seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
โŒ€
dataset
stringclasses
1 value
pt
stringclasses
1 value
43536088674
import re import math import scipy.stats as stats from statsmodels.stats.multitest import multipletests import numpy as np import pandas as pd from tqdm import tqdm # import functools import pprint from mutagene.dna import ( nucleotides, complementary_nucleotide, bases_dict, # comp_dict, extended_nucleotides, complementary_extended_nucleotide) from mutagene.io.motifs import get_known_motifs import logging logger = logging.getLogger(__name__) def identify_motifs(samples_mutations, custom_motif=None, strand=None, threshold=None, dump_matches=None, stat_type=None): """ :param samples_mutations: list of mutations from input file :param custom_motif: specified motif to search for :param strand: strand(s) to search on (T: transcribed, N: non-transcribed, A: any, or a combination theirof: 'TNA') :param dump_matches: pass through to process_mutations, stores all motif matches :param stat_type: pass through to process_mutations, choose statistical test :return: command-line output """ motif_matches = [] sig_motif_matches = [] pvals = [] if strand is None: strand = 'A' else: strand = set(strand) # in case TNA codes repeat if threshold is None: threshold = 0.05 if custom_motif: search_motifs = scanf_motif(custom_motif) else: motifs = get_known_motifs() search_motifs = motifs.copy() # search_motifs.extend(scanf_motif(custom_motif)) _strand_map = { 'T': 'transcribed', 'N': 'non-transcribed', 'A': 'any strand' } disable_progress_bar = logger.getEffectiveLevel() == logging.DEBUG for sample, mutations in tqdm(samples_mutations.items(), leave=False, disable=disable_progress_bar): if mutations is not None and len(mutations) > 0: first_mut_seq_with_coords = mutations[0][-1] window_size = (len(first_mut_seq_with_coords) - 1) // 2 for m in tqdm(search_motifs, leave=False, disable=disable_progress_bar): for s in strand: result, saved_data = process_mutations( mutations, m['motif'], m['position'], m['ref'], m['alt'], window_size, s, stat_type=stat_type) if dump_matches: for chrom, pos in saved_data['mutation_motif']: dump_matches.write( "chr{}\t{}\t{}\t{}\t{}\t{}\n".format( chrom, pos, int(pos) + 1, sample, m['logo'], _strand_map[s])) debug_data = { 'sample': sample, 'motif': m['logo'], 'strand': s} debug_data.update(result) debug_string = pprint.pformat(debug_data, indent=4) logger.debug(debug_string) motif_matches.append({ 'sample': sample, 'mutagen': m['name'], 'motif': m['logo'], 'strand': _strand_map[s], 'enrichment': result['enrichment'], 'mut_min': result['mutation_load'], 'mut_max': result['bases_mutated_in_motif'], 'odds_ratio': result['odds_ratio'], 'pvalue': result['pvalue'] }) pvals.append(result['pvalue']) qvalues = get_corrected_pvalues(pvals) for i, motif_dict in enumerate(motif_matches): motif_matches[i]['qvalue'] = qvalues[i] if motif_dict['mut_min'] == 0: continue if motif_dict['qvalue'] >= threshold: continue sig_motif_matches.append(motif_dict) return sig_motif_matches def scanf_motif(custom_motif): """ recognize motif syntax like A[C>T]G and create a motif entry """ m = re.search( r'([' + extended_nucleotides + ']*)\\[([' + nucleotides + '])>([' + extended_nucleotides + '])\\]([' + extended_nucleotides + ']*)', custom_motif.upper()) if m: g = m.groups('') # print("GROUPS", m.group(1), m.group(2), m.group(3), m.group(4)) entry = {} entry['logo'] = m.group(0) entry['motif'] = g[0] + g[1] + g[3] entry['position'] = len(g[0]) entry['ref'] = g[1] entry['alt'] = g[2] if entry['ref'] == entry['alt']: return [] entry['name'] = 'Custom motif' entry['references'] = '' return [entry, ] return [] def calculate_RR(ct): """ Mutation is treatment No mutation is placebo :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: enrichment or risk ratio """ try: RR = ((ct.loc['mutation', 'motif'] / (ct.loc['mutation', 'motif'] + ct.loc['mutation', 'no motif'])) / (ct.loc['no mutation', 'motif'] / (ct.loc['no mutation', 'motif'] + ct.loc['no mutation', 'no motif']))) except ZeroDivisionError: RR = 0.0 return RR def calculate_RR_for_motif(ct): """ Motif is treatment No motif is placebo :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: enrichment or risk ratio """ try: RR = ((ct.loc['mutation', 'motif'] / (ct.loc['mutation', 'motif'] + ct.loc['no mutation', 'motif'])) / (ct.loc['mutation', 'no motif'] / (ct.loc['mutation', 'no motif'] + ct.loc['no mutation', 'no motif']))) except ZeroDivisionError: RR = 0.0 return RR def calculate_OR(ct): """ :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: odds ratio """ try: OR = ( (ct.loc['mutation', 'motif'] / ct.loc['mutation', 'no motif']) / (ct.loc['no mutation', 'motif'] / ct.loc['no mutation', 'no motif'])) except ZeroDivisionError: OR = 0.0 return OR def Haldane_correction(ct, pseudocount=0.5): """ :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: contigency table after Haldane correction is applied """ """ apply Haldane correction (+ 0.5) if any of the values in the contingency table is zero """ return ct + pseudocount if np.any(np.isclose(ct.to_numpy(), 0.0)) else ct def calculate_mutation_load(N_mutations, enrichment): """ Mutation load (minimum estimate) calculation following Gordenin et al protocol However, at this point motif matches are not filtered for p-value significance That's done in the end after multiple testing correction """ mutation_load = 0.0 if enrichment > 1.0: mutation_load = N_mutations * (enrichment - 1) / enrichment # elif p_value < p_value_threshold: tests for enrichment depletion return mutation_load def get_stats(ct, stat_type='fisher'): """ Calculate Fisher and Chi2 test pvalues, :param ct: counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :param stat_type: Type of pvalue (Fisher's ('fisher') or Chi-Square ('chi2')) :return: pvalue of the corresponding statistical test """ p_val = 1.0 if stat_type is None: stat_type = 'fisher' stat_type = stat_type.lower() acceptable_tests = ('fisher', 'chi2') if stat_type not in acceptable_tests: logger.warning('get_stats() can only calculate p-values for ' + str(acceptable_tests)) if stat_type == 'fisher': try: p_val = stats.fisher_exact(ct, alternative="greater")[1] # if p_val > 0.05: # p_val = stats.fisher_exact(ct, alternative="less")[1] #calculates if motif is underrepresented except ValueError: p_val = 1.0 elif stat_type == 'chi2': try: p_val = stats.chi2_contingency(ct)[1] except ValueError: p_val = 1.0 return p_val def get_corrected_pvalues(p_values): qvalues = [] if len(p_values): qvalues = multipletests(pvals=p_values, method='fdr_bh')[1] return qvalues # @functools.lru_cache(maxsize=None) def get_rev_comp_seq(sequence): """ :param sequence: forward DNA sequence :return: reverse complimentary DNA sequence """ # rev_comp_seq = "".join([complementary_nucleotide[i] for i in reversed(sequence)]) cn = complementary_nucleotide return [(i[0], i[1], cn[i[2]], '-') for i in reversed(sequence)] def mutated_base(mutation, ref, alt): """ :param mutation: [(record.CHROM, record.POS, record.REF, record.ALT)] :param ref: list the nucleotide base pre-mutation :param alt: list the nucleotide base post-mutation :return: True if mutation matches the specified ref and alt """ # makes sure single base substitution _, _, mut_ref, mut_alt = mutation if mut_alt and mut_ref and len(mut_ref) == 1 and len(mut_alt) == 1 and mut_ref != mut_alt: # mutation matches the substitution if mutation[2] in bases_dict[ref] and mutation[3] in bases_dict[alt]: return True def find_matching_motifs(seq, motif, motif_position): """ :param seq: DNA sequence :param motif: specified motif :param motif_position: position of mutated base in motif, 0-base numbering :return: generator of matching positions TODO: SLOW algorithm O(n * m). Need to create a suffix tree with regexp """ # print("Looking for motif {} in {}, {}".format(motif, sequence, len(sequence) - len(motif))) for i in range(len(seq) - len(motif) + 1): # s = seq[i: i + len(motif)] # print(s) for j, c in enumerate(motif): if seq[i + j][2] not in bases_dict[c]: break else: yield seq[i + motif_position] def find_matching_bases(seq, ref, motif, motif_position): """ :param seq: :param ref: :param motif: :param motif_position: :return: bases that match mutations """ for i in range(motif_position, len(seq) - (len(motif) - motif_position) + 1): # range excludes border of sequence that may be motifs that don't fit window size if seq[i][2] in bases_dict[ref]: yield seq[i] def make_contingency_table( array=None, motif_mutation=None, no_motif_mutation=None, motif_no_mutation=None, no_motif_no_mutation=None): """ Make a 2x2 contingency table out of a numpy array or four integers""" if array is not None: assert isinstance(array, np.ndarray) assert array.shape == (2, 2) else: array = np.array([ [motif_mutation, no_motif_mutation], [motif_no_mutation, no_motif_no_mutation] ]) contingency_table = pd.DataFrame(array) contingency_table.columns = ["motif", "no motif"] contingency_table.index = ["mutation", "no mutation"] return contingency_table def process_mutations(mutations, motif, motif_position, ref, alt, range_size, strand, stat_type=None): """ :param mutations: mutations to be analyzed :param motif: specified motif to search for :param motif_position: location of mutation in motif, 0-base numbering from left of motif :param ref: base pre-mutation :param alt: base post-mutation :param range_size: how far in the motif to search for :param strand: strand motif should be searched on :param stat_type: type of pvalue: Fisher's (default) or Chi-Square :param dump_matches: an optional file handle to save all mutations matching the motif regardless of their significance :return: (results summary disctionary, data_dump with stored_data or None if dump_matches is None) """ assert range_size >= 0 assert len(ref) == 1 assert len(alt) == 1 assert 0 <= motif_position < len(motif) assert len(set(strand) - set("ATN")) == 0, "[process_mutations] only A, T, N allowed in strand parameter" matching_bases = set() matching_motifs = set() matching_mutated_motifs = set() matching_mutated_bases = set() # extra loop for sample in sample list for chrom, pos, transcript_strand, x, y, seq in mutations: # extract the longest sequence we would ever need (motif + range_size); range size = # bases outside mutation mutation = chrom, pos, x, y rev_seq = get_rev_comp_seq(seq) # assuming that all mutations are reported in '+' reference strand if strand == 'A' or (strand == 'T' and transcript_strand == '+') or (strand == 'N' and transcript_strand == '-'): # not mutated: for ref_match in find_matching_bases(seq, ref, motif, motif_position): matching_bases.add(ref_match[0:2]) for motif_match in find_matching_motifs(seq, motif, motif_position): matching_motifs.add(motif_match[0:2]) # mutated: if mutated_base(mutation, ref, alt): # m = (mutation[0], mutation[1], mutation[2], "+") matching_mutated_bases.add(mutation[0:2]) context_of_mutation = seq[range_size - motif_position: range_size - motif_position + len(motif)] for motif_match in find_matching_motifs(context_of_mutation, motif, motif_position): matching_mutated_motifs.add(motif_match[0:2]) if strand == 'A' or (strand == 'T' and transcript_strand == '-') or (strand == 'N' and transcript_strand == '+'): # rev compl: not mutated: for ref_match in find_matching_bases(rev_seq, ref, motif, motif_position): matching_bases.add(ref_match[0:2]) for motif_match in find_matching_motifs(rev_seq, motif, motif_position): matching_motifs.add(motif_match[0:2]) # rev compl: mutated: if mutated_base(mutation, complementary_extended_nucleotide[ref], complementary_extended_nucleotide[alt]): # m = (mutation[0], mutation[1], mutation[2], "-") matching_mutated_bases.add(mutation[0:2]) # rev comp: context_of_mutation = rev_seq[range_size - motif_position: range_size - motif_position + len(motif)] for motif_match in find_matching_motifs(context_of_mutation, motif, motif_position): matching_mutated_motifs.add(motif_match[0:2]) motif_mutation_count = len(matching_mutated_motifs) # bases mutated in motif stat_mutation_count = len(matching_mutated_bases - matching_mutated_motifs) # bases mutated not in motif stat_motif_count = len(matching_motifs - matching_mutated_motifs) # bases not mutated in motif stat_ref_count = len(matching_bases - (matching_motifs | matching_mutated_bases)) # bases not mutated not in motif # number of A[T>G]T occurrences motif_mutation_count # / number of [T>G] occurrences stat_mutation_count + motif_mutation_count # ---------- # number of ATT occurrences in DNA context stat_motif_count # / number of T occurrences in DNA context stat_ref_count + stat_motif_count contingency_table = make_contingency_table( motif_mutation=motif_mutation_count, no_motif_mutation=stat_mutation_count, motif_no_mutation=stat_motif_count, no_motif_no_mutation=stat_ref_count) # data={ # "'{}>{}' mutation".format(ref, alt): [stat_mutation_count, motif_mutation_count], # "no '{}>{}' mutation".format(ref, alt): [stat_ref_count, stat_motif_count]}, # index=("no '{}' motif".format(motif), "'{}' motif".format(motif))) logger.debug("\n" + contingency_table.to_string() + "\n") logger.debug("({} / ({} + {}) ) / ({} / ({} + {}))".format( contingency_table.loc['mutation', 'motif'], contingency_table.loc['mutation', 'motif'], contingency_table.loc['mutation', 'no motif'], contingency_table.loc['no mutation', 'motif'], contingency_table.loc['no mutation', 'motif'], contingency_table.loc['no mutation', 'no motif'])) contingency_table = Haldane_correction(contingency_table) enrichment = risk_ratio = calculate_RR(contingency_table) # enrichment = risk ratio odds_ratio = calculate_OR(contingency_table) p_val = get_stats(contingency_table, stat_type) mut_load = calculate_mutation_load(motif_mutation_count, enrichment) result = { 'enrichment': enrichment, # AKA risk ratio 'odds_ratio': odds_ratio, 'mutation_load': math.ceil(mut_load), 'pvalue': p_val, 'bases_mutated_in_motif': motif_mutation_count, 'bases_mutated_not_in_motif': stat_mutation_count, 'bases_not_mutated_in_motif': stat_motif_count, 'bases_not_mutated_not_in_motif': stat_ref_count, 'total_mutations': len(mutations) } saved_matches = { 'mutation_motif': matching_mutated_motifs } return result, saved_matches
neksa/mutagene
mutagene/motifs/__init__.py
__init__.py
py
17,419
python
en
code
3
github-code
6
5221428710
def encode(s): k = '0123456789abcdefghijklmnopqrstuv' v = 0 vbits = 0 output = [] for c in s: v |= ord(c) << vbits vbits += 8 while vbits >= 5: output.append(k[v & 31]) v >>= 5 vbits -= 5 if vbits: output.append(k[v]) return ''.join(output) def decode(s): v = 0 vbits = 0 output = [] for c in s.lower(): if c >= '0' and c <= '9': u = ord(c) - ord('0') elif c >= 'a' and c <= 'v': u = ord(c) - ord('a') + 10 else: raise ValueError('Invalid base-32 input') v |= u << vbits vbits += 5 if vbits >= 8: output.append(chr(v & 255)) v >>= 8 vbits -= 8 if vbits >= 5 or v: raise ValueError('Invalid base-32 input') return ''.join(output)
agl/dnscurve
tools/base32.py
base32.py
py
765
python
en
code
24
github-code
6
21836480019
import sys sys.stdin = open('../input.txt', 'r') def solve(d, next): global real if d == 7: if sum(real) == 100: print('\n'.join(map(str, sorted(real)))) sys.exit(0) else: for i in range(next, 9): if sum(real) <= 100: real.append(heights[i]) solve(d+1, next+1) real.pop() heights = [int(input()) for _ in range(9)] real = [] solve(0, 0)
liza0525/algorithm-study
BOJ/boj_2309_seven_drwaf.py
boj_2309_seven_drwaf.py
py
452
python
en
code
0
github-code
6
7713977328
#!/usr/bin/python # -*- coding: utf-8 -*- from flask import Flask, render_template import platform import netifaces myApp = Flask(__name__) @myApp.route('/') def home(): data = {'user': 'ramy', 'machine':platform.node(), 'os':platform.system(), 'dist':platform.linux_distribution(), 'interfaces':netifaces.interfaces()} return render_template('index.system.html', title='Home', data=data) if __name__ == '__main__': myApp.run(host='0.0.0.0', port=999)
RMDHMN/pythonFlash_testing
system-template.py
system-template.py
py
469
python
en
code
1
github-code
6
14765002641
from time import strftime from configuration_validation import extract_data from configuration_validation import configuration_validation_tool import os def main(): user_response = input('Do you want to search for all master.pmc files? [Y/N]\n') master_file_list = list() if user_response.lower() == 'y': master_file_list = configuration_validation_tool.find_all_master() elif user_response.lower() == 'n': master_file_list.append(configuration_validation_tool.find_one_master()) else: print('That is not a valid answer, please try again.') main() file_data, mcs = build_file(master_file_list) export_label_data(mcs, file_data) print('Cables labels produced.') answer = input('Would you like to produce more cable labels? [Y/N]\n or type "Other" to select a different tool.\n') configuration_validation_tool.retry(answer, '3') def build_file(master_files): file_data = list() mcs = 'MCS Not found' for file in master_files: controller_frame = import_label_data(file) cable_label_data = cable_label(controller_frame) for i in cable_label_data: axis_formatted_data = format_cable_label(i) file_data.append(axis_formatted_data) mcs = str(cable_label_data[0]['mcs']) return file_data, mcs def import_label_data(master_path): # Imports the raw data required for the labels from a '.e.pmc' file. data_fields = ['e_BrickN_P', 'e_DevName_P', 'e_AxisID_P', 'b_AxisN_P', 'a_Commutation_D', 'a_IsBrakeUsed_X', 'e_StageEncPortN_X', 'b_StageEncPortN_P', 'e_MotEncPortN_X', 'b_MotEncPortN_P', 'a_IsEncoderUsed_X', 'e_BrickIP_P', ] controller_frame = extract_data.main(master_path, data_fields) return controller_frame def cable_label(controller_data): # Applies consistent wording for variables, and imports encoder details if required. data = list() aux = dict() for i, v in controller_data.iterrows(): label = dict() i = int(i) if controller_data.iloc[i]['a_Commutation_D'].lower() == "'directmicrostepping'": label['motor_type'] = 'Stepper' elif controller_data.iloc[i]['a_Commutation_D'].lower() == "'notdirectmicrostepping'": label['motor_type'] = 'Stepper' elif controller_data.iloc[i]['a_Commutation_D'].lower() == "'brushlessdc'": label['motor_type'] = 'BrushlessDC' elif controller_data.iloc[i]['a_Commutation_D'].lower() == "'dcbrush'": label['motor_type'] = 'DCBrushed' else: print(controller_data.iloc[i]['a_Commutation_D']) label['motor_type'] = 'Error' if controller_data.iloc[i]['a_IsEncoderUsed_X'] == '1': label['enc_type'] = 'ENC' label['stage_enc_axis'] = controller_data.iloc[i]['b_StageEncPortN_P'] label['motor_enc_axis'] = controller_data.iloc[i]['b_MotEncPortN_P'] else: label['enc_type'] = False label['stage_enc_axis'] = 'none' label['motor_enc_axis'] = 'none' if controller_data.iloc[i]['a_IsBrakeUsed_X'] == '1': aux['maux'] = 'aux' aux['mcs'] = strip_grab(controller_data, 'e_BrickN_P', i) label['mcs'] = strip_grab(controller_data, 'e_BrickN_P', i) label['axis'] = strip_grab(controller_data, 'b_AxisN_P', i) label['axisname'] = strip_grab(controller_data, 'e_AxisID_P', i) label['devname'] = strip_grab(controller_data, 'e_DevName_P', i) data.append(label.copy()) data.append(aux.copy()) return data def format_cable_label(label_data): # Formats the data for use with BMP-71 labeler. formatted_data = list() valid_mot_axis = ['Stepper', 'BrushlessDC', 'DCBrushed', ] valid_enc_axis = ['1', '2', '3', '4', '5', '6', '7', '8', ] if 'maux' in label_data and label_data['maux'] == 'aux': formatted_data.append('MCS{0},MAUX,\n'.format(label_data['mcs'])) return formatted_data if 'motor_type' in label_data and label_data['motor_type'] in valid_mot_axis: formatted_data.append('MCS{0},{1},#{2} - {3},:{4},\n'.format(label_data['mcs'], label_data['motor_type'], label_data['axis'], label_data['devname'], label_data['axisname'], )) elif 'motor_type' in label_data and label_data['motor_type'] not in valid_mot_axis: formatted_data.append('Motor Type not found!,ERROR,ERROR,ERROR,\n') if 'enc_type' in label_data and label_data['enc_type'] is not False and label_data['stage_enc_axis'] in \ valid_enc_axis: formatted_data.append('MCS{0},{1},#{2} - {3},:{4},\n'.format(label_data['mcs'], label_data['enc_type'], label_data['stage_enc_axis'], label_data['devname'], label_data['axisname'])) if 'enc_type' in label_data and label_data['enc_type'] is not False and label_data['motor_enc_axis'] in \ valid_enc_axis: formatted_data.append('MCS{0},{1},#{2} - {3},:{4},\n'.format(label_data['mcs'], label_data['enc_type'], label_data['motor_enc_axis'], label_data['devname'], label_data['axisname'])) return formatted_data def export_label_data(mcs, data): # Writs the data to a csv file. mcs = str(mcs) output_path = os.getcwd().rsplit('\\', 1)[0] filename = output_path + '\\output\\Labels_MCS{0}_{1}'.format(mcs, strftime("%Y%m%d%H%M%S")) with open(filename + '.csv', 'w') as f: for label in data: for line in label: f.write(line) f.close() def strip_grab(dataframe, var, i): # Strips values of unnecessary quotation marks. try: value = dataframe.iloc[i][var] except KeyError: value = ' No valid data.' if isinstance(value, str): value = value.strip("'") return value else: return value
naderafsh/configuration_validation
configuration_validation/cable_labels.py
cable_labels.py
py
6,895
python
en
code
0
github-code
6
2642837677
def majorityElement(nums): # Mooreโ€™s Voting Algorithm n = len(nums) count = 0 element = None for i in range(n): if count == 0: count = 1 element = nums[i] elif element == nums[i]: count += 1 else: count -= 1 # Checking if the stored element is the majority element count2 = 0 for i in range(n): if nums[i] == element: count2 += 1 if count2 > (n / 2): return element return -1 nums = [2, 2, 1, 1, 1, 2, 2] print(majorityElement(nums))
ArunRawat404/DSA
Array/Medium/3. Majority Element.py
3. Majority Element.py
py
586
python
en
code
0
github-code
6
8167072903
from keras.callbacks import EarlyStopping, ModelCheckpoint from keras import regularizers import numpy as np import pandas as pd import math as math import sys import os import keras from keras.models import load_model from keras.layers import Dropout , Flatten from keras.layers import BatchNormalization from keras.preprocessing.text import text_to_word_sequence from keras.preprocessing.text import one_hot import string from keras.layers import MaxPooling1D from keras.layers import Flatten from keras.layers import ConvLSTM2D from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import LSTM,GRU,TimeDistributed from keras.layers import Dense from keras.layers.embeddings import Embedding from gensim.models.word2vec import Word2Vec def normal_string(string): if not string: return "" if len(string) <= 2: return string if len(string) > 2 and string[0] == string[1] and string[1] == string[2]: return normal_string(string[1:]) return string[0] + normal_string(string[1:]) def remove_space(text): index_list = [i for i, letter in enumerate(text) if letter == '\''] remove_list = [] for i in range(0,len(index_list)): if index_list[i]-1 >= 0 and text[index_list[i]-1] == ' ': remove_list.append(index_list[i]-1) if index_list[i]+1 < len(text) and text[index_list[i]+1] == ' ': remove_list.append(index_list[i]+1) #remove_list.append(index_list[i]) text = "".join([char for idx, char in enumerate(text) if idx not in remove_list]) return text mode = sys.argv[3] test_data_filename = sys.argv[1] t_lines = [line.rstrip('\n') for line in open(test_data_filename,'r' , errors='replace' , encoding='utf-8')] t_lines = t_lines[1:] for i in range(0,len(t_lines)): num = len(str(i)) t_lines[i] = t_lines[i][num+1:] w2v_t_lines = [] for i in range(0, len(t_lines)): t_lines[i] = remove_space(t_lines[i]) tk = text_to_word_sequence(t_lines[i], filters='', lower=True, split=' ') tmp_line = [] tmp = "" for j in range(0,len(tk)): tk[j] = tk[j].encode("ascii", errors="ignore").decode() tk[j] = normal_string(tk[j]) tmp_line.append(tk[j]) tmp = tmp + tk[j] + " " t_lines[i] = tmp w2v_t_lines.append(tmp_line) model = Word2Vec.load("gensim_w2v_0.82693_0602_model") word_vectors = model.wv vocab = [] for k, v in word_vectors.vocab.items(): vocab.append( (k,v.index) ) vocab = sorted(vocab , key=lambda x:x[1]) word_index_dict = {} for i in range(0,len(vocab)): word = vocab[i][0] word_index_dict[word] = i+1 word_index_dict["unknown_word"] = len(vocab)+1 test_ind = [] for i in range(len(w2v_t_lines)): tmp = [] for w in w2v_t_lines[i]: if w not in word_index_dict: tmp.append(word_index_dict["unknown_word"]) else: tmp.append(word_index_dict[w]) test_ind.append(tmp) rnn_model = load_model("0602_gensim_0.82693.h5") test = sequence.pad_sequences(test_ind, maxlen=33) p = 0.0 p += rnn_model.predict(test) ans_filename = sys.argv[2] ans_file = open(ans_filename , 'w') ans_file.write("id,label\n") for i in range(0,len(p)): ans_file.write(str(i)) ans_file.write(',') if p[i][0] >= 0.5: ans_file.write('1') else: ans_file.write('0') ans_file.write('\n')
muachilin/Machine-Learning
hw5/hw5_test.py
hw5_test.py
py
3,172
python
en
code
0
github-code
6
5200586519
""" This module contains the main transmittance/reflectance calculation bits. Users can run the calculations through `model.Model()` and avoid accessing `core` directly. """ import numpy as np import scipy as sp def rt_amp(index, delta, theta, pol): """Calculate the reflected and transmitted amplitudes through the system. Parameters ---------- index : numpy array An array of refractive indices, ordered from source layer to terminator layer. delta : numpy array An array of wavenumber offsets. theta : numpy array An array of angles in radians. pol : string The polarization of the source wave: 's' or 'p', or 'u'. Returns ------- r, t : tuple A tuple where 'r' is the reflected amplitude, and 't' is the transmitted amplitude. """ t_amp, r_amp = make_rt_amp_matrix(index, theta, pol) m_mat = make_m_matrix(index, t_amp, r_amp, delta) m_prime = make_2x2(1., 0., 0., 1., dtype=complex) for i in range(1, len(index)-1): m_prime = np.dot(m_prime, m_mat[i]) C_m = make_2x2(1., r_amp[0, 1], r_amp[0, 1], 1., dtype=complex) m_prime = np.dot(C_m / t_amp[0, 1], m_prime) trans_amp = 1 / m_prime[0, 0] ref_amp = m_prime[1, 0] / m_prime[0, 0] return ref_amp, trans_amp def make_rt_amp_matrix(index, theta, pol): """Construct reflection and transmission amplitude matrices. Parameters ---------- index : numpy array An array of refractive indices, ordered from source layer to terminator layer. theta : numpy array An array of angles in radians. pol : string The polarization of the source wave: 's' or 'p'. Returns ------- t_mat, r_mat : tuple The t- and r-amplitude matrices. """ t_mat = np.zeros((len(index), len(index)), dtype=complex) r_mat = np.zeros((len(index), len(index)), dtype=complex) for i in range(len(index) - 1): t_mat[i, i+1] = t_interface(index[i], index[i+1], theta[i], theta[i+1], pol) r_mat[i, i+1] = r_interface(index[i], index[i+1], theta[i], theta[i+1], pol) return t_mat, r_mat def make_m_matrix(index, t_matrix, r_matrix, delta): """Construct the characteristic matrix of the model. Parameters ---------- index : numpy array An array of refractive indices, ordered from source layer to terminator layer. t_matrix : numpy array The t-amplitude matrix r_matrix : numpy array The r-amplitude matrix delta : numpy array An array of wavenumber offsets. Returns ------- m_mat : numpy array The characteristic matrix of the model """ m_mat = np.zeros((len(index), 2, 2), dtype=complex) for i in range(1, len(index)-1): C_m = make_2x2(np.exp(-1j * delta[i]), 0., 0., np.exp(1j * delta[i]), dtype=complex) r_m = make_2x2(1., r_matrix[i, i+1], r_matrix[i, i+1], 1., dtype=complex) m_mat[i] = (1 / t_matrix[i, i+1]) * np.dot(C_m, r_m) return m_mat def r_power(r_amp): """Return the fraction of reflected power. Parameters ---------- r_amp : float The net reflection amplitude after calculating the transfer matrix. Returns ------- R : numpy array The model reflectance """ return np.abs(r_amp)**2 def t_power(t_amp, index_i, index_f, theta_i, theta_f): """Return the fraction of transmitted power. Parameters ---------- t_amp : float The net transmission amplitude after calculating the transfer matrix. index_i : float The index of refraction of the source material. index_f : float The index of refraction of the terminating material. theta_i : float The angle of incidence (radians) at the initial interface. theta_f : float The angle of incidence (radians) at the final interface. Returns ------- T : numpy array The model transmittance """ return np.abs(t_amp**2) * \ ( (index_f * np.cos(theta_f)) / (index_i * np.cos(theta_i) ) ) def r_interface(index1, index2, theta1, theta2, pol): """Calculate the reflected amplitude at an interface. Parameters ---------- index1 : float The index of refraction of the first material. index2 : float The index of refraction of the second material. theta1 : float The angle of incidence at interface 1, in radians theta2 : float The angle of incidence at interface 2, in radians pol : string The polarization of the source wave (either 's' or 'p'). Returns ------- reflected amplitude : float The amplitude of the reflected field at the interface """ if pol == 's': numerator = (index1 * np.cos(theta1) - index2 * np.cos(theta2)) denominator = (index1 * np.cos(theta1) + index2 * np.cos(theta2)) elif pol == 'p': numerator = (index2 * np.cos(theta1) - index1 * np.cos(theta2)) denominator = (index1 * np.cos(theta2) + index2 * np.cos(theta1)) else: raise ValueError("Polarization must be 's' or 'p'") return numerator / denominator def t_interface(index1, index2, theta1, theta2, pol): """Calculate the transmission amplitude at an interface. Parameters ---------- index1 : float The index of refraction of the first material. index2 : float The index of refraction of the second material. theta1 : float The angle of incidence at interface 1, in radians theta2 : float The angle of incidence at interface 2, in radians pol : string The polarization of the source wave (either 's' or 'p'). Returns ------- transmitted_amplitude : float The amplitude of the transmitted field at the interface """ if pol == 's': numerator = 2 * index1 * np.cos(theta1) denominator = (index1 * np.cos(theta1) + index2 * np.cos(theta2)) elif pol == 'p': numerator = 2 * index1 * np.cos(theta1) denominator = (index1 * np.cos(theta2) + index2 * np.cos(theta1)) else: raise ValueError("Polarization must be 's' or 'p'") return numerator / denominator def wavenumber(freq, index, tand): """Calculate the wavenumber in a material. Parameters ---------- freq : float The frequency at which to calculate the wavevector, k tand : numpy array An array of loss tangents, ordered from source to terminating index : numpy array An array of refractive indices, ordered from source to terminating layer Returns ------- k : array The complex wavenumber, k """ k = 2 * np.pi * (freq / 3e8) * index * np.sqrt(1 + 1j * tand) return k def alpha2imagn(freq, a, b, n): """Convert Halpern's 'a' and 'b' from an absorption coefficient of the form `a*freq**b` to a (frequency-dependent) . Parameters ---------- freq : numpy array or float The frequency (Hz) (or frequencies) at which to calculate the loss tangent. a : float Halpern's 'a' coefficient b : float Halpern's 'b' coefficient n : float The real part of the material's refractive index Returns ------- imagn : numpy array or float The imaginary component of the refractive index """ nu = freq / 30e9 # First we need the frequency-dependent absorption coefficient, # alpha, which we get from the Halpern fit. From that we will # calculate k(appa), the extinction coefficient, for each # frequency of interest alpha = 2 * a * nu**b # This is the absorption-extinction coefficient relation as ~written # in Born & Wolf Principles of Optics 1st Ed., 1959, Ch. 13.1, # Pg. 614, Eq. 21 # The factor of 3e10 (c in units of cms^-1) ensures that our k is # unitless, as it ought to be. imagn = (100 * 3e8 * alpha) / (4 * np.pi * n * freq) return imagn def alpha2tand(freq, a, b, n): """Convert Halpern's 'a' and 'b' from an absorption coefficient of the form `a*freq**b` to a (frequency-dependent) loss tangent. Parameters ---------- freq : numpy array or float The frequency (Hz) (or frequencies) at which to calculate the loss tangent. a : float Halpern's 'a' coefficient b : float Halpern's 'b' coefficient n : float The real part of the material's refractive index Returns ------- tand : numpy array The loss tangent of the material at the given frequency and Halpern coefficients. """ imagn = alpha2imagn(freq, a, b, n) # The complex index of refraction of a material is related to the # complex (relative) permittivity by the relation: # e_r = e' + i*e'' = n^2 = (n + i*k)^2 = n^2 - k^2 + i*2nk # By equating the real and imaginary parts we are left with: # e' = (n^2 - k^2); e'' = 2nk # With this information we can find the loss tangent, which is simply # the ratio of the real and imaginary parts of the relative # permittivity: # tand = (e''/e') ep = n**2 - imagn**2 epp = 2 * n * imagn tand = epp / ep return tand def make_2x2(a11, a12, a21, a22, dtype=float): """Return a 2x2 array quickly. Parameters ---------- a11 : float Array element [0, 0]. a12 : float Array element [0, 1]. a21 : float Array element [1, 0]. a22 : float Array element [1, 1]. dtype : dtype, optional The datatype of the array. Defaults to float. Returns ------- array : numpy array A 2x2 array [[a11, a12], [a21, a22]] """ array = np.empty((2, 2), dtype=dtype) array[0, 0] = a11 array[0, 1] = a12 array[1, 0] = a21 array[1, 1] = a22 return array def prop_wavenumber(k, d, theta): """Propagate the wave through a material and calculate its offset, delta. Parameters ---------- k : array The wavenumber d : array An array of distances (thicknesses), ordered from source to terminating layer theta : float The angle the wave passes through the medium Returns ------- delta : array The phase difference """ # Turn off 'invalid multiplication' error; it's just the 'inf' boundaries olderr = sp.seterr(invalid='ignore') delta = k * d * np.cos(theta) # Now turn the error back on sp.seterr(**olderr) return delta def refract(n, theta0): """Calculate the angle by which an incident ray is refracted Parameters ---------- n : numpy array An array of refractive indices, ordered from source layer to terminator layer. theta0 : float The initial angle of incidence (radians) Returns ------- thetas : numpy array The Snell angles at each interface """ # Make a nice pairwise generator so we can avoid playing games with # index counting thetas = [theta0] ngen = zip(n, n[1:]) for i, rind in enumerate(ngen): theta = np.arcsin(np.real_if_close( rind[0] * np.sin(thetas[i]) / rind[1] )) thetas.append(theta) return np.asarray(thetas) def replace_tand(freq, tand_array, halpern_dict): """Calculate a frequency-dependent loss tangent from a material's Halpern coefficiencts if they exist. Parameters ---------- freq : float The frequency at which to calculate the loss tangent tand_array : numpy array The loss tangents of the materials, ordered from Source to Terminator halpern_dict : dict A dictionary keyed by layer index, containing Halpern coefficients Returns ------- tand_array : numpy array The loss tangents of the materials, ordered from Source to Terminator. Where possible, the Halpern coefficients have been applied to make the terms frequency-dependent. """ for k, v in halpern_dict.items(): tand_array[k] = alpha2tand(freq, v['a'], v['b'], v['n']) return tand_array def main(params): """Run a transmittance/reflectance calculation for the given parameters. This function is the primary entry-point to the calculation, and should not be called directly. Instead, call `Model.run()`. If you must call `core.main()` directly, only do so after first calling `Model.set_up()`. Parameters ---------- params : dict The dictionary contructed by `Model.set_up`. See that function documentation for details. Returns ------- result : dict A dictionary with three keys: * `frequency`: the frequency (in Hz) at which T and R were calculated * `transmittance`: the output transmittance (T) of the model * `reflectance`: the output reflectance (R) of the model """ rind = params['rind'] thick = params['thick'] tand = params['tand'] pol = params['pol'] theta0 = params['theta0'] theta = refract(rind, theta0) freq = params['freq'] halps = params['halpern_layers'] # Create containers for the reflection/transmission values we calculate # at each frequency ts = [] rs = [] for f in freq: if len(halps.keys()) > 0: tand = replace_tand(f, tand, halps) ks = wavenumber(f, rind, tand) delta = prop_wavenumber(ks, thick, theta) r_amp, t_amp = rt_amp(rind, delta, theta, pol) t_pow = t_power(t_amp, rind[0], rind[-1], theta[0], theta[-1]) r_pow = r_power(r_amp) ts.append(t_pow) rs.append(r_pow) ts = np.asarray(ts) rs = np.asarray(rs) results = {'frequency':freq, 'transmittance':ts, 'reflectance':rs} return results
anadolski/armmwave
armmwave/core.py
core.py
py
13,897
python
en
code
1
github-code
6
8762469387
from llm_rs import SessionConfig, GenerationConfig, Gpt2 class Chainer: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super(Chainer, cls).__new__(cls) cls._instance.init_chainer() return cls._instance def init_chainer(self): self.stop_words = ['<EOL>', '<eol>', '<Eol>', 'pertanyaan :', 'Human', 'human', 'Pertanyaan', '\n'] self.previous_qa = [] session_config = SessionConfig( threads=4, context_length=1300, prefer_mmap=False ) self.generation_config = GenerationConfig( top_p=0.44, top_k=1, temperature=0.22, max_new_tokens=120, repetition_penalty=1.13, stop_words=self.stop_words ) self.model = Gpt2("2midguifSfFt5SbHJsxP.bin", session_config=session_config) def chain(self, user_input): if self.previous_qa: previous_question, previous_answer = self.previous_qa[-1] else: previous_question, previous_answer = "", "" template = f"saya bisa menjawab pertanyaan dengan masalah kesehatan.\nHai! Saya adalah chatbot yang akan menjawab pertanyaan seputar kesehatan. Saya adalah chatbot, bukan manusia.\nanda dapat menanyakan saya pertanyaan seputar kesehatan melalui kolom teks dibawah.\n\nPertanyaan saya:\n{previous_question}\n\nJawaban anda:\n{previous_answer}\n\nPertanyaan saya: {user_input}.\nJawaban anda :" result = self.model.generate(template, generation_config=self.generation_config) response = result.text.strip() self.previous_qa.append((user_input, response)) if len(self.previous_qa) > 1: self.previous_qa.pop(0) return response generator = Chainer() def generate(text_input): result = generator.chain(text_input) return result
andri-jpg/termux-fa
lib.py
lib.py
py
1,917
python
en
code
2
github-code
6
45386585406
# -*- coding: utf-8 -*- #!/usr/bin/env python from theory.conf import settings from theory.utils.safestring import markSafe from theory.utils import six def format(number, decimalSep, decimalPos=None, grouping=0, thousandSep='', forceGrouping=False): """ Gets a number (as a number or string), and returns it as a string, using formats defined as arguments: * decimalSep: Decimal separator symbol (for example ".") * decimalPos: Number of decimal positions * grouping: Number of digits in every group limited by thousand separator * thousandSep: Thousand separator symbol (for example ",") """ useGrouping = settings.USE_L10N and settings.USE_THOUSAND_SEPARATOR useGrouping = useGrouping or forceGrouping useGrouping = useGrouping and grouping > 0 # Make the common case fast if isinstance(number, int) and not useGrouping and not decimalPos: return markSafe(six.textType(number)) # sign sign = '' strNumber = six.textType(number) if strNumber[0] == '-': sign = '-' strNumber = strNumber[1:] # decimal part if '.' in strNumber: intPart, decPart = strNumber.split('.') if decimalPos is not None: decPart = decPart[:decimalPos] else: intPart, decPart = strNumber, '' if decimalPos is not None: decPart = decPart + ('0' * (decimalPos - len(decPart))) if decPart: decPart = decimalSep + decPart # grouping if useGrouping: intPartGd = '' for cnt, digit in enumerate(intPart[::-1]): if cnt and not cnt % grouping: intPartGd += thousandSep intPartGd += digit intPart = intPartGd[::-1] return sign + intPart + decPart
grapemix/theory
theory/utils/numberformat.py
numberformat.py
py
1,639
python
en
code
1
github-code
6
4991495509
#!/usr/bin/python3 # enable debugging import cgi, cgitb import json import requests import responses cgitb.enable() class Expense: def __init__(self, exp_name,exp_date,exp_amount,exp_type): self.name = exp_name self.date = exp_date self.amount = exp_amount self.type = exp_type form = cgi.FieldStorage() exp_name = form.getvalue('exp_name') exp_date = form.getvalue('exp_date') exp_amount = form.getvalue('exp_amount') exp_type = form.getvalue('exp_type') expense = Expense(exp_name,exp_date,exp_amount,exp_type) jsonString = json.dumps(expense.__dict__) jsonFile = open("/var/www/html/data.json", "a+") jsonFile.write(jsonString) jsonFile.close() print('Content-Type: text/plain') print('') print('sucessful') print('<br>') print(jsonString)
eliz-liu/money_site_html
form.py
form.py
py
795
python
en
code
0
github-code
6
31975617255
from django import template from ..models import Page register = template.Library() @register.simple_tag def main_menu(): "Query top-level pages" return Page.objects.with_tree_fields().filter( parent=None, is_active=True)
