seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
36259278100
import requests from bs4 import BeautifulSoup import json import secrets from requests_oauthlib import OAuth1 from operator import itemgetter import sqlite3 import csv import base64 import itertools import plotly.plotly as py import plotly.graph_objs as go import webbrowser spotifybase = "https://accounts.spotify.com/api/token" spotifyplay = "https://api.spotify.com/v1/search" foodnet = "https://www.foodnetwork.com/profiles/talent" spotify_client = secrets.client_id spotify_secret = secrets.client_secret auth = (spotify_client, spotify_secret) grant_type = 'client_credentials' CACHE_FNAME = 'final_cache.json' DBNAME = 'food.db' CHEFS = 'chefs.json' DISHES = 'dishes.json' flavor_dict = {'Aaron McCargo Jr.': 'American', 'Aarti Sequeira': 'South Asian', 'Aarón Sánchez': 'Latin', 'Adam Gertler': 'BBQ', 'Aida Mollenkamp': 'Innovative', 'Alex Guarnaschelli': 'Traditional Home-Cooking', 'Amanda Freitag': 'Traditional Home-Cooking', 'Amy Thielen': 'Traditional Home-Cooking', 'Andrew Zimmern': 'Innovative', 'Anne Burrell': 'Rustic', 'Anne Thornton': 'Sweet Treats', 'Ayesha Curry': 'Home-Cooking', 'Bob Blumer': 'Innovative', 'Bobby Flay': 'American', 'Brian Boitano': 'Innovative', 'Buddy Valastro': 'Sweet Treats', 'Carla Hall': 'Southern Comfort', 'Cat Cora': 'Misc.', 'Chris Santos': 'Innovative', 'Claire Robinson': 'Home-Cooking', 'Curtis Stone': 'Home-Cooking', 'Daisy Martinez': 'Latin', 'Damaris Phillips': 'Southern Comfort', 'Danny Boome': 'Healthy', 'Daphne Brogdon': 'Home-Cooking', 'Dave Lieberman': 'Home-Cooking', 'Donatella Arpaia': 'Home-Cooking', 'Duff Goldman': 'Sweet Treats', 'Eddie Jackson': 'Healthy', 'Ellie Krieger': 'Healthy', 'Emeril Lagasse': 'Misc.', 'Food Network Kitchen': 'Misc.', 'Geoffrey Zakarian': 'Modern American', 'George Duran': 'Global Cuisine', 'Giada De Laurentiis': 'Italian', 'Graham Elliot': 'Misc.', 'Guy Fieri': 'American', 'Ina Garten': 'Home-Cooking', 'Ingrid Hoffmann': 'Misc.', 'Jamie Deen': 'BBQ', 'Jamie Oliver': 'Healthy', 'Janet Johnston': 'Home-Cooked', 'Jeff Corwin': 'Latin', 'Jeff Mauro': 'Misc.', 'Jet Tila': 'East Asian', 'Joey Fatone': 'American', 'Jose Garces': 'Latin', 'Judy Joo': 'Misc.', 'Katie Lee': 'Misc.', 'Keegan Gerhard': 'Sweet Treats', 'Kerry Vincent': 'Sweet Treats', 'Lorraine Pascale': 'Home-Cooking', 'Maneet Chauhan': 'South Asian', 'Marc Murphy': 'Modern American', 'Marcela Valladolid': 'Latin', 'Marcus Samuelsson': 'Misc.', 'Mario Batali': 'Italian', 'Mary Nolan': 'Everyday', 'Masaharu Morimoto': 'East Asian', "Melissa d'Arabian": 'Healthy', 'Michael Chiarello': 'Italian', 'Michael Symon': 'Misc.', 'Nancy Fuller': 'Southern Comfort', 'Nigella Lawson': 'Home-Cooking', 'Patricia Heaton': 'American', 'Paula Deen': 'Southern', 'Rachael Ray': 'Everyday', 'Ree Drummond': 'Southern Comfort', 'Robert Irvine': 'American', 'Robin Miller': 'Everyday', 'Roger Mooking': 'Global Cuisine', 'Ron Ben-Israel': 'Sweet Treats', 'Sandra Lee': 'American', 'Scott Conant': 'Italian', 'Sherry Yard': 'Sweet Treats', 'Sunny Anderson': 'Southern Comfort', 'Ted Allen': 'American', 'The Hearty Boys': 'Innovative', 'The Neelys': 'BBQ', 'Tia Mowry': 'Everyday', 'Tregaye Fraser': 'Innovative', 'Trisha Yearwood': 'Southern Comfort', 'Tyler Florence': 'Home-Cooking', 'Valerie Bertinelli': 'Misc.', 'Warren Brown': 'Sweet Treats'} try: cache_file = open(CACHE_FNAME, 'r') cache_contents = cache_file.read() CACHE_DICTION = json.loads(cache_contents) cache_file.close() except: CACHE_DICTION = {} try: cache_file = open(CHEFS, 'r') cache_contents = cache_file.read() CHEF_DICTION = json.loads(cache_contents) cache_file.close() except: CHEF_DICTION = {} try: cache_file = open(DISHES, 'r') cache_contents = cache_file.read() DISH_DICTION = json.loads(cache_contents) cache_file.close() except: DISH_DICTION = {} def get_spotify_token(url, auth): params = {'grant_type': grant_type} # if url in CACHE_DICTION: # access_token = CACHE_DICTION[url][17:100] # return access_token # else: resp = requests.post(url, data=params, auth=auth) resp_data = json.loads(resp.text) access_token = resp_data["access_token"] CACHE_DICTION[url] = resp.text dumped_json_cache = json.dumps(CACHE_DICTION) fw = open(CACHE_FNAME,"w") fw.write(dumped_json_cache) fw.close() return access_token def make_request_using_cache(url, headers=None): if url in CACHE_DICTION: return CACHE_DICTION[url] else: if headers is None: resp = requests.get(url) else: resp = requests.get(url, headers=headers) CACHE_DICTION[url] = resp.text dumped_json_cache = json.dumps(CACHE_DICTION) fw = open(CACHE_FNAME,"w") fw.write(dumped_json_cache) fw.close() return CACHE_DICTION[url] def get_spotify_playlist(search_term): end = ["party", "graph", "term"] params = {'q': search_term} url = "{}?type=playlist&limit=5&q=".format(spotifyplay) + search_term access_token = get_spotify_token(spotifybase, auth) authorization_header = {"Authorization":"Bearer {}".format(access_token)} response_string = make_request_using_cache(url, authorization_header) response = json.loads(response_string) num = 0 spotify_list = [] for r in response: for i in range(5): num += 1 spotify_list.append((response[r]["items"][i]["name"], str(response[r]["items"][i]["tracks"]["total"]))) print(str(num) + ". " + response[r]["items"][i]["name"] + " --- " + str(response[r]["items"][i]["tracks"]["total"])) print("Do you want to see a bar graph comparing these playlist's lengths," "look up another term, or" " do you want to go start throwing your awesome party?") response = input("Please enter 'party', 'term', or 'graph': ") while response not in end: response = input("Please enter 'party', 'term', or 'graph': ") if response == 'party': print("Bye! Have fun!") exit() elif response == 'graph': bar_graph_spotify(spotify_list) print("Alright! Time for you to go throw the best party out there! See you later!") exit() elif response == 'term': response = input("Please enter a new search term! ") get_spotify_playlist(response) return spotify_list def init_db(): conn = sqlite3.connect(DBNAME) cur = conn.cursor() statement = ''' DROP TABLE IF EXISTS 'Chefs'; ''' cur.execute(statement) statement = ''' DROP TABLE IF EXISTS 'Dishes'; ''' cur.execute(statement) conn.commit() statement = ''' CREATE TABLE 'Chefs' ( 'Id' INTEGER PRIMARY KEY AUTOINCREMENT, 'FirstName' TEXT NOT NULL, 'LastName' TEXT NOT NULL, 'ChefUrl' TEXT NOT NULL, 'PopularRecipe' TEXT, 'FlavorProfile' TEXT ); ''' cur.execute(statement) statement = ''' CREATE TABLE 'Dishes' ( 'Id' INTEGER PRIMARY KEY AUTOINCREMENT, 'DishName' TEXT NOT NULL, 'DishUrl' TEXT NOT NULL, 'ChefID' INTEGER, 'Type' TEXT NOT NULL, 'LevelDifficulty' TEXT NOT NULL, 'Rating' INTEGER ); ''' cur.execute(statement) conn.commit() conn.close() class Chef: def __init__(self, FirstName, LastName, ChefUrl=None): self.FirstName = FirstName self.LastName = LastName self.ChefUrl = ChefUrl self.full_name = FirstName + " " + LastName if ChefUrl is not None: unique_page_text = make_request_using_cache(ChefUrl) unique_page_soup = BeautifulSoup(unique_page_text, 'html.parser') if self.full_name in flavor_dict: try: most_popular_block = unique_page_soup.find(class_ = "m-MediaBlock o-Capsule__m-MediaBlock m-MediaBlock--recipe") most_popular = most_popular_block.find(class_="m-MediaBlock__a-HeadlineText").text self.FlavorProfile = flavor_dict[self.full_name] if self.full_name == "Bobby Flay" or self.full_name == "Duff Goldman" or self.full_name == "Melissa D'Arabian" or self.full_name == "Nigella Lawson": recipes_url = ChefUrl + "/recipes" recipes_text = make_request_using_cache(recipes_url) recipes_soup = BeautifulSoup(recipes_text, 'html.parser') recipes_list = recipes_soup.find(class_ = "l-List") most_popular = recipes_list.find(class_ = "m-MediaBlock__a-HeadlineText").text except: most_popular = "N/A" else: most_popular = "N/A" self.FlavorProfile = "N/A" self.PopularRecipe = most_popular else: self.PopularRecipe = "N/A" class Dish: def __init__(self, DishName, DishUrl, Rating, Chef): dish_types = ["Side Dish", "Main Dish", "Snack Dish", "Dessert"] self.DishName = DishName self.DishUrl = "http:" + DishUrl self.Rating = Rating self.Chef = Chef dish_type = "Unknown" dish_page_text = make_request_using_cache(self.DishUrl) dish_page_soup = BeautifulSoup(dish_page_text, 'html.parser') try: level_all = dish_page_soup.find(class_ = "o-RecipeInfo o-Level") level = level_all.find(class_ = "o-RecipeInfo__a-Description").text except: level = "Unknown" try: tags = dish_page_soup.find_all(class_ = "o-Capsule__a-Tag a-Tag") for t in tags: if t.text in dish_types: dish_type = t.text else: dish_type = "Unknown" except: dish_type = "Unknown" pass self.Type = dish_type self.LevelDifficulty = level pass def get_chef_info(): init_page_text = make_request_using_cache(foodnet) init_page_soup = BeautifulSoup(init_page_text, 'html.parser') name_list = init_page_soup.find_all(class_="m-PromoList__a-ListItem") chef_list = [] num = 0 for n in name_list: first_name = n.text.split(" ")[0] second_word = n.text.split(" ")[1] last_name = n.text.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = n.text.split(" ")[0] + " and " + n.text.split(" ")[2] last_name = n.text.split(" ")[3] chef_url = "https:" + n.find('a')['href'] n = Chef(first_name, last_name, chef_url) chef_list.append(n) chef = {"FirstName": n.FirstName, "LastName": n.LastName, "ChefUrl": n.ChefUrl, "PopularRecipe": n.PopularRecipe, "FlavorProfile": n.FlavorProfile} CHEF_DICTION[n.full_name] = chef chef_string = json.dumps(CHEF_DICTION, indent = 4) fw = open(CHEFS,"w") fw.write(chef_string) fw.close() return chef_list def get_dish_info(): chefs = get_chef_info() dishes_list = [] for c in chefs: chef_dishes = [] if c.full_name in flavor_dict: dishes_url = c.ChefUrl + "/recipes" init_page_text = make_request_using_cache(dishes_url) init_page_soup = BeautifulSoup(init_page_text, 'html.parser') try: next_button = init_page_soup.find(class_ = "o-Pagination__a-Button o-Pagination__a-NextButton") except: next_button = "No" big_list = init_page_soup.find(class_="l-List") ratings_list = [] try: dish_list = big_list.find_all(class_ = "m-MediaBlock__a-Headline") except: pass try: ratings = big_list.find_all(class_ = "gig-rating-stars")['title'] for r in ratings: print(r) ratings_list.append(ratings) except: ratings = "Unknown" ratings_list.append(ratings) try: for d in dish_list: dish_name = d.text dish_url = d.find('a')["href"] dish_rating = "5 out of 5" d = Dish(dish_name, dish_url, dish_rating, c.full_name) dishes_list.append(d) dish = {"DishName": d.DishName, "DishUrl": d.DishUrl, "DishRating": d.Rating, "Type": d.Type, "LevelDifficulty": d.LevelDifficulty} chef_dishes.append(dish) except: pass # num = 1 # while next_button != "No": # num += 1 # next_url = dishes_url + "/trending-/p/" + str(num) # next_page = make_request_using_cache(next_url) # next_page_soup = BeautifulSoup(next_page, 'html.parser') # try: # next_button = init_page_soup.find(class_ = "o-Pagination__a-Button o-Pagination__a-NextButton") # except: # next_button = "No" # big_list = next_page_soup.find(class_="l-List") # ratings_list = [] # try: # dish_list = big_list.find_all(class_ = "m-MediaBlock__a-Headline") # except: # dish_list = "no dishes" # try: # ratings = big_list.find_all(class_ = "gig-rating-stars")['title'] # for r in ratings: # print(r) # ratings_list.append(ratings) # except: # ratings = "Unknown" # ratings_list.append(ratings) # try: # for d in dish_list: # dish_name = d.text # dish_url = d.find('a')["href"] # dish_rating = "" # d = Dish(dish_name, dish_url, dish_rating, c.full_name) # dishes_list.append(d) # dish = {"DishName": d.DishName, # "DishUrl": d.DishUrl, # "DishRating": d.Rating, # "Type": d.Type, # "LevelDifficulty": d.LevelDifficulty} # chef_dishes.append(dish) # except: # pass # if num == 2: # break # try: # next_button = next_page_soup.find(class_ = "o-Pagination__a-Button o-Pagination__a-NextButton").text # except: # next_button = "No" DISH_DICTION[c.full_name] = chef_dishes dish_string = json.dumps(DISH_DICTION, indent = 4) fw = open(DISHES,"w") fw.write(dish_string) fw.close() #print(dishes_list[:30]) return dishes_list def insert_data(): try: conn = sqlite3.connect(DBNAME) cur = conn.cursor() except Error as e: print(e) # # #print('Inserting Data.') with open(CHEFS) as json_data: cjson = json.load(json_data) for c, d in cjson.items(): insertion = (None, d["FirstName"], d["LastName"], d["ChefUrl"], d["PopularRecipe"], d["FlavorProfile"]) statement = 'INSERT INTO "Chefs" ' statement += 'VALUES (?, ?, ?, ?, ?, ?)' cur.execute(statement, insertion) chef_dict = {} statement = '''SELECT Id, FirstName, LastName FROM Chefs''' cur.execute(statement) for chef_info in cur: full_name = chef_info[1] + " " + chef_info [2] chef_dict[full_name] = chef_info[0] with open(DISHES) as json_data: cjson = json.load(json_data) for c, d in cjson.items(): full_name = c for i in d: insertion = (None, i["DishName"].replace("\n", ""), i["DishUrl"], chef_dict[full_name], i["Type"], i["LevelDifficulty"].replace("\n", ""), i["DishRating"]) statement = 'INSERT INTO "Dishes" ' statement += 'VALUES (?, ?, ?, ?, ?, ?, ?)' cur.execute(statement, insertion) conn.commit() conn.close() def pie_chart(flavor_chef): conn = sqlite3.connect(DBNAME) cur = conn.cursor() labels = [] values = [] for f in flavor_chef: labels.append(f) first_name = f.split(" ")[0] second_word = f.split(" ")[1] last_name = f.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = f.split(" ")[0] + " and " + f.split(" ")[2] last_name = f.split(" ")[3] query = ''' SELECT COUNT(*) FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE c.FirstName = "{}" AND c.LastName = "{}" GROUP BY c.ID '''.format(first_name, last_name) value = cur.execute(query) for v in value: values.append(v[0]) trace = go.Pie(labels=labels, values=values) py.plot([trace], filename='Flavors') def bar_graph_spotify(spotify): x = [] y = [] for w, z in spotify: x.append(w) y.append(z) data = [go.Bar( x = x, y = y )] py.plot(data, filename='bar-Spotify') def bar_graph_type(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() chef_types = {} first_name = command.split(" ")[0] second_word = command.split(" ")[1] last_name = command.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = command.split(" ")[0] + " and " + command.split(" ")[2] last_name = command.split(" ")[3] query = ''' SELECT COUNT(*), d.Type FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE c.FirstName = "{}" AND c.LastName = "{}" GROUP BY d.Type '''.format(first_name, last_name) types = cur.execute(query) x = [] y = [] for t in types: print(t) x.append(t[1]) y.append(t[0]) data = [go.Bar( x = x, y = y )] py.plot(data, filename='bar-Type') def process_flavors(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() flavor_chef = [] query = ''' SELECT FirstName, LastName FROM Chefs WHERE FlavorProfile = "{}" '''.format(command) chefs = cur.execute(query) for c in chefs: full_name = c[0] + " " + c[1] flavor_chef.append(full_name) return flavor_chef conn.close() def process_chef(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() dishes_o_chefs = [] first_name = command.split(" ")[0] second_word = command.split(" ")[1] last_name = command.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = command.split(" ")[0] + " and " + command.split(" ")[2] last_name = command.split(" ")[3] query = ''' SELECT d.DishName, d.DishUrl, d.Rating, d.Type, d.LevelDifficulty FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE c.FirstName = "{}" AND c.LastName = "{}" '''.format(first_name, last_name) dishes = cur.execute(query) for d in dishes: dish = {} formatted = d[0] + "--- " + d[3] + ", " + d[2] + ", Level: " + d[4] dish[d[0]] = [d[1], d[2], d[3], d[4]] dishes_o_chefs.append(dish) conn.close() return dishes_o_chefs def process_dish(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() dish = [] query = ''' SELECT d.DishName, d.DishUrl, d.Rating, d.Type, d.LevelDifficulty FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE d.Type = "{}" LIMIT 1 '''.format(command) dishes = cur.execute(query) for d in dishes: one_dish = {} formatted = d[0] + "--- " + d[3] + ", " + d[2] + ", Level: " + d[4] one_dish[d[0]] = [d[1], d[2], d[3], d[4]] dish.append(one_dish) conn.close() return dish def flavors(): flavors = ["American", "BBQ", "East Asian", "Everyday", "Global Cuisine", "Healthy", "Home-Cooking","Innovative","Italian","Latin","Misc.","Modern American", "Rustic","Southern Comfort","South Asian","Sweet Treats","Trad. Home-Cooking", "exit"] one_two = ["1", "2", "exit"] print("Here are the flavors we've put together for your absolutely amazing party: \n" "American BBQ East Asian\n" "Everyday Global Cuisine Healthy\n" "Home-Cooking Innovative Italian\n" "Latin Misc. Modern American\n" "Rustic Southern Comfort South Asian\n" "Sweet Treats Trad. Home-Cooking") response = input("Please enter a single flavor so we can pull up a list " "of chefs from FoodNetwork for you! ") while response not in flavors: response = input("Whoops! That doesn't look quite right, please try again! ") if response == "exit": print("Bye! Hope your party's a blast!") exit() flavor_chef = process_flavors(response) num_chef = 0 print("-"*40, "\n", "CHEFS WITH A ", response, " FLAVOR", "\n", "-"*40) for f in flavor_chef: num_chef +=1 print(str(num_chef) + ". " + f) print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you" "a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes" "each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) elif response == '2': pie_chart(flavor_chef) print("Alright now let's choose a chef/dish!") chef_dish(flavor_chef) elif response == 'exit': print("Bye! Hope your party's a blast!") exit() return flavor_chef def chef_dish(flavor_chef): chef_dish = ["chef", "dish", "exit"] kinds = ["Snack", "Side Dish", "Main Dish", "Dessert", "exit"] response = input("Enter 'chef' or 'dish': ") while response not in chef_dish: response = input("Please enter 'chef' or 'dish': ") if response == "exit": print("Bye! Hope your party's a blast!") exit() elif response == 'chef': response = input("Nice! Type in the name of the chef you want to look at: ") while response not in flavor_chef: response = input("Oops! Did you type that in right? Try again: ") if response == "exit": print("Bye! Hope your party's a blast!") exit() chef(response) elif response == 'dish': print("Solid! Do you want a snack, side, main dish, or dessert?") response = input("Please enter 'Snack', 'Side Dish', 'Main Dish', or 'Dessert': ") while response not in kinds: response = input("Oops! Did you type that in right? Try again: ") if response == "exit": print("Bye! Hope your party's a blast!") exit() dish(response) return 0 def dish(kind): music_flavor = ["music", "flavor"] yes_no = ["yes", "no", "exit"] one_two = ["1", "2", "exit"] print("-"*15, "\n", "A ", kind, "DISH" "\n", "-"*15) dish = process_dish(kind) for d in dish: for i in d: formatted = i + " --- " + d[i][2] + ", " + d[i][1] + ", Level: " + d[i][3].replace(" ", "") print(formatted) print("\n Do you want to go to the url for this dish?") response = input("Enter 'yes' to go to the url or enter 'no' to go back to flavors: ") while response not in yes_no: response = input("Please enter 'yes' or 'no': ") if response == "yes": for d in dish: url = d[i][0] print("Launching " + url + " in browser!") webbrowser.open(url) print("Are you satisfied with your recipe? Do you want to go look at music?") response = input("Enter 'music' for music or enter 'flavor' to go back to the flavors ") while response not in music_flavor: response = input("Please try again: ") if response == 'music': response = input("Enter a search term for Spotify: ") spotify = get_spotify_playlist(response) bar_graph_spotify(spotify) elif response == 'flavor': flavor_chef = flavors() print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you " " a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes " " each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) if response == '2': pie_chart(flavor_chef) elif response == "no": flavor_chef = flavors() chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() return 0 def chef(name): music_flavor = ["music", "flavor", "exit"] one_two = ["one", "two", "exit"] num_chef_dish = 0 print("-"*30, "\n", "DISHES BY ", name, "\n" + "-"*30) dishes_o_chefs = process_chef(name) dish_nums = [] for d in dishes_o_chefs: for i in d: num_chef_dish += 1 formatted = str(num_chef_dish) + ". " + i + " --- " + d[i][2] + ", " + ", Type: " + d[i][1] + ", Level: " + d[i][3].replace(" ", "") print(formatted) dish_nums.append((num_chef_dish - 1, d[i][0])) response = input("Enter a number to go to that dish's url, enter 'flavor' to go back to the flavors, or" "enter 'graph' to see a graph of this chef's number of main, side, snack, and dessert dishes! ") if response == "flavor": flavor_chef = flavors() chef_dish(flavor_chef) elif response.isdigit() == True: # try: url = dish_nums[(int(response)-1)][1] print(url) print("Launching " + url + " in browser!") webbrowser.open(url) # except: # print("URL Unknown") print("Are you satisfied with your recipe? Do you want to go look at music?") response = input("Enter 'music' for music or enter 'flavor' to go back to the flavors ") while response not in music_flavor: response = input("Please try again: ") if response == 'music': response = input("Enter a search term for Spotify: ") get_spotify_playlist(response) elif response == 'flavor': flavor_chef = flavors() print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you" " a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes" " each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) elif response == '2': pie_chart(flavor_chef) print("Great! Let's go look at some chef/dishes from this flavor now!") chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() elif response == "exit": print("Bye! Hope your party's a blast!") exit() elif response == 'graph': bar_graph_type(name) print("Nice!") response = input("Enter a number to go to that dish's url, enter 'flavor' to go back to the flavors, or" "enter 'graph' to see a graph of this chef's number of main, side, snack, and dessert dishes! ") if response == "flavor": flavor_chef = flavors() chef_dish(flavor_chef) elif response.isdigit() == True: #try: url = dish_nums[(int(response)-1)][1] print(url) print("Launching " + url + " in browser!") webbrowser.open(url) # except: # print("URL Unknown") print("Are you satisfied with your recipe? Do you want to go look at music?") response = input("Enter 'music' for music or enter 'flavor' to go back to the flavors ") while response not in music_flavor: response = input("Please try again: ") if response == 'music': response = input("Enter a search term for Spotify: ") get_spotify_playlist(response) elif response == 'flavor': flavor_chef = flavors() print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you" "a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes" "each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) if response == '2': pie_chart(flavor_chef) print("Great! Let's go look at some chef/dishes from this flavor now!") chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() else: print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") while response != 'flavor': print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") flavor_chef = flavors() chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() else: print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") while response != 'flavor': print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") flavor_chef = flavors() chef_dish(flavor_chef) def interactive_prompt(): one_two = ["1", "2", "exit"] print("-"*30, "\n", "PARTY PLANNING PROGRAM \n", "-"*30) print("Hey! So you wanna plan a party? Don't know where to start? Look no " "further! We'll help you with the two most important parts of any party: " "food and music! (You've gotta take care of the conversation on your own, " "though, sorry!)") response = input("Enter anything if this is the program you've been looking for " "your whole life (enter 'exit' if you want to leave!): ") if response == "exit": print("Bye! Hope your party's a blast!") exit() print("With P^3 you can get delicious recipes and great music for the " "best party you've ever thrown. Yes, even better than your neighbor Janet's " "Halloween party last year.") response = input("Cool right? ") if response == 'exit': print("Bye! Hope your party's a blast!") exit() print("Yea, we think so too. Let's get started.") flavor_chef = flavors() if __name__=="__main__": #get_dish_info() #init_db() #insert_data() interactive_prompt() #get_spotify_playlist("country")
jntoma/finalproj206
final_food.py
final_food.py
py
33,382
python
en
code
0
github-code
6
4470012110
# -*- coding: utf-8 -*- """ Created on Fri Apr 10 23:13:16 2015 @author: maxshashoua """ file = list(open("Standing_Ovation_Large.in")) for i in range(len(file)): file[i] = file[i].strip("\n").strip() T = int(file[0]) Total = T data = file[1:] """" for l in data: t = l[0] s = 1 friends = 0 raw = l[2:] # j in raw is each character in the raw data for number of people in one puzzle for j in raw: s -= 1 s += int(j) if s == 0: friends += 1 s += 1 print('Case #' + str(Total - T + 1) + " " + str(friends)) T -= 1 """ f = open("Standing_Ovation_Large_Attempt.txt", "w") for l in data: t = l[0] s = 1 friends = 0 rawP = l.split(" ") raw = rawP[1] # j in raw is each character in the raw data for number of people in one puzzle for j in raw: s -= 1 s += int(j) if s == 0: friends += 1 s += 1 f.write('Case #' + str(Total - T + 1) + " " + str(friends) + "\n") print('Case #' + str(Total - T + 1) + " " + str(friends) + "\n") T -= 1 print("done")
emsha/Code-Jam
standingovation.d/Standing_Ovation_Solver.py
Standing_Ovation_Solver.py
py
1,142
python
en
code
0
github-code
6
5259664413
import re #import CMUTweetTagger #import cPickle from collections import defaultdict import pickle from nltk.corpus import wordnet as wn from itertools import product import spacy from spacy.symbols import * from nltk import Tree import nltk nlp=spacy.load('en') np_labels=set(['nsubj','dobj','pobj','iobj','conj','nsubjpass','appos','nmod','poss','parataxis','advmod','advcl']) subj_labels=set(['nsubj','nsubjpass']) need_verb_list=['need','require','want','lack'] send_verb_list=['send','give','donate','transfer','distribute','aid','help','procure'] common_resource=['food','water','medicine','tent','clothes','communication','transport','infrastructure','shelter','internet','sanitation','hospital','donations'] modifiers=['nummod','compound','amod','punct'] after_clause_modifier=['relcl','acl','ccomp','xcomp','acomp','punct']#,'nn','quantmod','nmod','hmod','infmod'] verb_count={} resource_array=[] modified_array=[] # nepal_stop_list=['nepal','earthquake','quake','nepalese'] nepal_stop_list=[] tel_no="([+]?[0]?[1-9][0-9\s]*[-]?[0-9\s]+)" email="([a-zA-Z0-9]?[a-zA-Z0-9_.]+[@][a-zA-Z]*[.](com|net|edu|in|org|en))" web_url="http:[a-zA-Z._0-9/]+[a-zA-Z0-9]" entity_type_list=['NORP','ORG','GPE','PERSON'] quant_no="([0-9]*[,.]?[0-9]+[k]?)" need_send_verb_list=['need','require','want','lack','send','give','donate','transfer','distribute','aid','help','support','procure'] # def quant_no(resource): # return [i for re.findall(quant_no,resource)] def modifier_word(word): modified_word=word.orth_ while word.n_lefts+word.n_rights==1 and word.dep_.lower() in modifiers: word=[child for child in word.children][0] modified_word=word.orth_+" "+modified_word return modified_word def tok_format(tok): return "_".join([tok.orth_, tok.dep_,tok.ent_type_]) def to_nltk_tree(node): if node.n_lefts + node.n_rights > 0: return Tree(tok_format(node), [to_nltk_tree(child) for child in node.children]) else: return tok_format(node) def get_children(word,resource_array,modified_array): #print(word,word.dep_) for child in word.children: if child.dep_.lower() in modifiers: get_word=modifier_word(child)+" "+word.orth_+"<_>"+word.dep_ modified_array.append(get_word) if child.dep_.lower()=='prep' or child.dep_.lower()=='punct': get_children(child,resource_array,modified_array) if child.dep_.lower() in after_clause_modifier: #print(child, child.dep_) get_children(child,resource_array,modified_array) if child.dep_.lower() in np_labels: get_children(child,resource_array,modified_array) resource_array.append(child.orth_+"<_>"+child.dep_) else: if get_verb_similarity_score(child.orth_,common_resource)>0.7 : get_children(child,resource_array,modified_array) def get_verb_similarity_score(word,given_list): max_verb_similarity=0 if word.lower() in given_list: max_verb_similarity=1 else: current_verb_list=wn.synsets(word.lower()) for verb in given_list: related_verbs=wn.synsets(verb) for a,b in product(related_verbs,current_verb_list): d=wn.wup_similarity(a,b) try: if d> max_verb_similarity: max_verb_similarity=d except: continue return max_verb_similarity def resource_in_list(resource): related_resources=wn.synsets(resource) max_similarity=0 chosen_word="" if resource.lower() in common_resource: return 1,resource for word in common_resource: related_words=wn.synsets(word) #print(word,related_words) for a,b in product(related_words,related_resources): d=wn.wup_similarity(a,b) try: if d> max_similarity: max_similarity=d chosen_word=word except: continue return max_similarity,chosen_word def get_resource(text): doc=nlp(text) # try: # [to_nltk_tree(sent.root).pretty_print() for sent in doc.sents] # except: # print("Exception here") org_list=[] prev_word="" prev_word_type="" for word in doc: if word.ent_type_ in entity_type_list: org_list.append(word.orth_+"<_>"+word.ent_type_) else: org_list.append("<_>") resource_array=[] modified_array=[] for word in doc: if get_verb_similarity_score(word.orth_,need_send_verb_list)>0.8 or word.dep_=='ROOT': get_children(word,resource_array,modified_array) if word.dep_=='cc' and word.n_lefts+word.n_rights==0: ancestor=word.head.orth_ #print(ancestor) if get_verb_similarity_score(ancestor,common_resource)>0.6: get_children(word.head,resource_array,modified_array) #print(resource_array) #print(modified_array) last_word=[] # for resource in modified_array: # print(resource) # print(resource, resource_in_list(resource.lower())) # for word in modified_array: # last_word.append(word.split(' ')[-1]) final_resource={} modified_array_2=[] resource_array_2=[] n_subj_list=[] for i in modified_array: modified_array_2.append(i[:(i.index("<_>"))]) for i in resource_array: resource_array_2.append(i[:(i.index("<_>"))]) for resources in modified_array_2: max_val_resource=0 val_type="" resource_list=resources.rstrip().split(" ") for resource in resource_list: pres_res_val,pres_res_type=resource_in_list(resource) if pres_res_val> max_val_resource: val_type=pres_res_type max_val_resource=pres_res_val if max_val_resource > 0.6: final_resource[resources]=val_type for resource in resource_array_2: #print(resource) pres_res_val,pres_res_type=resource_in_list(resource) if pres_res_val> 0.6: if resource not in final_resource: final_resource[resource]=pres_res_type final_resource_keys=list(final_resource.keys()) prev_word_type="" prev_word="" org_list_2=[] poss_places=[] for i in org_list: index=i.index("<_>") if i[index+3:]=='GPE' and i[:index] in final_resource_keys: #final_resource_keys.remove(i[:index]) poss_places.append(i[:index]) if i[index+3:]=="ORG" and prev_word_type=="ORG": prev_word=prev_word+" "+i[:index] elif i[index+3:]=="PERSON" and prev_word_type=="PERSON": prev_word=prev_word+" "+i[:index] else: if prev_word !='': org_list_2.append(prev_word+"<_>"+prev_word_type) prev_word_type=i[index+3:] prev_word=i[:index] quantity_dict={} for i in final_resource: for j in re.findall(quant_no,i): quantity_dict[i]=j source_list=[] org_person_list=[] for i in org_list_2: tag=i[i.index("<_>")+3:] j=i[:i.index("<_>")] if tag=="ORG" or tag=="PERSON": if j.lower() not in nepal_stop_list: org_person_list.append(j) elif j.lower() not in nepal_stop_list and j not in quantity_dict.keys(): source_list.append(j) else: continue for i in modified_array: pos_res=i[:i.index("<_>")] pos_tag=i[i.index("<_>")+3:] if pos_tag in subj_labels: if pos_res not in source_list and pos_res not in final_resource_keys and pos_res.lower() not in nepal_stop_list: #print(pos_tag,pos_res) source_list.append(pos_res) for i in resource_array: pos_res=i[:i.index("<_>")] pos_tag=i[i.index("<_>")+3:] if pos_tag in subj_labels: if pos_res not in source_list and pos_res not in final_resource_keys and pos_res.lower() not in nepal_stop_list: #print(pos_tag,pos_res) source_list.append(pos_res) return quantity_dict,final_resource_keys,source_list,poss_places,org_person_list def get_contact(text): numbers=re.findall(tel_no,text) print("Contact Information") for i in numbers: if len(i)>=7: print(i) #test_file.write(str(i)+",") #test_file.write('\nMail:') mails= re.findall(email,text) for i in mails: print("Mail: "+i) #test_file.write(str(i)+",")
varun-manjunath/disaster-mitigation
matching/common_nouns.py
common_nouns.py
py
7,549
python
en
code
2
github-code
6
24706158570
#!/usr/bin/python2.4 import base64 import hmac from google.appengine.api import urlfetch from google.appengine.ext import webapp from google.appengine.ext.webapp.util import run_wsgi_app import hashlib class PlacesHandler(webapp.RequestHandler): """Handles requests to /places.""" def post(self): """Handles posts.""" self.response.headers['Content-Type'] = 'application/json' action = self.request.get('action') CLIENT_ID = None PRIVATE_KEY = None # These are required to work if not CLIENT_ID and not PRIVATE_KEY: self.response.out.write('{}') return places_url = None if action == 'search': location = self.request.get('location') radius = self.request.get('radius') url_to_sign = ('/maps/api/place/search/json?location=%s&radius=%s&client=' '%s&sensor=true') % (location, radius, CLIENT_ID) decoded_key = base64.urlsafe_b64decode(PRIVATE_KEY) signature = hmac.new(decoded_key, url_to_sign, hashlib.sha1) encoded_signature = base64.urlsafe_b64encode(signature.digest()) places_url = ('http://maps.google.com/maps/api/place/search/json?' 'location=%s&radius=%s&client=%s&sensor=true&' 'signature=%s') % (location, radius, CLIENT_ID, encoded_signature) if places_url: self.response.out.write(urlfetch.fetch(places_url).content) if __name__ == '__main__': application = webapp.WSGIApplication([('/places[/]?', PlacesHandler)], debug=True) run_wsgi_app(application)
bilal-karim/gmaps-samples-v3
devfest-2010/whereiscoffee/places.py
places.py
py
1,627
python
en
code
6
github-code
6
1370583347
"""Finds the differences between two dictionaries and writes them to a csv.""" import csv def diff_dictionaries(DCT1, DCT2): """Output a dictionary of the differences between two dictionaries.""" return {player: DCT1[player] for player in set(DCT1) - set(DCT2)} def write_to_csv(dct): """Write dictionary to csv.""" with open("diffs.csv", "w") as out_file: out_csv = csv.writer(out_file) out_csv.writerow(["player", "number"]) for player, jersey_number in dct.items(): keys_values = (player, jersey_number) out_csv.writerow(keys_values) print('\n"diffs.csv" exported successfully\n') DCT1 = { "boomer": "7", "muñoz": "78", } DCT2 = { "montana": "16", "boomer": "7", } DIFF1 = diff_dictionaries(DCT1, DCT2) DIFF2 = diff_dictionaries(DCT2, DCT1) MERGED_DIFFS = {**DIFF1, **DIFF2} write_to_csv(MERGED_DIFFS)
craighillelson/diff_dicts
diff_dicts.py
diff_dicts.py
py
910
python
en
code
0
github-code
6
4769812727
'''Partition a set into two subsets such that the difference of subset sums is minimum. Given a set of integers, the task is to divide it into two sets S1 and S2 such that the absolute difference between their sums is minimum.''' #This function returns the list of all the sum of all subset possible def subsetSum(arr): totalSum = sum(arr) t = [[None for _ in range(totalSum + 1)] for _ in range(len(arr) + 1)] for i in range(len(arr) + 1): for j in range(totalSum + 1): if j == 0: t[i][j] = True elif i == 0: t[i][j] = False elif arr[i - 1] <= j: t[i][j] = t[i - 1][j - arr[i - 1]] or t[i - 1][j] else: t[i][j] = t[i - 1][j] subsetSums = [] for j in range(totalSum + 1): if t[len(arr)][j]: subsetSums.append(j) return subsetSums def minSubsetSumDifference(arr): #Find all the sum of subsets possible subsetSums = subsetSum(arr) #Find upper bound of sum of subsets range = sum(arr) #Initialize min difference as sum of subsets at upper bound minDiff = range #The difference of two subset wis sum of lower one as s1 is (range - s1) #Try to minimize (range - 2s1) using the lower half of all subset sums for s1 in subsetSums[0:len(subsetSums)//2 + 1]: minDiff = min(minDiff, abs(range - 2 * s1)) #Return the value of min difference possible return minDiff if __name__ == "__main__" : array = list(map(int, input('Enter the numbers seperated by spaces:').split(' '))) print(minSubsetSumDifference(array))
