timespan=0): """ Retrieve the contents of the DB """ if not fields2Get: fields2Get = [] res = gVirtualMachineDB.getHistoryValues(averageBucket, selDict, fields2Get, timespan) self.__logResult('getHistoryValues', res) return res types_getRunningInstancesHistory = [int, int] def export_getRunningInstancesHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket """ res = gVirtualMachineDB.getRunningInstancesHistory(timespan, bucketSize) self.__logResult('getRunningInstancesHistory', res) return res types_getRunningInstancesBEPHistory = [int, int] def export_getRunningInstancesBEPHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket by End-Point History """ res = gVirtualMachineDB.getRunningInstancesBEPHistory(timespan, bucketSize) self.__logResult('getRunningInstancesBEPHistory', res) return res types_getRunningInstancesByRunningPodHistory = [int, int] def export_getRunningInstancesByRunningPodHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket by Running Pod History """ res = gVirtualMachineDB.getRunningInstancesByRunningPodHistory(timespan, bucketSize) self.__logResult('getRunningInstancesByRunningPodHistory', res) return res types_getRunningInstancesByImageHistory = [int, int] def export_getRunningInstancesByImageHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket by Running Pod History """ res = gVirtualMachineDB.getRunningInstancesByImageHistory(timespan, bucketSize) self.__logResult('getRunningInstancesByImageHistory', res) return res
DIRACGrid/VMDIRAC
VMDIRAC/WorkloadManagementSystem/Service/VirtualMachineManagerHandler.py
VirtualMachineManagerHandler.py
py
18,285
python
en
code
6
github-code
6
19019856386
def nextInt(): return int(input()) def nextInts(): return map(int, input().split()) def nextIntList(): return list(nextInts()) MOD = 10**5 def calc(x): y = 0 x_c = x while x_c > 0: x_c, y_c = divmod(x_c, 10) y += y_c return (x + y) % MOD def solve(): N, K = nextInts() start_list = [N] routine_list = list() count = 0 routine_flag = False # find until routine while True: N = calc(N) count += 1 if count == K: break if routine_flag: if N == routine_list[0]: break routine_list.append(N) else: if N in start_list: routine_flag = True routine_list.append(N) start_list.append(N) if count == K: print(N) return # calc routine rem = K - count pos = rem % len(routine_list) print(routine_list[pos]) solve()
minheibis/atcoder
questions/typical90/058/myans_00.py
myans_00.py
py
951
python
en
code
0
github-code
6
17424247870
from setuptools import setup import dorm with open("README.md", "r") as readme: long_description = readme.read() setup( name="dorm", version=dorm.version, description="A tiny SQLite ORM for Python.", long_description=long_description, long_description_content_type="text/markdown", author="Dan Watson", author_email="[email protected]", url="https://github.com/dcwatson/dorm", license="MIT", py_modules=["dorm"], entry_points={"console_scripts": ["dorm=dorm:main"]}, classifiers=[ "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Topic :: Database", ], )
dcwatson/dorm
setup.py
setup.py
py
804
python
en
code
1
github-code
6
40695061264
"""empty message Revision ID: 41124ac6e47e Revises: 57296b50c499 Create Date: 2014-11-30 17:08:44.396000 """ # revision identifiers, used by Alembic. revision = '41124ac6e47e' down_revision = '57296b50c499' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('provider', sa.Column('address', sa.String(length=250), nullable=True)) op.add_column('provider', sa.Column('emails', sa.String(length=250), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('provider', 'emails') op.drop_column('provider', 'address') ### end Alembic commands ###
StasEvseev/adminbuy
migrations/versions/41124ac6e47e_.py