dnknth/feincms-demo
pages/templatetags/menus.py
menus.py
py
240
python
en
code
1
github-code
6
18801853357
import pytest from base.client_base import TestcaseBase from common import common_func as cf from common import common_type as ct from common.common_type import CaseLabel from utils.util_log import test_log as log # customer rg rg_name_0 = "RG_0" rg_name_1 = "RG_1" # coll name coll_name_1 = "ResourceGroup_111" coll_name_2 = "ResourceGroup_222" # resource group info of 4 qns resource_group_info = [ {"name": rg_name_0, "available_node": 1, "capacity": 1, "loaded_replica": {coll_name_1: 1}}, {"name": rg_name_1, "available_node": 1, "capacity": 1, "loaded_replica": {coll_name_1: 1}}, {"name": ct.default_resource_group_name, "available_node": 2, "capacity": ct.default_resource_group_capacity, "loaded_replica": {coll_name_2: 2}} ] class TestChaosRG(TestcaseBase): """ Test case of end to end""" def teardown_method(self, method): log.info(("*" * 35) + " teardown " + ("*" * 35)) log.info("[teardown_method] Start teardown test case %s..." % method.__name__) log.info("skip drop collection") @pytest.mark.tags(CaseLabel.L3) def test_milvus_resource_group(self): nb = 10000 # collection rg map collection_rg_map = { coll_name_1: {"resource_groups": [rg_name_0, rg_name_1], "replica_number": 2}, coll_name_2: {"resource_groups": [ct.default_resource_group_name], "replica_number": 2} } self._connect() # create RG_0, RG_1, transfer 1 node to RG_0, 1 node to RG_1 for rg_info in resource_group_info: rg_name = rg_info["name"] if rg_name != ct.default_resource_group_name: _, create_rg_res = self.utility_wrap.create_resource_group(rg_name) assert create_rg_res log.info(f"[ResourceGroup] Create rg {rg_name} done") self.utility_wrap.transfer_node(source=ct.default_resource_group_name, target=rg_name, num_node=rg_info["available_node"]) log.info( f'[ResourceGroup] Transfer {rg_info["available_node"]} nodes from {ct.default_resource_group_name} to {rg_name} done') # verify RGs resource_groups, _ = self.utility_wrap.list_resource_groups() assert len(resource_groups) == len(resource_group_info) assert all([rg_info["name"] in resource_groups for rg_info in resource_group_info]) for rg_info in resource_group_info: rg_info = {"name": rg_info["name"], "capacity": rg_info["capacity"], "num_available_node": rg_info["available_node"], "num_loaded_replica": {}, "num_outgoing_node": {}, "num_incoming_node": {} } desc_rg_info, _ = self.utility_wrap.describe_resource_group(name=rg_info["name"], check_task=ct.CheckTasks.check_rg_property, check_items=rg_info) log.info(f'[ResourceGroup] Rg of {rg_info["name"]} info is: {desc_rg_info}') # prepare collection C1, C2 # create data = cf.gen_default_dataframe_data(nb=nb) index_params = {"index_type": "HNSW", "metric_type": "L2", "params": {"M": 48, "efConstruction": 500}} for coll_name in coll_name_1, coll_name_2: # create collection_w = self.init_collection_wrap(name=coll_name, active_trace=True) log.info(f"create collection {collection_w.name} done") entities = collection_w.num_entities # insert _, res = collection_w.insert(data) assert res log.info(f"insert {nb} entities done") # flush _, check_result = collection_w.flush(timeout=180) assert check_result assert collection_w.num_entities == nb + entities entities = collection_w.num_entities log.info(f"flush done with entities: {entities}") # index index, _ = collection_w.create_index(field_name=ct.default_float_vec_field_name, index_params=index_params, index_name=cf.gen_unique_str()) index, _ = collection_w.create_index(field_name=ct.default_string_field_name, index_params={}, index_name=cf.gen_unique_str()) index_infos = [index.to_dict() for index in collection_w.indexes] log.info(f"index info: {index_infos}") # load coll_rg_a, 2 replicas -> RG_0, RG_1 # load coll_rg_b, 2 replicas -> default_RG collection_w.load(replica_number=collection_rg_map[coll_name]["replica_number"], _resource_groups=collection_rg_map[coll_name]["resource_groups"]) # show query segment info segment_info, _ = self.utility_wrap.get_query_segment_info(collection_w.name) log.info(f"{collection_w.name} segment info: {segment_info}") # show replicas info replicas, _ = collection_w.get_replicas() log.info(f"{collection_w.name} replica info: {replicas}") # search search_vectors = cf.gen_vectors(ct.default_nq, ct.default_dim) search_params = {"metric_type": "L2", "params": {"ef": 64}} search_res, _ = collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name, param=search_params, limit=ct.default_limit, expr="int64 >= 0") assert len(search_res) == ct.default_nq assert len(search_res[0]) == ct.default_limit # query and delete term_expr = f'{ct.default_int64_field_name} < 100' query_res, _ = collection_w.query(term_expr) assert len(query_res) == 100 delete_expr = f'{ct.default_int64_field_name} in {[i for i in range(100)]}' collection_w.delete(delete_expr) collection_w.query(term_expr, check_task=ct.CheckTasks.check_query_empty) # verify rg replica info for rg_info in resource_group_info: rg_info = {"name": rg_info["name"], "capacity": rg_info["capacity"], "num_available_node": rg_info["available_node"], "num_loaded_replica": rg_info["loaded_replica"], "num_outgoing_node": {}, "num_incoming_node": {} } desc_rg_info_2, _ = self.utility_wrap.describe_resource_group(name=rg_info["name"], check_task=ct.CheckTasks.check_rg_property, check_items=rg_info) log.info(f'[ResourceGroup] Rg of {rg_info["name"]} info is: {desc_rg_info_2}') @pytest.mark.tags(CaseLabel.L3) def test_verify_milvus_resource_group(self): self._connect() # verify collection exist all_collections, _ = self.utility_wrap.list_collections() assert all(coll_name in all_collections for coll_name in [coll_name_1, coll_name_2]) # verify resource groups for rg_info in resource_group_info: rg_info = {"name": rg_info["name"], "capacity": rg_info["capacity"], "num_available_node": rg_info["available_node"], "num_loaded_replica": rg_info["loaded_replica"], "num_outgoing_node": {}, "num_incoming_node": {} } desc_rg_info, _ = self.utility_wrap.describe_resource_group(name=rg_info["name"], check_task=ct.CheckTasks.check_rg_property, check_items=rg_info) log.info(f'[ResourceGroup] Rg of {rg_info["name"]} info is: {desc_rg_info}') # search for coll_name in coll_name_2, coll_name_1: # get query segment info segment, _ = self.utility_wrap.get_query_segment_info(coll_name) log.info(f"{coll_name} query segment info: {segment}") # get replicas collection_w = self.init_collection_wrap(name=coll_name, active_trace=True) replicas, _ = collection_w.get_replicas(check_task=ct.CheckTasks.check_nothing) log.info(f"{coll_name} replicas: {replicas}") # search for i in range(100): search_vectors = cf.gen_vectors(ct.default_nq, ct.default_dim) search_params = {"metric_type": "L2", "params": {"ef": 64}} search_res, _ = collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name, param=search_params, limit=ct.default_limit, expr="int64 >= 0") assert len(search_res) == ct.default_nq assert len(search_res[0]) == ct.default_limit # show query segment info finally segment_2, _ = self.utility_wrap.get_query_segment_info(coll_name) log.info(f"{coll_name} query segment info: {segment_2}") # show replicas finally replicas_2, _ = collection_w.get_replicas() log.info(f"{coll_name} replicas: {replicas_2}")
milvus-io/milvus
tests/python_client/chaos/testcases/test_chaos_resource_group.py
test_chaos_resource_group.py
py
9,886
python
en
code
24,190
github-code
6
39865467891
from IPython import get_ipython def type_of_script(): """ Detects and returns the type of python kernel :return: string 'jupyter' or 'ipython' or 'terminal' """ try: ipy_str = str(type(get_ipython())) if 'zmqshell' in ipy_str: return 'jupyter' if 'terminal' in ipy_str: return 'ipython' except: return 'terminal' if type_of_script() == 'jupyter': from tqdm.notebook import tqdm else: from tqdm import tqdm import matplotlib.pyplot as plt # type: module import matplotlib.ticker as ticker from matplotlib import colormaps from matplotlib.colors import Normalize import matplotlib.gridspec as gridspec import numpy as np import os, glob import time import warnings from rur.fortranfile import FortranFile from rur import uri, uhmi, painter, drawer from rur.sci.photometry import measure_luminosity from rur.sci.geometry import get_angles, euler_angle from rur.utool import rotate_data from scipy.ndimage import gaussian_filter uri.timer.verbose=1 # from rur.sci.kinematics import f_getpot from icl_IO import mode2repo, pklsave, pklload from icl_tool import * from icl_numba import large_isin, large_isind, isin from icl_draw import drawsnap, add_scalebar, addtext, MakeSub_nolabel, label_to_in, fancy_axis, circle import argparse, subprocess from importlib import reload import cmasher as cmr from copy import deepcopy from multiprocessing import Pool, shared_memory mode = 'nh' iout = 1026 repo, rurmode, dp = mode2repo(mode) snap = uri.RamsesSnapshot(repo, iout, mode=rurmode) snaps = uri.TimeSeries(snap) snaps.read_iout_avail() nout = snaps.iout_avail['iout'] gals = uhmi.HaloMaker.load(snap, galaxy=True, double_precision=dp) hals = uhmi.HaloMaker.load(snap, galaxy=False, double_precision=dp) database = f"/home/jeon/MissingSat/database" from common_func import * tree = pklload(f"{database}/02_main_progenitors.pickle") if(os.path.exists(f"{database}/halo_dict.pickle")): halos = pklload(f"{database}/halo_dict.pickle") else: halos = {'catalog':{}, 'index':{}} uri.timer.verbose=0 for iout in tqdm(np.unique(tree['timestep'])): isnap = snaps.get_snap(iout) ihals = uhmi.HaloMaker.load(isnap, galaxy=False, double_precision=dp) indicies = np.zeros(len(ihals), dtype=int) iids = tree[tree['timestep'] == iout]['id'] ihals = ihals[iids-1] indicies[iids-1] = np.arange(len(iids)) halos['catalog'][iout] = ihals halos['index'][iout] = indicies pklsave(halos, f"{database}/halo_dict.pickle") def _ibox(h, factor=1): return np.array([ [h['x']-factor*h['r'], h['x']+factor*h['r']], [h['y']-factor*h['r'], h['y']+factor*h['r']], [h['z']-factor*h['r'], h['z']+factor*h['r']] ]) uri.timer.verbose=0 for iout in np.unique(tree['timestep'])[::-1]: if(os.path.exists(f"{database}/main_prog/cpulist/cpulist_{iout:05d}.pickle")): continue cpudict = {} targets = halos['catalog'][iout] isnap = snaps.get_snap(iout) cpulists = [] with Pool(32) as pool: async_result = [ pool.apply_async( uri.get_cpulist, (_ibox(h,factor=1.1), None, isnap.levelmax, isnap.bound_key, isnap.ndim, 5, isnap.ncpu) ) for h in targets ] iterobj = tqdm(async_result, total=len(targets), desc=f"iout={iout:05d}") for r in iterobj: cpulists.append(r.get()) cpulists = np.unique( np.concatenate(cpulists) ) cpudict['all'] = cpulists pklsave(cpudict, f"{database}/main_prog/cpulist/cpulist_{iout:05d}.pickle") print(f"`{database}/main_prog/cpulist/cpulist_{iout:05d}.pickle` save done") isnap.clear()
syj3514/MissingSat
befo231205/05b_get_involved_cpu.py
05b_get_involved_cpu.py
py
3,847
python
en
code
0
github-code
6
20841031996
from sklearn.model_selection import train_test_split from sklearn import svm def svm_classification(X, y, C_in, gamma_in, kernel_in): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=y, random_state=42) classifierSVM = svm.SVC(C=C_in, degree=2, gamma=gamma_in, kernel=kernel_in) # training classifierSVM.fit(X_train, y_train) # prediksi data test y_pred_SVM = classifierSVM.predict(X_test) # return X_train, X_test, y_train, y_test, classifierSVM, y_pred_SVM return classifierSVM, y_pred_SVM, y_test
mfaisalafandi/identification_teks_ulasan_svm
Klasifikasi.py
Klasifikasi.py
py
566
python
en
code
0
github-code
6
71474372027
# Rotating or flipping an image from PIL import Image def main(): image = Image.open('../lenna.png') image.show('Original') # Rotate 60 degrees counter clockwise rotated_image = image.rotate(60) rotated_image.show('Rotate 60') # Rotate using Image.transpose # Transpose supports these values: # - Image.FLIP_LEFT_RIGHT # - Image.FLIP_TOP_BOTTOM # - Image.ROTATE_90 # - Image.ROTATE_180 # - Image.ROTATE_270 rotated_image = image.transpose(Image.ROTATE_90) rotated_image.show('Rotate 90') # Flip horizontal flipped_image = image.transpose(Image.FLIP_LEFT_RIGHT) flipped_image.show('Flip horizontal') # Flip vertical flipped_image = image.transpose(Image.FLIP_TOP_BOTTOM) flipped_image.show('Flip vertical') if __name__ == '__main__': main()
gkostadinov/py-pil-imageprocessing
1-transformations/2.rotate.py
2.rotate.py
py
837
python
en
code
5
github-code
6
9411671299
from django.urls import path from . import views as blog_views # import users.views as user_views from .views import ( PostListView, PostDetailView, PostCreateView, PostUpdateView, PostDeleteView, UserPostListView ) urlpatterns = [ path('', PostListView.as_view(), name='blog-home'), path('user/<str:username>', UserPostListView.as_view(), name='user-posts'), # using a variable in the route (for individual posts, which will be numbered) # the detail view is expecting the "pk" variable (we could change this in the class) path('post/<int:pk>/', PostDetailView.as_view(), name='post-detail'), path('post/<int:pk>/update', PostUpdateView.as_view(), name='post-update'), path('post/<int:pk>/delete', PostDeleteView.as_view(), name='post-delete'), path('post/new/', PostCreateView.as_view(), name='post-create'), path('about/', blog_views.about, name='blog-about'), ]
Coniferish/djangoTutorial
blog/urls.py
urls.py
py
935
python
en
code
0
github-code
6
35226084140
from __future__ import division # Our Backend for the App! # Built with Flask # Import Flask import flask import requests import os from flask import send_file import re import sys # Create the application app = flask.Flask(__name__) # serving home.html @app.route('/', methods=['GET']) def serve_page(): return flask.render_template('home.html') # process query @app.route('/process_query', methods=['POST']) def process_query(): data = flask.request.form # is a dictionary input = data['user_input'] input_in_list = input.split(' ') return flask.render_template('home.html', same=processInput(input_in_list), og=input) def processInput(input_in_list): for s, i in enumerate(input_in_list): if "bye" in i.lower(): input_in_list[s] = "static/bye.jpg" if "hello" in i.lower(): input_in_list[s] = "static/hello.png" if "yes" in i.lower(): input_in_list[s] = "static/yes.png" if "no" in i.lower(): input_in_list[s] = "static/no.png" if "please" in i.lower(): input_in_list[s] = "static/please.png" if "thanks" in i.lower(): input_in_list[s] = "static/thanks.png" if "who" in i.lower(): input_in_list[s] = "static/who.png" if "what" in i.lower(): input_in_list[s] = "static/what.png" if "when" in i.lower(): input_in_list[s] = "static/when.png" if "where" in i.lower(): input_in_list[s] = "static/where.png" if "why" in i.lower(): input_in_list[s] = "static/why.png" if "which" in i.lower(): input_in_list[s] = "static/which.png" if "how" in i.lower(): input_in_list[s] = "static/how.png" return input_in_list def listen_print_loop(responses): """Iterates through server responses and prints them. The responses passed is a generator that will block until a response is provided by the server. Each response may contain multiple results, and each result may contain multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we print only the transcription for the top alternative of the top result. In this case, responses are provided for interim results as well. If the response is an interim one, print a line feed at the end of it, to allow the next result to overwrite it, until the response is a final one. For the final one, print a newline to preserve the finalized transcription. """ num_chars_printed = 0 for response in responses: if not response.results: continue # The `results` list is consecutive. For streaming, we only care about # the first result being considered, since once it's `is_final`, it # moves on to considering the next utterance. result = response.results[0] if not result.alternatives: continue # Display the transcription of the top alternative. transcript = result.alternatives[0].transcript # Display interim results, but with a carriage return at the end of the # line, so subsequent lines will overwrite them. # # If the previous result was longer than this one, we need to print # some extra spaces to overwrite the previous result overwrite_chars = ' ' * (num_chars_printed - len(transcript)) if not result.is_final: sys.stdout.write(transcript + overwrite_chars + '\r') sys.stdout.flush() num_chars_printed = len(transcript) else: return flask.render_template('home.html', same=processInput("".join(transcript).split(" ")), og="".join(transcript)) # Exit recognition if any of the transcribed phrases could be # one of our keywords. if re.search(r'\b(exit|quit)\b', transcript, re.I): print('Exiting..') break num_chars_printed = 0 @app.route('/speech', methods=['GET']) def main(): # See http://g.co/cloud/speech/docs/languages # for a list of supported languages. language_code = 'en-US' # a BCP-47 language tag if __name__ == '__main__': app.run(debug=True)
manichandra95151/TTSL
main.py
main.py
py
4,265
python
en
code
0
github-code
6
24312665302
from langdetect import detect def to_sentences(text): text = text.replace("\n", " ") sentences = [s + '.' for s in text.split(".") if s != ""] return sentences def divide(text, input_size=5000): """ Divide text into chunks of input_size Args: text (str): Text to be divided input_size (int): Size of each chunk """ # short input_size if asian lang = detect(text) if lang in ['ko', 'ja', 'zh-cn', 'zh-tw', 'zh-hk']: input_size = min(input_size, 1300) # divide text by words text = to_sentences(text) result = [] temp = "" for word in text: if len(temp + word) >= input_size: result.append(temp) temp = "" temp += word result.append(temp) return result
hyunooss/SSUmmary
django-server/ssummary_site/modules/utils.py
utils.py
py
788
python
en
code
0
github-code
6
45375013026
""" include packages """ from settings import * import sqlite3 import discord from discord import app_commands import sys import signal import deepl from typing import Optional from lib import vote as vt from lib import deepl as dl """ Global variables """ connection : sqlite3.Connection = sqlite3.connect(DATABASE) intents : discord.Intents = discord.Intents.all() client : discord.Client = discord.Client(intents=intents) tree : app_commands.CommandTree = app_commands.CommandTree(client=client) """ Setup """ vt.init(connection) with open(DEEPL_API_KEY) as f: dl_translator = dl.LoggingTranslator(f.read(), connection=connection) """ Commands """ @tree.command( name='test', description='This is a test' ) @app_commands.describe( message='Your message', hello='Hello message' ) @app_commands.rename( message='text' ) @app_commands.choices( hello=[ app_commands.Choice(name='Good Morning', value='Good Morning'), app_commands.Choice(name='Good Afternoon', value='Good Afternoon'), app_commands.Choice(name='Good Evening', value='Good Evening'), app_commands.Choice(name='Good Night', value='Good Night') ] ) @app_commands.guild_only async def test(ctx: discord.Interaction, message: str, hello: str): await ctx.response.send_message('This is a test message.\nYour message is ...\n'+message+'\n'+hello) @tree.command( name='vote', description='ๆŠ•็ฅจใ‚’่กŒใ†' ) @app_commands.describe( title='ๆŠ•็ฅจใฎใŠ้กŒ', visible='ๆŠ•็ฅจ็ตๆžœใ‚’่กจ็คบใ™ใ‚‹้š›ใซๆŠ•็ฅจๅ…ˆใ‚’่กจ็คบใ™ใ‚‹', ) @app_commands.choices( visible=[ app_commands.Choice(name='่กจ็คบใ™ใ‚‹', value='Yes'), app_commands.Choice(name='่กจ็คบใ—ใชใ„', value='No') ] ) @app_commands.guild_only async def vote_with_any_choices(ctx: discord.Interaction, title: str, visible: str='Yes'): try: await ctx.response.send_modal(vt.VoteModal(title=title, visible=visible)) except Exception as e: print(e.with_traceback(sys.exc_info()[2])) @tree.command( name='deepl', description='DeepL็ฟป่จณใ‚’ไฝฟ็”จใ—ใฆใƒ†ใ‚ญใ‚นใƒˆใ‚’็ฟป่จณใ™ใ‚‹๏ผˆdefault: Autoโ†’JP๏ผ‰' ) @app_commands.describe( text='็ฟป่จณใ™ใ‚‹ใƒ†ใ‚ญใ‚นใƒˆ', source_language='็ฟป่จณๅ‰ใฎ่จ€่ชž๏ผˆdefault: ่‡ชๅ‹•ๆคœๅ‡บ๏ผ‰', target_language='็ฟป่จณๅพŒใฎ่จ€่ชž๏ผˆdefault: ๆ—ฅๆœฌ่ชž๏ผ‰' ) @app_commands.choices( source_language=dl.DcLanguageList.SOURCE, target_language=dl.DcLanguageList.TARGET ) async def deepl_translate(ctx: discord.Interaction, text: str, source_language: Optional[str] = None, target_language: str = deepl.Language.JAPANESE): try: if source_language == "": source_language = None translated_text = dl_translator.translate_text( ctx=ctx, text=text, source_lang=source_language, target_lang=target_language ) t = "> " + text.replace("\n", "\n> ") + "\n" await ctx.response.send_message(t + translated_text.text) except Exception as e: print(e.with_traceback(sys.exc_info()[2])) """ Events """ @client.event async def on_ready(): print('Bot is ready') await tree.sync() """ Cleanups """ def cleanup(): global connection connection.close() def signal_handler(signum, frame): cleanup() sys.exit(1) if __name__ == '__main__': signal.signal(signal.SIGTERM, signal_handler) try: with open(TOKEN) as f: client.run(f.read()) finally: signal.signal(signal.SIGTERM, signal.SIG_DFL) cleanup()
GrapeJuicer/GrapeBot
app/main.py
main.py
py
3,637
python
en
code
0
github-code
6
22807898242
# coding: utf8 """้”Lock ็”จไบŽ้ฟๅ…่ฟ›็จ‹้—ดๅฏนshared memory็š„ไบ‰ๅคบ""" import multiprocessing import time def job(val, num, lo): lo.acquire() # ๅ–ๅพ—้” for _ in range(10): time.sleep(0.1) val.value += num print(val.value) lo.release() # ้‡Šๆ”พ้” def multicore(): lo = multiprocessing.Lock() # ๅˆ›ๅปบ้”ๅฏน่ฑก share_memory = multiprocessing.Value("i", 0) # ๅˆๅง‹ๅŒ–ไธบ0็š„ไธ€ไธชๅ…ฑไบซintๅ—ๅ˜้‡ res1 = multiprocessing.Process(target=job, args=(share_memory, 1, lo)) res2 = multiprocessing.Process(target=job, args=(share_memory, 9, lo)) res1.start() res2.start() res1.join() res2.join() if __name__ == "__main__": multicore()
sola1121/practice_code
python3/ๅฏนไบŽๅผ‚ๆญฅ็š„ไพ‹ๅญ/multiprocessing/6 multiprocessing lock้”.py
6 multiprocessing lock้”.py
py
752
python
en
code
0
github-code
6
26552257079
#!/usr/bin/env python3 ####################### # ACE3 Setup Script # ####################### import os import sys import shutil import platform import subprocess import winreg ######## GLOBALS ######### MAINDIR = "z" PROJECTDIR = "ace" CBA = "P:\\x\\cba" ########################## def main(): FULLDIR = "{}\\{}".format(MAINDIR, PROJECTDIR) print(""" ###################################### # ACE3 Development Environment Setup # ###################################### This script will create your ACE3 dev environment for you. Before you run this, you should already have: - The Arma 3 Tools installed properly via Steam - A properly set up P-drive If you have not done those things yet, please abort this script in the next step and do so first. This script will create two hard links on your system, both pointing to your ACE3 project folder: [Arma 3 installation directory]\\{} => ACE3 project folder P:\\{} => ACE3 project folder It will also copy the required CBA includes to {}, if you do not have the CBA source code already.""".format(FULLDIR, FULLDIR, CBA)) print("\n") try: reg = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) key = winreg.OpenKey(reg, r"SOFTWARE\Wow6432Node\bohemia interactive\arma 3") armapath = winreg.EnumValue(key, 1)[1] except: print("Failed to determine Arma 3 Path.") return 1 if not os.path.exists("P:\\"): print("No P-drive detected.") return 2 scriptpath = os.path.realpath(__file__) projectpath = os.path.dirname(os.path.dirname(scriptpath)) print("# Detected Paths:") print(" Arma Path: {}".format(armapath)) print(" Project Path: {}".format(projectpath)) repl = input("\nAre these correct? (y/n): ") if repl.lower() != "y": return 3 hemmt_path = os.path.join(projectpath, ".hemttout", "dev") print("\n# Use Hemmt Dev Path for arma filepatching:") print(f" y: {hemmt_path}") print(f" n: {projectpath}") repl = input("(y/n): ") filepatching_path = projectpath if repl.lower() == "y": if not os.path.exists(hemmt_path): print(f"creating {hemmt_path}") os.makedirs(hemmt_path) filepatching_path = hemmt_path if os.path.exists("P:\\{}\\{}".format(MAINDIR, PROJECTDIR)): print("Link on P: already exists. Please finish the setup manually.") return 4 if os.path.exists(os.path.join(armapath, MAINDIR, PROJECTDIR)): print("Link in Arma directory already exists. Please finish the setup manually.") return 5 print("\n# Creating links ...") try: if not os.path.exists("P:\\{}".format(MAINDIR)): os.mkdir("P:\\{}".format(MAINDIR)) if not os.path.exists(os.path.join(armapath, MAINDIR)): os.mkdir(os.path.join(armapath, MAINDIR)) subprocess.call(["cmd", "/c", "mklink", "/J", "P:\\{}\\{}".format(MAINDIR, PROJECTDIR), projectpath]) subprocess.call(["cmd", "/c", "mklink", "/J", os.path.join(armapath, MAINDIR, PROJECTDIR), filepatching_path]) except: raise print("Something went wrong during the link creation. Please finish the setup manually.") return 6 print("# Links created successfully.") print("\n# Copying required CBA includes ...") if os.path.exists(CBA): print("{} already exists, skipping.".format(CBA)) return -1 try: shutil.copytree(os.path.join(projectpath, "include", "x", "cba"), CBA) except: raise print("Something went wrong while copying CBA includes. Please copy include\\x\\cba to {} manually.".format(CBA)) return 7 print("# CBA includes copied successfully to {}.".format(CBA)) return 0 if __name__ == "__main__": exitcode = main() if exitcode > 0: print("\nSomething went wrong during the setup. Make sure you run this script as administrator. If these issues persist, please follow the instructions on the ACE3 wiki to perform the setup manually.") else: print("\nSetup successfully completed.") input("\nPress enter to exit ...") sys.exit(exitcode)
acemod/ACE3
tools/setup.py
setup.py
py
4,272
python
en
code
966
github-code
6
29074159051
from RepSys import Error, config from RepSys.util import execcmd from RepSys.VCS import * from os.path import basename, dirname from os import chdir, getcwd import sys import re import time from xml.etree import cElementTree as ElementTree import subprocess class GITLogEntry(VCSLogEntry): def __init__(self, revision, author, date): VCSLogEntry.__init__(self, revision, author, data) class GIT(VCS): def __init__(self): VCS.__init__(self) self.vcs_name = "git" self.vcs_command = config.get("global", "git-command", "git") self.vcs_supports['clone'] = True self.env_defaults = {"GIT_SSH": self.vcs_wrapper} def clone(self, url, targetpath, **kwargs): if url.split(':')[0].find("svn") < 0: return VCS.clone(self, url, targetpath, **kwargs) else: # To speed things up on huge repositories, we'll just grab all the # revision numbers for this specific directory and grab these only # in stead of having to go through each and every revision... retval, result = execcmd("svn log --stop-on-copy --xml %s" % url) if retval: return retval parser = ElementTree.XMLTreeBuilder() result = "".join(result.split("\n")) parser.feed(result) log = parser.close() logentries = log.getiterator("logentry") revisions = [] topurl = dirname(url) trunk = basename(url) tags = "releases" execcmd("git svn init %s --trunk=%s --tags=%s %s" % (topurl, trunk, tags, targetpath), show=True) chdir(targetpath) for entry in logentries: revisions.append(entry.attrib["revision"]) while revisions: execcmd("git svn fetch -r%d" % int(revisions.pop()), show=True) cmd = ["svn", "rebase"] return self._execVcs_success(*cmd, **kwargs) class SVNLook(VCSLook): def __init__(self, repospath, txn=None, rev=None): VCSLook.__init__(self, repospath, txn, rev) # vim:et:ts=4:sw=4
mdkcauldron/proyvinds-repsys
RepSys/git.py
git.py
py
2,133
python
en
code
0
github-code
6
44083632675
import gzip import inspect import os from io import StringIO from typing import Optional, List import numpy as np import pandas as pd def time_map(time_a: float, time_b: float, packet_a: int, packet_b: int, time_c: int, window_tolerance: int = 0) -> \ Optional[float]: """ Map an API time into a packet number. This function was done in order to have a nice visualisation. The window tolereance is used to capture nearby calls ========= | ta tb tc=>pc pa pb Args: time_a (float): time of the begining of the flow (in seconds since epoch, time.time()) time_b (float): time of the ending of the flow packet_a (int): packet number of the begining of the flow packet_b (int): packet number of the ending of the flow time_c (float): time of the api call window_tolerance (int): time shift in second in which api calls are still considered to belong to the flow Returns: int: packet number, return None if the mapping fails """ window_tolerance *= 1000000 # Check if inside flow if time_a <= time_c <= time_b: # Chain comparaison return packet_a + (time_c - time_a) * (packet_b - packet_a) / (time_b - time_a) # Check if in the window border (simple) if time_a - window_tolerance <= time_c <= time_b: return packet_a """if time_a <= time_c <= time_b + window_tolerance: return packet_b""" # Outside return None def pure_time_map(time_a: float, time_b: float, time_c: float, window_tolerance: int = 0) -> Optional[float]: """ Map an API time into a packet number. This function was done in order to have a nice visualisation. The window tolereance is used to capture nearby calls ========= | ta tb tc=>pc Args: time_a (float): time of the begining of the flow (in seconds since epoch, time.time()) time_b (float): time of the ending of the flow time_c (float): time of the api call window_tolerance (int): time shift in second in which api calls are still considered to belong to the flow Returns: int: time, return None if the mapping fails """ window_tolerance *= 1000000 # Check if inside flow if time_a <= time_c <= time_b: # Chain comparaison return time_c # Check if in the window border (simple) if time_a - window_tolerance <= time_c <= time_b: return time_a """if time_a <= time_c <= time_b + window_tolerance: return time_b""" # Outside return None def get_child_pids(current_pid: int, diff: pd.DataFrame) -> List: """ Get the child process pid of one process given its pid Args: current_pid (int): parent pid diff (pd dataframe): df recorded Returns: list: list of pids """ childs = diff[diff["parent_pid"] == current_pid] if childs.shape[0] == 0: return [current_pid] return [current_pid] + [v for index, row in childs.iterrows() for v in get_child_pids(row["process_id"], diff)] def get_malware_pids(malware_name: str = "2020-09-30-Trickbot-EXE.exe", path: str = "./") -> List: """ Get the pids of all the malware generated processes Args: malware_name (str, optional): name of the malware. Defaults to "2020-09-08-Trickbot-EXE-gtag-ono72.exe". Returns: list: list of pids path: path of the malware """ first = pd.read_csv(path + "process_pre.csv") post = pd.read_csv(path + "process_post.csv") first.drop(first.columns[0], axis=1, inplace=True) post.drop(post.columns[0], axis=1, inplace=True) diff = first.merge(post, indicator=True, how='right').loc[lambda x: x['_merge'] != 'both'] try: malware_pid = int(diff.loc[diff['process_name'] == malware_name]["process_id"].astype(float)) except TypeError: raise RuntimeError('Malware PID not found, check malware name') return get_child_pids(malware_pid, diff) def gzip_to_string(file_path: str) -> str: """ Open a gzip file and load the content in a string This function exists because the gzip may not be proprerly closed. In this case, the end is corrupted but the rest can be read. Args: file_path (string): path of the gzip file Returns: str: content of the gzip file """ gzip_file = gzip.open(file_path, "rt") string = "" while True: try: line = gzip_file.readline() string += line except EOFError: break return string def get_malware_traces(path: str = "./") -> List: """ Get a list of dataframe representing the frida trace Its current format is [time, api_name, category] Returns: list: list of dataframe """ pids = list(set(get_malware_pids(path=path))) traces = [] for pid in pids: if not os.path.isfile(f"{path}frida_{pid}.txt.gz"): print("Trace for {pid} does not exist") header = ["time", "api", "category"] frida_str = StringIO(gzip_to_string(f"{path}frida_{pid}.txt.gz")) dataframe = pd.read_csv(frida_str, names=header) dataframe.drop( dataframe.loc[dataframe['api'] == 'error'].index, inplace=True) dataframe.drop_duplicates( subset=['time', 'api'], keep='first', inplace=True) dataframe.reset_index(drop=True, inplace=True) traces.append(dataframe) dataframe["time_int"] = (dataframe["time"] * 1000000).astype(int) return traces class Singleton(type): # Singleton modified to handle arguments (singleton for each argument set) _instances = {} _init = {} def __init__(cls, name, bases, dct): cls._init[cls] = dct.get('__init__', None) def __call__(cls, *args, **kwargs): init = cls._init[cls] if init is not None: key = (cls, frozenset(inspect.getcallargs(init, None, *args, **kwargs).items())) else: key = cls if key not in cls._instances: cls._instances[key] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[key] class MalwareTraceExtractor(metaclass=Singleton): def __init__(self, malware_name: str, path: str): self.malware_name = malware_name self.path = path self.trace_array = None self._get_trace() def _get_trace(self) -> None: pids = list(set(get_malware_pids(self.malware_name, path=self.path))) return_array = np.empty((0, 4)) for pid in pids: if not os.path.isfile(f"{self.path}frida_{pid}.txt.gz"): # print(f"Trace for {pid} does not exist") continue header = ["time", "api", "category"] frida_str = StringIO(gzip_to_string(f"{self.path}frida_{pid}.txt.gz")) dataframe = pd.read_csv(frida_str, names=header) dataframe.drop( dataframe.loc[dataframe['api'] == 'error'].index, inplace=True) dataframe.drop_duplicates( subset=['time', 'api'], keep='first', inplace=True) dataframe.reset_index(drop=True, inplace=True) dataframe["time_int"] = (dataframe["time"] * 1000000).astype(np.int64) # To numpy np_array_df = dataframe.to_numpy() # Stack to the final array return_array = np.vstack((return_array, np_array_df)) self.trace_array = return_array print(len(self.trace_array)) def get_merge_trace(self) -> np.ndarray: return self.trace_array def get_segmented_flow_syscalls(segmented_flow: np.ndarray, malware_process_name: str, path: str = "./", time_delay_allowed: int = 0) -> np.ndarray: """ Get a list of API calls corresponding to the segmented flow :param segmented_flow: :param malware_process_name: :param path: :param time_delay_allowed: :return: """ min_time, max_time = segmented_flow[0][2] for group in segmented_flow[1:]: # ['HANDSHAKE', [0, 2], [1612708961378936, 1612708961422139]] timea, timeb = group[2] min_time = min(timea, min_time) max_time = max(timeb, max_time) # print(min_time, max_time, max_time - min_time) trace_extractor = MalwareTraceExtractor(malware_name=malware_process_name, path=path) calls = trace_extractor.get_merge_trace() # calls = get_malware_traces_merged(malware_process_name, path=path) returned_calls = np.empty((0, 4)) for call in calls: mapping = pure_time_map(min_time, max_time, call[3], time_delay_allowed) if mapping is not None: returned_calls = np.vstack((returned_calls, call)) return returned_calls if __name__ == "__main__": PATH = "trickbot1_1/"
llmhyy/malware-traffic
Experiments/exp16_visualisation/api_extraction.py
api_extraction.py
py
7,970
python
en
code
7
github-code
6
33360864969
# dicesimulation.py # The following code computes the exact probability distribution # for the sum of two dice: # probabilities = stdarray.create1D(13, 0.0) # for i in range(1, 7): # for j in range(1, 7): # probabilities[i+j] += 1.0 # for k in range(2, 13): # probabilities[k] /= 36.0 # After this code completes, probabilities[k] is the probability # that the dice sum to k. Run experiments to validate this calculation # simulating n dice throws, keeping track of the frequencies of # occurrence of each value when you compute the sum of two random # integers between 1 and 6. How large does n have to be before your # empirical results match the exact results to three decimal places? # ans: n must be around 10_000_000 {python3 dicesimulation.py 10000000} import sys import random import stdio import stdarray n = int(sys.argv[1]) theoretical_probabilities = stdarray.create1D(13, 0.0) for i in range(1, 7): for j in range(1, 7): theoretical_probabilities[i+j] += 1.0 for k in range(2, 13): theoretical_probabilities[k] /= 36.0 # simulate dice throw dice_sum = stdarray.create1D(13, 0.0) for i in range(0, n): first_die = random.randint(1, 6) second_die = random.randint(1, 6) dice_sum[first_die + second_die] += 1 empirical_probabilities = stdarray.create1D(13, 0.0) for i in range(0, len(empirical_probabilities)): empirical_probabilities[i] = dice_sum[i] / sum(dice_sum) diff = stdarray.create1D(13, 0.0) stdio.writeln('sum theo empir diff') for i in range(2, 13): theoretical_probabilities[i] = round(theoretical_probabilities[i], 3) empirical_probabilities[i] = round(empirical_probabilities[i], 3) diff[i] = round(theoretical_probabilities[i] - empirical_probabilities[i], 3) if len(str(i)) < 2: stdio.write(' ') stdio.writeln(str(i) + ' ' + str(theoretical_probabilities[i]) + ' ' + str(empirical_probabilities[i]) + ' ' + str(diff[i]))
positronn/ippaida
chapter01/arrays/dicesimulation.py
dicesimulation.py
py
1,940
python
en
code
0
github-code
6
71119888509
import matplotlib.pyplot as plt import numpy as np # ~~~ DEFINE DATA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ np.random.seed(1337) n = 1000000 x = np.random.standard_normal(n) y = x + .5 * np.random.standard_normal(n) hist, xedges, yedges = np.histogram2d(x, y, bins=100, density=True) hist[hist == 0] = None t = np.linspace(0, 3 * np.pi, 1000) style = 'mpl' # ~~~ PLOT LINEAR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fig, ax = plt.subplots() plt.plot(t, np.sin(t), t, np.cos(t), t, 2 * np.cos(t)) plt.tight_layout() plt.savefig(f'gallery/{style}_plot.png') plt.close() # legend fig, ax = plt.subplots() plt.plot(t, np.sin(t), label='sin') plt.plot(t, np.cos(t), label='cos') plt.plot(t, 2 * np.cos(t), label='2cos') plt.legend(title='function:') plt.tight_layout() plt.savefig(f'gallery/{style}_plot_legend.png') plt.close() # mulitple subgallery fig, axs = plt.subplots(3, 1, sharex=True, gridspec_kw={'hspace': 0.000}) axs[0].plot(t, np.sin(t)) axs[1].plot(t[::20], np.cos(t[::20]), 'o-') axs[2].plot(t, 2 * np.cos(t), t, np.sin(t)) plt.tight_layout() plt.savefig(f'gallery/{style}_plot_multiple.png') plt.close() # ~~~ PLOT IMSHOW ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fig, ax = plt.subplots() plt.imshow(hist) plt.tight_layout() plt.savefig(f'gallery/{style}_imshow.png') plt.close() # cbar fig, ax = plt.subplots() im = plt.imshow(hist) plt.colorbar(im) plt.tight_layout() plt.savefig(f'gallery/{style}_imshow_cbar.png') plt.close()
braniii/prettypyplot
gallery/comparison_mpl.py
comparison_mpl.py
py
1,505
python
en
code
4
github-code
6
24091654897
from Film import Film from Forgalmazo import Forgalmazo import datetime def fajl_beolvas(): filmek = [] fp = open('nyitohetvege.txt', 'r', encoding='utf-8') lines = fp.readlines() fp.close() for line in lines[1:]: n_line = line.rstrip() (eredetiCim, magyarCim,bemutato,forgalmazo, bevel,latogato) = n_line.split(';') film = Film(eredetiCim, magyarCim,bemutato,forgalmazo, bevel,latogato) filmek.append(film) return filmek def feladat3(filmek): print('3. feladat: Filmek szรกma az รกllomรกnyban: ', end='') filmek_szama = len(filmek) print(filmek_szama, 'db') def feladat4(filmek): print('4. feladat: UIP Duna Film forgalmazรณ 1. ', end='') print('hetes bevรฉteleinek รถsszege: ', end='') osszeg=0 for film in filmek: if film.forgalmazo == 'UIP': osszeg+=int(film.bevel) print("{:,}".format(osszeg), 'Ft') def feladat5(filmek): print('5. feladat: Legtรถbb lรกtogatรณ az elsล‘ hรฉten:') max_film = filmek[0] for film in filmek: if int(film.latogato) > int(max_film.latogato): max_film = film print('\tEredeti cรญm:', max_film.eredetiCim) print('\tMagyar cรญm:', max_film.magyarCim) print('\tForgalmazรณ:', max_film.forgalmazo) print('\tBevรฉtel az elsล‘ hรฉten:', max_film.bevel, 'Ft') print('\tLรกtogatรณk szรกma:', max_film.latogato, 'fล‘') def tartalmazTeszt(eredetiCim, magyarCim): eredetiTartalmaz=False if 'W' in eredetiCim: eredetiTartalmaz=True if 'w' in eredetiCim: eredetiTartalmaz=True magyarTartalmazza=False if 'W' in magyarCim: magyarTartalmazza=True if 'w' in magyarCim: magyarTartalmazza=True if eredetiTartalmaz and magyarTartalmazza: return True else: return False def feladat6(filmek): print('6. feladat: ', end='') n=len(filmek) i=0 while (i<n and not tartalmazTeszt(filmek[i].eredetiCim, filmek[i].magyarCim)): i+=1 if i<n: print("Ilyen film volt!") else: print("Ilyen film nem volt!") def forgalmazoTeszt(forgalmazok, forgalmazo): n=len(forgalmazok) i=0 while i<n and forgalmazok[i].nev != forgalmazo: i+=1 if i<n: return True else: return False def feladat7(filmek): mezonevek = 'forgalmazo;filmekSzama\n' forgalmazok = [] for film in filmek: if not forgalmazoTeszt(forgalmazok, film.forgalmazo): forgalmazo = Forgalmazo(film.forgalmazo) forgalmazok.append(forgalmazo) else: n=len(forgalmazok) for i in range(0, n): if forgalmazok[i].nev == film.forgalmazo: forgalmazok[i].filmek += 1 fp = open('stat.csv', 'w', encoding='utf-8') fp.write(mezonevek) for forgalmazo in forgalmazok: if forgalmazo.filmek>1: fp.write(forgalmazo.nev + ';' + str(forgalmazo.filmek) + '\n') fp.close() def feladat8(filmek): print('8. feladat: A leghosszabb idล‘szak kรฉt ', end='') print('InterCom-os bemutatรณ kรถzรถtt: ', end='') elsoBemutato = None max_kul = 0 for film in filmek: if film.forgalmazo == 'InterCom': isoDatum = film.bemutato.replace('.', '-') if elsoBemutato == None: elsoBemutato=datetime.date.fromisoformat(isoDatum) else: kovBemutato = datetime.date.fromisoformat(isoDatum) kul = kovBemutato - elsoBemutato if kul.total_seconds() > max_kul: max_kul=kul.total_seconds() elsoBemutato = kovBemutato nap = max_kul // (24 * 3600) print(int(nap), 'nap') filmek = fajl_beolvas() # ~ feladat3(filmek) # ~ feladat4(filmek) # ~ feladat5(filmek) # ~ feladat6(filmek) # ~ feladat7(filmek) feladat8(filmek)