subhajitsinha1998/DynamicPrograming
minSubsetSumDifference.py
minSubsetSumDifference.py
py
1,707
python
en
code
0
github-code
6
13902158282
mA = [[ 1, 2, 3],[ 4, 5, 6]] t = [[ 1, 4], [ 2, 5], [ 3, 6]] matriz = [[1,2,3],[4,5,6]] def transpuesta(mA): t = [] for i in range(len(mA[0])): t.append([]) for j in range(len(mA)): t[i].append(mA[j][i]) return t matrizTranspuesta = transpuesta(matriz) for linea in matriz: for elemento in linea: print(elemento, end=" ") print() print("""""") for linea in matrizTranspuesta: for elemento in linea: print(elemento, end=" ") print()
Nayherly/INFORME02
Matrices/4.Transpuesta.py
4.Transpuesta.py
py
514
python
en
code
0
github-code
6
4328206070
""" The game is played on a square board divided into 20 rows and 20 columns, for a total of 400 squares. There are a total of 84 game tiles, organized into 21 shapes in each of four colors: blue, yellow, red and green. The 21 shapes are based on free polyominoes of from one to five squares (one monomino, one domino, two trominoes/triominoes, five tetrominoes, and 12 pentominoes). The standard rules of play for all variations of the game are as follows: Order of play is based on the color of pieces: blue, yellow, red, green. The first piece played of each color is placed in one of the board's four corners. Each new piece played must be placed so that it touches at least one piece of the same color, with only corner-to-corner contact allowed-edges cannot touch. However, edge-to-edge contact is allowed when two pieces of different color are involved. When a player cannot place a piece, he or she passes, and play continues as normal. The game ends when no one can place a piece. When a game ends, the score is based on the number of squares in each player's pieces on the board (e.g. a tetromino is worth 4 points). A player who played all of his or her pieces is awarded a +20 point bonus if the last piece played was a monomino, or a +15 point bonus for any other piece. """ BOARD_SIZE = 20 EMPTY_SQUARE = ' ' BLUE = 'blue' YELLOW = 'yellow' RED = 'red' GREEN = 'green' COLORS = [BLUE, YELLOW, RED, GREEN] MONOMINO = [[1]] DOMINO = [[1, 1]] TRIOMINOE_L = [[1, 1], [0, 1]] TRIOMINOE_LINE = [[1, 1, 1]] TETROMINO_SQUARE = [[1, 1], [1, 1]] TETROMINO_T = [[0,1,0], [1,1,1]] TETROMINO_LINE = [[1,1,1,1]] TETROMINO_L = [[0,0,1],[1,1,1]] TETROMINO_Z = [[0,1,1],[1,1,0]] PENTOMINO_LONG_L = [[1,0,0,0],[1,1,1,1]] PENTOMINO_T = [[0,1,0],[0,1,0],[1,1,1]] PENTOMINO_L = [[1,0,0],[1,0,0],[1,1,1]] PENTOMINO_LONG_Z = [[0,1,1,1],[1,1,0,0]] PENTOMINO_Z = [[0,0,1],[1,1,1],[1,0,0]] PENTOMINO_LINE = [[1,1,1,1,1]] PENTOMINO_UTAH = [[1,0],[1,1],[1,1]] PENTOMINO_W = [[0,1,1],[1,1,0],[1,0,0]] PENTOMINO_GATE = [[1,1],[1,0],[1,1]] PENTOMINO_WRENCH = [[0,1,1],[1,1,0],[0,1,0]] PENTOMINO_CROSS = [[0,1,0], [1,1,1],[0,1,0]] PENTOMINO_BATON = [[0,1,0,0],[1,1,1,1]] PIECES = [ MONOMINO, DOMINO, TRIOMINOE_LINE, TRIOMINOE_L, TETROMINO_Z, TETROMINO_L, TETROMINO_LINE, TETROMINO_T, TETROMINO_SQUARE, PENTOMINO_T, PENTOMINO_L, PENTOMINO_LONG_Z, PENTOMINO_Z, PENTOMINO_LINE, PENTOMINO_UTAH, PENTOMINO_W, PENTOMINO_GATE, PENTOMINO_WRENCH, PENTOMINO_CROSS, PENTOMINO_BATON ] class Piece(object): # A piece is represented by a NxM grid. Each square in the grid is filled or # empty (1 or 0) def __init__(self, color, grid): self.color = color self.grid = grid def get_color(self): colors_to_letter = { BLUE: 'B', YELLOW: 'Y', RED: 'R', GREEN: 'G', } return colors_to_letter[self.color] def __str__(self): ret = '' for row in self.grid: c_row = '' for c in row: if c: c_row += self.get_color() else: c_row += ' ' ret += c_row + '\n' return ret def rotate(self): # 90 degree clockwise rotated = zip(*self.grid[::-1]) self.grid = [list(t) for t in rotated] def flip(self): # About the y-axis self.grid = [row[::-1] for row in self.grid] class Board(object): def __init__(self, board_size): self.board_size = board_size self.board = [[EMPTY_SQUARE for i in range(board_size)] for j in range(board_size)] def __repr__(self): ret = '' for row in self.board: ret += str(row) + '\n' return ret def __str__(self): ret = '' for row in self.board: ret += str(row) + '\n' return ret def place(self, piece, x, y): # Place piece at position x, y # idea: x and y represent the top left position of the piece they want to add j = y for row in piece.grid: i = x for blip in row: self.board[i][j] = piece.get_color() if blip else EMPTY_SQUARE i += 1 j += 1 board = Board(BOARD_SIZE) print(board) for p in PIECES: piece = Piece(GREEN, p) for i in range(2): print(piece) piece.flip() for p in PIECES: piece = Piece(GREEN, p) for i in range(4): print(piece) piece.rotate() z_piece = Piece(GREEN, TETROMINO_Z) z_piece.rotate() board.place(z_piece, 0, 0) z_piece.rotate() board.place(z_piece, 3, 1) z_piece.flip() board.place(z_piece, 7, 1) print(board)
wnojopra/obstructus
game.py
game.py
py
4,419
python
en
code
0
github-code
6
31958051556
import sys import csv def main(): # get command line arguments inputdatabase = sys.argv[1] inputsequence = sys.argv[2] # open database file csvfile = open(inputdatabase, newline='') databaseobj = csv.reader(csvfile) # load database into array database = [] for row in databaseobj: database.append(row) # open sequence file txtfile = open(inputsequence) sequence = txtfile.read() # initialise array to store max counts of each STR in the sequence STRset = [0] * (len(database[0]) - 1) # for each STR in the csv header row for i in range(1, len(database[0])): # get number of consecutive STRs for the sequence STRset[i - 1] = count(database[0][i], sequence) # for each name row in the database for i in range(1, len(database)): # default match is true match = True # iterate through each STR count for j in range(1, len(database[i])): # check against STRset if int(database[i][j]) != STRset[j - 1]: # set match to false if not equal match = False # if all counts match the set, print the name in database and stop program if match == True: print(database[i][0]) return 0 # if no matches, print No Match print("No match") # function to calculate the highest number of consecutive repeats of a given STR for a given string (sequence) def count(STR, sequence): # create array to store number of repeats for each position in the sequence repeats = [None] * len(sequence) # iterate through each character in the sequence for i in range(len(sequence)): # calculate how many repeats of the STR appear consecutively from this point and update repeats array repeats[i] = STRcheck(i, sequence, STR) # get highest number of repeats anywhere in the sequence return (max(repeats)) # function to calculate how many consecutive repeats of an STR there are at a given position in a sequence def STRcheck(position, sequence, STR): # initialise counter count = 0 # check if first 4 characters match the STR if sequence[position:position + len(STR)] == STR: # update counter count += 1 # recall STRcheck from this position count += STRcheck(position + len(STR), sequence, STR) return count main()
Verano-20/CS50-PSET6-DNA
dna.py
dna.py
py
2,420
python
en
code
1
github-code
6
29832128346
import cv2 #Reading Image img = cv2.imread('img46_gray_noise.png') #Aplying filter median = cv2.medianBlur(img,3) #Showing image cv2.imshow("Noised Image", img) cv2.imshow("median", median) cv2.waitKey() cv2.destroyAllWindows() #Save result cv2.imwrite("denoised_image.png", median)
Digu62/computer_vision_challenges
Questao1/main.py
main.py
py
286
python
en
code
0
github-code
6
75118275066
import sqlite3 with open("C:\\Users\Asmaa Samir\Desktop\Project\data.txt", "w") as myFile: my_tuple1 = ('google.com ', '198.188.3.2 ', '255.255.255.0', '11:01 ') my_tuple2 = ('youtube.com', '199.588.35.22', '255.255.255.0', '1:01') my_tuple3 = ('google.com', '198.155.66.1', '255.255.255.0', '7:55') myFile.writelines(my_tuple1) myFile.writelines(my_tuple2) myFile.writelines(my_tuple3) db = sqlite3.connect("data.db") # create database and connect cr = db.cursor() # تفعيل # noinspection SqlNoDataSourceInspection cr.execute("CREATE TABLE Analysis (User Name text, IP , MAC ,URLs being visited ,TIME) ") cr.execute("insert into Analysis values(?, ?, ?, ?, ?)", my_tuple1) # insert data cr.execute("insert into skills values(?, ?, ?, ?, ?)", my_tuple2) cr.execute("insert into skills values(?, ?, ?, ? , ?)", my_tuple3) db.commit() # save db.close() # close
AsmaaGHSamir/GProject
DB.py
DB.py
py
926
python
en
code
1
github-code
6
27645529568
''' COMPSCI 235 (2021) - University of Auckland ASSIGNMENT PHASE TWO Simon Shan 441147157 Flask app entry point ''' from library import create_app app = create_app() if __name__ == '__main__': app.run( host='localhost', port=5000, threaded=False, )
mightbesimon/library-flask-website
wsgi.py
wsgi.py
py
299
python
en
code
1
github-code
6
25755936450
import unittest from constants import ( LAST_NAME_1, LAST_NAME_2, LAST_NAME_3, LAST_NAME_4, LAST_NAME_UPDATED, LAST_NAME_TEST, FIRST_NAME_1, FIRST_NAME_2, FIRST_NAME_3, FIRST_NAME_4, FIRST_NAME_JOHN, FIRST_NAME_UPDATED, MIDDLE_NAME_1, MIDDLE_NAME_2, MIDDLE_NAME_3, MIDDLE_NAME_4, MIDDLE_NAME_DOE, MIDDLE_NAME_UPDATED, POSITION_1, POSITION_2, POSITION_3, POSITION_4, POSITION_ENGINEER, POSITION_UPDATED ) from main import app, bd from models.employee_model import Employee from repository.employee_repository import EmployeeRepository from service.employee_service import get_all_employees, create_employee, update_employee, delete_employee class EmployeeServiceTestCase(unittest.TestCase): def setUp(self): app.testing = True app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' self.app_context = app.app_context() self.app_context.push() bd.create_all() self.client = app.test_client() self.repository = EmployeeRepository() def tearDown(self): bd.session.remove() bd.drop_all() def test_get_all_employees(self): employee1 = Employee(last_name=LAST_NAME_1, first_name=FIRST_NAME_1, middle_name=MIDDLE_NAME_1, position=POSITION_1) employee2 = Employee(last_name=LAST_NAME_2, first_name=FIRST_NAME_2, middle_name=MIDDLE_NAME_2, position=POSITION_2) employee3 = Employee(last_name=LAST_NAME_3, first_name=FIRST_NAME_3, middle_name=MIDDLE_NAME_3, position=POSITION_3) employee4 = Employee(last_name=LAST_NAME_4, first_name=FIRST_NAME_4, middle_name=MIDDLE_NAME_4, position=POSITION_4) self.repository.create(employee1) self.repository.create(employee2) self.repository.create(employee3) self.repository.create(employee4) employees = get_all_employees() self.assertEqual(len(employees), 4) self.assertEqual(employees[0]['last_name'], LAST_NAME_1) self.assertEqual(employees[0]['first_name'], FIRST_NAME_1) self.assertEqual(employees[0]['middle_name'], MIDDLE_NAME_1) self.assertEqual(employees[0]['position'], POSITION_1) self.assertEqual(employees[1]['last_name'], LAST_NAME_2) self.assertEqual(employees[1]['first_name'], FIRST_NAME_2) self.assertEqual(employees[1]['middle_name'], MIDDLE_NAME_2) self.assertEqual(employees[1]['position'], POSITION_2) self.assertEqual(employees[2]['last_name'], LAST_NAME_3) self.assertEqual(employees[2]['first_name'], FIRST_NAME_3) self.assertEqual(employees[2]['middle_name'], MIDDLE_NAME_3) self.assertEqual(employees[2]['position'], POSITION_3) self.assertEqual(employees[3]['last_name'], LAST_NAME_4) self.assertEqual(employees[3]['first_name'], FIRST_NAME_4) self.assertEqual(employees[3]['middle_name'], MIDDLE_NAME_4) self.assertEqual(employees[3]['position'], POSITION_4) def test_create_employee(self): employee_data = { 'last_name': LAST_NAME_TEST, 'first_name': FIRST_NAME_JOHN, 'middle_name': MIDDLE_NAME_DOE, 'position': POSITION_ENGINEER } create_employee(employee_data) employees = self.repository.get_all() self.assertIsNotNone(employees) self.assertEqual(len(employees), 1) self.assertEqual(employees[0].last_name, LAST_NAME_TEST) self.assertEqual(employees[0].first_name, FIRST_NAME_JOHN) self.assertEqual(employees[0].middle_name, MIDDLE_NAME_DOE) self.assertEqual(employees[0].position, POSITION_ENGINEER) def test_update_employee(self): employee = Employee(last_name=LAST_NAME_1, first_name=FIRST_NAME_1, middle_name=MIDDLE_NAME_1, position=POSITION_1) self.repository.create(employee) data = { 'last_name': LAST_NAME_UPDATED, 'first_name': FIRST_NAME_UPDATED, 'middle_name': MIDDLE_NAME_UPDATED, 'position': POSITION_UPDATED } updated_employee = update_employee(employee.id, data) self.assertEqual(updated_employee.last_name, LAST_NAME_UPDATED) self.assertEqual(updated_employee.first_name, FIRST_NAME_UPDATED) self.assertEqual(updated_employee.middle_name, MIDDLE_NAME_UPDATED) self.assertEqual(updated_employee.position, POSITION_UPDATED) def test_delete_employee(self): employee_data = { 'last_name': LAST_NAME_TEST, 'first_name': FIRST_NAME_JOHN, 'middle_name': MIDDLE_NAME_DOE, 'position': POSITION_ENGINEER } employee = create_employee(employee_data) employee_id = employee.id result = delete_employee(employee_id) self.assertTrue(result) deleted_employee = self.repository.get_by_id(employee_id) self.assertIsNone(deleted_employee) if __name__ == '__main__': unittest.main()
dan9Protasenia/task-management
tests/test_employee_service.py
test_employee_service.py
py
5,175
python
en
code
0
github-code
6
6729300182
#!/usr/bin/env python #-*- coding: utf-8 -*- """ @file: oracle_cls.py @author: ImKe at 2022/2/23 @email: [email protected] @feature: #Enter features here """ import torch.nn as nn import torch import datetime, os, copy, math, time, collections, argparse, nltk, json, sys sys.path.append('../') import numpy as np from tqdm import tqdm from torch.utils.data import Dataset, DataLoader from tensorboardX import SummaryWriter from src.logger import Logger from src.data import ConditionalGenerationDataset from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config, AdamW, get_linear_schedule_with_warmup parser = argparse.ArgumentParser() # Default parameters are set based on single GPU training parser.add_argument('--lr', type=float, default=5e-5) parser.add_argument("--seed", type=int, default=42) parser.add_argument('--class_num', type=int, default=2) parser.add_argument('--batch_size', type=int, default=200) parser.add_argument('--max_length', type=int, default=30) parser.add_argument('--iterations', type=int, default=15000 * 3) parser.add_argument('--dataset', type=str, default='yelp_polarity', choices=['yelp_polarity', 'imdb_polarity'], help="Dataset to use for training") parser.add_argument('--out_dir', type=str, default='cls_train_out') parser.add_argument('--gpu', default=0, type=int) parser.add_argument('--no_gpu', action="store_true") parser.add_argument('--workers', default=2, type=int, metavar='N', help='number of data loading workers') def tokenize(texts, tokenizer, device, args): # tokenizer.pad_token = tokenizer.eos_token x_tokenized = tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=args.max_length) input_ids = x_tokenized['input_ids'][:, :-1].to(device) attention_mask = x_tokenized['attention_mask'][:, 1:].to(device) x_ids = x_tokenized['input_ids'][:, 1:].contiguous().to(device) ## target, input tokens, mask return x_ids, input_ids, attention_mask class Oracle_Classifier(nn.Module): def __init__(self, config, class_num, wte): super(Oracle_Classifier, self).__init__() self.class_num = class_num self.gpt_embeddings = nn.Embedding(config.vocab_size, config.n_embd) self.gpt_embeddings.weight.data = wte.weight.data self.conv1 = nn.Conv1d(config.hidden_size, config.hidden_size, 3) self.classifier = nn.Linear(config.hidden_size, 1 if self.class_num <= 2 else self.class_num) self.BCEWithLogitsLoss = nn.BCEWithLogitsLoss() def step(self, optimizer, loss): optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() def forward(self, sentences, cond_labels): ft = self.gpt_embeddings(sentences) ft = self.conv1(ft.transpose(1, 2)) ft = torch.mean(ft, dim=-1) ft = self.classifier(ft) prob_cls = ft.squeeze(1) loss_cls = self.BCEWithLogitsLoss(prob_cls, cond_labels.float()) pred_cls = (prob_cls >= 0).to(dtype=torch.long) acc_cls = (pred_cls == cond_labels).float() return loss_cls, acc_cls def train(args): # GPU if not torch.cuda.is_available(): args.no_gpu = True gpu = not args.no_gpu if gpu: print("There are ", torch.cuda.device_count(), " available GPUs!") # print('Setting GPUs {}'.format(args.device)) # print('Using GPU devices {}'.format(devices)) torch.cuda.set_device(args.gpu) print('Current single GPU: {}'.format(torch.cuda.current_device())) device = torch.device(args.gpu if gpu else "cpu") # randomness np.random.seed(args.seed) prng = np.random.RandomState() torch.random.manual_seed(args.seed) if gpu: torch.cuda.manual_seed(args.seed); torch.cuda.manual_seed_all(args.seed) save_folder = os.path.join(args.out_dir, "oracle_cls") os.makedirs(save_folder, exist_ok=True) t_writer = SummaryWriter(os.path.join(save_folder, 'train'), flush_secs=5) v_writer = SummaryWriter(os.path.join(save_folder, 'val'), flush_secs=5) logging_file = "oracle_cls.log" logging = Logger(os.path.join(args.out_dir, logging_file)) # t_writer = SummaryWriter(os.path.join(save_folder, 'train'), flush_secs=5) logging.info('\n*******************************************************************************\n') logging.info("the configuration:") logging.info(str(args).replace(',', '\n')) logging.info('Loading models...') config = GPT2Config() gpt2_model = GPT2LMHeadModel.from_pretrained('gpt2', cache_dir='/home/tuhq/.cache/torch/transformers') tokenizer = GPT2Tokenizer.from_pretrained('gpt2', cache_dir='/home/tuhq/.cache/torch/transformers') tokenizer.pad_token = tokenizer.eos_token model = Oracle_Classifier(config, args.class_num, wte=gpt2_model.transformer.wte) optimizer = AdamW(model.parameters(), lr=args.lr, correct_bias=True) model = model.to(device) model.train() logging.info('Setup data...') train_loader = DataLoader( ConditionalGenerationDataset.from_file(f"../data/{args.dataset}/train.txt"), batch_size=args.batch_size, pin_memory=True, drop_last=False, shuffle=True, num_workers=args.workers) test_loader = DataLoader( ConditionalGenerationDataset.from_file(f"../data/{args.dataset}/test.txt"), batch_size=args.batch_size, pin_memory=True, drop_last=False, shuffle=True, num_workers=args.workers) val_loader = DataLoader( ConditionalGenerationDataset.from_file(f"../data/{args.dataset}/valid.txt"), batch_size=args.batch_size, pin_memory=True, drop_last=False, shuffle=True, num_workers=args.workers) logging.info('Done.') def val_step(val_loader): model.eval() val_loss_list, val_acc_list = [], [] with tqdm(total=min(len(val_loader), max_val_batches), desc="Evaluating Model") as pbar: for i, val_data_dict in enumerate(val_loader): with torch.no_grad(): val_x_ids, val_input_ids, val_attention_mask = tokenize(val_data_dict['x'], tokenizer, device, args) val_labels = torch.tensor(val_data_dict['y']).to(device) val_loss_cls, val_acc_cls = model(val_input_ids, val_labels) val_loss_list.append(val_loss_cls.item()) val_acc_list.append(val_acc_cls.mean().item()) val_loss = np.mean(val_loss_list) val_acc = np.mean(val_acc_list) val_loss_std = np.std(val_loss_list) val_acc_std = np.std(val_acc_list) logging.info("val loss: %.4f + %.4f" % (val_loss, val_loss_std)) logging.info("val acc : %.4f + %.4f" % (val_acc, val_acc_std)) model.train() return val_acc best_acc = 0.0 logging.info("Begin training iterations") max_val_batches = 200 # max num. of val batches logging.info("Total iteration: %d" % args.iterations) e = 0 # number of epoch num_iters = 0 et = 0 while num_iters < args.iterations: # Run epoch # Training print('Training loop. Batches:', len(train_loader)) logging.info('\n----------------------------------------------------------------------') logging.info("Training loop. Batches: %d" % len(train_loader)) with tqdm(total=len(train_loader)) as pbar: for i, data_dict in enumerate(train_loader): x_ids, input_ids, attention_mask = tokenize(data_dict['x'], tokenizer, device, args) cond_labels = torch.tensor(data_dict['y']).to(device) loss_cls, acc_cls = model(input_ids, cond_labels) loss = model.step(optimizer, loss_cls) acc_cls = acc_cls.mean() t_writer.add_scalar('loss', loss, num_iters) t_writer.add_scalar('acc', acc_cls, num_iters) end = num_iters >= args.iterations if end: break num_iters += 1 pbar.update(1) if (num_iters + 1) % 2000 == 0: logging.info("Test dataset") _ = val_step(test_loader) logging.info("Valid dataset") val_acc = val_step(val_loader) if val_acc > best_acc: best_acc = val_acc save_orderdict = model.state_dict() torch.save(save_orderdict, os.path.join(save_folder, 'oracle_cls_best.pt')) else: et += 1 if et >= 5: logging.info("Early Stopping..") break if not end: e += 1 logging.info("Training loop. The ith epoch completed: %d" % e) save_orderdict = model.state_dict() torch.save(save_orderdict, os.path.join(save_folder, 'oracle_cls_latest.pt')) logging.info("Test dataset") val_step(test_loader) logging.info("Valid dataset") val_step(val_loader) logging.info("-" * 50) logging.info("best acc: {:.4f}".format(best_acc)) if __name__ == '__main__': args = parser.parse_args() train(args)
ImKeTT/AdaVAE
controlgen/oracle_cls.py
oracle_cls.py
py
9,368
python
en
code
32
github-code
6
10418352733
from __future__ import annotations import dataclasses import typing from randovania.game_description.db.resource_node import ResourceNode from randovania.game_description.requirements.requirement_and import RequirementAnd from randovania.game_description.requirements.resource_requirement import ResourceRequirement from randovania.game_description.resources.node_resource_info import NodeResourceInfo if typing.TYPE_CHECKING: from randovania.game_description.db.node import Node, NodeContext from randovania.game_description.requirements.base import Requirement from randovania.game_description.resources.resource_info import ResourceGain def _all_nodes_in_network(context: NodeContext, network_name: str) -> typing.Iterator[TeleporterNetworkNode]: for node in context.node_provider.iterate_nodes(): if isinstance(node, TeleporterNetworkNode) and node.network == network_name: yield node @dataclasses.dataclass(frozen=True, slots=True) class TeleporterNetworkNode(ResourceNode): """ Represents a node that belongs to a set, where you can freely move between if some conditions are satisfied. - can only teleport *to* if `is_unlocked` is satisfied - can only teleport *from* if the node has been activated A TeleporterNetworkNode being activated is implemented as being collected, with this class being a ResourceNode. There are three methods of activating a TeleporterNetworkNode: Method 1: - Be the starting node Method 2: - Collecting a TeleporterNetworkNode also collects all other nodes in the same network with satisfied `is_unlocked` Method 3: - Collect the node normally by reaching it, with `is_unlocked` satisfied and one of: - `requirement_to_activate` is satisfied - this node was already collected """ is_unlocked: Requirement network: str requirement_to_activate: Requirement def requirement_to_leave(self, context: NodeContext) -> Requirement: return RequirementAnd([self.is_unlocked, ResourceRequirement.simple(self.resource(context))]) def resource(self, context: NodeContext) -> NodeResourceInfo: return NodeResourceInfo.from_node(self, context) def can_collect(self, context: NodeContext) -> bool: resources = context.current_resources req = self.requirement_to_activate if resources.has_resource(self.resource(context)) or req.satisfied(resources, 0, context.database): return not self.is_collected(context) else: return False def is_collected(self, context: NodeContext) -> bool: current_resources = context.current_resources return all( context.has_resource(node.resource(context)) for node in _all_nodes_in_network(context, self.network) if node.is_unlocked.satisfied(current_resources, 0, context.database) ) def resource_gain_on_collect(self, context: NodeContext) -> ResourceGain: for node in _all_nodes_in_network(context, self.network): if node.is_unlocked.satisfied(context.current_resources, 0, context.database): yield node.resource(context), 1 def connections_from(self, context: NodeContext) -> typing.Iterator[tuple[Node, Requirement]]: for node in _all_nodes_in_network(context, self.network): if node != self: yield node, node.is_unlocked
randovania/randovania
randovania/game_description/db/teleporter_network_node.py
teleporter_network_node.py
py
3,434
python
en
code
165
github-code
6
39269318225
import logging import os import random import sys from functools import wraps from pprint import pformat from subprocess import Popen, PIPE from threading import Thread from dim import db from dim.models.dns import OutputUpdate from dim.rpc import TRPC from tests.pdns_test import PDNSTest from tests.pdns_util import compare_dim_pdns_zones, this_dir, test_pdns_output_process def delete_record(rpc, r): rpc.rr_delete(zone=r['zone'], name=r['record'], type=r['type'], **r['value']) def add_record(rpc, r): rpc.rr_create(zone=r['zone'], name=r['record'], type=r['type'], ttl=r['ttl'], **r['value']) def extract(l, selected_idx): '''split l into two lists: elements with indices in selected and the rest''' selected = [] rejected = [] selected_idx = set(selected_idx) for i, e in enumerate(l): if i in selected_idx: selected.append(e) else: rejected.append(e) return selected, rejected class TestRequestProxy(object): '''' Simulate the flask lifecycle of a request by creating a new TRPC instance and request context (which in turns creates a new db session) ''' def __init__(self, username, app): self.app = app self.username = username def __getattr__(self, name): if not name.startswith('_'): obj = TRPC(username=self.username) func = getattr(obj, name) if callable(func): @wraps(func) def wrapper(*args, **kwargs): with self.app.test_request_context(): return func(*args, **kwargs) return wrapper raise AttributeError done = False def run_test(app, zone, pdns_output, db_uri, pdns_ip): global done try: rpc = TestRequestProxy('test_user', app) def check_zone(): global done pdns_output.wait_updates(zone) if not compare_dim_pdns_zones(rpc, pdns_ip, {zone: None}): done = True if done: sys.exit() check_zone() rpc.zone_dnssec_enable(zone, nsec3_algorithm=1, nsec3_iterations=1, nsec3_salt='deadcafe') check_zone() records = rpc.rr_list(zone=zone, value_as_object=True) created = [r for r in records if r['type'] not in ('SOA', 'DNSKEY')] deleted = [] total = len(created) for _ in range(30): selected = random.sample(range(total), random.randint(1, 5)) midpoint = len(created) to_del, created = extract(created, [i for i in selected if i < midpoint]) to_add, deleted = extract(deleted, [i - midpoint for i in selected if i >= midpoint]) created.extend(to_add) deleted.extend(to_del) print('Adding', pformat(to_add)) print('Deleting', pformat(to_del)) for r in to_del: delete_record(rpc, r) for r in to_add: add_record(rpc, r) check_zone() rpc.zone_dnssec_disable(zone) check_zone() except: logging.exception('Exception in run_test') done = True def import_zone(zone): proc = Popen(['ndcli', 'import', 'zone', zone], stdin=PIPE, stdout=PIPE) zone_contents = open(this_dir(zone)).read() stdout, stderr = proc.communicate(zone_contents) if proc.returncode != 0: raise Exception('zone import failed') class PDNSOutputProcess(object): def __enter__(self): self.proc = test_pdns_output_process(True) return self def __exit__(self, *args): self.proc.kill() self.proc = None def wait_updates(self, zone): '''Wait for all updates to be processed''' with test.app.test_request_context(): while True: db.session.rollback() if OutputUpdate.query.filter(OutputUpdate.zone_name == zone).count() == 0: break else: os.read(self.proc.stdout.fileno(), 1024) if __name__ == '__main__': zones = {'web.de': {'db_uri': 'mysql://pdns:[email protected]:3307/pdns1', 'pdns_ip': '127.1.1.1'}, 'web2.de': {'db_uri': 'mysql://pdns:[email protected]:3307/pdns2', 'pdns_ip': '127.2.2.2'}} global test test = PDNSTest('__init__') test.setUp() for zone in list(zones.keys()): test.cleanup_pdns_db(zones[zone]['db_uri']) import_zone(zone) test.create_output_for_zone(zone, zone, zone, db_uri=zones[zone]['db_uri']) with PDNSOutputProcess() as pdns_output: threads = [] for zone, attr in zones.items(): t = Thread(target=run_test, args=(test.app, zone, pdns_output), kwargs=attr) t.start() threads.append(t) for t in threads: while t.isAlive(): t.join(0.1)
1and1/dim
dim-testsuite/tests/pdns_changes.py
pdns_changes.py
py
4,950
python
en
code
39
github-code
6
8169757480
""" Exercício 4 Nome na vertical em escada. Modifique o programa anterior de forma a mostrar o nome em formato de escada. F FU FUL FULA FULAN FULANO """ nome = input('Digite seu nome: ').strip().upper() # OPÇÃO 1 n = '' for c in nome: n += c print(n) # OPÇÃO 2 # for c in range(len(nome)+1): # print(nome[:c])
fabriciovale20/ListaExerciciosPythonBrasil
6. String/ex004.py
ex004.py
py
341
python
pt
code
0
github-code
6
39261296650
import os import shutil import zipfile from base64 import b64decode from utils.config import config import requests root_path = os.getcwd() gat = ( "Z2l0aHViX3BhdF8xMUJBQkhHNkEwa1JRZEM1dFByczhVXzU0cERCS21URXRGYm" "FYRElUWE5KVUk4VkUxVTdjb0dHbElMSWdhVnI2Qkc3QzVCN0lCWlhWdDJMOUo2" ) def download_and_extract_zip(url, root_path): zip_file_path = os.path.join(root_path, "repository.zip") response = requests.get(url, stream=True) response.raise_for_status() total_size = int(response.headers.get("Content-Length", 0)) if total_size == 0: print("下载失败!") return 0 block_size = 1024 # 每次下载的块大小 progress = 0 with open(zip_file_path, "wb") as file: for data in response.iter_content(block_size): progress += len(data) file.write(data) # 计算下载进度并显示进度条 percent = (progress / total_size) * 100 progress_bar = "=" * int(percent // 5) + ">" print(f"下载进度: {percent:.2f}% [{progress_bar:<20}] ", end="\r") print("\n下载完成!") # 解压ZIP文件 with zipfile.ZipFile(zip_file_path, "r") as zip_ref: zip_ref.extractall(root_path) os.remove(zip_file_path) # 删除ZIP文件 return 1 def sync_github_repo(repo_url, root_path): # 构建API URL api_url = f"https://api.github.com/repos/{repo_url}/zipball/main" # 检查保存路径是否存在,如果不存在则创建 os.makedirs(root_path, exist_ok=True) # 下载并解压ZIP文件 return download_and_extract_zip(api_url, root_path) def get_latest_branch_sha(repo_url): url = f"https://api.github.com/repos/{repo_url}/branches" headers = { "Accept": "application/vnd.github.v3+json", "Authorization": b64decode(gat).decode("utf-8"), } try: response = requests.get(url, headers=headers, timeout=3) except: return None if response.status_code == 200: branches = response.json() if branches: latest_branch = branches[0] return latest_branch["commit"]["sha"] else: return None def copy_folder_contents(source_folder, destination_folder): # 检查目标文件夹是否存在,如果不存在则创建 if not os.path.exists(destination_folder): os.makedirs(destination_folder) # 遍历源文件夹中的所有文件和子文件夹 for item in os.listdir(source_folder): source = os.path.join(source_folder, item) destination = os.path.join(destination_folder, item) if os.path.isfile(source): # 如果源项是文件,则直接复制并覆盖同名文件 shutil.copy2(source, destination) elif os.path.isdir(source): # 如果源项是文件夹,则递归地调用复制函数 copy_folder_contents(source, destination) def update_map(force=False): repo_url = "CHNZYX/maps" # 获取远端sha remote_sha = get_latest_branch_sha(repo_url) if remote_sha is None: print("远端地图sha获取失败, 请检查网络连接") return "远端地图sha获取失败, 请检查网络连接", "red" print("远端地图sha: " + remote_sha) # 获取本地sha local_sha = config.map_sha print("本地地图sha: " + local_sha) # 判断是否需要更新 if remote_sha == local_sha: print("map无需更新") return "地图已是最新版本", "green" map_path = os.path.join(root_path, "imgs\\maps") print("Map path: " + map_path) # 下载map仓库并解压 status = sync_github_repo(repo_url, root_path) if status == 0: return "下载失败", "red" print("下载完成") # 找出下载的map文件夹 t = os.listdir(root_path) chn_folders = [item for item in t if item.startswith("CHNZYX")] downloaded_map_path = os.path.join(os.path.join(root_path, chn_folders[0]), "maps") print("download_map_path: " + downloaded_map_path) print("解压中...") # 删除原有map文件夹,复制新的map文件夹 if force: shutil.rmtree(map_path) shutil.copytree(downloaded_map_path, map_path) else: copy_folder_contents(downloaded_map_path, map_path) shutil.rmtree(os.path.dirname(downloaded_map_path)) # 更新sha config.map_sha = remote_sha config.save() print("更新完成") return "更新完成", "green"
CHNZYX/Auto_Simulated_Universe
utils/update_map.py
update_map.py
py
4,483
python
en
code
2,771
github-code
6
5308998970
# ababcdcdababcdcd ->2ab2cd2ab2cd ->2 ababcdcd # abcabcdede -> abcabc2de ->2abcdede # 1씩 증가하면서 묶기 -> 같은거 있으면 합치기 -> 길이 구하기 # 하나가 에러남 -> 길이가 1,2,3 일 때 예외처리하면 안남 def solution(s): def merge_len(var): cnt = 1 temp = '' # 마지막인 경우 케이스 생각해야함 for i in range(len(var)-1): if var[i] == var[i+1]: cnt += 1 if (i+1) == len(var)-1: temp += str(cnt) + var[i] else: if cnt > 1: temp += str(cnt) + var[i] else: temp += var[i] cnt = 1 if (i+1) == len(var)-1: temp += var[i+1] return len(temp) if len(s) == 1: return 1 elif len(s) == 2: return 2 elif len(s) == 3: return 3 minimum = merge_len(s) for i in range(2, len(s)//2+1): temp = [] for j in range(0, len(s), i): # 이 경우 이렇게 예외처리 안해도 제대로 잘려짐 # if j+i-1 > len(s)-1: # temp.append(s[j:]) # break temp.append(s[j:j+i]) minimum = min(minimum, merge_len(temp)) return minimum # def compress(text, tok_len): # words = [text[i:i+tok_len] for i in range(0, len(text), tok_len)] # res = [] # cur_word = words[0] # cur_cnt = 1 # for a, b in zip(words, words[1:] + ['']): # if a == b: # cur_cnt += 1 # else: # res.append([cur_word, cur_cnt]) # cur_word = b # cur_cnt = 1 # return sum(len(word) + (len(str(cnt)) if cnt > 1 else 0) for word, cnt in res) # def solution(text): # [len(text)] -> text 길이가 1,2,3 인 경우 예외 때문에 입력해야함. # return min(compress(text, tok_len) for tok_len in list(range(1, int(len(text)/2) + 1)) + [len(text)])
louisuss/Algorithms-Code-Upload
Python/Programmers/Level2/문자열압축.py
문자열압축.py
py
2,022
python
ko
code
0
github-code
6
15503714340
import numpy as np a = np.array([1, 2, 3, 4]) b = np.array([5, 6, 7, 8]) c = np.add(a, b) print(c) # creating a custom ufunc - universal functions def add_2_str(v, k): y = v + k return y add_2_str = np.frompyfunc(add_2_str, nin=2, nout=1) print(add_2_str([1, 2, 3, 4, 5], [6, 7, 8, 9, 10])) print(add_2_str("Hie", "Hello")) # displays it is a function class from numpy print(type(add_2_str))
BLACKANGEL-1807/Python-Scripts
Numpy(basics)/numpy_ufunc.py
numpy_ufunc.py
py
406
python
en
code
0
github-code
6
27070905288
import datetime as dt import random import pytest from scheduler import Scheduler, SchedulerError from scheduler.base.definition import JobType from scheduler.threading.job import Job from ...helpers import DELETE_NOT_SCHEDULED_ERROR, foo @pytest.mark.parametrize( "n_jobs", [ 1, 2, 3, 10, ], ) def test_delete_job(n_jobs): sch = Scheduler() assert len(sch.jobs) == 0 jobs = [] for _ in range(n_jobs): jobs.append(sch.once(dt.datetime.now(), foo)) assert len(sch.jobs) == n_jobs job = random.choice(jobs) sch.delete_job(job) assert job not in sch.jobs assert len(sch.jobs) == n_jobs - 1 # test error if the job is not scheduled with pytest.raises(SchedulerError, match=DELETE_NOT_SCHEDULED_ERROR): sch.delete_job(job) @pytest.mark.parametrize( "empty_set", [ False, True, ], ) @pytest.mark.parametrize( "any_tag", [ None, False, True, ], ) @pytest.mark.parametrize( "n_jobs", [ 0, 1, 2, 3, 10, ], ) def test_delete_jobs(n_jobs, any_tag, empty_set): sch = Scheduler() assert len(sch.jobs) == 0 for _ in range(n_jobs): sch.once(dt.datetime.now(), foo) assert len(sch.jobs) == n_jobs if empty_set: if any_tag is None: num_del = sch.delete_jobs() else: num_del = sch.delete_jobs(any_tag=any_tag) else: if any_tag is None: num_del = sch.delete_jobs(tags={}) else: num_del = sch.delete_jobs(tags={}, any_tag=any_tag) assert len(sch.jobs) == 0 assert num_del == n_jobs @pytest.mark.parametrize( "job_tags, delete_tags, any_tag, n_deleted", [ [[{"a", "b"}, {"1", "2", "3"}, {"a", "1"}], {"a", "1"}, True, 3], [[{"a", "b"}, {"1", "2", "3"}, {"a", "2"}], {"b", "1"}, True, 2], [[{"a", "b"}, {"1", "2", "3"}, {"b", "1"}], {"3"}, True, 1], [[{"a", "b"}, {"1", "2", "3"}, {"b", "2"}], {"2", "3"}, True, 2], [[{"a", "b"}, {"1", "2", "3"}, {"a", "1"}], {"a", "1"}, False, 1], [[{"a", "b"}, {"1", "2", "3"}, {"a", "2"}], {"b", "1"}, False, 0], [[{"a", "b"}, {"1", "2", "3"}, {"b", "1"}], {"1", "3"}, False, 1], [[{"a", "b"}, {"1", "2", "3"}, {"b", "2"}], {"2", "3"}, False, 1], ], ) def test_delete_tagged_jobs(job_tags, delete_tags, any_tag, n_deleted): sch = Scheduler() for tags in job_tags: sch.once(dt.timedelta(), lambda: None, tags=tags) assert sch.delete_jobs(tags=delete_tags, any_tag=any_tag) == n_deleted
DigonIO/scheduler
tests/threading/scheduler/test_sch_delete_jobs.py
test_sch_delete_jobs.py
py
2,653
python
en
code
51
github-code
6
6814879797