41124ac6e47e_.py
py
800
python
en
code
0
github-code
6
12814211947
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0002_userinfo_grade'), ] operations = [ migrations.CreateModel( name='Events', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=80)), ('date', models.DateTimeField()), ('cost', models.DecimalField(max_digits=6, decimal_places=2)), ], ), migrations.AddField( model_name='userinfo', name='balance', field=models.DecimalField(default=0.0, max_digits=6, decimal_places=2), preserve_default=False, ), ]
asp3/StudentAccounts
student/migrations/0003_auto_20151025_1630.py
0003_auto_20151025_1630.py
py
906
python
en
code
3
github-code
6
34862433797
from django import template from django.urls import NoReverseMatch, reverse from utilities.utils import get_viewname, prepare_cloned_fields register = template.Library() # # Instance buttons # @register.inclusion_tag('buttons/clone.html') def clone_button(instance): url = reverse(get_viewname(instance, 'add')) # Populate cloned field values param_string = prepare_cloned_fields(instance).urlencode() if param_string: url = f'{url}?{param_string}' return { 'url': url, } @register.inclusion_tag('buttons/edit.html') def edit_button(instance): viewname = get_viewname(instance, 'edit') url = reverse(viewname, kwargs={'pk': instance.pk}) return { 'url': url, } @register.inclusion_tag('buttons/delete.html') def delete_button(instance): viewname = get_viewname(instance, 'delete') url = reverse(viewname, kwargs={'pk': instance.pk}) return { 'url': url, } # # List buttons # @register.inclusion_tag('buttons/add.html') def add_button(model, action='add'): try: url = reverse(get_viewname(model, action)) except NoReverseMatch: url = None return { 'url': url, } @register.inclusion_tag('buttons/import.html') def import_button(model, action='import'): try: url = reverse(get_viewname(model, action)) except NoReverseMatch: url = None return { 'url': url, } @register.inclusion_tag('buttons/bulk_edit.html') def bulk_edit_button(model, action='bulk_edit', query_params=None): try: url = reverse(get_viewname(model, action)) if query_params: url = f'{url}?{query_params.urlencode()}' except NoReverseMatch: url = None return { 'url': url, } @register.inclusion_tag('buttons/bulk_delete.html') def bulk_delete_button(model, action='bulk_delete', query_params=None): try: url = reverse(get_viewname(model, action)) if query_params: url = f'{url}?{query_params.urlencode()}' except NoReverseMatch: url = None return { 'url': url, }
Status-Page/Status-Page
statuspage/utilities/templatetags/buttons.py
buttons.py
py
2,140
python
en
code
45
github-code
6
171117843
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from rp_ui_harness import RequestPolicyTestCase TEST_URL = "http://www.maindomain.test/link_1.html" PREF_DEFAULT_ALLOW = "extensions.requestpolicy.defaultPolicy.allow" class TestOpenInCurrentTab(RequestPolicyTestCase): def setUp(self): RequestPolicyTestCase.setUp(self) self.prefs.set_pref(PREF_DEFAULT_ALLOW, False) def test_open_in_current_tab(self): with self.marionette.using_context("content"): # load the test url self.marionette.navigate(TEST_URL) # find the URL string and its wrapping element url_wrapper = self.marionette.find_element("id", "text_url_1") url = url_wrapper.text # select the URL self.web_utils.select_element_text(url_wrapper) with self.marionette.using_context("chrome"): # perform right-click and entry selection self.ctx_menu.select_entry( "context-openlinkincurrent", url_wrapper) tab = self.browser.tabbar.selected_tab self.tabs.wait_until_loaded(tab) self.assertFalse(self.redir.is_shown(), "Following the URL didn't cause a redirect.") self.assertEqual(tab.location, url, "The location is correct.")