janos01/esti2020Python
gyakorlo/Nyito/src/OpeningWeekend.py
OpeningWeekend.py
py
3,940
python
hu
code
0
github-code
6
38416706519
import numpy as np class TrinomialModel(object): # Here we start defining our 'class' --> Trinomial Model! # First, a method to initialize our `TrinomialModel` algorithm! def __init__(self, S0, r, sigma, mat): self.__s0 = S0 self.__r = r self.__sigma = sigma self.__T = mat # Second, we build a method (function) to compute the risk-neutral probabilities! def __compute_probs(self): self.__pu = ( ( np.exp(self.__r * self.__h / 2) - np.exp(-self.__sigma * np.sqrt(self.__h / 2)) ) / ( np.exp(self.__sigma * np.sqrt(self.__h / 2)) - np.exp(-self.__sigma * np.sqrt(self.__h / 2)) ) ) ** 2 self.__pd = ( ( -np.exp(self.__r * self.__h / 2) + np.exp(self.__sigma * np.sqrt(self.__h / 2)) ) / ( np.exp(self.__sigma * np.sqrt(self.__h / 2)) - np.exp(-self.__sigma * np.sqrt(self.__h / 2)) ) ) ** 2 self.__pm = 1 - self.__pu - self.__pd assert 0 <= self.__pu <= 1.0, "p_u should lie in [0, 1] given %s" % self.__pu assert 0 <= self.__pd <= 1.0, "p_d should lie in [0, 1] given %s" % self.__pd assert 0 <= self.__pm <= 1.0, "p_m should lie in [0, 1] given %s" % self.__pm # Third, this method checks whether the given parameters are alright and that we have a 'recombining tree'! def __check_up_value(self, up): if up is None: up = np.exp(self.__sigma * np.sqrt(2 * self.__h)) assert up > 0.0, "up should be non negative" down = 1 / up assert down < up, "up <= 1. / up = down" self.__up = up self.__down = down # Four, we use this method to compute underlying stock price path def __gen_stock_vec(self, nb): vec_u = self.__up * np.ones(nb) np.cumprod(vec_u, out=vec_u) vec_d = self.__down * np.ones(nb) np.cumprod(vec_d, out=vec_d) res = np.concatenate((vec_d[::-1], [1.0], vec_u)) res *= self.__s0 return res # Fifth, we declare a Payoff method to be completed afterwards depending on the instrument we are pricing! def payoff(self, stock_vec): raise NotImplementedError() # Sixth, compute current prices! def compute_current_price(self, crt_vec_stock, nxt_vec_prices): expectation = np.zeros(crt_vec_stock.size) for i in range(expectation.size): tmp = nxt_vec_prices[i] * self.__pd tmp += nxt_vec_prices[i + 1] * self.__pm tmp += nxt_vec_prices[i + 2] * self.__pu expectation[i] = tmp return self.__discount * expectation # Seventh, Option pricing! def price(self, nb_steps, up=None): assert nb_steps > 0, "nb_steps shoud be > 0" nb_steps = int(nb_steps) self.__h = self.__T / nb_steps self.__check_up_value(up) self.__compute_probs() self.__discount = np.exp(-self.__r * self.__h) final_vec_stock = self.__gen_stock_vec(nb_steps) final_payoff = self.payoff(final_vec_stock) nxt_vec_prices = final_payoff for i in range(1, nb_steps + 1): vec_stock = self.__gen_stock_vec(nb_steps - i) nxt_vec_prices = self.compute_current_price(vec_stock, nxt_vec_prices) return nxt_vec_prices[0] class TrinomialCall(TrinomialModel): def __init__(self, S0, r, sigma, mat, K): super(TrinomialCall, self).__init__(S0, r, sigma, mat) self.__K = K def payoff(self, s): return np.maximum(s - self.__K, 0.0) class TrinomialAmerican_C(TrinomialCall): def __init__(self, S0, r, sigma, mat, K): super(TrinomialAmerican_C, self).__init__(S0, r, sigma, mat, K) def compute_current_price(self, crt_vec_stock, nxt_vec_prices): expectation = TrinomialCall.compute_current_price( self, crt_vec_stock, nxt_vec_prices ) return np.maximum(expectation, TrinomialCall.payoff(self, crt_vec_stock)) class TrinomialPut(TrinomialModel): def __init__(self, S0, r, sigma, mat, K): super(TrinomialPut, self).__init__(S0, r, sigma, mat) self.__K = K def payoff(self, s): return np.maximum(self.__K - s, 0.0) class TrinomialAmerican_P(TrinomialPut): def __init__(self, S0, r, sigma, mat, K): super(TrinomialAmerican_P, self).__init__(S0, r, sigma, mat, K) def compute_current_price(self, crt_vec_stock, nxt_vec_prices): expectation = TrinomialPut.compute_current_price( self, crt_vec_stock, nxt_vec_prices ) return np.maximum(expectation, TrinomialPut.payoff(self, crt_vec_stock))
piper-of-dawn/DE-GWP1
trinomial_pricing.py
trinomial_pricing.py
py
4,817
python
en
code
0
github-code
6
73591272829
# def funct1(nums): # """ๆฑ‚ไปŽ1ๅŠ ๅˆฐnums็š„ๅ’Œ""" # sum1 = 0 # for num in range(1, nums+1): # ไฝฟ็”จๅพช็Žฏ้ๅކ1ๅˆฐnums # sum1 += num # print(sum1) # # funct1(100) # # def max1(a, *numbers): # """ๆฑ‚ๅคšไธชๆ•ฐไธญ็š„ๆœ€ๅคงๅ€ผ""" # num1 = a # ๅฎšไน‰็ฌฌไธ€ไธชๆ•ฐ # for num in numbers: # if num > num1: # ๅฐ†aๅŽปๆฏ”่พƒๅŽ้ข็š„ๆ•ฐ # num1 = num # print(num1) # # max1(12, 34, 545, 43, 435, 6) # # def shai_zi(N): # """ๅฎž็Žฐๆ‘‡่‰ฒๅญๅŠŸ่ƒฝ๏ผŒๅนถๆฑ‚ๆ‰€ๆœ‰่‰ฒๅญ็š„็‚นๆ•ฐๅ’Œ""" # import random # ๅฏผๅ…ฅ้šๆœบๆ•ฐๆจกๅ— # sum2 = 0 # for x in range(N): # num = random.randint(1, 6) # print(num) # ๆ‰“ๅฐๆฏไธช่‰ฒๅญ็š„็‚นๆ•ฐ # sum2 += num # print(sum2) # # # shai_zi(3) # # def change_dict(dict1): # """ไบคๆขๅญ—ๅ…ธไธญ้”ฎๅ’Œๅ€ผ""" # dict2 = {} # for x in dict1: # value = dict1[x] # ๆๅ–่พ“ๅ…ฅๅญ—ๅ…ธ็š„ๅ€ผ # dict2[value] = x # print(dict2) # # change_dict({'a': 1, 'b': 2}) # def max1(num1, num2, num3): # """ๆฏ”่พƒไธ‰ไธชๆ•ฐ็š„ๅคงๅฐ๏ผŒๅนถๆฑ‚ๅ‡บๆœ€ๅคง็š„ๅ€ผ""" # max_num = num1 # ๅ‡ๅฎš็ฌฌไธ€ไธชๆ•ฐๆœ€ๅคง # if max_num < num2: # max_num = num2 # if max_num < num3: # max_num = num3 # # print(max_num) # # max1(52, 24, 4) # # def print_letter(string): # """ๆๅ–ๅญ—็ฌฆไธฒ็š„ๅญ—ๆฏ๏ผŒๅนถๆ‹ผๆŽฅๆ‰“ๅฐ""" # str1 = '' # ๅ‘ฝๅไธ€ไธช็ฉบ็š„ๅญ—็ฌฆไธฒ # for x in string: # if x.isalpha() == True: # str1 += x # ๆ‹ผๆŽฅๅญ—็ฌฆไธฒ # # print(str1) # # print_letter('d2eweds@!we') # def average_value(*number): # """ๆฑ‚ๅนณๅ‡ๆ•ฐ""" # many = len(number) # ็”จไบŽ่ฎกๆ•ฐ # sum1 = sum(number) # ๆฑ‚ๅ’Œ๏ผŒ็ป“ๆžœไธบstrๆ•ฐๆฎ็ฑปๅž‹ # print('ๅนณๅ‡ๆ•ฐไธบ%.3f ' % float(sum1/many)) # # average_value(1, 3, 5, 7, 9, 10, 11) # def factorial(nums=10): # """่ฎก็ฎ—ไธ€ไธชๆ•ฐ็š„้˜ถไน˜""" # sum1 = 1 # ็”จไบŽ่ฃ…้˜ถไน˜็š„็ป“ๆžœ # for nums in range(1, nums+1): # sum1 *= nums # # print(sum1) # # factorial(5) def operation(symbol, *numbers): """ๅคšๅŠŸ่ƒฝ่ฎก็ฎ—ๅ‡ฝๆ•ฐ""" list1 = list(numbers) if symbol == '+': # ๅˆคๆ–ญ่ฟ็ฎ—็ฌฆๅทๆ˜ฏๅฆๆ˜ฏๅŠ ๅท sum1 = sum(list1) if symbol == '-': # ๅˆคๆ–ญ่ฟ็ฎ—็ฌฆๅทๆ˜ฏๅฆๆ˜ฏๅ‡ๅท sum1 = list1.pop(0) for num in list1: sum1 -= num if symbol == '*': # ๅˆคๆ–ญ่ฟ็ฎ—็ฌฆๅทๆ˜ฏๅฆๆ˜ฏไน˜ๅท sum1 = 1 for num in list1: sum1 *= num if symbol == '/': # ๅˆคๆ–ญ่ฟ็ฎ—็ฌฆๅทๆ˜ฏๅฆๆ˜ฏ้™คๅท sum1 = list1.pop(0) for num in list1: sum1 /= num print('่ฟ็ฎ—็ฌฆๅทไธบ%s,็ป“ๆžœไธบ%.3f' % (symbol, float(sum1))) operation('/', 1000, 5, 18, 20)
gilgameshzzz/learn
day7Python็ฎก็†็ณป็ปŸ/ไฝœไธš.py
ไฝœไธš.py
py
2,719
python
en
code
0
github-code
6
35834788029
# https://codility.com/demo/results/training89TSCH-AEW/ def solution(X, A): # write your code in Python 2.7 N=len(A) lvs = dict.fromkeys(xrange(1,X+1),0) cnt=0 for i in xrange(N): x=A[i] if x > N+1: continue if lvs[x]==0: lvs[x]=1 cnt+=1 if cnt==X: return i return -1
peterkisfaludi/Codility
02-Counting-elements/frogriverone.py
frogriverone.py
py
412
python
en
code
0
github-code
6
40572545154
import os import csv candidate_dict = {} candidate_name = [] csvpath = os.path.join('Resources', 'election_data.csv') text = os.path.join('analysis', "Output.txt") print("Election Results") with open(text, "w+") as file: file.write("Election Results") with open(csvpath) as csvfile: # CSV reader specifies delimiter and variable that holds contents csvreader = csv.reader(csvfile, delimiter=',') csv_header = next(csvreader) #print(f"CSV Header: {csv_header}") for row in csvreader: candidate_name = row[2] if candidate_name in candidate_dict: candidate_dict[candidate_name] += 1 else: candidate_dict[candidate_name] = 1 # print(csvreader) total_votes = sum(candidate_dict.values()) # Read the header row first (skip this step if there is now header) #csv_header = next(csvreader) print("---------------------") file.write("---------------------") print(f"Total Votes: {total_votes}") file.write(f"Total Votes: {total_votes}") print("---------------------") file.write("---------------------") winner = '' winning_total = 0 for key in candidate_dict: if winning_total < candidate_dict[key]: winner = key winning_total = candidate_dict[key] vote_percent = float(candidate_dict[key]) / float(total_votes) * 100 #print(key) #print(candidate_dict[key]) print(f'{key} = {vote_percent:.3f}% ({candidate_dict[key]})') file.write(f'{key} = {vote_percent:.3f}% ({candidate_dict[key]})') print("---------------------") file.write("---------------------") #print(f'{candidate_dict[candidate_name]}') print(f"Winner: {winner}") file.write(f"Winner: {winner}") #print(candidate_name[]) # text = float(text) # with open('Output.txt', 'w') as file: # file.write("Election Results") # file.write("---------------------") # file.write(f"Total Votes: {total_votes}") # file.write("---------------------") # file.write(f'{key} = {vote_percent:.3f}% ({candidate_dict[key]})') # file.write("---------------------") # file.write(f"Winner: {winner}")
David-Lucey/python-challenge
PyPoll/main.py
main.py
py
2,268
python
en
code
0
github-code
6
24584540912
# Use the file name mbox-short.txt as the file name fname = input("Enter file name: ") try: fh = open(fname) except: if fname == "na na boo boo": print ("NA NA BOO BOO TO YOU - You have been punk'd!") quit() else: print("file doesn't exist" ,fname) quit() total = 0 count = 0 for line in fh: if not line.startswith("X-DSPAM-Confidence:"): continue position = line.find(':') number = float(line[position+1:]) count = count + 1 total = total + number average = total/count print("Average spam confidence:", average)
cruzandfamily/Exercise-7
7_3.py
7_3.py
py
614
python
en
code
0
github-code
6
32043413373
import getpass import datetime import urllib, urllib.request import os, sys from random import randint from shutil import copyfileobj from html.parser import HTMLParser #Time, Right Now. now = datetime.datetime.now() #Get local username UserName = getpass.getuser() #Define End-Of-Script Quit-Action def quitting_time(): print() print() print("Your Precious Cargo Is On Your Desktop, Inside The Folder 'ThisAmericanLife'.") print("I Now Retire To My Humble Abode.") print("Thank You, User, For This Opportunity.") input("Press ENTER To End Program.") sys.exit(0) #Change download directory to "ThisAmericanLife" on User's Desktop if not os.access('/home/' + UserName + '/Desktop/ThisAmericanLife/', os.F_OK): os.mkdir('/home/' + UserName + '/Desktop/ThisAmericanLife/') os.chdir('/home/'+ UserName +'/Desktop/ThisAmericanLife/') #Required for parsing and stripping HTML data class MLStripper(HTMLParser): #Supports the stripping of tags from "straight html" def __init__(self): super().__init__() self.reset() self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) #This strips html tags from html; input must be "straight html" def strip_tags(html): s = MLStripper() s.feed(html) return s.get_data() #Define asking User what s/he wants to do def what_to_do (retries=4, complaint='Answer With A Number Between 1 and 5, Please'): Option_01 = set(['1', '01', 'one']) Option_02 = set(['2','02','two']) Option_03 = set(['3','03','three']) Option_04 = set(['4','04','four']) Option_05 = set(['5','05','five']) while True: we_are_doing = input("Answer With Numbers 1 thru 5 >> ").lower() if we_are_doing in Option_01: print("We'll now download one episode of your choice.") print() One_OneEpisode() if we_are_doing in Option_02: print("We'll now download your choice of a block of episodes.") print() Two_EpisodeBlock() if we_are_doing in Option_03: print("We'll now download episodes from your choice to the current episode.") print() Three_ScatteredEpisodes() if we_are_doing in Option_04: print("We'll now download a smattering of episodes of your choice.") print() Four_EpiChoiceToCurrent() if we_are_doing in Option_05: print("We'll now download five random episodes for you.") print() Five_5RandomEpis() retries = retries - 1 if retries < 0: print("You Are Incapable Of Following Instructions.") print("I'm Done Trying To Help You.") input("Press ENTER To Quit, As I Have.") sys.exit(0) print(complaint) ####### Subroutine: Get Latest Episode Number ####### def get_latest_episode_number(): #Note: this subroutine creates and deletes a temporary txt file, "TAL_Archive_HTML.txt" ###Global Variables### #this is required because we need to know what the latest episode number is Everywhere global LatestEpisodeNumber ###Global Variables### #Get the HTML source code from T.A.L.'s Archive URL website = urllib.request.urlopen("http://www.thisamericanlife.org/radio-archives").read() #Save Website to risk_reward.txt [file will be removed when the data is retrieved] strip_write = open('/home/' + UserName + '/Desktop/ThisAmericanLife/TAL_Archive_HTML.txt', 'w') strip_write.write(strip_tags(website.decode('utf-8'))) strip_write.close() #Search through HTML-stripped source data for the latest episode, keying off the first instance of "Share" with open('/home/' + UserName + '/Desktop/ThisAmericanLife/TAL_Archive_HTML.txt', 'r+') as TAL_Archive_HTML: for line in TAL_Archive_HTML: if "Share" in line: #Assign the latest episode's information [number, title, date] without leading spaces to variable CurrentEpisodeLineInfo CurrentEpisodeLineInfo = TAL_Archive_HTML.__next__().lstrip() #Assign the last 10 characters of space-stripped CurrentEpisodeLineInfo to LatestEpisodeDate [DD.MM.YYYY] LatestEpisodeDate = CurrentEpisodeLineInfo[-11:-1] #Check if the latest queue'd episode is available today, keying off date information if now.strftime("%m.%d.%Y") < LatestEpisodeDate: LatestEpisodeNumber = int(CurrentEpisodeLineInfo[0:3]) - 1 elif now.strftime("%m.%d.%Y") == LatestEpisodeDate: #We need to find out when today's episode is released for download... today, or tomorrow. #GetTheTodayActionStarted LatestEpisodeNumber = int(CurrentEpisodeLineInfo[0:3]) - 1 pass elif now.strftime("%m.%d.%Y") > LatestEpisodeDate: LatestEpisodeNumber = CurrentEpisodeLineInfo[0:3] else: print() print() print("Call The Doctor.") print("I Now Hide Behind Cpt. Jack Harkness For Safety.") input("Press ENTER To Escape Your Doom.") sys.exit(0) break print("The latest episode in the queue is " + CurrentEpisodeLineInfo) print() print("The latest available episode is Episode #" + str(LatestEpisodeNumber)) print() #Remove the temporary txt file TAL_Archive_HTML.txt os.remove("/home/" + UserName + "/Desktop/ThisAmericanLife/TAL_Archive_HTML.txt") ####### Subroutine: Get Episode Number From User ####### def get_episode_number_from_user(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber #This is required in case User enters "0" for the episode number global nakednumber ###Global Variables### number = input("Give Me An Episode Number >> ") print() nakednumber = number.lstrip("0") if nakednumber == "": print("You told me to download 'Episode 0', which does not exist.") get_episode_number_from_user() else: pass EpisodeNumber = int(nakednumber) if(EpisodeNumber >= 1): pass else: print("You didn't give me a positive whole number.") get_episode_number_from_user() ####### Subroutine: Generate Random Episode Number ####### def generate_random_episode_number(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### RandomEpisodeNumber = randint(0,int(LatestEpisodeNumber)) EpisodeNumber = RandomEpisodeNumber ####### Subroutine: Check Number Is Valid ####### def check_epi_number_validity(): if EpisodeNumber >= int(LatestEpisodeNumber): while (EpisodeNumber >= int(LatestEpisodeNumber)): print("The episode number you have chosen is in the Future.") print() get_episode_number_from_user() else: pass ####### Subroutine: Download The Episode ####### def download_the_episode(): ###Global Variables### #this is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### mp3 = str(EpisodeNumber) + ".mp3" with urllib.request.urlopen(("http://audio.thisamericanlife.org/" + str(EpisodeNumber) + "/" + str(EpisodeNumber) + ".mp3")) as in_stream, open(mp3, 'wb') as out_file: copyfileobj(in_stream, out_file) print() print("I have finished downloading episode #" + str(EpisodeNumber) + " of This American Life.") print() ################################################## ##########Executing The User's Options############ ################################################## ####### Download One Episode ####### def One_OneEpisode(): get_latest_episode_number() get_episode_number_from_user() check_epi_number_validity() download_the_episode() quitting_time() ####### Download A Choice Block Of Episodes ####### def Two_EpisodeBlock(): #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### get_latest_episode_number() #Get the first boarder episode number from User print("What episode number is at the beginning of this block of episodes?") get_episode_number_from_user() check_epi_number_validity() FirstNumber = EpisodeNumber #Get the second boarder episode number from User print("What episode number is at the end of this block of episodes?") get_episode_number_from_user() check_epi_number_validity() SecondNumber = EpisodeNumber #A list of the boarder episode numbers boarder_episodes = [FirstNumber,SecondNumber] #Find and establish which episode number inputted has the larger value HigherEpisodeNumber = max(boarder_episodes) #Find and establish which episode number inputted has the smaller value LowerEpisodeNumber = min(boarder_episodes) #Asshole Condition [block of 1 episode] #We are going to use EpisodeNumber to download, and admonish the User if FirstNumber == SecondNumber: print() print("You should have chosen Option #1: 'Download One Episode of your choice'.") print("I don't want to out of principle, but to be nice I shall help you anyway.") print() download_the_episode() quitting_time() else: pass #Calculate how many episodes to download DownloadCycles = int(HigherEpisodeNumber) - int(LowerEpisodeNumber) + 1 #Prime the EpisodeNumber variable for looping EpisodeNumber = int(LowerEpisodeNumber) #Download those episodes! for n in range(0,DownloadCycles): download_the_episode() EpisodeNumber = EpisodeNumber + 1 quitting_time() ####### Download Scattered Episodes ####### def Three_ScatteredEpisodes(): get_latest_episode_number() HowManyEpisodes = input("How Many Episodes Would You Like To Download? >> ") if(int(HowManyEpisodes) >= 1): pass else: while (int(HowManyEpisodes) < 1): print() print("You didn't give me a counting number.") HowManyEpisodes = input("How Many Episodes Would You Like To Download? >> ") print() if int(HowManyEpisodes) > (int(LatestEpisodeNumber) + 1): while (int(HowManyEpisodes) > (int(LatestEpisodeNumber) + 1)): print() print("There are not that many episodes to download at this time.") print() print("There are " + str(LatestEpisodeNumber) + " available to download at this time.") print() HowManyEpisodes = input("How Many Episodes Would You Like To Download? >> ") print() for n in range(0,int(HowManyEpisodes)): get_episode_number_from_user() check_epi_number_validity() download_the_episode() quitting_time() ####### Download Choice To Latest Available ####### def Four_EpiChoiceToCurrent(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### get_latest_episode_number() print("I need to know what episode you want to start with.") get_episode_number_from_user() check_epi_number_validity() #Calculate how many episodes to download DownloadCycles = int(LatestEpisodeNumber) - EpisodeNumber + 1 #Download those episodes! for n in range(0,DownloadCycles): download_the_episode() EpisodeNumber = EpisodeNumber +1 quitting_time() ####### Download Five Random Episodes ####### def Five_5RandomEpis(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### get_latest_episode_number() for n in range(0,5): EpisodeNumber = randint(1,int(LatestEpisodeNumber)) download_the_episode() quitting_time() ################################################## ############### Kick Off The Script ############## ################################################## #Print-to-Screen Introduction print('========== =========== ==========') print("Hello " + UserName + "!") print("The time is", now.strftime("%Y-%m-%d %H:%M")) #Print to Terminal time, time right now; print("Let's Download Some Episodes of 'This American Life'.") print('========== =========== ==========') #Prompt User On What To Do print("What Type Of Downloading Would We Like To Do? ") print() print("Option 1: One [1] episode of your choice.") print("Option 2: A continuous block of episodes, your choice.") print("Option 3: A discontinuous block of episodes, your choice.") print("Option 4: All episodes between your choice and the current episode [inclusive].") print("Option 5: Five [5] random episodes.") print() what_to_do() #EndFile.
milesnielsen/DownloadEpisodesTAL
TAL_Epi_Download.py
TAL_Epi_Download.py
py
13,624
python
en
code
0
github-code
6
4657636922
import random print('ะ”ะพะฑั€ะพ ะฟะพะดะฐะปะพะฒะฐั‚ัŒ ะฒ ั‡ะธัะปะพะฒัƒัŽ ัƒะณะฐะดะฐะนะบัƒ') def is_valid(number, gran): if gran.isdigit() and number.isdigit(): return int(number) in range(0, int(gran) + 1) def get_new_rand(gran): return random.randint(0, int(gran)) n, count = input('ะ’ะฒะตะดะธั‚ะต ะณั€ะฐะฝะธั†ัƒ ะธะฝั‚ะตั€ะฒะฐะปะฐ: '), 0 num, flag = get_new_rand(n), True while flag: chislo = input(f'ะ’ะฒะตะดะธั‚ะต ั‡ะธัะปะพ ะพั‚ 1 ะดะพ {n}: ') if is_valid(chislo, n): chislo = int(chislo) if chislo < num: print('ะ’ะฐัˆะต ั‡ะธัะปะพ ะผะตะฝัŒัˆะต ะทะฐะณะฐะดะฐะฝะฝะพะณะพ, ะฟะพะฟั€ะพะฑัƒะนั‚ะต ะตั‰ะต ั€ะฐะทะพะบ') count += 1 if chislo > num: print('ะ’ะฐัˆะต ั‡ะธัะปะพ ะฑะพะปัŒัˆะต ะทะฐะณะฐะดะฐะฝะฝะพะณะพ, ะฟะพะฟั€ะพะฑัƒะนั‚ะต ะตั‰ะต ั€ะฐะทะพะบ') count += 1 if chislo == num: print(f'ะ’ั‹ ัƒะณะฐะดะฐะปะธ, ะฟะพะทะดั€ะฐะฒะปัะตะผ!\nะ’ะฐัˆะต ะบะพะปะธั‡ะตัั‚ะฒะพ ะฟะพะฟั‹ั‚ะพะบ ัƒะณะฐะดะฐั‚ัŒ ั‡ะธัะปะพ: {count}') ans = input('ะœะพะถะตั‚ ะฑั‹ั‚ัŒ ะตั‰ะต ัั‹ะณะฐั€ะตะผ? (ะดะฐ/ะฝะตั‚) ') while True: if ans == 'ะดะฐ': n, count, num = input('ะ’ะฒะตะดะธั‚ะต ะฝะพะฒัƒัŽ ะณั€ะฐะฝะธั†ัƒ ะธะฝั‚ะตั€ะฒะฐะปะฐ: '), 0, get_new_rand(n) break if ans == 'ะฝะตั‚': flag = False break else: ans = input('ะะตะฟะพะฝะตะป, ั‚ะฐะบ ะดะฐ ะธะปะธ ะฝะตั‚? ') else: print('ะ ะผะพะถะตั‚ ะฑั‹ั‚ัŒ ะฒัะต-ั‚ะฐะบะธ ะฒะฒะตะดะตะผ ั†ะตะปะพะต ั‡ะธัะปะพ?') print('ะกะฟะฐัะธะฑะพ, ั‡ั‚ะพ ะธะณั€ะฐะปะธ ะฒ ั‡ะธัะปะพะฒัƒัŽ ัƒะณะฐะดะฐะนะบัƒ. ะ•ั‰ะต ัƒะฒะธะดะธะผัั...')
WeideR66/littlepythonprojects
ugadaika.py
ugadaika.py
py
1,741
python
ru
code
0
github-code
6
39290687517
#!/usr/bin/env python2 from __future__ import print_function from Bio import SeqIO import sys, vcf, getopt __author__ = 'Kumar' sample_number = int(0) vcf_file = '' a = int(0) x = int(0) n = int(0) position = int(0) fold = int() try: myopts, args = getopt.getopt(sys.argv[1:],"f:s:") for o, a in myopts: if o == '-f': vcf_file = str(a) elif o == '-s': sample_number = int(a) except getopt.GetoptError as e: print(str(e)) print("Usage:: %s -f <vcf_file> -s <sample index in case of multi-sample vcf file>" % sys.argv[0]) sys.exit(2) vcf_reader = vcf.Reader(open(vcf_file, 'r')) sf = open("outfile.sf", "w") for record in vcf_reader: #print(record.samples) position = record.POS ad = record.samples[sample_number]['AD'] #print(ad) if ad == None: continue else: a = ad[0] x = ad[1] #print("%s::::%s"% (a,x)) n = a + x if a > x: fold = 0 else: fold = 1 header = "location\tx\tn\tfolded\n" if sf.tell() == 0: sf.write(header) sf.write("%d\t%d\t%d\t%d\n"% (position, x, n, fold)) else: sf.write("%d\t%d\t%d\t%d\n"% (position, x, n, fold)) sf.close()
kumarsaurabh20/NGShelper
PopulationGenomics/vcf2sf.py
vcf2sf.py
py
1,109
python
en
code
0
github-code
6
35510723799
# Experiment 24 - Tile Movement # # By Chris Herborth (https://github.com/Taffer) # MIT license, see LICENSE.md for details. import base64 import os import pygame import pygame.freetype import pygame.gfxdraw import struct import sys import time import zlib from xml.etree import ElementTree SCREEN_TITLE = 'Experiment 24 - Tile Movement' SCREEN_WIDTH = 1280 # 720p screen SCREEN_HEIGHT = 720 BLACK = pygame.Color('black') RED = pygame.Color('red') WHITE = pygame.Color('white') # Tiled map parser. class Map: def __init__(self, map_path: str) -> None: tree = ElementTree.parse(map_path) self.root = tree.getroot() layers = self.root.findall('layer') # Map size in tiles. self.map_width = int(self.root.attrib['width']) self.map_height = int(self.root.attrib['height']) # Tile size in pixels. self.tile_width = int(self.root.attrib['tilewidth']) self.tile_height = int(self.root.attrib['tileheight']) # Tileset and image atlas paths are relative to the map file. prefix = os.path.split(map_path)[0] tilesets = self.root.findall('tileset') self.tiles = [None] # Index 0 means "don't draw a tile" in Tiled. for tileset in tilesets: tileset_path = os.path.join(prefix, tileset.attrib['source']) tileset_prefix = os.path.split(tileset_path)[0] tileset_tree = ElementTree.parse(tileset_path) tileset_root = tileset_tree.getroot() image = tileset_root.find('image') image_path = os.path.join(tileset_prefix, image.attrib['source']) texture = pygame.image.load(image_path).convert_alpha() texture_rect = texture.get_rect() # Create subsurfaces for the tiles in the atlas. for y in range(texture_rect.height // self.tile_height): for x in range(texture_rect.width // self.tile_width): tile_rect = pygame.Rect(x * self.tile_width, y * self.tile_height, self.tile_width, self.tile_height) self.tiles.append(texture.subsurface(tile_rect)) self.layer_data = {} for layer in layers: # Decode the layer data. This map is using CSV, which is easy; for # help decoding other formats, check out my tileset crusher's code: # https://github.com/Taffer/crushtileset/ data = layer.find('data') data_contents = data.text this_data = [] if data.attrib['encoding'] == 'csv': lines = data_contents.split() for line in lines: for c in line.split(','): if c != '': this_data.append(int(c)) elif data.attrib['encoding'] == 'base64' and data.attrib.get('compression', 'none') == 'zlib': the_data = base64.b64decode(data_contents) # CSV data is organized into rows, so we make this one big row. this_data = [x[0] for x in struct.iter_unpack('<I', zlib.decompress(the_data))] else: raise RuntimeError('Unsupported encoding/compression.') self.layer_data[layer.attrib['name']] = this_data def render(self, layer: str, surface: pygame.Surface, viewport: pygame.Rect, offset_x: int, offset_y: int) -> None: # This use case seems to be faster than using blits(); the overhead of # creating a list of tuples is probably what kills it. max_x = min(viewport.width, self.map_width) max_y = min(viewport.height, self.map_height) for y in range(max_y): for x in range(max_x): tile = self.tiles[self.layer_data[layer][self.get_index(x + viewport.x, y + viewport.y)]] target = pygame.Rect(offset_x + x * self.tile_width, offset_y + y * self.tile_height, self.tile_width, self.tile_height) if tile is not None: surface.blit(tile, target) def get_index(self, x: int, y: int) -> int: return x + y * self.map_width def get_tile(self, layer: str, x: int, y: int) -> int: return self.layer_data[layer][self.get_index(x, y)] # LPC Sprite for animation. # # This sets up a set of sprites, quads, etc. using the standard Liberated # Pixel Cup sprite format: # # https://lpc.opengameart.org/static/lpc-style-guide/styleguide.html # # Specifically: # * Each row is a complete animation cycle. # * Rows are mostly in groups of four based on facing = away, left, forward, # right. # * Animation rows are: Spellcast, Thrust, Walk, Slash, Shoot, Hurt (only one # facing for Hurt). We fake an Idle animation by cloning the first frame of # Walk. # * Are 64x64 on the sprite sheet. # Note that this includes a non-standard animation, 'idle', made up of the # first 'walk' frame. LPC_ANIMATION = [ 'spellcast', 'thrust', 'walk', 'slash', 'shoot', 'hurt', 'idle' ] LPC_FACING = [ 'away', 'left', 'forward', 'right' ] FRAMES = { LPC_ANIMATION[0]: 7, # spellcast LPC_ANIMATION[1]: 8, # thrust LPC_ANIMATION[2]: 9, # walk LPC_ANIMATION[3]: 6, # slash LPC_ANIMATION[4]: 13, # shoot LPC_ANIMATION[5]: 6, # hurt LPC_ANIMATION[6]: 1, # idle } class LPCSprite: def __init__(self: 'LPCSprite', texture: pygame.Surface) -> None: self.width = 64 self.height = 64 self.feet_x = self.width // 2 # Where are the feet relative to 0,0? self.feet_y = self.height - 2 self.facing = LPC_FACING[2] # Default facing and animation. self.animation = LPC_ANIMATION[2] self.frame = 1 self.texture = texture # Generate subsurfaces. self.frames = {} y = 0 for av in LPC_ANIMATION[:-2]: # "hurt" and "idle" are special cases self.frames[av] = {} for fv in LPC_FACING: self.frames[av][fv] = [] for i in range(FRAMES[av]): x = i * self.width rect = pygame.Rect(x, y, self.width, self.height) self.frames[av][fv].append(texture.subsurface(rect)) y += self.height # "hurt" has to be special-cased because it only has one facing. self.frames['hurt'] = {} y = texture.get_height() - self.height for fv in LPC_FACING: # We'll use this animation for all four facings. self.frames['hurt'][fv] = [] for i in range(FRAMES['hurt']): x = i * self.width rect = pygame.Rect(x, y, self.width, self.height) for fv in LPC_FACING: self.frames['hurt'][fv].append(texture.subsurface(rect)) # "idle" is fake, just the first frame from "walk" self.frames['idle'] = {} for fv in LPC_FACING: self.frames['idle'][fv] = [self.frames['walk'][fv][0]] def check_frame(self: 'LPCSprite') -> None: if self.frame >= FRAMES[self.animation]: self.frame = 0 def next_frame(self: 'LPCSprite') -> None: self.frame += 1 self.check_frame() def set_facing(self: 'LPCSprite', facing: str) -> None: self.facing = facing self.check_frame() def set_animation(self: 'LPCSprite', animation: str) -> None: self.animation = animation self.check_frame() def get_texture(self: 'LPCSprite') -> pygame.Surface: return self.frames[self.animation][self.facing][self.frame] class StateMachine: def __init__(self: 'StateMachine', initial_state: 'StateBase'): self.current = initial_state self.current.enter() def change(self: 'StateMachine', new_state: 'StateBase'): self.current.exit() self.current = new_state self.current.enter() def update(self: 'StateMachine', dt: float): next_state = self.current.update(dt) if next_state != self.current: self.change(next_state) class StateBase: def __init__(self: 'StateBase', entity: 'Entity'): self.entity = entity self.ticks = 0 def enter(self: 'StateBase'): pass def exit(self: 'StateBase'): pass def update(self: 'StateBase', dt: float): pass class WaitState(StateBase): def __init__(self: 'WaitState', entity: 'Entity'): super().__init__(entity) def enter(self: 'WaitState'): self.entity.sprite.set_animation('idle') def exit(self: 'WaitState'): pass def update(self: 'WaitState', dt: float): walk = None self.ticks += dt if self.ticks > 0.1: self.ticks -= 0.1 keystate = pygame.key.get_pressed() if keystate[pygame.K_w] or keystate[pygame.K_UP]: walk = {'x': 0, 'y': -1} # go up elif keystate[pygame.K_s] or keystate[pygame.K_DOWN]: walk = {'x': 0, 'y': 1} # go down elif keystate[pygame.K_a] or keystate[pygame.K_LEFT]: walk = {'x': -1, 'y': 0} # go left elif keystate[pygame.K_d] or keystate[pygame.K_RIGHT]: walk = {'x': 1, 'y': 0} # go right if walk is not None: return WalkState(self.entity, walk) return self class WalkState(StateBase): def __init__(self: 'WalkState', entity: 'Entity', direction: dict): super().__init__(entity) self.direction = direction self.target_x = self.entity.x self.target_y = self.entity.y def enter(self: 'WalkState'): self.entity.sprite.set_animation('walk') if self.direction['y'] == -1: # go up self.entity.sprite.set_facing('away') self.target_y -= 1 elif self.direction['y'] == 1: # go down self.entity.sprite.set_facing('forward') self.target_y += 1 elif self.direction['x'] == -1: # go left self.entity.sprite.set_facing('left') self.target_x -= 1 elif self.direction['x'] == 1: # go right self.entity.sprite.set_facing('right') self.target_x += 1 # Clamp movement to the map. if self.target_x < 0: self.target_x = 0 elif self.target_x >= self.entity.map.map_width: self.target_x = self.entity.x if self.target_y < 0: self.target_y = 0 elif self.target_y >= self.entity.map.map_height: self.target_y = self.entity.y def exit(self: 'WalkState'): pass def update(self: 'WalkState', dt: float): if self.target_x == self.entity.x and self.target_y == self.entity.y: return WaitState(self.entity) # TODO: needs tweening self.ticks += dt if self.ticks > 0.1: if self.direction['y'] == -1: # go up self.entity.offset_y -= 1 elif self.direction['y'] == 1: # go down self.entity.offset_y += 1 elif self.direction['x'] == -1: # go left self.entity.offset_x -= 1 elif self.direction['x'] == 1: # go right self.entity.offset_x += 1 self.entity.sprite.next_frame() if abs(self.entity.offset_x) >= self.entity.map.tile_width or \ abs(self.entity.offset_y) >= self.entity.map.tile_height: # Done moving. self.entity.teleport(self.target_x, self.target_y) return WaitState(self.entity) return self class Entity: def __init__(self: 'Entity', sprite: LPCSprite, entity_map: Map): self.sprite = sprite self.map = entity_map self.x = 0 self.y = 0 self.offset_x = 0 # Drawing offsets for inter-tile animation. self.offset_y = 0 self.controller = StateMachine(WaitState(self)) def teleport(self: 'Entity', x: int, y: int): self.x = x self.y = y self.offset_x = 0 self.offset_y = 0 def draw(self: 'Entity', surface: pygame.Surface, x: int, y: int): # Draw sprite's feet at screen co-ords x, y. rect = pygame.Rect(x - self.sprite.width // 4, y - self.sprite.height // 2, self.sprite.width, self.sprite.height) rect.x += self.offset_x rect.y += self.offset_y surface.blit(self.sprite.get_texture(), rect) def draw_tile(self: 'Entity', surface: pygame.Surface, x: int, y: int, tile_width: int, tile_height: int): # Draw the tile the sprite thinks it's in. rect = pygame.Rect(x * tile_width, y * tile_height, tile_width, tile_height) pygame.gfxdraw.rectangle(surface, rect, RED) class Demo: def __init__(self: 'Demo', screen: pygame.Surface) -> None: self.screen = screen self.font = pygame.freetype.Font('resources/LiberationMono-Bold.ttf', 16) self.sara_texture = pygame.image.load('resources/LPC_Sara/SaraFullSheet.png').convert_alpha() self.map = Map('resources/grass-map.tmx') # Viewport rect is in *tile* co-ordinates. self.viewport = pygame.Rect(0, 0, 1280 // self.map.tile_width, 720 // self.map.tile_height) self.sara = Entity(LPCSprite(self.sara_texture), self.map) self.sara.teleport(10, 10) # Tile co-ordinates. self.ticks = 0 def draw(self: 'Demo') -> None: self.screen.fill(BLACK) self.map.render('Tile Layer 1', self.screen, self.viewport, 0, 0) self.font.render_to(self.screen, (10, 10), 'Use WASD or arrow keys to walk.', WHITE) # Draw a rectangle to show which tile has the sprite's feet. self.sara.draw_tile(self.screen, self.sara.x, self.sara.y, self.map.tile_width, self.map.tile_height) # Draw Sara - We want her feet to be in the tile. This would be easier # if the sprite were the same size as our map tiles... self.sara.draw(self.screen, self.sara.x * self.map.tile_width, self.sara.y * self.map.tile_height) def update(self: 'Demo', dt: float) -> None: self.sara.controller.update(dt) def main() -> None: pygame.init() screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) pygame.display.set_caption(SCREEN_TITLE) demo = Demo(screen) now = time.time() dt = 0 playing = True while playing: demo.draw() pygame.display.flip() dt = time.time() - now now = time.time() demo.update(dt) for event in pygame.event.get(): if event.type == pygame.QUIT: playing = False elif event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: playing = False pygame.quit() sys.exit() if __name__ == '__main__': main()
Taffer/pygame-experiments
24-tile-movement/main.py
main.py
py
14,875
python
en
code
2
github-code
6
7176111759
#!/usr/bin/env python3 import os import sys import re from pathlib import Path def _find_files(project_root): path_exclude_pattern = r"\.git($|\/)|venv|_build|\.tox" file_exclude_pattern = r"fill_template_vars\.py|\.swp$" filepaths = [] for dir_path, _dir_names, file_names in os.walk(project_root): if not re.search(path_exclude_pattern, dir_path): for file in file_names: if not re.search(file_exclude_pattern, file): filepaths.append(str(Path(dir_path, file))) return filepaths def _replace(pattern, replacement, project_root): print(f"Replacing values: {pattern}") for file in _find_files(project_root): try: with open(file) as f: content = f.read() content = re.sub(pattern, replacement, content) with open(file, "w") as f: f.write(content) except UnicodeDecodeError: pass def main(): project_root = Path(os.path.realpath(sys.argv[0])).parent.parent module_name = input("What is your python module name (ex: What would you import (no dashes)? ") pypi_input = input(f"What is your pypi package name? (default: {module_name}) ") pypi_name = pypi_input or module_name repo_input = input(f"What is your github project name? (default: {pypi_name}) ") repo_name = repo_input or pypi_name rtd_input = input( f"What is your readthedocs.org project name? (default: {pypi_name}) " ) rtd_name = rtd_input or pypi_name project_input = input( f"What is your project name (ex: at the top of the README)? (default: {repo_name}) " ) project_name = project_input or repo_name short_description = input("What is a one-liner describing the project? ") _replace("<MODULE_NAME>", module_name, project_root) _replace("<PYPI_NAME>", pypi_name, project_root) _replace("<REPO_NAME>", repo_name, project_root) _replace("<RTD_NAME>", rtd_name, project_root) _replace("<PROJECT_NAME>", project_name, project_root) _replace("<SHORT_DESCRIPTION>", short_description, project_root) os.makedirs(project_root / module_name, exist_ok=True) Path(project_root / module_name / "__init__.py").touch() Path(project_root / module_name / "py.typed").touch() if __name__ == "__main__": main()
ethereum/py-evm
.project-template/fill_template_vars.py
fill_template_vars.py
py
2,362
python
en
code
2,109
github-code
6
20519832620
"""! @brief CCORE Wrapper for X-Means algorithm. @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ from ctypes import c_double, c_longlong, c_size_t, c_uint, POINTER from pyclustering.core.wrapper import ccore_library from pyclustering.core.pyclustering_package import pyclustering_package, package_extractor, package_builder def xmeans(sample, centers, kmax, tolerance, criterion, alpha, beta, repeat, random_state, metric_pointer): random_state = random_state or -1 pointer_data = package_builder(sample, c_double).create() pointer_centers = package_builder(centers, c_double).create() ccore = ccore_library.get() ccore.xmeans_algorithm.restype = POINTER(pyclustering_package) package = ccore.xmeans_algorithm(pointer_data, pointer_centers, c_size_t(kmax), c_double(tolerance), c_uint(criterion), c_double(alpha), c_double(beta), c_size_t(repeat), c_longlong(random_state), metric_pointer) result = package_extractor(package).extract() ccore.free_pyclustering_package(package) return result
annoviko/pyclustering
pyclustering/core/xmeans_wrapper.py
xmeans_wrapper.py
py
1,207
python
en
code
1,113
github-code
6
19250997206
import numpy as np import cv2 from matplotlib import pyplot as plt def SI(img, x, y, p): val = np.sum(img[y-p:y+p, x-p:x+p]) return min(max(val, 0), 255) #Read grayscale image and conversion to float64 img=np.float64(cv2.imread('../Image_Pairs/FlowerGarden2.png',0)) (h,w) = img.shape print("Image dimension:",h,"rows x",w,"columns") #Direct method t1 = cv2.getTickCount() direct_method = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE) for y in range(1,h): for x in range(1,w): val = img[y, x] - img[y-1, x] direct_method[y,x] = min(max(val,0),255) t2 = cv2.getTickCount() time = (t2 - t1)/ cv2.getTickFrequency() print("Direct method:",time,"s") plt.figure(figsize=(8, 6)) plt.imshow(direct_method, cmap='gray') plt.title('Y derivate convolution - Direct method') plt.axis('off') plt.savefig("conv_direct_y_derivate.png", bbox_inches='tight') plt.close() #Method filter2D t1 = cv2.getTickCount() kernel = np.array([-1, 1]) filter2d_method = cv2.filter2D(img,-1,kernel) t2 = cv2.getTickCount() time = (t2 - t1)/ cv2.getTickFrequency() print("Method filter2D :",time,"s") plt.figure(figsize=(8, 6)) plt.imshow(direct_method, cmap='gray') plt.title('Y derivate convolution - filter 2D') plt.axis('off') plt.savefig("conv_filter2D_y_derivate.png", bbox_inches='tight') plt.close() img_diff = filter2d_method - direct_method plt.figure(figsize=(8, 6)) plt.imshow(img_diff, cmap='gray', vmax=255, vmin=0) plt.title("Y derivate result difference between the direct and filter2D") plt.axis('off') plt.savefig("difference_y_derivate_direct-filter2D.png", bbox_inches='tight') plt.close() center_y = h // 2 center_x = x // 2 p = 1 q = 50 SI_image = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE) for i in range(-q//2, q//2 + 1, 1): for j in range(-q//2, q//2 + 1, 1): SI_image[center_y + i, center_x + j] = SI(img, center_y + i, center_x + j, p) plt.figure(figsize=(8, 6)) plt.imshow(img, cmap='gray') plt.title('Original Image') plt.axis('off') plt.savefig("original_image.png", bbox_inches='tight') plt.close() plt.figure(figsize=(8, 6)) plt.imshow(SI_image, cmap='gray') plt.title('SI Function with p=1 on a square of size 50 on the center') plt.axis('off') plt.savefig("SI_function.png", bbox_inches='tight') plt.close()