import pika, json def upload(f, fs, channel, access): # put file into mongodb database try: # get file if success fid = fs.put(f) except Exception as err: return "internal server error", 500 # create message message = { "video_fid": str(fid), "mp3_fid": None, # who owns the file "username": access["username"], } # put message in queue try: channel.basic_publish( exchange="", routing_key="video", # convert python object to json string body=json.dumps(message), properties=pika.BasicProperties( # make messages persistent delivery_mode=pika.PERSISTENT_DELIVERY_MODE ), ) # if message unsuccesfully added to the queue except: # delete file, because it's not connected to any message fs.delete(fid) return "internal server error", 500
dawmro/testing_microservice_architectures
python/src/gateway/storage/util.py
util.py
py
807
python
en
code
0
github-code
6
29800711842
import mraa import time RedPin = 3 BluePin = 4 # humidity_seneor = mraa.Gpio(sensorPin) # humidity_seneor.dir(mraa.DIR_IN) i = 0 redLED = mraa.Gpio(RedPin) blueLED = mraa.Gpio(BluePin) redLED.dir(mraa.DIR_OUT) blueLED.dir(mraa.DIR_OUT) try: while (1): redLED.write(True) blueLED.write(False) time.sleep(1) redLED.write(False) blueLED.write(True) time.sleep(1) except KeyboardInterrupt: redLED.write(False) blueLED.write(False) exit
RichardZSJ/IoT-Project
test sensor.py
test sensor.py
py
481
python
en
code
0
github-code
6
8097011811
import pathlib import PIL.Image import PIL.ImageChops import pyscreenshot from sigsolve import imageutil, geometry import numpy def rehydrate(array): # return PIL.Image.frombytes('RGB', array.shape[:2], array.astype(numpy.uint8).tobytes()) return PIL.Image.fromarray(array, 'RGB') class Vision: # How many light levels can a tile differ (in either direction) from the baseline before the tile is no longer # considered empty. This relies on integer rollover to avoid needing an in16 over a uint8. MAX_EMPTY_TOLERANCE = 2 @staticmethod def _getimage(what): if isinstance(what, (str, bytes, pathlib.Path)): what = PIL.Image.open(what) if what.mode != 'RGB': what = what.convert('RGB') return what def __init__(self, baseline=None, composites=None, extents=None): """ Handles image processing state functionality. :param baseline: Baseline image. If this is a string or Path object, it is assumed to be a filename and is loaded. :param composites: Optional dictionary of composite images (or image filenames), with IDs as keys. :param extents: Rectangle of the area we're interested in. Default is the whole image. """ self.baseline = self._getimage(baseline) if extents: self.baseline = self.baseline.crop(extents.coords) else: extents = geometry.Rect(geometry.Point.ORIGIN, self.baseline.size) self.baseline = imageutil.numpify(self.baseline) self.baseline.flags.writeable = True # Some processing. self.baseline += self.MAX_EMPTY_TOLERANCE self.baseline[self.baseline < self.MAX_EMPTY_TOLERANCE] = 255 # Cap off what just rolled over self.extents = extents self.offset = -self.extents.xy1 self.composites = {} if composites is not None: for key, image in composites.items(): self.add_composite(key, image) self.image = None def add_composite(self, key, image): self.composites[key] = imageutil.numpify(self._getimage(image)).astype(numpy.int16) def match(self, tile): """Finds the composite that most closely matches the source tile's image.""" coords = (tile.sample_rect + self.offset).coords base = self.baseline[coords[1]:coords[3], coords[0]:coords[2], 0:3] cropped = self.image.crop(coords) if numpy.all(base - imageutil.numpify(cropped) < 2*self.MAX_EMPTY_TOLERANCE): return None data = imageutil.numpify(imageutil.equalize(cropped)).astype(numpy.int16) buf = numpy.ndarray(data.shape, data.dtype) unsigned = buf.view(numpy.uint16) best = None bestscore = None for key, composite in self.composites.items(): numpy.subtract(data, composite, out=buf) # Initialize buf with a difference between the two arrays # We casually convert between signed and unsigned here, and the math just happens to work out due to # sign extension and truncation. unsigned **= 2 # Raise all values to power of 2. score = numpy.sum(unsigned) if bestscore is None or score < bestscore: bestscore = score best = key return best def screenshot(self): """Sets the image to a screenshot""" self.set_image( pyscreenshot.grab(self.extents.coords), cropped=True ) def set_image(self, image, cropped=False): """Sets the image""" image = self._getimage(image) if not cropped and (self.extents.xy1 != geometry.Point.ORIGIN or self.extents.xy2 != image.size): image = image.crop(self.extents.coords) self.image = image
dewiniaid/sigsolve
sigsolve/vision.py
vision.py
py
3,821
python
en
code
3
github-code
6
31951175852
#TESTING EXCERCISES from random import choice import string class Boggle: def __init__(self): self.words = self.read_dict("words.txt") def read_dict(self, dict_path): with open(dict_path) as dict_file: return [word.strip() for word in dict_file] def make_board(self): board = [] for y in range(5): row = [choice(string.ascii_uppercase) for _ in range(5)] board.append(row) return board def check_valid_word(self, board, word): word_exists = word in self.words valid_word = self.find(board, word.upper()) if word_exists and valid_word: result = "ok" elif word_exists and not valid_word: result = "not-on-board" else: result = "not-word" return result def find_from(self, board, word, y, x, seen): if x > 4 or y > 4: return if board[y][x] != word[0]: return False if (y, x) in seen: return False if len(word) == 1: return True seen = seen | {(y, x)} neighbors = [(y-1, x), (y+1, x), (y, x-1), (y, x+1), (y-1, x-1), (y+1, x+1), (y-1, x+1), (y+1, x-1)] for ny, nx in neighbors: if self.find_from(board, word[1:], ny, nx, seen): return True seen.remove((y, x)) return False def find(self, board, word): for y in range(0, 5): for x in range(0, 5): if self.find_from(board, word, y, x, seen=set()): return True return False
ortolanotyler/flaskproblemsets
24.5/boggle.py
boggle.py
py
1,651
python
en
code
0
github-code
6
21355088375
class Solution: def networkDelayTime(self, times, n: int, k: int) -> int: graph = dict() for i in range(1, n+1): graph[i] = dict() for edge in times: graph[edge[0]][edge[1]] = edge[2] all_node = {i for i in range(1, n+1)} t_node = {k} dist = [float('inf')]*(n+1) dist[k] = 0 while True: min_path = float('inf') min_idx = -1 for n in t_node: for ntr in graph[n].keys(): # print(ntr) if ntr not in t_node and dist[n]+graph[n][ntr] < min_path: min_path = dist[n]+graph[n][ntr] min_idx = ntr if min_path == float('inf'): return -1 else: t_node |= {min_idx} dist[min_idx] = min_path if t_node == all_node: break # print(dist, t_node, all_node) return max(dist[1:]) s = Solution() print(s.networkDelayTime( # [[2,1,1],[2,3,1],[3,4,1]], # 4, 2 [[1,2,1]], 2,2 ))
Alex-Beng/ojs
FuckLeetcode/743. 网络延迟时间.py
743. 网络延迟时间.py
py
1,153
python
en
code
0
github-code
6
12026854258
import sys from PyQt4 import QtGui, QtCore import pyfits import os from gui import Ui_mainwindow as MW from analysis import * class ModeloTablaEjes(QtCore.QAbstractListModel): def __init__(self, ejes = [], parent = None): QtCore.QAbstractListModel.__init__(self,parent) self._ejes = ejes def rowCount(self, parent): return len(self._ejes) def data(self, index, role): if role == QtCore.Qt.DisplayRole: row = index.row() value = self._ejes[row] return value class MainWindow(QtGui.QMainWindow): CurrentPath = "" CurrentFile = "" Simple = False NAxis = 0 BitPix = 0 Axis = [] def __init__(self, parent=None): QtGui.QWidget.__init__(self, parent) self.ui = MW() self.ui.setupUi(self) self.ui.actionOpen.triggered.connect(self.test) def test(self): filename = str(QtGui.QFileDialog.getOpenFileName(self, "Open Fits")) self.CurrentPath = filename self.CurrentFile = os.path.basename(filename) print(filename) self.lectura() def lectura(self): hdu = pyfits.open(str(self.CurrentPath)) header = hdu[0].header self.Simple = str(header["SIMPLE"]) self.BitPix = str(header["BITPIX"]) self.NAxis = str(header["NAXIS"]) for i in range(1, (int(self.NAxis)+1)): eje = "NAXIS" + str(i) self.Axis.append(header[eje]) hdu.close() #self.Cluster() self.Mostrar() def Mostrar(self): """ Muestra los datos del Fit en la pantalla principal. :return Null """ self.ui.textBrowser.setText(self.CurrentFile) self.ui.textBrowser_2.setText(self.Simple) self.ui.textBrowser_3.setText(self.BitPix) self.ui.textBrowser_4.setText(self.NAxis) model = ModeloTablaEjes(self.Axis) self.ui.tableView.setModel(model) scene = QtGui.QGraphicsScene() scene.setSceneRect(-600,-600, 600,600) pic = QtGui.QPixmap("1-Orig.png") scene.addItem(QtGui.QGraphicsPixmapItem(pic)) self.ui.graphicsView.setScene(scene) self.ui.graphicsView.setRenderHint(QtGui.QPainter.Antialiasing) self.ui.graphicsView.show() def Cluster(self): ana = analicis() ana.Clusterisar(self.CurrentPath, self.CurrentFile) if __name__ == "__main__": dirs() app = QtGui.QApplication(sys.argv) myapp = MainWindow() myapp.show() sys.exit(app.exec_())
ChivoAttic/StructureDetection
Gui/app.py
app.py
py
2,574
python
en
code
2
github-code
6
14594653005
import tensorflow as tf import pathlib import os import cv2 import numpy as np import tqdm import argparse class TFRecordsSeg: def __init__(self, image_dir="/datasets/custom/cityscapes", label_dir="/datasets/custom/cityscapes", tfrecord_path="data.tfrecords", classes=34, img_pattern="*.png", label_pattern="*.png"): """ :param data_dir: the path to iam directory containing the subdirectories of xml and lines from iam dataset :param tfrecord_path: """ # self.data_dir = data_dir # self.labels_dir = os.path.join(data_dir, "gtFine/{}".format(split)) # self.image_dir = os.path.join(data_dir, "leftImg8bit/{}".format(split)) self.image_dir = image_dir self.labels_dir = label_dir self.tfrecord_path = tfrecord_path self.labels = [] self.classes = classes self.img_pattern = img_pattern self.label_pattern = label_pattern self.image_feature_description = \ { 'label': tf.io.FixedLenFeature([], tf.string), 'image': tf.io.FixedLenFeature([], tf.string) } @staticmethod def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) @staticmethod def _float_feature(value): """Returns a float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) @staticmethod def _int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _parse_example_function(self, example_proto): # Parse the input tf.Example proto using the dictionary above. return tf.io.parse_example(example_proto, self.image_feature_description) def image_example(self, image_string, label): feature = { 'label': self._bytes_feature(label), 'image': self._bytes_feature(image_string) } return tf.train.Example(features=tf.train.Features(feature=feature)) def return_inst_cnts(self, inst_ex): inst_cnt = np.zeros(inst_ex.shape) for unique_class in np.unique(inst_ex): inst_img = (inst_ex == unique_class) / 1 cnts, _ = cv2.findContours(inst_img.astype("uint8"), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) inst_cnt = cv2.drawContours(inst_cnt, cnts, -1, (1., 1., 1.), thickness=1) return inst_cnt def write_tfrecords(self, training=False, dataset_name=""): img_paths = sorted(pathlib.Path(self.image_dir).rglob(self.img_pattern)) label_paths = sorted(pathlib.Path(self.labels_dir).rglob(self.label_pattern)) with tf.io.TFRecordWriter(self.tfrecord_path) as writer: for img_path, label_path in tqdm.tqdm(zip(img_paths, label_paths)): img_string = open(str(img_path), 'rb').read() label_string = open(str(label_path), 'rb').read() tf_example = self.image_example(img_string, label_string) writer.write(tf_example.SerializeToString()) if training: import json if os.path.exists('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path))): with open('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path))) as f: data = json.load(f) if dataset_name in list(data.keys()): print("Dataset {} value was already present but value was updated".format(dataset_name)) else: data = {} data[dataset_name] = len(img_paths) with open('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path)), 'w') as json_file: json.dump(data, json_file) def decode_strings(self, record): images = tf.io.decode_jpeg(record['image'], 3) labels = tf.io.decode_jpeg(record['label'], 3) return images, labels def read_tfrecords(self): """ Read iam tfrecords :return: Returns a tuple of images and their label (images, labels) """ raw_dataset = tf.data.TFRecordDataset(self.tfrecord_path) parsed_dataset = raw_dataset.map(self._parse_example_function) decoded_dataset = parsed_dataset.map(self.decode_strings) return decoded_dataset if __name__ == "__main__": classes = 150 dataset_name = "ade20k1" train = TFRecordsSeg(image_dir="/volumes2/datasets/ADEChallengeData2016/images/training", label_dir="/volumes2/datasets/ADEChallengeData2016/annotations/training", tfrecord_path="/data/input/datasets/tf2_segmentation_tfrecords/{}_train.tfrecords".format(dataset_name), classes=classes, img_pattern="*.jpg", label_pattern="*.png") # train = TFRecordsSeg(data_dir="/data/input/datasets/cityscape_processed", tfrecord_path="/volumes1/train.tfrecords", split='train') val = TFRecordsSeg(image_dir="/volumes2/datasets/ADEChallengeData2016/images/validation", label_dir="/volumes2/datasets/ADEChallengeData2016/annotations/validation", tfrecord_path="/data/input/datasets/tf2_segmentation_tfrecords/{}_val.tfrecords".format(dataset_name), classes=classes, img_pattern="*.jpg", label_pattern="*.png") train.write_tfrecords(training=True, dataset_name=dataset_name) val.write_tfrecords() # example = train # image_dataset = example.read_tfrecords().repeat(10) # cv2.namedWindow("img", 0) # cv2.namedWindow("label", 0) # for image_features in image_dataset: # img = image_features[0][..., ::-1] # label = image_features[1] # print(np.unique(label.numpy())) # insts = image_features[2] # cv2.imshow("img", img.numpy()) # cv2.imshow("label", label.numpy()/classes) # cv2.waitKey() # print(image_features[0].shape, image_features[1].shape, image_features[2].shape) # example.write_tfrecords() # image_dataset = example.read_tfrecords().shuffle(10000) # # for image_features in image_dataset.take(10): # print(image_features[0].shape, image_features[1].numpy())
AhmedBadar512/Badr_AI_Repo
utils/create_seg_tfrecords.py
create_seg_tfrecords.py
py
6,714
python
en
code
2
github-code
6
26234013938
#!/usr/bin/python3 """Starts a basic flask web application""" from flask import Flask, render_template from markupsafe import escape from models import storage from models.state import State from models.city import City app = Flask(__name__) @app.teardown_appcontext def teardown(self): """procedure to run after request""" storage.close() @app.route("/states_list", strict_slashes=False) def states_list(): """Function to run when '/states_list' is accessed""" states = [state for state in storage.all(State).values()] states.sort(reverse=False, key=lambda state: state.name) return (render_template('7-states_list.html', states=states)) @app.route("/cities_by_states", strict_slashes=False) def cities_by_statesb(): """Function to run when '/cities_by_states' is accessed""" states = storage.all(State).values() return (render_template('8-cities_by_states.html', states=states)) if (__name__ == '__main__'): app.run(host='0.0.0.0', port=5000, debug=False)
AndyMSP/holbertonschool-AirBnB_clone_v2
web_flask/8-cities_by_states.py
8-cities_by_states.py
py
1,008
python
en
code
0
github-code
6
35515894022
import sys sys.path.append('..') from common.wrapped_input import wrapped_input from common.clean_screen import clean_screen __TERMINATE_MARKS__ = ['***', '****'] class Reader: def __init__(self, args): self.loop = True def run(self, parser): print(""" _ __ __, ( / ) o ( /--< _ __, , _ _ `. ,_ __ , /___// (_(_/(_(_/ / /_(___)_/|_)_/ (_/_ /| / Interactive shell (/ ' ========================================== """) last_input = '' while last_input not in __TERMINATE_MARKS__: last_input = wrapped_input() if last_input in __TERMINATE_MARKS__: print('[INFO] Querying, please wait...') return last_input parser.add(last_input)
ezPsycho/brainSpy-cli
src/readers/interactive.py
interactive.py
py
881
python
en
code
6
github-code
6
277770918
import os, sys import subprocess # os.environ['DISPLAY'] = ':99.0' # os.environ['PYVISTA_OFF_SCREEN'] = 'true' # os.environ['PYVISTA_USE_IPYVTK'] = 'true' # bashCommand ="Xvfb :99 -screen 0 1024x768x24 > /dev/null 2>&1 & sleep 3" # process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True) # process.wait() sys.path.insert(0, os.path.abspath("../../../..")) from copy import deepcopy import numpy as np import torch import pyvista as pv import matplotlib.pyplot as plt from shapmagn.global_variable import Shape, shape_type from shapmagn.datasets.data_utils import read_json_into_list, get_obj, get_file_name from shapmagn.shape.shape_pair_utils import create_shape_pair from shapmagn.utils.obj_factory import obj_factory from shapmagn.utils.visualizer import ( visualize_point_fea, visualize_point_pair, visualize_multi_point, ) from shapmagn.utils.local_feature_extractor import * def get_pair(source_path, target_path, expand_bch_dim=True, return_tensor=True): get_obj_func = get_obj( reader_obj, normalizer_obj, sampler_obj, device, expand_bch_dim=expand_bch_dim, return_tensor=return_tensor, ) source_obj, source_interval = get_obj_func(source_path) target_obj, target_interval = get_obj_func(target_path) return source_obj, target_obj def plot_pair_weight_distribution( source_weight, target_weight, use_log=False, title="", show=True, save_path=None ): plt.style.use("bmh") fig, ax = plt.subplots() source_weight = np.log(source_weight) if use_log else source_weight target_weight = np.log(target_weight) if use_log else target_weight ax.hist(source_weight, bins=1000, density=0, histtype="stepfilled", alpha=0.7) ax.hist(target_weight, bins=1000, density=0, histtype="stepfilled", alpha=0.5) title += "weight" if not use_log else "log_weight" ax.set_title(title) if show: plt.show() if save_path: plt.savefig(save_path, dpi=300) plt.clf() def plot_pair_weight_distribution_before_and_after_radius_matching( source_weight1, target_weight1, source_weight2, target_weight2, use_log=False, title="", show=True, save_path=None, ): plt.style.use("bmh") fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() source_weight_matched1 = matching_np_radius(source_weight1, target_weight1) smw_sum1, sw_sum1, tp_sum1 = ( source_weight_matched1.sum(), source_weight1.sum(), target_weight1.sum(), ) source_weight1 = np.log(source_weight1) if use_log else source_weight1 target_weight1 = np.log(target_weight1) if use_log else target_weight1 ax0.hist(source_weight1, bins=1000, density=0, histtype="stepfilled", alpha=0.7) ax0.hist(target_weight1, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax0.set_title("sw_sum: {:.3f}, tp_sum:{:.3f}".format(sw_sum1, tp_sum1), fontsize=10) source_weight_matched1_norm = ( np.log(source_weight_matched1) if use_log else source_weight_matched1 ) ax1.hist( source_weight_matched1_norm, bins=1000, density=0, histtype="stepfilled", alpha=0.7, ) ax1.hist(target_weight1, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax1.set_title( "smw_sum: {:.3f}, tp_sum:{:.3f}".format(smw_sum1, tp_sum1), fontsize=10 ) source_weight_matched2 = matching_np_radius(source_weight2, target_weight2) smw_sum2, sw_sum2, tp_sum2 = ( source_weight_matched2.sum(), source_weight2.sum(), target_weight2.sum(), ) source_weight2 = np.log(source_weight2) if use_log else source_weight2 target_weight2 = np.log(target_weight2) if use_log else target_weight2 ax2.hist(source_weight2, bins=1000, density=0, histtype="stepfilled", alpha=0.7) ax2.hist(target_weight2, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax2.set_title("sw_sum: {:.3f}, tp_sum:{:.3f}".format(sw_sum2, tp_sum2), fontsize=10) source_weight_matched2_norm = ( np.log(source_weight_matched2) if use_log else source_weight_matched2 ) ax3.hist( source_weight_matched2_norm, bins=1000, density=0, histtype="stepfilled", alpha=0.7, ) ax3.hist(target_weight2, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax3.set_title( "smw_sum: {:.3f}, tp_sum:{:.3f}".format(smw_sum2, tp_sum2), fontsize=10 ) fig.subplots_adjust(hspace=0.3) fig.suptitle(title) if show: plt.show() if save_path: plt.savefig(save_path, dpi=300) plt.clf() return source_weight_matched1, source_weight_matched2 def get_half_lung(lung, normalize_weight=False): weights = lung.weights.detach() points = lung.points.detach() pos_filter = points[..., 0] < 0 points = points[pos_filter][None] weights = weights[pos_filter][None] weights = weights weights = weights / weights.sum() if normalize_weight else weights half_lung = Shape() half_lung.set_data(points=points, weights=weights) return half_lung def get_key_vessel(lung, thre=2e-05): weights = lung.weights.detach() points = lung.points.detach() mask = (lung.weights > thre)[..., 0] weights = weights[mask][None] points = points[mask][None] key_lung = Shape() key_lung.set_data(points=points, weights=weights) return key_lung def sampled_via_radius(source, target): min_npoints = min(source.npoints, target.npoints) tw = target.weights.squeeze() sw = source.weights.squeeze() t_sorted, t_indices = torch.sort(tw, descending=True) s_sorted, s_indices = torch.sort(sw, descending=True) t_sampled_indices = t_indices[:min_npoints] s_sampled_indices = s_indices[:min_npoints] tp_sampled = target.points[:, t_sampled_indices] sp_sampled = source.points[:, s_sampled_indices] tw_sampled = target.weights[:, t_sampled_indices] sw_sampled = source.weights[:, s_sampled_indices] target_sampled, source_sampled = Shape(), Shape() target_sampled.set_data(points=tp_sampled, weights=tw_sampled) source_sampled.set_data(points=sp_sampled, weights=sw_sampled) return source_sampled, target_sampled def hist_match(source, template): """ Adjust the pixel values of a grayscale image such that its histogram matches that of a target image. Code adapted from http://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x Arguments: ----------- source: np.ndarray Image to transform; the histogram is computed over the flattened array template: np.ndarray Template image; can have different dimensions to source Returns: ----------- matched: np.ndarray The transformed output image """ oldshape = source.shape source = source.ravel() template = template.ravel() # get the set of unique pixel values and their corresponding indices and # counts s_values, bin_idx, s_counts = np.unique( source, return_inverse=True, return_counts=True ) t_values, t_counts = np.unique(template, return_counts=True) # take the cumsum of the counts and normalize by the number of pixels to # get the empirical cumulative distribution functions for the source and # template images (maps pixel value --> quantile) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles /= s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles /= t_quantiles[-1] # interpolate linearly to find the pixel values in the template image # that correspond most closely to the quantiles in the source image interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape) def matching_np_radius(source_weights, target_weights): """ :param source_weights: Nx1 :param target_weights: Mx1 :param matched_weights: Nx1 :return: """ ns = source_weights.shape[0] sw = source_weights.squeeze() tw = target_weights.squeeze() range = [min(sw.min(), tw.min()), max(sw.max(), tw.max())] resol = 10000 interp = (range[1] - range[0]) / resol bins = np.linspace(range[0] - 2 * interp, range[1] + 2 * interp, resol) sw_indice = np.digitize(sw, bins, right=False) tw_indice = np.digitize(tw, bins, right=False) sw_digitize = bins[sw_indice] tw_digitize = bins[tw_indice] sw_transformed = hist_match(sw_digitize, tw_digitize) return sw_transformed.reshape(ns, 1).astype(np.float32) def matching_shape_radius(source, target, sampled_by_radius=False, show=True): if sampled_by_radius: source, target = sampled_via_radius(source, target) device = source.points.device sn = source.npoints tn = target.npoints sw = source.weights.squeeze().cpu().numpy() tw = target.weights.squeeze().cpu().numpy() range = [min(sw.min(), tw.min()), max(sw.max(), tw.max())] resol = 10000 interp = (range[1] - range[0]) / resol bins = np.linspace(range[0] - 2 * interp, range[1] + 2 * interp, resol) sw_indice = np.digitize(sw, bins, right=False) tw_indice = np.digitize(tw, bins, right=False) sw_digitize = bins[sw_indice] tw_digitize = bins[tw_indice] sw_transformed = hist_match(sw_digitize, tw_digitize) if show: plot_pair_weight_distribution(sw_digitize, tw_digitize, use_log=True) plot_pair_weight_distribution(sw_transformed, tw_digitize, use_log=True) visualize_point_pair( source.points, target.points, source.weights, target.weights, title1="source(before)", title2="target(before)", ) visualize_point_pair( source.points, target.points, sw_transformed, tw_digitize, title1="source(after)", title2="target(after)", ) source.weights = ( torch.tensor(sw_transformed.astype(np.float32)).to(device).view(1, sn, 1) ) target.weights = ( torch.tensor(tw_digitize.astype(np.float32)).to(device).view(1, tn, 1) ) return source, target def source_weight_transform(weights, compute_on_half_lung=False): weights = weights * 1 weights_cp = deepcopy(weights) thre = 1.9e-05 thre = thre # if not compute_on_half_lung else thre*2 weights[weights_cp < thre] = 1e-7 return weights def flowed_weight_transform(weights, compute_on_half_lung=False): weights = weights * 1 weights_cp = deepcopy(weights) thre = 1.9e-05 thre = thre # if not compute_on_half_lung else thre * 2 weights[weights_cp < thre] = 1e-7 return weights def target_weight_transform(weights, compute_on_half_lung=False): weights = weights * 1 weights_cp = deepcopy(weights) thre = 1.9e-05 thre = thre # if not compute_on_half_lung else thre * 2 weights[weights_cp < thre] = 1e-7 # weights[weights_cp > 1.1e-05] = 1e-7 return weights def pair_shape_transformer(init_thres=2.9e-5, nstep=5): # todo the next step of the transformer is to return a smoothed mask to constrain the movement of the lung def transform(source, target, cur_step): min_weights = min(torch.min(source.weights), torch.min(target.weights)) max_weights = min(torch.max(source.weights), torch.max(target.weights)) max_weights = max_weights.item() cur_step = cur_step.item() assert init_thres > min_weights thres = init_thres - (init_thres - min_weights) / nstep * cur_step s_weights = source.weights.clone() t_weights = target.weights.clone() s_weights[source.weights < thres] = 1e-7 t_weights[target.weights < thres] = 1e-7 s_transformed, t_transformed = Shape(), Shape() s_transformed.set_data( points=source.points, weights=s_weights, pointfea=source.pointfea ) t_transformed.set_data( points=target.points, weights=t_weights, pointfea=target.pointfea ) print("the weight of the lung pair are updated") return s_transformed, t_transformed return transform def capture_plotter(save_source=False): from shapmagn.utils.visualizer import visualize_point_pair_overlap inner_count = 0 def save(record_path, name_suffix, shape_pair): nonlocal inner_count source, flowed, target = shape_pair.source, shape_pair.flowed, shape_pair.target for sp, fp, tp, sw, fw, tw, pair_name in zip( source.points, flowed.points, target.points, source.weights, flowed.weights, target.weights, pair_name_list, ): if inner_count == 0 or save_source: path = os.path.join( record_path, "source_target" + "_" + name_suffix + ".png" ) visualize_point_pair_overlap( sp, tp, flowed_weight_transform(fw, True), target_weight_transform(tw, True), title1="source", title2="target", rgb_on=False, saving_capture_path=path, show=False, ) path_1 = os.path.join( record_path, pair_name + "_flowed_target" + "_main_" + name_suffix + ".png", ) path_2 = os.path.join( record_path, pair_name + "_flowed_target" + "_whole_" + name_suffix + ".png", ) visualize_point_pair_overlap( fp, tp, flowed_weight_transform(fw, True), target_weight_transform(tw, True), title1="flowed", title2="target", rgb_on=False, saving_capture_path=path_1, show=False, ) visualize_point_pair_overlap( fp, tp, fw, tw, title1="flowed", title2="target", rgb_on=False, saving_capture_path=path_2, show=False, ) inner_count += 1 return save def lung_isolated_leaf_clean_up( lung, radius=0.032, principle_weight=None, normalize_weights=True ): points = lung.points.detach() weights = lung.weights.detach() mass, dev, cov = compute_local_moments(points, radius=radius) eigenvector_main = compute_local_fea_from_moments( "eigenvector_main", weights, mass, dev, cov ) filter = mass[..., 0].squeeze() > 2 to_remove = ~filter print( "In the first step, num of points are removed {}, {}".format( torch.sum(to_remove), torch.sum(to_remove) / len(filter) ) ) points_toremove = points[:, to_remove] mass_toremove = mass[:, to_remove] mass = mass[:, filter] points = points[:, filter] weights = weights[:, filter] eigenvector_main = eigenvector_main[:, filter] visualize_point_fea_with_arrow(points, mass, eigenvector_main * 0.01, rgb_on=False) visualize_point_overlap( points, points_toremove, mass, mass_toremove, title="cleaned points", point_size=(10, 20), rgb_on=False, opacity=("linear", 1.0), ) Gamma = compute_anisotropic_gamma_from_points( points, cov_sigma_scale=radius, aniso_kernel_scale=radius, principle_weight=principle_weight, ) mass, dev, cov = compute_aniso_local_moments(points, Gamma) eigenvector_main = compute_local_fea_from_moments( "eigenvector_main", weights, mass, dev, cov ) filter = mass[..., 0].squeeze() > 2.5 to_remove = ~filter print( "In the second step, num of points are removed {}, {}".format( torch.sum(to_remove), torch.sum(to_remove) / len(filter) ) ) points_toremove = points[:, to_remove] mass_toremove = mass[:, to_remove] mass = mass[:, filter] points = points[:, filter] weights = weights[:, filter] eigenvector_main = eigenvector_main[:, filter] visualize_point_fea_with_arrow(points, mass, eigenvector_main * 0.01, rgb_on=False) visualize_point_overlap( points, points_toremove, mass, mass_toremove, title="cleaned points", point_size=(10, 20), rgb_on=False, opacity=("linear", 1.0), ) Gamma = compute_anisotropic_gamma_from_points( points, cov_sigma_scale=radius, aniso_kernel_scale=radius, principle_weight=principle_weight, ) mass, dev, cov = compute_aniso_local_moments(points, Gamma) eigenvector_main = compute_local_fea_from_moments( "eigenvector_main", weights, mass, dev, cov ) filter = mass[..., 0].squeeze() > 3 to_remove = ~filter print( "In the third step, num of points are removed {}, {}".format( torch.sum(to_remove), torch.sum(to_remove) / len(filter) ) ) points_toremove = points[:, to_remove] mass_toremove = mass[:, to_remove] mass = mass[:, filter] points = points[:, filter] weights = weights[:, filter] eigenvector_main = eigenvector_main[:, filter] visualize_point_fea_with_arrow(points, mass, eigenvector_main * 0.01, rgb_on=False) visualize_point_overlap( points, points_toremove, mass, mass_toremove, title="cleaned points", point_size=(10, 20), rgb_on=False, opacity=("linear", 1.0), ) cleaned_lung = Shape() cleaned_lung.points, cleaned_lung.weights = ( points, weights / torch.sum(weights) if normalize_weights else weights, ) return cleaned_lung def analysis_large_vessel( source, target, source_weight_transform=source_weight_transform, target_weight_transform=target_weight_transform, title1="source", title2="target", ): source_points, source_weights, = ( source.points.detach().cpu(), source.weights.detach().cpu(), ) target_points, target_weights, = ( target.points.detach().cpu(), target.weights.detach().cpu(), ) plot_pair_weight_distribution( source_weight_transform(source_weights).squeeze().numpy(), target_weight_transform(target_weights).squeeze().numpy(), use_log=True, ) visualize_point_pair( source_points, target_points, source_weight_transform(source_weights), target_weight_transform(target_weights), title1=title1, title2=title2, ) def compute_atlas(weight_list): atlas_weight = np.concatenate(weight_list) return atlas_weight def transfer_radius_and_save_sample( cur_obj, atlas_distri, radius_transfered_saing_path ): cur_obj["weights"] = matching_np_radius(cur_obj["weights"], atlas_distri) data = pv.PolyData(cur_obj["points"]) for key, item in cur_obj.items(): if key not in ["points"]: data.point_arrays[key] = item data.save(radius_transfered_saing_path) return cur_obj if __name__ == "__main__": assert ( shape_type == "pointcloud" ), "set shape_type = 'pointcloud' in global_variable.py" device = torch.device("cpu") # cuda:0 cpu reader_obj = "lung_dataloader_utils.lung_reader()" normalizer_obj = ( "lung_dataloader_utils.lung_normalizer(weight_scale=60000,scale=[100,100,100])" ) phase = "train" use_local_mount = False remote_mount_transfer = lambda x: x.replace( "/playpen-raid1", "/home/zyshen/remote/llr11_mount" ) path_transfer = ( (lambda x: remote_mount_transfer(x)) if use_local_mount else (lambda x: x) ) dataset_json_path = ( "/playpen-raid1/zyshen/data/lung_expri/{}/pair_data.json".format(phase) ) dataset_json_path = path_transfer(dataset_json_path) sampler_obj = "lung_dataloader_utils.lung_sampler( method='voxelgrid',scale=0.0003)" get_obj_func = get_obj( reader_obj, normalizer_obj, sampler_obj, device, expand_bch_dim=False, return_tensor=False, ) altas_path = "/playpen-raid1/Data/UNC_vesselParticles/10067M_INSP_STD_MSM_COPD_wholeLungVesselParticles.vtk" altas_path = path_transfer(altas_path) atlas, _ = get_obj_func(altas_path) sampler_obj = "lung_dataloader_utils.lung_sampler( method='combined',scale=0.0003,num_sample=30000,sampled_by_weight=True)" get_obj_func = get_obj( reader_obj, normalizer_obj, sampler_obj, device, expand_bch_dim=False, return_tensor=False, ) sampled_atlas, _ = get_obj_func(altas_path) radius_transfered_saing_path = "/playpen-raid1/zyshen/data/lung_atlas/{}".format( phase ) radius_transfered_saing_path = path_transfer(radius_transfered_saing_path) os.makedirs(radius_transfered_saing_path, exist_ok=True) pair_name_list, pair_info_list = read_json_into_list(dataset_json_path) pair_path_list = [ [pair_info["source"]["data_path"], pair_info["target"]["data_path"]] for pair_info in pair_info_list ] pair_id = 3 output_path = "/playpen-raid1/zyshen/data/lung_data_analysis/val" for pair_id in range(len(pair_name_list)): pair_path = pair_path_list[pair_id] pair_path = [path_transfer(path) for path in pair_path] sampler_obj = ( "lung_dataloader_utils.lung_sampler( method='voxelgrid',scale=0.0003)" ) ######################## plot_saving_path = os.path.join(radius_transfered_saing_path, "origin_plots") os.makedirs(plot_saving_path, exist_ok=True) source_path, target_path = pair_path_list[pair_id] source, target = get_pair( source_path, target_path, expand_bch_dim=False, return_tensor=False ) saving_path = os.path.join(plot_saving_path, pair_name_list[pair_id] + ".png") camera_pos = [ (-4.924379645467042, 2.17374925796456, 1.5003730890759344), (0.0, 0.0, 0.0), (0.40133888001174545, 0.31574165540339943, 0.8597873634998591), ] visualize_point_pair( source["points"], target["points"], source["weights"], target["weights"], title1="source", title2="target", saving_capture_path=saving_path, camera_pos=camera_pos, show=False, ) plot_saving_path = os.path.join(radius_transfered_saing_path, "plots") os.makedirs(plot_saving_path, exist_ok=True) # vtk_saving_path = os.path.join(radius_transfered_saing_path,"data") # os.makedirs(vtk_saving_path,exist_ok=True) # saving_path = os.path.join(vtk_saving_path,get_file_name(source_path)+".vtk") # mapped_source = transfer_radius_and_save_sample(source, atlas["weights"], saving_path) # saving_path = os.path.join(vtk_saving_path,get_file_name(target_path)+".vtk") # mapped_target = transfer_radius_and_save_sample(target, atlas["weights"], saving_path) # plot_saving_path = os.path.join(radius_transfered_saing_path, "plots") # source_vg_weight, target_vg_weight = source["weights"], target["weights"] # sampler_obj ="lung_dataloader_utils.lung_sampler( method='combined',scale=0.0003,num_sample=30000,sampled_by_weight=True)" # source, target = get_pair(source_path, target_path, expand_bch_dim=False, return_tensor=False) # source_combined_weight, target_combined_weight = source["weights"], target["weights"] # os.makedirs(plot_saving_path,exist_ok=True) # saving_file_path = os.path.join(plot_saving_path,pair_info_list[pair_id]["source"]["name"]+"_weights_distribution.png") # title = pair_info_list[pair_id]["source"]["name"] + "_" +"n_sp:{} ".format(len(source_vg_weight))+"n_tp:{}".format(len(atlas["weights"])) # _,source_combined_mapped_weight =plot_pair_weight_distribution_before_and_after_radius_matching(source_vg_weight, atlas["weights"],source_combined_weight,sampled_atlas["weights"], use_log=True,title=title,show=False,save_path=saving_file_path) # saving_file_path = os.path.join(plot_saving_path, pair_info_list[pair_id]["target"]["name"] + "_weights_distribution.png") # title = pair_info_list[pair_id]["target"]["name"] + "_" + "n_sp:{} ".format(len(target_vg_weight)) + "n_tp:{}".format(len(atlas["weights"])) # _,target_combined_mapped_weight =plot_pair_weight_distribution_before_and_after_radius_matching(target_vg_weight, atlas["weights"], target_combined_weight, sampled_atlas["weights"],use_log=True, title=title, show=False,save_path=saving_file_path) # saving_path = os.path.join(plot_saving_path, pair_name_list[pair_id]+"_mapped.png") # camera_pos = [(-4.924379645467042, 2.17374925796456, 1.5003730890759344), (0.0, 0.0, 0.0), # (0.40133888001174545, 0.31574165540339943, 0.8597873634998591)] # visualize_point_pair(source["points"], target["points"], # source_combined_mapped_weight, # target_combined_mapped_weight, # title1="source", title2="target", rgb_on=False,saving_capture_path=saving_path,camera_pos=camera_pos,show=False ) # source, target = get_pair(*pair_path) # source_vg_weight, target_vg_weight = source["weights"], target["weights"] # title = pair_name_list[pair_id] + "_" +"n_sp:{} ".format(len(source_vg_weight))+"n_tp:{}".format(len(target_vg_weight)) # sampler_obj ="lung_dataloader_utils.lung_sampler( method='combined',scale=0.0003,num_sample=30000,sampled_by_weight=True)" # source, target = get_pair(source_path, target_path, expand_bch_dim=False, return_tensor=False) # source_combined_weight, target_combined_weight = source["weights"], target["weights"] # plot_saving_path = os.path.join(radius_transfered_saing_path,"plots") # saving_folder_path = os.path.join(output_path,pair_name_list[pair_id]) # os.makedirs(saving_folder_path,exist_ok=True) # saving_file_path = os.path.join(saving_folder_path,pair_name_list[pair_id]+"_weights_distribution.png") # plot_pair_weight_distribution_before_and_after_radius_matching(source_vg_weight, target_vg_weight,source_combined_weight,target_combined_weight, use_log=True,title=title,show=False,save_path=saving_file_path) # # visualize_point_pair(source["points"], target["points"], # source["weights"], # target["weights"], # title1="source", title2="target", rgb_on=False) # # # shape_pair = create_shape_pair(source, target) # source_half = get_half_lung(source) # target_half = get_half_lung(target) # cleaned_source_half = lung_isolated_leaf_clean_up(source_half,radius=0.02, principle_weight=[2,1,1], normalize_weights=False) # # visualize_point_pair(source_half.points, cleaned_source_half.points, # # source_weight_transform(source_half.weights), # # source_weight_transform(cleaned_source_half.weights), # # title1="source", title2="cleaned_source", rgb_on=False) # # # # plot_pair_weight_distribution(source_weight_transform(source_half.weights).cpu().squeeze().numpy(), # # target_weight_transform(target_half.weights).cpu().squeeze().numpy(), # # use_log=True) # # visualize_point_pair(source_half.points, target_half.points, # source_weight_transform(source_half.weights), # target_weight_transform(target_half.weights), # title1="source", title2="target", rgb_on=False)