RequestPolicyContinued/requestpolicy
tests/marionette/tests/links/text_selection/test_open_in_current_tab.py
test_open_in_current_tab.py
py
1,514
python
en
code
253
github-code
6
35426908825
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt import scipy.integrate a=0.7 b=0.6 X = np.arange(0,2.4,0.2) Y = np.arange(0,2.4,0.2) m,p = np.meshgrid(X,Y) mdot = np.divide(1,1+np.square(p))- np.multiply(b,m) pdot = np.subtract(m,np.multiply(a,p)) fig, ax = plt.subplots() q=ax.quiver(p,m,pdot,mdot) ax.quiverkey(q,X=0.3,Y=2.4, U=5, label='Quiver key, length = 5', labelpos='E') ax.plot(p,np.multiply(a,p)) ax.plot(p, np.divide( 1, np.multiply(b,(1+np.square(p))))) ax.set_xlabel('p') ax.set_ylabel('m') def dydt_autoinhib(t,y,a,b): y1,y2=y dy1 = 1/(1+y2**2)-b*y1 dy2 = y1-a*y2 return (dy1,dy2) # lambda trick so we can pass the right function into the solver dydt_params = lambda t,y: dydt_autoinhib(t,y,a,b) solution1 = scipy.integrate.solve_ivp(dydt_params, t_span=(0,20),y0=(2,2), method='RK45') t1_ode45 = solution1.t m1_ode45 = solution1.y[0] p1_ode45 = solution1.y[1] ax.plot(p1_ode45,m1_ode45) plt.show()
martinaoliver/GTA
ssb/m1a/numeric/Practical_full_solutions_jupyter/python_script_solutions/phase_portrait_autorinhib_20190926.py
phase_portrait_autorinhib_20190926.py
py
991
python
en
code
0
github-code
6
32111228276
import numpy as np import matplotlib.pyplot as plt from scipy import fftpack, signal # 고주파 성분만 날리는 fft # def get_filtered_data(in_data, filter_value=0.004): def del_high_freq(in_data, filter_value=0.004): """ :param in_data: 대상 시계열 신호 :param filter_value: filter_value이상의 주파수를 가지는 신호를 날림 :return: fft 결과 """ sig_fft = fftpack.fft(in_data) sample_freq = fftpack.fftfreq(in_data.size) high_freq_fft = sig_fft.copy() high_freq_fft[np.abs(sample_freq) > filter_value] = 0 filtered_data = fftpack.ifft(high_freq_fft) return filtered_data # 고주파, 저주파 성분을 날리는 fft def del_high_and_low_freq(in_data, high_filter_value, low_filter_value): """ :param in_data: 대상 시계열 신호 :param high_filter_value: fft를 수행할 최대값, low_filter_value ~ high_filter_value값 사이의 신호를 fft :param low_filter_value: fft를 수행할 최소값 :return: fft 결과 """ sig_fft = fftpack.fft(in_data) sample_freq = fftpack.fftfreq(in_data.size) high_freq_fft = sig_fft.copy() low_value1 = np.max(high_freq_fft) high_freq_fft[np.abs(sample_freq) > high_filter_value] = 0 high_freq_fft[np.abs(sample_freq) < low_filter_value] = 0 low_value2 = np.max(high_freq_fft) filtered_data = fftpack.ifft(high_freq_fft) return filtered_data, low_value1, low_value2 def fft(pupil_list, minu=None, quar=None): global section_frames, time # 데이터에서 0, -1인 부분 제거 while 0 in pupil_list: pupil_list.remove(0) while -1 in pupil_list: pupil_list.remove(-1) if minu is not None: time = minu * 1800 section_frames = len(pupil_list) // time if quar is not None: time = len(pupil_list) // quar section_frames = quar y = np.array(pupil_list) # fft # filtered_sig = del_high_freq(y, filter_value=0.005) # 고주파 필터링 filtered_sig, _, _ = del_high_and_low_freq(y, 0.0048, 0.0035) # 저주파, 고주파 필터링 filtered_sig = filtered_sig.astype(np.float) # zero-crossing point zero_crossings = np.where(np.diff(np.sign(np.diff(filtered_sig))))[0] zero_crossings = np.insert(zero_crossings, 0, 0) zero_crossings = np.append(zero_crossings, len(filtered_sig) - 1) # 변화 속도 계산 change_rates_list = [[] for _ in range(section_frames)] for section in