gpspelle/image-mining
TP1/TP_Features_OpenCV/modified_Convolutions.py
modified_Convolutions.py
py
2,273
python
en
code
0
github-code
6
70613762747
# addtion of two numbers # printing integers x = 5 X = 6 y = 8 Y = 10 equation = (2*x+3*y)*(2*X+3*Y) print(equation) # printing strings small_alpha = "a" big_alpha = "A" print(small_alpha) print(big_alpha)
De-sam/Eccowas_College_Classes
sam_ss2/hello_world/variables.py
variables.py
py
209
python
en
code
0
github-code
6
39626332335
import numpy as np from flask import Flask, request, render_template import pickle app = Flask(__name__) model = pickle.load(open('model.pkl', 'rb')) @app.route('/') def home(): return render_template("index.html") @app.route('/predict',methods=['POST']) def predict(): label = "" sepallength = request.form["sepallength"] sepalwidth = request.form["sepalwidth"] petallength = request.form["petallength"] petalwidth =request.form["petallength"] int_features = [sepallength,sepalwidth , petallength ,petalwidth] final_features = [np.array(int_features)] prediction = model.predict(final_features)[0] if prediction == 0 : label = "Iris-virginica" elif prediction == 1: label = "Iris-versicolor" else: label = "Iris-setosa" return render_template('index.html', prediction_text='Predicted Flower should be $ {}'.format(label)) if __name__ == "__main__": app.run(debug=True)
Karthicksaga/IRIS
app.py
app.py
py
938
python
en
code
0
github-code
6
72690099708
import sys from antlr4 import * from xpathLexer import xpathLexer from xpathParser import xpathParser from MyErrorListener import MyErrorListener import io def main(argv): input = FileStream(argv[1], encoding = 'utf8') lexer = xpathLexer(input) lexer.removeErrorListeners() lexer.addErrorListener(MyErrorListener()) stream = CommonTokenStream(lexer) parser = xpathParser(stream) #error = io.StringIO() #print(error.read()) #parser.removeErrorListeners() #errorListener = ExprErrorListener(error) #parser.removeErrorListeners() #parser.addErrorListener(ExprErrorListener()) try: tree = parser.main() pass except SyntaxError: print("\n ++++++ Syntax Error ++++++ \n") except Exception as e: print("Error is: " + str(e)) print("\n ++++++ Other Error ++++++ \n") if __name__ == '__main__': main(sys.argv)
bendrissou/glade-replication
antlr4/xpath/parse.py
parse.py
py
952
python
en
code
1
github-code
6
10422721293
from __future__ import annotations from enum import Enum from typing import TYPE_CHECKING, Any, TypeVar if TYPE_CHECKING: from collections.abc import Iterator T = TypeVar("T", bound=Enum) def iterate_enum(enum_class: type[T]) -> Iterator[T]: assert issubclass(enum_class, Enum) yield from enum_class def add_long_name(enum_class: type[T], names: dict[T, str]) -> None: add_per_enum_field(enum_class, "long_name", names) def add_per_enum_field(enum_class: type[T], field_name: str, names: dict[T, Any]) -> None: if set(enum_class) != set(names.keys()): raise ValueError(f"{field_name} for {enum_class} are not synchronized") for key, value in names.items(): setattr(key, field_name, value)
randovania/randovania
randovania/lib/enum_lib.py
enum_lib.py
py
739
python
en
code
165
github-code
6
11464353853
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 7 13:18:01 2022 @author: sampasmann """ import time import numpy as np from mpi4py import MPI from src.functions.save_data import SaveData from src.solvers.fixed_source.solvers import Picard from src.solvers.eigenvalue.maps import MatVec_data, MatVec from scipy.sparse.linalg import gmres, lgmres, bicgstab, LinearOperator import scipy.linalg as sp from src.solvers.eigenvalue.maps import SI_Map # ============================================================================= # Iteration and Residual Storage for Krylov Solvers # ============================================================================= class gmres_counter(object): def __init__(self, disp=True): self._disp = disp self.iter = 0 self.callbacks = [] def __call__(self, rk=None): self.callbacks.append(rk.copy()) self.iter += 1 if self._disp: if (self.iter>1): print(" Iteration:", self.iter-1, "change: ", np.linalg.norm((rk - self.callbacks[self.iter-2]))) # ============================================================================= # Power Iteration # ============================================================================= # TODO: Picard PI is not working def PowerIteration(qmc_data, solver="LGMRES", max_outter_itt=10, max_inner_itt=10, outter_tol=1e-5, inner_tol=1e-5, report_progress=True): comm = MPI.COMM_WORLD rank = comm.Get_rank() # nproc = comm.Get_size() itt = 0 k = qmc_data.keff dk = 1.0 phi_old = qmc_data.tallies.phi_f.copy() #res_hist = [] k_hist = [] if (rank==0): print("") print(" โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—") print(" โ•‘ โ•‘โ–ˆโ–ˆโ•”โ•โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•") print(" โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ–ˆโ–ˆโ–ˆโ–ˆโ•”โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ ") print(" โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘โ–„โ–„ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ ") print(" โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•‘ โ•šโ•โ• โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—") print(" โ•šโ•โ• โ•šโ•โ•โ–€โ–€โ•โ• โ•šโ•โ• โ•šโ•โ• โ•šโ•โ•โ•โ•โ•โ•") print("") print("--------- K-Effective Eigenvalue Problem ---------") print("Outter Solver: Power Iteration") print("Inner Sovler:", solver) print("Material: ", qmc_data.material_code) print("Random Number Generator: ", qmc_data.generator) print("Number of Particles per Iteration: ", qmc_data.N) print("Number of Spatial Cells: ", qmc_data.Nx) print("Initial K: ", qmc_data.keff) # iterate over k effective while (itt<=max_outter_itt) and (dk>=outter_tol): # iterate over scattering source phi_new = InnerIteration(qmc_data, solver=solver, maxit=max_inner_itt,tol=inner_tol, report_progress=report_progress) #phi_hist.append(phi_new) k_old = k k = UpdateK(phi_old, phi_new, qmc_data) k_hist.append(k) qmc_data.keff = k #res_hist.append(np.linalg.norm(phi_new-phi_old)) qmc_data.tallies.phi_f = phi_new.copy() phi_old = phi_new.copy() # /norm(phi_new) if (qmc_data.source_tilt): qmc_data.tallies.dphi_f = qmc_data.tallies.dphi_s dk = abs(k-k_old) itt += 1 if (rank==0) and (report_progress): print("**********************") print("Iteration:", itt) print("k: ", k) print("dk: ",dk) if (rank==0): if (itt>=max_outter_itt): print("Power Iteration convergence to tolerance not achieved: Maximum number of iterations.") elif (dk<=outter_tol): print("-------------------------------") print("Successful Power Iteration convergence.") return phi_new, k_hist, itt #, res_hist # ============================================================================= # Inner Source Iteration for Power Iteration # ============================================================================= # TODO: make exitCode an actual output from Picard def InnerIteration(qmc_data,solver="LGMRES",tol=1e-5,maxit=50,save_data=False, report_progress=True): """ Parameters ---------- qmc_data : TYPE DESCRIPTION. tol : TYPE, optional DESCRIPTION. The default is 1e-5. maxit : TYPE, optional DESCRIPTION. The default is 50. Returns ------- phi : TYPE DESCRIPTION. """ comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() Nx = qmc_data.Nx G = qmc_data.G Nv = Nx*G Nt = qmc_data.Nt start = time.time() matvec_data = MatVec_data(qmc_data) if (qmc_data.source_tilt): phi0 = np.append(qmc_data.tallies.phi_avg, qmc_data.tallies.dphi_s) else: phi0 = qmc_data.tallies.phi_avg phi0 = np.reshape(phi0,(Nt,1)) if (rank==0) and (report_progress): print(" Inner Iteration: ") if (solver=="Picard"): phi = Picard(qmc_data,tol=tol,maxit=maxit,save_data=False, report_progress=report_progress) exitCode = 0 else: A = LinearOperator((Nt,Nt), matvec=MatVec, rmatvec=MatVec, matmat= MatVec, rmatmat=MatVec, dtype=float) b = matvec_data[0] if (solver=="LGMRES"): counter = gmres_counter(disp=report_progress) gmres_out = lgmres(A,b,x0=phi0,tol=tol,maxiter=maxit, callback=counter) elif (solver=="GMRES"): counter = gmres_counter(disp=report_progress) gmres_out = gmres(A,b,x0=phi0,tol=tol,maxiter=maxit, callback=counter) elif (solver=="BICGSTAB"): counter = gmres_counter(disp=report_progress) gmres_out = bicgstab(A,b,x0=phi0,tol=tol,maxiter=maxit, callback=counter) else: print(" Not a valid solver ") Exception phi = gmres_out[0] exitCode = gmres_out[1] stop = time.time() run_time = stop - start if (qmc_data.source_tilt): phi = phi[:Nv] phi = np.reshape(phi, (Nx,G)) if (rank==0): if (save_data): sim_data = SimData(phi, run_time, tol, nproc) SaveData(qmc_data, sim_data) if (exitCode>0) and (report_progress): print(" Convergence to tolerance not achieved: Maximum number of iterations.") elif (exitCode<0) and (report_progress): print(" Illegal input or breakdown.") elif (exitCode==0) and (report_progress): print(" Successful convergence.") return phi def UpdateK(phi_f, phi_s, qmc_data): keff = qmc_data.keff material = qmc_data.material keff *= (np.sum(material.nu*material.sigf*phi_s) /np.sum(material.nu*material.sigf*phi_f)) return keff # ============================================================================= # Davidson's Algorithm # ============================================================================= # TODO: Correct normalization of scalar flux in Davidson's output # TODO: Enable Source Tilting with Davidson's def Davidson(qmc_data, k0=1.0, l=1, m=None, numSweeps=8, tol=1e-6, maxit=30, report_progress=True): """ Parameters ---------- qmc_data : qmc_data structure k0 : Float, optional DESCRIPTION. The default is 1.0. l : Int, optional DESCRIPTION. Number of eigenvalues and vectors to solver for The default is 1. m : Int, optional DESCRIPTION. Restart parameter. The default is 5. numSweeps : Int, optional DESCRIPTION. The default is 5. tol : Float, optional DESCRIPTION. The default is 1e-6. maxit : Int, optional DESCRIPTION. The default is 30. Returns ------- phi : TYPE DESCRIPTION. keff : TYPE DESCRIPTION. itt : TYPE DESCRIPTION. """ comm = MPI.COMM_WORLD rank = comm.Get_rank() # Davidson Parameters Nt = qmc_data.Nt if (qmc_data.source_tilt): phi0 = np.append(qmc_data.tallies.phi_avg, qmc_data.tallies.dphi_s) else: phi0 = qmc_data.tallies.phi_avg phi0 = np.reshape(phi0,(Nt)) # u = qmc_data.tallies.phi_f.reshape(Nt) V0 = np.array(phi0/np.linalg.norm(phi0).T) # orthonormalize initial guess V = np.zeros((Nt,maxit)) axv = np.zeros((Nt,maxit)) bxv = np.zeros((Nt,maxit)) Vsize = 1 V[:,0] = V0 k_old = 0.0 dk = 1.0 itt = 1 if (rank==0): print("") print(" โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—") print(" โ•‘ โ•‘โ–ˆโ–ˆโ•”โ•โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•") print(" โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ–ˆโ–ˆโ–ˆโ–ˆโ•”โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ ") print(" โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘โ–„โ–„ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ ") print(" โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•‘ โ•šโ•โ• โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—") print(" โ•šโ•โ• โ•šโ•โ•โ–€โ–€โ•โ• โ•šโ•โ• โ•šโ•โ• โ•šโ•โ•โ•โ•โ•โ•") print("") print("--------- K-Effective Eigenvalue Problem ---------") print("Outter Solver: Davidson's Method") print("Material: ", qmc_data.material_code) print("Random Number Generator: ", qmc_data.generator) print("Number of Particles per Iteration: ", qmc_data.N) print("Number of Spatial Cells: ", qmc_data.Nx) print("Initial K: ", qmc_data.keff) if (m is None): m = maxit+1 # unless specified there is no restart parameter V[:,:Vsize] = PreConditioner(V[:,:Vsize], qmc_data, numSweeps) # Davidson Routine while (itt <= maxit) and (dk>=tol): #print(V) if (report_progress): print("**********************") print(" Davidson Iteration: ", itt) axv[:,Vsize-1] = AxV(V[:,:Vsize], qmc_data)[:,0] bxv[:,Vsize-1] = BxV(V[:,:Vsize], qmc_data)[:,0] AV = np.dot(V[:,:Vsize].T, axv[:,:Vsize]) # Scattering linear operator BV = np.dot(V[:,:Vsize].T, bxv[:,:Vsize]) # Fission linear operator [Lambda, w] = sp.eig(AV, b=BV) # solve for eigenvalues and vectors idx = Lambda.argsort() # get indices of eigenvalues from smallest to largest Lambda = Lambda[idx] # sort eigenvalues from smalles to largest assert(Lambda.imag.all() == 0.0)# there can't be any imaginary eigenvalues Lambda = Lambda[:l].real # take the real component of the l largest eigenvalues k = 1/Lambda dk = abs(k - k_old) if (report_progress): print("K Effective: ", k) print("dk: ",dk) k_old = k w = w[:,idx] # sort corresponding eigenvector w = w[:,:l].real # take the l largest eigenvectors u = np.dot(V[:,:Vsize],w) # Ritz vectors res = AxV(u, qmc_data) - Lambda*BxV(u, qmc_data) # residual t = PreConditioner(res, qmc_data, numSweeps) if (Vsize <= m-l ): Vsize += 1 V[:,:Vsize] = Gram(V[:,:Vsize-1],t) # appends new orthogonalization to V else: Vsize = 2 V[:,:Vsize] = Gram(u,t) # "restarts" by appending to a new array if (itt==maxit): print(" Convergence to tolerance not achieved: Maximum number of iterations.") break else: print(" Successful convergence.") itt += 1 keff = 1/Lambda phi = V[:,0] phi = phi/np.linalg.norm(phi).T return phi, keff, itt # ============================================================================= # Functions for Davidson's Method # ============================================================================= def AxV(V, qmc_data): """ Linear operator for scattering term (I-L^(-1)S)*phi """ v = V[:,-1] Nx = qmc_data.Nx G = qmc_data.G Nt = qmc_data.Nt zed = np.zeros((Nx,G)) phi_in = np.reshape(v, (Nt,1)) axv = (phi_in - SI_Map(zed, phi_in, qmc_data)) return axv def BxV(V, qmc_data): """ Linear operator for fission term (L^(-1)F*phi) """ v = V[:,-1] Nx = qmc_data.Nx G = qmc_data.G Nv = int(Nx*G) Nt = qmc_data.Nt zed = np.zeros(Nt) phi_in = np.reshape(v, (Nt,1)) if (qmc_data.source_tilt): dphi = qmc_data.tallies.dphi_s qmc_data.tallies.dphi_s = zed bxv = SI_Map(phi_in, zed, qmc_data) if (qmc_data.source_tilt): qmc_data.tallies.dphi_s = dphi v[Nv:] = dphi.reshape(Nv) return bxv def PreConditioner(V, qmc_data, numSweeps=8): """ Linear operator approximation of L^(-1)S In this case the preconditioner is a specified number of purely scattering transport sweeps. """ v = V[:,-1] Nx = qmc_data.Nx G = qmc_data.G Nt = qmc_data.Nt Nv = Nx*G zed = np.zeros((Nx,G)) phi_in = np.reshape(v, (Nt,1)) for i in range(numSweeps): phi_in = SI_Map(zed, phi_in, qmc_data) return phi_in def Gram(V,u): """ Modified Gram Schmidt """ w1 = u - np.dot(V,np.dot(V.T,u)) v1 = w1 / np.linalg.norm(w1) w2 = v1 - np.dot(V,np.dot(V.T,v1)) v2 = w2 / np.linalg.norm(w2) V = np.append(V, v2, axis=1) return V # ============================================================================= # Misc Functions # ============================================================================= def SimData(phi, time, tol, nproc): data = { "phi": phi, "run_time": time, "tolerance": tol, "nproc": nproc } return data
spasmann/iQMC
src/solvers/eigenvalue/solvers.py
solvers.py
py
14,940
python
en
code
2
github-code
6
19209409927
import re import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Dictionary mapping word contractions to their full words contractions = { "ain't": "are not","'s":" is","aren't": "are not", "can't": "cannot","can't've": "cannot have", "'cause": "because","could've": "could have","couldn't": "could not", "couldn't've": "could not have", "didn't": "did not","doesn't": "does not", "don't": "do not","hadn't": "had not","hadn't've": "had not have", "hasn't": "has not","haven't": "have not","he'd": "he would", "he'd've": "he would have","he'll": "he will", "he'll've": "he will have", "how'd": "how did","how'd'y": "how do you","how'll": "how will", "I'd": "I would", "I'd've": "I would have","I'll": "I will", "I'll've": "I will have","I'm": "I am","I've": "I have", "isn't": "is not", "it'd": "it would","it'd've": "it would have","it'll": "it will", "it'll've": "it will have", "let's": "let us","ma'am": "madam", "mayn't": "may not","might've": "might have","mightn't": "might not", "mightn't've": "might not have","must've": "must have","mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock","oughtn't": "ought not", "oughtn't've": "ought not have","shan't": "shall not","sha'n't": "shall not", "shan't've": "shall not have","she'd": "she would","she'd've": "she would have", "she'll": "she will", "she'll've": "she will have","should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have","so've": "so have", "that'd": "that would","that'd've": "that would have", "there'd": "there would", "there'd've": "there would have", "they'd": "they would", "they'd've": "they would have","they'll": "they will", "they'll've": "they will have", "they're": "they are","they've": "they have", "to've": "to have","wasn't": "was not","we'd": "we would", "we'd've": "we would have","we'll": "we will","we'll've": "we will have", "we're": "we are","we've": "we have", "weren't": "were not","what'll": "what will", "what'll've": "what will have","what're": "what are", "what've": "what have", "when've": "when have","where'd": "where did", "where've": "where have", "who'll": "who will","who'll've": "who will have","who've": "who have", "why've": "why have","will've": "will have","won't": "will not", "won't've": "will not have", "would've": "would have","wouldn't": "would not", "wouldn't've": "would not have","y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have","y'all're": "you all are", "y'all've": "you all have", "you'd": "you would","you'd've": "you would have", "you'll": "you will","you'll've": "you will have", "you're": "you are", "you've": "you have" } STOPWORDS = stopwords.words('english') meaningless_words = ['hotel','stay','hilton','location','room','service','airport','staff','london','night','flight','overnight','rooms', 'experience','gatwick','ever','holiday','one', 'stayed','would','breakfast','bed','check','get','us','time','reception','terminal','bar','food','booked','walk','bathroom', 'really','early','could','also','restaurant','morning','even','floor','next','back','day','two', 'got','executive','south','shower','first','long','need','area', 'minutes','lounge','went','much','told','sleep', 'arrived','hotels','work','station','nights','beds', 'quite','bit','go','people','car'] for word in meaningless_words: STOPWORDS.append(word) # Remove punctutation marks, stopwords, emojis, urls, convert to lowercase, expand contractions, hashtags, retweet def preprocess_review(review): res_review = [] lemmatizer = WordNetLemmatizer() for word in review.split(): # Convert to lowercase word = word.lower() # Expand Contractions word = contractions.get(word, word) for w in word.split(" "): # Remove stopwords if w not in STOPWORDS: # w = splitter.split(w) # Remove punctuation w = re.sub(r'[^\w\s]', '', str(w)) # Remove numbers w = re.sub(r'\d+', '', w) # Lemmatize the word w = lemmatizer.lemmatize(w, pos='v') if w != '': res_review.append(w) return ' '.join([word for word in res_review])
kelvinchumbe/Hotel-Review-Mining-and-Web-App
Hotel Review Mining/Web App Deployment/api/preprocessing_utils.py
preprocessing_utils.py
py
4,650
python
en
code
0
github-code
6
71281284349
# mysql ํ…Œ์ด๋ธ” ์ƒ์„ฑ ๋ฐ ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€ import pandas as pd import pymysql xl_file = '/Users/JaehoByun/JB/_School/2021_2 แ„ƒแ…ฆแ„‹แ…ตแ„แ…ฅแ„‰แ…กแ„‹แ…ตแ„‹แ…ฅแ†ซแ„‰แ…ณ/แ„€แ…ชแ„Œแ…ฆแ„†แ…ตแ†พแ„‰แ…ตแ„’แ…ฅแ†ท/score.xlsx' df = pd.read_excel(xl_file) conn = pymysql.connect(host='localhost', user='root', password='chunjay606', db='data_science') curs = conn.cursor(pymysql.cursors.DictCursor) # ํ…Œ์ด๋ธ” ์ƒ์„ฑ mk_table_sql = """create table if not exists score (sno int primary key, attendance float, homework float, discussion int, midterm float, final float, score float, grade varchar(3))""" curs.execute(mk_table_sql) # ๋ฐ์ดํ„ฐ ๋„ฃ๊ธฐ insert_sql = """insert into score(sno, attendance, homework, discussion, midterm, final, score, grade) values (%s, %s, %s, %s, %s, %s, %s, %s)""" for idx in range(len(df)): curs.execute(insert_sql, tuple(df.values[idx])) conn.commit() # ๋ฐ์ดํ„ฐ ์‚ฝ์ž… ํ™•์ธ show_table_sql = 'select * from score' curs.execute(show_table_sql) row = curs.fetchone() while row: print(row) row = curs.fetchone() curs.close() conn.close()
bjho606/python_school-data-science
score_assignment2.py
score_assignment2.py
py
1,130
python
en
code
0
github-code
6
14466536313
''' Given a collection of distinct integers, return all possible permutations. Example: Input: [1,2,3] Output: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ] ''' class Solution: def permute(self, nums: List[int]) -> List[List[int]]: sol = [] self.backtrack(nums, 0, sol) return sol def backtrack(self, nums, first, sol): if len(nums) == first: sol.append(nums[:]) for i in range(first, len(nums)): nums[first], nums[i] = nums[i], nums[first] self.backtrack(nums, first+1, sol) nums[first], nums[i] = nums[i], nums[first]
loganyu/leetcode
problems/046_permutations.py
046_permutations.py
py
671
python
en
code
0
github-code
6
30366445741
from traits.api import Bool, Instance, Float, Property # Local relative imports from .abstract_mapper import AbstractMapper from .data_range_1d import DataRange1D class Base1DMapper(AbstractMapper): """Defines an abstract mapping from a 1-D region in input space to a 1-D region in output space. """ #: The data-space bounds of the mapper. range = Instance(DataRange1D) #: The screen space position of the lower bound of the data space. low_pos = Float(0.0) #: The screen space position of the upper bound of the data space. high_pos = Float(1.0) #: Convenience property to get low and high positions in one structure. #: Must be a tuple (low_pos, high_pos). screen_bounds = Property #: Should the mapper stretch the dataspace when its screen space bounds are #: modified (default), or should it preserve the screen-to-data ratio and #: resize the data bounds? If the latter, it will only try to preserve #: the ratio if both screen and data space extents are non-zero. stretch_data = Bool(True) #: The sign of the mapping: 1 if deltas match sign, -1 if opposite sign sign = Property # If the subclass uses a cache, _cache_valid is maintained to # monitor its status _cache_valid = Bool(False, transient=True) # Indicates whether or not the bounds have been set at all, or if they # are at their initial default values. _low_bound_initialized = Bool(False) _high_bound_initialized = Bool(False) # ------------------------------------------------------------------------ # Event handlers # ------------------------------------------------------------------------ def _low_pos_changed(self, old, new): self._cache_valid = False if not self.stretch_data: self._adjust_range((old, self.high_pos), (new, self.high_pos)) self._low_bound_initialized = True self.updated = True def _high_pos_changed(self, old, new): self._cache_valid = False if not self.stretch_data: self._adjust_range((self.low_pos, old), (self.low_pos, new)) self._high_bound_initialized = True self.updated = True def _range_changed(self, old, new): if old is not None: old.observe(self._range_change_handler, "updated", remove=True) if new is not None: new.observe(self._range_change_handler, "updated") self._cache_valid = False self.updated = new def _range_change_handler(self, event): "Handles the range changing; dynamically attached to our ranges" self._cache_valid = False self.updated = event.object def _get_screen_bounds(self): return (self.low_pos, self.high_pos) def _get_sign(self): delta_screen = self.high_pos - self.low_pos delta_data = self.range.high - self.range.low if delta_screen == 0 or delta_data == 0: return 0 elif delta_screen / float(delta_data) < 0: return -1 else: return 1 def _set_screen_bounds(self, new_bounds): if new_bounds[0] == self.low_pos and new_bounds[1] == self.high_pos: return if not self.stretch_data: self._adjust_range((self.low_pos, self.high_pos), new_bounds) self.trait_setq(low_pos=new_bounds[0]) self.trait_setq(high_pos=new_bounds[1]) self._cache_valid = False self._low_bound_initialized = True self._high_bound_initialized = True self.updated = True def _adjust_range(self, old_bounds, new_bounds): initialized = ( self._low_bound_initialized and self._high_bound_initialized ) if self.range is not None and initialized: rangelow = self.range.low rangehigh = self.range.high d_data = rangehigh - rangelow old_d_screen = old_bounds[1] - old_bounds[0] if d_data != 0 and old_d_screen != 0: new_data_extent = ( d_data / old_d_screen * (new_bounds[1] - new_bounds[0]) ) self.range.set_bounds(rangelow, rangelow + new_data_extent)
enthought/chaco
chaco/base_1d_mapper.py
base_1d_mapper.py
py
4,221
python
en
code
286
github-code
6
17635143913
from collections import Counter import pandas as pd def transform(new_subjects): list_keys = list(Counter(new_subjects).keys()) list_values = list(Counter(new_subjects).values()) df_keys = pd.DataFrame(list_keys, columns=['subject']) df_values = pd.DataFrame(list_values, columns=['frequency']) df_arxiv = pd.concat([df_keys, df_values], axis=1) df_arxiv['frequency'] = pd.to_numeric(df_arxiv['frequency']) df_arxiv = df_arxiv.sort_values(by=['frequency'], ascending=False) return df_arxiv
ThomasKranz/arxiv_ETL
src/transformer.py
transformer.py
py
526
python
en
code
0
github-code
6
2725937228
n = int(input()) for _ in range(n): counter = 0 t = int(input()) tiros = [int(x) for x in input().split()] pulos = input() for j in range(t): if (tiros[j] <= 2 and pulos[j] == 'S') or (tiros[j] > 2 and pulos[j] == 'J'): counter += 1 print(counter)
wolney-fo/beecrowd
2-AD-HOC/python/beecrowd_1250.py
beecrowd_1250.py
py
304
python
en
code
1
github-code
6
40546336482
import dlib import os import numpy as np import matplotlib.pyplot as plt """ ๆญคๆ–‡ไปถไธบๆญฃๅ‘ไบบ่„ธๆฃ€ๆต‹ๆจกๅ—๏ผŒ้‡‡็”จdlibๅฎž็Žฐ """ def _shape_to_np(shape): xy = [] for i in range(68): xy.append((shape.part(i).x, shape.part(i).y,)) xy = np.asarray(xy, dtype='float32') return xy def get_landmarks(img, detector, predictor, PlotOn=False): """ ่Žทๅ–ไบบ่„ธ็‰นๅพ็‚น """ lmarks = [] dets, scores, idx = detector.run(img, 1) # dets = [dlib.rectangle(left=0, top=0, right=img.shape[1], bottom=img.shape[0])] print("Number of faces detected: {}".format(len(dets))) if len(dets) > 0: shapes = [] for k, det in enumerate(dets): shape = predictor(img, det) shapes.append(shape) xy = _shape_to_np(shape) lmarks.append(xy) lmarks = np.asarray(lmarks, dtype='float32') lmarks = lmarks[0, :, :].T if PlotOn: display_landmarks(img, lmarks) return lmarks else: return lmarks def display_landmarks(img, lmarks): for i in range(68): xy = lmarks[:, i] plt.plot(xy[0], xy[1], 'ro') plt.text(xy[0], xy[1], str(i)) plt.imshow(img) plt.show()
hamster1963/face-all-in-one-machine-backend
face_irobot_main/facial_feature_detector.py
facial_feature_detector.py
py
1,246
python
en
code
0
github-code
6
27103152939
from itertools import product import numpy as np import pytest from dcegm.pre_processing.params import process_params from numpy.testing import assert_array_almost_equal as aaae from scipy.special import roots_sh_legendre from scipy.stats import norm from toy_models.consumption_retirement_model.budget_functions import ( _calc_stochastic_income, ) from toy_models.consumption_retirement_model.budget_functions import budget_constraint model = ["deaton", "retirement_taste_shocks", "retirement_no_taste_shocks"] labor_choice = [0, 1] period = [0, 5, 7] max_wealth = [11, 33, 50] n_grid_points = [101, 444, 1000] TEST_CASES = list(product(model, period, labor_choice, max_wealth, n_grid_points)) @pytest.mark.parametrize( "model, period, labor_choice, max_wealth, n_grid_points", TEST_CASES ) def test_get_beginning_of_period_wealth( model, period, labor_choice, max_wealth, n_grid_points, load_example_model ): params, options = load_example_model(f"{model}") params = process_params(params) sigma = params["sigma"] r = params["interest_rate"] consump_floor = params["consumption_floor"] n_quad_points = options["quadrature_points_stochastic"] child_state_dict = {"period": period, "lagged_choice": labor_choice} savings_grid = np.linspace(0, max_wealth, n_grid_points) _quad_points, _ = roots_sh_legendre(n_quad_points) quad_points = norm.ppf(_quad_points) * sigma random_saving_scalar = np.random.randint(0, n_grid_points) random_shock_scalar = np.random.randint(0, n_quad_points) wealth_beginning_of_period = budget_constraint( **child_state_dict, savings_end_of_previous_period=savings_grid[random_saving_scalar], income_shock_previous_period=quad_points[random_shock_scalar], options=options, params=params, ) _labor_income = _calc_stochastic_income( **child_state_dict, wage_shock=quad_points[random_shock_scalar], min_age=options["min_age"], constant=params["constant"], exp=params["exp"], exp_squared=params["exp_squared"], ) budget_expected = (1 + r) * savings_grid[random_saving_scalar] + _labor_income aaae(wealth_beginning_of_period, max(consump_floor, budget_expected))
OpenSourceEconomics/dcegm
tests/test_budget_equation.py
test_budget_equation.py
py
2,269
python
en
code
15
github-code
6
910639080
import numpy as np from horton.io.utils import set_four_index_element __all__ = ['load_fcidump', 'dump_fcidump'] def load_fcidump(filename): '''Read one- and two-electron integrals from a Molpro 2012 FCIDUMP file. Works only for restricted wavefunctions. Keep in mind that the FCIDUMP format changed in Molpro 2012, so files generated with older versions are not supported. Parameters ---------- filename : str The filename of the fcidump file. Returns ------- results : dict Data loaded from the file, with keys: ``nelec``, ``ms2``, ``one_mo``, ``two_mo``, ``core_energy``. ''' with open(filename) as f: # check header line = next(f) if not line.startswith(' &FCI NORB='): raise IOError('Error in FCIDUMP file header') # read info from header words = line[5:].split(',') header_info = {} for word in words: if word.count('=') == 1: key, value = word.split('=') header_info[key.strip()] = value.strip() nbasis = int(header_info['NORB']) nelec = int(header_info['NELEC']) ms2 = int(header_info['MS2']) # skip rest of header for line in f: words = line.split() if words[0] == "&END" or words[0] == "/END" or words[0]=="/": break # read the integrals one_mo = np.zeros((nbasis, nbasis)) two_mo = np.zeros((nbasis, nbasis, nbasis, nbasis)) core_energy = 0.0 for line in f: words = line.split() if len(words) != 5: raise IOError('Expecting 5 fields on each data line in FCIDUMP') value = float(words[0]) if words[3] != '0': ii = int(words[1])-1 ij = int(words[2])-1 ik = int(words[3])-1 il = int(words[4])-1 # Uncomment the following line if you want to assert that the # FCIDUMP file does not contain duplicate 4-index entries. #assert two_mo.get_element(ii,ik,ij,il) == 0.0 set_four_index_element(two_mo, ii, ik, ij, il, value) elif words[1] != '0': ii = int(words[1])-1 ij = int(words[2])-1 one_mo[ii, ij] = value one_mo[ij, ii] = value else: core_energy = value return { 'nelec': nelec, 'ms2': ms2, 'one_mo': one_mo, 'two_mo': two_mo, 'core_energy': core_energy, } def dump_fcidump(filename, data): '''Write one- and two-electron integrals in the Molpro 2012 FCIDUMP format. Works only for restricted wavefunctions. Keep in mind that the FCIDUMP format changed in Molpro 2012, so files written with this function cannot be used with older versions of Molpro Parmeters --------- filename : str The filename of the FCIDUMP file. This is usually "FCIDUMP". data : IOData Must contain ``one_mo``, ``two_mo``. May contain ``core_energy``, ``nelec`` and ``ms``. ''' with open(filename, 'w') as f: one_mo = data.one_mo two_mo = data.two_mo nactive = one_mo.shape[0] core_energy = getattr(data, 'core_energy', 0.0) nelec = getattr(data, 'nelec', 0) ms2 = getattr(data, 'ms2', 0) # Write header print(' &FCI NORB=%i,NELEC=%i,MS2=%i,' % (nactive, nelec, ms2), file=f) print(' ORBSYM= '+",".join(str(1) for v in range(nactive))+",", file=f) print(' ISYM=1', file=f) print(' &END', file=f) # Write integrals and core energy for i in range(nactive): for j in range(i+1): for k in range(nactive): for l in range(k+1): if (i*(i+1))/2+j >= (k*(k+1))/2+l: value = two_mo[i, k, j, l] if value != 0.0: print('%23.16e %4i %4i %4i %4i' % (value, i+1, j+1, k+1, l+1), file=f) for i in range(nactive): for j in range(i+1): value = one_mo[i, j] if value != 0.0: print('%23.16e %4i %4i %4i %4i' % (value, i+1, j+1, 0, 0), file=f) if core_energy != 0.0: print('%23.16e %4i %4i %4i %4i' % (core_energy, 0, 0, 0, 0), file=f)
theochem/horton
horton/io/molpro.py
molpro.py
py
4,488
python
en
code
83
github-code
6
39485957424
"""ะœะพะดัƒะปัŒ ะฑะฐะทั‹ ะดะฐะฝะฝั‹ั… ั…ั€ะฐะฝัั‰ะตะน ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน ะธ ะธั… ะธัั‚ะพั€ะธัŽ""" import datetime as dt from typing import Optional import enum from functools import cached_property import sqlalchemy as sa from sqlalchemy import create_engine, select, ForeignKey from sqlalchemy.orm import ( Session, DeclarativeBase, Mapped, mapped_column, sessionmaker, relationship ) from .. import settings from ..server.auth import AuthMixin engine = create_engine(settings.database_path) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) class Base(DeclarativeBase): pass class User(Base, AuthMixin): __tablename__ = 'user' id: Mapped[int] = mapped_column(primary_key=True) account_name: Mapped[str] password: Mapped[str] has_entered: Mapped[Optional[bool]] = mapped_column(default=False) histories: Mapped[list['History']] = relationship( back_populates='user', cascade='all, delete' ) contacts: Mapped[list['Contact']] = relationship( back_populates='user', foreign_keys='Contact.user_id' ) friends_with_us: Mapped[list['Contact']] = relationship( back_populates='user', foreign_keys='Contact.friend_id' ) @property def friends(self) -> list['User']: session = Session.object_session(self) subq = select(Contact).where(Contact.user_id == self.id).subquery() stmt = select(User).join(subq, User.id == subq.c.friend_id) select(User).join_from(User, User.contacts).where(Contact.user_id == 1) return session.scalars(stmt).all() @cached_property def user_service(self): from ..server.user_service import UserService session = Session.object_session(self) return UserService(session) def _get_last_event_time(self, event: 'History.Event'): session = Session.object_session(self) stm = ( select(History.time) .filter_by(user_id=self.id, event=event) .order_by(History.time.desc()) ) result = session.scalars(stm).first() return result @property def last_login(self): return self._get_last_event_time(event=History.Event.login) @property def last_logout(self): return self._get_last_event_time(event=History.Event.logout) @property def last_send_message(self): return self._get_last_event_time(event=History.Event.user_send_message_to_server) @property def last_get_message(self): return self._get_last_event_time(event=History.Event.user_get_message_from_server) def __repr__(self): return ( f'User(id={self.id}, account_name={self.account_name}),' ) def is_online(self): if not self.has_entered: return False return True def check_password(self, password: str): return self.password == password class History(Base): __tablename__ = 'history' class Event(str, enum.Enum): login = 'login' logout = 'logout' user_send_message_to_server = 'user_send_message_to_server' user_get_message_from_server = 'user_get_message_from_server' id: Mapped[int] = mapped_column(primary_key=True) user_id: Mapped[int | None] = mapped_column(ForeignKey('user.id')) user: Mapped[User | None] = relationship(back_populates='histories') event: Mapped[Event] = mapped_column(sa.Enum(Event)) time: Mapped[dt.datetime] adress: Mapped[str | None] class Contact(Base): __tablename__ = 'contact' id: Mapped[int] = mapped_column(primary_key=True) user_id: Mapped[int] = mapped_column( ForeignKey('user.id') ) user: Mapped[User] = relationship( back_populates='contacts', foreign_keys=[user_id] ) friend_id: Mapped[int] = mapped_column( ForeignKey('user.id') ) friend: Mapped[User] = relationship( back_populates='friends_with_us', foreign_keys=[friend_id] ) Base.metadata.create_all(bind=engine) def create_test_data(): from ..server import test_data with SessionLocal() as session: creator = test_data.TestData(session) creator.create_data_if_not_exist(session) create_test_data()
DemidovEvg/async_chat
src/nano_async_chat/async_chat/server/db.py
db.py
py
4,316
python
en
code
0
github-code
6
38435402089
import json import pandas def read_json(filename: list) -> dict: try: with open(filename, "r") as f: data = json.loads(f.read()) except: raise Exception(f"Reading {filename} file encountered an error") return data def create_dataframe(data: str) -> pandas.DataFrame: # Declare an empty dataframe to append records dataframe = pandas.DataFrame() # Looping through each record for d in data['workers']: # Normalize the column levels name_details = pandas.json_normalize(d, record_path=['nameDetails']) contact_details = pandas.json_normalize(d, record_path=['phoneContactDetails']) email = pandas.json_normalize(d, record_path=['emailContactDetails'],meta=[['employmentSummary','createAccessDate'],['employmentSummary','createAccessTime'],['employmentSummary','mostRecentHireDate']]) record = pandas.json_normalize(d, record_path=['addressDetails']) job_details = pandas.json_normalize(d, record_path=['jobDetails'],meta=['workerIdentifier']) new = pandas.concat([name_details,contact_details,email,record,job_details],axis=1,join='inner') # Append it to the dataframe dataframe = dataframe.append(new, ignore_index=True) return dataframe def main(): # Read the JSON file as python dictionary data = read_json(filename="work.json") # Generate the dataframe for the array items in # details key dataframe = create_dataframe(data=data['workerDataResponse']) # Renaming columns of the dataframe dataframe.columns.to_list() dataframe.rename(columns={ "employmentSummary.createAccessDate": "accessDate", "employmentSummary.createAccessTime": "accessTime", "employmentSummary.mostRecentHireDate": "mostRecentHireDate", "employmentJobProfileDetails.jobProfileIdentifier": "jobProfileIdentifier", "jobGovernanceRoleDetails.functionalManagerWorkerIdentifier": "functionalManagerWorkerIdentifier", "organizationDetails.companyOrganizationIdentifier":"companyOrganizationIdentifier" }, inplace=True) dataframe.columns.to_list() # Convert dataframe to CSV dataframe.to_csv("emp_data.csv", index=False) if __name__ == '__main__': main()
PrasadWakle/jsontocsv
jsontocsv.py
jsontocsv.py
py
2,340
python
en
code
0
github-code
6
17977750270