uncbiag/shapmagn
shapmagn/experiments/datasets/lung/lung_data_analysis.py
lung_data_analysis.py
py
28,299
python
en
code
94
github-code
6
6460552932
import sys import click import logging from pprint import pprint from ftmstore import get_dataset from servicelayer.cache import get_redis, get_fakeredis from servicelayer.logs import configure_logging from servicelayer.jobs import Job, Dataset from servicelayer import settings as sl_settings from servicelayer.archive.util import ensure_path from ingestors import settings from ingestors.manager import Manager from ingestors.directory import DirectoryIngestor from ingestors.analysis import Analyzer from ingestors.worker import IngestWorker, OP_ANALYZE, OP_INGEST log = logging.getLogger(__name__) STAGES = [OP_ANALYZE, OP_INGEST] @click.group() def cli(): configure_logging(level=logging.DEBUG) @cli.command() @click.option("-s", "--sync", is_flag=True, default=False, help="Run without threads") def process(sync): """Start the queue and process tasks as they come. Blocks while waiting""" num_threads = None if sync else sl_settings.WORKER_THREADS worker = IngestWorker(stages=STAGES, num_threads=num_threads) code = worker.run() sys.exit(code) @cli.command() @click.argument("dataset") def cancel(dataset): """Delete scheduled tasks for given dataset""" conn = get_redis() Dataset(conn, dataset).cancel() @cli.command() def killthekitten(): """Completely kill redis contents.""" conn = get_redis() conn.flushall() def _ingest_path(db, conn, dataset, path, languages=[]): context = {"languages": languages} job = Job.create(conn, dataset) stage = job.get_stage(OP_INGEST) manager = Manager(db, stage, context) path = ensure_path(path) if path is not None: if path.is_file(): entity = manager.make_entity("Document") checksum = manager.store(path) entity.set("contentHash", checksum) entity.make_id(checksum) entity.set("fileName", path.name) log.info("Queue: %r", entity.to_dict()) manager.queue_entity(entity) if path.is_dir(): DirectoryIngestor.crawl(manager, path) manager.close() @cli.command() @click.option("--languages", multiple=True, help="3-letter language code (ISO 639)") @click.option("--dataset", required=True, help="Name of the dataset") @click.argument("path", type=click.Path(exists=True)) def ingest(path, dataset, languages=None): """Queue a set of files for ingest.""" conn = get_redis() db = get_dataset(dataset, OP_INGEST) _ingest_path(db, conn, dataset, path, languages=languages) @cli.command() @click.option("--dataset", required=True, help="Name of the dataset") def analyze(dataset): db = get_dataset(dataset, OP_ANALYZE) analyzer = None for entity in db.partials(): if analyzer is None or analyzer.entity.id != entity.id: if analyzer is not None: analyzer.flush() # log.debug("Analyze: %r", entity) analyzer = Analyzer(db, entity, {}) analyzer.feed(entity) if analyzer is not None: analyzer.flush() @cli.command() @click.option("--languages", multiple=True, help="3-letter language code (ISO 639)") @click.argument("path", type=click.Path(exists=True)) def debug(path, languages=None): """Debug the ingest for the given path.""" conn = get_fakeredis() settings.fts.DATABASE_URI = "sqlite:////tmp/debug.sqlite3" db = get_dataset("debug", origin=OP_INGEST, database_uri=settings.fts.DATABASE_URI) db.delete() _ingest_path(db, conn, "debug", path, languages=languages) worker = IngestWorker(conn=conn, stages=STAGES) worker.sync() for entity in db.iterate(): pprint(entity.to_dict()) if __name__ == "__main__": cli()
alephdata/ingest-file
ingestors/cli.py
cli.py
py
3,714
python
en
code
45
github-code
6
5119440044
from netaddr import IPNetwork, IPAddress import logging from pymongo import MongoClient logger = logging.getLogger( "ucn_logger" ) class VPNResolve(object): def __init__( self, cidr, dbcfg): self.logscollection = dbcfg['logscollection'] self.devicecollection = dbcfg['devicecollection'] self.db = dbcfg['db'] self.cidr = cidr self.mc = MongoClient(dbcfg['host'], dbcfg['port']) def clientip(self, request): if len(request.access_route) > 1: host = request.access_route[-1] else: host = request.access_route[0] logger.debug("seen a client ip %s" % host) if IPAddress(host) not in IPNetwork(self.cidr): logger.debug("is not local, looking up in openvpn status") return self.findlocal(host) else: return host def findlocal(self, host): db = self.mc[self.db] devices = db[self.logscollection].find({"untrusted_client_ip": host}).sort("ts", -1).limit(1) devicename = None protocol = None for device in devices: devicename = device['common_name'] protocol = device['proto'] #now lookup device name in the devices collection device = db[self.devicecollection].find_one({"login":devicename}) if device is not None: if protocol is not None: if protocol == "udp": if 'vpn_udp_ip' in device: logger.debug("retreived udp ip %s" % device['vpn_udp_ip']) return device['vpn_udp_ip'] elif protocol == "tcp": if 'vpn_tcp_ip' in device: logger.debug("retreived tcp ip %s" % device['vpn_tcp_ip']) return device['vpn_tcp_ip'] logger.debug("no corresponding ip for %s in db" % host) return None
ucn-eu/ucnviz
vpnresolve.py
vpnresolve.py
py
1,620
python
en
code
0
github-code
6
39629119175
import numpy as np import glob import os import pandas as pd from tqdm import tqdm import nltk import string from nltk.tokenize import word_tokenize import random import pickle from nltk.corpus import stopwords from autocorrect import Speller import re from nltk.corpus import wordnet from nltk.stem.wordnet import WordNetLemmatizer from hyperopt import fmin, tpe, hp # load a document def load(filename): file = open(filename, encoding='utf-8') text = file.read() file.close() return text # split a document into news story and highlights def split(doc): # find first highlight index = doc.find('@highlight') # split into story and highlights story, highlights = doc[:index], doc[index:].split('@highlight') # strip extra white space around each highlight highlights = [h.strip() for h in highlights if len(h) > 0] return story, highlights # load all stories from a directory def load_stories(directory): stories = [] for name in os.listdir(directory): filename = directory + '/' + name # load document doc = load(filename) # split into story and highlights story, highlights = split(doc) # store stories.append({'story':story, 'highlights':highlights}) return stories directory = r'C:\Users\ymaha\Desktop\cnn\stories' stories = load_stories(directory) print('Loaded Stories %d' % len(stories)) def preprocesing(lines): # function to convert nltk tag to wordnet tag def nltk_tag_to_wordnet_tag(nltk_tag): if nltk_tag.startswith('J'): return wordnet.ADJ elif nltk_tag.startswith('V'): return wordnet.VERB elif nltk_tag.startswith('N'): return wordnet.NOUN elif nltk_tag.startswith('R'): return wordnet.ADV else: return None def lemmatize_sentence(sentence): #tokenize the sentence and find the POS tag for each token nltk_tagged = nltk.pos_tag(nltk.word_tokenize(sentence)) #tuple of (token, wordnet_tag) wordnet_tagged = map(lambda x: (x[0], nltk_tag_to_wordnet_tag(x[1])), nltk_tagged) # print(wordnet_tagged) lemmatized_sentence = [] for word, tag in wordnet_tagged: if tag is None: #if there is no available tag, append the token as is lemmatized_sentence.append(word) else: #else use the tag to lemmatize the token lemmatized_sentence.append(lemmatizer.lemmatize(word, tag)) # if tag is not None: # lemmatized_sentence.append(lemmatizer.lemmatize(word, tag)) return " ".join(lemmatized_sentence) temp = [] for line in lines: # strip source cnn index = line.find('(CNN)') if index > -1: line = line[index+len('(CNN)'):] # tokenize on white space line = line.split() # convert to lower case line = [word.lower() for word in line] # remove punctuation and special characters from each token line = [w.replace('[<>!#@$:.,%\?-_]+', ' ') for w in line] # remove non ascii characters line = [w.replace('[^\x00-\x7f]', ' ') for w in line] # remove tokens with numbers in them line = [word for word in line if word.isalpha()] # # removing stop words # line = [word for word in line if word not in stop_list] # removing words of length 1 line = [word for word in line if len(word) > 1] # # Lemmatizing the words and combing them into a line # temp.append(lemmatize_sentence(' '.join(line))) # Combining the words into a line temp.append(' '.join(line)) # remove empty strings temp = [c for c in temp if len(c) > 0] return temp stop_list = stopwords.words('english') lemmatizer = WordNetLemmatizer() stemmer = nltk.stem.PorterStemmer() for i in tqdm(range(len(stories))): # for example in stories: stories[i]['story'] = preprocesing(stories[i]['story'].split('\n')) stories[i]['highlights'] = preprocesing(stories[i]['highlights']) # save to file from pickle import dump dump(stories, open('processed_cnn_data.pkl', 'wb'))
kalyankumarp/Abstractive-Text-Summarization-using-Transformers
Models/preprocess.py
preprocess.py
py
4,310
python
en
code
3
github-code
6
42479631473
"""Unsupervised Model scheleton.""" from __future__ import division from __future__ import print_function import tensorflow as tf from yadlt.core.model import Model from yadlt.utils import tf_utils class UnsupervisedModel(Model): """Unsupervised Model scheleton class. The interface of the class is sklearn-like. Methods ------- * fit(): model training procedure. * transform(): model inference procedure. * reconstruct(): model reconstruction procedure (autoencoders). * score(): model scoring procedure (mean error). """ def __init__(self, name): """Constructor.""" Model.__init__(self, name) def fit(self, train_X, train_Y=None, val_X=None, val_Y=None, graph=None): """Fit the model to the data. Parameters ---------- train_X : array_like, shape (n_samples, n_features) Training data. train_Y : array_like, shape (n_samples, n_features) Training reference data. val_X : array_like, shape (N, n_features) optional, (default = None). Validation data. val_Y : array_like, shape (N, n_features) optional, (default = None). Validation reference data. graph : tf.Graph, optional (default = None) Tensorflow Graph object. Returns ------- """ g = graph if graph is not None else self.tf_graph with g.as_default(): # Build model self.build_model(train_X.shape[1]) with tf.Session() as self.tf_session: # Initialize tf stuff summary_objs = tf_utils.init_tf_ops(self.tf_session) self.tf_merged_summaries = summary_objs[0] self.tf_summary_writer = summary_objs[1] self.tf_saver = summary_objs[2] # Train model self._train_model(train_X, train_Y, val_X, val_Y) # Save model self.tf_saver.save(self.tf_session, self.model_path) def transform(self, data, graph=None): """Transform data according to the model. Parameters ---------- data : array_like, shape (n_samples, n_features) Data to transform. graph : tf.Graph, optional (default = None) Tensorflow Graph object Returns ------- array_like, transformed data """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) feed = {self.input_data: data, self.keep_prob: 1} return self.encode.eval(feed) def reconstruct(self, data, graph=None): """Reconstruct data according to the model. Parameters ---------- data : array_like, shape (n_samples, n_features) Data to transform. graph : tf.Graph, optional (default = None) Tensorflow Graph object Returns ------- array_like, transformed data """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) feed = {self.input_data: data, self.keep_prob: 1} return self.reconstruction.eval(feed) def score(self, data, data_ref, graph=None): """Compute the reconstruction loss over the test set. Parameters ---------- data : array_like Data to reconstruct. data_ref : array_like Reference data. Returns ------- float: Mean error. """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) feed = { self.input_data: data, self.input_labels: data_ref, self.keep_prob: 1 } return self.cost.eval(feed)
gabrieleangeletti/Deep-Learning-TensorFlow
yadlt/core/unsupervised_model.py
unsupervised_model.py
py
4,251
python
en
code
965
github-code
6
11545903852
import modules.processing_turn as m_turn import modules.data_base as m_data def click_cell(x,y): # Умова першого рядка таблиці if y < 100 and y > 0: # Умова першої комірки по х if x > -100 and x < 0 and m_data.list_cells[0] == 0: m_turn.who_turn(-100, 100, 0) # Умова другої комірки по х elif x < 100 and x > 0 and m_data.list_cells[1] == 0: m_turn.who_turn(0, 100, 1) # Умова третьої комірки по х elif x > 100 and x < 200 and m_data.list_cells[2] == 0: m_turn.who_turn(100, 100, 2) # Умова другого рядка таблиці elif y < 0 and y > -100: # Умова четвертої комірки по х if x > -100 and x < 0 and m_data.list_cells[3] == 0: m_turn.who_turn(-100, 0, 3) # Умова п'ятої комірки по х elif x < 100 and x > 0 and m_data.list_cells[4] == 0: m_turn.who_turn(0, 0, 4) # Умова шостої комірки по х elif x > 100 and x < 200 and m_data.list_cells[5] == 0: m_turn.who_turn(100, 0, 5) # Умова третього рядка таблиці elif y < -100 and y > -200: if x > -100 and x < 0 and m_data.list_cells[6] == 0: m_turn.who_turn(-100,-100,6) elif x < 100 and x > 0 and m_data.list_cells[7] == 0: m_turn.who_turn(0, -100, 7) elif x > 100 and x < 200 and m_data.list_cells[8] == 0: m_turn.who_turn(100, -100, 8)
BoiarkinaOryna/cross_zero_game
modules/checking_square_coordinates.py
checking_square_coordinates.py
py
1,655
python
uk
code
0
github-code
6
10701337998
import tensorflow as tf import re import time, datetime import os import data_helper TOWER_NAME = 'tower' class CNNClassify(object): """CNN图像分类 """ def __init__(self, batch_size, num_classes, num_train_examples, initial_lr=0.1, lr_decay_factor=0.1, moving_average_decay=0.9999, num_epochs_per_decay=300, log_frequency=10, max_steps=200000, checkpoint_every=5000, num_gpus=4, session_conf=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True, gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.3))): self.batch_size = batch_size self.num_classes = num_classes self.moving_average_decay = moving_average_decay # 用于移动平均的衰减 self.initial_lr = initial_lr # 最初的学习速率 self.lr_decay_factor = lr_decay_factor # 学习速率衰减因子 self.num_epochs_per_decay = num_epochs_per_decay # 多少轮衰减一次 self.num_train_examples = num_train_examples # 训练样本数量 self.log_frequency = log_frequency # 多少步控制台打印一次结果 self.max_steps = max_steps self.checkpoint_every = checkpoint_every # 多少步之后保存一次模型 self.num_checkpoints = 5 self.num_gpus = num_gpus self.session_conf = session_conf def _variable_on_cpu(self, name, shape, initializer): """帮助创建存储在CPU内存上的变量。""" with tf.device('/cpu:0'): dtype = tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) return var def _variable_with_weight_decay(self, name, shape, stddev, wd): """初始化权重变量 Args: name: name of the variable shape: list of ints stddev: 高斯函数标准差 wd: 添加L2范数损失权重衰减系数。如果没有,该变量不添加重量衰减。 Returns:权重变量 """ dtype = tf.float32 var = self._variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev, dtype=dtype)) if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def _activation_summary(self, x): """创建tensorboard摘要 好可视化查看 """ tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.summary.histogram(tensor_name + '/activations', x) tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def average_gradients(self, tower_grads): """计算所有tower上所有变量的平均梯度 """ average_grads = [] for grad_and_vars in zip(*tower_grads): # 每个梯度和变量类似这样: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # 添加一个0维度来代表tower [grad0_gpuN] expanded_g = tf.expand_dims(g, 0) # [[grad0_gpu1],...,[grad0_gpuN]] grads.append(expanded_g) # 在tower上进行平均 (上面加维度那部分没理解 加了又合 不是白操作吗?,后续再研究一下) grad = tf.concat(axis=0, values=grads) # [grad0_gpu1,..., grad0_gpuN] grad = tf.reduce_mean(grad, 0) # 平均梯度 # 把变量拼接回去 v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def inference(self, images): """向前传播 """ # 第一层卷积 with tf.variable_scope('conv1') as scope: kernel = self._variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=5e-2, wd=0.0) # 权值矩阵 # 二维卷积 conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') # 周围补0 保持形状不变 biases = self._variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) # relu激活 self._activation_summary(conv1) # pool1 最大池化 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 增加一个LRN处理,可以增强模型的泛化能力 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # 第二层卷积 with tf.variable_scope('conv2') as scope: kernel = self._variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=0.0) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = self._variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) self._activation_summary(conv2) # 这次先进行LRN处理 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # 最大池化 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # 全连接隐层 映射到384维向量 with tf.variable_scope('local3') as scope: # 将前面的最大池化输出扁平化成一个单一矩阵 好做全连接 reshape = tf.reshape(pool2, [self.batch_size, -1]) dim = reshape.get_shape()[1].value weights = self._variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = self._variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) self._activation_summary(local3) # 再接一个全连接层 映射到192维向量 with tf.variable_scope('local4') as scope: weights = self._variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = self._variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name) self._activation_summary(local4) # 线性输出层 这里不做softmax 因为在损失函数内部执行了,那样效率更高 with tf.variable_scope('softmax_linear') as scope: weights = self._variable_with_weight_decay('weights', [192, self.num_classes], stddev=1 / 192.0, wd=0.0) biases = self._variable_on_cpu('biases', [self.num_classes], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) self._activation_summary(softmax_linear) return softmax_linear def loss(self, logits, labels): """损失函数 """ # Calculate the average cross entropy loss across the batch. labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss') def tower_loss(self, scope, logits, labels): _ = self.loss(logits, labels) # 把所有损失都集中到当前tower上 losses = tf.get_collection('losses', scope) total_loss = tf.add_n(losses, name='total_loss') for l in losses + [total_loss]: # 去掉变量名前缀 tower_[0-9],变成和单GPU的时候一样 loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name) tf.summary.scalar(loss_name, l) return total_loss def evaluation(self, logits, labels, k=1): """评估函数 :param logits: 预测 :param labels: 标签 """ correct = tf.nn.in_top_k(logits, labels, k=k) # correct = tf.equal(self.predictions, tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) tf.add_to_collection('accuracy', accuracy) return tf.add_n(tf.get_collection('accuracy'), name='accuracy') def tower_evaluation(self, scope, logits, labels, k=1): """多gpu的评估函数 """ _ = self.evaluation(logits, labels, k) accuracy = tf.get_collection('accuracy', scope) total_accuracy = tf.reduce_mean(accuracy, axis=0, name='total_accuracy') return total_accuracy def _add_loss_summaries(self, total_loss): """增加损失摘要 """ # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op def train_operation(self, total_loss, global_step): """训练操作 """ num_batches_per_epoch = self.num_train_examples / self.batch_size # 每轮的批次数 decay_steps = int(num_batches_per_epoch * self.num_epochs_per_decay) # 多少步衰减 # 基于步数,以指数方式衰减学习率。 lr = tf.train.exponential_decay(self.initial_lr, global_step, decay_steps, self.lr_decay_factor, staircase=True) tf.summary.scalar('learning_rate', lr) # 损失移动平均 loss_averages_op = self._add_loss_summaries(total_loss) with tf.control_dependencies([loss_averages_op]): opt = tf.train.GradientDescentOptimizer(lr) # 优化器 grads = opt.compute_gradients(total_loss) # 梯度 # 应用梯度 apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # 训练操作 # 为可训练的变量添加直方图 for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) # 为梯度添加直方图 for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) # 跟踪所有可训练变量的移动平均线 variable_averages = tf.train.ExponentialMovingAverage(self.moving_average_decay, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train') return train_op def train_step(self, sess, summary_writer): """单步训练 """ _, step, cur_loss, cur_acc = sess.run([self.train_op, self.global_step, self._loss, self.accuracy]) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, cur_loss, cur_acc)) # 存储摘要 if step % 100 == 0: summary_str = sess.run(self.summary) summary_writer.add_summary(summary_str, step) summary_writer.flush() def train(self, filename, out_dir): """训练 """ with tf.Graph().as_default(): sess = tf.Session(config=self.session_conf) with sess.as_default(): self.global_step = tf.contrib.framework.get_or_create_global_step() with tf.device('/cpu:0'): images, labels = data_helper.distorted_inputs(filename, self.batch_size) logits = self.inference(images) self._loss = self.loss(logits, labels) self.train_op = self.train_operation(self._loss, self.global_step) self.accuracy = self.evaluation(logits, labels) self.summary = tf.summary.merge_all() # 保存点设置 checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") # 模型存储前缀 if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=self.num_checkpoints) summary_writer = tf.summary.FileWriter(out_dir + "/summary", sess.graph) # 初始化所有变量 ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess=sess) for step in range(self.max_steps): self.train_step(sess, summary_writer) # 训练 cur_step = tf.train.global_step(sess, self.global_step) # checkpoint_every 次迭代之后 保存模型 if cur_step % self.checkpoint_every == 0 and cur_step != 0: path = saver.save(sess, checkpoint_prefix, global_step=cur_step) print("Saved model checkpoint to {}\n".format(path)) def multi_gpu_train(self, filename, out_dir): with tf.Graph().as_default(), tf.device('/cpu:0'): sess = tf.Session(config=self.session_conf) with sess.as_default(): # Create a variable to count the number of train() calls. This equals the # number of batches processed * FLAGS.num_gpus. self.global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) # 学习速率衰减设置 num_batches_per_epoch = self.num_train_examples / self.batch_size decay_steps = int(num_batches_per_epoch * self.num_epochs_per_decay) # 根据步数衰减学习速率 lr = tf.train.exponential_decay(self.initial_lr, self.global_step, decay_steps, self.lr_decay_factor, staircase=True) # 执行梯度下降的优化器 opt = tf.train.GradientDescentOptimizer(lr) images, labels = data_helper.distorted_inputs(filename, self.batch_size) # 取出数据 # 批次队列 这个函数不是很懂 batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue([images, labels], capacity=2 * self.num_gpus) tower_grads = [] summaries = None with tf.variable_scope(tf.get_variable_scope()): for i in range(self.num_gpus): with tf.device('/gpu:{}'.format(i)): with tf.name_scope('{}_{}'.format(TOWER_NAME, i)) as scope: # 为gpu列出一个批次 image_batch, label_batch = batch_queue.dequeue() # 计算一个tower的损失. 并且每个tower共享权重变量 logits = self.inference(image_batch) self._loss = self.tower_loss(scope, logits, label_batch) self.accuracy = self.tower_evaluation(scope, logits, label_batch) # 下一个tower复用变量 tf.get_variable_scope().reuse_variables() # 保存最终tower的摘要 summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) # 计算梯度 grads = opt.compute_gradients(self._loss) # 跟踪所有tower的梯度 tower_grads.append(grads) grads = self.average_gradients(tower_grads) # 平均梯度 # 添加学习速率的摘要 summaries.append(tf.summary.scalar('learning_rate', lr)) # 添加梯度直方图 for grad, var in grads: if grad is not None: summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad)) # 应用梯度来调整共享变量 apply_gradient_op = opt.apply_gradients(grads, global_step=self.global_step) # 所有可训练变量添加直方图 for var in tf.trainable_variables(): summaries.append(tf.summary.histogram(var.op.name, var)) # 跟踪所有可训练变量的移动平均线 variable_averages = tf.train.ExponentialMovingAverage(self.moving_average_decay, self.global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 将所有更新集中到一个训练操作 self.train_op = tf.group(apply_gradient_op, variables_averages_op) # 从最后的tower总结摘要 self.summary = tf.summary.merge(summaries) # 保存点设置 checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") # 模型存储前缀 if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=self.num_checkpoints) summary_writer = tf.summary.FileWriter(out_dir + "/summary", sess.graph) # 初始化所有变量 ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) # 启动队列 tf.train.start_queue_runners(sess=sess) for step in range(self.max_steps): self.train_step(sess, summary_writer) # 训练 cur_step = tf.train.global_step(sess, self.global_step) # checkpoint_every 次迭代之后 保存模型 if cur_step % self.checkpoint_every == 0 and cur_step != 0: path = saver.save(sess, checkpoint_prefix, global_step=cur_step) print("Saved model checkpoint to {}\n".format(path))
mikuh/tf_code
cnn/cnn_model.py
cnn_model.py
py
19,630
python
en
code
3
github-code
6
26807586503
from src.utils.all_utils import read_yaml, create_directory import argparse import os import shutil from tqdm import tqdm import logging log_string = "[%(asctime)s: %(levelname)s: %(module)s]: %(message)s" logs_dir = "Logs" os.makedirs(logs_dir,exist_ok=True) logging.basicConfig(filename=os.path.join(logs_dir,"Running_Logs.log"),level=logging.INFO,format=log_string,filemode='a') def copy_file(source_download_dir,local_data_dir): source_files = os.listdir(source_download_dir) N = len(source_files) for file in tqdm(source_files,total=N,desc= f"Copying File from {source_download_dir} to {local_data_dir}", colour="green"): src = os.path.join(source_download_dir,file) dst = os.path.join(local_data_dir,file) shutil.copy(src, dst) def get_data(config_path): config = read_yaml(config_path) source_download_dirs = config["source_download_dirs"] local_data_dirs = config["local_data_dirs"] for source_download_dir,local_data_dir in tqdm(zip(source_download_dirs,local_data_dirs),total=2,desc= "List of Folders", colour="cyan"): create_directory([local_data_dir]) copy_file(source_download_dir,local_data_dir) if __name__ == '__main__': args = argparse.ArgumentParser() args.add_argument("--config", "-c", default="config/config.yaml") parsed_args = args.parse_args() try: logging.info(">>>>>Stage-01 Started...") get_data(config_path=parsed_args.config) logging.info("Stage-01 Completed , Data saved into local Directory <<<<<<\n") except Exception as e: raise e
vicharapubhargav/dvc_tensorflow_demo
src/stage_01_load_save.py
stage_01_load_save.py
py
1,595
python
en
code
0
github-code
6
715415024
import pandas as pd import pickle def buildDataSet(): #Import Ingredients DF print('Loaded Products...') ewg_ing_df = pd.read_json('ingredients_products_keys_fixed/ewg_ingredients.json', orient = 'index') #Build mapping between Ingredient ID and ingredient Name ing_map = {} for i in range(len(ewg_ing_df)): ID = ewg_ing_df.iloc[i]['ingredient_id'] name = ewg_ing_df.iloc[i]['ingredient_name'] ing_map[ID] = name #Read in Product Data and Initialize Acne Score ewg_prd_df = pd.read_json('ingredients_products_keys_fixed/ewg_products.json', orient = 'index') ewg_prd_df['Acne_Score'] = 0 print('Loaded ingredients') #Build Lists of ingredients to modify original DataFrame and Initialize Dataset for Model from collections import Counter n = len(ewg_prd_df) ing_lists = [] ing_cnts = Counter() string_lists = [] for i in range(n): try: new_list = [] strings = '' ing_list = ewg_prd_df.iloc[i]['ingredient_list'] for ID in ing_list: new_list.append(ing_map[ID]) ing_cnts[ing_map[ID]] += 1 #strings = strings + ' ' + ing_map[ID] #print(new_list) ing_lists.append(new_list) string_lists.append(str(new_list)) except: ing_lists.append(['']) string_lists.append('') print('Failed on',i, 'no ingredient list.') print('Finished matching ingredients to keys.') ewg_prd_df['New_List'] = ing_lists #Build Synonym Dictionary synonym_dict = {} for i in range(ewg_ing_df.shape[0]): row = ewg_ing_df.iloc[i] syns = row['synonym_list'] if type(syns) == list: for syn in syns: synonym_dict[syn.strip()] = row['ingredient_name'] synonym_dict[row['ingredient_name']] = row['ingredient_name'] else: synonym_dict[row['ingredient_name']] = row['ingredient_name'] print('Build Synonyms') #Initialize Ingredient Score ewg_ing_df['Acne_Score'] = 0.0 #Extract Comodegenic Scores comodegenic = [] with open('comodegenic.csv','r') as f: for line in f: if line[0] != ',': words = line.strip().split(',') if words[1] != '': comodegenic.append(( words[0], words[1], words[2])) cd_df = pd.DataFrame(comodegenic) #Match Comodegeic Ingredients to EWG from fuzzywuzzy import fuzz from fuzzywuzzy import process matches = [] print('Matching Comodegenic to EWG...') for i in range(cd_df.shape[0]): cur_ingredient = cd_df.iloc[i][0].upper() matches.append(process.extract(cur_ingredient, synonym_dict.keys(),limit=1, scorer=fuzz.token_sort_ratio)) #Match Comodegenic Ingredients to EWG cd_ranks = [] stop for i in range(cd_df.shape[0]): match_score = int(matches[i][0][1]) match_name = matches[i][0][0] cd_name = cd_df.iloc[i][0].upper() cd_ranks.append(match_score) if match_score >= 90: ewg_name = synonym_dict[match_name] #print(temp_score, '\t', match_name, '\t', cd_name, '\t', synonym_dict[match_name]) #print(cd_df.iloc[i][1],cd_df.iloc[i][0]) row= ewg_ing_df[ewg_ing_df['ingredient_name']==ewg_name].index ewg_ing_df.loc[row,'Acne_Score'] = cd_df.iloc[i][1] #print(ewg_ing_df.loc[row]['ingredient_name'], ewg_ing_df.loc[row]['Acne_Score']) #print(ewg_ing_df[ewg_ing_df['ingredient_name']==ewg_name]) print('Updated EWG with Acne Scores') #Update Product Acne Score acne_score_list = [] for i in range(ewg_prd_df.shape[0]): row = ewg_prd_df.iloc[i] total_acne = 0 for ing in row['New_List']: try: acne_score = float(ewg_ing_df[ewg_ing_df['ingredient_name']==ing]['Acne_Score']) #print(ing, acne_score) total_acne += acne_score except: None acne_score_list.append(total_acne) #print(acne_score_list) ewg_prd_df['Acne_Score'] = acne_score_list #Save Final Acne Matrix pickle_out = open("ewg_prd_df.pickle","wb") pickle.dump(ewg_prd_df, pickle_out) pickle_out.close() print('Saved dataset to "ewg_prd_df.pickle"') try: pickle.load(open("ewg_prd_df.pickle","rb")) print('Loaded from Pickle') ewg_prd_df = pickle.load(open("ewg_prd_df.pickle","rb")) except: print("Building Dataset from Files...") buildDataSet() ewg_prd_df = pickle.load(open("ewg_prd_df.pickle","rb")) #try: # X = pickle.load(open("X.pickle","rb")) #except: #Need to change to a real function...code block simple print('Building Dataset...') #print(ewg_prd_df) from collections import Counter n = ewg_prd_df.shape[0] print(n) ing_lists = [] ing_cnts = Counter() string_lists = [] for i in range(n): ings = ewg_prd_df.iloc[i]['New_List'] str_list = '' if type(ings) == list: #print(type(ings), i) for ing in ings: if type(ing) == str: str_list = str_list + '|' + ing string_lists.append(str_list) else: print('Failed',i) string_lists.append('') #Build TD-IDF Matrix from sklearn.feature_extraction.text import TfidfVectorizer def ing_tokenizer(word): return word.split('|') #print(ewg_prd_df['New_List'].tolist()) vectorizer = TfidfVectorizer(tokenizer = ing_tokenizer, lowercase = False, stop_words = ['WATER','GLYCERIN','', 'TITANIUM DIOXIDE', 'IRON OXIDES','BEESWAX','METHYLPARABEN', 'PROPYLPARABEN', 'PROPYLENE GLYCOL', 'PANTHENOL', 'MICA'] ) X = vectorizer.fit_transform(string_lists) #print(vectorizer.vocabulary_) pickle_out = open("X.pickle","wb") pickle.dump(X, pickle_out) pickle_out.close() #print(X) print('Running Optimization...') from sklearn.metrics import confusion_matrix for thresh in [0]: for test_size in [.001,.05,.01,.1]: for alph in [.001]: best_alpha = 0 best_test_size = 0 best_thresh_hold = 0 best_test_score = 0 best_train_score = 0 best_model = None #Initialize Acne Score by Product Y = [] for i in ewg_prd_df['Acne_Score']: if i > 0 and i < 3: Y.append(1) elif i > 2: Y.append(2) else: Y.append(0) #Split Training and Test Data by 1/3 to 2/3 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=42) #Build NB Model from sklearn.naive_bayes import MultinomialNB gnb = MultinomialNB(alpha = alph) gnb_fit = gnb.fit(X_train,y_train) y_pred = gnb_fit.predict(X_test) #y_pred_tr = gnb_fit.predict(X_train) test_score = confusion_matrix(y_test, y_pred) #train_score = confusion_matrix(y_train, y_pred_tr) #if test_score: best_test_score = test_score best_alpha = alph best_test_size = test_size best_thresh_hold = thresh best_model = gnb_fit print('Best Test Score:',gnb_fit.score(X_test,y_test), '\n', test_score) #,'\t', train_score) print('Alpha:\t', best_alpha) print('Test_size:\t',test_size) print('Thresh:\t', thresh,'\n') #print('Thresh:',thresh, 'TestSize\t',test_size,'\n' ,'\tTraining Error:', ) #print('\tTesting Error', ) pickle_out = open("nb.pickle","wb") pickle.dump(gnb_fit, pickle_out) pickle_out.close() ingredient_weights = {} i = 0 print(len(gnb.coef_), best_model.coef_, type(best_model.coef_[0])) for i in range(gnb_fit.coef_[0].shape[0]): #print( gnb.coef_[0][i], vectorizer.get_feature_names()[i]) ingredient_weights[vectorizer.get_feature_names()[i]] =(gnb.coef_[0][i]) #print(, gnb.coef_[i]) import operator sorted_weights = sorted(ingredient_weights.items(), key=operator.itemgetter(1)) for i in range(1,20): print(sorted_weights[-i]) score = best_model.predict_proba(X_train) pred = best_model.predict(X_train) for i in range(100): print(ewg_prd_df.iloc[i]['Acne_Score'], score[i], pred[i]) import matplotlib.pyplot as plt import matplotlib.patches as mpatches #%matplotlib inline ewg_prd_df['Acne_Score'].hist(bins=40) plt.show() #for i in range(gnb_fit.coef_ #print(gnb_fit.coef_) #out = gnb_fit.predict_proba(X_test) #for i in range(len(out)): # print(out[i]) #print(gnb_fit.class_log_prior_) #print(gnb_fit.feature_count_) #print(gnb_fit.class_count_) #print(gnb_fit.get_params())
SombiriX/w210_capstone
buildModel.py
buildModel.py
py
8,443
python
en
code
1
github-code
6
655729367