range(section_frames): # zero-crossing points 기준으로 원하는 위치(섹션) 가져오기 section_zero_crossing = zero_crossings[np.where(zero_crossings <= (section + 1) * time)] section_zero_crossing = section_zero_crossing[np.where(section * time < section_zero_crossing)] # 변화 속도 계산 for j in range(len(section_zero_crossing) - 1): change_rate = abs((filtered_sig[section_zero_crossing[j + 1]] - filtered_sig[section_zero_crossing[j]]) / ( section_zero_crossing[j + 1] - section_zero_crossing[j])) change_rates_list[section].append(change_rate) return filtered_sig, zero_crossings, section_frames, change_rates_list # fft를 수행한 결과 그래프 그리기 def draw_fft_graph(y, filtered_sig, zero_crossings, section_frames, savepath, minu=None, quar=None): global time x = np.arange(0, len(y)) if minu is not None: time = minu * 1800 section_frames = len(y) // time if quar is not None: time = len(y) // quar section_frames = quar fig = plt.figure(dpi=150) # plt.figure(figsize=(6, 5)) plt.rcParams["font.family"] = 'Malgun Gothic' plt.figure(figsize=(14, 6)) plt.plot(x, y, label='Original signal') plt.plot(x, filtered_sig, linewidth=2, label='Filtered signal') # plt.plot(zero_crossings, filtered_sig[zero_crossings], marker='o', color='red', linestyle='--') plt.legend(loc='upper right') # 섹션 나눠진거 표시 for section in range(section_frames): plt.axvline(x=section * time, ymin=0, ymax=1.0, color='r') plt.axvline(x=(section + 1) * time, ymin=0, ymax=1.0, color='r') # plt.xlim(0, 1800) plt.title('동공크기 변화율') plt.xlabel('Frame') plt.ylabel('Pupil size') plt.savefig(f'{savepath}') plt.show() # 2차식 추세선 그리기, 히스토그램 그래프 저장 def draw_trendline_fft(data, title, y_lim, y_label, savepath, quar = None, avg = False): results = {} # 추세선 x = np.arange(0, len(data)) y = [] for idx, value in enumerate(data): y.append(value) y = np.array(y) # 10개 구간에 해당하는 특징(깜빡임 횟수) fit = np.polyfit(x, y, 2) a = fit[0] b = fit[1] c = fit[2] fit_equation = a * np.square(x) + b * x + c results['coeffs'] = fit.tolist() # r-squared p = np.poly1d(fit) # fit values, and mean yhat = p(x) ybar = np.sum(y) / len(y) ssreg = np.sum((yhat - ybar) ** 2) sstot = np.sum((y - ybar) ** 2) results['r-squared'] = ssreg / sstot r_squared = str(round(results['r-squared'], 3)) # 출력하기 위해 문자열로 변환 a = str(round(results['coeffs'][0], 3)) b = str(round(results['coeffs'][1], 3)) c = str(round(results['coeffs'][2], 3)) # print("R 제곱값: ", round(results['r-squared'], 3)) # print("추세선: "+"Y="+a+"xX^2 + "+b+"xX + "+c) period = ['0~3분', '3~6분', '6~9분', '9~12분', '12~15분', '15~18분', '18~21분', '21~24분', '24~27분', '27~30분', '30~33분'] plt.rcParams["font.family"] = 'Malgun Gothic' fig = plt.figure(dpi=150) ax = fig.add_subplot(1, 1, 1) for idx2, value2 in enumerate(data): ax.bar(period[idx2], value2, color='b', alpha=0.5) ax.plot(x, fit_equation, color='r', alpha=0.5, label='Polynomial fit', linewidth=3.0) # ax.scatter(x, y, s = 5, color = 'b', label = 'Data points') # 추세선 예측에 사용한 좌표 그리기 # Plotting plt.xticks(rotation=20) plt.title(f'{title}') plt.ylim(0, y_lim) plt.xlabel('구간') plt.ylabel(f'{y_label}') # 동공 크기 변화율 출력할 때 위치 조정 if not avg: plt.text(3.2, 0.055, "추세선: " + r'$y = $' + a + r'$x^2 + ($' + b + r'$)x + $' + c, fontdict={'size': 12}) plt.text(7.5, 0.05, r'$R^2 =$' + r_squared, fontdict={'size': 12}) # 평균 동공크기 변화율 출력할 때 위치 조정 else: plt.text(3.2, 0.027, "추세선: " + r'$y = $' + a + r'$x^2 + ($' + b + r'$)x + $' + c, fontdict={'size': 12}) plt.text(7.5, 0.025, r'$R^2 =$' + r_squared, fontdict={'size': 12}) plt.tight_layout() fig.canvas.draw() img = np.array(fig.canvas.renderer._renderer) spl = title.split('.')[0] plt.savefig(f'{savepath}') plt.imshow(img) plt.show() # 그래프 잘 나오는지 띄우기