import asyncio import pickle import unittest from typing import AbstractSet, Any, Mapping, Sequence, Union from testing.types import ( Digits, I32List, Integers, SetI32, StringBucket, StrStrMap, easy, hard, ) from thrift.py3.common import Protocol from thrift.py3.exceptions import Error from thrift.py3.serializer import ( Transform, deserialize, deserialize_from_header, deserialize_with_length, serialize, serialize_iobuf, serialize_with_header, serialize_with_header_iobuf, ) from thrift.py3.types import Struct class SerializerTests(unittest.TestCase): def test_with_header_bytes(self) -> None: control = easy(val=5, val_list=[4, 3, 2, 1]) buf = serialize_with_header(control, transform=Transform.ZSTD_TRANSFORM) decoded = deserialize_from_header(easy, buf) self.assertEqual(control, decoded) def test_with_header_iobuf(self) -> None: control = easy(val=5, val_list=[4, 3, 2, 1]) iobuf = serialize_with_header_iobuf(control, transform=Transform.ZSTD_TRANSFORM) decoded = deserialize_from_header(easy, iobuf) self.assertEqual(control, decoded) def test_with_header_iobuf_binary(self) -> None: control = easy(val=6, val_list=[5, 4, 3, 2, 1]) iobuf = serialize_with_header_iobuf( control, protocol=Protocol.BINARY, transform=Transform.ZLIB_TRANSFORM ) decoded = deserialize_from_header(easy, iobuf) self.assertEqual(control, decoded) def test_with_header_iobuf_json(self) -> None: control = easy(val=4, val_list=[3, 2, 1]) iobuf = serialize_with_header_iobuf(control, protocol=Protocol.JSON) decoded = deserialize_from_header(easy, iobuf) self.assertEqual(control, decoded) def test_None(self) -> None: with self.assertRaises(TypeError): serialize(None, Protocol.JSON) # type: ignore def test_sanity(self) -> None: with self.assertRaises(TypeError): serialize(1, Protocol.COMPACT) # type: ignore with self.assertRaises(TypeError): serialize(easy(), None) # type: ignore with self.assertRaises(TypeError): deserialize(Protocol, b"") # type: ignore with self.assertRaises(TypeError): deserialize(easy, Protocol) # type: ignore def test_from_thread_pool(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4]) loop = asyncio.get_event_loop() coro = loop.run_in_executor(None, serialize, control) encoded = loop.run_until_complete(coro) coro = loop.run_in_executor(None, deserialize, type(control), encoded) decoded = loop.run_until_complete(coro) self.assertEqual(control, decoded) def test_serialize_iobuf(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4, 5]) iobuf = serialize_iobuf(control) decoded = deserialize(type(control), iobuf) self.assertEqual(control, decoded) def test_bad_deserialize(self) -> None: with self.assertRaises(Error): deserialize(easy, b"", protocol=Protocol.JSON) with self.assertRaises(Error): deserialize(easy, b"\x05AAAAAAAA") with self.assertRaises(Error): deserialize(easy, b"\x02\xDE\xAD\xBE\xEF", protocol=Protocol.BINARY) def thrift_serialization_round_robin( self, control: Struct, fixtures: Mapping[Protocol, bytes] ) -> None: for proto in Protocol: encoded = serialize(control, protocol=proto) self.assertIsInstance(encoded, bytes) decoded = deserialize(type(control), encoded, protocol=proto) self.assertIsInstance(decoded, type(control)) self.assertEqual(control, decoded) self.assertEqual((proto, encoded), (proto, fixtures.get(proto))) def pickle_round_robin( self, # pyre-fixme[2]: Parameter annotation cannot contain `Any`. control: Union[Struct, Mapping[Any, Any], Sequence[Any], AbstractSet[Any]], ) -> None: encoded = pickle.dumps(control, protocol=pickle.HIGHEST_PROTOCOL) decoded = pickle.loads(encoded) self.assertIsInstance(decoded, type(control)) self.assertEqual(control, decoded) def test_serialize_easy_struct(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4]) fixtures: Mapping[Protocol, bytes] = { Protocol.COMPACT: b"\x15\n\x19E\x02\x04\x06\x08,\x00\x00", Protocol.BINARY: b"\x08\x00\x01\x00\x00\x00\x05\x0f\x00\x02\x08\x00\x00\x00" b"\x04\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00" b"\x00\x00\x04\x0c\x00\x04\x00\x00", Protocol.JSON: b'{"val":5,"val_list":[1,2,3,4],"an_int":{}}', Protocol.COMPACT_JSON: b'{"1":{"i32":5},"2":{"lst":["i32",4,1,2,3,4]},"4"' b':{"rec":{}}}', } self.thrift_serialization_round_robin(control, fixtures) def test_pickle_easy_struct(self) -> None: control = easy(val=0, val_list=[5, 6, 7]) self.pickle_round_robin(control) def test_serialize_hard_struct(self) -> None: control = hard( val=0, val_list=[1, 2, 3, 4], name="foo", an_int=Integers(tiny=1) ) fixtures: Mapping[Protocol, bytes] = { Protocol.COMPACT: b"\x15\x00\x19E\x02\x04\x06\x08\x18\x03foo\x1c\x13\x01" b"\x00\x18\x0csome default\x00", Protocol.BINARY: b"\x08\x00\x01\x00\x00\x00\x00\x0f\x00\x02\x08\x00\x00\x00" b"\x04\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00" b"\x00\x00\x04\x0b\x00\x03\x00\x00\x00\x03foo\x0c\x00\x04" b"\x03\x00\x01\x01\x00\x0b\x00\x05\x00\x00\x00\x0csome def" b"ault\x00", Protocol.JSON: b'{"val":0,"val_list":[1,2,3,4],"name":"foo","an_int":{"tiny' b'":1},"other":"some default"}', Protocol.COMPACT_JSON: b'{"1":{"i32":0},"2":{"lst":["i32",4,1,2,3,4]},"3":' b'{"str":"foo"},"4":{"rec":{"1":{"i8":1}}},"5":{"str":"some default"}}', } self.thrift_serialization_round_robin(control, fixtures) def test_pickle_hard_struct(self) -> None: control = hard( val=0, val_list=[1, 2, 3, 4], name="foo", an_int=Integers(tiny=1) ) self.pickle_round_robin(control) def test_serialize_Integers_union(self) -> None: control = Integers(medium=1337) fixtures: Mapping[Protocol, bytes] = { Protocol.COMPACT: b"5\xf2\x14\x00", Protocol.BINARY: b"\x08\x00\x03\x00\x00\x059\x00", Protocol.JSON: b'{"medium":1337}', Protocol.COMPACT_JSON: b'{"3":{"i32":1337}}', } self.thrift_serialization_round_robin(control, fixtures) def test_pickle_Integers_union(self) -> None: control = Integers(large=2 ** 32) self.pickle_round_robin(control) def test_pickle_sequence(self) -> None: control = I32List([1, 2, 3, 4]) self.pickle_round_robin(control) digits = Digits(data=[Integers(tiny=1), Integers(tiny=2), Integers(large=0)]) data = digits.data assert data self.pickle_round_robin(data) def test_pickle_set(self) -> None: control = SetI32({1, 2, 3, 4}) self.pickle_round_robin(control) def test_pickle_mapping(self) -> None: control = StrStrMap({"test": "test", "foo": "bar"}) self.pickle_round_robin(control) def test_deserialize_with_length(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4, 5]) for proto in Protocol: encoded = serialize(control, protocol=proto) decoded, length = deserialize_with_length( type(control), encoded, protocol=proto ) self.assertIsInstance(decoded, type(control)) self.assertEqual(decoded, control) self.assertEqual(length, len(encoded)) def test_string_with_non_utf8_data(self) -> None: encoded = b"\x0b\x00\x01\x00\x00\x00\x03foo\x00" sb = deserialize(StringBucket, encoded, protocol=Protocol.BINARY) self.assertEqual("foo", sb.one) encoded = b"\x0b\x00\x01\x00\x00\x00\x03\xfa\xf0\xef\x00" sb = deserialize(StringBucket, encoded, protocol=Protocol.BINARY) with self.assertRaises(UnicodeDecodeError): # Accessing the property is when the string is decoded as UTF-8. sb.one
WeilerWebServices/Facebook
fbthrift/thrift/lib/py3/test/serializer.py
serializer.py
py
8,534
python
en
code
3
github-code
6
8344742022
import numpy as np def Sigmoid(z): h = 1/(1+np.exp(-z)) return z def gradientDescent(x, y, theta, alpha, num_iter): m = x.shape[0] for i in range(0, num_iter): z = np.dot(x, theta) h = Sigmoid(z) J = (-1/m)*((np.dot(y.T, np.log(h))) + (np.dot((1-y).T, np.log(1-h)))) theta = theta - (alpha/m) * (np.dot(x.T, (h-y))) J = float(J) return J, theta
Narayan-21/NLP-Specialization
Sentiment Analysis using logistic regression/utils.py
utils.py
py
404
python
en
code
0
github-code
6
32259974513
### SPDX-License-Identifier: GPL-2.0-or-later """Parse phc2sys log messages""" import re from collections import namedtuple from .parser import (Parser, parse_decimal) class TimeErrorParser(Parser): """Parse time error from a phc2sys log message""" id_ = 'phc2sys/time-error' elems = ('timestamp', 'terror', 'state', 'delay') y_name = 'terror' parsed = namedtuple('Parsed', elems) @staticmethod def build_regexp(): """Return a regular expression string for parsing phc2sys log file lines""" return r'\s'.join((r'^phc2sys' + r'\[([1-9][0-9]*\.[0-9]{3})\]:' # timestamp + r'(?:\s\[ptp4l\.\d\..*\])?', # configuration file name r'CLOCK_REALTIME phc offset\s*', r'(-?[0-9]+)', # time error r'(\S+)', # state r'freq\s*', r'([-+]?[0-9]+)', # frequency error r'delay\s*', r'(-?[0-9]+)' # delay + r'\s*.*$')) def __init__(self): super().__init__() self._regexp = re.compile(self.build_regexp()) def make_parsed(self, elems): if len(elems) < len(self.elems): raise ValueError(elems) timestamp = parse_decimal(elems[0]) terror = int(elems[1]) state = str(elems[2]) delay = int(elems[3]) return self.parsed(timestamp, terror, state, delay) def parse_line(self, line): matched = self._regexp.match(line) if matched: return self.make_parsed(( matched.group(1), matched.group(2), matched.group(3), matched.group(5), )) return None
redhat-partner-solutions/vse-sync-pp
src/vse_sync_pp/parsers/phc2sys.py
phc2sys.py
py
1,846
python
en
code
0
github-code
6
4159403258
import math import random import vector3 from rtweekend import random_double import multiprocessing from multiprocessing import Process, Array from ctypes import c_char_p from color import write_color from vector3 import vec3, random_in_hemisphere from ray import ray import rtweekend from hittable import hit_record from hittable_list import hit_ls from sphere import sphere from camera import camera from material import lambertian, metal, dielectric #image width def multi_render(return_string, id, fromI, toI, image_height, image_width ,samples_per_pixel, cam, world, max_depth): for j in range( toI , fromI -1,-1): for i in range(0,image_width): pixel_color = vec3(0,0,0) for _ in range(samples_per_pixel): u = (i + random.random()) / (image_width-1) v = (j + random.random()) / (image_height-1) r = cam.get_ray(u, v) pixel_color = pixel_color + ray_color(r, world, max_depth) return_string[id] += write_color(pixel_color, samples_per_pixel) def random_scene(): world = [] ground_material = lambertian(vec3(0.5, 0.5, 0.5)) world.append(sphere(vec3(0,-1000,0), 1000, ground_material)) for a in range(-11,11,1): for b in range(-11,11,1): choose_mat = random.random() center = vec3(a + 0.9*random.random(), 0.2, b + 0.9*random.random()) if((center - vec3(4, 0.2, 0)).length() > 0.9): if (choose_mat < 0.8): #diffuse albedo = vector3.random().mult( vector3.random()) sphere_material = lambertian(albedo) world.append(sphere(center, 0.2, sphere_material)) elif (choose_mat < 0.95): #metal albedo = vector3.random(0.5, 1) fuzz = random_double(0, 0.5) sphere_material = metal(albedo, fuzz) world.append(sphere(center, 0.2, sphere_material)) else: #glass sphere_material = dielectric(1.5) world.append(sphere(center, 0.2, sphere_material)) material1 = dielectric(1.5) world.append(sphere(vec3(0, 1, 0), 1.0, material1)) material2 = lambertian(vec3(0.4, 0.2, 0.1)) world.append(sphere(vec3(-4, 1, 0), 1.0, material2)) material3 = metal(vec3(0.7, 0.6, 0.5), 0.0) world.append(sphere(vec3(4, 1, 0), 1.0, material3)) return world def ray_color(r, world, depth): rec = hit_record(vec3(0,0,0), vec3(0,0,0), None, 0.0, False) if depth <= 0: return vec3(0,0,0) hit_anything, rec = hit_ls(world, r, 0.001, rtweekend.infinity, rec) if hit_anything: scat, scattered, attenuation = rec.mat_ptr.scatter(r,rec) if scat: return ray_color(scattered, world,depth-1).mult(attenuation) return vec3(0,0,0) unit_direction = r.get_direction().unit_vector() t = 0.5 * (unit_direction.y() + 1.0) return vec3(1,1,1)*(1-t) + vec3(0.5,0.7,1.0)*t if __name__ == '__main__': #Image aspect_ratio = 3.0 / 2.0 image_width = 384 # optimised size for an 8-core CPU image_height = int(image_width / aspect_ratio) samples_per_pixel = 50 max_depth = 50 #World world = random_scene() # camera lookfrom = vec3(13,2,3) lookat = vec3(0,0,0) vup = vec3(0,1,0) dist_to_focus = 10.0 aperture = 0.1 cam = camera(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus) # render result_string = "" result_string += "P3 \n" + str(image_width) + ' ' + str(image_height) + "\n255\n" number_of_cores = multiprocessing.cpu_count() process = [] manager = multiprocessing.Manager() return_str = manager.dict() for i in range(number_of_cores): return_str[i] = '' process.append(Process(target = multi_render, args=(return_str,i,int(i*image_height/number_of_cores), int((i+1)*image_height/number_of_cores), image_height, image_width,samples_per_pixel, cam, world, max_depth),)) process[i].start() for i in range(number_of_cores): process[i].join() for i in range(number_of_cores-1, -1, -1): result_string += return_str[i] with open('image.ppm', 'w') as f: f.write(result_string) f.close()
mk2510/ray_tracing_project
raytracing_in_a_weekend/main.py
main.py
py
4,391
python
en
code
0
github-code
6
75275385466
from datetime import datetime from time import process_time # file = open(address, mood) # with open('oi.txt', 'r', encoding='utf-8') as file: # content = file.read() # print(content) with open('log.txt', 'w', encoding='utf-8') as file: file.write('Horรกrios de log dos funcionรกrios') # with open('log.txt', 'r', encoding='utf-8') as file: # content = file.read() # print(content) status = False tempo_trabalhado = 0 answer = input('Quer entrar no sistema? ').lower() if answer == 'sim': status = True t1 = process_time() name = input('Digite seu nome: ').upper() with open('log.txt', 'a', encoding='utf-8') as file: date_now = datetime.now() log = date_now.strftime('%d-%m-%Y %H:%M:%S') file.write(f'\n{name} entrou {log}') if status: answer = input('Quer sair do sistema? ').lower() if answer == 'sim': status = False t2 = process_time() tempo_trabalhado += (t2-t1) with open('log.txt', 'a', encoding='utf-8') as file: date_now = datetime.now() log = date_now.strftime('%d-%m-%Y %H:%M:%S') file.write(f'\n{name} saiu {log}') with open('log.txt', 'r', encoding='utf-8') as file: content = file.read() print(content) print(tempo_trabalhado)
ewertonpereira/python
test/testing.py
testing.py
py
1,302
python
en
code
2
github-code
6
7305140298
#!/usr/bin/python3 #author:@al_vyn #written: 25/06/2018 import csv #Create dictionaries lloyd = { "name": "Lloyd", "homework": [90.0, 97.0, 75.0, 92.0], "quizzes": [88.0, 40.0, 94.0], "tests": [75.0, 90.0] } alice = { "name": "Alice", "homework": [100.0, 92.0, 98.0, 100.0], "quizzes": [82.0, 83.0, 91.0], "tests": [89.0, 97.0] } tyler = { "name": "Tyler", "homework": [0.0, 87.0, 75.0, 22.0], "quizzes": [0.0, 75.0, 78.0], "tests": [100.0, 100.0] } alvyn = { "name":"alvyn", "homework": [92.0,98.0,92.0,94.0], "quizzes": [90.0,80,0,85.0], "tests": [95.0,93.0] } students = [alvyn,tyler,lloyd,alice] #Adding functions def banner(text, ch='=', length=78): spaced_text = '%s' % text banner = spaced_text.center(length, ch) return banner def average(numbers): total = sum(numbers) total = float(total) result = total/len(numbers) return result def get_average(students): homework = average(students["homework"]) quizzes = average(students["quizzes"]) tests = average(students["tests"]) var = 0.1*homework + 0.3*quizzes + 0.6*tests return var def get_letter_grade(score): if score >= 90: return "A" elif 80 <= score < 90: return "B" elif 70 <= score < 80: return "C" elif 60 <= score < 70: return "D" else: return "F" def get_class_average(students): results = [] for student in students: avg = get_average(student) results.append(avg) return average(results) #alvyn's average data alvyn_hw = average(alvyn["homework"]) alvyn_qz = average(alvyn["quizzes"]) alvyn_ts = average(alvyn["tests"]) #alice's average data alice_hw = average(alice["homework"]) alice_qz = average(alice["quizzes"]) alice_ts = average(alice["tests"]) #tyler's average data tyler_hw = average(tyler["homework"]) tyler_qz = average(tyler["quizzes"]) tyler_ts = average(tyler["tests"]) #lloyd's average data lloyd_hw = average(lloyd["homework"]) lloyd_qz = average(lloyd["quizzes"]) lloyd_ts = average(lloyd["tests"]) #write the results to a csv file print (banner('GradeBook')) print ("\n") print ("[+]-->A python script that calculates averages and writes the data to a csv file") with open('C:\\Users\\User\\Documents\\project\\results.csv', 'w') as csvfile: fieldnames = ['S/N', 'NAME', 'HOMEWORK', 'QUIZZES', 'TESTS', 'REMARKS'] writer = csv.DictWriter(csvfile, fieldnames = fieldnames) writer.writeheader() writer.writerow({'S/N':1, 'NAME':'Alvyn', 'HOMEWORK': alvyn_hw, 'QUIZZES': alvyn_qz, 'TESTS': alvyn_ts, 'REMARKS':""}) writer.writerow({'S/N':2, 'NAME':'Alice', 'HOMEWORK': alice_hw, 'QUIZZES': alice_qz, 'TESTS': alice_ts, 'REMARKS':""}) writer.writerow({'S/N':3, 'NAME':'Lloyd', 'HOMEWORK': lloyd_hw, 'QUIZZES': lloyd_qz, 'TESTS': lloyd_ts, 'REMARKS':""}) writer.writerow({'S/N':4, 'NAME':'Tyler', 'HOMEWORK': tyler_hw, 'QUIZZES': tyler_qz, 'TESTS': tyler_ts, 'REMARKS':""}) #read and display the results csv file with open('C:\\Users\\User\\Documents\\project\\results.csv', 'r') as csvfile: data = csv.reader(csvfile, delimiter = ' ', quotechar = '|') for row in data: print (','.join(row)) with open('C:\\Users\\User\\Documents\\project\\results.csv', 'r') as csvfile: reader = csv.DictReader(csvfile) for row in reader: print (row['HOMEWORK'], row['QUIZZES'], row['TESTS'], row['REMARKS']) print ("\n") print (banner('cha0s'))
alvyn96/GradeBook
gradebook.py
gradebook.py
py
3,471
python
en
code
0
github-code
6
27315049620
import facebook from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import random token='EAACEdEose0cBAHYBMbXyW9HwyJJIeCFBaWXEcLjsp3N0vB5HZApZCxqm7KQvVxb4fgF2ZA8nh625ZBJR3NzCMGc3ApU1MyZCYBwVF85LWxqdaEdt3cNVaS0y9CYsY4DDUjGcUeDZB0TMZBJwqdEBCZBClU00PeeMqnWmMpZCWCUFGmp12hZBZA3mLilYc450f4cWvkZD' graph=facebook.GraphAPI(token) profile=graph.get_object("me") posts = graph.get_connections(profile['id'], 'posts') messages=[] for post in posts['data']: try: messages.append(post['message']) except: continue wordlist=[] wordfr=[] s=" " for m in messages: words=m.split() for w in words: s=s+" "+w wordlist.append(w) print(w) for w in wordlist: wordfr.append(wordlist.count(w)) print("List\n" + str(wordlist) + "\n") print("Frequencies\n" + str(wordfr) + "\n") print("Pairs\n" + str(zip(wordlist, wordfr))) wordcloud = WordCloud(relative_scaling = 1.0,stopwords = 'to of').generate(s) plt.imshow(wordcloud) plt.axis("off") plt.show()
aparnamnn/ACM-Project
wordclouds.py
wordclouds.py
py
1,101
python
en
code
0
github-code
6
8947958268
from django.db import models import ast class ListField(models.TextField): __metaclass__ = models.SubfieldBase description = "Stores a python list" def __init__(self, *args, **kwargs): super(ListField, self).__init__(*args, **kwargs) def to_python(self, value): if not value: value = [] if isinstance(value, list): return value return ast.literal_eval(value) def get_prep_value(self, value): if value is None: return value return unicode(value) def value_to_string(self, obj): value = self._get_val_from_obj(obj) return self.get_prep_value(value) class Student(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) netID = models.CharField(max_length=8, unique=True) # blocks = ListField('Busy blocks',blank=True) def blocks(self): blks = [] for course in self.course_set.all(): for blk in course.blocks: blks.append(blk) return blks def __unicode__(self): # Python 3: def __str__(self): return self.netID class Instructor(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) netID = models.CharField(max_length=8, unique=True) faculty = models.BooleanField(default=False) def __unicode__(self): # Python 3: def __str__(self): return self.netID def billable(self): if self.faculty: return 0 my_courses = self.course_set.all() hours = 0.0 for course in my_courses: hours += len(course.blocks)/2.0 return hours def full_name(self): return self.first_name+" "+self.last_name class Course(models.Model): courseID = models.CharField(max_length=20, unique=True) title = models.CharField(max_length=75,default='Title needed') description = models.TextField(max_length=1000) other_section = models.ManyToManyField('self', blank=True) min_enroll = models.IntegerField(default=0) max_enroll = models.IntegerField(default=200) cancelled = models.BooleanField(default=False) room = models.CharField(max_length=200,default='tbd') blocks = ListField('Course blocks') schedule = models.CharField(max_length=50) students = models.ManyToManyField(Student, through='Registration') instructors = models.ManyToManyField(Instructor) def __unicode__(self): # Python 3: def __str__(self): return self.courseID def current_enroll(self): return len(self.students.all()) def is_full(self): num_enroll = self.current_enroll() return num_enroll >= self.max_enroll def meets_min_requirements(self): num_enroll = self.current_enroll() return num_enroll >= self.min_enroll def get_instructors(self): return ", ".join([i.full_name() for i in self.instructors.all()]) is_full.boolean = True meets_min_requirements.boolean = True class Registration(models.Model): student = models.ForeignKey(Student) course = models.ForeignKey(Course) timestamp = models.DateTimeField('Registration timestamp',auto_now_add=True) attendance_M = models.BooleanField(default=False) attendance_Tu = models.BooleanField(default=False) attendance_W = models.BooleanField(default=False) attendance_Th = models.BooleanField(default=False) attendance_F = models.BooleanField(default=False) def __unicode__(self): # Python 3: def __str__(self): return self.student.netID+"-"+self.course.courseID
epkugelmass/USG-srv-dev
tigerapps/wintersession/models.py
models.py
py
3,678
python
en
code
null
github-code
6
39795452637
# coding=utf-8 import requests import re import execjs import json from bs4 import BeautifulSoup import smtplib from email.mime.text import MIMEText from email.utils import formataddr sendAddress = '' emailPsw = '' receiveAddress = '' username = '' psw = '' def loadConfig(): with open('config.json', 'r', encoding='utf-8') as f: config = f.read() configJson = json.loads(config) print(configJson) global sendAddress, emailPsw, receiveAddress, username, psw sendAddress = configJson['sendAddress'] emailPsw = configJson['emailPsw'] receiveAddress = configJson['receiveAddress'] username = configJson['username'] psw = configJson['psw'] def sendEmail(msgJson): try: stuName = msgJson['data']['owner']['name'] info = stuName + '\nๆ‚จๅทฒๆ‰“ๅกๆˆๅŠŸ' except: info = 'ๆ‰“ๅกๅคฑ่ดฅ\n่ฏฆ็ป†ไฟกๆฏ:' + str(msgJson) msg = MIMEText(info, 'plain', 'utf-8') # ๅกซๅ†™้‚ฎไปถๅ†…ๅฎน msg['From'] = formataddr(["ๅŽฆ้—จๅคงๅญฆๅฅๅบทๆ‰“ๅก", sendAddress]) # ๆ‹ฌๅท้‡Œ็š„ๅฏนๅบ”ๅ‘ไปถไบบ้‚ฎ็ฎฑๆ˜ต็งฐใ€ๅ‘ไปถไบบ้‚ฎ็ฎฑ่ดฆๅท msg['To'] = formataddr([receiveAddress, receiveAddress]) # ๆ‹ฌๅท้‡Œ็š„ๅฏนๅบ”ๆ”ถไปถไบบ้‚ฎ็ฎฑๆ˜ต็งฐใ€ๆ”ถไปถไบบ้‚ฎ็ฎฑ่ดฆๅท msg['Subject'] = "ๅŽฆ้—จๅคงๅญฆๅฅๅบทๆ‰“ๅก" # ้‚ฎไปถ็š„ไธป้ข˜๏ผŒไนŸๅฏไปฅ่ฏดๆ˜ฏๆ ‡้ข˜ server = smtplib.SMTP_SSL("smtp.qq.com", 465) # ๅ‘ไปถไบบ้‚ฎ็ฎฑไธญ็š„SMTPๆœๅŠกๅ™จ server.login(sendAddress, emailPsw) # ๆ‹ฌๅทไธญๅฏนๅบ”็š„ๆ˜ฏๅ‘ไปถไบบ้‚ฎ็ฎฑ่ดฆๅทใ€้‚ฎ็ฎฑๆŽˆๆƒ็  server.sendmail(sendAddress, [receiveAddress, ], msg.as_string()) # ๆ‹ฌๅทไธญๅฏนๅบ”็š„ๆ˜ฏๅ‘ไปถไบบ้‚ฎ็ฎฑ่ดฆๅทใ€ๆ”ถไปถไบบ้‚ฎ็ฎฑ่ดฆๅทใ€ๅ‘้€้‚ฎไปถ server.quit() # ๅ…ณ้—ญ่ฟžๆŽฅ def encrypt(pwd, key): """ ่ฐƒ็”จjsๅŠ ๅฏ†ๅ‡ฝๆ•ฐ :param pwd: :param key: :return: """ with open('encrypt.js', 'r', encoding='utf-8') as f: j = f.read() js = execjs.compile(j) return js.call('encryptAES', pwd, key) def getDataFrame(session, headers, businessId): """ ่Žทๅพ—ๆ‰“ๅก็š„post jsonๆก†ๆžถ :param session: :param headers: :param businessId: :return: ๆก†ๆžถ """ authorityMap = {'readonly': {'hide': 'true', "readonly": 'false'}, 'hide': {"hide": 'true', "readonly": 'false'}, 'required': {'hide': 'true', "readonly": 'false'}, 'optional': {'hide': 'true', "readonly": 'false'}} list = [] dataFrameJson = session.get( 'https://xmuxg.xmu.edu.cn/api/formEngine/business/' + str(businessId) + '/formRenderData?playerId=owner', headers=headers).json()['data']['components'] for data in dataFrameJson: tempDict = {} tempDict.update({"name": data['name']}) tempDict.update({"title": data['title']}) tempDict.update({'value': {}}) tempDict.update(authorityMap[data['properties']['authority']]) list.append(tempDict) return {"formData": list, "playerId": "owner"} def injectPersonalData(formDataJson, personalDataList): """ ๅฐ†ไธชไบบไฟกๆฏๆณจๅ…ฅๅˆฐformDataๅ†… ๅนถไฟฎๆ”นไธบๅทฒๆ‰“ๅก :param formDataJson: :param personalDataList: :return: ๆณจๅ…ฅๅ€ผ็š„ๆก†ๆžถ """ dataMap = {} # ๅปบ็ซ‹titleไธŽvalueๆ˜ ๅฐ„่กจ for personalData in personalDataList: valueData = {} # ๅœฐๅ€ๅญ—ๆฎต if (personalData['value']['dataType'] == "ADDRESS_VALUE"): valueData.update({'addressValue': personalData['value']['addressValue']}) # ๆ™ฎ้€šๅญ—ๆฎต elif (personalData['value']['dataType'] == "STRING"): valueData.update({'stringValue': personalData['value']['stringValue']}) # ๆ—ถ้—ดๅญ—ๆฎต elif (personalData['value']['dataType'] == "DATE"): valueData.update({'dateValue': personalData['value']['dateValue']}) dataMap.update({personalData['title']: valueData}) # ไฟฎๆ”นไธบๅทฒๆ‰“ๅก title1 = 'Can you hereby declare that all the information provided is all true and accurate and there is no concealment, false information or omission. ๆœฌไบบๆ˜ฏๅฆๆ‰ฟ่ฏบๆ‰€ๅกซๆŠฅ็š„ๅ…จ้ƒจๅ†…ๅฎนๅ‡ๅฑžๅฎžใ€ๅ‡†็กฎ๏ผŒไธๅญ˜ๅœจไปปไฝ•้š็ž’ๅ’Œไธๅฎž็š„ๆƒ…ๅ†ต๏ผŒๆ›ดๆ— ้—ๆผไน‹ๅค„ใ€‚' dataMap[title1]['stringValue'] = "ๆ˜ฏ Yes" title2 = 'ๅญฆ็”Ÿๆœฌไบบๆ˜ฏๅฆๅกซๅ†™' dataMap[title2]['stringValue'] = 'ๆ˜ฏ' # ๅฐ†valueๆณจๅฐ„่ฟ›list list = formDataJson['formData'] for i in range(0, list.__len__()): # ๅฆ‚ๆžœๆœ‰ๆญคๅญ—ๆฎต็š„valueๅˆ™ๆณจๅ…ฅ if (dataMap.__contains__(list[i]['title'])): list[i]['value'] = dataMap[list[i]['title']] return {"formData": list, "playerId": "owner"} if __name__ == '__main__': # ๅŠ ่ฝฝ้…็ฝฎ loadConfig() headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36', } s = requests.session() response = s.get('https://ids.xmu.edu.cn/authserver/login?service=https://xmuxg.xmu.edu.cn/login/cas/xmu') HTML = BeautifulSoup(response.text, 'html.parser') pwdDefaultEncryptSalt = HTML.find_all('input', attrs={'id': 'pwdDefaultEncryptSalt'})[0].attrs['value'] lt = HTML.find_all('input', attrs={'name': 'lt'})[0].attrs['value'] dllt = HTML.find_all('input', attrs={'name': 'dllt'})[0].attrs['value'] execution = HTML.find_all('input', attrs={'name': 'execution'})[0].attrs['value'] _eventId = HTML.find_all('input', attrs={'name': '_eventId'})[0].attrs['value'] rmShown = HTML.find_all('input', attrs={'name': 'rmShown'})[0].attrs['value'] encryptPsw = encrypt(psw, pwdDefaultEncryptSalt) body = {'username': username, 'password': encryptPsw, 'lt': lt, 'dllt': dllt, 'execution': execution, '_eventId': _eventId, 'rmShown': rmShown} s.post('https://ids.xmu.edu.cn/authserver/login?service=https://xmuxg.xmu.edu.cn/login/cas/xmu', data=body, headers=headers) r1 = s.get('https://xmuxg.xmu.edu.cn/api/app/214/business/now?getFirst=true', headers=headers) print(r1.text) businessId = r1.json()['data'][0]['business']['id'] businessId = businessId # ่Žทๅพ—ๆก†ๆžถ formDataJson = getDataFrame(s, headers, businessId) # ่Žทๅพ—ไธชไบบไฟกๆฏ r2Json = s.get( 'https://xmuxg.xmu.edu.cn/api/formEngine/business/' + str(businessId) + '/myFormInstance').json() # ๆณจๅ…ฅไธชไบบไฟกๆฏ formData = injectPersonalData(formDataJson, r2Json['data']['formData']) # ๆ‰“ๅกpost็š„url instanceId = r2Json['data']['id'] form_url = f'https://xmuxg.xmu.edu.cn/api/formEngine/formInstance/' + instanceId # ๆ‰“ๅก resp = s.post(form_url, json=formData, headers=headers) sendEmail(resp.json())
mawangdan/XMUDaliyReport
src/main.py
main.py
py
6,736
python
en
code
15
github-code
6
8502338250
import torch import torch.nn as nn from Descriptor import Descriptor from Recovery_Submodule import R_t, Pyramid_maxout class TR(nn.Module): # translucency recovery(TR) module def __init__(self, input_channel=3, beta=4, gamma=4): super(TR, self).__init__() self.D_t = Descriptor(input_channel, gamma) self.R_t = R_t(385, beta) def forward(self, x, **kwargs): f_t = self.D_t(x) y_, f_c, z_hat, a = self.R_t(x, f_t, **kwargs) return y_, f_c, z_hat, a class TR_new(nn.Module): # A new translucency recovery(TR) module with two descriptors def __init__(self, input_channel=3, beta=4, gamma=4): super(TR_new, self).__init__() self.D_t_1 = Descriptor(input_channel, gamma) self.D_t_2 = Descriptor(input_channel, gamma) self.SE = Pyramid_maxout(385, 1, beta) self.AE = Pyramid_maxout(385, 3, beta) def forward(self, x, **kwargs): f_t_1 = self.D_t_1(x) z_hat = self.SE(f_t_1) z_hat[z_hat >= 1] = 1 z_hat[z_hat <= 0] = 0 z_hat_ = z_hat.detach() f_t_2 = self.D_t_2(x) a = self.AE(f_t_2) # yield estimated snow-free image y' y_ = (z_hat_ < 1) * (x - a * z_hat_) / (1 - z_hat_ + 1e-8) + (z_hat_ == 1) * x y_[y_ >= 1] = 1 y_[y_ <= 0] = 0 # yield feature map f_c f_c = torch.cat([y_, z_hat_, a], dim=1) return y_, f_c, z_hat, a class TR_za(nn.Module): # A translucency recovery(TR) module predict z\times a def __init__(self, input_channel=3, beta=4, gamma=4): super(TR_za, self).__init__() self.D_t = Descriptor(input_channel, gamma) self.SE = Pyramid_maxout(385, 1, beta) self.SAE = Pyramid_maxout(385, 3, beta) def forward(self, x, **kwargs): f_t = self.D_t(x) z_hat = self.SE(f_t) za = self.SAE(f_t) z_hat[z_hat >= 1] = 1 z_hat[z_hat <= 0] = 0 za[za >= 1] = 1 za[za <= 0] = 0 # yield estimated snow-free image y' y_ = (z_hat < 1) * (x - za) / (1 - z_hat + 1e-8) + (z_hat == 1) * x y_[y_ >= 1] = 1 y_[y_ <= 0] = 0 # yield feature map f_c f_c = torch.cat([y_, z_hat, za], dim=1) return y_, f_c, z_hat, za class RG(nn.Module): # the residual generation (RG) module def __init__(self, input_channel=7, beta=4, gamma=4): super(RG, self).__init__() self.D_r = Descriptor(input_channel, gamma) block = [] for i in range(beta): block.append(nn.Conv2d(385, 3, 2 * i + 1, 1, padding=i)) self.conv_module = nn.ModuleList(block) self.activation = nn.Tanh() def forward(self, f_c): f_r = self.D_r(f_c) for i, module in enumerate(self.conv_module): if i == 0: r = module(f_r) else: r += r + module(f_r) r = self.activation(r) return r class DesnowNet(nn.Module): # the DesnowNet def __init__(self, input_channel=3, beta=4, gamma=4, mode='original'): super(DesnowNet, self).__init__() if mode == 'original': self.TR = TR(input_channel, beta, gamma) elif mode == 'new_descriptor': self.TR = TR_new(input_channel, beta, gamma) elif mode == 'za': self.TR = TR_za(input_channel, beta, gamma) else: raise ValueError("Invalid architectural mode") self.RG = RG(beta=beta, gamma=gamma) def forward(self, x, **kwargs): y_, f_c, z_hat, a = self.TR(x, **kwargs) r = self.RG(f_c) y_hat = r + y_ return y_hat, y_, z_hat, a if __name__ == '__main__': device = 'cuda' net = DesnowNet().to(device) mask = torch.zeros([2, 1, 64, 64]).to(device) img = torch.zeros([2, 3, 64, 64]).to(device) y_hat, y_, z_hat, a = net(img, mask=mask) y_hat.mean().backward() print("finished")
linYDTHU/DesnowNet_Context-Aware_Deep_Network_for_Snow_Removal
network/DesnowNet.py
DesnowNet.py
py
3,956
python
en
code
15
github-code
6
25414336083
""" 2.12 Vison Local Server Test MIT 2.12 Intro To Robotics 2014 Daniel J. Gonzalez - [email protected] """ serverIP = 'localhost' #Use if loopback testing on your own computer #serverIP = '192.168.1.212' #Use if this code is running over a 2.12 Server ################# DO NOT EDIT ANYTHING BELOW ######################### import threading,SocketServer,time import signal import sys import struct tStart = time.time() timestamp = tStart n = 0 def signal_handler(signal, frame): print('Closing...') server.socket.close() sys.exit(0) signal.signal(signal.SIGINT, signal_handler) class requestHandler(SocketServer.StreamRequestHandler): def handle(self): requestForUpdate=self.request.recv(256) print(self.client_address) while requestForUpdate!='': state = [1000, 2000, 3000, 4000, 5000, 6000] data1 = ''.join([struct.pack('>H',x) for x in state]) data2 = struct.pack('>f',timestamp) self.wfile.write(data1+data2) requestForUpdate=self.request.recv(256) print('client disconnect') class broadcastServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): pass if __name__ == '__main__': server=broadcastServer((serverIP,2121),requestHandler) t = threading.Thread(target=server.serve_forever) t.daemon=True t.start() print('server start') n=0 while True: timestamp = time.time() - tStart n+=1 time.sleep(.001) server.socket.close()
skyleradams/tim-howard
Vision/testServer.py
testServer.py
py
1,577
python
en
code
5
github-code
6
7422093495
from operator import add from itertools import chain, combinations from functools import reduce import math import numpy as np from scipy import ndimage from tkinter import * class GF2(object): def __init__(self, a=0): self.value = int(a) & 1 def __add__(self, rhs): return GF2(self.value + GF2(rhs).value) def __mul__(self, rhs): return GF2(self.value * GF2(rhs).value) def __sub__(self, rhs): return GF2(self.value - GF2(rhs).value) def __truediv__(self, rhs): return GF2(self.value / GF2(rhs).value) def __repr__(self): return str(self.value) def __eq__(self, rhs): if isinstance(rhs, GF2): return self.value == rhs.value return self.value == rhs def __le__(self, rhs): if isinstance(rhs, GF2): return self.value <= rhs.value return self.value <= rhs def __lt__(self, rhs): if isinstance(rhs, GF2): return self.value < rhs.value return self.value < rhs def __int__(self): return self.value def __long__(self): return self.value GF2array = np.vectorize(GF2) def gjel(A): nulldim = 0 for i, row1 in enumerate(A): pivot = A[i:, i].argmax() + i if A[pivot, i] == 0: nulldim = len(A) - i break new_row = A[pivot] / A[pivot, i] A[pivot] = A[i] row1[:] = new_row for j, row2 in enumerate(A): if j == i: continue row2[:] -= new_row*A[j, i] return A, nulldim def GF2inv(A): n = len(A) assert n == A.shape[1], "Matrix must be square" A = np.hstack([A, np.eye(n)]) B, nulldim = gjel(GF2array(A)) inverse = np.int_(B[-n:, -n:]) E = B[:n, :n] null_vectors = [] if nulldim > 0: null_vectors = E[:, -nulldim:] null_vectors[-nulldim:, :] = GF2array(np.eye(nulldim)) null_vectors = np.int_(null_vectors.T) return inverse, null_vectors def lightsoutbase(n): a = np.eye(n*n) a = np.reshape(a, (n*n, n, n)) a = np.array(list(map(ndimage.binary_dilation, a))) return np.reshape(a, (n*n, n*n)) def powerset(iterable): s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) class LightsOut(object): def __init__(self, size=5): self.n = size self.base = lightsoutbase(self.n) self.invbase, self.null_vectors = GF2inv(self.base) def solve(self, b): b = np.asarray(b) assert b.shape[0] == b.shape[1] == self.n, "incompatible shape" if not self.issolvable(b): raise ValueError("The given setup is not solvable") first = np.dot(self.invbase, b.ravel()) & 1 solutions = [(first + reduce(add, nvs, 0)) & 1 for nvs in powerset(self.null_vectors)] final = min(solutions, key=lambda x: x.sum()) return np.reshape(final, (self.n, self.n)) def issolvable(self, b): b = np.asarray(b) assert b.shape[0] == b.shape[1] == self.n, "incompatible shape" b = b.ravel() p = [np.dot(x, b) & 1 for x in self.null_vectors] return not any(p) def text_to_mat(gridtxt, invert=True): gridlist = [int(s) for s in list(gridtxt)] shape = np.sqrt(len(gridlist)) if shape%1 != 0: print("input matrix is not square.") return 1 shape = int(shape) matlist = [gridlist[i: i+shape] for i in range(0, len(gridlist), shape)] mat = np.array(matlist) if invert: mat = 1-mat return mat def mat_to_text(mat, invert=False): s = "" for i in mat: for j in i: if invert: s += str(1-j) else: s += str(j) return s def text_solver(gridtxt): mat_inv = text_to_mat(gridtxt, True) if type(mat_inv) == int: return 1 lo = LightsOut(3) try: bsol = lo.solve(mat_inv) except: print("Error in determining solution") return 1 return bsol master = Tk() master_gridtxt = StringVar(value="000000000") master.title("DVa's Puzzle Solver") master.geometry("400x115") master.resizable(width=False, height=False) check_size = 25 check_on = PhotoImage(width=check_size, height=check_size) check_off = PhotoImage(width=check_size, height=check_size) check_on.put(("green"), to=(0,0,check_size,check_size)) check_off.put(("red"), to=(0,0,check_size,check_size)) label_text = StringVar() def update_gridtxt(): b_solve['state'] = NORMAL master_gridtxt.set("") for i in range(9): s = str(globals()[f"b_state{i}"].get()) master_gridtxt.set(master_gridtxt.get() + s) def reset_boxes(): for i in range(9): globals()[f"b_state{i}"].set(0) label_text.set("") b_solve['state'] = NORMAL def final_wrapper(gridtxt): mat = text_solver(gridtxt) gridtxt_final = mat_to_text(mat) reset_boxes() for idx, i in enumerate(gridtxt_final): if i == "1": globals()[f"b{idx}"].select() b_solve['state'] = DISABLED label_text.set("Solved. Shoot the lamps marked with green boxes.") for i in range(9): j = i+1 col = i%3 row = math.ceil(j/3) globals()[f"b_state{i}"] = IntVar() globals()[f"b{i}"] = Checkbutton(master, variable=globals()[f"b_state{i}"], image=check_off, selectimage=check_on, indicatoron=False, onvalue=1, offvalue=0, command=update_gridtxt) globals()[f"b{i}"].grid(row=row, column=col, padx=1, pady=1) b_solve = Button(master, text="Solve", command=lambda:final_wrapper(master_gridtxt.get()), anchor="w") b_solve.grid(row=1, column=4, padx=1, pady=1, sticky="w") b_reset = Button(master, text="Reset", command=reset_boxes, anchor="w") b_reset.grid(row=2, column=4, padx=1, pady=1, sticky="w") lbl = Label(master, textvariable=label_text, anchor="w") lbl.grid(row=3, column=4, padx=1, pady=1) master.mainloop()
ThaumielSparrow/switch-solver
lights_on.py
lights_on.py
py
6,138
python
en
code
0
github-code
6
21253145382
from django.shortcuts import render from django.views.generic import View #ๅฏผๅ…ฅView from django.http import HttpResponse from django.http import HttpResponseRedirect from wanwenyc.settings import DJANGO_SERVER_YUMING,MEDIA_ROOT from .models import RdmAutoStatic,RdmStatic,RdmConfig # Create your views here. #ๆ นๆฎๆ•ฐๆฎๅบ“ๅ†…ๅฎน่‡ชๅŠจๅˆๅนถ็”ŸๆˆไปปๅŠกๅ็งฐๅ’ŒไปปๅŠก่ฏฆๆƒ…ๅŠ้—ฎ้ข˜่ฏฆๆƒ… def RdmAutoStaticRequest(request, rdmautostatic_id, trackback=None): rdmautostatic = RdmAutoStatic.objects.get(id=int(rdmautostatic_id)) # ่Žทๅ–็”จไพ‹ people_name = rdmautostatic.people_name start_date = str(rdmautostatic.start_date) end_date = str(rdmautostatic.end_date) print(people_name) print(start_date) print(end_date) from django.db.models import Q # sไฝฟ็”จQๆฅ็ญ›้€‰ไธ็ญ‰ไบŽ'<span style="margin-left: 19px;color: gray;">ๆ— </span>'็š„้กน mubiao_data_list = RdmStatic.objects.filter(~Q(day_task_name='[]')).\ filter(~Q(week_task_deck='<span style="margin-left: 19px;color: gray;">ๆ— </span>')).\ filter(people_name=people_name).filter(is_week=False).order_by('-id') #็ญ›้€‰ๅ‡บๆœ‰ๆ•ˆ็š„็›ธๅบ”ไบบๅ‘˜็š„ๆ—ฅ่ฎฐๅฝ•,ๆŒ‰็…งidๅ€’ๅบๆŽ’ๅˆ— all_task_name_list = [] all_task_desc_list = [] all_task_quse_list = [] for mubiao_data_one in mubiao_data_list: day_date = mubiao_data_one.day_date new_day_date_list = [] for one_char in day_date: if one_char in "0123456789-": new_day_date_list.append(one_char) new_day_date = "".join(new_day_date_list) #่Žทๅ–ๅˆฐๅ„้กน็š„ๆ—ฅๆœŸ print("ๅ„้กน็š„ๆ—ฅๆœŸไธบ๏ผš%s"% new_day_date) if start_date <= new_day_date and new_day_date<=end_date: print("ๅœจๆ—ถ้—ด่Œƒๅ›ดๅ†…็š„ๆ—ฅๆœŸ๏ผš%s" % new_day_date) #็ปŸ่ฎกๅœจๆ—ถ้—ด่Œƒๅ›ดๅ†…็š„ๆ•ฐๆฎ #็ปŸ่ฎกๆ‰€ๆœ‰็š„ไปปๅŠกๅ็งฐ day_task_name = mubiao_data_one.day_task_name print(day_task_name) print(type(day_task_name)) day_task_name_list = eval(day_task_name) #eval()ๅ‡ฝๆ•ฐๅฐ†ๅˆ—่กจๆ ทๅผ็š„ๅญ—็ฌฆไธฒ่‡ชๅŠจ่ฝฌไธบๅˆ—่กจ print("day_task_name_list:") print(day_task_name_list) print(type(day_task_name_list)) for day_task_name_one in day_task_name_list: if day_task_name_one not in all_task_name_list: all_task_name_list.append(day_task_name_one) #็ปŸ่ฎกๆ‰€ๆœ‰ไปปๅŠก่ฏฆๆƒ… day_task_desc = mubiao_data_one.day_task_desc if day_task_desc not in all_task_desc_list: all_task_desc_list.append(day_task_desc) #็ปŸ่ฎกๆ‰€ๆœ‰้—ฎ้ข˜่ฏฆๆƒ… day_task_quse = mubiao_data_one.day_task_quse if day_task_quse not in all_task_quse_list: all_task_quse_list.append(day_task_quse) print("ๆ‰€ๆœ‰ไปปๅŠกๅ็งฐ๏ผš") print(all_task_name_list) print("ๆ‰€ๆœ‰ไปปๅŠก่ฏฆๆƒ…๏ผš") print(all_task_desc_list) print("ๆ‰€ๆœ‰้—ฎ้ข˜่ฏฆๆƒ…๏ผš") print(all_task_quse_list) rdmautostatic.all_task_name = all_task_name_list rdmautostatic.all_task_desc = all_task_desc_list rdmautostatic.all_task_quse = all_task_quse_list rdmautostatic.save() #ไฟๅญ˜ๅ…ฅๅบ“ print("้‡ๅฎšๅ‘่ฟ”ๅ›ž'/reportdatas/rdmautostatic/'") return HttpResponseRedirect('/reportdatas/rdmautostatic/') #้‡ๅฎšๅ‘ๅˆฐ่ฏฅ้กต้ข #ๆ นๆฎๆ•ฐๆฎๅบ“ๅ†…ๅฎน่‡ชๅŠจๅˆๅนถ็”ŸๆˆไปปๅŠกๅ็งฐๅ’ŒไปปๅŠก่ฏฆๆƒ…ๅŠ้—ฎ้ข˜่ฏฆๆƒ… def RdmConfigRequest(request, rdmconfig_id, trackback=None): rdmconfig = RdmConfig.objects.get(id=int(rdmconfig_id)) # ่Žทๅ–็”จไพ‹ rdm_url = rdmconfig.rdm_url rdm_account = rdmconfig.rdm_account rdm_password = rdmconfig.rdm_password recode_year = rdmconfig.recode_year print("RDM็ฝ‘ๅ€๏ผš%s" % rdm_url) print("RDM็™ปๅฝ•่ดฆๅท๏ผš%s" % rdm_account) print("RDM็™ปๅฝ•ๅฏ†็ ๏ผš%s" % rdm_password) print("RDM็ปŸ่ฎกๆ—ฅๅฟ—ๅนด้™๏ผš%s" % recode_year) from .autoStaticRDMTask import WebRemoteUphild loginurl= rdm_url loginaccount= rdm_account loginpassword= rdm_password predate = recode_year print("ๅผ€ๅง‹ๆ‰ง่กŒๅผ‚ๆญฅๅ‡ฝๆ•ฐ") wc = WebRemoteUphild(loginurl=loginurl,loginaccount=loginaccount,loginpassword=loginpassword,predate=predate) wc.run() print("ๅ‡ฝๆ•ฐๅผ€ๅง‹่ฟ่กŒๅฎŒๆˆๅŽ") print("้‡ๅฎšๅ‘่ฟ”ๅ›ž'/reportdatas/rdmconfig/'") return HttpResponseRedirect('/reportdatas/rdmconfig/') #้‡ๅฎšๅ‘ๅˆฐ่ฏฅ้กต้ข
wawj901124/shangbaogongju
apps/reportdatas/views.py
views.py
py
4,480
python
en
code
0
github-code
6
75177516346