import os from glob import glob import torch_em from . import util URL = "https://zenodo.org/record/6546550/files/MouseEmbryos.zip?download=1" CHECKSUM = "bf24df25e5f919489ce9e674876ff27e06af84445c48cf2900f1ab590a042622" def _require_embryo_data(path, download): if os.path.exists(path): return os.makedirs(path, exist_ok=True) tmp_path = os.path.join(path, "mouse_embryo.zip") util.download_source(tmp_path, URL, download, CHECKSUM) util.unzip(tmp_path, path, remove=True) # remove empty volume os.remove(os.path.join(path, "Membrane", "train", "fused_paral_stack0_chan2_tp00073_raw_crop_bg_noise.h5")) def get_mouse_embryo_dataset( path, name, split, patch_shape, download=False, offsets=None, boundaries=False, binary=False, **kwargs, ): """Dataset for the segmentation of nuclei in confocal microscopy. This dataset is stored on zenodo: https://zenodo.org/record/6546550. """ assert name in ("membrane", "nuclei") assert split in ("train", "val") assert len(patch_shape) == 3 _require_embryo_data(path, download) # the naming of the data is inconsistent: membrane has val, nuclei has test; # we treat nuclei:test as val split_ = "test" if name == "nuclei" and split == "val" else split file_paths = glob(os.path.join(path, name.capitalize(), split_, "*.h5")) file_paths.sort() kwargs, _ = util.add_instance_label_transform( kwargs, add_binary_target=binary, binary=binary, boundaries=boundaries, offsets=offsets, binary_is_exclusive=False ) raw_key, label_key = "raw", "label" return torch_em.default_segmentation_dataset(file_paths, raw_key, file_paths, label_key, patch_shape, **kwargs) def get_mouse_embryo_loader( path, name, split, patch_shape, batch_size, download=False, offsets=None, boundaries=False, binary=False, **kwargs, ): """Dataloader for the segmentation of nuclei in confocal microscopy. See 'get_mouse_embryo_dataset' for details.""" ds_kwargs, loader_kwargs = util.split_kwargs( torch_em.default_segmentation_dataset, **kwargs ) dataset = get_mouse_embryo_dataset( path, name, split, patch_shape, download=download, offsets=offsets, boundaries=boundaries, binary=binary, **ds_kwargs ) loader = torch_em.get_data_loader(dataset, batch_size, **loader_kwargs) return loader
constantinpape/torch-em
torch_em/data/datasets/mouse_embryo.py
mouse_embryo.py
py
2,459
python
en
code
42
github-code
6
72699334907
import pandas as pd from sklearn.model_selection import train_test_split from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModelForMaskedLM from torch import nn import numpy as np from sklearn.model_selection import train_test_split, KFold, StratifiedKFold from torch.optim import Adam from tqdm import tqdm import torch import os import logging # **************读取数据和模型************ data = pd.read_csv("../dataset/train.csv") data_part = data.sample(n=60000, random_state=42, replace=True) data_shuffled = data_part.sample(frac=1, random_state=42) # 随机打乱数据 train_data, test_data = train_test_split( data_shuffled, test_size=0.3, random_state=42 ) # 分割成训练集和测试集 K_FOLDS = 6 # K折训练 # K折训练的模型 kf = StratifiedKFold(n_splits=K_FOLDS, shuffle=True, random_state=42) # ***************下载模型***************** if 1:# 下载模型 print("下载模型中...") tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") tokenizer.save_pretrained("../model/Tokenizer") bert = AutoModelForMaskedLM.from_pretrained("bert-base-cased") bert.save_pretrained("../model/BERT_ROW") bert_basic = BertModel.from_pretrained("bert-base-cased") bert_basic.save_pretrained("../model/BERT_BASIC") print("!模型下载结束") if 0:# print("模型加载中...") tokenizer = AutoTokenizer.from_pretrained("../model/Tokenizer") bert = AutoModelForMaskedLM.from_pretrained("../model/BERT_ROW") bert_basic = BertModel.from_pretrained("../model/BERT_BASIC") print("模型加载完毕...") # ***************常量和定义的类与函数************ LABELS = { "Literature & Fiction": 0, "Animals": 1, "Growing Up & Facts of Life": 2, "Humor": 3, "Cars, Trains & Things That Go": 4, "Fairy Tales, Folk Tales & Myths": 5, "Activities, Crafts & Games": 6, "Science Fiction & Fantasy": 7, "Classics": 8, "Mysteries & Detectives": 9, "Action & Adventure": 10, "Geography & Cultures": 11, "Education & Reference": 12, "Arts, Music & Photography": 13, "Holidays & Celebrations": 14, "Science, Nature & How It Works": 15, "Early Learning": 16, "Biographies": 17, "History": 18, "Children's Cookbooks": 19, "Religions": 20, "Sports & Outdoors": 21, "Comics & Graphic Novels": 22, "Computers & Technology": 23, } # 日志文件输出目录 logging.basicConfig(filename="../log/train.log", level=logging.INFO) # *** 封装类 方便数据类型转换 *************** class Dataset(torch.utils.data.Dataset): def __init__(self, df): self.labels = [LABELS[label] for label in df["category"]] self.texts = [ tokenizer( text, padding="max_length", max_length=512, truncation=True, return_tensors="pt", ) for text in df["text"] ] def classes(self): return self.labels def __len__(self): return len(self.labels) def get_batch_labels(self, idx): # Fetch a batch of labels return np.array(self.labels[idx]) def get_batch_texts(self, idx): # Fetch a batch of inputs return self.texts[idx] def __getitem__(self, idx): batch_texts = self.get_batch_texts(idx) batch_y = self.get_batch_labels(idx) return batch_texts, batch_y class BertClassifier(nn.Module): def __init__(self, dropout=0.5): super(BertClassifier, self).__init__() self.bert = bert_basic self.dropout = nn.Dropout(dropout) self.linear = nn.Linear(768, 24) self.relu = nn.ReLU() def forward(self, input_id, mask): _, pooled_output = self.bert( input_ids=input_id, attention_mask=mask, return_dict=False ) dropout_output = self.dropout(pooled_output) linear_output = self.linear(dropout_output) final_layer = self.relu(linear_output) return final_layer def train(model, train_data, val_data, learning_rate, epochs): # 判断是否使用GPU use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") # 通过Dataset类获取训练和验证集 train, val = Dataset(train_data), Dataset(val_data) # DataLoader根据batch_size获取数据,训练时选择打乱样本 train_dataloader = torch.utils.data.DataLoader(train, batch_size=8, shuffle=True) val_dataloader = torch.utils.data.DataLoader(val, batch_size=8) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=learning_rate) if use_cuda: print("使用gpu") model = model.to(device) criterion = criterion.to(device) # 开始进入训练循环 for epoch_num in range(epochs): # 定义两个变量,用于存储训练集的准确率和损失 total_acc_train = 0 total_loss_train = 0 for train_input, train_label in tqdm(train_dataloader): train_label = train_label.to(device) train_label = train_label.to(torch.long) mask = train_input["attention_mask"].to(device) input_id = train_input["input_ids"].squeeze(1).to(device) # 通过模型得到输出 output = model(input_id, mask) # 计算损失 batch_loss = criterion(output, train_label) total_loss_train += batch_loss.item() # 计算精度 acc = (output.argmax(dim=1) == train_label).sum().item() total_acc_train += acc # 模型更新 model.zero_grad() batch_loss.backward() optimizer.step() # ------ 验证模型 ----------- # 定义两个变量,用于存储验证集的准确率和损失 total_acc_val = 0 total_loss_val = 0 # 不需要计算梯度 with torch.no_grad(): # 循环获取数据集,并用训练好的模型进行验证 for val_input, val_label in val_dataloader: val_label = val_label.to(device) val_label = val_label.to(torch.long) mask = val_input["attention_mask"].to(device) input_id = val_input["input_ids"].squeeze(1).to(device) output = model(input_id, mask) batch_loss = criterion(output, val_label) total_loss_val += batch_loss.item() acc = (output.argmax(dim=1) == val_label).sum().item() total_acc_val += acc logging.info( "\n| Epochs: %d \n| Train Loss: %.3f \n| Train Accuracy: %.3f \n| Val Loss: %.3f \n| Val Accuracy: %.3f \n", epoch_num + 1, total_loss_train / len(train_data), total_acc_train / len(train_data), total_loss_val / len(val_data), total_acc_val / len(val_data), ) # ************** 运行部分 ******************** model = BertClassifier() model.load_state_dict(torch.load("../model/BERT-1")) learning_rate = 5e-6 # 设置学习率 epochs = 1 # 设置训练轮数 train(model, train_data, test_data, learning_rate, epochs) torch.save(model.state_dict(), "../model/BERT-1")
zzhaire/dig-dig-books
code/train.py
train.py
py
7,354
python
en
code
1
github-code
6
36151078302
import sqlite3 as lite import sys from bs4 import BeautifulSoup import requests import re def site_parsing(): max_page = 10 pages = [] id_n = 0 id_n_price = 0 for x in range(1, max_page + 1): pages.append(requests.get('https://moto.drom.ru/sale/+/Harley-Davidson+Softail/')) for n in pages: soup = BeautifulSoup(n.text, 'html.parser') moto_name = soup.find_all('a', class_="bulletinLink bull-item__self-link auto-shy") for rev in moto_name: id_n += 1 a = str(rev.text) moto = re.split(r',', a) moto_name_s = str(moto[0]) moto_year = re.sub(r'[ ]', '', moto[1]) moto_year_s = int(moto_year) cur.execute("INSERT INTO moto VALUES(?,?,?)", (id_n, moto_name_s, moto_year_s)) price = soup.find_all('span', class_='price-block__price') pattern = r'(\d{1}\s\d{3}\s\d{3})|(\d{3}\s\d{3})' for rev in price: id_n_price += 1 price_str = re.findall(pattern, rev.text) price_str = str(price_str) price_str = price_str.replace('\\xa0', '') price_str = re.sub(r"[\]['(),\s]", '', price_str) price_int = int(price_str) cur.execute("INSERT INTO moto_price VALUES(?,?)", (id_n_price, price_int)) connect = None try: connect = lite.connect('motos.db') cur = connect.cursor() cur.execute("CREATE TABLE moto(id INT, moto TEXT, year INT)") cur.execute("CREATE TABLE moto_price(id INT, price INT)") site_parsing() except lite.Error as e: print(f"Error {e.args[0]}:") sys.exit() with connect: cur = connect.cursor() rows_join = f'SELECT * FROM moto JOIN moto_price ON moto.id = moto_price.id' cur.execute(rows_join) rows = cur.fetchall() for row in rows: print(row) connect.close()
TatyanaKuleshova/lesson19-project-
db.py
db.py
py
1,878
python
en
code
0
github-code
6
21545803934
# num = 100 # # while num > 0: # print(num) # num = num + 1 # num = 1 # while num <= 100: # if num % 2 == 0: # print(num) # num += 1 # # num = 1 # son = 0 # while num <= 100: # if num % 4 == 0: # son += 1 # num += 1 # # print(son) import random num = 1 nums = [] while num <= 10: random_number = random.randint(1, 50) if random_number % 2 == 1: nums.append(random_number) num += 1 print(nums)
Sanjarbek-AI/Python-688
Lesson-10/dars.py
dars.py
py
462
python
en
code
0
github-code
6
23948038488
import torch.nn as nn import torch_geometric.nn as pyg_nn class iVGAE_Encoder(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super().__init__() self.conv0 = pyg_nn.GCNConv(in_channels, hidden_channels) self.conv1 = pyg_nn.GCNConv(hidden_channels, hidden_channels) self.lin_mean = nn.Linear(hidden_channels, out_channels) self.lin_logstd = nn.Linear(hidden_channels, out_channels) def forward(self, x, edge_index): h = self.conv0(x, edge_index) h = nn.ReLU()(h) h = self.conv1(h, edge_index) h = nn.ReLU()(h) mean = self.lin_mean(h) logstd = self.lin_logstd(h) return mean, logstd class iVGAE_Decoder(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super().__init__() self.conv0 = pyg_nn.GCNConv(in_channels, hidden_channels) self.conv1 = pyg_nn.GCNConv(hidden_channels, hidden_channels) self.linear = nn.Linear(hidden_channels, out_channels) def forward(self, z, edge_index, sigmoid=True): h = self.conv0(z, edge_index) h = nn.ReLU()(h) h = self.conv1(h, edge_index) h = nn.ReLU()(h) out = self.linear(h) if sigmoid: out = nn.Sigmoid()(out) return out class iVGAE(pyg_nn.VGAE): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) def decode(self, z, pos_edge_index): x_gen = self.decoder(z, pos_edge_index) return x_gen def forward(self, x, pos_edge_index): z = self.encode(x, pos_edge_index) x_gen = self.decode(z, pos_edge_index) return x_gen, z
DavidCarlyn/iVGAE
models.py
models.py
py
1,705
python
en
code
0
github-code
6
25147617203
import errno import logging as _logging import socket import socketserver import threading import time from napalm import utils # Log logging = _logging.getLogger("SERVER") # Temp # utils.default_logging_setup() try: from twisted.internet import reactor from twisted.internet.protocol import connectionDone, Protocol, ServerFactory from twisted.protocols.basic import LineReceiver except ImportError: logging.warning("There is no Twisted module!") """ Conventions: "raw" - means data with delimiters, not splitted yet. "data" - str data. "data_bytes" - bytes data. Servers and clients operate only with bytes. Protocol converts bytes to str and wise versa. """ # Common class Config: DELIMITER = b"\x00" # 1200 - the most optimal max message size to fit IP(?) frame when using TCP RECV_SIZE = 1200 # 1024 # 4096 @property def host(self): return self._host @property def port(self): return self._port def __init__(self, host="", port=0, protocol_class=None): self._host = host self._port = port if protocol_class: self.protocol_class = protocol_class class ServerConfig(Config): logging = None pass class ProtocolFactory: """ Single point of creating protocols to be used by any server type. """ def __init__(self, config, app=None): self.config = config self.app = app self.protocol_class = config.protocol_class if config and hasattr(config, "protocol_class") else None self.logging = logging if self.protocol_class and self.protocol_class.is_server_protocol else \ _logging.getLogger("CLIENT") def dispose(self): self.logging.debug("ProtocolFactory dispose") self.config = None self.app = None self.protocol_class = None # self.logging = None def create(self, send_bytes_method, close_connection_method, address): if not self.protocol_class: return None protocol = self.protocol_class(send_bytes_method, close_connection_method, address, self.config, self.app) self.logging.debug("ProtocolFactory create new protocol: %s for address: %s", protocol, address) return protocol class AbstractServer: def __init__(self, config, app=None): self.config = config self.protocol_factory = ProtocolFactory(config, app) logging.debug("Server created. %s", self) def dispose(self): logging.debug("Server disposing...") self.stop() if self.protocol_factory: self.protocol_factory.dispose() self.protocol_factory = None self.config = None logging.debug("Server disposed") def start(self): raise NotImplemented def stop(self): raise NotImplemented # Twisted # TODO try to rename all protocol to protocol (all depend on TwistedHandler) class TwistedHandler(LineReceiver): delimiter = b"\x00" protocol = None def connectionMade(self): # Config self.delimiter = self.factory.config.DELIMITER # Create app protocol address = self.transport.getPeer() self.protocol = self.factory.protocol_factory.create(self.sendLine, self.transport.loseConnection, (address.host, address.port)) logging.debug("connectionMade for %s protocol: %s", address, self.protocol) def rawDataReceived(self, data): # Not used while in line_mode pass def lineReceived(self, line): # logging.debug("dataReceived for %s line: %s", self.protocol, line) if line: self.protocol.process_bytes_list((line,)) # def sendLine(self, line): # logging.debug("sendData for %s line: %s", self.protocol, line) # super().sendLine(line) def connectionLost(self, reason=connectionDone): logging.debug("connectionLost for %s reason: %s", self.protocol, reason) self.protocol.dispose() self.protocol = None class TwistedTCPServer(AbstractServer): factory = None port = None def __init__(self, config, app=None): super().__init__(config, app) self.factory = ServerFactory() self.factory.protocol = TwistedHandler # Custom references self.factory.config = config self.factory.protocol_factory = self.protocol_factory self.started = False self.__started_lock = threading.RLock() def dispose(self): super().dispose() if self.factory: self.factory.config = None self.factory.protocol = None self.factory.protocol_factory = None self.factory = None def start(self): self.__started_lock.acquire() if self.started: logging.warning("Server is already running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return logging.debug("Server starting... address: %s", (self.config.host, self.config.port)) self.started = True self.__started_lock.release() self.port = reactor.listenTCP(self.config.port, self.factory) if not reactor.running: reactor.run() logging.debug("Server started") def stop(self): self.__started_lock.acquire() if not self.started: logging.warning("Server is not running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return logging.debug("Server stopping...") self.started = False self.__started_lock.release() if self.port: # deferred = self.port.stopListening() # if deferred: # event = threading.Event() # event.clear() # # def event_set(): # print("Waiting finished") # event.set() # deferred.addCallback(event_set) # print("Waiting while listening stopping...", deferred) # event.wait() # print("Listening stopped") self.port.loseConnection() try: self.port.connectionLost(None) except Exception as error: # Bug in Twisted: sometimes AttributeError ('Port' object has no attribute 'socket') occurs # print("ERROR", error) pass self.port = None # -reactor.stop() # reactor.crash() logging.debug("Server stopped") # print("Press Enter to exit...") # input() # # Needed to save lobby state using atexit.register() in app # sys.exit() # Threaded class ThreadedTCPHandler(socketserver.BaseRequestHandler): # static abort = False buffer_bytes = b"" # is_first = True config = None protocol = None def setup(self): threading.current_thread().name += "-srv-handler" self.config = self.server.config self.protocol = self.server.protocol_factory.create(self.send_bytes, self.request.close, self.client_address) logging.debug("connectionMade for %s protocol: %s", self.client_address, self.protocol) def finish(self): logging.debug("connectionLost for %s", self.protocol) self.protocol.dispose() self.protocol = None self.config = None def send_bytes(self, data_bytes): # logging.debug("sendData for %s line: %s", self.protocol, data_bytes) self.request.sendall(data_bytes + self.config.DELIMITER) def handle(self): while not self.server.abort: # Read is_data = True data_bytes = None while not self.server.abort and is_data and self.config.DELIMITER not in self.buffer_bytes: try: data_bytes = self.request.recv(self.config.RECV_SIZE) is_data = bool(data_bytes) self.buffer_bytes += data_bytes except socket.error as error: # Note: current buffer won't be processed, but it usually empty in such cases logging.debug(" (connectionLost (abort) for %s reason: %s)", self.protocol, error) return # Parse bytes # b"command1##command2##\x00command3##\x00" -> [b"command1##command2##", b"command3##", b""] # b"1||param||##5||param||##\x0010||param||##\x00" -> # [b"1||param||##5||param||##", b"10||param||##", b""] if self.buffer_bytes: # print("TEMP SERVER config:", self.server and self.config) data_bytes_list = self.buffer_bytes.split(self.config.DELIMITER) self.buffer_bytes = data_bytes_list.pop() # Process try: # (Try-except: because send method could be invoked during processing) if self.protocol and data_bytes_list: self.protocol.process_bytes_list(data_bytes_list) # (Don't use socket.error because it causes StopIteration, which would not be caught) # except socket.error as error: except Exception as error: logging.debug(" (connectionLost for %s reason: %s)", self.protocol, error) return if not data_bytes: if not self.server.abort: reason = "(Empty data received: %s)" % data_bytes logging.debug(" (connectionLost for %s reason: %s)", self.protocol, reason) return class ThreadedTCPServer(AbstractServer): server = None def __init__(self, config, app=None): super().__init__(config, app) self.started = False self.__started_lock = threading.RLock() self.__shutdown_event = threading.Event() self.__shutdown_event.set() # def dispose(self): # super().dispose() def start(self): if not self.config: logging.error("Server is not initialized") return self.__started_lock.acquire() if self.started: logging.warning("Server is already running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return # Create and start server address = (self.config.host, self.config.port) logging.debug("Server starting... address: %s", address) self.started = True self.__started_lock.release() self.server = socketserver.ThreadingTCPServer(address, ThreadedTCPHandler) self.server.protocol_factory = self.protocol_factory self.server.config = self.config self.server.abort = False logging.debug("Server started") self.__shutdown_event.clear() try: self.server.serve_forever() except KeyboardInterrupt as error: logging.info("^C KeyboardInterrupt", error) # Here we shutting down the server logging.debug("Server shutting down...") # (Abort other threads) self.server.abort = True self.server.server_close() self.server.protocol_factory = None self.server.config = None self.server = None logging.debug("Server shut down") self.__shutdown_event.set() # print("Press Enter to exit...") # input() # # Needed to save lobby state using atexit.register() in app # sys.exit() def stop(self): self.__started_lock.acquire() if not self.started: logging.warning("Server is not running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return # Preventing logging.debug("Server stopping... address: %s", (self.config.host, self.config.port)) self.started = False self.__started_lock.release() t = time.time() self.server.shutdown() self.__shutdown_event.wait() logging.debug("Server stopped in %f sec (95%% of time is exiting from serve_forever())", time.time() - t) # Non-blocking class NonBlockingTCPServer(AbstractServer): _sock = None def __init__(self, config, app=None): super().__init__(config, app) # (Needed for walking through all connections on each tick and receiving available data) self._protocol_list = [] self._request_by_protocol = {} self._buffer_by_protocol = {} self._abort = False self.started = False self.__started_lock = threading.RLock() self.__shutdown_event = threading.Event() self.__shutdown_event.set() def start(self): if not self.config: logging.warning("Server is not initialized") return address = (self.config.host, self.config.port) logging.debug("Server starting... address: %s", address) self.__started_lock.acquire() if self.started: logging.warning("Server is already running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return self.started = True self.__started_lock.release() # (If restarting) self._abort = False self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._sock.bind(address) self._sock.listen() self._sock.setblocking(0) logging.debug("Server started") self.__shutdown_event.clear() try: self._workflow(self._sock) except KeyboardInterrupt as error: logging.debug("^C KeyboardInterrupt %s", error) logging.debug("Server shutting down...") # self._abort = True try: self._sock.shutdown(socket.SHUT_RDWR) except socket.error as error: logging.error("Error while shutting down: %s", error) self._sock.close() self._sock = None # (list() needed to make a copy) for protocol in list(self._protocol_list): protocol.dispose() self._protocol_list.clear() self._request_by_protocol.clear() self._buffer_by_protocol.clear() logging.debug("Server shut down") # logging.debug("Server stopped") self.__shutdown_event.set() # (For standalone. Bad for tests) # print("Press Enter to exit...") # input() # # Needed to save lobby state using atexit.register() in app # sys.exit() def stop(self): logging.debug("Server stopping...") self.__started_lock.acquire() if not self.started: logging.warning("Server is not running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return # If was started, but yet is not stopping self.started = False self.__started_lock.release() self._abort = True self.__shutdown_event.wait() logging.debug("Server stopped") def _process_disconnect(self, protocol, error): logging.debug("connectionLost for %s reason: %s", protocol, error) protocol.dispose() self._protocol_list.remove(protocol) if protocol in list(self._request_by_protocol): del self._request_by_protocol[protocol] if protocol in list(self._buffer_by_protocol): del self._buffer_by_protocol[protocol] def _workflow(self, sock): while not self._abort: # print("SERVER. While...") # Connect request, address = None, None try: request, address = sock.accept() # socket.error (real error is [WinError 10035]) except Exception as error: # print("accept error:", error) # There is no new connections - skip pass if request: # New connection def send_bytes(data_bytes): # logging.debug("sendData for %s line: %s", self.protocol, data_bytes) request.sendall(data_bytes + self.config.DELIMITER) # Create protocol protocol = self.protocol_factory.create(send_bytes, request.close, address) logging.debug("connectionMade for %s protocol: %s", address, protocol) self._protocol_list.append(protocol) self._request_by_protocol[protocol] = request # Walk through all connections looking for new data to receive i = 0 for protocol in self._protocol_list: i += 1 request = self._request_by_protocol[protocol] # Read buffer_bytes = self._buffer_by_protocol.get(self, b"") is_data = True data_bytes = None while is_data: try: data_bytes = request.recv(self.config.RECV_SIZE) is_data = bool(data_bytes) buffer_bytes += data_bytes # print("SERVER. recv data_bytes:", data_bytes, "buffer_bytes:", buffer_bytes) # socket.error except Exception as error: # (break) is_data = False # print("SERVER. Error (recv)", error) if not hasattr(error, "errno") or error.errno != errno.EWOULDBLOCK: self._process_disconnect(protocol, error) # Process next connection for both disconnect and no data received now break if not data_bytes: self._process_disconnect(protocol, "(Empty data received: %s)" % data_bytes) if not buffer_bytes: continue # Parse bytes data_bytes_list = buffer_bytes.split(self.config.DELIMITER) self._buffer_by_protocol[self] = data_bytes_list.pop() # Process try: # (Try-except: because send method could be invoked during processing) if protocol and data_bytes_list: logging.debug("dataReceived for %s line: %s", protocol, buffer_bytes) protocol.process_bytes_list(data_bytes_list) # socket.error except Exception as error: self._process_disconnect(protocol, error) break
markelov-alex/py-sockets
napalm/socket/server.py
server.py
py
18,945
python
en
code
0
github-code
6
17283528585
from solver import Solver from config import Config if __name__ == '__main__': cfg = Config() cfg.data_dir = "/data/face/parsing/dataset/ibugmask_release" cfg.model_args.backbone = "STDCNet1446" cfg.model_args.pretrain_model = "snapshot/STDCNet1446_76.47.tar" solver = Solver(cfg) solver.sample(sample_dir="/data/face/parsing/dataset/testset_210720_aligned", result_folder="result")
killf/U2Net4FaceParsing
test.py
test.py
py
409
python
en
code
0
github-code
6
39046925212
# -*- coding: utf-8 -*- """ Created on Mon Apr 11 10:48:58 2018 @author: Diogo """ from SQL_obj_new.DB_interaction_DDI_sql_new import _DB_interaction_DDI_SQL class DB_interaction_DDI(object): """ This class treat the source that give the information about the DDI object has it exists in DB_interaction_DDI table database By default, all FK are in the lasts positions in the parameters declaration """ def __init__(self, id_db_int_DBI = -1, designation_source = "", database_name = "INPH_proj"): """ Constructor of the DDI source data object. All the parameters have a default value :param id_db_int_DBI: id of DDI interaction - -1 if unknown :param designation_source: id of the domain A :param database_name: name of the database. See Factory_databases_access :type id_db_int_DBI: int - not required :type designation_source: int - required :type database_name: text - required """ self.id_db_int_DBI = id_db_int_DBI self.designation_source = designation_source self.database_name = database_name def get_all_DDI_sources(self): """ return an array with all the DDI source in the database :return: array of DDI source :rtype: array(DB_interaction_DDI) """ listOfDomainsSources = [] sqlObj = _DB_interaction_DDI_SQL(db_name = self.database_name) results = sqlObj.select_all_sources_DDI_name() for element in results: listOfDomainsSources.append(DB_interaction_DDI(element[0], element[1])) return listOfDomainsSources def create_DDI_source(self): """ Insert a DDI source in the database The ddi interaction have a: - designation of the source :return: id of the DDI source and update the id of the object :rtype int """ sqlObj = _DB_interaction_DDI_SQL(db_name = self.database_name) value_interaction_id = sqlObj.insert_DDI_source_return_id(self.designation_source) self.id_db_int_DBI = value_interaction_id return value_interaction_id def create_DDI_source_if_not_exists(self): """ Insert a DDI source in the database if not already exists The ddi interaction have a: - designation of the source :return: id of the DDI source and update the id of the object :rtype int """ sqlObj = _DB_interaction_DDI_SQL(db_name = self.database_name) value_interaction_id = sqlObj.insert_DDI_source_return_id_if_not_exists(self.designation_source) self.id_db_int_DBI = value_interaction_id return value_interaction_id
diogo1790/inphinity
objects_new/DB_interaction_DDI_new.py
DB_interaction_DDI_new.py
py
2,715
python
en
code
0
github-code
6
33155203825
#!/usr/bin/env python2 # -*- coding: utf-8 -*-from telegram.ext import Updater, CommandHandler from telegram.ext import Updater, CommandHandler updater = Updater('TOKEN') def start_method(bot, update): bot.sendMessage(update.message.chat_id, "سلام") start_command = CommandHandler('start', start_method) updater.dispatcher.add_handler(start_command) updater.start_polling() # for exit updater.idle()
rasoolhp/free-telegram-bot
bot.py
bot.py
py
412
python
en
code
5
github-code
6
17913448581
"""Made email unique Revision ID: ff6f0a832e3a Revises: 876813ef988d Create Date: 2022-08-09 16:32:43.590993 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ff6f0a832e3a' down_revision = '876813ef988d' branch_labels = None depends_on = None def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.create_unique_constraint(None, 'users', ['email']) # ### end Alembic commands ### def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'users', type_='unique') # ### end Alembic commands ###
djangbahevans/wallet-clone
backend/alembic/versions/ff6f0a832e3a_made_email_unique.py
ff6f0a832e3a_made_email_unique.py
py
667
python
en
code
0
github-code
6
3148189147
# devuelve un string donde los caracteres consecutivos de S no se repitan más que R veces def sin_repetidos(str,number): cantidad = 0 final = "" anterior = "" for caracter in str: cantidad = cantidad+1 if(caracter != anterior): cantidad=1 anterior=caracter if(cantidad <= number): final = final + caracter return final
jazz-bee/sin_repetidos
ejercicio.py
ejercicio.py
py
403
python
es
code
0
github-code
6
7002507231
import json from .db_utils import conn as db_conn from enum import Enum class NotificationType(Enum): questionEndorse = 'question_endorsed' answerEndorse = 'answer_endorsed' answerUser = 'answer_user' answerSaved = 'answer_saved' NOTIFICATION_TEXT_BY_TYPE = { NotificationType.questionEndorse: "endorsed your question", NotificationType.answerEndorse: "endorsed your answer", NotificationType.answerUser: "answered your question", NotificationType.answerSaved: "answered a question you saved" } DATA_FIELDS_BY_TYPE = { NotificationType.questionEndorse: set(['question_id']), NotificationType.answerEndorse: set(['question_id', 'answer_id']), NotificationType.answerUser: set(['question_id', 'answer_id']), NotificationType.answerSaved: set(['question_id', 'answer_id']) } def push_notification(user_id, notif_type, data): cur = db_conn.cursor() if set(data.keys()) != DATA_FIELDS_BY_TYPE[notif_type]: raise ArgumentError("Invalid data fields for notification type {}; expected {}".format(data.keys(), DATA_FIELDS_BY_TYPE[notif_type])) cur.execute("INSERT INTO notifications (user_id, type, data) VALUES (%s, %s, %s)", (user_id, notif_type.value, json.dumps(data)))
minupalaniappan/gradfire
daviscoursesearch/flaskapp/utils/notif_utils.py
notif_utils.py
py
1,239
python
en
code
12
github-code
6
35757262298
from clases import Automovil # Obtener datos, mostrando los textos del ejemplo def obtener_datos(): msg = [ 'Inserte la marca del automóvil: ', 'Inserte el modelo: ', 'Inserte el número de ruedas: ', 'Inserte la velocidad en km/h: ', 'Inserte el cilindraje en cc: ' ] datos = [] for m in msg: datos.append(input(m)) return datos # Mostrando los textos del ejemplo def main(): instancias = {} # Pedir los datos y guardarlos cantidad = int(input("Cuantos vehículos desea insertar: ")) for i in range(1,cantidad+1): print(f"\nDatos del automóvil {i}") instancias[i] = Automovil(*obtener_datos()) # Mostrar los datos print("\nImprimiendo por pantalla los Vehículos:\n") for n,veh in instancias.items(): print(f"Datos del automóvil {n}:", veh) # Versión genérica, independiente de los nombres de atributos y la cantidad de estos def main2(): instancias = {} atributos = list(Automovil.__init__.__code__.co_varnames)[1:] # Pedir los datos y guardarlos cantidad = int(input("Cuantos vehículos desea insertar: ")) for i in range(1,cantidad+1): print(f"\nDatos del automóvil {i}") datos = [] for att in atributos: datos.append(input(f"Inserte {att}: ")) instancias[i] = Automovil(*datos) # Mostrar los datos print("\nImprimiendo por pantalla los Vehículos:\n") for n,veh in instancias.items(): print(f"Datos del automóvil {n}:", veh.get_str()) if __name__ == "__main__": main() print("\n\nAhora, versión genérica (independiente de los atributos)\n") main2()
tiango-git/full-stack-mod4-eval
parte1/main.py
main.py
py
1,783
python
es
code
0
github-code
6
32174246789
from android.droidagent import DroidAdapter, DroidElement from rpa import InputMethod import time ''' A sample can open contact book and search the phone number by specific name ''' agent = DroidAdapter() DroidElement.setAgent(agent) person = 'Bart' DroidElement().start('contacts') time.sleep(1) DroidElement('txt_contact_search').click() DroidElement().typetext(person) DroidElement('txt_contact_search_first').click() phone = DroidElement('txt_contact_details').gettext() print('%s\'Phone Number is %s'%(person, phone))
bartmao/pyRPA
samples/sample-andriod.py
sample-andriod.py
py
524
python
en
code
20
github-code
6
37682586689
""" Challenge 18: Print the first 100 prime numbers """ import math def isPrime(n) -> bool: if n < 2: return False if n == 2: return True maxDiv = math.sqrt(n) i = 2 while i <= maxDiv: if n % i == 0: return False i += 1 return True def printPrime(nPrimes): n = 0 i = 2 while n < nPrimes: if isPrime(i): print(n, "--->", i) n += 1 i += 1 # Driver Method def main(): printPrime(100) if __name__ == "__main__": main()
mofirojean/50-Coding-Challenge
50 Coding Challenge Part I/Python/Challenge18.py
Challenge18.py
py
562
python
en
code
2
github-code
6
32672071641
"""Search: 'python filter one list based on another' to solve""" import string import unittest if not hasattr(unittest.TestCase, 'assertCountEqual'): unittest.TestCase.assertCountEqual = unittest.TestCase.assertItemsEqual #kinda like method_override in npm def test_blah(): txt = ['I', 'like', 'to', 'eat', 'unhealthy', 'food', 'such', 'as', 'pizza', 'salad', 'and', 'popsicles'] blocked = ['unhealthy', 'pizza', 'cake'] assert redact_words(txt, blocked) == ['I', 'like', 'to', 'eat', 'food', 'such', 'as', 'salad', 'and', 'popsicles'] def redact_words(words, banned_words): censored_ver = [] upper_bound = len(words) - 1 i = 0 #initialize counter for word in words: while i <= upper_bound: if word != banned_words[i]: # censored_ver.append(word) i += 1 censored_ver.append(word) return censored_ver #welp, Lucia explained why I was getting an index error #I'm using a counter based on WORDS array's length, to index in BANNED_WORDS array #ofc i'm getting an index error.. facepalm!! #thanks lucia!! """ Hooray pseudocode Params: 2 arrays of strings 1. the text 2. the redacted words Returns: array of words in array (1) that are NOT in (2) 1. Instantiate empty array 2. Lowercase contents of array (1) -- maybe later 3. For each word in array (1), IF that word is NOT in array (1), THEN add it to the empty array from STEP #1 4. Once each word from array (2) has been so checked, return the array from STEP #1 """
ckim42/Core-Data-Structures
Lessons/source/redact_problem.py
redact_problem.py
py
1,547
python
en
code
0
github-code
6
71270407548
""" This question is asked by Apple. Given two binary strings (strings containing only 1s and 0s) return their sum (also as a binary string). Note: neither binary string will contain leading 0s unless the string itself is 0 Ex: Given the following binary strings... "100" + "1", return "101" "11" + "1", return "100" "1" + "0", return "1" """ from collections import deque def addBinary(number1:str, number2: str) -> str: # Time: O(n) -> where "n" is the number of bits of the final sum # Space: O(n) or O(1) if we don't consider the output n1Pointer = len(number1)-1 n2Pointer = len(number2)-1 output = deque() carry = 0 while n1Pointer >= 0 or n2Pointer >= 0: n1Digit = 0 if n1Pointer < 0 else int(number1[n1Pointer]) n2Digit = 0 if n2Pointer < 0 else int(number2[n2Pointer]) currDigitSum = n1Digit + n2Digit + carry carry = 1 if currDigitSum >= 2 else 0 if currDigitSum == 2: currDigitSum = 0 elif currDigitSum == 3: currDigitSum = 1 output.appendleft(str(currDigitSum)) # O(1) n1Pointer -= 1 n2Pointer -= 1 if carry: output.appendleft(str(carry)) # O(1) return "".join(output) # O(n) assert addBinary("100", "1") == "101" assert addBinary("11", "1") == "100" assert addBinary("1", "0") == "1" print("Passed all testes!")