HanNayeoniee/visual-fatigue-analysis
analysis/fft.py
fft.py
py
6,952
python
en
code
1
github-code
6
34958652342
import torch import torch.nn as nn import torch.nn.functional as F def normalize_l2(x): """ Expects x.shape == [N, C, H, W] """ norm = torch.norm(x.view(x.size(0), -1), p=2, dim=1) norm = norm.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) return x / norm def pair_cos_dist(x, y): cos = nn.CosineSimilarity(dim=-1, eps=1e-6) c = torch.clamp(1 - cos(x, y), min=0) return c class Feature_Targets(nn.Module): def __init__(self, epsilon, num_steps, step_size, data_min = -1.0, data_max = 1.0, grad_sign=True, random_start = True): super().__init__() self.epsilon = epsilon self.num_steps = num_steps self.step_size = step_size self.grad_sign = grad_sign self.data_min = data_min self.data_max = data_max self.random_start = random_start def forward(self, model, bx, by, target_bx): """ :param model: the classifier's forward method :param bx: batch of images :param by: true labels :return: perturbed batch of images """ adv_bx = bx.detach().clone() target = target_bx.detach().clone() if self.random_start: adv_bx += torch.zeros_like(adv_bx).uniform_(-self.epsilon, self.epsilon) adv_bx = adv_bx.clamp(self.data_min, self.data_max) target_feature, target_logits = model(target) for i in range(self.num_steps): adv_bx.requires_grad_() with torch.enable_grad(): feature, logits = model(adv_bx) loss = pair_cos_dist(feature, target_feature).mean() grad = torch.autograd.grad(loss, adv_bx, only_inputs=True)[0] if self.grad_sign: adv_bx = adv_bx.detach() + self.step_size * torch.sign(grad.detach()) else: grad = normalize_l2(grad.detach()) adv_bx = adv_bx.detach() + self.step_size * grad adv_bx = torch.min(torch.max(adv_bx, bx - self.epsilon), bx + self.epsilon).clamp(self.data_min, self.data_max) return adv_bx
arthur-qiu/adv_vis
attack_methods/feature_targets.py
feature_targets.py
py
2,092
python
en
code
0
github-code
6
6112251845
import sys #sys.path.append('/usr/local/Cellar/opencv3/3.2.0/lib/python2.7/site-packages') sys.path.append("/usr/local/Cellar/opencv3/3.2.0/lib/python3.5/site-packages") import cv2 import numpy as np import os import random def show_image(im): height, width = im.shape[:2] res = cv2.resize(im,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) cv2.imshow("Image", res) def show_imageOrig(im): height, width = im.shape[:2] res = cv2.resize(im,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) cv2.imshow("ImageOrig", res) #kernel = np.ones((3,3),np.uint8) #cap = cv2.VideoCapture("dogs.mp4") #ret, frame1 = cap.read() #prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) #hsv = np.zeros_like(frame1) #hsv[...,1] = 255 #fgbg = cv2.createBackgroundSubtractorMOG2(50, 16, False) #fgbg.setBackgroundRatio(0.8) # frames before object becomes foreground #fgbg.setVarInit(500) # speed of adaption of new components #i = 0 #while(1): # ret, frame2 = cap.read() # ret, frame2 = cap.read() # frame2 = cv2.GaussianBlur(frame2,(9,9),0) # fgmask = fgbg.apply(frame2) # fgmask = fgbg.apply(frame2,fgmask, 0) #fgmask = cv2.dilate(fgmask,kernel,iterations = 