from . import appsettings as local_settings from ..models import ProperName from .lexicalsort import lexicalsort from .utilities import json_safe, apostrophe_unmasker from .lemmalookup import lemma_lookup from .lightpospicker import light_pos_picker CORE_WORDS = local_settings.CORE_WORDS CALENDAR = local_settings.CALENDAR INDEFINITE_ARTICLES = local_settings.INDEFINITE_ARTICLES INFLECTIONS = local_settings.INFLECTIONS WORDLIKE = local_settings.WORDLIKE PROPER_NAME_BIGRAMS = local_settings.PROPER_NAME_BIGRAMS PROPER_NAME_ENDS = local_settings.PROPER_NAME_ENDS PROPER_NAME_STARTS = local_settings.PROPER_NAME_STARTS PROPER_NAME_TITLES = local_settings.PROPER_NAME_TITLES PREFIXES = local_settings.PREFIXES CLOSING_PUNCTUATION = local_settings.CLOSING_PUNCTUATION UNSPACED = set(('(', '[', '\u201c', '/', '-')) # no space before these class Token(object): lemma_cache = {} docyear = None docperiod = None def __init__(self, token, sentence): self.token_verbatim = _token_cleanup(token) self.token = _token_adjusted(self.token_verbatim, self.docyear) self.sentence = sentence self.first = False # Is this the first token in its sentence? self.last = False # Is this the last token in its sentence? self.previous = None # The preceding token self.next = None # The following token self.proper_name = None # Is this a proper name? self.newline = False # Does this token start a new line? self.count = 0 # Occurrences of the token's lemma (gets set later) self.skip = False self.propername_test = None self.wordclass = None @classmethod def clear_cache(cls): cls.lemma_cache = {} @classmethod def set_year(cls, year): cls.docyear = year periods = [] for p in (1800, 1900, 2000): periods.append((p, abs(p - year))) periods.sort(key=lambda p: p[1]) cls.docperiod = 'f%d' % periods[0][0] def lower(self): return self.token.lower() def upper(self): return self.token.upper() def lexical_sort(self): return lexicalsort(self.token) def is_capitalized(self): """ Return True if this token is capitalized (title-cased) """ if len(self.token_verbatim) > 1 and self.token_verbatim.istitle(): return True elif self.token_verbatim.startswith('Mc'): return True else: return False def follows_indefinite_article(self): """ Return True if this token comes immediately after an indefinite article. """ if (self.previous is not None and self.previous.lower() in INDEFINITE_ARTICLES): return True else: return False def is_wordlike(self): """ Return True if this looks roughly like a word. This determines whether the token will be investigated further (looked up n the database, etc.) """ try: return self._is_wordlike except AttributeError: if self.token.isalpha(): self._is_wordlike = True elif (len(self.token) > 2 and all([segment.isalpha() for segment in self.token.split('-')])): self._is_wordlike = True elif (len(self.token) > 2 and all([segment.isalpha() for segment in self.token.strip("'").split("'")])): self._is_wordlike = True elif self.token in WORDLIKE: self._is_wordlike = True else: self._is_wordlike = False return self._is_wordlike def is_core(self): if self.lower() in CORE_WORDS: return True else: return False def is_prefix(self): return self.lower() in PREFIXES and self.next_token() == '-' def starts_sentence(self): if self.first: return True elif (self.previous and self.previous.first and not self.previous.is_wordlike()): return True else: return False def next_token(self): try: return self.next.token except AttributeError: return None def previous_token(self): try: return self.previous.token except AttributeError: return None def next_token_verbatim(self): try: return self.next.token_verbatim except AttributeError: return None def previous_token_verbatim(self): try: return self.previous.token_verbatim except AttributeError: return None def check_proper_name(self, method=None): if self.proper_name is not None: return elif (not self.is_wordlike() or not self.is_capitalized() or self.is_prefix()): self.proper_name = False elif not method or method == 'capitalization': if self._is_proper_bigram(): self.proper_name = True self.next.proper_name = True elif self.is_core(): self.proper_name = False elif self.lower() in INFLECTIONS: self.proper_name = False elif self.lower() in CALENDAR: self.proper_name = False elif self.token == 'I': self.proper_name = False elif self.follows_indefinite_article(): self.proper_name = False elif not self.lemma_manager(): self.proper_name = True elif (method == 'neighbours' and self.is_capitalized() and not self.starts_sentence()): if (self.previous and self.previous.is_capitalized() and not self.previous.starts_sentence() and self.previous.proper_name is not False): self.proper_name = True self.previous.proper_name = True elif (self.next and self.next.is_capitalized() and self.next.proper_name is not False): self.proper_name = True self.next.proper_name = True elif method == 'unambiguous': qset = ProperName.objects.filter(sort=self.lexical_sort(), lemma=self.token_verbatim) if qset.exists() and qset.first().common: self.proper_name = True elif not qset.exists(): self.proper_name = False else: self.propername_test = qset.first().lemma elif method == 'midsentence' and not self.starts_sentence(): if self.lemma_manager() and self.lemma_manager().lemma.istitle(): self.proper_name = False elif self.propername_test: self.proper_name = True elif method == 'firstword' and self.starts_sentence(): if self.lemma_manager(): self.proper_name = False else: self.proper_name = True def repair_tokenization_errors(self): """ In case of overzealous tokenization, e.g where 'wanna' has been split to 'wan' + 'na', we repair it and skip the next token """ if self.next_token() == 'na' and self.lower() in ('wan', 'gon'): self.token += 'na' self.token_verbatim += 'na' self.omit_next() # d'ye -> do 'ye if self.token in ('d', 'D') and self.next_token() in ("'ye", "'you"): self.token = 'do' def omit_previous(self): """ Mark the previous token for disposal; and move the 'previous' pointer back to the preceding token (in any). """ if self.previous: self.previous.skip = True def omit_next(self): """ Mark the next token for disposal; and move the 'next' pointer forward to the following token (in any). """ if self.next: self.next.skip = True def _is_proper_bigram(self): if (self.next_token() in PROPER_NAME_ENDS and self.is_capitalized()): return True elif ((self.token in PROPER_NAME_TITLES or self.token in PROPER_NAME_STARTS) and self.next and self.next.is_capitalized()): return True elif (self.token in PROPER_NAME_BIGRAMS and self.next_token() in PROPER_NAME_BIGRAMS[self.token]): return True else: return False def lemma(self): if self.lemma_manager() is None: return None else: return self.lemma_manager().lemma def lemma_manager(self): try: return self._lemma_manager except AttributeError: self.find_lemma() return self._lemma_manager def is_matched_to_lemma(self, lemma_record): if self.lemma_manager() is None: return False elif int(self.lemma_manager().id) == int(lemma_record.id): return True else: return False def reset_lemma(self, new_lemma_manager): self._lemma_manager = new_lemma_manager def nix_lemma(self): self._lemma_manager = None def is_in_oed(self): if self.lemma_manager() is None: return False else: return True def is_missing_from_oed(self): if (self.is_wordlike() and not self.proper_name and not self.is_prefix() and not self.is_in_oed()): return True else: return False def find_lemma(self): if self.is_wordlike() and not self.is_prefix(): try: Token.lemma_cache[self.lower()] except KeyError: qset = lemma_lookup(self.token, self.lexical_sort(), self.docyear, sentence_start=self.starts_sentence()) Token.lemma_cache[self.lower()] = qset candidates = Token.lemma_cache[self.lower()] if len(candidates) == 1: self.reset_lemma(candidates[0].lemma) self.token = candidates[0].wordform self.wordclass = candidates[0].wordclass elif len(candidates) > 1: winner = self.pick_candidate_by_pos(candidates) self.reset_lemma(winner.lemma) self.token = winner.wordform self.wordclass = winner.wordclass else: self.reset_lemma(None) else: self.reset_lemma(None) def pick_candidate_by_pos(self, candidates): return light_pos_picker(self, candidates) def space_before(self): if (self.token in CLOSING_PUNCTUATION or self.token.startswith("'") or self.token == "n't" or self.token == '-'): return False elif self.previous_token() in UNSPACED: return False else: return True def status(self): if self.is_in_oed(): _status = 'oed' elif self.proper_name: _status = 'proper' elif self.is_prefix(): _status = 'exception' elif self.is_wordlike(): _status = 'missing' else: _status = 'punc' return _status def to_list(self): if self.newline: space_before = 2 elif self.space_before(): space_before = 1 else: space_before = 0 return [json_safe(self.token_verbatim), self.status(), space_before, ] #============================================================= # The following functions are not strictly needed by the # application itself, but may be useful for testing. # Essentially, these are all just wrappers for calls to the # token's linked Lemma object (if any). #============================================================= def _languages(self): if self.lemma_manager() is None: return None, None else: language_name = self.lemma_manager().language_name() family = self.lemma_manager().language_family() return language_name, family def language(self): if self._languages()[0]: return self._languages()[0] else: return 'not specified' def language_family(self): if self._languages()[1]: return self._languages()[1] else: return 'other' def url(self): if self.lemma_manager() is None: return None else: return self.lemma_manager().url() def oed_identifier(self): if self.lemma_manager() is None: return None else: return self.lemma_manager().oed_identifier() def frequency(self): if self.lemma_manager() is None: return None else: if self.lemma_manager().f2000 > 1: return int(self.lemma_manager().f2000) else: return self.lemma_manager().f2000 def log_band(self): if self.lemma_manager() is None: return None else: return self.lemma_manager().log_band() def _token_cleanup(text): """ Clean up the form of the token as it's initially passed in """ # Unmask apostrophes (previously masked in tokenizer() to # prevent erroneous splitting). text = apostrophe_unmasker(text) # Convert double-quotes to a single character if text == "``": text = '\u201c' elif text == "''": text = '\u201d' return text def _token_adjusted(text, year): if year > 1950 and text.endswith("in'"): return text.rstrip("'") + 'g' else: return text
necrop/wordrobot
apps/tm/lib/token.py
token.py
py
14,303
python
en
code
0
github-code
6
28585741124
import os import math BLOCK_SIZE = 16 UMAX = int(math.pow(256, BLOCK_SIZE)) def remove_line(s): # returns the header line, and the rest of the file return s[:s.index('\n') + 1], s[s.index('\n')+1:] def parse_header_ppm(f): data = f.read() header = "" for i in range(3): header_i, data = remove_line(data) header += header_i return header, data def to_bytes(n): s = hex(n) s_n = s[2:] if 'L' in s_n: s_n = s_n.replace('L', '') if len(s_n) % 2 != 0: s_n = '0' + s_n decoded = s_n.decode('hex') pad = (len(decoded) % BLOCK_SIZE) if pad != 0: decoded = "\0" * (BLOCK_SIZE - pad) + decoded return decoded def un_abc(ct): blocks = [ct[i * BLOCK_SIZE:(i+1) * BLOCK_SIZE] for i in range(len(ct) / BLOCK_SIZE)] for i in range(1, len(blocks)): curr = int(blocks[len(blocks)-i].encode('hex'), 16) prev = int(blocks[len(blocks)-i-1].encode('hex'), 16) n_curr_blk = curr - prev while n_curr_blk < 0: curr += UMAX n_curr_blk = curr - prev blocks[len(blocks)-i] = to_bytes(n_curr_blk) iv = blocks[0] notabc = "".join(blocks[1:]) return iv, notabc if __name__=="__main__": with open('body.enc.ppm', 'rb') as f: header, data = parse_header_ppm(f) iv, o_img = un_abc(data) with open('out.ppm', 'wb') as fw: fw.write(header) fw.write(o_img)
VermillionBird/CTF-Writeups
2019/picoCTF/Cryptography/AES-ABC/deabc.py
deabc.py
py
1,299
python
en
code
8
github-code
6
10423084331
#-*- coding: utf-8 -*- """ Provides a class that tracks the state of a validation process across schema members. @author: Martรญ Congost @contact: [email protected] @organization: Whads/Accent SL @since: June 2008 """ from cocktail.modeling import DictWrapper from cocktail.schema.accessors import get undefined = object() class ValidationContext(DictWrapper): """A validation context encapsulates the state of a validation process. Normally, an instance of this class will be created internally by calling the L{validate<member.Member.validate>} or L{get_errors<member.Member.get_errors>} methods, and made available to validation rules throughout the validation process. The class works like a dictionary, and can hold arbitrary key,value pairs to influence the validation behavior or mantain validation state. Also, the class allows compound members (L{schemas<schema.Schema>}, L{collections<schemacollection.Collection>} and others) to establish nested contexts, through the use of the L{enter} and L{leave} method. This mechanism also keeps track of the active validation L{path}. """ def __init__(self, member, value, collection_index = None, language = None, parent_context = None, **parameters): DictWrapper.__init__(self) self.__member = member self.__value = value self.__collection_index = collection_index self.__language = language self.__parent_context = parent_context if parent_context is not None: self._items.update(self.__parent_context._items) self._items.update(member.validation_parameters) self._items.update(parameters) self.__trigger_validating_event(member) def __trigger_validating_event(self, event_target): if event_target.source_member: self.__trigger_validating_event(event_target.source_member) event_target.validating(context = self) @property def member(self): return self.__member @property def value(self): return self.__value @property def collection_index(self): return self.__collection_index @property def language(self): return self.__language @property def parent_context(self): return self.__parent_context def path(self, include_self = True): if self.__parent_context: for ancestor in self.__parent_context.path(): yield ancestor if include_self: yield self def get_node_at_level(self, level): if level < 0: n = level context = self while n < -1: context = context.__parent_context if context is None: raise IndexError( "Invalid validation context level: %r" % level ) n += 1 return context else: return list(self.path)[level] def get_value(self, key, default = None, language = None, stack_node = -1): context = self.get_node_at_level(stack_node) value = context.get_object() for part in key.split("."): value = get(value, part, undefined, language) if value is undefined: return default return value def get_object(self, stack_node = -1): from cocktail.schema.schemaobject import SchemaObject context = self.get_node_at_level(stack_node) while context is not None: if isinstance(context.value, (SchemaObject, dict)): return context.value context = context.__parent_context def __bool__(self): return True def __setitem__(self, key, value): self._items[key] = value def setdefault(self, key, default): self._items.setdefault(key, default) def update(self, items, **kwargs): self._items.update(items, kwargs)
marticongost/cocktail
cocktail/schema/validationcontext.py
validationcontext.py
py
4,068
python
en
code
0
github-code
6
73674401786
def registro(bd): nombre = input("Ingrese el nombre de usuario: ") contrasenia = input("Ingrese la contraseรฑa: ") bd[nombre] = contrasenia def leerData(bd): print("La informacion almacenada en la base de datos es: ") for usu, contra in bd.items(): print(f"{usu}: {contra}") def guardarArchivo(bd): f = open("datos.txt", "wt") f.write("{\n") for usu, contra in bd.items(): f.write("\t") f.write(f'"{usu}"') f.write(": ") f.write(f'"{contra}"') f.write(",") f.write("\n") f.write("}") def login(bd): usuario = input("Ingrese su usuario: ") try: contra = bd[usuario] contrasenia = input("Ingrese su contraseรฑa: ") if(contra == contrasenia): print("Has iniciado sesiรณn") else: print("Contraseรฑa incorrecta") except: print("No se ha encontrado el usuario") BD = {} registro(BD) leerData(BD) guardarArchivo(BD) login(BD)
DanielFranco92/pre-entrega
main.py
main.py
py
1,036
python
es
code
0
github-code
6
73027941309
from google.cloud import storage import os input_folder = "../Crop_Reports/Bengal Gazettes Chunks/" bucket_name = "calcutta-gazette" def explicit(bucket_name, source_name, path): # Explicitly use service account credentials by specifying the private key # file. storage_client = storage.Client.from_service_account_json('../API_Keys/Famine Research OCR-cdf9018b001d.json') destination_name = source_name source_name2 = os.path.join(path, source_name) # Make an authenticated API request # buckets = list(storage_client.list_buckets()) bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(destination_name) if not blob.exists(): blob.upload_from_filename(source_name2) if __name__ == '__main__': folder_list = os.listdir(input_folder) for folder in folder_list: path = os.path.join(input_folder, folder) file_list = os.listdir(path) for file in file_list: print(file) explicit(bucket_name, file, path)
jgoman99/British-Bengal-Weekly-Crop-Reports
Python Code/splits_to_cloud.py
splits_to_cloud.py
py
1,067
python
en
code
0
github-code
6
38046769762
#word guessing game in python import random def choose_random_word(): words = ['rainbow', 'computer', 'science', 'programming', 'python', 'mathematics', 'player', 'condition', 'reverse', 'water', 'board', 'geeks'] return random.choice(words) def display_word(word, guesses): for char in word: if char in guesses: print(char, end=" ") else: print("_", end=" ") print() def play_game(): name = input("What is your name? ") print("Good Luck, ", name) word = choose_random_word() guesses = '' turns = 12 while turns > 0: display_word(word, guesses) if all(char in guesses for char in word): print("You Win") print("The word is:", word) break guess = input("Guess a character: ") if len(guess) != 1 or not guess.isalpha(): print("Invalid input. Please enter a single alphabet character.") continue guesses += guess if guess not in word: turns -= 1 print("Wrong") print("You have", turns, "more guesses") if turns == 0: print("You Lose") print("The word was:", word) if __name__ == "__main__": play_game()
akshaybannatti/Word-Guessing-Game-Python
#word guessing game in python.py
#word guessing game in python.py
py
1,372
python
en
code
0
github-code
6
16586269759
from flask import Blueprint, render_template from app.models import Post home = Blueprint('home', __name__) @home.route('/') def index(): posts = Post.query.filter_by(published=True).all() return render_template('home/index.html', posts=posts)
rg3915/flask-masterclass
app/blueprints/home_blueprint.py
home_blueprint.py
py
256
python
en
code
1
github-code
6
11692218331
#1 celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma'] for phenotype in celegans_phenotypes: print(phenotype) #2 half_lives = [87.74, 24110.0, 6537.0, 14.4, 376000.0] for value in half_lives: print(value, end='') #3 more_whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1,3] more_whales = [] for count in more_whales: more_whales.append(count + 1) print(more_whales) #4 alkaline_earth_metals = [[4, 9.012], [112, 24.305], [20, 40.078], [38, 87.62], [56, 137.327], [88, 226]] for inner_list in alkaline_earth_metals: print(inner_list[0]) print(inner_list[1]) number_and_weight = [] for inner_list in alkaline_earth_metals: number_and_weight.append(inner_list[0]) number_and_weight.append(inner_list[1]) #5 def mystery_function(values): """(list) -> list Return a copy of the list, values, and the sublists it contains. The tope_level sublists have their elements reversed in the returned list.number_and_weight mystery_function([[1, 2, 3], [4, 5, 6]]) [[3, 2, 1], [6, 5, 4]] """ return mystery_function #6 text = "quit" text = input("Please enter a chemical formula(or 'quit' to exit): ") if text == "quit": print("...exiting program") elif text == "H2O": print("Water") elif text == "NH3": print("Ammonia") elif text == "CH4": print("Methane") else: print("Unkown Compount") #7 country_populations = [1295, 23, 7, 3, 47, 21] total = 0 for population in country_populations: total += population print(country_populations) #8 print('rat_1') print('rat_2') print('1 weighed more then 2') print('1 weighed less than 2') #9 for number in range(33, 50): print(number) #10 for number in range(10): print(10 - number, end='') #11 sum = 0 count = 0 for number in range(2, 23): sum += number count += 1 average = sum / count #12 def remove_neg(num_list): """(list of number) -> NoneType Remove the negative numbers from the list num_list.count numbers = [-5, 1, -3, 2]] remove_neg(numbers) numbers [1, 2] """ for item in num_list: if item < 0: num_list.remove(item) return(num_list) #13 for width in range(1, 8): print('T' * width) #14 for width in range(1, 8): print('T' * width) #15 width = 1 while width < 8: print('T' * width) width += 1 #16 week = 1 print(week) week = 0 print(week)
LDavis21/Assignments.github.io
assignment4/PPch9.py
PPch9.py
py
2,541
python
en
code
0
github-code
6
22400150737
from PyQt5.QtWidgets import * from PyQt5.QtCore import pyqtSignal, pyqtSlot, QModelIndex,QItemSelectionModel from diz import * import sys from BD import Orm from dialog import Dialog from dizain1_2 import TwoWindow from dialog2 import Dialog2 bd = Orm() class InputDialog(QtWidgets.QDialog): def __init__(self, root, **kwargs): super().__init__(root, **kwargs) self.win = root label = QtWidgets.QLabel('ะ’ะฒะตะดะธั‚ะต ะฝะฐะทะฒะฐะฝะธะต') self.edit = QtWidgets.QLineEdit() button = QtWidgets.QPushButton('ะะฐะนั‚ะธ') button.clicked.connect(self.push) layout = QtWidgets.QVBoxLayout() layout.addWidget(label) layout.addWidget(self.edit) layout.addWidget(button) self.setLayout(layout) def push(self): if self.edit.text(): r = bd.search_mater(self.edit.text()) if r: self.win.now(r) self.close() self.win.hid() else: msg = QMessageBox() msg.setWindowTitle("ะžัˆะธะฑะบะฐ") msg.setText("ะะต ะฝะฐะนะดะตะฝะพ ") msg.addButton('ะžะบ', QMessageBox.RejectRole) msg.exec() class MainWindow(QtWidgets.QMainWindow): def __init__(self): super().__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) # ะทะฐะณะพะปะพะฒะบะธ ะดะปั ัั‚ะพะปะฑั†ะพะฒ. self.ui.tableWidget.setSelectionBehavior(QAbstractItemView.SelectRows) self.ui.pushButton.clicked.connect(self.addfac) self.ui.pushButton_2.clicked.connect(self.addmat) self.ui.pushButton_4.clicked.connect(self.search) self.ui.pushButton_5.hide() self.ui.pushButton_5.clicked.connect(self.tomain) self.now(bd.allmat()) self.ui.pushButton_3.clicked.connect(self.delmat) self.id=False def now(self, data): if data: self.ui.tableWidget.setEnabled(True) self.ui.pushButton_3.setEnabled(True) self.ui.pushButton_4.setEnabled(True) # ั€ัะดั‹ ะธ ัั‚ะพะปะฑั†ั‹ self.ui.tableWidget.setRowCount( len(data) ) self.ui.tableWidget.setColumnCount( len(data[0]) ) self.ui.tableWidget.setHorizontalHeaderLabels( ('Id', 'ะะฐะทะฒะฐะฝะธะต ะผะฐั‚ะตั€ะธะฐะปะฐ', 'ะคะธั€ะผะฐ', 'ะœะฐะณะฐะทะธะฝ', 'ะŸะพัั‚ะฐะฒั‰ะธะบ', 'ะะฐะปะธั‡ะธะต ัั‡ะตั‚ะฐ', 'ะะฐะปะธั‡ะธะต ะะ”ะก', 'ะšะพะปะธั‡ะตัั‚ะฒะพ', 'ะฆะตะฝะฐ') ) row = 0 for tup in data: col = 0 for item in tup: cellinfo = QTableWidgetItem(str(item)) cellinfo.setFlags( QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled ) self.ui.tableWidget.setItem(row, col, cellinfo) # self.ui.tableWidget.horizontalHeader().setSectionResizeMode(col , QHeaderView.Stretch) col += 1 row += 1 self.ui.tableWidget.resizeColumnsToContents() self.ui.tableWidget.horizontalHeader().setSectionResizeMode(col - 1, QHeaderView.Stretch) else: self.ui.tableWidget.clear() self.ui.tableWidget.setEnabled(False) self.ui.pushButton_3.setEnabled(False) self.ui.pushButton_4.setEnabled(False) def addmat(self): self.dualog = Dialog() self.dualog.exec() self.now(bd.allmat()) def addfac(self): if not self.id: self.now(bd.allmat()) msg = QMessageBox() msg.setWindowTitle("ะžัˆะธะฑะบะฐ") msg.setText("ะ’ั‹ ะฝะต ะฒั‹ะฑั€ะฐะปะธ ะฝะต ะพะดะธะฝ ะดะพะณะพะฒะพั€") msg.addButton('ะžะบ', QMessageBox.RejectRole) msg.exec() else: print(self.id) self.now(bd.allmat()) self.dualog2 = Dialog2(self.id) self.dualog2.exec() self.now(bd.allmat()) def delmat(self): if not self.id: self.now(bd.allmat()) msg = QMessageBox() msg.setWindowTitle("ะžัˆะธะฑะบะฐ") msg.setText("ะ’ั‹ ะฝะต ะฒั‹ะฑั€ะฐะปะธ ะฝะต ะพะดะธะฝ ะดะพะณะพะฒะพั€") msg.addButton('ะžะบ', QMessageBox.RejectRole) msg.exec() else: print(self.id) bd.delmat(self.id) self.now(bd.allmat()) @pyqtSlot(QModelIndex) def on_tableWidget_clicked(self, index: QModelIndex): # ะฟะพะปัƒั‡ะตะฝะธะต ะธะฝะดะตะบัะฐ ัั‚ั€ะพะบะธ ะฟั€ะธ ะฝะฐะถะฐั‚ะธะต self.id = int(self.ui.tableWidget.item(index.row(), 0).text()) print(self.id) @pyqtSlot(QModelIndex) def on_tableWidget_doubleClicked(self, index: QModelIndex): # ะฟะพะปัƒั‡ะตะฝะธะต ัะฟะธัะบะฐ ะพะฑัŒะตะบั‚ะพะฒ r = int(self.ui.tableWidget.item(index.row(), 0).text()) data = bd.allfac(r) if not data: msg = QMessageBox() msg.setWindowTitle("ะžัˆะธะฑะบะฐ") msg.setText("ะะตั‚ ะทะฐะฟะธัะตะน ะพะฑัŠะตะบั‚ะฐ") msg.addButton('ะžะบ', QMessageBox.RejectRole) msg.exec() else: self.twow = TwoWindow(r) self.twow.show() self.twow.now(data) def search(self): self.search = InputDialog(self) self.search.exec() def hid(self): self.ui.pushButton_5.show() self.ui.pushButton_4.hide() def tomain(self): self.now(bd.allmat()) self.ui.pushButton_5.hide() self.ui.pushButton_4.show() app = QtWidgets.QApplication([]) win = MainWindow() # win.now(data) win.show() sys.exit(app.exec())
Vorlogg/BD
dizain.py
dizain.py
py
5,829
python
ru
code
0
github-code
6
29579809040
# -*- coding: utf-8 -*- """ Created on Fri Dec 7 11:04:13 2018 @author: Akitaka """ # 1๏ผšใƒฉใ‚คใƒ–ใƒฉใƒชใฎใ‚คใƒณใƒใƒผใƒˆ-------------------------------- import numpy as np #numpyใจใ„ใ†่กŒๅˆ—ใชใฉใ‚’ๆ‰ฑใ†ใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ๅˆฉ็”จ import pandas as pd #pandasใจใ„ใ†ใƒ‡ใƒผใ‚ฟๅˆ†ๆžใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ๅˆฉ็”จ import matplotlib.pyplot as plt #ใƒ—ใƒญใƒƒใƒˆ็”จใฎใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ๅˆฉ็”จ from sklearn import linear_model, metrics, preprocessing, cross_validation #ๆฉŸๆขฐๅญฆ็ฟ’็”จใฎใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ๅˆฉ็”จ from mlxtend.plotting import plot_decision_regions #ๅญฆ็ฟ’็ตๆžœใ‚’ใƒ—ใƒญใƒƒใƒˆใ™ใ‚‹ๅค–้ƒจใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ๅˆฉ็”จ from sklearn.kernel_approximation import RBFSampler #ใ‚ซใƒผใƒใƒซ่ฟ‘ไผผ็”จใฎ้–ขๆ•ฐ from matplotlib.colors import ListedColormap #plot็”จ # 2๏ผšXORใฎใƒ‡ใƒผใ‚ฟใ‚’ไฝœๆˆใ™ใ‚‹(x=ๆญฃใ€y=ๆญฃ)=0,(x=ๆญฃใ€y=่ฒ )=1, ็š„ใช-------------- np.random.seed(0) X_xor=np.random.randn(200,2) y_xor=np.logical_xor(X_xor[:,0]>0, X_xor[:,1]>0) y_xor=np.where(y_xor,1,0) pd.DataFrame(y_xor) #ใ“ใฎ่กŒใ‚’ๅฎŸ่กŒใ™ใ‚‹ใจใƒ‡ใƒผใ‚ฟใŒ่ฆ‹ใ‚Œใ‚‹ # 3๏ผšใƒ—ใƒญใƒƒใƒˆใ—ใฆใฟใ‚‹------------------------------------------------------ #%matplotlib inline plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1], c='b', marker='x', label='1') plt.scatter(X_xor[y_xor==0, 0], X_xor[y_xor==0, 1], c='r', marker='s', label='0') plt.legend(loc='best') plt.show # 4๏ผšใƒ‡ใƒผใ‚ฟใฎๆ•ดๅฝข------------------------------------------------------- X_std=X_xor z=y_xor #่งฃ่ชฌ 5๏ผšใ‚ซใƒผใƒใƒซ่ฟ‘ไผผใ‚’้ฉ็”จใ™ใ‚‹------------------------------------------ rbf_feature = RBFSampler(gamma=1, n_components=100, random_state=1) X_std = rbf_feature.fit_transform(X_std) print("X_stdใฎๅคงใใ• ",pd.DataFrame(X_std).shape) #pd.DataFrame(X_std).to_clipboard() #ใ“ใ‚Œใงใ‚ฏใƒชใƒƒใƒ—ใƒœใƒผใƒ‰ใซไฟๆŒใงใใ‚‹ใฎใงใ‚จใ‚ฏใ‚ปใƒซใซ่ฒผใ‚Œใ‚‹ # 6๏ผšๆฉŸๆขฐๅญฆ็ฟ’ใงๅˆ†้กžใ™ใ‚‹--------------------------------------------------- clf_result=linear_model.SGDClassifier(loss="hinge") #loss="hinge", loss="log" # 7๏ผšKๅˆ†ๅ‰ฒไบคๅทฎๆคœ่จผ๏ผˆcross validation๏ผ‰ใงๆ€ง่ƒฝใ‚’่ฉ•ไพกใ™ใ‚‹--------------------- scores=cross_validation.cross_val_score(clf_result, X_std, z, cv=10) print("ๅนณๅ‡ๆญฃ่งฃ็އ = ", scores.mean()) print("ๆญฃ่งฃ็އใฎๆจ™ๆบ–ๅๅทฎ = ", scores.std()) # 8๏ผšใƒˆใƒฌใƒผใƒ‹ใƒณใ‚ฐใƒ‡ใƒผใ‚ฟใจใƒ†ใ‚นใƒˆใƒ‡ใƒผใ‚ฟใซๅˆ†ใ‘ใฆๅฎŸ่กŒใ—ใฆใฟใ‚‹------------------ X_train, X_test, train_label, test_label=cross_validation.train_test_split(X_std,z, test_size=0.1, random_state=1) clf_result.fit(X_train, train_label) #ๆญฃ็ญ”็އใ‚’ๆฑ‚ใ‚ใ‚‹ pre=clf_result.predict(X_test) ac_score=metrics.accuracy_score(test_label,pre) print("ๆญฃ็ญ”็އ = ",ac_score) # ่งฃ่ชฌ 9๏ผšPlotใ™ใ‚‹ x1_min, x1_max, x2_min, x2_max=-3, 3, -3, 3 resolution=0.02 xx1, xx2=np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution)) X=(np.array([xx1.ravel(), xx2.ravel()]).T) plot_z=clf_result.predict(rbf_feature.fit_transform(X)) colors=('red','blue') cmap=ListedColormap(colors[:len(np.unique(plot_z))]) plot_z=plot_z.reshape(xx1.shape) plt.contourf(xx1,xx2, plot_z, alpha=0.4, cmap=cmap)
nakanishi-akitaka/python2018_backup
1207/ml2b.py
ml2b.py
py
3,157
python
ja
code
5
github-code
6
21424331672
''' 1. ะŸะฐั€ัะตั€ ะพะดะฝะพะฟะพั‚ะพั‡ะฝั‹ะน. 2. ะ—ะฐะผะตั€ ะฒั€ะตะผะตะฝะธ 3. Multiprocessing Pool 4. ะ—ะฐะผะตั€ ะฒั€ะตะผะตะฝะธ 5. ะญะบัะฟะพั€ั‚ ะฒ csv ''' import requests from bs4 import BeautifulSoup from datetime import datetime from multiprocessing import Pool import csv import time def get_html(url): r = requests.get(url) # Response return r.text # ะ’ะพะทะฒั€ะฐั‰ะฐะตั‚ HTML-ะบะพะด ัั‚ั€ะฐะฝะธั†ั‹(url) def get_all_links(html): counter = 0 soup = BeautifulSoup(html, 'lxml') tags_div = soup.find('div').find_all('div', class_="cmc-table__column-name sc-1kxikfi-0 eTVhdN") links = [] for td in tags_div: a = td.find('a').get('href') #string link = "https://coinmarketcap.com" + a links.append(link) return links def get_page_data(html): soup = BeautifulSoup(html, 'lxml') try: name = soup.find("h1").text.strip() except: name = "" try: price = soup.find("span", class_="cmc-details-panel-price__price").text.strip() except: price = "" data = {'name': name, 'price': price} return data def write_csv(data): with open('coinmarketcap.csv', 'a') as f: writer = csv.writer(f) writer.writerow((data['name'], data['price'])) print(data['name'], 'parsed') def make_all(url): html = get_html(url) data = get_page_data(html) write_csv(data) # time.sleep(5) def main(): start = time.time() url = "https://coinmarketcap.com/all/views/all/" all_links = get_all_links(get_html(url)) with Pool(40) as p: p.map(make_all, all_links) end = time.time() total = end - start print(str(total)) if __name__ == "__main__": main()
DexterAkaGrich/potential-couscous
first_meet.py
first_meet.py
py
1,849
python
en
code
0
github-code
6
31858846976
#!/bin/python3 import os def isBalanced(brackets): stack = [] for bracket in brackets: if bracket in ['{', '[', '(']: stack.append(bracket) else: if len(stack) == 0: return 'NO' last = stack.pop() isCurly = bracket == '}' and last != '{' isParenthesis = bracket == ')' and last != '(' isSquare = bracket == ']' and last != '[' if isCurly or isParenthesis or isSquare: return 'NO' if len(stack) != 0: return 'NO' return 'YES' def main(): with open(os.environ['OUTPUT_PATH'], 'w') as fptr: t = int(input()) for t_itr in range(t): s = input() result = isBalanced(s) fptr.write(result + '\n') if __name__ == '__main__': main()
caioportela/code-challenges
hackerrank/problem-solving/balanced-brackets.py
balanced-brackets.py
py
860
python
en
code
0
github-code
6
20656199478
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Create a Milo input file from a frequency calculation. It must be a Gaussian 09 or 16 high-precision frequency calculation. You request this with '# freq=(hpmodes) ... '. """ import argparse import sys from milo_1_0_3 import atom from milo_1_0_3 import containers from milo_1_0_3 import enumerations as enums from milo_1_0_3 import exceptions from milo_1_0_3 import program_state as ps def main(): """Parse frequency file and print to new Milo input.""" parser = argparse.ArgumentParser(description="Make a Milo input file " "from a high-precision Gaussian frequency" " calculation.\n") parser.add_argument('infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="Frequency calculation file. " "<stdin> by default.") parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'), default=sys.stdout, help="New Milo input file. " "<stdout> by default.") parser.add_argument('-v', '--verbose', action='count', default=0, help="Print other parameters in $job section. " "-v for common parameters, -vv for all parameters") args = parser.parse_args() program_state = ps.ProgramState() try: parse_gaussian_header(args.infile, program_state) parse_gaussian_charge_spin(args.infile, program_state) parse_gaussian_molecule_data(args.infile, program_state) parse_gaussian_frequency_data(args.infile, program_state) parse_gaussian_isotope_data(args.infile, program_state) print_job_section(args.outfile, program_state, args.verbose) print_output_comment(args.infile, args.outfile) print_molecule_section(args.outfile, program_state) print_frequency_data_section(args.outfile, program_state) except Exception as e: print("Oh no! It looks like there was an error!") print("Error message:", e) print("\nPython error details:") raise def parse_gaussian_header(input_iterable, program_state): """ Parse gaussian_header from frequency file. Looking for: ****************************************** ------------------------------ # opt freq=hpmodes m062x/3-21g ------------------------------ Result: gaussian_header = 'm062x/3-21g' """ past_warning = False lines = list() for line in input_iterable: if "*****" in line: past_warning = True if past_warning and "-----" in line: for next_line in input_iterable: if "-----" in next_line: break lines.append(next_line[1:].strip("\n")) clean_line = "".join(lines).strip() if "hpmodes" not in clean_line.casefold(): raise exceptions.InputError("Must be high-precision frequency " "calculation. Use 'freq=hpmodes'.") tokens = clean_line.split() tokens = [x for x in tokens if "#" not in x and "opt" not in x.casefold() and "freq" not in x.casefold()] program_state.gaussian_header = " ".join(tokens) return raise exceptions.InputError("Error parsing gaussian_header.") def parse_gaussian_charge_spin(input_iterable, program_state): """ Parse charge and spin multiplicity from frequency file. Looking for: --------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 O -0.19334 -0.19871 0. """ for line in input_iterable: if "Charge =" in line: program_state.charge = int(line.split()[2]) program_state.spin = int(line.split()[5]) return raise exceptions.InputError("Error parsing charge and spin multiplicity.") def parse_gaussian_molecule_data(input_iterable, program_state): """ Parse molecule data from frequency file. Will pull the last "Standard orientation:" in the log file, or the last "Input orientation:" if there is no "Standard orientation:" (for example, if the nosymm keyword is used). Looking for: Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- """ for line in input_iterable: if "Harmonic frequencies (cm**-1)" in line: return if "Input orientation:" in line or "Standard orientation:" in line: positions = containers.Positions() for coordinate_line in input_iterable: if ("Rotational constants" in coordinate_line or "Distance matrix" in coordinate_line): break coordinates = coordinate_line.split() if coordinates[0].isnumeric(): x = float(coordinates[3]) y = float(coordinates[4]) z = float(coordinates[5]) positions.append(x, y, z, enums.DistanceUnits.ANGSTROM) program_state.input_structure = positions raise exceptions.InputError("Error parsing molecule data.") def parse_gaussian_frequency_data(input_iterable, program_state): """ Parse frequency data from frequency file. Will pull the first time they are listed (with high-precision). Looking for: Frequencies --- 1682.1354 3524.4296 3668.7401 Reduced masses --- 1.0895 1.0389 1.0827 Force constants --- 1.8163 7.6032 8.5864 IR Intensities --- 52.8486 4.2243 0.3831 Coord Atom Element: 1 1 8 -0.00000 0.00000 -0.00000 2 1 8 0.00000 -0.00000 -0.07070 3 1 8 -0.07382 0.04553 -0.00000 1 2 1 0.00000 0.00000 0.00000 2 2 1 0.39258 0.60700 0.56106 3 2 1 0.58580 -0.36126 -0.42745 1 3 1 0.00000 -0.00000 0.00000 2 3 1 -0.39258 -0.60700 0.56106 3 3 1 0.58580 -0.36126 0.42745 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scatt activities (A**4/AMU), depolarization ratios for plane and unpolariz """ has_started = False for line in input_iterable: if "Frequencies ---" in line: has_started = True for frequency in line.split()[2:]: program_state.frequencies.append(float(frequency), enums.FrequencyUnits .RECIP_CM) elif "Reduced masses ---" in line: for reduced_mass in line.split()[3:]: program_state.reduced_masses\ .append(float(reduced_mass), enums.MassUnits.AMU) elif "Force constants ---" in line: for force_constant in line.split()[3:]: program_state.force_constants\ .append(float(force_constant), enums.ForceConstantUnits .MILLIDYNE_PER_ANGSTROM) elif "Coord Atom Element:" in line: data_in_columns = list() for coordinate_line in input_iterable: if ("Harmonic frequencies (cm**-1)" in coordinate_line or " " in coordinate_line): break data_in_columns.append(coordinate_line.split()[3:]) data_in_rows = list(zip(*data_in_columns)) for frequency in data_in_rows: program_state.mode_displacements.append(containers.Positions()) for x, y, z in zip(*[iter(frequency)] * 3): program_state.mode_displacements[-1].append(float(x), float(y), float(z), enums.DistanceUnits.ANGSTROM) elif has_started and "activities (A**4/AMU)" in line: return raise exceptions.InputError("Error parsing frequency data.") def parse_gaussian_isotope_data(input_iterable, program_state): """ Parse isotope and atomic number data from frequency file. Looking for: ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 8 and mass 15.99491 Atom 2 has atomic number 1 and mass 1.00783 Atom 3 has atomic number 1 and mass 1.00783 Molecular mass: 18.01056 amu. """ for line in input_iterable: if "Thermochemistry" in line: atoms = list() for mass_line in input_iterable: if "Molecular mass" in mass_line: break split_line = mass_line.split() if split_line[0] == "Atom": atomic_number = int(split_line[5]) atoms.append(atom.Atom.from_atomic_number(atomic_number)) atoms[-1].change_mass(split_line[8]) program_state.atoms = atoms return raise exceptions.InputError("Error parsing isotope data.") def print_section(output_iterable, section_name, inside): """Print a section to output_iterable.""" stdout = sys.stdout sys.stdout = output_iterable print(f"${section_name}") print(inside) print("$end") print() sys.stdout = stdout def print_job_section(output_iterable, program_state, verbose): """ Print the $job section with gaussian_header from program_state. verbose controls how other job parameters are printed. """ section = list() section.append(" gaussian_header " f"{program_state.gaussian_header}") if verbose >= 1: section.append(" # step_size 1.00 # in femtoseconds") section.append(" # max_steps 100 # or no_limit") section.append(" # temperature 298.15 # in kelvin") section.append(" # phase bring_together n m" " # or push_apart n m") section.append(" # memory 24 # in GB") section.append(" # processors 24") section.append(" # random_seed generate # or an " "integer") if verbose >= 2: section.append(" # oscillator_type quasiclassical") section.append(" # geometry_displacement off") section.append(" # rotational_energy off") section.append(" # energy_boost off") section.append(" # integration_algorithm verlet") section.append(" # program gaussian16") section.append(" # fixed_mode_direction n 1 # or n -1") print_section(output_iterable, "job", "\n".join(section)) def print_molecule_section(output_iterable, program_state): """Print $molecule section with data from program_state.""" section = list() section.append(f" {program_state.charge} {program_state.spin}") for _atom, (x, y, z) in zip(program_state.atoms, program_state.input_structure.as_angstrom()): section.append(f" {_atom.symbol} {x:12.6f} {y:12.6f} {z:12.6f}") print_section(output_iterable, "molecule", "\n".join(section)) section = list() for i, _atom in enumerate(program_state.atoms, 1): section.append(f" {i:< 3d} {_atom.mass:10.5f}") print_section(output_iterable, "isotope", "\n".join(section)) def print_frequency_data_section(output_iterable, program_state): """Print $frequencies section with data from program_state.""" section = list() for frequency, reduced_mass, force_constant, mode_displacement in zip( program_state.frequencies.as_recip_cm(), program_state.reduced_masses.as_amu(), program_state.force_constants.as_millidyne_per_angstrom(), program_state.mode_displacements): section.append(f" {frequency:10.4f} {reduced_mass:7.4f} " f"{force_constant:7.4f}") for x, y, z in mode_displacement.as_angstrom(): section.append(f" {x:8.5f} {y:8.5f} {z:8.5f}") section.append("\n") section.pop() print_section(output_iterable, "frequency_data", "".join(section)) def print_output_comment(input_iterable, output_iterable): """Print comment with frequency file name and date of parsing.""" from datetime import datetime import os comment = list() comment.append(" Frequency and molecule data parsed ") if input_iterable != sys.stdin: comment.append("from ") comment.append(os.path.basename(input_iterable.name)) comment.append(" ") else: try: name = os.readlink('/proc/self/fd/0').split('/')[-1].split('.')[0] comment.append("from ") comment.append(name) comment.append(" ") except FileNotFoundError: comment.append("from <stdin> ") comment.append(datetime.now().strftime("on %d-%b-%Y at %X")) print_section(output_iterable, "comment", "".join(comment)) if __name__ == "__main__": main()
DanielEss-lab/milo
milo_1_0_3/tools/parse_frequencies.py
parse_frequencies.py
py
13,885
python
en
code
3
github-code
6
2534129469
# -*- coding: utf-8 -*- """ Geometric transformations on 3D point cloud. Created on Wed Apr 10 11:00:00 2019 Author: Prasun Roy | CVPRU-ISICAL (http://www.isical.ac.in/~cvpr) GitHub: https://github.com/prasunroy/sign-language """ import copy import math import numpy as np class Transforms3D(object): @staticmethod def rotate(pointcloud): assert pointcloud.__class__.__name__ == 'PointCloud3D' \ and not pointcloud._data is None pc = copy.deepcopy(pointcloud) for frame, joints in enumerate(pc._data): # Reshape joints into Nx3 matrix. joints = joints.reshape(-1, 3) # Get left shoulder L, right shoulder R and spine center C. L = joints[pointcloud.JointType_ShoulderLeft, :] R = joints[pointcloud.JointType_ShoulderRight, :] C = joints[pointcloud.JointType_SpineMid, :] # Calculate unit vector n along the normal to LRC-plane. CL = L - C CR = R - C n = np.cross(CL, CR) / (np.linalg.norm(CL) * np.linalg.norm(CR)) # Calculate angle between the projection # of n on XZ-plane and Z-axis. n = n * np.array([1, 0, 1]) k = np.array([0, 0, -1]) ratio = np.dot(n, k) / (np.linalg.norm(n) * np.linalg.norm(k)) theta = np.arccos(ratio) theta = math.copysign(theta, n[0]) # Construct transformation matrix R for rotation around Y-axis. R = np.array([ [np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)] ]) # Perform rotation and update data. joints = np.dot(R, joints.T).T pc._data[frame] = joints.reshape(-1) return pc @staticmethod def translate(pointcloud): assert pointcloud.__class__.__name__ == 'PointCloud3D' \ and not pointcloud._data is None pc = copy.deepcopy(pointcloud) for frame, joints in enumerate(pc._data): # Reshape joints into Nx3 matrix. joints = joints.reshape(-1, 3) # Construct transformation matrix T for translation. C = joints[pointcloud.JointType_SpineMid, :] T = -C # Perform translation and update data. joints += T pc._data[frame] = joints.reshape(-1) return pc @staticmethod def transform(pointcloud): assert pointcloud.__class__.__name__ == 'PointCloud3D' \ and not pointcloud._data is None return Transforms3D.translate(Transforms3D.rotate(pointcloud))
prasunroy/sign-language