lucasbivar/coding-interviews
the-daily-byte/week_01/day_05_add_binary.py
day_05_add_binary.py
py
1,314
python
en
code
0
github-code
6
45641177766
import streamlit as st import pandas as pd import numpy as np import umap import matplotlib.pyplot as plt from sklearn.cluster import KMeans from scipy.cluster.hierarchy import dendrogram, linkage, fcluster from sklearn.decomposition import PCA import webbrowser # Set width mode to wide to display plots better st.set_page_config(layout="wide") # Streamlit Configuration st.set_option('deprecation.showPyplotGlobalUse', False) # Sidebar st.sidebar.header("Schizophrenia Data Analysis") uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type="csv") # Sliders for UMAP and KMeans parameters st.sidebar.subheader("UMAP Parameters") n_neighbors = st.sidebar.slider("Number of Neighbors", 2, 50, 5) min_dist = st.sidebar.slider("Minimum Distance", 0.0, 1.0, 0.3, 0.1) st.sidebar.subheader("Clustering Parameters") n_clusters = st.sidebar.slider("Number of Clusters (KMeans)", 2, 20, 5) n_dendro_clusters = st.sidebar.slider("Number of Clusters (Dendrogram)", 2, 20, 5) # Add option to choose linkage method for dendrogram linkage_methods = ["ward", "single", "complete", "average"] selected_linkage_method = st.sidebar.selectbox("Linkage Method for Dendrogram", linkage_methods, 0) # Checkbox to toggle PCA and UMAP visualization show_pca = st.sidebar.checkbox("Show PCA Visualization", False) show_umap = st.sidebar.checkbox("Show UMAP Visualization", False) # Load the data def load_data(uploaded_file): data = pd.read_csv(uploaded_file) return data # Function to perform UMAP embedding and K-means clustering def umap_and_kmeans(band_data, n_neighbors=n_neighbors, min_dist=min_dist, n_clusters=n_clusters): embedding = umap.UMAP(n_neighbors=n_neighbors, min_dist=min_dist, random_state=42).fit_transform(band_data) kmeans_labels = KMeans(n_init=4, n_clusters=n_clusters, random_state=42).fit(embedding).labels_ return embedding, kmeans_labels # Function to plot UMAP embedding results def plot_umap_embedding(embedding, kmeans_labels, ax, title): ax.scatter(embedding[:, 0], embedding[:, 1], c=kmeans_labels, cmap='rainbow', s=20) # add a text with umap parameters and kmeans cluster number ax.text(0.99, 0.01, f"n_neighbors={n_neighbors}, min_dist={min_dist}, n_clusters={n_clusters}", transform=ax.transAxes, ha='right', va='bottom', size=10) ax.set_title(title) def plot_dendrogram_colored_ticks(band_data, ax, title, method='ward'): """ Plot the dendrogram with correctly colored tick numbers for the "All Subjects" group. """ # Hierarchical clustering Z = linkage(band_data, method=method) # Plot the dendrogram ddata = dendrogram(Z, ax=ax, leaf_rotation=90) ax.set_title(title + " Dendrogram (" + method + " linkage)") ax.set_xlabel("Sample Index") ax.set_ylabel("Distance") # Color the tick numbers based on control and schizophrenia subjects control_indices = data_control.index.to_list() schizophrenia_indices = data_schizophrenia.index.to_list() # Get the x-tick labels (leaf labels) from the dendrogram leaf_labels = ddata['leaves'] # Iterate through x-ticks and color them based on the group for idx, label in enumerate(ax.get_xticklabels()): label_idx = leaf_labels[idx] if label_idx in control_indices: label.set_color('black') elif label_idx in schizophrenia_indices: label.set_color('red') def plot_dendrogram_and_pca_with_correct_colored_ticks(band_data, ax_dendro, title, color_ticks=False, method='ward'): """ Plot the dendrogram with optionally colored tick numbers and PCA visualization on the given axes. """ # Hierarchical clustering Z = linkage(band_data, method=method) # Plot the dendrogram ddata = dendrogram(Z, ax=ax_dendro, leaf_rotation=90) ax.set_title(str(title) + " Dendrogram (" + str(method) + " linkage)") ax_dendro.set_xlabel("Sample Index") ax_dendro.set_ylabel("Distance") if color_ticks: # Color the tick numbers based on control and schizophrenia subjects control_indices = data_control.index.to_list() schizophrenia_indices = data_schizophrenia.index.to_list() # Get the x-tick labels (leaf labels) from the dendrogram leaf_labels = ddata['leaves'] # Iterate through x-ticks and color them based on the group for idx, label in enumerate(ax_dendro.get_xticklabels()): label_idx = leaf_labels[idx] if label_idx in control_indices: label.set_color('black') elif label_idx in schizophrenia_indices: label.set_color('red') return Z def plot_band_pca(band_data, Z, ax_pca, title): # Cut the dendrogram to obtain 3 clusters labels = fcluster(Z, t=n_dendro_clusters, criterion='maxclust') band_data['Cluster'] = labels # Use PCA to reduce the data to 2D pca = PCA(n_components=2) band_pca = pca.fit_transform(band_data.drop('Cluster', axis=1)) # return band_pca # Create a scatter plot for PCA reduced data ax_pca.scatter(band_pca[:, 0], band_pca[:, 1], c=band_data['Cluster'], cmap='rainbow') ax_pca.set_title(title + " 2D PCA") ax_pca.set_xlabel("Principal Component 1") ax_pca.set_ylabel("Principal Component 2") # If a CSV file is uploaded if uploaded_file: st.write("Dataset loaded successfully!") # Load the data data = load_data(uploaded_file) # Split data into control and schizophrenia groups data_control = data[data['Group'] == 0] data_schizophrenia = data[data['Group'] == 1] data_full = data # Combined dendrogram for "All Subjects" all_bands_data = pd.concat([ data.loc[:, data.columns.str.startswith('avpp_delta')], data.loc[:, data.columns.str.startswith('avpp_theta')], data.loc[:, data.columns.str.startswith('avpp_alpha')], data.loc[:, data.columns.str.startswith('avpp_beta')], data.loc[:, data.columns.str.startswith('avpp_gamma')] ], axis=1) fig, ax = plt.subplots(figsize=(16, 8)) plot_dendrogram_colored_ticks(all_bands_data, ax, "All Bands Combined", method=selected_linkage_method) plt.tight_layout() # Save the dendrogram plot to a PNG file dendrogram_filename = "Combined_Dendrogram_plot.png" fig.savefig(dendrogram_filename, dpi=300) # Provide a download button for the dendrogram PNG file with open(dendrogram_filename, "rb") as f: btn = st.download_button( label="Download Combined Dendrogram Plot", data=f, file_name=dendrogram_filename, mime="image/png" ) st.pyplot(fig) st.write("EDA - Exploratory Data Analysis") # Detect available bands from column names bands_list = ['delta', 'theta', 'alpha', 'beta', 'gamma'] available_bands = [band for band in bands_list if any(data.columns.str.startswith(f'avpp_{band}'))] # Note: Replace all `plt.show()` with `st.pyplot()` # Create the plots with dendrogram, PCA, and UMAP visualizations nrows = 3 if show_pca and show_umap else 2 if show_pca or show_umap else 1 # Number of rows in the plot hight = 15 if show_pca and show_umap else 10 if show_pca or show_umap else 5 # Height of the plot for data_group, title in zip([data_schizophrenia, data_control, data_full], ["Schizophrenia", "Control", "All Subjects"]): fig, axes = plt.subplots(nrows=nrows, ncols=len(available_bands), figsize=(36, hight)) fig.suptitle(title, fontsize=25) # Ensure axes is 2D if nrows == 1: axes = axes.reshape(1, -1) # Create band data based on detected bands for the current data group bands = [(band.capitalize(), data_group.loc[:, data_group.columns.str.startswith(f'avpp_{band}')]) for band in available_bands] # Configure the axes based on the selected visualizations axes_mapping = [0] # dendrogram axes index is always 0 if show_pca: axes_mapping.append(len(axes_mapping)) if show_umap: axes_mapping.append(len(axes_mapping)) # Plot dendrogram, PCA, and UMAP visualizations for each band for col, (band_name, band_data) in enumerate(bands): ax_dendro = axes[axes_mapping[0]][col] ax_dendro.set_title(band_name) color_ticks = True if title == "All Subjects" else False # Dendrogram plots using previous functions Z = plot_dendrogram_and_pca_with_correct_colored_ticks(band_data.copy(), ax_dendro, band_name, color_ticks, method=selected_linkage_method) if show_pca: ax_pca = axes[axes_mapping[1]][col] plot_band_pca(band_data.copy(), Z, ax_pca, title) if show_umap: ax_umap = axes[axes_mapping[-1]][col] embedding, kmeans_labels = umap_and_kmeans(band_data) plot_umap_embedding(embedding, kmeans_labels, ax_umap, band_name + " 2D UMAP") plt.tight_layout() plt.subplots_adjust(top=0.85) # Save the plot to a PNG file plot_filename = f"{title.replace(' ', '_')}_plot.png" fig.savefig(plot_filename, dpi=600) # plt.show() # st.pyplot() # st.image(plot_filename, use_column_width=True, clamp=True) st.pyplot(fig) plt.close(fig) # Provide a download button for the PNG file with open(plot_filename, "rb") as f: btn = st.download_button( label=f"Download {title} Plot", data=f, file_name=plot_filename, mime="image/png" )
furmanlukasz/clusteringSchizphrenia
app.py
app.py
py
9,731
python
en
code
0
github-code
6
25570985502
from View.View import * from Calculator.Types.Rational import Rational from Calculator.Types.Complex import Complex def Start(): while True: type_choice = input(f"{choice_type_values} > ") if type_choice == "1": num1 = Rational("Первое число") num2 = Rational("Второе число") elif type_choice == "2": num1 = Complex("Первое число") num2 = Complex("Второе число") else: return 0 type_operation = input(f"{choice_operation} > ") if type_operation == "1": num1.summarize(num2) elif type_operation == "2": num1.subtraction(num2) elif type_operation == "3": num1.multiplication(num2) elif type_operation == "4": num1.division(num2) elif type_operation == "5": continue else: "Неверное значение. Программа прекращает работать" return 0 show_result(num1)
kdmitry0688/JAVA_OOP
HW7/Control.py
Control.py
py
1,114
python
en
code
0
github-code
6
12731744615
#!/usr/bin/env python3 # create a GUI in Python from tkinter import * '''class App(tk.Frame): def __init__(self,master=None): super().__init__(master) self.master=master self.pack() self.create_widgets() def create_widgets(self): ''' #create root window root =Tk() #dimensions root.title("GUI test") root.geometry('400x300') #widgets #menu-bar myMenu=Menu(root) root.config(menu=myMenu) fileMenu=Menu(myMenu) myMenu.add_cascade(label='File',menu=fileMenu) fileMenu.add_command(label='New') fileMenu.add_command(label='Open...') fileMenu.add_separator() fileMenu.add_command(label='Exit',command=root.quit) helpMenu=Menu(myMenu) myMenu.add_cascade(label='Help',menu=helpMenu) helpMenu.add_command(label='About') #add a label to root window Label(root,text='First Name').grid(row=0) Label(root,text='Last Name').grid(row=1) entry1=Entry(root) entry2=Entry(root) entry1.grid(column=1,row=0) entry2.grid(column=1,row=1) lbl=Label(root,text="Are you in?") lbl.grid(column=0,row=2) Label(root,text='Languages').grid(row=3) Label(root,text='OS').grid(row=4) #list listBox=Listbox(root) listBox.grid(column=1,row=3) myList=["C++","Python","JavaScript","sed/AWK","Ruby"] for zz in range(len(myList)): #print(zz+1,myList[zz]) listBox.insert(zz+1,myList[zz]) #radiobutton v=IntVar() Radiobutton(root, text='Debian 10', variable=v, value=1).grid(column=1,row=4) Radiobutton(root, text='Windows 10', variable=v, value=2).grid(column=2,row=4) #function to display text when a button is clicked def click_me(): res="You wrote: "+txt.get() lbl.configure(text = res) #button widget btn=Button(root,text="Click me",fg="red",command=click_me) btn.grid(column=2,row=2) #position on window #adding entry field txt=Entry(root,width=10) txt.grid(column=1,row=2) root.mainloop()
ndlopez/learn_python
learn_tk/tk_gui.py
tk_gui.py
py
1,832
python
en
code
0
github-code
6
27535780328
import time from functools import wraps from typing import Dict import requests from constants import GITHUB_ROOT, RENDER_ROOT from logging_config import logger from render_api.utils import get_headers, get_github_status session = requests.Session() # Decorator for logging and error handling def log_and_handle_errors(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as exc: logger.error(f"Exception in {func.__name__}| {exc}") return None return wrapper @log_and_handle_errors def manage_deployment_status(data: Dict): pr = data["pull_request"] repo_data = data["repository"] state, merged = pr["state"], pr["merged"] user_repo, repo_url = repo_data["full_name"], repo_data["html_url"] owner, repo = repo_data["owner"]["login"], repo_data["name"] if not (merged and state == "closed"): return service_id = get_render_service_id(repo_url) if not service_id: logger.error("Render service ID is null") return deployment_status = get_render_deployment_status(service_id) if not deployment_status: return process_deployment_status(user_repo, repo, owner, deployment_status, service_id) @log_and_handle_errors def process_deployment_status(user_repo, repo, owner, deployment_status, service_id): github_status = get_github_status(deployment_status["status"]) deployment_id = deployment_status["id"] github_deployment_id = create_github_deployment(user_repo, repo, owner) if not github_deployment_id: logger.error("Failed to create GitHub deployment") return update_github_deployment_status( owner, repo, github_status, deployment_id, user_repo, github_deployment_id, service_id ) @log_and_handle_errors def update_github_deployment_status( owner, repo, status, deployment_id, user_repo, github_deployment_id, service_id ): create_github_deployment_status( owner, repo, status, deployment_id, user_repo, github_deployment_id ) new_status = "" while new_status not in ["failure", "success"]: new_render_deployment_status = get_render_deployment_status(service_id) new_status = get_github_status(new_render_deployment_status["status"]) time.sleep( 10 ) # You can remove it (but it's better to not spam the render API [400 GET request/minutes]) create_github_deployment_status( owner, repo, new_status, deployment_id, user_repo, github_deployment_id ) @log_and_handle_errors def get_render_deployment_status(service_id: str) -> Dict: url = f"{RENDER_ROOT}/services/{service_id}/deploys" response = session.get(url, headers=get_headers("render")) logger.info(f"GET: {url} executed with status_code: {response.status_code}") data = response.json()[0]["deploy"] return {"status": data["status"], "id": data["id"]} @log_and_handle_errors def get_render_service_id(repo: str) -> str: url = f"{RENDER_ROOT}/services" response = session.get(url, headers=get_headers("render")) logger.info(f"GET: {url} executed with status_code: {response.status_code}") for service in response.json(): if service["service"]["repo"] == repo: return service["service"]["id"] @log_and_handle_errors def create_github_deployment(user_repo: str, repo: str, owner: str) -> str: url = f"{GITHUB_ROOT}/repos/{user_repo}/deployments" data = { "owner": owner, "repo": repo, "ref": "main", "environment": "Production", "production_environment": True, "description": "Deployment status from Render", } response = session.post(url, headers=get_headers("github"), json=data) logger.info(f"POST: {url} executed with status_code: {response.status_code}") return response.json().get("id") @log_and_handle_errors def create_github_deployment_status( owner: str, repo: str, status: str, render_deployment_id: str, user_repo: str, github_deployment_id: str, ): url = f"{GITHUB_ROOT}/repos/{user_repo}/deployments/{github_deployment_id}/statuses" data = { "owner": owner, "repo": repo, "state": status, "deployment_id": render_deployment_id, "environment": "Production", "description": "Deployment status from Render", } response = session.post(url, headers=get_headers("github"), json=data) logger.info(f"POST: {url} executed with status_code: {response.status_code}")
Fyleek/render-api
render_api/services/deployment_status_service.py
deployment_status_service.py
py
4,593
python
en
code
0
github-code
6
73574084347
import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name = "Deuces Poker Client", version = "1.0", author = "Daniel Fonseca Yarochewsky", description = ("A client to simulate a Texa Holdem Poker Table"), license = "Free", packages=['deuces-master', 'termcolor'], long_description=read('README') )
yarochewsky/poker-client
setup.py
setup.py
py
409
python
en
code
1
github-code
6
23609310998
import selenium from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.by import By from selenium.common.exceptions import NoSuchElementException from bs4 import BeautifulSoup import pymysql from db_setting import db # 페이지 로딩을 기다리는데 사용할 time 모듈 import import time # 브라우저 꺼짐 방지 옵션 chrome_options = Options() chrome_options.add_experimental_option("detach", True) # URL of the theater page CGV_URL = 'http://www.cgv.co.kr/movies/?lt=1&ft=1' driver = webdriver.Chrome(options=chrome_options) driver.delete_all_cookies() driver.get(url=CGV_URL) # 페이지가 완전히 로딩되도록 1초동안 기다림 time.sleep(0.3) # 더보기 버튼이 있는지 확인 btn_mores = driver.find_elements(By.CLASS_NAME, 'btn-more-fontbold') if btn_mores: for btn in btn_mores: btn.click() time.sleep(0.3) # 영화 클릭 box_elements = driver.find_elements(By.CLASS_NAME, 'box-image') href_list = [] for element in box_elements: href_list.append(element.find_element(By.TAG_NAME, 'a').get_attribute('href')) links = [] for href in href_list: driver.get(href) try: director_dt = driver.find_element(By.XPATH, "//dt[contains(., '감독')]") director_as = director_dt.find_elements(By.XPATH, "./following-sibling::dd[1]/a") for director_a in director_as: new_link = director_a.get_attribute("href") if new_link not in links: links.append(new_link) actor_dt = driver.find_element(By.XPATH, "//dt[contains(., '배우')]") actor_as = actor_dt.find_elements(By.XPATH, "./following-sibling::dd[1]/a") for actor_a in actor_as: new_link = actor_a.get_attribute("href") if new_link not in links: links.append(new_link) except NoSuchElementException: print("정보 없음") time.sleep(0.1) names = [] births = [] nations = [] for link in links: driver.get(link) html = driver.page_source soup = BeautifulSoup(html, 'html.parser') # 이름 name_tag = soup.find(class_='title').find('strong').get_text(strip=True) names.append(name_tag) # 출생, 국적 한번에 가져오기 tags = soup.find(class_='spec').find('dl') # 출생 birth_tag_sibling = tags.find('dt', text= lambda text: text and '출생' in text) if birth_tag_sibling: birth_tag = birth_tag_sibling.find_next_sibling().get_text(strip=True) else : birth_tag = "" births.append(birth_tag) # 국적 nation_tag_sibling = tags.find('dt', text= lambda text: text and '국적' in text) if nation_tag_sibling: nation_tag = nation_tag_sibling.find_next_sibling().get_text(strip=True) else : nation_tag = "" nations.append(nation_tag) print("name : ", name_tag) print("birth : ", birth_tag) print("nation : ", nation_tag) print("================================") conn = pymysql.connect(host=db['host'], port=db['port'], user=db['user'], password=db['password'], db=db['db'], charset=db['charset']) curs = conn.cursor(pymysql.cursors.DictCursor) for name, birth, nation in zip(names, births, nations): sql = "INSERT INTO person (name, birth, nation) VALUES (%s, %s, %s)" val = (name, birth, nation) curs.execute(sql, val) conn.commit() conn.close()
Ticket-Cinema/real-time-crawling
first_chart_crawling/actor_crawling.py
actor_crawling.py
py
3,333
python
en
code
0
github-code
6
29818611165
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : get_content_data.py # @Description: 获取去标签后的文本数据 # @Time : 2020-5-30 上午 11:09 # @Author : Hou import os import pandas as pd import pymysql.cursors def get_id_list(): original_data = pd.read_excel(os.path.join(os.path.abspath('../..'), 'data', 'raw', 'filtered_data.xlsx')) id_series = original_data['id'] id_list = id_series.to_numpy() return id_list def get_content_data(id_list): """获取去标签后的文本数据""" connection = pymysql.connect(host='58.59.18.101', port=3306, user='data', password='data12399123', database='bidding_data', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) content_df = pd.DataFrame(columns=('bulletin_id', 'content', 'partition_key')) try: with connection.cursor() as cursor: sql = "SELECT * FROM `bidding_bulletin_text` where bulletin_id= %s" # 获取2000条数据进行测试 for index in range(2001): cursor.execute(sql, (id_list[index],)) result = cursor.fetchone() # print(result) content_df.loc[index] = result finally: connection.close() return content_df if __name__ == '__main__': id_list = get_id_list() content_df = get_content_data(id_list) content_df.to_excel(os.path.join(os.path.abspath('../..'), 'data', 'processed', 'content_text_data.xlsx'))
Kidron-Hou/category_division
src/data/get_content_data.py
get_content_data.py
py
1,684
python
en
code
0
github-code
6
3929047732
from .wav import write_sine_wave_wav_file def test_sine(): import io import time buffer_size = io.DEFAULT_BUFFER_SIZE filename = "test-5min-512hz-sr48khz-s24le-pcmdatagen.wav" frequency = 512 sample_rate = 48000 duration = 5 * 60 * sample_rate # 5 minutes bit_depth = 24 start_time = time.time() with open(filename, "wb") as fp: write_sine_wave_wav_file( fp=fp, frequency=frequency, buffer_size=buffer_size, sample_rate=sample_rate, num_samples=duration, bits_per_sample=bit_depth, ) end_time = time.time() print(f"Time taken: {end_time - start_time}") def main(): return test_sine() if __name__ == "__main__": main()
louie-github/morsel
morsel/test_sine.py
test_sine.py
py
772
python
en
code
0
github-code
6
14489406692
#1) import numpy as np def polyfit_file(file, d): data = np.loadtxt(file, float) x = data[:,0] y = data[:,1] return np.polyfit(x, y, d) #2) import numpy as np import random as rd def flip_coin(N): h=0.0 t=0.0 while h+t<N: x=rd.randint(1,2) if x==1: h+=1 else: t+=1 if N>10**6: return None else: return h #3) import numpy as np import random as rd def rolling_dice(n, v): attempt=0.0 doubles=0.0 while attempt<n: x=rd.randint(1,6) y=rd.randint(1,6) attempt+=1 if x==y==v: doubles+=1 if n<=10**6.0: return doubles else: return None def test_throw(n, v): if 1<=v<=6 and n<10**6.0: prob=rolling_dice(n, v)/n return prob else: return None #4) import numpy as np import random as rd def MCint_pi(N): M=0.0 attempt=0.0 while attempt<N: x=rd.uniform(-1.0, 1.0) y=rd.uniform(-1.0, 1.0) attempt+=1.0 if (x**2.0+y**2.0)**(1.0/2.0)<=1: M+=1.0 result=2*2*M/N return result
cameronfantham/PX150-Physics-Programming-Workshop
Task 4.py
Task 4.py
py
1,142
python
en
code
0
github-code
6
7784070706
"""MYAPP Core application logic.""" from json import ( JSONDecoder, JSONEncoder, loads as _json_loads, ) from logging import getLogger from pathlib import PosixPath from http import HTTPStatus from flask import Blueprint, current_app, request, Response from flask.views import MethodView from webargs.flaskparser import FlaskParser from marshmallow import Schema, fields, pre_dump, RAISE, EXCLUDE __all__ = [ 'APP_PATH', 'APIMethodView', 'APIBlueprint', 'APIError', 'APIRequestSchema', 'APIResponseSchema', 'APIMetadataSchema', 'JSONEncoder', 'JSONDecoder', 'json_dump', 'json_dumps', 'json_loads', 'parse', 'log_request', 'log_response', ] LOG = getLogger(__name__) # ----------------------------------CONSTANTS---------------------------------- APP_PATH = PosixPath(__file__).parent # ----------------------------------CONSTANTS---------------------------------- # -------------------------------WEBARGS SETTINGS------------------------------- class APIRequestParser(FlaskParser): def handle_error(self, error, req, schema, *, error_status_code, error_headers): raise APIError( 'The request specification is invalid; check OpenAPI docs for more info.', metadata={'errors': error.messages}, http_status=error_status_code or HTTPStatus.OK, ) def parse_files(self, req, name, field): raise NotImplementedError parser = APIRequestParser() parse = parser.use_args # -------------------------------WEBARGS SETTINGS------------------------------- # --------------------------------SERIALIZATION-------------------------------- class APIRequestSchema(Schema): """MYAPP base request schema.""" class Meta: """Raise on unknown parameters.""" unknown = RAISE class APICommonRequestSchema(Schema): """MYAPP common request parameters.""" class Meta: """Do not react on unknown parameters.""" unknown = EXCLUDE debug_tb_enabled = fields.Boolean( required=False, default=False, ) class APIResponseSchema(Schema): """MYAPP base response schema.""" class Meta: """Exclude any unknown parameters.""" unknown = EXCLUDE data = fields.Dict( required=True, default=dict, ) metadata = fields.Nested( 'APIMetadataSchema', required=True, ) @classmethod def default_metadata(cls): """ Create default metadata. :return: metadata fallback """ return { 'status': 0, 'message': 'Nice', 'headers': {}, 'errors': None, 'details': None, } @pre_dump def pre_dump(self, response, many=None): """ Make pre dump handling. :param response: raw response :param many: is many :return: enriched raw response """ _ = many metadata = self.default_metadata() response_metadata = response.get('metadata', {}) for field in 'status', 'message', 'headers', 'errors', 'details': if field in response_metadata: metadata[field] = response_metadata[field] # FIXME: dynamic messages if metadata['status'] and metadata['message'] == 'Nice': metadata['message'] = 'Not nice' response['metadata'] = metadata return response class APIMetadataSchema(Schema): """MYAPP Metadata schema.""" status = fields.Integer( required=True, default=0, ) message = fields.String( required=True, default='Nice', ) headers = fields.Dict( required=True, default=dict, ) errors = fields.Dict( required=True, allow_none=True, default=None, ) details = fields.Dict( required=True, allow_none=True, default=None, ) # --------------------------------SERIALIZATION-------------------------------- # ------------------------FLASK AND APPLICATION GENERICS------------------------ class APIJSONEncoder(JSONEncoder): """MYAPP JSON Encoder.""" def __init__( self, *, skipkeys=False, check_circular=True, allow_nan=True, separators=None, default=None, ): """ Initialize encoder. :param skipkeys: is skip :param check_circular: is check circular :param allow_nan: is allow nan :param separators: separator char :param default: default value """ ensure_ascii = current_app.config['JSON_ENSURE_ASCII'] sort_keys = current_app.config['JSON_SORT_KEYS'] indent = current_app.config['JSON_INDENT'] super().__init__( skipkeys=skipkeys, ensure_ascii=ensure_ascii, check_circular=check_circular, allow_nan=allow_nan, sort_keys=sort_keys, indent=indent, separators=separators, default=default, ) class APIJSONDecoder(JSONDecoder): """MYAPP JSON Decoder.""" def json_dumps(obj, **kwargs): """ MYAPP json dumps. :param obj: object :param kwargs: any :return: json string """ return APIJSONEncoder(**kwargs).encode(obj) def json_dump(obj, file, **kwargs): """ MYAPP json dump. :param obj: python object :param file: filename :param kwargs: any """ for chunk in APIJSONEncoder(**kwargs).iterencode(obj): file.write(chunk) def json_loads(string, **kwargs): """ MYAPP json loads. :param string: json string :param kwargs: any :return: dict """ return _json_loads(string, cls=APIJSONDecoder, **kwargs) class APIMethodView(MethodView): """API Method View.""" decorators = ( parse(APICommonRequestSchema(), location='query'), ) class APIBlueprint(Blueprint): """API Blueprint.""" def log_request(): """Log request in curl-based fashion.""" msg = fr"curl -w '\n' -iX {request.method} '{request.url}' " msg += ''.join(f"-H '{h}:{v}' " for h, v in request.headers.items()) if ( request.method in {'POST', 'PUT', 'PATCH'} and request.headers.get('Content-Type') == 'application/json' ): msg += f"-d '{request.data.decode('utf8')}'" LOG.info(msg) def log_response(response: Response): """ Log response json. :param response: flask response :return: flask response """ if response.is_json: LOG.info(f'Response: {response.json}') return response # ------------------------FLASK AND APPLICATION GENERICS------------------------ # ---------------------------EXCEPTIONS AND MESSAGES--------------------------- class APIError(Exception): """Base API Exception.""" def __init__(self, *args, **kwargs): """ Initialize API exception. :param args: any :param kwargs: any """ schema = kwargs.pop('schema', APIResponseSchema()) data = kwargs.pop('data', {}) metadata = kwargs.pop('metadata', {}) metadata.setdefault('message', 'Error' if not args else args[0]) metadata.setdefault('status', 3) self.json = schema.dump({'data': data, 'metadata': metadata}) self.http_status = kwargs.pop('http_status', HTTPStatus.OK) super().__init__(*args) # ---------------------------EXCEPTIONS AND MESSAGES---------------------------
jjj4x/flask_api_example
src/myapp/core.py
core.py
py
7,547
python
en
code
0
github-code
6
35614869771
""" This will fetch database data from database """ from typing import List from copy import deepcopy from codegen.table.python_free_connex_table import PythonFreeConnexTable from codegen.database import DatabaseDriver from os import path class DataFetcher: def __init__(self, db_driver: DatabaseDriver): """ Construct a db fetcher instance. It requires to have a db driver input, in order to fetch different files :param db_driver: A db_driver, can be postgres_db_driver """ self.db_driver = db_driver def store_data(self, output_dir: str, tables: List[PythonFreeConnexTable], should_write=True) -> List[ PythonFreeConnexTable]: """ Perform a select on all tables and stored output data into the [output_dir]. Will also return a new list of tables which has the dat_path and data_size set. :type should_write: object :param output_dir: Output dir :param tables: List of tables :return: """ new_tables = deepcopy(tables) for i, table in enumerate(tables): if len(table.annotations) > 0: annotations = "" for index, annotation in enumerate(table.annotations): annotations += f"{annotation} as {table.get_annotation_name(index)}" if index < len(table.annotations) - 1: annotations += "," sql = f"select *, {annotations} from {table._table_name};" else: sql = f"select * from {table._table_name};" output_path = path.join(output_dir, table.variable_table_name) + '.tbl' size = 0 if should_write: size = self.db_driver.execute_save(sql=sql, output_filename=output_path) new_tables[i].data_paths = [output_path] new_tables[i].data_sizes = [size] return new_tables
secyan/secyan_gen
codegen/utils/DataFetcher.py
DataFetcher.py
py
1,945
python
en
code
2
github-code
6
29446328549
# -*- coding: utf-8 -*- import sys import cv2 import mediapipe as mp import re import time import threading from PySide2 import QtCore, QtGui, QtWidgets from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * from selenium import webdriver from lib.handsign.gesture import define_gesture, find_gesture, handedness from lib.sr.SR_edsr import sr_work from socket import * ## ==> SPLASH SCREEN from lib.ui.ui_splash_screen import Ui_SplashScreen ## ==> MAIN WINDOW from lib.ui.ui_main import Ui_MainWindow # Create Socket clientSock = socket(AF_INET, SOCK_STREAM) url = '192.168.43.145' clientSock.connect((url, 2000)) mp_drawing = mp.solutions.drawing_utils mp_hands = mp.solutions.hands ## ==> GLOBALS counter = 0 hands = None cap_hand = None cap_situ = None right_prev = None left_prev = None left_count = 0 #Camera Command camera_left = 0 camera_right = 0 camera_center = 0 # YOUR APPLICATION class MainWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.logic_btn = False # self.logic_dr = False self.case = 0 # 버튼을 누르면 함수 실행 self.ui.pushButton.clicked.connect(self.btnClicked) # self.ui.pushButton_2.clicked.connect(self.drClicked) # set warning self.ui.warning.setVisible(False) # self.ui.warning.setVisible(False) # set wait self.ui.wait.setVisible(False) def start(self): global cap_hand global cap_situ global hands global right_prev global left_prev global left_count global camera_center global camera_left global camera_right turn_on_esp = 0 while cap_hand.isOpened(): success, image = cap_hand.read() success2, image2 = cap_situ.read() if not success: break if not success2: break if success: if turn_on_esp == 0: esp_trd = threading.Thread(target=esp32_video, name="[Daemon2]", args=()) esp_trd.setDaemon(True) esp_trd.start() turn_on_esp += 1 # Resize Image image = cv2.resize(image, dsize=(800, 600)) # Flip the image horizontally for a later selfie-view display, and convert # the BGR image to RGB. image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False results = hands.process(image) # Draw the hand annotations on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) landmark = [] landmark_list = [] cnt = 0 cnt2 = 0 # Count number of loop when left hand gesture is not used left_count += 1 # Interpret Hand Gesture & Control RC Car if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: for i in str(hand_landmarks).split(): is_num = bool(re.findall('\d+', i)) # Extract landmarks if is_num is True: if cnt < 3 and cnt2 == 0: landmark.append(float(i)) cnt += 1 elif cnt == 3 and cnt2 == 0: cnt2 = 1 elif cnt == 3 and cnt2 == 1: cnt = 0 cnt2 = 0 if len(landmark) == 3: landmark_list.append(landmark) landmark = [] # Right Hand Gesture Controls if find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) != "None" and\ handedness(landmark_list[0], landmark_list[1]) == 'right': cmd = find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) if right_prev != cmd: right_prev = cmd # Create Thread t = threading.Thread(target=url_command_right, name="[Daemon]", args=(cmd,)) t.setDaemon(True) t.start() # Left Hand Gesture Controls if find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) != "None" and\ handedness(landmark_list[0], landmark_list[1]) == 'left': cmd = find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) # Camera Command if cmd == "Camera_LEFT" or cmd == "Camera_RIGHT" or cmd == "Camera_CENTER": if cmd == "Camera_LEFT" and camera_left == 0: left_prev = cmd left_count = 0 camera_left = 1 camera_right = 0 camera_center = 0 # Create Thread t = threading.Thread(target=url_command_left, name="[Daemon5]", args=(cmd,)) t.setDaemon(True) t.start() elif cmd == "Camera_RIGHT" and camera_right == 0: left_prev = cmd left_count = 0 camera_left = 0 camera_right = 1 camera_center = 0 # Create Thread t = threading.Thread(target=url_command_left, name="[Daemon6]", args=(cmd,)) t.setDaemon(True) t.start() elif cmd == "Camera_CENTER" and camera_center == 0: left_prev = cmd left_count = 0 camera_left = 0 camera_right = 0 camera_center = 1 # Create Thread t = threading.Thread(target=url_command_left, name="[Daemon7]", args=(cmd,)) t.setDaemon(True) t.start() if cmd == "Capture" and left_count > 3: left_prev = cmd left_count = 0 img_name = 'image/input.png' cv2.imwrite(img_name, image2) # SR Command if left_prev != cmd and (cmd != "Camera_LEFT" or cmd != "Camera_RIGHT" or cmd != "Capture"): left_prev = cmd if cmd == "Work SR Engine": t = threading.Thread(target=sr_work, name="[Daemon4]", args=()) t.setDaemon(True) t.start() self.ui.wait.setVisible(True) if cmd == "SR Done": self.ui.wait.setVisible(False) print(find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1]))) print(handedness(landmark_list[0], landmark_list[1])) self.ui.cmd.setText(f"{find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1]))}\n" f"{handedness(landmark_list[0], landmark_list[1])}") self.ui.cmd.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) self.ui.cmd.repaint() mp_drawing.draw_landmarks( image, hand_landmarks, mp_hands.HAND_CONNECTIONS) self.displayHandSign(image) self.displayCCTV(image2) #self.displayRCCAR(image2) self.displayCaptureImg() self.displaySRImg() #Keyboard k = cv2.waitKey(0) if k % 256 == 27: # esc pressed --> break break elif k % 256 == 32: # space pressed --> capture img_name = '../../image/input.png' cv2.imwrite(img_name, image) hands.close() cap_hand.release() cap_situ.release() cv2.destroyAllWindows() def btnClicked(self): if self.logic_btn == True: self.logic_btn = False # self.ui.rccarCam.setPixmap(None) self.case += 1 self.ui.lcdNumber.display(self.case) self.ui.warning.setVisible(False) # self.ui.wait.setVisible(False) # space pressed --> capture else: self.logic_btn = True self.ui.warning.setVisible(True) # self.ui.wait.setVisible(True) def displayHandSign(self, img): qformat = QImage.Format_Indexed8 if len(img.shape) == 3: if img.shape[2] == 4: qformat = QImage.Format_RGBA8888 else: qformat = QImage.Format_RGB888 img = QImage(img, img.shape[1], img.shape[0], qformat) img = img.rgbSwapped() w = self.ui.handSign.width() h = self.ui.handSign.height() self.ui.handSign.setPixmap(QPixmap.fromImage(img).scaled(w, h, Qt.KeepAspectRatioByExpanding)) # self.ui.handSign.setPixmap(QPixmap.fromImage(img)) # 가운데 맞춤 self.ui.handSign.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displayRCCAR(self, img): qformat = QImage.Format_Indexed8 if len(img.shape) == 3: if img.shape[2] == 4: qformat = QImage.Format_RGBA8888 else: qformat = QImage.Format_RGB888 img = QImage(img, img.shape[1], img.shape[0], qformat) img = img.rgbSwapped() w = self.ui.handSign.width() h = self.ui.handSign.height() self.ui.cctv.setPixmap(QPixmap.fromImage(img).scaled(w, h, Qt.KeepAspectRatioByExpanding)) # self.ui.cctv.setPixmap(QPixmap.fromImage(img)) # 가운데 맞춤 self.ui.cctv.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) # self.ui.situation2.setPixmap(QPixmap.fromImage(img)) # # 가운데 맞춤 # self.ui.situation2.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displayCCTV(self, img): qformat = QImage.Format_Indexed8 if len(img.shape) == 3: if img.shape[2] == 4: qformat = QImage.Format_RGBA8888 else: qformat = QImage.Format_RGB888 img = QImage(img, img.shape[1], img.shape[0], qformat) img = img.rgbSwapped() w = self.ui.handSign.width() h = self.ui.handSign.height() self.ui.rccarCam.setPixmap(QPixmap.fromImage(img).scaled(w, h, Qt.KeepAspectRatioByExpanding)) # self.ui.rccarCam.setPixmap(QPixmap.fromImage(img)) # 가운데 맞춤 self.ui.rccarCam.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displayCaptureImg(self): img = QPixmap.fromImage('../../image/input.png') w = self.ui.cap_img.width() h = self.ui.cap_img.height() self.ui.cap_img.setPixmap(img.scaled(w, h, Qt.KeepAspectRatioByExpanding)) # 가운데 맞춤 self.ui.cap_img.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displaySRImg(self): img = QPixmap.fromImage('../../image/upscaled.png') w = self.ui.sr_img.width() h = self.ui.sr_img.height() self.ui.sr_img.setPixmap(img.scaled(w, h, Qt.KeepAspectRatioByExpanding)) # 가운데 맞춤 self.ui.sr_img.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) # SPLASH SCREEN class SplashScreen(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.ui = Ui_SplashScreen() self.ui.setupUi(self) ## REMOVE TITLE BAR self.setWindowFlag(QtCore.Qt.FramelessWindowHint) self.setAttribute(QtCore.Qt.WA_TranslucentBackground) ## DROP SHADOW EFFECT self.shadow = QGraphicsDropShadowEffect(self) self.shadow.setBlurRadius(20) self.shadow.setXOffset(0) self.shadow.setYOffset(0) self.shadow.setColor(QColor(0, 0, 0, 60)) self.ui.dropShadowFrame.setGraphicsEffect(self.shadow) ## QTIMER ==> START self.timer = QtCore.QTimer() self.timer.timeout.connect(self.progress) # TIMER IN MILLISECONDS self.timer.start(35) # # Change Texts # QtCore.QTimer.singleShot(1500, lambda: self.ui.label_description.setText("<strong>LOADING</strong> DATABASE")) # QtCore.QTimer.singleShot(3000, lambda: self.ui.label_description.setText("<strong>LOADING</strong> USER INTERFACE")) ## SHOW ==> MAIN WINDOW self.show() ## ==> APP FUNCTIONS def progress(self): global counter global hands global cap_hand global cap_situ # SET VALUE TO PROGRESS BAR self.ui.progressBar.setValue(counter) if hands is None: self.ui.label_loading.setText("load mediapipe...") self.ui.label_loading.repaint() hands = mp_hands.Hands( min_detection_confidence=0.7, min_tracking_confidence=0.5) cap_hand = cv2.VideoCapture(0) cap_situ = cv2.VideoCapture(1) counter = 20 self.ui.label_loading.setText("loading...") # CLOSE SPLASH SCREE AND OPEN APP if counter > 100: # STOP TIMER self.timer.stop() # SHOW MAIN WINDOW self.main = MainWindow() self.main.show() # CLOSE SPLASH SCREEN self.close() # START MAIN SCREEN self.main.start() # INCREASE COUNTER counter += 4 def url_command_right(cmd): try: clientSock.send(cmd.encode('utf-8')) except: print("\n\n\n\nException Occur\n\n\n\n") def url_command_left(cmd): try: clientSock.send(cmd.encode('utf-8')) time.sleep(10) except: print("\n\n\n\nException Occur\n\n\n\n") def esp32_video(): # change to your ESP32-CAM ip wd = webdriver.Chrome(r'C:\Users\jji44\Desktop\chromedriver.exe') url = 'http://192.168.43.159:81/stream' wd.set_window_size(400, 400) #wd.set wd.get(url) # url = "http://192.168.0.152:81/stream" # CAMERA_BUFFRER_SIZE = 4096#4096 # stream = urlopen(url) # bts = b'' # # while True: # try: # bts += stream.read(CAMERA_BUFFRER_SIZE) # jpghead = bts.find(b'\xff\xd8') # jpgend = bts.find(b'\xff\xd9') # if jpghead > -1 and jpgend > -1: # jpg = bts[jpghead:jpgend + 2] # bts = bts[jpgend + 2:] # image3 = cv2.imdecode(np.frombuffer(jpg, dtype=np.uint8), cv2.IMREAD_UNCHANGED) # image3 = cv2.resize(image3, (640, 480)) # MainWindow.displayRCCAR(window.main, image3) # except Exception as e: # print("Error:" + str(e)) # bts = b'' # stream = urlopen(url) # continue if __name__ == "__main__": app = QApplication(sys.argv) window = SplashScreen() try: sys.exit(app.exec_()) except: print('exciting')
cheeseBG/EmergencyResponseSystem