5) #fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_CLOSE, kernel) ''' ^^ Line above may or may not be good ''' #if (i > 10 and i % 2 == 0): #cv2.imwrite(str(i) + ".png",fgmask) # show_image(fgmask) # k = cv2.waitKey(30) & 0xff # if k == 27: # break #i += 1 #cap.release() #cv2.destroyAllWindows() #errorCount = 0 np.random.seed(133) numLabels = 101 image_size_x = 240 image_size_y = 320 dataRoot = "./UCF-101/" def processFolder(folder): #tick = 0 #global errorCount print(dataRoot + folder) try: videoFileNames = os.listdir(dataRoot + folder) except: print("Not a directory, moving along.") return None, None #i = 0 #data = np.zeros(shape=(len(videoFileNames)*1, image_size_x, image_size_y), dtype=np.float32) #labels = np.zeros(shape=(len(videoFileNames)*1, 101), dtype=np.float32) for videoName in videoFileNames: #if tick < 2: # tick = tick + 1 # continue #tick = 0 if random.random() < 0.98: continue try: print(videoName) cap = cv2.VideoCapture(dataRoot + folder + "/" + videoName) #ret, frame1 = cap.read() #prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) #hsv = np.zeros_like(frame1) #hsv[...,1] = 255 fgbg = cv2.createBackgroundSubtractorMOG2(50, 16, False) fgbg.setBackgroundRatio(0.8) # frames before object becomes foreground fgbg.setVarInit(500) # speed of adaption of new components i = 0 frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) while(cap.get(cv2.CAP_PROP_POS_FRAMES) < frames - 3): #ret, frame2 = cap.read() ret, frame2 = cap.read() if ret == False: continue show_imageOrig(frame2) frame2 = cv2.GaussianBlur(frame2,(9,9),0) fgmask = fgbg.apply(frame2) fgmask = fgbg.apply(frame2,fgmask, 0) show_image(fgmask) k = cv2.waitKey(30) & 0xff if k == 27: break except IOError as e: print('Could not read:', image_file, ':', e, '- it\'s ok, skipping.') #return data, labels def iterData(folder): labelNames = os.listdir(folder) for i in range(len(labelNames)):#len(labelNames) processFolder(labelNames[i]) iterData(dataRoot)
ltecot/humanMotionClassification
img_processing.py
img_processing.py
py
3,562
python
en
code
4
github-code
6
11552601944
import csv import getopt, sys from moviepy.editor import VideoFileClip, concatenate_videoclips folder = '/Videos/' # file name of the video and config file event = '20221002 PREECNLBVA' output_file = None # Create a file for each segment #output_file = 'check' # Compile the clips with a check flag output_file = 'highlight' # Compile the clips with a highligh flag #output_file = '20221002 EYF Segments.mp4' # compile all segments in the config file # --input mp4_file = folder + '/' + event + '.mp4' # --config config_file = folder + '/' + event + '.csv' # --output def return_filename(desc, prefix, suffix): return str(prefix or '') + str(desc or '') + str(suffix or '') + '.mp4' def main(): global folder global event global output_file global mp4_file global config_file argumentList = sys.argv[1:] options = "i:c:o:" long_options = ["input=","config=","output="] try: arguments, values = getopt.getopt(argumentList, options, long_options) for currentArgument, currentValue in arguments: if currentArgument in ("-i", "--input"): mp4_file = currentValue # print ("File: ", currentValue) if currentArgument in ("-o", "--output"): output_file = currentValue if currentArgument in ("-c", "--config"): config_file = currentValue # print ("Config: ", currentValue) except getopt.error as err: print (str(err)) if