transforms.py
transforms.py
py
2,810
python
en
code
0
github-code
6
30085050335
from django.shortcuts import render from django.http import JsonResponse from category.models import Category # Create your views here. def jsons(data = None, errorCode = 0, cookies = ''): if data is None: data = [] return JsonResponse({'errorCode': errorCode, 'data': data, 'cookies': cookies}) def categoryGetAll(request): categories = Category.objects.all() return jsons([dict(category.body()) for category in categories])
jeremyytann/BUAA-SE-LetStudy
Code/backend/category/views.py
views.py
py
456
python
en
code
0
github-code
6
40333302045
#import pyperclip import csv import write_cv_main_functions as wc #### grants and awards CV data def compile_teaching(teaching_file, table_spacing,lwidth,rwidth): teaching_txt=wc.header_setup('Teaching Experience', table_spacing,lwidth,rwidth, False) teaching_dict=wc.convert_csv_to_dict(teaching_file,'Sorting Date') institutions_set=set() institutions_count_dict={} institutions_index_count_dict={} institution_txt_dict={} ordering_institutions_dict={} # build the set of distint institutions and keep track of how many # times taught at each institution (so that your code knows when to # close the table environment) for i in range(len(teaching_dict)): row=teaching_dict[i] role=row['Role'] course=row['Course'] institution=row['Institution'] if institution in institutions_set: institutions_count_dict[institution]+=1 else: institutions_set.add(institution) institutions_count_dict[institution]=1 institutions_index_count_dict[institution]=0 # subheaders for each institution added to the dictionary of strings # the dictionary of strings is called institution_txt_dict # key = institutions (string) value = text to add to the document # (string) for institution in institutions_set: ## start the table for each institution institution_txt_dict[institution]= wc.subheader_setup(institution, table_spacing, lwidth, rwidth) ## prepare the ordering_institutions_dict for later comparison ordering_institutions_dict[institution]=0 # add rows to the appropriate table in the .tex file for each entry of # the csv. There is a table for each institution for i in range(len(teaching_dict)): row=teaching_dict[i] role=row['Role'] course_no=row['Course Number'] course=row['Course'] if course_no!='': course='{\\normalfont %s:} %s' % (course_no, course) institution=row['Institution'] start_sem=row['Start Semester'][:2] start_year=row['Start Year'][2:] end_sem=row['End Semester'][:2] end_year=row['End Year'][2:] note=row['Note'] description=row['Description'] description='' date=wc.format_date('', '', start_year, start_sem, '', '', end_year, end_sem, active=False) ## trying to identify the most recent date if int(start_year)>int(ordering_institutions_dict[institution]): ordering_institutions_dict[institution]=start_year for given_institution in institutions_set: if institution==given_institution: institutions_index_count_dict[given_institution]+=1 ## so you know when to close the table; boolean value that ## comparees length of dicts is_end=institutions_count_dict[given_institution]==institutions_index_count_dict[given_institution] ## add text to the appropriate institution institution_txt_dict[given_institution]+=wc.create_table_entry(course,date,is_end,role, '', note, description,False) # add everybody to the main string # for key in institutions_set: # teaching_txt+=institution_txt_dict[key] #sort in reverse chronological order sorted_dict=dict(sorted(ordering_institutions_dict.items(),key= lambda x:x[1],reverse=True)) #choose this option is you want to sort in chronological order # sorted_dict=dict(sorted(ordering_institutions_dict.items(),key= lambda x:x[1])) for entry in sorted_dict: teaching_txt+=institution_txt_dict[entry] return teaching_txt
hdbray/cv_builder
write_cv_teaching.py
write_cv_teaching.py
py
3,742
python
en
code
1
github-code
6
19788096058
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple from uuid import uuid4 import pygame from .clock import Clock, clock from .keyboard import Keyboard from .screen import Screen from .utils.event_dispatcher import EventDispatcher if TYPE_CHECKING: from .application import Application class Scene(EventDispatcher): """ The idea and the original code was taken from [EzPyGame](https://github.com/Mahi/EzPyGame) An isolated scene which can be ran by an application. Create your own scene by subclassing and overriding any methods. Example: ``` class Menu(Scene): def __init__(self): self.font = pygame.font.Font(...) def on_enter(self, previous_scene): self.title = 'Main Menu' self.resolution = (640, 480) self.update_rate = 30 def draw(self, screen): pygame.draw.rect(...) text = self.font.render(...) screen.blit(text, ...) def handle_event(self, event): if event.type == pygame.MOUSEBUTTONUP: if event.button == 1: game_size = self._get_game_size(event.pos) self.change_scene(Game(game_size)) def _get_game_size(self, mouse_pos_upon_click): ... class Game(pgz.Scene): title = 'The Game!' resolution = (1280, 720) update_rate = 60 def __init__(self, size): super().__init__() self.size = size self.player = ... ... def on_enter(self, previous_scene): super().on_enter(previous_scene) self.previous_scene = previous_scene def draw(self, screen): self.player.draw(screen) for enemy in self.enemies: ... def update(self, dt): self.player.move(dt) ... if self.player.is_dead(): self.change_scene(self.previous_scene) elif self.player_won(): self.change_scene(...) def handle_event(self, event): ... # Player movement etc. ``` The above two classes use different approaches for changing the application's settings when the scene is entered: 1. Manually set them in `on_enter`, as seen in `Menu` 2. Use class variables, as I did with `Game` When using class variables (2), you can leave out any setting (defaults to `None`) to not override that particular setting. If you override `on_enter` in the subclass, you must call `super().on_enter(previous_scene)` to use the class variables. These settings can further be overridden in individual instances: ``` my_scene0 = MyScene() my_scene0.resolution = (1280, 720) my_scene1 = MyScene(title='My Second Awesome Scene') ``` Example: Shortcuts foe event gandling while `Scene` subclassing. ``` def on_mouse_up(self, pos, button): # Override this for easier events handling. pass def on_mouse_down(self, pos, button): # Override this for easier events handling. pass def on_mouse_move(self, pos): # Override this for easier events handling. pass def on_key_down(self, key): # Override this for easier events handling. pass def on_key_up(self, key): # Override this for easier events handling. pass ``` """ _title: Optional[str] = None _resolution: Optional[Tuple[int, int]] = None _update_rate: Optional[int] = None def __init__(self, title: Optional[str] = None, resolution=None, update_rate: Optional[int] = None) -> None: self._application: Optional["Application"] = None if title is not None: self._title = title if resolution is not None: self._resolution = resolution if update_rate is not None: self._update_rate = update_rate self._keyboard = Keyboard() # Client data is the data was provided by the client during the handshake: it's usually stuff like player name, avatar, etc self._client_data: Dict[str, Any] = {} # The scene UUID is used for communication self._scene_uuid = str(uuid4()) @property def scene_uuid(self) -> str: """ Get scene UUID. """ return self._scene_uuid def set_client_data(self, client_data: Dict[str, Any]) -> None: self._client_data = client_data @property def client_data(self) -> Dict[str, Any]: """ Get data provided by client side. """ return self._client_data def change_scene(self, new_scene: Optional["Scene"]) -> None: if not self._application: raise Exception("Application was not configured properly.") self._application.change_scene(new_scene) @property def title(self) -> str: """Get application title Returns: str: application title """ if not self._application: raise Exception("Application was not configured properly.") return self._application.title @title.setter def title(self, value: str) -> None: """Change application title Args: value (str): application title to set """ if not self._application: print("Warning: application was not configured - 'title' setting was ignored") return self._application.title = value @property def resolution(self) -> Tuple[int, int]: """Get application screen resolution Returns: Tuple[int, int]: application screen resolution """ if not self._application: raise Exception("Application was not configured properly.") return self._application.resolution @resolution.setter def resolution(self, value: Tuple[int, int]) -> None: """Change application screen resolution Args: value (Tuple[int, int]): application screen resolution to use """ if not self._application: print("Warning: application was not configured - 'resolution' setting was ignored") return self._application.resolution = value @property def update_rate(self) -> int: """Get application update rate Returns: int: application update rate """ if not self._application: raise Exception("Application was not configured properly.") return self._application.update_rate @update_rate.setter def update_rate(self, value: int) -> None: """Change application update rate Args: value (int): application update rate to set """ if not self._application: print("Warning: application was not configured - 'update_rate' setting was ignored") return self._application.update_rate = value @property def clock(self) -> Clock: """ Get `Clock` object. Actually returns the global clock object. Returns: Clock: clock object """ return clock @property def keyboard(self) -> Keyboard: """ Get `Keyboard` object. Returns: Keyboard: keyboard object """ return self._keyboard def draw(self, screen: Screen) -> None: """ Override this with the scene drawing. Args: screen (Screen): screen to draw the scene on """ def update(self, dt: float) -> None: """ Override this with the scene update tick. Args: dt (float): time in milliseconds since the last update """ def handle_event(self, event: pygame.event.Event) -> None: """ Override this to handle an event in the scene. All of `pygame`'s events are sent here, so filtering should be applied manually in the subclass. Args: event (pygame.event.Event): event to handle """ if event.type == pygame.KEYDOWN: self._keyboard._press(event.key) elif event.type == pygame.KEYUP: self._keyboard._release(event.key) def on_enter(self, previous_scene: Optional["Scene"]) -> None: """ Override this to initialize upon scene entering. If you override this method and want to use class variables to change the application's settings, you must call ``super().on_enter(previous_scene)`` in the subclass. Args: previous_scene (Optional[Scene]): previous scene was running """ for attr in ("_title", "_resolution", "_update_rate"): value = getattr(self, attr) if value is not None: if self._application is None: print(f"Warning: application was not configured - '{attr}' setting was ignored") continue setattr(self._application, attr.lower(), value) # Set event dispatcher self.load_handlers() def on_exit(self, next_scene: Optional["Scene"]) -> None: """ Override this to deinitialize upon scene exiting. Args: next_scene (Optional[Scene]): next scene to run """
kdeyev/pgz
pgz/scene.py
scene.py
py
9,429
python
en
code
4
github-code
6
24605950735
import logging from Common import removeLinkID class Group(object): def __init__(self, DB): self.DB = DB def __call__(self, msg): if not msg.isGroup(): msg.Reply("This function only for group.") elif len(msg.args) != 1 or msg.args[0] not in ('this', 'all'): msg.Reply("Invalid arguments.\nUse: /unlink group < this | all >") else: if msg.args[0] == 'this': result = self.DB().Exec( """ SELECT link_id, COUNT(*) FROM public.link_group WHERE link_id IN ( SELECT link_id FROM public.link_group WHERE group_id = %s AND user_id = %s ) GROUP BY link_id; """, ( msg.GroupID(), msg.UserID() ) ).Fetch() if result: link_id, count = result if count == 1: self.DB().Exec("DELETE FROM public.link_group WHERE link_id = %s;", [link_id]) removeLinkID(self.DB(), link_id) else: self.DB().Exec("DELETE FROM public.link_group WHERE group_id = %s;", [msg.GroupID()]) msg.Reply("Now unlinked.") else: msg.Reply("Your group not in linked or you not link creator.") elif msg.args[0] == 'all': result = self.DB().Exec( "SELECT link_id FROM public.link_group WHERE group_id = %s AND user_id = %s GROUP BY link_id;", ( msg.GroupID(), msg.UserID() ) ).Fetch() if result: link_id = result[0] self.DB().Exec("DELETE FROM public.link_group WHERE link_id = %s;", [link_id]) removeLinkID(self.DB(), link_id) msg.Reply("Now all unlinked.") else: msg.Reply("Your group not in linked or you not link creator.")
hans00/MessageBot
Features/Unlink/Group.py
Group.py
py
1,624
python
en
code
0
github-code
6
8629709747
from flask import Flask,request app = Flask(__name__) @app.route('/') def home(): return "Bem-Vindo" @app.route('/calculo') def add(): a = 10 b = 10 return str(a+b) if __name__ == '__main__': app.run()
kaibernu/MLDeploy
API.py
API.py
py
231
python
en
code
2
github-code
6
71361812987
import sys import mysql.connector from awsglue.utils import getResolvedOptions params = [ 'db_host', 'db_port', 'db_user', 'db_password', 'db_database', 'ticket_id_to_be_updated' ] args = getResolvedOptions(sys.argv, params) cnx = mysql.connector.connect( host=args['db_host'], port=args['db_port'], user=args['db_user'], password=args['db_password'], database=args['db_database'] ) cur = cnx.cursor() def update_data(cursor, connection): ticket_id = args['ticket_id_to_be_updated'] print("Selecting one record from table {}".format("customer")) cursor.execute("SELECT customer_id FROM customer ORDER BY RAND() LIMIT 1") rows = cursor.fetchall() customer_id = "" for row in rows: customer_id = row[0] update_event = ("UPDATE ticket_activity SET purchased_by={}, updated_at=now() WHERE ticket_id={}".format(customer_id, ticket_id)) cursor.execute(update_event) connection.commit() def read_data(cursor): cursor.execute("SELECT * FROM ticket_activity") rows = cursor.fetchall() for row in rows: print(row) read_data(cur) update_data(cur, cnx) read_data(cur) cur.close() cnx.close()
bhavik161/studio
rds/rds_upsert_data.py
rds_upsert_data.py
py
1,200
python
en
code
0
github-code
6
22020962951
from pathlib import Path import matplotlib.pyplot as plt import pandas as pd import rich import seaborn as sns import typer from boiling_learning.app.configuration import configure from boiling_learning.app.datasets.bridged.boiling1d import DEFAULT_BOILING_OUTLIER_FILTER from boiling_learning.app.datasets.preprocessed.boiling1d import boiling_datasets from boiling_learning.app.paths import studies_path from boiling_learning.app.training.boiling1d import DEFAULT_BOILING_HEAT_FLUX_TARGET from boiling_learning.datasets.sliceable import targets from boiling_learning.image_datasets import ImageDatasetTriplet from boiling_learning.lazy import LazyDescribed from boiling_learning.utils.pathutils import resolve app = typer.Typer() console = rich.console.Console() @app.command() def boiling1d() -> None: configure( force_gpu_allow_growth=True, use_xla=True, require_gpu=True, ) datasets = boiling_datasets(direct_visualization=True) f, axes = plt.subplots(len(datasets), 1, figsize=(6, 4)) for index, (ax, dataset) in enumerate(zip(axes, datasets)): data = _sorted_boiling_datasets(dataset) sns.scatterplot( ax=ax, data=data, x='index', y='heat flux', hue='class', alpha=0.5, ) ax.set_title(f'Dataset {index}') f.savefig(str(_data_split_study_path() / 'boiling1d.pdf')) @app.command() def condensation( each: int = typer.Option(60), normalize: bool = typer.Option(...), ) -> None: raise NotImplementedError def _sorted_boiling_datasets(datasets: LazyDescribed[ImageDatasetTriplet]) -> pd.DataFrame: ds_train, ds_val, ds_test = datasets() df = pd.DataFrame( sorted( ( ( target['nominal_power'], target[DEFAULT_BOILING_HEAT_FLUX_TARGET], target['elapsed_time'], class_name, ) for class_name, ds in ( ('train', ds_train), ('val', ds_val), ('test', ds_test), ) for target in targets(ds).prefetch(1024) if DEFAULT_BOILING_OUTLIER_FILTER()(None, target) ), key=lambda power_hf_et_class: ( power_hf_et_class[0], power_hf_et_class[2], ), ), columns=['nominal power', 'heat flux', 'elapsed time', 'class'], ) df['index'] = range(len(df)) return df def _data_split_study_path() -> Path: return resolve(studies_path() / 'data-split', dir=True)
ruancomelli/boiling-learning
boiling_learning/app/studies/data_split.py
data_split.py
py
2,677
python
en
code
7
github-code
6
71365190588
import torch from torchvision import transforms from torch.autograd import Variable from dataset import DatasetFromFolder from model import Generator import utils import argparse import os parser = argparse.ArgumentParser() parser.add_argument('--dataset', required=False, default='facades', help='input dataset') parser.add_argument('--direction', required=False, default='BtoA', help='input and target image order') parser.add_argument('--batch_size', type=int, default=1, help='test batch size') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--input_size', type=int, default=1024, help='input size') params = parser.parse_args() print(params) # Directories for loading data and saving results data_dir = '../Data/' + params.dataset + '/' save_dir = params.dataset + '_test_results/' model_dir = params.dataset + '_model/' if not os.path.exists(save_dir): os.mkdir(save_dir) if not os.path.exists(model_dir): os.mkdir(model_dir) # Data pre-processing test_transform = transforms.Compose([transforms.Scale(params.input_size), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) # Test data test_data = DatasetFromFolder(data_dir, subfolder='test', direction=params.direction, transform=test_transform) test_data_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=params.batch_size, shuffle=False) # Load model G = Generator(3, params.ngf, 3) G.cuda() G.load_state_dict(torch.load(model_dir + 'generator_param.pkl')) # Test for i, (input, target) in enumerate(test_data_loader): # input & target image data x_ = Variable(input.cuda()) y_ = Variable(target.cuda()) gen_image = G(x_) gen_image = gen_image.cpu().data # Show result for test data utils.plot_test_result(input, target, gen_image, i, training=False, save=True, save_dir=save_dir) print('%d images are generated.' % (i + 1))
togheppi/pix2pix
pix2pix_test.py
pix2pix_test.py
py
2,081
python
en
code
46
github-code
6
44938119316
import numpy as np import redis import struct import cv2 import time import curved_paths_coords as pc from threading import Thread r = redis.Redis(host='192.168.0.101', port=6379, db=0) log_sensing_running =\ log_navigation_running =\ log_batterymeter_running =\ log_driving_running =\ log_detect_cam =\ voltages1_and_2 =\ log_sensing_time=\ log_target_distance_angle=\ log_path=\ log_path_min_cost=\ log_current_speed=\ log_in_front_of_car=\ log_uptime =\ path_received =\ received_target_coords = None mapW = 400 mapH = 400 last_time=0 font = cv2.FONT_HERSHEY_SIMPLEX map_refresh = 0.1 # interval between map refresh map = np.full((mapW,mapH,3),100, np.uint8) def redis_to_map(redis,name): encoded = redis.get(name) if encoded is None: return np.full((mapW,mapH,3),100, np.uint8) else: h, w = struct.unpack('>II', encoded[:8]) array = np.frombuffer(encoded, dtype=np.uint8, offset=8).reshape(h, w, 1) array = cv2.cvtColor(array,cv2.COLOR_GRAY2RGB) return array def update_data(): log_sensing_time_received = r.get('log_sensing_time') if log_sensing_time_received is not None: log_sensing_time = round(float(log_sensing_time_received),2) else: log_sensing_time = 0 log_target_distance_received = r.get('log_target_distance') if log_target_distance_received is not None: log_target_distance = round(float(log_target_distance_received),2) else: log_target_distance = "None" log_target_angle_received = r.get('log_target_angle') if log_target_angle_received is not None: log_target_angle = round(float(log_target_angle_received),2) else: log_target_angle = "None" log_target_distance_angle = str(log_target_distance) + " " + str(log_target_angle) log_path_received = r.get('path') if log_path_received is not None: log_path = float(log_path_received) else: log_path = "None" log_path_min_cost_received = r.get('path_min_cost') if log_path_min_cost_received is not None: log_path_min_cost = round(float(log_path_min_cost_received),2) else: log_path_min_cost = "None" log_current_speed_received = r.get('current_speed') if log_current_speed_received is not None: log_current_speed = round(float(log_current_speed_received),2) else: log_current_speed = "None" log_in_front_of_car_received = r.get('log_in_front_of_car') if log_in_front_of_car_received is not None: log_in_front_of_car = float(log_in_front_of_car_received) else: log_in_front_of_car = "None" voltages_received = r.get('voltages') if voltages_received is not None: voltages = np.round(np.array(struct.unpack('%sf' %2, voltages_received)),2) else: voltages = [0,0] voltages1_and_2 = str(voltages[0]) + " " + str(voltages[1]) log_uptime_received = r.get('log_uptime') if log_uptime_received is not None: log_uptime = int(float(log_uptime_received)) else: log_uptime = "None" log_sensing_running_received = r.get('log_sensing_running') if log_sensing_running_received is not None: log_sensing_running = str(log_sensing_running_received.decode("utf-8") ) else: log_sensing_running = "off" log_navigation_running_received = r.get('log_navigation_running') if log_navigation_running_received is not None: log_navigation_running = str(log_navigation_running_received.decode("utf-8") ) else: log_navigation_running = "off" log_batterymeter_running_received = r.get('log_batterymeter_running') if log_batterymeter_running_received is not None: log_batterymeter_running = str(log_batterymeter_running_received.decode("utf-8") ) else: log_batterymeter_running = "off" log_driving_running_received = r.get('log_driving_running') if log_driving_running_received is not None: log_driving_running = str(log_driving_running_received.decode("utf-8") ) else: log_driving_running = "off" log_detect_cam_received = r.get('log_detect_cam') if log_detect_cam_received is not None: log_detect_cam = str(log_detect_cam_received.decode("utf-8") ) else: log_detect_cam = "None" map = redis_to_map(r, "map") path_received = r.get('path') received_target_coords = r.get('target_car_coords') def display_data(): cv2.rectangle(map,(187,242),(213,305),(0, 100, 255),-1) #draw car visible_cone = np.array([[213, 242], [187, 242], [0, 0], [400, 0]], np.int32) visible_cone = visible_cone.reshape((-1, 1, 2)) cv2.polylines(map, [visible_cone], True, (255,255,255), 1) color_path = (0,255,0) if path_received is None: pass elif int(path_received) == -1: pass else: path = int(path_received) if path > 5: path_lookup = path - 5 l = -1 else: path_lookup = path l = 1 for square in range(0, 4): #print(path,square) x0 = int(l * pc.paths[path_lookup]['coords'][square][0] / 10 + mapW / 2) y0 = mapH - int(pc.paths[path_lookup]['coords'][square][1] / 10 + 150) x1 = int(l * pc.paths[path_lookup]['coords'][square][2] / 10 + mapW / 2) y1 = mapH - int(pc.paths[path_lookup]['coords'][square][3] / 10 + 150) x2 = int(l * pc.paths[path_lookup]['coords'][square + 1][0] / 10 + mapW / 2) y2 = mapH - int(pc.paths[path_lookup]['coords'][square + 1][1] / 10 + 150) x3 = int(l * pc.paths[path_lookup]['coords'][square + 1][2] / 10 + mapW / 2) y3 = mapH - int(pc.paths[path_lookup]['coords'][square + 1][3] / 10 + 150) poly = np.array([[x0,y0],[x1,y1],[x3,y3],[x2,y2]]) poly = poly.reshape((-1, 1, 2)) cv2.polylines(map,[poly],True,(255,255,255),1) if received_target_coords is not None: target_car_coords = np.array(struct.unpack('%sf' %3, received_target_coords)) mx = int(target_car_coords[0] * 100 + mapW / 2) my = int(mapH - target_car_coords[2] * 100) cv2.line(map, (int(mapW/2), mapH - 150), (mx, my - 150), (0,0,255), thickness=3) topic_left=['sensing', \ 'navigation',\ 'batterymeter',\ 'driving',\ 'detect cam',\ ] logs_left=[log_sensing_running, \ log_navigation_running,\ log_batterymeter_running,\ log_driving_running,\ log_detect_cam\ ] topic_right=['battery voltages', \ 'sensing time',\ 'target dist, angle',\ 'current path',\ 'path min cost',\ 'current speed',\ 'obstacle height',\ 'uptime'\ ] logs_right=[voltages1_and_2, \ log_sensing_time,\ log_target_distance_angle,\ log_path,\ log_path_min_cost,\ log_current_speed,\ log_in_front_of_car,\ log_uptime\ ] count = 1 for text in topic_left: count +=1 cv2.putText(map, str(text), (20, 300 + 10 * count), font, 0.4, (255,255,255), 1) count = 1 for text in logs_left: count +=1 cv2.putText(map, str(text), (140, 300 + 10 * count), font, 0.4, (255,255,255), 1) count = 1 for text in topic_right: count +=1 cv2.putText(map, str(text), (187, 300 + 10 * count), font, 0.4, (255,255,255), 1) count = 1 for text in logs_right: count +=1 cv2.putText(map, str(text), (310, 300 + 10 * count), font, 0.4, (255,255,255), 1) def try_to_connect(): while True: try: cv2.namedWindow('map', cv2.WINDOW_NORMAL) display_data() cv2.imshow('map', map) key = cv2.waitKey(1) if key & 0xFF == ord('q') or key == 27: cv2.destroyAllWindows() break r.ping() except redis.exceptions.ConnectionError as e: print("retrying connection") cv2.putText(map, "No connection to car", (35, 150), font, 1, (0,0,255), 3) continue else: break print("connected") connected_to_redis = True connected_to_redis = False def display(): global connected_to_redis while True: try: update_data() print("here") cv2.namedWindow('map', cv2.WINDOW_NORMAL) display_data() cv2.imshow('map', map) if not connected_to_redis: try_to_connect() time.sleep(map_refresh) except redis.exceptions.ConnectionError as e: try_to_connect() x = Thread(target=display, args=())
julianx4/skippycar
test.py
test.py
py
8,784
python
en
code
3
github-code
6
33273926923
from PDBParseBase import PDBParserBase #get_site_header_seq_info import time, os,datetime,logging,gzip,pickle #get_site_header_seq_info def mkdir(path): #Created uncompress path folder isExists=os.path.exists(path) if not isExists: os.makedirs(path) print(path + " Created folder sucessful!") return True else: #print ("this path is exist") return False def get_site_header_seq_info(rootdir,savefilepath): """extract header\sequence\site\remark800 info in rootdir. and then, save them as a pickle content with list[1_site,2_header,3_sequence] rootdir = "/home/RaidDisk/pdbfiles/updb" savefilepath = "/home/zhaiyh884/20190614_new_data/0615_data" scan all pdb files need about 60 min. """ count = 0 counter_mem = 0 pdbbase = PDBParserBase() pdb_seq_info = pdbbase.get_sequence_fromATOM('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') print(pdb_seq_info) print(pdb_eq_info) """ #test cetern item pdb_header_info = pdbbase.get_header_info('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') pdb_site_info = pdbbase.get_site_info('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') pdb_seq_info = pdbbase.get_sequence_fromSEQ('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') print(pdb_header_info) print(pdb_site_info) print(pdb_seq_info) """ for parent,dirnames,filenames in os.walk(rootdir): for filename in filenames: data_3_items = [] #analyzedata pdb_site_info = pdbbase.get_site_info(os.path.join(parent,filename)) data_3_items.append(pdb_site_info) if not pdb_site_info : print("do not have site:" + filename) "in order to save some time" continue pdb_header_info = pdbbase.get_header_info(os.path.join(parent,filename)) data_3_items.append(pdb_header_info) #print(pdb_header_info) pdb_seq_from_SEQ__info = pdbbase.get_sequence_fromSEQ(os.path.join(parent,filename)) data_3_items.append(pdb_seq_from_SEQ__info) print("pdb_seq_from_SEQ__info") print(pdb_seq_from_SEQ__info) pdb_seq_from_ATOM_info = pdbbase.get_sequence_fromATOM(os.path.join(parent,filename)) data_3_items.append(pdb_seq_from_ATOM_info) print("pdb_seq_from_ATOM_info") print(pdb_seq_from_ATOM_info) #save data if not pdb_site_info : pass else: dirname = filename[4:6] new_Filepath = savefilepath +"/" + str(dirname)+"/" mkdir(new_Filepath) new_filename = filename[3:7] + ".pickle" with open(new_Filepath + new_filename,"wb") as dbFile: pickle.dump(data_3_items,dbFile) """with open(new_Filepath + new_filename,"rb") as dbFile: file = pickle.load(dbFile) """ pass pass def find_memberain_protein(rootdir,savefilepath): #find all protein that header have "mem"in it and save them into savefilepath count = 0 counter_mem = 0 pdbbase = PDBParserBase() pdb_header_info = {} for parent,dirnames,filenames in os.walk(rootdir): for filename in filenames: count = count + 1 dirname = filename[3:7] pdb_header_info = pdbbase.get_header_info(os.path.join(parent,filename)) if "MEM" in pdb_header_info["HEADER_classification"]: counter_mem = counter_mem + 1 cmd = 'cp ' + str(os.path.join(parent,filename)) + ' ' + str(os.path.join(savefilepath,filename)) os.system(cmd) pass def find_all_sites(rootdir): # use the pickles that contain header\sequence\site\remark800 info #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" # total_site = [] description_null = 0 for parent, dirnames, filenames in os.walk(rootdir): for filename in filenames: # walk into one file pro_id = filename[0:4] file_path = os.path.join(parent, filename) with open(file_path, "rb") as dbFile: file = pickle.load(dbFile) # print(file) site = file[0] header = file[1] seq = file[2] item_dict = {} for item in site: #{'1KMH_A': [{'position': {'51': 'G', '65': 'L', '131': 'E', '274': 'M', '297': 'R'}, 'site_description': 'RESIDUE TTX B 499'}], # '1KMH_B': [{'position': {'81': 'A', '82': 'T', '83': 'D'}, 'site_description': 'RESIDUE TTX B 499'}]} #in this loop item means protein_sequence name: 1KMH_A sites = [] for site_item in site[item]: #site_item means every record in one sequence description = site_item["site_description"] descriptions = description.split() try: #find the binding name if "res" in descriptions[1]: sites.append(descriptions[2]) else: sites.append(descriptions[1]) except IndexError: description_null = description_null+1 item_dict[item] = sites total_site.append(item_dict) # print(total_site) print("len(membrane_total_site):") print(len(total_site)) print("null_discription:") print(description_null) with open("/home/zhaiyh884/20190614_new_data/total_site.pickle", "wb") as dbFile: pass pickle.dump(total_site, dbFile) pass def count_sites(file): #used to count sites and analyzedata. #file = "/home/zhaiyh884/20190614_new_data/total_site.pickle" #scan all the data and count every site's apperance with open(file, "rb") as dbFile: file = pickle.load(dbFile) site_dicts = {} total_site_num = 0 for item in file: for seq_id in item: #print(seq_id) for site_name in item[seq_id]: print(site_name) site_dicts[site_name] = site_dicts[site_name] + 1 if site_name in site_dicts else 1 total_site_num = total_site_num + 1 #if site_name in site_dicts.keys(): # site_dicts[site_name] = site_dicts[site_name] + 1 if site_name in site_dicts else 1 #print(site_name) with open("/home/zhaiyh884/20190614_new_data/site_numbers.pickle", "wb") as dbFile: pickle.dump(site_dicts, dbFile) print(site_dicts) print("total_site_num:") print(total_site_num) print("site_dicts items num:") print(len(site_dicts)) def sites_anylize(): with open("site_numbers.pickle","rb") as dbFile: file = pickle.load(dbFile) with open("hetlist.pickle","rb") as dbFile_drug: file_drug = pickle.load(dbFile_drug) sites_number = 0 number_counter = {} drug_site = {} for site_name in file: if site_name in file_drug: sites_number = sites_number + file[site_name] # used to count all numbers of drugs_binding object number_of_site = file[site_name] # number_of_site used to sign the numbers which apperence number_counter[number_of_site] = number_counter[number_of_site] + 1 if number_of_site in number_counter else 1 # the dict to store the number of times drug_site[site_name] = file[site_name] #form a new site of drug sites print(sites_number) print(number_counter) print(sorted(file.items(),key=lambda x:x[1])) print("#@!#!$!@#%!#%") print(sorted(drug_site.items(),key=lambda x:x[1])) pass def find_memberain_sites(rootdir): # use the pickles that contain header\sequence\site\remark800 info #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" # total_site = [] description_null = 0 for parent, dirnames, filenames in os.walk(rootdir): for filename in filenames: # walk into one file pro_id = filename[0:4] file_path = os.path.join(parent, filename) with open(file_path, "rb") as dbFile: file = pickle.load(dbFile) # print(file) site = file[0] header = file[1] seq = file[2] #select membrane protein if "MEM" not in header["HEADER_classification"]: continue # use site info only item_dict = {} for item in site: #{'1KMH_A': [{'position': {'51': 'G', '65': 'L', '131': 'E', '274': 'M', '297': 'R'}, 'site_description': 'RESIDUE TTX B 499'}], # '1KMH_B': [{'position': {'81': 'A', '82': 'T', '83': 'D'}, 'site_description': 'RESIDUE TTX B 499'}]} #in this loop item means protein_sequence name: 1KMH_A sites = [] for site_item in site[item]: #site_item means every record in one sequence description = site_item["site_description"] descriptions = description.split() try: #find the binding name if "res" in descriptions[1]: sites.append(descriptions[2]) else: sites.append(descriptions[1]) except IndexError: description_null = description_null+1 item_dict[item] = sites total_site.append(item_dict) # print(total_site) print("len(membrane_total_site):") print(len(total_site)) print("null_discription:") print(description_null) with open("/home/zhaiyh884/20190614_new_data/membrane_total_site.pickle", "wb") as dbFile: pass pickle.dump(total_site, dbFile) pass def find_drug_releated_protein(rootdir): # use the pickles that contain header\sequence\site\remark800 info #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" #find the difference between proteins class and drug-releated-proteins class with open("hetlist.pickle","rb") as dbFile_drug: file_drug = pickle.load(dbFile_drug) protein_classfication = [] drug_protein_classfication = [] protein_dict = {} drug_releated_protein_dict = {} description_null = 0 for parent, dirnames, filenames in os.walk(rootdir): for filename in filenames: # walk into one file pro_id = filename[0:4] file_path = os.path.join(parent, filename) with open(file_path, "rb") as dbFile: file = pickle.load(dbFile) # print(file) site = file[0] header = file[1] seq = file[2] classification = header["HEADER_classification"] protein_dict[classification] = protein_dict[classification] + 1 if classification in protein_dict else 1 #print(protein_dict) drug_releated_protein_flag = 0 for item in site: #{'1KMH_A': [{'position': {'51': 'G', '65': 'L', '131': 'E', '274': 'M', '297': 'R'}, 'site_description': 'RESIDUE TTX B 499'}], # '1KMH_B': [{'position': {'81': 'A', '82': 'T', '83': 'D'}, 'site_description': 'RESIDUE TTX B 499'}]} #in this loop item means protein_sequence name: 1KMH_A sites = [] for site_item in site[item]: #site_item means every record in one sequence description = site_item["site_description"] descriptions = description.split() try: #find the binding_object name if "res" in descriptions[1]: binding_object = descriptions[2] elif "RESIDUES" in description and "THROUGH" in description: binding_object = descriptions[2] else: binding_object = descriptions[1] except IndexError: description_null = description_null+1 #sites.append(binding_object) if binding_object in file_drug: drug_releated_protein_flag = 1 #print(drug_releated_protein_flag) if drug_releated_protein_flag ==1: drug_releated_protein_dict[classification] = drug_releated_protein_dict[classification] + 1 if classification in drug_releated_protein_dict else 1 """item_dict[item] = sites total_site.append(item_dict) # print(total_site) print("len(membrane_total_site):") print(len(total_site)) print("null_discription:") print(description_null)""" print(protein_dict) print("!@#$!@#################$!@%#!$^%$#@^$%&^#$%&") print(drug_releated_protein_dict) with open("/home/zhaiyh884/20190614_new_data/drug_and_nondrug_protein_classfication.pickle", "wb") as dbFile: pass pickle.dump(protein_dict, dbFile) pickle.dump(drug_releated_protein_dict, dbFile) pass if __name__ == "__main__": start = datetime.datetime.now() #1 extract all needed infomation from pdb rootdir = "/home/RaidDisk/pdbfiles/updb" savefilepath = "/home/zhaiyh884/20190614_new_data/0615_data" get_site_header_seq_info(rootdir,savefilepath) #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" #2 find_all_site #find_all_sites(rootdir) #2 or find_memberain_sites #find_memberain_sites(rootdir) #3 count site numbers #file = "/home/zhaiyh884/20190614_new_data/membrane_total_site.pickle" #file = "/home/zhaiyh884/20190614_new_data/total_site.pickle" #count_sites(file) #4 #sites_anylize() #5 #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" #find_drug_releated_protein(rootdir) end = datetime.datetime.now() print("alltime = ") print (end-start)
Rio56/deeplearning
DTP_deeplearning/0618_ๆ–ฐๆ•ฐๆฎๅค„็†ไปฃ็ ๅŠๆ–‡ไปถ/drug_target_data_0617.py
drug_target_data_0617.py
py
15,010
python
en
code
1
github-code
6
22635248553
class Tree: def __init__(self, height): self.height = height self.visible = False def __repr__(self): return str(self.visible) trees = [] with open('8.input') as f: lines = f.readlines() for line in lines: treeline = [] for char in line.strip(): treeline.append(Tree(int(char))) trees.append(treeline) for treerow in trees: max_height = -1 for tree in treerow: if tree.height > max_height: tree.visible = True max_height = tree.height for treerow in trees: max_height = -1 for tree in reversed(treerow): if tree.height > max_height: tree.visible = True max_height = tree.height for index in range(len(trees)-1): max_height = -1 for treerow in trees: tree = treerow[index] if tree.height > max_height: tree.visible = True max_height = tree.height for index in range(len(trees[0])): max_height = -1 for treerow in reversed(trees): print(len(trees[0])-1-index) tree = treerow[len(trees[0])-1-index] if tree.height > max_height: tree.visible = True max_height = tree.height visible = 0 for treerow in trees: for tree in treerow: if tree.visible: visible += 1 print (visible)
mouseboks/AoC2022
8.py
8.py
py
1,346
python
en
code
0
github-code
6
40319402697
from ansible.module_utils.basic import AnsibleModule from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.api import \ Session from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls import GeneralModule class General(GeneralModule): CMDS = { 'set': 'set', 'search': 'get', } API_KEY_PATH = 'bgp' API_MOD = 'quagga' API_CONT = 'bgp' API_CONT_REL = 'service' API_CMD_REL = 'reconfigure' FIELDS_CHANGE = [ 'as_number', 'id', 'graceful', 'enabled', 'networks', 'redistribute', ] FIELDS_ALL = FIELDS_CHANGE FIELDS_TRANSLATE = { 'as_number': 'asnumber', 'id': 'routerid', } FIELDS_TYPING = { 'bool': ['enabled', 'graceful'], 'list': ['networks', 'redistribute'], } INT_VALIDATIONS = { 'as_number': {'min': 1, 'max': 4294967295}, } def __init__(self, module: AnsibleModule, result: dict, session: Session = None): GeneralModule.__init__(self=self, m=module, r=result, s=session)
ansibleguy/collection_opnsense
plugins/module_utils/main/frr_bgp_general.py
frr_bgp_general.py
py
1,066
python
en
code
158
github-code
6
20861131743
import requests import os import wget import subprocess def update_mindustry(): global response global be_wrapper global current_build download_url = "https://github.com/Anuken/MindustryBuilds/releases/download/" + str(current_build) download_url = download_url + "/Mindustry-BE-Desktop-" + str(current_build) + ".jar" os.system("rm -f " + os.path.join(be_wrapper, "Mindustry.jar")) wget.download(download_url, os.path.join(be_wrapper, "Mindustry.jar")) bfile = open(be_wrapper + "/last.txt", "w") bfile.write(str(current_build)) print() def run_mindustry(): global be_wrapper global current_build if not os.path.exists(os.path.join(be_wrapper, "Mindustry.jar")): print("The Mindustry jar file does not exist. Download it now?") if input("Update now? (Y/N):").lower() == "y": update_mindustry() else: print("Exiting") exit(0) os.system("java -jar " + be_wrapper + "/Mindustry.jar") try: subprocess.check_call("java -version", shell=True) except subprocess.CalledProcessError as x: if not x.returncode == 127: raise response = requests.get("https://api.github.com/repos/Anuken/MindustryBuilds/releases/latest").json() current_build = int(response['tag_name']) home = os.path.expanduser("~") be_wrapper = os.path.join(home, "BEWrapper") if not os.path.exists(be_wrapper): os.mkdir(be_wrapper) try: build_file = open(be_wrapper + "/last.txt", "r") saved_build = int(build_file.read()) build_file.close() except FileNotFoundError: saved_build = 0 except ValueError: saved_build = 0 if saved_build < current_build: print("Your Mindustry build seems to be out of date by " + str(current_build - saved_build) + " releases.") if input("Update now? (Y/N):").lower() == "y": update_mindustry() print("Mindustry appears to be up to date!") print("Running Mindustry") run_mindustry()