main.py
main.py
py
17,061
python
en
code
1
github-code
6
39635306222
from datetime import datetime from django.http import Http404, HttpResponse, HttpResponseRedirect from django.shortcuts import render from django.template import loader from django.urls import reverse from .models import BusinessIdea # Create your views here. def list(request): ideas_list = BusinessIdea.objects.order_by("-publish_date")[:10] template = loader.get_template('ideas/list.html') context = { 'ideas_list': ideas_list, } return HttpResponse(template.render(context, request)) def idea(request, idea_id): try: idea = BusinessIdea.objects.get (pk=idea_id) except BusinessIdea.DoesNotExist: raise Http404("Idea does not exist") #comments = IdeaComment.objects.filter() print(idea.__dir__()) return render(request, 'ideas/detail.html', {"idea": idea, "comments": ""}) def idea_new(request): return render(request, "ideas/idea_new.html") def idea_new_post(request): print(request.POST.keys()) try: username = request.POST['username'] title = request.POST["title"] body = request.POST["body"] except (KeyError): # Redisplay the form. return render(request, 'ideas/idea_new.html', { 'error_message': "Invalid form.", }) newIdea = BusinessIdea( username = username, title = title, body = body, publish_date = datetime.now() ) newIdea.save() context = { "idea": newIdea } return HttpResponseRedirect(reverse("ideas:idea", args=(newIdea.id,)))
Gael-Bernard/business_ideas_upm
business_ideas_upm/ideas/views.py
views.py
py
1,571
python
en
code
0
github-code
6
38093763953
from book import Book class Library: def __init__(self, books_list, readers_list): self.books_list = books_list self.readers_list = readers_list def add_book_to_library(self): book_id, book_name, book_author, book_date = input("Please enter book id, title, author name, year of edition " "split by comma as in the example '4,River,Anthony Bach," "1956': ").split(',') book = Book(book_id, book_name, book_author, book_date, None) return self.books_list.append(book) def delete_book_from_library(self): book_id = input("Please enter book id: ") for book in self.books_list: if book.book_id == int(book_id): self.books_list.remove(book) @staticmethod def ask_for_ids(): while True: book_id, reader_id = input("Please enter book id and reader id split by comma: ").split(',') if book_id.isdigit() and reader_id.isdigit(): return int(book_id), int(reader_id) else: print("You have entered not a valid positive integers as ids.") def give_book_to_reader(self, book_id, reader_id): for book in self.books_list: if book.book_id == book_id and book.book_id_reader is not None: print("This book is already taken.") break elif book.book_id == book_id: book.book_id_reader = reader_id for reader in self.readers_list: if reader.reader_id == reader_id: reader.reader_book_id = book_id def take_book_from_reader(self, book_id, reader_id): for book in self.books_list: if book.book_id == book_id and book.book_id_reader is None: print("This book is not taken.") break elif book.book_id == book_id: book.book_id_reader = None for reader in self.readers_list: if reader.reader_id == reader_id: reader.reader_book_id = None def print_all_books(self): for book in self.books_list: print(book.book_id, book.book_name, book.book_author, book.book_date, book.book_id_reader) def print_books_in_library(self): for book in self.books_list: if book.book_id_reader is None: print(book.book_id, book.book_name, book.book_author, book.book_date, book.book_id_reader) def print_taken_books(self): for book in self.books_list: if book.book_id_reader is not None: print(book.book_id, book.book_name, book.book_author, book.book_date, book.book_id_reader) def sort_books_by_name(self): for book in sorted(self.books_list, key=lambda x: x.book_name): print(book.book_id, book.book_name, book.book_author, book.book_date, book.book_id_reader) def sort_books_by_author(self): for book in sorted(self.books_list, key=lambda x: x.book_author): print(book.book_id, book.book_name, book.book_author, book.book_date, book.book_id_reader) def sort_books_by_date(self): for book in sorted(self.books_list, key=lambda x: x.book_date): print(book.book_id, book.book_name, book.book_author, book.book_date, book.book_id_reader) def delete_reader(self): reader_id = input("Please enter reader id: ") for reader in self.readers_list: if reader.reader_id == int(reader_id): self.readers_list.remove(reader) def print_all_readers(self): for reader in self.readers_list: print(reader.reader_id, reader.first_name, reader.last_name, reader.birth_year, reader.reader_book_id) def print_readers_with_book(self): for reader in self.readers_list: if reader.reader_book_id is not None: print(reader.reader_id, reader.first_name, reader.last_name, reader.birth_year, reader.reader_book_id)
alisa-moto/python-adnanced
HW_02/library.py
library.py
py
4,100
python
en
code
0
github-code
6
33937872661
""" Returns a dictionary of the keyboard mapped to its ord() value. string DATA ascii_letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' ascii_lowercase = 'abcdefghijklmnopqrstuvwxyz' digits = '0123456789' hexdigits = '0123456789abcdefABCDEF' letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' octdigits = '01234567' printable = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU... punctuation = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~' uppercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' whitespace = '\t\n\x0b\x0c\r ' """ import string import curses class Key(): def __init__(self): self.key = {} for k in string.printable: self.key[k] = ord(k) for k in dir(curses): if 'KEY_' in k: name = k.split('_')[1].lower() self.key[name] = getattr(curses, k) return key = Key().key
cameronbriar/curses
examples/key.py
key.py
py
934
python
en
code
0
github-code
6
71066840189
import numpy as np from examples.example_imports import * scene = EagerModeScene() scene.save_default_config() number = DecimalNumber(0).scale(2) scene.add(number) scene.wait() print(np.linspace(0, 10, 4)) scene.play(ChangingDecimal(number, lambda x: x*10), run_time=4) scene.hold_on()
beidongjiedeguang/manim-express
examples/animate/demo_numbers.py
demo_numbers.py
py
291
python
en
code
13
github-code
6
43555685205
class Robot: """ +Y 90 N ^ -X 180 W < * > E 0 +X v S 270 -Y """ # dirname => (dx, dy) directions_to_deltas = { 'E': (1, 0), 'N': (0, 1), 'W': (-1, 0), 'S': (0, -1) } def __init__(self, instructions): self.instructions = instructions self.x = 0 self.y = 0 self.wx = 10 self.wy = 1 def execute_command(self, cmd, val): if cmd in {'N', 'S', 'E', 'W'}: dx, dy = self.directions_to_deltas[cmd] self.wx += dx * val self.wy += dy * val elif cmd in {'L', 'R'}: normal_val = val if cmd == 'R' else (val * -1) % 360 if normal_val == 90: temp = self.wx self.wx = self.wy self.wy = -1 * temp elif normal_val == 180: self.wx *= -1 self.wy *= -1 elif normal_val == 270: temp = self.wx self.wx = -1 * self.wy self.wy = temp else: raise ValueError("I don't know how to rotate {val} degrees!") elif cmd == 'F': self.x += val * self.wx self.y += val * self.wy else: raise ValueError("Unrecognized command {cmd}") self.print_state(cmd,val) def run_to_completion(self): for cmd, val in self.instructions: self.execute_command(cmd, val) def print_state(self, cmd, val): print(f"After {cmd, val}\n Pos: {self.x, self.y}\n Way: {self.wx, self.wy}\n") def main(): instructions = [] with open("input.txt") as file: for line in file: instructions.append((line[:1], int(line[1:].strip()))) robot = Robot(instructions) robot.run_to_completion() m_dist = abs(robot.x) + abs(robot.y) print(f"Coord: ({robot.x}, {robot.y}) Man_Distance: {m_dist}") if __name__ == "__main__": main()
ruke47/advent-of-code-2020
12/2.py
2.py
py
2,071
python
en
code
0
github-code
6
11403898752
from torch.utils.data import Dataset from transformers import Trainer from transformers import TrainingArguments from trainer.callbacks.printer import PrinterCallback from data_manager.batch_sampler import Batch_Sampler from model.model_parameters import Model_Parameters from trainer.tne_config import TNE_Config import torch import os import json os.environ["WANDB_DISABLED"] = "true" class TNETrainer(): def __init__(self, model: torch.nn.Module, train_set: Dataset, evaluation_set: Dataset, test_set: Dataset, config: TNE_Config, hyper_parameters: Model_Parameters) -> None: # Init Trainer properties self.model = model self.config = config self.prepositions_list = config.prepositions_list self.num_labels = config.num_labels ################################################# # Init TNE Model # ################################################# self.train_set = train_set self.evaluation_set = evaluation_set self.test_set = test_set self.test_output_path = self.config.test_output self.hyper_parameters = hyper_parameters self.model = model ################################################# # Init Training Arguments # ################################################# training_params = hyper_parameters.training_params evaluation_params = hyper_parameters.evaluation_params self.training_args = TrainingArguments(output_dir=config.output_dir, num_train_epochs=training_params["epochs"], per_device_train_batch_size=training_params['batch_size'], per_device_eval_batch_size=evaluation_params['batch_size'], learning_rate=training_params['learning_rate'], weight_decay=training_params['weight_decay'], warmup_steps=training_params['warmup_steps'], logging_dir=config.logs_dir, logging_steps=5000, # log & save weights each logging_steps evaluation_strategy="steps", # evaluate each `logging_steps` eval_steps=evaluation_params['eval_steps'], save_strategy="no") ############################################# # Init Trainer # ############################################# # Metrics self.batch_collator = Batch_Sampler(tokenizer=self.config.tokenizer, device_type=self.config.device) self.trainer = Trainer( model=self.model, # TNE model args=self.training_args, # Training arguments, defined above train_dataset=self.train_set, # Training set eval_dataset=self.evaluation_set, # Evaluation set #compute_metrics=self.metrics.compute_metrics, # Callback that computes metrics of interest callbacks=[ # a printer callback used to draw a graph showing the # evaluation accuracy of the model over the epochs in the training. PrinterCallback ], data_collator=self.batch_collator, ) def train(self): # train the model self.trainer.train() def evaluate(self): # evaluate the model performance self.trainer.evaluate() def test(self): # test the model and create a file with the predicted prepositions. with open(self.test_output_path, 'w') as outfile: for sample in self.test_set: batch = self.batch_collator.__call__(batch=[sample]) predictions = self.model(batch['input'], None) predictions[predictions == 25] = 0 predictions_json = json.dumps({'predicted_prepositions': predictions.flatten().tolist()}) outfile.write(predictions_json + "\n")
ranraboh/TNE_TASK
trainer/tne_trainer.py
tne_trainer.py
py
4,430
python
en
code
0
github-code
6
43431205524
import datetime import uuid import logging from concurrent.futures import ThreadPoolExecutor from functools import partial import pandas as pd import sys import pprint import traceback from core.scraper.scraper import Scraper from core.db.db_helper import DbHelper from common.constants import THREAD_NO, LARGE_CHUNK, BULK_CHUNK from common.protobuf_to_dict.protobuf_to_dict.convertor import protobuf_to_dict from common.app_object import App logger = logging.getLogger(__name__) logging.basicConfig(format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', level=logging.INFO) pp = pprint.PrettyPrinter(indent=4) class Updater: """ Keeps iterating over the database till the script is interrupted and collecting meta-data for apps that have previously been scraped. """ def __init__(self, input_file=None): self.__db_helper = DbHelper() self.input_file = input_file # ***************** # # updating all related functions # ***************** # def update_apps(self): """ Uses bulk scraping to update apps much faster than before """ if self.input_file is None: # dicts representing each app and info e.g. current version code, uuid, etc. apps = self.__db_helper.get_package_names_to_update(0) else: apps = pd.read_csv(self.input_file)["packageName"].tolist() self.s = Scraper() app_names = [] app_data = [] removed_apps = [] total_apps_no = len(apps) logger.info("Starting bulk update with {} apps...".format(total_apps_no)) with ThreadPoolExecutor(max_workers=THREAD_NO) as executor: res = executor.map(self.update_all_thread_worker, range(0, total_apps_no), apps) counter = 0 for future in res: if future is not None: app_names.append(future[0]) if future[1] is not None and future[2] is not None: app_data.append((future[1], future[2])) else: removed_apps.append(future[0]) counter += 1 if counter % LARGE_CHUNK == 0: logger.info("updated {} to {} out of {}".format( counter - LARGE_CHUNK, counter, total_apps_no)) if counter % (BULK_CHUNK * 10) == 0: logger.info("updating {} apps as removed".format(len(removed_apps))) self.__db_helper.update_apps_as_removed(removed_apps) removed_apps = [] try: logger.info("inserting {} updated apps to db...".format(len(app_data))) self.__db_helper.insert_apps_into_db(app_data) app_data = [] except Exception as e: logger.error("db insertion failed - {}".format(e)) print(traceback.format_exc()) logger.error(traceback.format_exc()) logger.info("completed all out of {}".format(total_apps_no)) logger.info("updating {} apps as removed".format(len(removed_apps))) self.__db_helper.update_apps_as_removed(removed_apps) logger.info("inserting {} updated apps to db...".format(len(app_data))) self.__db_helper.insert_apps_into_db(app_data) self.__db_helper.update_apps_as_not_removed(app_names) self.__db_helper.update_date_last_scraped(app_names, datetime.datetime.utcnow().strftime("%Y%m%dT%H%M")) def update_all_thread_worker(self, index, app_name): # bulk scrape to check for updates s = self.s """ try: """ metadata = s.get_metadata_for_apps([app_name], bulk=False) if metadata is None: # app removed return (app_name, None, None) if len(list(metadata)) == 0: return (app_name, None, None) new_info, new_detail = list(metadata)[0] num_updated = 0 if new_info is None: # app is removed logger.error("app {} has been removed".format(app_name)) return (app_name, None, None) if new_info.packageName != app_name: # TODO why logger.error("mismatching package names") return if new_info.versionCode is None or new_info.uploadDate is None: # TODO add crawler code here to fix this, ignore for now logger.warning("{} - null versionCode or uploadDate, ignoring".format(app_name)) return return (app_name, new_info, new_detail) """ if new_info.versionCode is not None: info_vc = new_info.versionCode details_dict = protobuf_to_dict(new_detail) if info_vc != details_dict["details"]["appDetails"]["versionCode"]: logger.error("VERSION MISMATCH for {}".format(app_name)) return # check version code to see if app is updated updated = self.__db_helper.check_app_to_update(app_name, new_info.versionCode) else: # if not provided just assume is updated updated = True if updated: return (app_name, new_info, new_detail) else: return None """ """ except Exception as e: logger.error("{} - {}".format(app_name, str(e))) """ """ if __name__ == '__main__': while True: try: up = Updater() up.update_apps() except KeyboardInterrupt: logger.warning("Updater interrupted by user") """
CMUChimpsLab/playstore-scraper
core/scraper/updater.py
updater.py
py
5,745
python
en
code
1
github-code
6
2088894049
## \example pmi/symmetry.py """Clone molecules and use a symmetry constraint """ import IMP import IMP.atom import IMP.rmf import IMP.pmi import IMP.pmi.topology import IMP.pmi.dof import IMP.pmi.macros import IMP.pmi.restraints.stereochemistry import math import sys IMP.setup_from_argv(sys.argv, "Symmetry constraint example") # Create System and State mdl = IMP.Model() s = IMP.pmi.topology.System(mdl) st = s.create_state() # Create a simple all-bead molecule mol = st.create_molecule("mymol", sequence='A'*10, chain_id='A') mol.add_representation(mol, resolutions=[1]) # Clone the molecule multiple times # Calling molecule.create_clone makes a new molecule with the same name, # sequence, initial structure, and choice of representations # Note: another function, molecule.create_copy(), just copies the name # and sequence mols = [mol] chains = 'BCDEFGHI' for nc in range(7): clone = mol.create_clone(chains[nc]) mols.append(clone) hier = s.build() # Create a symmetry constraint # A constraint is invariant: IMP will automatically move all clones to # match the reference # If instead you want some more flexibility, consider # IMP.pmi.restraints.stereochemistry.SymmetryRestraint dof = IMP.pmi.dof.DegreesOfFreedom(mdl) center = IMP.algebra.Vector3D([50, 0, 0]) for nc in range(7): rot = IMP.algebra.get_rotation_about_axis([0, 0, 1], 2*math.pi*(nc+1)/8) transform = IMP.algebra.get_rotation_about_point(center, rot) dof.constrain_symmetry(mols[0], mols[nc+1], transform) mdl.update() # propagates coordinates # ########### Make stuff look cool with restraints ########### # set up the original molecule as flexible beads dof.create_flexible_beads(mols[0]) # Create a connectivity restraint for the first molecule cr = IMP.pmi.restraints.stereochemistry.ConnectivityRestraint(objects=mol) cr.add_to_model() # Create excluded volume for all particles evr = IMP.pmi.restraints.stereochemistry.ExcludedVolumeSphere( included_objects=mols) evr.add_to_model() # Quickly move all flexible beads into place dof.optimize_flexible_beads(100) # write a single-frame RMF to view the helix out = IMP.pmi.output.Output() out.init_rmf("example_symmetry.rmf3", hierarchies=[hier]) out.write_rmf("example_symmetry.rmf3")
salilab/pmi
examples/symmetry.py
symmetry.py
py
2,257
python
en
code
12
github-code
6
16838024238
from typing import List from csvcubed.models.cube import ( Cube, QbDimension, ExistingQbDimension, QbColumn, CsvColumnUriTemplateMissingError, QbAttributeLiteral, CsvColumnLiteralWithUriTemplate, QbAttribute, NoDimensionsDefinedError, ) from csvcubed.models.validationerror import ValidationError from csvcubed.utils.qb.cube import get_columns_of_dsd_type from csvcubed.utils.qb.validation.observations import ( validate_observations, ) def validate_qb_component_constraints(cube: Cube) -> List[ValidationError]: """ Validate a :class:`QbCube` to highlight errors in configuration. :return: A list of :class:`ValidationError <csvcubed.models.validationerror.ValidationError>` s. """ errors = _validate_dimensions(cube) errors += _validate_attributes(cube) errors += validate_observations(cube) return errors def _validate_dimensions(cube: Cube) -> List[ValidationError]: errors: List[ValidationError] = [] dimension_columns = get_columns_of_dsd_type(cube, QbDimension) for c in cube.columns: if isinstance(c, QbColumn) and isinstance( c.structural_definition, ExistingQbDimension ): if c.csv_column_uri_template is None: errors.append( CsvColumnUriTemplateMissingError( c.csv_column_title, ExistingQbDimension ) ) if len(dimension_columns) == 0: errors.append(NoDimensionsDefinedError()) return errors def _validate_attributes(cube: Cube) -> List[ValidationError]: errors: List[ValidationError] = [] for c in cube.columns: if isinstance(c, QbColumn) and isinstance(c.structural_definition, QbAttribute): if isinstance(c.structural_definition, QbAttributeLiteral): if c.csv_column_uri_template is not None: errors.append( CsvColumnLiteralWithUriTemplate( c.csv_column_title, f"{c.structural_definition.__class__.__name__} " + "cannot have a uri_tempate as it holds literal values", ) ) else: # Not a QbAttributeLiteral if ( c.csv_column_uri_template is None and len(c.structural_definition.new_attribute_values) == 0 # type: ignore ): errors.append( CsvColumnUriTemplateMissingError( c.csv_column_title, f"{c.structural_definition.__class__.__name__} using existing attribute values", ) ) return errors
GDonRanasinghe/csvcubed-models-test-5
csvcubed/csvcubed/utils/qb/validation/cube.py
cube.py
py
2,817
python
en
code
0
github-code
6
26304099314
from django.conf import settings from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.core.exceptions import ObjectDoesNotExist from django.shortcuts import get_object_or_404, redirect, render, reverse from django.utils import timezone from django.views import generic from paypal.standard.forms import PayPalPaymentsForm from django.http import HttpRequest, JsonResponse from django.views.decorators.csrf import csrf_exempt from .forms import CheckoutForm from .models import ProdukItem, OrderProdukItem, Order, AlamatPengiriman, Payment class HomeListView(generic.ListView): template_name = 'home.html' queryset = ProdukItem.objects.all() paginate_by = 4 class ContactView(generic.ListView): template_name = 'kontak.html' queryset = ProdukItem.objects.all() paginate_by = 4 class ProductListView(generic.ListView): template_name = 'list_produk.html' queryset = ProdukItem.objects.all() paginate_by = 4 class ProductDetailView(generic.DetailView): template_name = 'product_detail.html' queryset = ProdukItem.objects.all() class CheckoutView(LoginRequiredMixin, generic.FormView): def get(self, *args, **kwargs): form = CheckoutForm() try: order = Order.objects.get(user=self.request.user, ordered=False) if order.produk_items.count() == 0: messages.warning(self.request, 'Belum ada belajaan yang Anda pesan, lanjutkan belanja') return redirect('toko:home-produk-list') except ObjectDoesNotExist: order = {} messages.warning(self.request, 'Belum ada belajaan yang Anda pesan, lanjutkan belanja') return redirect('toko:home-produk-list') context = { 'form': form, 'keranjang': order, } template_name = 'checkout.html' return render(self.request, template_name, context) def post(self, *args, **kwargs): form = CheckoutForm(self.request.POST or None) try: order = Order.objects.get(user=self.request.user, ordered=False) if form.is_valid(): alamat_1 = form.cleaned_data.get('alamat_1') alamat_2 = form.cleaned_data.get('alamat_2') negara = form.cleaned_data.get('negara') kode_pos = form.cleaned_data.get('kode_pos') opsi_pembayaran = form.cleaned_data.get('opsi_pembayaran') alamat_pengiriman = AlamatPengiriman( user=self.request.user, alamat_1=alamat_1, alamat_2=alamat_2, negara=negara, kode_pos=kode_pos, ) alamat_pengiriman.save() order.alamat_pengiriman = alamat_pengiriman order.save() if opsi_pembayaran == 'P': return redirect('toko:payment', payment_method='paypal') else: return redirect('toko:payment', payment_method='stripe') messages.warning(self.request, 'Gagal checkout') return redirect('toko:checkout') except ObjectDoesNotExist: messages.error(self.request, 'Tidak ada pesanan yang aktif') return redirect('toko:order-summary') class PaymentView(LoginRequiredMixin, generic.FormView): def get(self, *args, **kwargs): template_name = 'payment.html' try: order = Order.objects.get(user=self.request.user, ordered=False) paypal_data = { 'business': settings.PAYPAL_RECEIVER_EMAIL, 'amount': order.get_total_harga_order, 'item_name': f'Pembayaran belajanan order: {order.id}', 'invoice': f'{order.id}-{timezone.now().timestamp()}' , 'currency_code': 'USD', 'notify_url': self.request.build_absolute_uri(reverse('paypal-ipn')), 'return_url': self.request.build_absolute_uri(reverse('toko:paypal-return')), 'cancel_return': self.request.build_absolute_uri(reverse('toko:paypal-cancel')), } qPath = self.request.get_full_path() isPaypal = 'paypal' in qPath form = PayPalPaymentsForm(initial=paypal_data) context = { 'paypalform': form, 'order': order, 'is_paypal': isPaypal, } return render(self.request, template_name, context) except ObjectDoesNotExist: return redirect('toko:checkout') class OrderSummaryView(LoginRequiredMixin, generic.TemplateView): def get(self, *args, **kwargs): try: order = Order.objects.get(user=self.request.user, ordered=False) context = { 'keranjang': order } template_name = 'order_summary.html' return render(self.request, template_name, context) except ObjectDoesNotExist: messages.error(self.request, 'Tidak ada pesanan yang aktif') return redirect('/') def add_to_cart(request, slug): if request.user.is_authenticated: produk_item = get_object_or_404(ProdukItem, slug=slug) order_produk_item, _ = OrderProdukItem.objects.get_or_create( produk_item=produk_item, user=request.user, ordered=False ) order_query = Order.objects.filter(user=request.user, ordered=False) if order_query.exists(): order = order_query[0] if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): order_produk_item.quantity += 1 order_produk_item.save() pesan = f"ProdukItem sudah diupdate menjadi: { order_produk_item.quantity }" messages.info(request, pesan) return redirect('toko:produk-detail', slug = slug) else: order.produk_items.add(order_produk_item) messages.info(request, 'ProdukItem pilihanmu sudah ditambahkan') return redirect('toko:produk-detail', slug = slug) else: tanggal_order = timezone.now() order = Order.objects.create(user=request.user, tanggal_order=tanggal_order) order.produk_items.add(order_produk_item) messages.info(request, 'ProdukItem pilihanmu sudah ditambahkan') return redirect('toko:produk-detail', slug = slug) else: return redirect('/accounts/login') def remove_from_cart(request, slug): if request.user.is_authenticated: produk_item = get_object_or_404(ProdukItem, slug=slug) order_query = Order.objects.filter( user=request.user, ordered=False ) if order_query.exists(): order = order_query[0] if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): try: order_produk_item = OrderProdukItem.objects.filter( produk_item=produk_item, user=request.user, ordered=False )[0] order.produk_items.remove(order_produk_item) order_produk_item.delete() pesan = f"ProdukItem sudah dihapus" messages.info(request, pesan) return redirect('toko:produk-detail',slug = slug) except ObjectDoesNotExist: print('Error: order ProdukItem sudah tidak ada') else: messages.info(request, 'ProdukItem tidak ada') return redirect('toko:produk-detail',slug = slug) else: messages.info(request, 'ProdukItem tidak ada order yang aktif') return redirect('toko:produk-detail',slug = slug) else: return redirect('/accounts/login') # @csrf_exempt def paypal_return(request): if request.user.is_authenticated: try: print('paypal return', request) order = Order.objects.get(user=request.user, ordered=False) payment = Payment() payment.user=request.user payment.amount = order.get_total_harga_order() payment.payment_option = 'P' # paypal kalai 'S' stripe payment.charge_id = f'{order.id}-{timezone.now()}' payment.timestamp = timezone.now() payment.save() order_produk_item = OrderProdukItem.objects.filter(user=request.user,ordered=False) order_produk_item.update(ordered=True) order.payment = payment order.ordered = True order.save() messages.info(request, 'Pembayaran sudah diterima, terima kasih') return redirect('toko:home-produk-list') except ObjectDoesNotExist: messages.error(request, 'Periksa kembali pesananmu') return redirect('toko:order-summary') else: return redirect('/accounts/login') # @csrf_exempt def paypal_cancel(request): messages.error(request, 'Pembayaran dibatalkan') return redirect('toko:order-summary') def filter_products(request): filtered_products = None selected_kategori = request.GET.getlist('kategori') selected_tags = request.GET.getlist('tags') if selected_kategori or selected_tags: filtered_products = ProdukItem.objects.all() if selected_kategori: filtered_products = filtered_products.filter(kategori__in=selected_kategori) if selected_tags: filtered_products = filtered_products.filter(label__in=selected_tags) else: filtered_products = ProdukItem.objects.all() return render(request, 'list_produk.html', {'object_list': filtered_products}) def pencarian_barang(request): keyword = request.GET.get('keyword') if keyword: barang = ProdukItem.objects.filter(nama_produk__icontains=keyword) else: barang = None return render(request, 'list_produk.html', {'object_list': barang}) def update_quantity(request: HttpRequest): if request.method == 'POST' and request.META.get('HTTP_X_REQUESTED_WITH') == 'XMLHttpRequest': product_id = request.POST.get('product_id') action = request.POST.get('action') total = 0.0 hemat = 0.0 total_all = None total_hemat = None try: product = OrderProdukItem.objects.get(id=product_id) if action == 'increase': product.quantity += 1 elif action == 'decrease': if product.quantity > 1: product.quantity -= 1 product.save() if product.produk_item.harga_diskon: total = product.get_total_harga_diskon_item() hemat = product.get_total_hemat_item() else : total = product.get_total_harga_item() return JsonResponse({'quantity': product.quantity, 'total':total, 'hemat':hemat}) except OrderProdukItem.DoesNotExist: return JsonResponse({'error': 'Product not found'}, status=400) return JsonResponse({'error': 'Invalid request'}, status=400) def reduce_from_cart(request, slug): if request.user.is_authenticated: produk_item = get_object_or_404(ProdukItem, slug=slug) order_produk_item, _ = OrderProdukItem.objects.get_or_create( produk_item=produk_item, user=request.user, ordered=False ) order_query = Order.objects.filter(user=request.user, ordered=False) if order_query.exists(): order = order_query[0] if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): if order_produk_item.quantity > 1 : order_produk_item.quantity -= 1 order_produk_item.save() pesan = f"ProdukItem sudah diupdate menjadi: { order_produk_item.quantity }" messages.info(request, pesan) else: pesan = f"Produk Item tidak bisa di update" messages.warning(request, pesan) return redirect('toko:produk-detail', slug = slug) else: messages.info(request, 'ProdukItem pilihanmu tidak ada pada keranjang') return redirect('toko:produk-detail', slug = slug) else: messages.info(request, 'ProdukItem pilihanmu tidak ada pada keranjang') return redirect('toko:produk-detail', slug = slug) else: return redirect('/accounts/login') def cari_produk(request, kategori): produk = ProdukItem.objects.filter(kategori=kategori) return render(request, 'list_produk.html', {'object_list': produk}) # def update_cart(request, slug): # def get(self, *args, **kwargs): # if request.user.is_authenticated: # produk_item = get_object_or_404(ProdukItem, slug=slug) # order_produk_item, _ = OrderProdukItem.objects.get_or_create( # produk_item=produk_item, # user=request.user, # ordered=False # ) # order_query = Order.objects.filter(user=request.user, ordered=False) # if order_query.exists(): # order = order_query[0] # if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): # order_produk_item.quantity += 1 # order_produk_item.save() # order = Order.objects.get(user=self.request.user, ordered=False) # context = { # 'keranjang': order # } # template_name = 'order_summary.html' # return render(self.request, template_name, context) # else: # return redirect('/accounts/login')
ifty123/ecomm_fix
ecomm/toko/views.py
views.py
py
14,172
python
en
code
0
github-code
6
71087029308
"""Simple wrapper for app""" import json from rich.console import Console from typing import List import requests from src.utils import Oracles class FlaskAppClient: ERROR_KEY = "error" TRACEBACK_KEY = "traceback" def __init__(self, base_url="http://127.0.0.1:5000"): self.base_url = base_url self.console = Console() def _handle_response(self, response): try: response_data = response.json() except json.JSONDecodeError: self.console.print("[red]Failed to parse server response as JSON[/red]") self.console.print("Response from server: " + str(response)) response.raise_for_status() # This will raise an HTTPError if the HTTP request returned an unsuccessful status code. if response.status_code == 200: return response_data else: error = response_data.get(self.ERROR_KEY, 'Unknown error') tb = response_data.get(self.TRACEBACK_KEY, None) self.console.print(f"[red]Server error: {error}[/red]") if tb: self.console.print(f"[yellow]{tb}[/yellow]") raise RuntimeError(f"Server error: {error}") def all_results(self): response = requests.post(f"{self.base_url}/all_results", json={}) return self._handle_response(response) def all_scores(self, user_token): payload = { "token": user_token } response = requests.post(f"{self.base_url}/all_scores", json=payload) return self._handle_response(response) def score_compounds_and_update_leaderboard(self, compounds, oracle_name, user_token): payload = { "compounds": ",".join(compounds), "oracle_name": oracle_name, "token": user_token } response = requests.post(f"{self.base_url}/score_compounds_and_update_leaderboard", json=payload) return self._handle_response(response) # Usage Example: if __name__ == "__main__": client = FlaskAppClient() token = "test-0" # Example for scoring compounds compounds = ["CC", "CCC"] oracle_name = "DRD2" response = client.score_compounds_and_update_leaderboard(compounds, oracle_name, token) print(response) # Example of error handling compounds = ["Cxxxxx"] oracle_name = "DRD2" response = client.score_compounds_and_update_leaderboard(compounds, oracle_name, token) print(response)
molecule-one/mlinpl-23-workshops
src/server_wrapper.py
server_wrapper.py
py
2,462
python
en
code
1
github-code
6
10906525746
import argparse import time import pika from pika.exceptions import ( ChannelClosed, ConnectionClosed, AMQPConnectionError, AMQPHeartbeatTimeout, ) class Logger: LOG_EXCHANGE = "logs" LOG_EXCHANGE_TYPE = "topic" def __init__(self, url, routing_keys): connection = pika.BlockingConnection(pika.URLParameters(url)) channel = connection.channel() channel.exchange_declare( exchange=self.LOG_EXCHANGE, exchange_type=self.LOG_EXCHANGE_TYPE, durable=True, ) # We declare a transient queue because we don't want to fill-up rabbitmq # with logs if the logger is down result = channel.queue_declare("", exclusive=True) queue_name = result.method.queue for key in routing_keys: channel.queue_bind(exchange="logs", queue=queue_name, routing_key=key) # Logger queue is auto ack for minimum overhead as we don't care losing some # messages (very rare as we rarely fail) channel.basic_consume( queue=queue_name, on_message_callback=self.callback, auto_ack=True ) self._channel = channel self._connection = connection def callback(self, ch, method, properties, body): print("[{}] {}".format(method.routing_key, body.decode("utf-8"))) def run(self): try: self._channel.start_consuming() except KeyboardInterrupt: return True except ( ChannelClosed, ConnectionClosed, AMQPConnectionError, AMQPHeartbeatTimeout, ): return False finally: if not self._connection.is_closed: self._connection.close() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Display selected logs in realtime on the given broker" ) parser.add_argument("amqp_url", help="URL of the broker, including credentials") parser.add_argument( "--filter", help="Log patterns to subscribe to (default to all)", nargs="*", default=["#"], ) args = parser.parse_args() expected_stop = False print("Ctrl-C to quit.") print("Subcribing to logs:", args.filter) while not expected_stop: try: logger = Logger(args.amqp_url, args.filter) except AMQPConnectionError: print("could not connect; retry…") time.sleep(2) continue print("connected!") expected_stop = logger.run() print("bye!")