mp4_file is None: # If mp4 file is not provided, use config file name mp4_file = config_file.replace(".csv", ".mp4") # Read the config file rows = csv.DictReader(open(config_file)) first = True for row in rows: if row['source'] == 'video': min = int(row['min']) sec = int(row['sec']) if min > 0: start_seconds = min * 60 + sec else: start_seconds = sec length_in_sec = int(row['length_in_sec']) end_seconds = start_seconds + length_in_sec if start_seconds and end_seconds: if output_file is None: # MODE = Split the segments into separate files clip = VideoFileClip(mp4_file).subclip(start_seconds, end_seconds) file_name = return_filename(row['desc'], row['filename_prefix'], row['filename_suffix']) clip.write_videofile(file_name) else: # MODE = Concatenate the segments into a single file if (output_file == 'check' and row['filename_suffix'] == 'check') or \ (output_file == 'highlight' and row['filename_suffix'] == 'highlight') or \ (output_file != 'check' and output_file != 'highlight'): # Save only if check or highlight or if all clips if first: final_clip = VideoFileClip(mp4_file).subclip(start_seconds, end_seconds) first = False else: clip = VideoFileClip(mp4_file).subclip(start_seconds, end_seconds) final_clip = concatenate_videoclips([final_clip,clip]) else: print(f'Error with config settings for: {row}') if output_file: # Save the final clip if output_file == 'check': output_file = event + ' check.mp4' elif output_file == 'highlight': output_file = event + ' highlight.mp4' final_clip.write_videofile(output_file) if __name__ == "__main__": main()
jordiyeh/video-cut
create_highlight_videos.py
create_highlight_videos.py
py
3,744
python
en
code
0
github-code
6
4234376251
import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint from scipy.optimize import minimize from sklearn.metrics import mean_squared_error as mse def SIR(): def prediction(beta, gamma, population, i0, r0, d0, time_predict): def SIR_model(y, t, beta, gamma, population): s, i, r = y dSdt = -beta * s * i / population dIdt = beta * s * i / population - gamma * i dRdt = gamma * i return [dSdt, dIdt, dRdt] s0 = population - i0 - r0 - d0 y_0 = [s0, i0, r0] sol = odeint(SIR_model, y_0, time_predict, args=(beta, gamma, population)) sol = np.transpose(sol) return sol def error_model(point, cases, population, infected_0, recovered_0, dead_0): beta, gamma = point def SIR_model(y, t, beta, gamma, population): s, i, r = y dSdt = -beta * s * i / population dIdt = beta * s * i / population - gamma * i dRdt = gamma * i return [dSdt, dIdt, dRdt] suscepted_0 = population - infected_0 - recovered_0 - dead_0 y0 = [suscepted_0, infected_0, recovered_0] sol = odeint(SIR_model, y0, np.arange(1, len(cases) + 1), args=(beta, gamma, population)) sol = np.transpose(sol) error = mse(cases, sol[1]) return error def trainer(cases, population, infected_0, recovered_0, dead_0): optimal = minimize(error_model, np.array([0.001, 0.001]), args=(cases, population, infected_0, recovered_0, dead_0), method='L-BFGS-B', bounds=[(0.000001, 1.0), (0.000001, 1.0)]) beta, gamma = optimal.x return beta, gamma def plot(s, i, r, initials_state, city_name, period_predict, time_predict, population): plt.figure() plt.title('Projeção do total de habitantes sucetíveis, infectados e recuperados em ' + city_name + '/' + initials_state[0], fontsize=20) plt.xlabel('Meses', fontsize=15) plt.xticks(np.linspace(15, period_predict + 15, 7)[:-1], ('Abril', 'Maio', 'Junho', 'Julo', 'Agosto', 'Setembro')) plt.ylabel('Número de habitantes', fontsize=15) plt.yticks(np.arange(0, population, step=population * 0.03)) plt.plot(time_predict, s, label='Sucetíveis') plt.plot(time_predict, i, label='Infectados') plt.plot(time_predict, r, label='Recuperados') plt.legend(loc='center left', bbox_to_anchor=(1.002, 0.7), fontsize=14) plt.rcParams["figure.figsize"] = (20, 10) plt.show()