ILiekMelons/MindustryBELauncher
main.py
main.py
py
1,958
python
en
code
0
github-code
6
1639327865
# coding=utf-8 """ Controller for the pre-processing, and creation of the trainable data sets. """ from sequenceprocessjson import process_json from os.path import join from json import load # File and directory locations. DATA_DIR = "data" VIDEO_FILE = "YoutubeVideos" TRAINING_MODIFIER = "_training" VALIDATION_MODIFIER = "_validation" VIDEO_DIR = "videos" FRAMES_DIR = "frames" JSON_DIR = "json" OUTPUT_DIR = "output" MODIFIERS = [TRAINING_MODIFIER, VALIDATION_MODIFIER] for modifier in MODIFIERS: # Paths videos = join(DATA_DIR, VIDEO_FILE + modifier) videos_path = join(DATA_DIR, VIDEO_DIR + modifier) frames_path = join(DATA_DIR, FRAMES_DIR + modifier) json_path = join(DATA_DIR, JSON_DIR + modifier) output_path = join(DATA_DIR, OUTPUT_DIR + modifier) # Process the Json files into Trainable Normalized vectors process_json(json_path, output_path)
joshbrun/ExerciseDataCollection
Modelling/LSTM/controller.py
controller.py
py
892
python
en
code
2
github-code
6
1478963521
import numpy, math, itertools from hashlib import sha1 from mbfit.exceptions import XYZFormatError, InvalidValueError, InconsistentValueError from .fragment import Fragment class Molecule(object): """ Stores the fragments of a Molecule """ def __init__(self, fragments): """ Creates a new Molecule Args: None Returns: A new Molecule """ # list of fragments in this molecule self.fragments = [] for fragment in fragments: self.add_fragment(fragment) # list of energies for this molecule, filled in by get_nmer_energies self.energies = {} # list of nmer_energies for this molecule, filled by get_nmer_energies self.nmer_energies = [] self.mb_energies = [] def get_name(self): """ Gets the name of this molecule, consists of the names of the fragments in standard order connected by a dash '-' Args: None Returns: The name of this molecule """ return "-".join([fragment.get_name() for fragment in self.get_fragments()]) def get_symmetry(self): """ Gets the symmetry of this molecule Args: None Returns: The symmetry of this molecule in A1B2_C1D1E1 form """ # used to assemble the symmetry string try: symmetry = self.get_fragments()[0].get_symmetry() except IndexError: # if there are no fragments, symmetry is empty string return "" # add each fragment's symmetry to the string for fragment in self.get_fragments()[1:]: symmetry += "_" + fragment.get_symmetry() return symmetry def add_fragment(self, fragment): """ Adds a fragment to this molecule Args: fragment - the fragment to add Returns: None """ # make sure the symmetry class of the atoms in this fragment doesn't violate the 1 symmetry class -> 1 atom type rule for existing_fragment in self.get_fragments(): if fragment.get_name() == existing_fragment.get_name(): for atom_new, atom_old in zip(fragment.get_atoms(), existing_fragment.get_atoms()): if atom_new.get_name() != atom_old.get_name(): raise InconsistentValueError("name of atom {} from one {} fragment".format(atom_old.get_name(), existing_fragment.get_name()), "name of atom {} from another {} fragment".format(atom_new.get_name(), fragment.get_name()), atom_old.get_name(), atom_new.get_name(), "atoms in fragments with the same name must have the same names in the same order.") if atom_new.get_symmetry_class() != atom_old.get_symmetry_class(): raise InconsistentValueError("symmetry class of atom {} from one {} fragment".format(atom_old.get_name(), existing_fragment.get_name()), "symmetry class of atom {} from another {} fragment".format(atom_new.get_name(), fragment.get_name()), atom_old.get_symmetry_class(), atom_new.get_symmetry_class(), "atoms in fragments with the same name must have the same symmetry classes in the same order.") else: for atom_new in fragment.get_atoms(): for atom_old in existing_fragment.get_atoms(): if atom_new.get_symmetry_class() == atom_old.get_symmetry_class(): raise InconsistentValueError("symmetry class of atom {} from {} fragment".format(atom_old.get_name(), existing_fragment.get_name()), "symmetry class of atom {} from {} fragment".format(atom_new.get_name(), fragment.get_name()), atom_old.get_symmetry_class(), atom_new.get_symmetry_class(), "atoms in fragments with different names cannot be equivelent and should not have the same symmetry class.") self.fragments.append(fragment) return def get_fragments(self): """ Gets a list of the fragments in this molecule in standard order Args: None Returns: List of fragments in this molecule in standard order """ return self.fragments def get_atoms(self): """ Gets a list of the atoms in this molecule in standard order fragments are first sorted into standard order, and then atoms within those fragments are put in their standard order. Args: None Returns: List of atoms in this molecule in standard order """ atoms = [] for fragment in self.get_fragments(): atoms += fragment.get_atoms() return atoms def get_charge(self, fragments = None): """ Gets the charge of this molecule by summing the charges of its fragments Args: fragments - list of fragment indicies; if specified, only get the charge of these fragments, default is to include all fragments Returns: Sum charge of all or some of the fragments of this molecule """ if fragments == None: fragments = range(len(self.get_fragments())) charge = 0 for index in fragments: charge += self.get_fragments()[index].get_charge() return charge def get_spin_multiplicity(self, fragments = None): """ Gets the spin multiplicity of this molecule by summing the spin multiplicities of its fragments Args: fragments - list of fragment indicies; if specified, only get the spin multiplicity of these fragments, default is to include all fragments Returns: Sum spin multiplicity of all or some of the fragments of this molecule """ if fragments == None: fragments = range(len(self.get_fragments())) spin_multiplicity = 1 for index in fragments: spin_multiplicity += self.get_fragments()[index].get_spin_multiplicity() - 1 return spin_multiplicity def get_num_fragments(self): """ Gets the number of fragments in this molecule Args: None Returns: Number of fragments in this molecule """ return len(self.get_fragments()) def get_num_atoms(self): """ Gets the number of atoms in this molecule Args: None Returns: Number of atoms in this molecule """ atoms = 0 for fragment in self.get_fragments(): atoms += fragment.get_num_atoms() return atoms def translate(self, x, y, z): """ Translates all the atoms in this molecule by the given coordinates Args: x - amount to translate along x axis y - amount to translate along y axis z - amount to translate along z axis Returns: None """ for fragment in self.get_fragments(): fragment.translate(x, y, z) def rotate(self, quaternion, origin_x = 0, origin_y = 0, origin_z = 0): """ Rotates this Molecule using the rotation defined by the given Quaternion Args: quaternion - the Quaternion to rotate by origin_x - x position of the point to rotate around, default is 0 origin_y - y position of the point to rotate around, default is 0 origin_z - z position of the point to rotate around, default is 0 Returns: None """ for fragment in self.get_fragments(): fragment.rotate(quaternion, origin_x, origin_y, origin_z) def move_to_center_of_mass(self): """ Moves the molecule it its center of mass Args: None Returns: None """ # keep track of the total weighted mass along each axis total_x = 0 total_y = 0 total_z = 0 # keeps track of the total mass total_mass = 0 # loop thru every atom in the molecule, adding its contribution to each coordinate mass for atom in self.get_atoms(): total_x += atom.get_x() * atom.get_mass() total_y += atom.get_y() * atom.get_mass() total_z += atom.get_z() * atom.get_mass() total_mass += atom.get_mass() # calculate the center of mass my dividing the total weighted mass by the total mass center_x = total_x / total_mass center_y = total_y / total_mass center_z = total_z / total_mass # translate this molecule to the center of mass self.translate(-center_x, -center_y, -center_z) def rotate_on_principal_axes(self): """ Rotates a molecule on to its principal axis Args: None Returns: None """ # first we calculate the moment of inertia tensor # [ Ixx Ixy Ixz ] # [ Iyx Iyy Iyz ] # [ Izx Izy Izz ] I = [[0, 0, 0] for i in range(3)] # loop over every atom and add their contributions to the moment of inertia tensor for atom in self.get_atoms(): # Ixx I[0][0] += (atom.get_y() ** 2 + atom.get_z() ** 2) * atom.get_mass() # Ixy I[1][0] += - (atom.get_x() * atom.get_y()) * atom.get_mass() # Ixz I[2][0] += - (atom.get_x() * atom.get_z()) * atom.get_mass() # Iyx I[0][1] += - (atom.get_y() * atom.get_x()) * atom.get_mass() # Iyy I[1][1] += (atom.get_x() ** 2 + atom.get_z() ** 2) * atom.get_mass() # Iyz I[2][1] += - (atom.get_y() * atom.get_z()) * atom.get_mass() # Izx I[0][2] += - (atom.get_z() * atom.get_x()) * atom.get_mass() # Izy I[1][2] += - (atom.get_z() * atom.get_y()) * atom.get_mass() # Izz I[2][2] += (atom.get_x() ** 2 + atom.get_y() ** 2) * atom.get_mass() inertia_tensor = numpy.matrix(I) # print("Inertia Tensor:", inertia_tensor) # get numpy matrix from the matrix of principal moments # get the moments and principal axis as eigen values and eigen vectors (moments, principal_axes) = numpy.linalg.eigh(inertia_tensor) idx = numpy.argsort(moments)[::-1] moments = moments[idx] principal_axes = principal_axes[:,idx] fifthmoment = numpy.zeros(3) # only works for molecules with no symmetry for atom in self.get_atoms(): fifthmoment += (numpy.matrix([atom.get_x(), atom.get_y(), atom.get_z()]) * principal_axes).getA1() ** 5 * atom.get_mass() if fifthmoment[0] < 1e-6: principal_axes[:, 0] *= -1 if fifthmoment[1] < 1e-6: principal_axes[:, 1] *= -1 if numpy.linalg.det(principal_axes) < 0: principal_axes[:, 2] *= -1 # update the position of each atom for atom in self.get_atoms(): x, y, z = (numpy.matrix([atom.get_x(), atom.get_y(), atom.get_z()]) * principal_axes).getA1() atom.set_xyz(float(x), float(y), float(z)) def rmsd(self, other): """ Computes the RMSD between the positions of the atoms in two molecules molecules must have the same fragments and atoms or an InconsistentValueError will be raised. generally, you should make sure that both molecules have been moved to their center of mass and rotated on their principal axes. Args: other - the molecule to compare this one to Returns: The square-root of the mean squared distance between the atoms in this molecule and the other """ # fist make sure these molecules have the same number of atoms if self.get_num_atoms() != other.get_num_atoms(): raise InconsistentValueError("number of atoms in self", "number of atoms in other", self.get_num_atoms(), other.get_num_atoms(), "number of atoms in each molecule must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") squared_distance = 0 # loop thru every pair of atoms in the two molecules for this_atom, other_atom in zip(self.get_atoms(), other.get_atoms()): # check to make sure that these atoms are the same type if this_atom.get_name() != other_atom.get_name(): raise InconsistentValueError("self atom symbol", "other atom symbol", this_atom.get_name(), other_atom.get_name(), "symbols must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") # add this atom pair's contribution to the squared distance squared_distance += this_atom.distance(other_atom) ** 2 # compute rmsd as sqrt of mean squared distance return math.sqrt(squared_distance / self.get_num_atoms()) def rmsd2(self, other): self_atoms = self.get_atoms() other_atoms = other.get_atoms() rmsds = [] for order in itertools.permutations(other_atoms): squared_distance = 0 # loop thru every pair of atoms in the two molecules for this_atom, other_atom in zip(self.get_atoms(), order): # add this atom pair's contribution to the squared distance squared_distance += this_atom.distance(other_atom) ** 2 rmsds.append(math.sqrt(squared_distance / self.get_num_atoms())) return min(rmsds) def distancermsd(self, other_molecule): """ Computes the RMSD of intramolecular interatomic distances in the two molecules molecules must have the same fragments and atoms or an InconsistentValueError will be raised. generally, you should make sure that both molecules have been moved to their center of mass and rotated on their principal axes. Note: this function is distinct from rmsd() because this function takes the rmsd of the differneces between the distances between pairs of atoms within each molecule while rmsd() takes the rmsd of the distance between the positions of the same atoms in each molecule. Args: other_molecule - the molecule to ompare this one to Returns: the square-root of the mean squared difference in the distance between each pair of atoms in this molecule and the other """ # fist make sure these molecules have the same number of atoms if self.get_num_atoms() != other_molecule.get_num_atoms(): raise InconsistentValueError("number of atoms in self", "number of atoms in other", self.get_num_atoms(), other_molecule.get_num_atoms(), "number of atoms in each molecule must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") squared_distance_difference = 0 # loop over each pair of atoms for atom_index, this_atom1, other_atom1 in zip(range(self.get_num_atoms()), self.get_atoms(), other_molecule.get_atoms()): for this_atom2, other_atom2 in zip(self.get_atoms()[atom_index + 1:], other_molecule.get_atoms()[atom_index + 1:]): # check to make sure that the atom1s have the same type if this_atom1.get_name() != other_atom1.get_name(): raise InconsistentValueError("self atom symbol", "other atom symbol", this_atom.get_name(), other_atom.get_name(), "symbols must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") # check to make sure that the atom2s have the same type if this_atom2.get_name() != other_atom2.get_name(): raise InconsistentValueError("self atom symbol", "other atom symbol", this_atom.get_name(), other_atom.get_name(), "symbols must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") # add these atom pairs' contribution to the squared distance difference squared_distance_difference += (this_atom1.distance(this_atom2) - other_atom1.distance(other_atom2)) ** 2 # compute the rmsd of the sqrt of mean squared distance difference return math.sqrt(squared_distance_difference / self.get_num_atoms()) def compare(self, other, cutoff_rmsd = 0.1): """ Compares two molecules to see if they are similar to eachother bellow a cutoff rmsd Args: other - the molecule to compare this one to cutoff_rmsd - the rmsd level at which False will be returned, defailt is 0.1 Returns: True if the rmsd between this molecule and the other is less than cutoff_rmsd, otherwise False Always returns False if the two molecules do not have the same fragments and atoms """ try: return self.rmsd(other) < cutoff_rmsd except InconsistentValueError: return False def get_excluded_pairs(self, max_exclusion = 3): """ Gets the excluded pairs of this molecule Args: None Returns: a tuple in the format (excluded_12, excluded_13, excluded_14, ..., excluded_1x) where each ecluded_1x is a list of lists of each fragment's excluded 1x pairs """ excluded_pairs = [[] for i in range(max_exclusion)] for index, fragment in enumerate(self.get_fragments()): frag_excluded_pairs = fragment.get_excluded_pairs(max_exclusion) for exclusion_index in range(max_exclusion): excluded_pairs[exclusion_index].append(frag_excluded_pairs[exclusion_index]) return excluded_pairs def to_xyz(self, fragments=None, cp=False, num_digits=14): """ Gets a string representation of the fragments in this molecule in the xyz file format Args: fragments - list of fragment indicies to include in the string; optional, default is to include all fragments. cp - if True then fragments not specified in the fragments list will be included as ghost fragments. num_digits - The number of digits after the decimal point to include when writing atom coordinates. Default: 14 Maximum: 14 Returns: String representation of the fragments in this molecule in the xyz format """ # by default, use all fragments if fragments == None: fragments = range(self.get_num_fragments()) string = "" for index in range(len(self.get_fragments())): if index in fragments: string += self.get_fragments()[index].to_xyz(num_digits=num_digits) elif cp: string += self.get_fragments()[index].to_ghost_xyz(num_digits=num_digits) return string[:-1] # removes last character of string (extra newline) def to_standard_xyz(self, fragments=None, cp=False, num_digits=14): """ Gets a string representation of the fragments in this molecule in the xyz file format. The order of the fragments and atoms is in standard order. Args: fragments - list of fragment indicies to include in the string; optional, default is to include all fragments. cp - if True then fragments not specified in the fragments list will be included as ghost fragments. num_digits - The number of digits after the decimal point to include when writing atom coordinates. Default: 14 Maximum: 14 Returns: String representation of the fragments in this molecule in the xyz format in standard order. """ # by default, use all fragments if fragments == None: fragments = range(self.get_num_fragments()) string = "" for index in range(len(self.get_standard_order())): if index in fragments: string += self.get_standard_order()[index].to_standard_xyz(num_digits=num_digits) elif cp: string += self.get_standard_order()[index].to_standard_ghost_xyz(num_digits=num_digits) return string[:-1] # removes last character of string (extra newline) ''' Returns a string containing indicies and energies of nbody fragment combinations in the format of the log file ''' def log_frag_energy(self): string = "" # for each item in energies, add its combination indicies and energy # to the output string for combination in self.energies.keys(): string += "E{}: {}\n".format(combination, "%.8f"%self.energies[combination]) return string ''' Returns a string containing the many body interaction energies, in the format of the log file ''' def log_mb_energy(self, limit): string = "" for index in range(limit): string += "V_{}B: {}\n".format(index + 1, "%.8f"%self.mb_energies[index]) return string ''' Clears the energies, nmer_energies, and mb_energies fields to make way for new calculations ''' def clear(self): self.energies = {} self.nmer_energies = [] self.mb_energies = [] def get_SHA1(self): """ Generates the SHA1 hash of this molecule. Uses atoms, spin multiplicity and charge. Can be used to uniquely identify this molecule. Sorts fragments and atoms into standard order first, so the same molecule specified differently will have the same hash Args: None Returns: SHA1 hash of this molecule """ hash_string = self.get_name() + "\n" + self.to_xyz(num_digits=5) + "\n" + str(self.get_charge()) + "\n" + str(self.get_spin_multiplicity()) return sha1(hash_string.encode()).hexdigest() def get_symbols(self): """ Gets the atomic symbols of the atoms in this molecule as a list Args: None Returns: list of the atomic symbols of the atoms in this molecule """ return [atom.get_name() for atom in self.get_atoms()] def get_coordinates(self): """ Gets the positions of the atoms in this molecule as a list of 3-tuples Args: None Returns: list of the positions of the atoms in this moleule """ return [(atom.get_x(), atom.get_y(), atom.get_z()) for atom in self.get_atoms()] @staticmethod def read_xyz(string, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): """ Reads fragments from an xyz string and creates a new Molecule. Args: string - The xyz format string. Including the atom count line and comment line. atoms_per_fragment - List containing the number of atoms in each fragment. name_per_fragment - List containing the names of each fragment. charge_per_fragment - List containing the charges of each fragment. spin_multiplicity_per_fragment - List containing the spin multiplicities of each fragment. symmetry_per_fragment - List containing the symmetries of each fragment, in format A1B2. SMILE_per_fragment - List containing the SMILE strings of each fragment. Returns: The new Molecule. """ # Error checking to make sure all lists passed in are the same length if not len(atoms_per_fragment) == len(symmetry_per_fragment): raise InconsistentValueError("atoms per fragment", "symmetry per fragment", atoms_per_fragment, symmetry_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(charge_per_fragment): raise InconsistentValueError("atoms per fragment", "charges per fragment", atoms_per_fragment, charge_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(spin_multiplicity_per_fragment): raise InconsistentValueError("atoms per fragment", "spin multiplicities per fragment", atoms_per_fragment, spin_multiplicity_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(name_per_fragment): raise InconsistentValueError("atoms per fragment", "fragment names", atoms_per_fragment, name_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(SMILE_per_fragment): raise InconsistentValueError("atoms per fragment", "fragment SMILES", atoms_per_fragment, SMILE_per_fragment, "lists must be same length") # break the input string apart along \n characters lines = string.splitlines() # read the total number of atoms from the first line of the xyz try: atom_total = int(lines[0]) except ValueError: raise XYZFormatError("{}".format(lines[0]), "line should contain a single integer") # make sure that the total number of atoms indicated by the xyz file matches the number of atoms indicated per fragment if atom_total != sum(atoms_per_fragment): raise InconsistentValueError("total atoms in xyz string", "fragments", atom_total, atoms_per_fragment, "fragments list must sum to total atoms from input xyz string") # remove the atom total and comment lines from the lines list lines = lines[2:] # make sure that there are a number of lines equal to the total number of atoms if len(lines) != atom_total: raise InconsistentValueError("total atoms in xyz string", "atom lines in xyz string", atom_total, len(lines), "number of total atoms indicated in xyz string should match number of atom lines") fragments = [] # loop over each item in the lists, each iteration containing the information to assemble one fragment for num_atoms, name, charge, spin, symmetry, SMILE in zip(atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): # fragments.append(Fragment.read_xyz("\n".join(lines[:num_atoms]), name, charge, spin, SMILE, symmetry)) # remove a number of lines from the lines list equal to the number used in the Fragment that was just read lines = lines[num_atoms:] return Molecule(fragments) @staticmethod def read_xyz_file(file, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): """ Reads fragments from an xyz file and creates a new Molecule. Will attempt to read lines from the given file handle, raising a StopIteration exception if called on an empty file. Args: file - The file to read from. atoms_per_fragment - List containing the number of atoms in each fragment. name_per_fragment - List containing the names of each fragment. charge_per_fragment - List containing the charges of each fragment. spin_multiplicity_per_fragment - List containing the spin multiplicities of each fragment. symmetry_per_fragment - List containing the symmetries of each fragment, in format A1B2. SMILE_per_fragment - List containing the SMILE strings of each fragment. Returns: The new Molecule. """ # build the xyz string string = "" # read blank lines until a non-blank line is found. while(True): line = file.readline() # If line is EOF, then raise StopIteration to say that there are no more molecules in this file. if line == "": raise StopIteration # If line is not a blank line, stop reading blank lines. if line is not "\n": break # add the atom count line to the string. string += line # read the comment line. string += file.readline() for i in range(sum(atoms_per_fragment)): line = file.readline() # if the line is EOF, we have reached EOF mid-parse! if line == "": raise XYZFormatError("ran out of lines to read from xyz file {} in the middle of a molecule".format(file.name), "make sure atoms_per_fragment, the atom count line in your xyz file, and the number of atom lines in your xyz file all agree.") string += line return Molecule.read_xyz(string, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment) @staticmethod def read_xyz_path(path, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): """ Reads fragments from an xyz file indicated by a filepath and constructs a new Molecule. Will attempt to read lines from the file at the given file path, raising an exception if it runs out of lines mid-parse. Args: path - The path to the file to read from. atoms_per_fragment - List containing the number of atoms in each fragment. name_per_fragment - List containing the names of each fragment. charge_per_fragment - List containing the charges of each fragment. spin_multiplicity_per_fragment - List containing the spin multiplicities of each fragment. symmetry_per_fragment - List containing the symmetries of each fragment, in format A1B2. SMILE_per_fragment - List containing the SMILE strings of each fragment. Returns: The new Molecule. """ with open(path, "r") as file: try: return Molecule.read_xyz_file(file, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment) # if the call to read_xyz_file() raises a StopIteration, it means the file was empty except StopIteration: raise XYZFormatError("xyz file {} file is empty".format(file.name), "make sure the xyz file has at least 1 molecule in it") @staticmethod def read_xyz_direct(string, settings = None): """ Reads fragments from a string and constructs a new Molecule. Will infer a single fragment with charge 0, spin 1, no symmetry, and a SMILE with atoms connected in the order they appear in the string if settings is None. Args: string - The string to read from. settings - Settings object containing information about the molecule. Returns: The new Molecule. """ # if settings is None, then infer default values for molecule attributes if settings is None: name_per_fragment = ["noname"] charge_per_fragment = [0] spin_multiplicity_per_fragment = [1] total_atoms = int(string.splitlines()[0]) atoms_per_fragment = [total_atoms] symmetry = "" symmetry_class = 65 # loop over each atom assigning it a unique symmetry class for atom_index in range(total_atoms): symmetry += "{}1".format(chr(symmetry_class)) symmetry_class += 1 symmetry_per_fragment = [symmetry] SMILE = "" for line in string.splitlines()[2:]: SMILE += "[" + line.split()[0] + "]" SMILE_per_fragment = [SMILE] # if settings is defined, read values from xyz file else: atoms_per_fragment = [int(count) for count in settings.get("molecule", "fragments").split(",")] name_per_fragment = settings.get("molecule", "names").split(",") charge_per_fragment = [int(charge) for charge in settings.get("molecule", "charges").split(",")] spin_multiplicity_per_fragment = [int(spin) for spin in settings.get("molecule", "spins").split(",")] symmetry_per_fragment = settings.get("molecule", "symmetry").split(",") SMILE_per_fragment = settings.get("molecule", "SMILES").split(",") return Molecule.read_xyz(string, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment) @staticmethod def read_xyz_file_direct(file, settings = None): """ Reads fragments from a file into a new Molecule. Will infer a single fragment with charge 0, spin 1, no symmetry, and a SMILE with atoms connected in the order they appear in the string if settings is None. Args: file - The file to read from. settings - Settings object containing information about the molecule. Returns: The new Molecule. """ if settings is None: position = file.tell() atoms_per_fragment = [int(file.readline())] file.seek(position) else: atoms_per_fragment = [int(count) for count in settings.get("molecule", "fragments").split(",")] # build the xyz string string = "" # read lines from the file equal to the number needed for one molecule for line_count in range(2 + sum(atoms_per_fragment)): line = file.readline() # if the line is an empty string, then we have reached end of file mid parse if line == "": if line_count == 0: raise StopIteration # if the first line is empty, raise StopIteration to indicate that this file is out of molecules to parse raise XYZFormatError("ran out of lines to read from xyz file {} in the middle of a molecule".format(file.name), "make sure the last molecule in the file has a comment line and a number of atoms equal to the amount indicated in the atom count line.") string += line return Molecule.read_xyz_direct(string, settings) @staticmethod def read_xyz_path_direct(path, settings = None): """ Reads fragments from an xyz_file indicated by a path into this Molecule Will infer a single fragment with charge 0, spin 1, no symmetry, and a SMILE with atoms connected in the order they appear in the string if settings is None. Args: path - The path to read from. settings - Settings object containing information about the molecule. Returns: The new Molecule. """ with open(path, "r") as file: try: return Molecule.read_xyz_file_direct(file, settings) # if the call to read_xyz_file() raises a StopIteration, it means the file was empty except StopIteration: raise XYZFormatError("xyz file {} file is empty".format(file.name), "make sure the xyz file has at least 1 molecule in it") @staticmethod def read_psi4_string(string): """ Reads the string outputted by a call to psi4.molecule.save_string_xyz() into a new Molecule. Molecules created this way will not have name or symmetry saved correctly, because this information is not available from the output of psi4.molecule.save_string_xyz(). As a result certain operations will not work on this molecule, for example do not add this molecule to a database or attempt to generate its polynomial input format in style A1B2. Args: string - String output of psi4.molecule.save_string_xyz(). Returns: The new Molecule. """ # divide the string along \n characters lines = string.splitlines() # read charge and spin from first line of input string, casting each to an int try: charge, spin_multiplicity = [int(value) for value in lines[0].split()] except ValueError: raise XYZFormatError(lines[0], "line format should be 'charge spin_multiplicity', make sure you are passing in the output of psi4.molecule.save_string_xyz()") # calculate total atoms in this molecule total_atoms = len(lines) - 1 # these fields do not matter name = "unnamed" # used to build the symmetry string for the fragment symmetry = "" # keeps track of which symmetry_class to use for the next atom symmetry_class = 65 # loop over each atom assigning it a unique symmetry class for atom_index in range(total_atoms): symmetry += "{}1".format(chr(symmetry_class)) symmetry_class += 1 SMILE = "" for line in string.splitlines()[1:]: SMILE += line.split()[0] return Molecule([Fragment.read_xyz("\n".join(lines[1:]), name, charge, spin_multiplicity, SMILE, symmetry)]) def get_standard_order(self): return sorted(self.fragments, key = lambda x: x.get_name()) def get_config_molecule_section(self): # TODO: update SMILE fragments_list = self.get_standard_order() names = "{}\n".format(",".join(fragment.get_name() for fragment in fragments_list)) fragments = "{}\n".format(",".join(str(fragment.get_num_atoms()) for fragment in fragments_list)) charges = "{}\n".format(",".join(str(fragment.get_charge()) for fragment in fragments_list)) spins = "{}\n".format(",".join(str(fragment.get_spin_multiplicity()) for fragment in fragments_list)) symmetry = "{}\n".format(",".join(fragment.get_standard_symmetry() for fragment in fragments_list)) SMILES = "{}\n".format(",".join(fragment.get_standard_SMILE() for fragment in fragments_list)) next_letter = "A" for i in range(len(symmetry)): if symmetry[i].isupper(): symmetry = symmetry[:i] + next_letter + symmetry[i + 1:] next_letter = chr(ord(next_letter) + 1) return names, fragments, charges, spins, symmetry, SMILES def confirm_standard_order(self): """ Checks if this fragment is in standard order. Args: None. Returns: True if this fragment's atoms are in standard order. False otherwise. """ if not self.get_standard_order() == self.get_fragments(): return False for fragment in self.get_fragments(): if not fragment.confirm_standard_order(): return False return True def get_standard_copy(self): """ Gets a copy of this molecule, with fragments and atoms in standard order. Args: None. Returns: A copy of this molecule in standard order. """ order, frag_orders = self.get_standard_order_order() return self.get_reordered_copy(order, frag_orders, [frag.get_standard_SMILE() for frag in self.get_standard_order()]) def get_reorder_copy(self, names, SMILES): """ Gets a copy of this molecule, with fragments in the order specified by the names list and atoms in the order specified in the SMILE strings. Args: names - names of the fragments in the new order. SMILE - list of SMILE strings corresponding to the new order of fragments. Order the atoms of each fragment to match the order in these SMILE strings. Returns: A copy of this molecule in the order specified by names and SMILES. """ order, frag_orders = self.get_reorder_order(names, SMILES) return self.get_reordered_copy(order, frag_orders, SMILES) def get_copy(self): """ Gets a copy of this molecule. Args: None. Returns: An exact copy of this molecule. """ return self.get_reorder_copy([fragment.get_name() for fragment in self.get_fragments()], [fragment.get_SMILE() for fragment in self.get_fragments()]) def get_standard_order_order(self): """ Gets the order the fragments and atoms in this molecule must be in to be in standard order. Args: None. Returns: (order, frag_orders) order - A list of indices, where indices[i] = index of fragment that should be in index i to put the molecule in standard order. frag_orders - A list of lists, where each list corresponds to one fragment. where frag_orders[j][i] = index of atom that should be in index i to put the fragment j of the new order in standard order. """ order = [self.get_fragments().index(frag) for frag in self.get_standard_order()] frag_orders = [frag.get_standard_order_order() for frag in [self.get_fragments()[index] for index in order]] return order, frag_orders def get_reorder_order(self, names, SMILES): """ Gets the order the fragments and atoms in this molecule must be in to match the SMILE string. Args: names - order the fragments to match the order in this list. SMILE - order the atoms of each fragment to match the orders in these SMILE strings. Returns: (order, frag_orders) order - A list of indices, where indices[i] = index of fragment that should be in index i to put the fragments in the order specified. frag_orders - A list of lists, where each list corresponds to one fragment. where frag_orders[j][i] = index of atom that should be in index i to put the fragment j of the new order in the order specified. """ order = [] for name in names: for index, fragment in enumerate(self.get_fragments()): if fragment.get_name() == name and index not in order: order.append(index) frag_orders = [frag.get_reorder_order(SMILE) for frag, SMILE in zip([self.get_fragments()[index] for index in order], SMILES)] return order, frag_orders def get_reordered_copy(self, order, frag_orders, SMILES): """ Gets a copy of this molecule, the fragments and atoms are reordered according to the input. Args: order - New order of the fragments. frag_orders - New order of the atoms within each fragment. SMILES - new SMILE strings for each of the fragments. Returns: A copy of this molecule, reordered to match the input. """ fragments = [] prev_frag_name = None next_symmetry = 'A' symmetry_dict = {} for fragment, frag_order, SMILE in zip([self.get_fragments()[index] for index in order], frag_orders, SMILES): prev_frag_name = fragment.get_name() fragments.append(fragment.get_reordered_copy(frag_order, SMILE)) for atom in fragments[-1].get_atoms(): try: symmetry = symmetry_dict[atom.get_symmetry_class()] except: symmetry = next_symmetry symmetry_dict[atom.get_symmetry_class()] = symmetry next_symmetry = chr(ord(next_symmetry) + 1) atom.set_symmetry_class(symmetry) return Molecule(fragments) def __eq__(self, other): if not self.get_name() == other.get_name(): return False for self_frag, other_frag in zip(self.get_fragments(), other.get_fragments()): if self_frag != other_frag: return False return True def __ne__(self, other): return not self == other
paesanilab/MB-Fit
mbfit/molecule/molecule.py
molecule.py
py
44,981
python
en
code
14
github-code
6
17870516114
from src.costco.CostcoItem import CostcoItem from src.smartstore.CostcoRegister import SmartStoreItemRegister from src.utills import Utills # ์ฝ”์ŠคํŠธ์ฝ” ์•„์ดํ…œ์„ ์ •๋ณด๋ฅผ ์ฝ์–ด์™€ ์Šค๋งˆํŠธ์Šคํ† ์–ด์— ์ž‘์„ฑํ•˜๋Š” ์‹คํ–‰ ๋กœ์ง def excute(): webDriverPath = '/Users/tak/tak/python/crawling-dev/chromedriver' driver = Utills.getChromeDriver(webDriverPath) costcoPath = 'https://www.costco.co.kr/BeautyHouseholdPersonal-Care/BathFacial-Tissue/BathFacial-Tissue/KS-Premium-Bath-Tissue-40m-x-30roll-x-2/p/601285' # ์ฝ”์ŠคํŠธ์ฝ” ์ •๋ณด ํฌ๋กค๋ง costcoItem = CostcoItem(driver, costcoPath).excute() costcoItem.quit() # ์Šค๋งˆํŠธ์Šคํ† ์–ด ์ƒํ’ˆ ๋“ฑ๋กํ•˜๊ธฐ driver = Utills.getChromeDriver(webDriverPath) store = SmartStoreItemRegister(driver) store.itemId = costcoItem.itemId store.priceMarginRate = 1.08 # 8% ๋งˆ์ง„ store.itemTitle = costcoItem.itemTitle store.deliveryPrice = 3000 # ๋ฐฐ์†ก๋ฃŒ 3000 store.itemPrice = costcoItem.itemPrice store.itemImgs = costcoItem.itemImgs store.itemDetailInfo = costcoItem.itemDetailInfo store.excute() excute()
geontark/crawling-dev
src/excute/CostcoRegisterExcute.py
CostcoRegisterExcute.py
py
1,129
python
en
code
2
github-code
6
73823061627
class Interval(object): def __init__(self, start, end): self.start = start self.end = end def can_attend_meetings(intervals): intervals.sort(key=lambda i: i.start) for i in range(1, len(intervals)): if intervals[i].start < intervals[i - 1].end: return False return True print(can_attend_meetings([Interval(0, 30), Interval(5, 10), Interval(15, 20)])) # time complexity: o(nlog(n)) # space complexity: o(1)
jateen67/leetcode
intervals/easy/252_meeting_rooms.py
252_meeting_rooms.py
py
466
python
en
code
0
github-code
6
20677953442
from django.test import TestCase from django.urls import reverse from apps.shop.models import Product from apps.users.models import CustomUser from .models import Order test_order = {"name": "Django Django", "email": "[email protected]", "paid": True} test_product = { "name": "Test Product", "abbr": "TEPR", "slug": "tepr", "description": "Test Product description", "price": 2000, } normal_user = {"username": "normal", "email": "[email protected]", "password": "foo"} # Create your tests here. class TestOrderModelCreation(TestCase): """Test Product Model Creation""" def setUp(self): self.test_order = test_order self.test_product = test_product Order.objects.create( **self.test_order, product=Product.objects.create(**self.test_product) ) def test_order_model_created(self): obj = Order.objects.get(name=self.test_order["name"]) self.assertEqual(obj.name, self.test_order["name"]) self.assertEqual(obj.email, self.test_order["email"]) self.assertEqual(obj.paid, self.test_order["paid"]) self.assertEqual(obj.product.name, self.test_product["name"]) class TestOrderCreateView(TestCase): """Test Order Create View""" def setUp(self): self.test_order = test_order self.test_product = test_product self.test_user = normal_user CustomUser.objects.create_user(**self.test_user) Order.objects.create( **self.test_order, product=Product.objects.create(**self.test_product) ) def test_order_create_view(self): response = self.client.get(reverse("order_create")) self.assertTemplateUsed(response, "orders/order_form.html") self.assertEqual(response.status_code, 200) def test_main_author(self): main_author = CustomUser.objects.get(username=self.test_user["username"]) main_author.main_user = True main_author.save() response = self.client.get(reverse("order_create")) self.assertEqual(response.context["main_author"], main_author) class TestSuccessView(TestCase): """Test Success View""" def setUp(self): self.test_user = normal_user CustomUser.objects.create_user(**self.test_user) def test_order_success_view(self): response = self.client.get(reverse("success_created")) self.assertTemplateUsed(response, "orders/success_created.html") self.assertEqual(response.status_code, 200) def test_main_author(self): main_author = CustomUser.objects.get(username=self.test_user["username"]) main_author.main_user = True main_author.save() response = self.client.get(reverse("success_created")) self.assertEqual(response.context["main_author"], main_author)
akundev/akundotdev
apps/orders/tests.py
tests.py
py
2,822
python
en
code
0
github-code
6