allo-media/eventail
scripts/logger.py
logger.py
py
2,599
python
en
code
2
github-code
6
29209651660
import os from pathlib import Path def correct_content(req): with open(req, "rb") as fp: content = fp.read() try: if b"\x00" in content: raise ValueError() content = content.decode("utf-8") except (UnicodeDecodeError, ValueError): content = ( content.replace(b"\xff", b"") .replace(b"\xfe", b"") .replace(b"\x00", b"") .decode("utf-8") ) with open(req, "w") as fp: fp.write(content) return content def main(): root = Path("src", "tests4py", "projects", "resources") assert root.exists() and root.is_dir(), f"Wrong cwd {Path.cwd()}" for p in os.listdir(root): project = root / p default_req = project / "requirements.txt" default_content = "" if default_req.exists(): default_content = correct_content(default_req) if p != "__pycache__" and project.is_dir(): reqs = dict() for b in os.listdir(project): bug = project / b if bug.is_dir(): req = bug / "requirements.txt" if req.exists(): print(req) reqs[b] = correct_content(req) elif default_req.exists(): reqs[b] = default_content if len(reqs) > 0: count = dict() for r in reqs.values(): if r in count: count[r] += 1 else: count[r] = 1 r = max(count, key=count.get) if count[r] > 1: with open(default_req, "w") as fp: fp.write(r) for b in reqs: if r == reqs[b] and (project / b / "requirements.txt").exists(): os.remove(project / b / "requirements.txt") if __name__ == "__main__": main()
smythi93/Tests4Py
requirements.py
requirements.py
py
2,015
python
en
code
8
github-code
6
29465067093
# Return the number (count) of vowels in the given string. # We will consider a, e, i, o, u as vowels for this Kata (but not y). # The input string will only consist of lower case letters and/or spaces. def get_count(sentence): # create a count variable for the vowels in the sentence num_vowels = 0 # create a list of possible vowels vowels = ['a', 'e', 'i', 'o', 'u'] # loop through each letter in the sentence for char in sentence: # if the lette is in the vowels list, update the count variable if char in vowels: num_vowels += 1 # return the total variable count return num_vowels # import codewars_test as test # from solution import get_count # @test.describe("Sample tests") # def sample_tests(): # @test.it("Should count all vowels") # def all_vowels(): # test.assert_equals(get_count("aeiou"), 5, f"Incorrect answer for \"aeiou\"") # @test.it("Should not count \"y\"") # def only_y(): # test.assert_equals(get_count("y"), 0, f"Incorrect answer for \"y\"") # @test.it("Should return 0 when no vowels") # def no_vowels(): # test.assert_equals(get_count("bcdfghjklmnpqrstvwxz y"), 0, f"Incorrect answer for \"bcdfghjklmnpqrstvwxz y\"") # @test.it("Should return 0 for empty string") # def no_vowels(): # test.assert_equals(get_count(""), 0, f"Incorrect answer for empty string") # @test.it("Should return 5 for \"abracadabra\"") # def test_abracadabra(): # test.assert_equals(get_count("abracadabra"), 5, f"Incorrect answer for \"abracadabra\"")
tuyojr/code_wars-hacker_rank-leetcode
code_wars/get_count.py
get_count.py
py
1,679
python
en
code
0
github-code
6
21247797774
import os import pandas as pd from sklearn.model_selection import train_test_split import click FILENAME_DATA = "data.csv" FILENAME_TARGET = "target.csv" FILENAME_TRAIN_X = "X_train.csv" FILENAME_TRAIN_Y = "y_train.csv" FILENAME_TEST_X = "X_test.csv" FILENAME_TEST_Y = "y_test.csv" @click.command("split_data") @click.option("--input-dir") @click.option("--output-dir") @click.option("--size", type=float) @click.option("--random-state", type=int) def split_data(input_dir: str, output_dir: str, size: float, random_state: int): path_data = os.path.join(input_dir, FILENAME_DATA) features_df = pd.read_csv(path_data) X_train, X_test = train_test_split(features_df, test_size=size, random_state=random_state) path_target = os.path.join(input_dir, FILENAME_TARGET) target_df = pd.read_csv(path_target) y_train, y_test = train_test_split(target_df, test_size=size, random_state=random_state) os.makedirs(output_dir, exist_ok=True) X_train.to_csv(os.path.join(output_dir, FILENAME_TRAIN_X), index=False) X_test.to_csv(os.path.join(output_dir, FILENAME_TEST_X), index=False) y_train.to_csv(os.path.join(output_dir, FILENAME_TRAIN_Y), index=False) y_test.to_csv(os.path.join(output_dir, FILENAME_TEST_Y), index=False) if __name__ == '__main__': split_data()
made-mlops-2022/alexey_sklyannyy
airflow_ml_dags/images/airflow-split/split_data.py
split_data.py
py
1,308
python
en
code
0
github-code
6
13092352572
# encoding = utf-8 class Trie(object): def __init__(self): """ Initialize your data structure here. """ self.root = {} self.end = -1 def insert(self, word): """ Inserts a word into the trie. :type word: str :rtype: void """ curNode = self.root for c in word: if not c in curNode: curNode[c] = {} curNode = curNode[c] curNode[self.end] = True def search(self, word): """ Returns if the word is in the trie. :type word: str :rtype: bool """ curNode = self.root for c in word: if not c in curNode: return False curNode = curNode[c] # Doesn't end here if not self.end in curNode: return False return True def startsWith(self, prefix): """ Returns if there is any word in the trie that starts with the given prefix. :type prefix: str :rtype: bool """ curNode = self.root for c in prefix: if not c in curNode: return False curNode = curNode[c] return True def get_start(self,prefix): ''' 给出一个前辍,打印出所有匹配的字符串 :param prefix: :return: ''' def get_key(pre,pre_node): result = [] if pre_node.get(self.end): result.append(pre) for key in pre_node.keys(): if key != self.end: result.extend(get_key(pre+key,pre_node.get(key))) return result if not self.startsWith(prefix): return [] else: node = self.root for p in prefix: node = node.get(p) else: return get_key(prefix,node) @staticmethod def levenshtein_dp(s: str, t: str) -> int: ''' 计算莱文斯坦距离(Levenshtein distance),距离越小,说明两个单词越相近 :param s: :param t: :return: ''' m, n = len(s), len(t) table = [[0] * (n + 1) for _ in range(m + 1)] table[0] = [j for j in range(n + 1)] # print(table) for i in range(m + 1): table[i][0] = i for i in range(1, m + 1): for j in range(1, n + 1): table[i][j] = min(1 + table[i - 1][j], 1 + table[i][j - 1], int(s[i - 1] != t[j - 1]) + table[i - 1][j - 1]) for t in table: print(t) return table[-1][-1] def get_all_words_of_trie(self): words = [] for k in self.root.keys(): words.extend(self.get_start(k)) return words def get_right_word(self,input_word): ''' 输入一个单词,返回正确的单词 :param input_word: :return: ''' words = self.get_all_words_of_trie() right_word = input_word min_distance = 99999 for item in words: distance = self.levenshtein_dp(input_word,item) if min_distance > distance: min_distance = distance right_word = item return right_word if __name__ == "__main__": trie = Trie() trie.insert("中") trie.insert("中国") trie.insert("中国人") trie.insert("中华人民共和国") # print(trie.root) trie.insert("Python") trie.insert("Python 算法") trie.insert("Python web") trie.insert("Python web 开发") trie.insert("Python web 开发 视频教程") trie.insert("Python 算法 源码") trie.insert("Perl 算法 源码") # print(trie.search("Perl")) # print(trie.search("Perl 算法 源码")) # print((trie.get_start('P'))) # print((trie.get_start('Python web'))) # print((trie.get_start('Python 算'))) # print(trie.get_all_words_of_trie()) print(trie.levenshtein_dp("facbok","facebook"))
somenzz/geekbang
algorthms/trie.py
trie.py
py
4,115
python
en
code
5
github-code
6
23800674981
from pynput.keyboard import Key,Listener keys=[] def on_press(key): try: key=str(key) if(key=='Key.enter'): key='\n' elif(key=='Key.space'): key=' ' elif(key=='Key.alt'): key=' alt ' elif(key=='Key.ctrl'): key=' ctrl ' elif(key=='Key.backspace'): key=' backspace ' elif(Key=='Key.shift'): key=' shift ' f=open('a.txt','a') key=key.strip('\'') f.write(key) except Exception as e: print(e) f.close() #print("{0} pressed".format(key)) #def on_release(key): # if(key==Key.esc): # return False try: with Listener(on_press=on_press) as listener: listener.join() except: print('\n...')
prajwalcbk/tools
keylogger/3.py
3.py
py
791
python
en
code
0
github-code
6
30247773703
import random # Split string method names_string = input("Give me everybody's names, separated by a comma. ") names = names_string.split(", ") # 🚨 Don't change the code above 👆 #Write your code below this line 👇 number_of_names = len(names) random_name = random.randint(0, number_of_names - 1) buyer = names[random_name] #line below is a shorter way of writing this code #buyer = random.choice(names) print(buyer + " is going to buy the meal today!")
ramirors1/Random-name
main.py
main.py
py
470
python
en
code
0
github-code
6
18658019054
''' Created on Dec 13, 2022 @author: balut ''' from erorrs.Errors import RepositoryException from domain.entities import Bicicleta class InFileRepositoryBiciclete(object): ''' classdocs ''' def __init__(self, fileName): ''' Constructor ''' self.__produse = [] self.__fileName = fileName self.__loadFromFile() def __exists(self, b): for p in self.__produse: if p.getID() == b.getID(): raise RepositoryException( "!!!Bicicleta exista deja in lista de produse!!!\n") def __store(self, b): self.__exists(b) self.__produse.append(b) def __loadFromFile(self): with open(self.__fileName, "r") as f: lines = f.readlines() for line in lines: line = line.strip() line = line.split(";") id = int(line[0]) tip = line[1] pret = float(line[2]) b = Bicicleta(id, tip, pret) self.__store(b) f.close() def __saveToFile(self): with open(self.__fileName, "w") as f: for b in self.__produse: strB = str(b.getID()) + ";" + b.getTip() + \ ";" + str(b.getPret()) + "\n" f.write(strB) f.close() def __findOne(self, id): for b in self.__produse: if b.getID() == id: return b raise RepositoryException( "!!!Bicicleta nu exista in lista de produse!!!") def get_all(self): return self.__produse def deleteByTip(self, tip): self.__produse = [x for x in self.__produse if x.getTip() != tip] self.__saveToFile() def deleteByMax(self, maxx): self.__produse = [x for x in self.__produse if x.getPret() != maxx] self.__saveToFile() def delete(self, id): deleted = self.__findOne(id) self.__produse.remove(deleted) self.__saveToFile() return deleted
Baluta-Lucian/FP
Projects/MagazinBicicleteSimulare/repository/InFileRepositoryBiciclete.py
InFileRepositoryBiciclete.py
py
2,069
python
en
code
0
github-code
6
71271494589
dna = input() new = "" for i in dna: if i not in 'ATGC': new = "Invalid Input" break if i == 'A': new += 'U' elif i == 'C': new += 'G' elif i == 'T': new += 'A' else: new += 'C' print(new) #or you can use this b=input() a="GCTA";c="CGAU" try:print(''.join([c[a.index(i)]for i in b])) except:print("Invalid Input")
anubhavsrivastava10/Leetcode-HackerEarth-Solution
HackerEarth/Jadoo and DNA Transcription.py
Jadoo and DNA Transcription.py
py
385
python
en
code
9
github-code
6
36417191928
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def middleNode(self, head: Optional[ListNode]) -> Optional[ListNode]: l = head r = head while r != None and r.next != None: r = r.next.next l = l.next return l
eyosiasbitsu/Competitive-programming-A2SV
Project Phase Camp/0876-middle-of-the-linked-list/0876-middle-of-the-linked-list.py
0876-middle-of-the-linked-list.py
py
443
python
en
code
3
github-code
6
33869960923
import fasttext import pickle model = fasttext.load_model('/data/disk1/private/yx/model200v2_8.bin', encoding='utf-8') (wordnum,vec_size) = (len(model.words),model.dim) word2id = {} vecList = [] for idx,word in enumerate(model.words): word2id[word] = idx vecList.append(model[word]) with open("/data/disk1/private/yx/word2id.pkl","wb") as f: pickle.dump((wordnum,vec_size),f) pickle.dump(word2id,f) import numpy as np vecnp = np.asarray(vecList) print(vecnp.shape) np.save("/data/disk1/private/yx/vec_nor.npy",vecnp)
xcjthu/TopTextClassification
utils/powerlawtools/fastmodeltrans.py
fastmodeltrans.py
py
533
python
en
code
3
github-code
6
24742947009
from asyncirc import irc import asyncirc.plugins.sasl import asyncio, configparser, time, sys config = configparser.ConfigParser(interpolation=None) config.read('config.ini') network = config["DEFAULT"]["network"] server = config[network]["server"] port = config[network]["port"] nick = config[network]['nick'] password = config[network]['password'] conn = irc.connect(server, port, use_ssl=True) conn.register(nick, nick, nick) asyncirc.plugins.sasl.auth(bot_nick, bot_password) nicks_to_renew = [] nick_to_try = "" @conn.on("irc-001") def query_for_nicks(message): print("Querying NickServ for list of nicks") conn.say("NickServ", "info") @conn.on("private-notice") def extract_nicks(message, user, target, text): if message.source != "NickServ!NickServ@services.": print("Notice from user {}: {}".format(user.user, text)) return if text.startswith("Nicks"): global nicks_to_renew nicks = text.split(":", 1)[1].strip() nicks_to_renew += [nick for nick in nicks.split() if nick != bot_nick] print("Added `{}' to list of nicks".format(nicks)) elif "End of Info" in text: # Run the first renew try at the end of the nickserv info renew_next() @conn.on("irc-nick") def renew_next(message=""): # Sleep 5 seconds before trying to renew a nick, due to nick changing rate limiting time.sleep(5) try: global nick_to_try nick_to_try = nicks_to_renew.pop() except IndexError: # Exit when we have no more nicks to renew print("All nicks renewed. Exiting...") conn.anything("QUIT :Done...") sys.exit(0) print("Trying to renew nick `{}'".format(nick_to_try)) conn.writeln("NICK {}".format(nick_to_try)) @conn.on("irc-433") def nick_in_use(message): print("Nickname `{}' is already in use. Skipping...".format(nick_to_try)) renew_next() @conn.on("irc-437") def nick_unavailable(message): print("Nick `{}' is marked temporarily unavailable, releasing it...".format(nick_to_try)) conn.say("NickServ", "RELEASE {}".format(nick_to_try)) print("Retrying renew of `{}'".format(nick_to_try)) global nicks_to_renew nicks_to_renew.append(nick_to_try) renew_next() @conn.on("irc-438") def nick_change_ratelimit(message): global nicks_to_renew nicks_to_renew.append(nick_to_try) print("Nick changing was rate limited, waiting 20 seconds") time.sleep(20) print("Nick changing resuming") renew_next() if __name__ == '__main__': asyncio.get_event_loop().run_forever()
kyrias/reclaimer
reclaimer.py
reclaimer.py
py
2,611
python
en
code
2
github-code
6
32161722151
import sys from pathlib import Path from colorama import Fore sys.path.append(str(Path(__file__).parent.parent)) from g4f import BaseProvider, models, Provider logging = False class Styles: ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" def main(): providers = get_providers() failed_providers = [] for _provider in providers: if _provider.needs_auth: continue print("Provider:", _provider.__name__) result = test(_provider) print("Result:", result) if _provider.working and not result: failed_providers.append(_provider) print() if failed_providers: print(f"{Fore.RED + Styles.BOLD}Failed providers:{Styles.ENDC}") for _provider in failed_providers: print(f"{Fore.RED}{_provider.__name__}") else: print(f"{Fore.GREEN + Styles.BOLD}All providers are working") def get_providers() -> list[type[BaseProvider]]: provider_names = dir(Provider) ignore_names = [ "annotations", "base_provider", "BaseProvider", "AsyncProvider", "AsyncGeneratorProvider" ] provider_names = [ provider_name for provider_name in provider_names if not provider_name.startswith("__") and provider_name not in ignore_names ] return [getattr(Provider, provider_name) for provider_name in provider_names] def create_response(_provider: type[BaseProvider]) -> str: if _provider.supports_gpt_35_turbo: model = models.gpt_35_turbo.name elif _provider.supports_gpt_4: model = models.gpt_4.name else: model = models.default.name response = _provider.create_completion( model=model, messages=[{"role": "user", "content": "Hello, who are you? Answer in detail much as possible."}], stream=False, ) return "".join(response) def test(_provider: type[BaseProvider]) -> bool: try: response = create_response(_provider) assert type(response) is str assert len(response) > 0 return response except Exception as e: if logging: print(e) return False if __name__ == "__main__": main()
dovgan-developer/discord-bot-g4f
testing/test_providers.py
test_providers.py
py
2,239
python
en
code
1
github-code
6
14069562246
'''' Microbial growth model for A. Niger including inhibition dynamics based on Haldane's equation ''' ############################################################################## mic_name = 'A. niger' print( '\n'*2, 'Summary of params used for species ', mic_name) # Imports from inhibition import load_csv import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from lmfit import Parameters, fit_report, minimize from inhibition import plot_inhibition_curves, haldane_3_products from control import show_fig from control import fit_report_toggle ####################################################################################### # Import dataset to fit model parameters: # Inlcude, biomass optimal density and Cyanide concentration over time # Extract required variables from measured data and carry out conversion # Load measure data measured_data, header = load_csv( 'CETIM - A niger data 1') print('\nRaw measured data') print(header, measured_data) # Extract states states_m = measured_data[:, 1:4] # states measured state_names = header[1:4] print('\nRaw extracted states') print(state_names, '\n', states_m) # Extract times at which to evalutate the solution of the ODE system times_m = measured_data[:, 0] print('\nMeasurement times') print(header[0], times_m) # Data cleaning times_m = times_m[3:-1] - times_m[3] states_m = states_m[3:-1,:] # Set initial states innoculum_size_0 = 1e5 #1.3e8 conversion_factor_IS = 1e-8 # # grams/cell cX_0 = innoculum_size_0 * conversion_factor_IS print('\nInitial measured states') initial_states = [ cX_0, 25, *states_m[0,:] ] # 5 g glycine print(initial_states) # Data cleaning # for ax in range(0,1): # states_m = np.delete( states_m, [1, 2], ax ) # times_m = np.delete( times_m, [1, 2], ax ) ####################################################################################### # Build model and define regression function # Define model for parameter fitting # def monod(f, t, umax, Ks, Yps, Yxs): # X = f[0] # S = f[1] # P = f[2] # u = umax * (S / (Ks + S)) # dXdt = u * X # dSdt = -dXdt / Yxs # dPdt = (-dSdt) * Yps # dfdt = [dXdt, dSdt, dPdt] # return dfdt def monod( f, t, *args ): ''' System of differential equations for: 1) Biomass production, x (Monod dynamics assumed) 2) Substrate consumption, s 3) Organic acid production, p pgl -> gluconic acid pox -> oxalic acid pci -> citric acid ''' # Element-wise unpacking of vectorised solution, f x = f[0] s = f[1] if s <= 0: return np.zeros(5) else: # Biomass production rate dxdt = args[0]*( s / (args[1] + s) ) * x # Substrate consumption rate dsdt = - args[2] * dxdt # - args[3] * x # Acid production rates dpdt = [ - args[i] * dsdt for i in [3, 4, 5] ] # Return ODE system return [dxdt, dsdt, *dpdt] # Set model params umax = 0.18 #/h Ks = 62.24 # #g/L Yxs = 8.51 Yps_gluc_1 = 0.003 # Yps_gluc_2 = 0.4 Yps_oxal_1 = 0.4 # Yps_oxal_2 = 0.2 Yps_citr_1 = 0.06 # Yps_citr_2 = 0.02 params = Parameters() params.add(name='umax', value= umax, min=0, vary=False) params.add(name='Ks', value= Ks, min=0, vary=False) params.add(name='Yxs', value= Yxs, min=0, vary=True) params.add(name='Yps_gluc_1', value=Yps_gluc_1, vary=True) # params.add(name='Yps_gluc_2', value=Yps_gluc_2, min=0, vary=True) params.add(name='Yps_oxal_1', value=Yps_oxal_1, min=0, vary=True) # params.add(name='Yps_oxal_2', value=Yps_oxal_2, min=0, vary=True) params.add(name='Yps_citr_1', value=Yps_citr_1, min=0, vary=True) # params.add(name='Yps_citr_2', value=Yps_citr_2, min=0, vary=True) # Define regression def regress( params ): # Unpack params umax = params['umax'].value Ks = params['Ks'].value Yxs = params['Yxs'].value Yps_gluc_1 = params['Yps_gluc_1'].value # Yps_gluc_2 = params['Yps_gluc_2'].value Yps_oxal_1 = params['Yps_oxal_1'].value # Yps_oxal_2 = params['Yps_oxal_2'].value Yps_citr_1 = params['Yps_citr_1'].value # Yps_citr_2 = params['Yps_citr_2'].value args = ( umax, Ks, Yxs, Yps_gluc_1, Yps_oxal_1, Yps_citr_1 ) # Model prediction c = odeint(monod, initial_states, times_m, args=args) cX = c[:, 0] # cS = c[:, 1] cP0 = c[:, -3] # Gluconic cP1 = c[:, -2] # Oxalic cP2 = c[:, -1] # Citric del c weight = [1, 1, 10000, 10000, 10000] # Compute error I = ( states_m[:, 0] - cP0 )**2 + ( states_m[:, 1] - cP1 )**2 + (( states_m[:, 2] - cP2)*weight )**2 return I # ####################################################################################### # Fit model parameters to measured data # Minimise method = 'Nelder' result = minimize(regress, params, method=method) result.params.pretty_print() if fit_report_toggle: print(fit_report(result)) # Redefine fitted model params umax = result.params['umax'].value Ks = result.params['Ks'].value Yxs = result.params['Yxs'].value Yps_gluc_1 = params['Yps_gluc_1'].value # Yps_gluc_2 = params['Yps_gluc_2'].value Yps_oxal_1 = params['Yps_oxal_1'].value # Yps_oxal_2 = params['Yps_oxal_2'].value Yps_citr_1 = params['Yps_citr_1'].value # Yps_citr_2 = params['Yps_citr_2'].value # args = (umax, Ks, Yxs, Yps_gluc_1, Yps_gluc_2, Yps_oxal_1, Yps_oxal_2, Yps_citr_1, Yps_citr_2) args = (umax, Ks, Yxs, Yps_gluc_1, Yps_oxal_1, Yps_citr_1) ####################################################################################### # Plot inhibition curves xvline = 24 times_p = sorted( np.concatenate( ([xvline], np.linspace(1e-5, 300, 400)) ) ) Kis = np.array( [12.2] ) # [2, 3, 5, 10]) c_monod = odeint(monod, initial_states, times_p, args=args) cX_no_inhib = c_monod[:,0] # Biomass concentration cS_no_inhib = c_monod[:,1] # Substrate concentration cP_no_inhib_1 = c_monod[:,2] # Product concentration cP_no_inhib_2 = c_monod[:,3] # Product concentration cP_no_inhib_3 = c_monod[:,4] # Product concentration mic_name_1 = mic_name + ' (gluconic acid)' mic_name_2 = mic_name + ' (oxalic acid)' mic_name_3 = mic_name + ' (citric acid)' # Plot biomass and sub. no inhibition curves plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name, cX_no_inhib=cX_no_inhib, cS_no_inhib=cS_no_inhib, # cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, # cP_measured=states_m[:,0], # measurement_times=times_m ) # Plot product no inhibition curve 1 plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name_1, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,0], measurement_times=times_m, cP_index=2 ) # Plot product no inhibition curve 2 plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name_2, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_2, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,1], measurement_times=times_m, cP_index=3 ) # Plot product no inhibition curve 3 plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name_3, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_3, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,2], measurement_times=times_m, cP_index=4 ) ################################################################################# # Plot biomass and sub. inhibition curves plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name, cX_no_inhib=cX_no_inhib, cS_no_inhib=cS_no_inhib, # cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, # cP_measured=states_m[:,0], # measurement_times=times_m ) # Plot product inhibition curve 1 plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name_1, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,0], measurement_times=times_m, cP_index=2 ) # Plot product inhibition curve 2 plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name_2, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_2, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,1], measurement_times=times_m, cP_index=3 ) # Plot product inhibition curve 3 plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name_3, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_3, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,2], measurement_times=times_m, cP_index=4 )
TheoBatik/microbial_models
5b_A_niger.py
5b_A_niger.py
py
9,887
python
en
code
0
github-code
6
14335019516
import numpy as np import matplotlib.pyplot as plt from mpi4py import MPI from process_coordination import width_height, bool_boundaries, number_of_blocks from streaming_functions import streaming, recalculate_functions from plotting_functions import plot_velocity, plot_velocity_slice # Initialize parallelization comm = MPI.COMM_WORLD size = comm.Get_size() # num of processes rank = comm.Get_rank() # rank id of this process n_timesteps = 20 n_plots = 3 # Initialize Grid: nx_total = 20 # num of rows ny_total = 16 # num of columns # Arrange <size> blocks (num processes) as a optimized grid of # <n_blocks[0]> rows times <n_blocks[1]> columns. n_blocks = number_of_blocks((nx_total, ny_total), size) # Initialize local grid parameters (local grid is the one of the block of this process): # local size nx, ny = width_height(rank, nx_total, ny_total, n_blocks) nx_opt = nx_total//n_blocks[0] ny_opt = ny_total//n_blocks[1] # Initialize weights and discrete direction vectors weights = np.array([4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]) c = np.array([[0, 0], [0, 1], [-1, 0], [0, -1], [1, 0], [-1, 1], [-1, -1], [1, -1], [1, 1]]) # Initialize grid (add goast points or dry notes to each edge) rho = np.ones((nx+2, ny+2)) # density values v = np.zeros((2, nx+2, ny+2)) # average viscosity values f = np.einsum("i,jk -> ijk", weights, np.ones((nx+2, ny+2))) # probability density function # Check on which side this block borders another block or the boundary borders = bool_boundaries(rank, n_blocks) # Ranks of the processes of the neighboring blocks (only correct and used when theres no boundary on this side) rank_right = rank + 1 rank_left = rank - 1 rank_up = rank - n_blocks[1] rank_down = rank + n_blocks[1] # Loop over timesteps for idx_time in range(n_timesteps): # Calculate the streaming step wrt (global) boundary conditions f, rho, v = streaming(f, rho, v, c, weights, borders) # Order of communcations is important in order that all the corner ghost points will get the diagonal adjacent values via two-step-communcation. if not borders[0]: comm.send(f[:, :, -2].copy(), rank_right) data = comm.recv(source=rank_right) f[:, :, -1] = data if not borders[2]: comm.send(f[:, :, 1].copy(), rank_left) data = comm.recv(source=rank_left) f[:, :, 0] = data if not borders[1]: comm.send(f[:, 1, :].copy(), rank_up) data = comm.recv(source=rank_up) f[:, 0, :] = data if not borders[3]: comm.send(f[:, -2, :].copy(), rank_down) data = comm.recv(source=rank_down) f[:, -1, :] = data rho, v = recalculate_functions(f, rho, v, c) # Update values # Plot average velocity vectors if idx_time % (n_timesteps // n_plots) == 0: # stack everything in rank 0 f_full = np.zeros((9, nx_total, ny_total)) rho_full = np.ones((nx_total, ny_total)) v_full = np.zeros((2, nx_total, ny_total)) f_list = comm.gather(f[:,1:-1,1:-1].copy(), root=0) if rank == 0: for rank_idx, f_block in enumerate(f_list): block_pos = (rank_idx // n_blocks[1], rank_idx % n_blocks[1]) f_full[:, (nx_opt * block_pos[0]):(nx_opt * block_pos[0] + f_block.shape[1]), (ny_opt * block_pos[1]):(ny_opt * block_pos[1] + f_block.shape[2])] = f_block rho_full, v_full = recalculate_functions(f_full, rho_full, v_full, c) plot_velocity(f_full, v_full, return_plot=True) plt.show()
Dunitrie/HPC
main.py
main.py
py
3,550
python
en
code
1
github-code
6
27554887332
# Given an array of integers nums and an integer target, return indices of the two numbers such # that they add up to target. You may assume that each input would have exactly one solution, and you # may not use the same element twice. You can return the answer in any order. # Example1 # Input: nums = [2, 7, 11, 15], target = 9 # Output: [0, 1] # Explanation: Because nums[0] + nums[1] == 9, we return [0, 1]. def target_sum(arr, t): temp = tuple(arr) if t in arr: return arr.index(t) res = [] while arr: num = arr.pop() diff = t - num if diff in arr: res.append((num, diff)) res_idx = [(temp.index(i[0]), temp.index(i[1])) for i in res] return res_idx ar = [1, 5, 6, 7, 9, 8, 2, 3] tar = 12 # ar = [2, 7, 11, 15] # tar = 9 print(f'Given list:{ar} and target:{tar}') print(target_sum(ar, tar))
emurali08/Python_Revised_notes
Interview_tests/Interview_tests_2022/find_arr_items_to_target_sum.py
find_arr_items_to_target_sum.py
py
868
python
en
code
null
github-code
6
21998501456
class Solution: def lengthOfLongestSubstring(self, s: str) -> int: ans = 0 i = 0 n = len(s) sub_str = dict() for j in range(n): if s[j] in sub_str: i = max(i, sub_str[s[j]]) ans = max(ans, j - i + 1) sub_str[s[j]] = j + 1 return ans so = Solution() print(so.lengthOfLongestSubstring("abcabcbb"))
hangwudy/leetcode
1-99/3_最长无重复字串.py
3_最长无重复字串.py
py
402
python
en
code
0
github-code
6
11301162272
from rest_framework.response import Response from rest_framework.decorators import api_view from datetime import datetime from coupon.models import Coupon from coupon.serializers import CouponSerializer @api_view(['GET']) def get_coupons(request): user_id = request.GET.get('user_id') expired = request.GET.get('expired') page = request.GET.get('page') limit = request.GET.get('limit') if not user_id: return Response({'success': False, 'message': '...'}) if not page: page = 1 if not limit: limit = 5 page = int(page) limit = int(limit) start = (page - 1) * limit if not expired: coupons = Coupon.objects.filter(user_id=user_id, expire__time__gte=datetime.now()).order_by('expire_time')[start: start + limit] else: coupons = Coupon.objects.filter(user_id=user_id).order_by('expire_time')[start: start + limit] serializer = CouponSerializer(coupons, many=True) return Response({'success': True, 'message': '成功', 'data': serializer.data})
jpswing/assmovie
coupon/views.py
views.py
py
1,042
python
en
code
0
github-code
6
6600903749
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from datetime import date import sys if __name__ == '__main__': # список работников workers = [] # организация бесконечного цикла запроса команд while True: # запросить команду из терминала command = input(">>>").lower() # выполнить действие в соответствии с командой if command == 'exit': break elif command == 'add': # запрос данных пользователя name = input("Имя: ") fam = input("Фамилия: ") year = input("Дата рождения (yyyy.mm.dd): ") tel = input("Телефон: (x-xxx-xxx-xx-xx): ") # создать словарь worker = { 'name': name, 'fam': fam, 'year': year, 'tel': tel, } # добавление словаря в список workers.append(worker) # сортировка списка в случае необходимости if len(workers) > 1: workers.sort(key=lambda item: item.get('year', '')) elif command.startswith('found '): # разобрать команду на части для выделения номера parts = command.split(' ', maxsplit=1) # Получить требуемый номер phone = (parts[1]) # Инициализировать счетчик count = 0 # Проверить сведения работников из списка for worker in workers: if worker.get('tel', '') == phone: count += 1 print( '{:>4}: {:>15} | {:>15} | {:>15}'.format(count, worker.get('name', ''), worker.get('fam', ''), worker.get('tel', '')) ) # Если счетчик равен 0, то работники не найдены if count == 0: print("Работники с заданным телефоном не найдены.") elif command == 'all': line = '+-{}-+-{}-+-{}-+-{}-+-{}-+'.format( '-' * 4, '-' * 20, '-' * 20, '-' * 12, '-' * 20 ) print(line) print( '| {:^4} | {:^20} | {:^20} | {:^12} | {:^20} |'.format( "№", "Фамилия", "Имя", "Год", "Телефон" ) ) print(line) for idx, worker in enumerate(workers, 1): print( '| {:^4} | {:^20} | {:^20} | {:^12} | {:^20} |'.format( idx, worker.get('name', ''), worker.get('fam', ''), worker.get('year', ''), worker.get('tel', '') ) ) print(line) elif command == 'help': # Вывести справку о работе с программой print("Список команд:\n") print("add - добавить работника;") print("all - вывести список работников;") print("found <x-xxx-xxx-xx-xx> - найти работника по номеру;") print("help - отобразить справку;") print("exit - завершить работу с программой.") else: print(f"Неизвестная команда {command}", file=sys.stderr)
Valentina1502/LABA_1
zd4.py
zd4.py
py
3,987
python
ru
code
0
github-code
6
36148958510
class UTE: """ Modelo de uma usina termelétrica em um estudo de planejamento energético. """ def __init__(self, ute_id: int, nome: str, capacidade: float, custo: float): self.id = ute_id self.nome = nome self.capacidade = capacidade self.custo = custo @classmethod def le_ute_da_linha(cls, linha: str): """ Processa uma linha do arquivo de entrada e constroi o objeto UTE. """ ute_id = int(linha[1:7]) nome = linha[8:25].strip() capacidade = float(linha[26:45]) custo = float(linha[46:65]) return cls(ute_id, nome, capacidade, custo) def __str__(self): to_str = "" for k, v in self.__dict__.items(): to_str += "{}: {} - ".format(k, v) return to_str
rjmalves/lpoe
modelos/ute.py
ute.py
py
950
python
pt
code
0
github-code
6
6032334630
from AutoTensor.q_learning.config_scheme import * class ConfigBuilder: def __build_item(self, node, name): if isinstance(node, ValueNode): return node.default elif isinstance(node, OptionsNode): return node.options[node.default] elif isinstance(node, ClassNode): return {"class_name": name, "args": self.build(node.args)} elif isinstance(node, ListNode): return [ self.__build_item(node.options[node.default], node.default) ] def build(self, scheme): """ Takes a scheme and using its defaults builds a config that can be edited by actions, used as states for the QLearner, and passed to the model_builder to build a tensorflow model. """ config = {} for name, node in scheme.items(): if isinstance(node, SubScheme): config[name] = self.build(node.body) else: config[name] = self.__build_item(node, name) return config
epeters3/AutoTensor
AutoTensor/q_learning/config_builder.py
config_builder.py
py
1,086
python
en
code
1
github-code
6