FBWeimer/Plague-Doctor
Plague Doctor/plaguedoctor/__init__.py
__init__.py
py
2,604
python
en
code
0
github-code
6
42483900439
import pandas as pd import networkx as nx import json hierarchy_df = pd.read_csv('hierarchy_table.csv', index_col=0, dtype=str) graph_network = nx.from_pandas_edgelist( hierarchy_df, source='Parent', target='Child', ) json_graph = json.dumps(graph_network, default=nx.node_link_data) # Using a JSON string with open('json_graph.json', 'w') as outfile: outfile.write(json_graph)
diegopintossi/graph_network
graph_network.py
graph_network.py
py
398
python
en
code
0
github-code
6
34607190454
#通过node2vec算法获取的节点向量表示计算相似度 import math import os import time import pandas as pd import numpy as np #获取所有节点的向量表示形式 def getNodeVector(fileEMB, raw_dataset_path): nodeVecDict = {} raw_dataset = np.loadtxt(raw_dataset_path, delimiter=',') m, n = raw_dataset.shape pro_file = pd.read_csv(fileEMB) pro = np.array(pro_file["name"]) vec = np.array(pro_file["node2vec"]) for i in range(len(pro)): every_nodeVecList = [] node_vector_list = raw_dataset[i, 0:n - 2] for j in range(len(node_vector_list)): every_nodeVecList.append(float(node_vector_list[j])) nodeVecDict[pro[i]] = every_nodeVecList return nodeVecDict def caculateNodeVecSim(nodeVecDict,path): NodeVecSimDict = {} filePathogenic = path + "/dataset/uploads/train.txt" # 已知宿主蛋白 fileCandidate = path + "/dataset/uploads/candidateNode_degree.txt" # 候选宿主蛋白 with open(filePathogenic, 'r') as f1: pathogenic = f1.readlines() with open(fileCandidate, 'r') as f2: candidate = f2.readlines() for i in candidate: simCalcute = [] every_candidate = i.split("\t")[0] for every_pathogenic in pathogenic: every_pathogenic = every_pathogenic.strip("\n") sim = math.sqrt(sum([(a - b) ** 2 for (a, b) in zip(nodeVecDict[every_candidate], nodeVecDict[every_pathogenic])])) simCalcute.append(sim) maxSim = max(simCalcute) print(maxSim) NodeVecSimDict[every_candidate] = maxSim return NodeVecSimDict def save(NodeVecSimDict): fileSim = "../dataset/result/Candidate_NodeVecSim.txt" with open(fileSim, "w") as fw: for key, value in NodeVecSimDict.items(): fw.write(key + "\t" + str(value) + "\n") fw.close() if __name__ == '__main__': path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) NodeVecTime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) print("开始获取节点的向量表示:" + NodeVecTime) fileEMB = path + "/dataset/temp/COVID_Node2Vec.csv" raw_dataset_path = path + '/dataset/minmax_out/raw_minmax.out' nodeVecDict = getNodeVector(fileEMB, raw_dataset_path) simNodeVecTime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) print("基于向量表示开始计算相似度:" + simNodeVecTime) NodeVecSimDict = caculateNodeVecSim(nodeVecDict,path) save(NodeVecSimDict)
LittleBird120/DiseaseGenePredicition
DiseaseGenePredicition/20210316Disease_gene_prediction_algorithm_COVID-19/algorithm/simNode2vec.py
simNode2vec.py
py
2,528
python
en
code
0
github-code
6