seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
โŒ€
dataset
stringclasses
1 value
pt
stringclasses
1 value
37021992627
from django.core.exceptions import ObjectDoesNotExist from django.http import StreamingHttpResponse, HttpResponse from rest_framework.response import Response from .models import AudioSlice, Audio from .serializers import AudioSerializer, AudioSliceSerializer from rest_framework.decorators import api_view from rest_framework.decorators import parser_classes from rest_framework.parsers import MultiPartParser from .utils import utils as ut from audio.dbmanager.redis_dao import * from audio.services.preprocessor import AudioPreprocessor from audio.dbmanager.youtube_handler import * import re import time range_re = re.compile(r'bytes\s*=\s*(\d+)\s*-\s*(\d*)', re.I) file_count = 0 """ timeline t0 : page 1์—์„œ ์‚ฌ์šฉ์ž๊ฐ€ ์˜ค๋””์˜ค ์š”์ฒญ์„ ๋ณด๋‚ผ ๋•Œ t1 : page 2์—์„œ ์‚ฌ์šฉ์ž๊ฐ€ ์˜ค๋””์˜ค์˜ ๊ตฌ๊ฐ„์„ ์„ ํƒํ•  ๋•Œ """ """ t0 > CELERY RESULT BACKEND ์‚ฌ์šฉ์ž์˜ ์˜ค๋””์˜ค ์š”์ฒญ์— ๋Œ€ํ•œ ์ „์ฒ˜๋ฆฌ ์‹คํ–‰ ํ›„ ๊ธฐ๋ก --> view ํ•จ์ˆ˜์— """ # preprocessor = AudioPreprocessor() # # task_id๋Š” audio์˜ id # # audio_id = uuid.uuid4() # ์ฒ˜์Œ ๋“ค์–ด์˜ค๋Š” ๊ฒฝ์šฐ, ๊ทธ๊ฒŒ ์•„๋‹ˆ๋ฉด database์—์„œ ๊บผ๋‚ด์˜ค๊ธฐ # AudioPreprocessor().preprocess.apply_async((3, 56), task_id="hiek", expires=datetime.now() + timedelta(days=1)) """ t1 > USER INFO RECORD : (audio <----> choreo <----> product) Inter-server communication KEY "a30gk3" <-- uuid.uuid4() VAL (HSET) { audio_id : e317fce <-- ํด๋ผ์ด์–ธํŠธ์—๊ฒŒ ๋ฐ›์„ ๊ฒƒ start : 13 <-- audio_handler๊ฐ€ ๊ณ„์‚ฐํ•˜๋„๋ก end : 31 <-- audio_handler๊ฐ€ ๊ณ„์‚ฐํ•˜๋„๋ก progress : 0.0 } <-- ์–ด๋А์ •๋„ ์ง„ํ–‰๋˜์—ˆ๋Š”์ง€ percentage """ """ t1 > SIMILARITY : (audio <----> choreo) Inter-server communication KEY e317fce-14 <-- ๋…ธ๋ž˜ ๊ตฌ๊ฐ„ id VAL [ "af3g0s39_13 : 89", "ldf9a8i_4 : 90", "fk02j3bu_9 : 99", ... ] <-- ๋…ธ๋ž˜๊ตฌ๊ฐ„ id ์™€ ์ ์ˆ˜๊ฐ€ ๋งคํ•‘๋œ ์š”์†Œ๋“ค๋กœ ๊ตฌ์„ฑ๋œ list """ """ t1 > AMPLITUDE : (audio <----> choreo) Inter-server communication KEY e317fce-14 <-- ๋…ธ๋ž˜ ๊ตฌ๊ฐ„ id VAL [ 7 2 9 8 6 ] <-- ์ ์ˆ˜ list """ """ =================================================================================================================== """ # def upload_file(request): # if request.method == 'POST': # form = UploadFileForm(request.POST, request.FILES) # if form.is_valid(): # instance = ModelWithFileField(file_field=request.FILES['file']) # instance.save() # return HttpResponseRedirect('/success/url/') # else: # form = UploadFileForm() # return render(request, 'upload.html', {'form': form}) @api_view(['POST']) @parser_classes([MultiPartParser]) def meta(request): data = MultiPartParser.parse(request) print(data) res = write_from_meta() return Response(AudioSerializer(Audio.objects.all(), many=True).data) @api_view(['POST']) async def youtube_url(request): download_url = request.data.get("download_url") try: # ์ด๋ฏธ ์žˆ๋Š” ๊ฒฝ์šฐ return Response(AudioSerializer(Audio.objects.get(download_url=download_url)).data) except ObjectDoesNotExist: try: print(f"started at {time.strftime('%X')}") _id, _title, _duration = await write_from_link(download_url) audio = Audio(audio_id=_id, title=_title, download_url=download_url, duration=_duration) audio.save() serializer = AudioSerializer(audio) # ์ด๊ฒŒ tasks์— ํ•ด๋‹น๋จ AudioPreprocessor(audio=audio).preprocess() # ํŒŒ์ผ ์ฐพ์•„์„œ ์ •๋ณด์™€ ํ•จ๊ป˜ ๋ณด๋‚ด์ฃผ๊ธฐ return Response(serializer.data) except: print("===========download failure=============") return Response("cannot open file.", status=400) # response = StreamingHttpResponse(streaming_content=request.FILES["audio_file"]) # response['Content-Disposition'] = f'attachment; filename="{request.data["audio_file"]}"' # return response @api_view(['POST']) @parser_classes([MultiPartParser]) # @renderer_classes([MultiPartRenderer]) def file(request): """ :param request: :return: audio_id ์™€ file์„ streaming ํ˜•ํƒœ๋กœ """ ext = request.data.get("ext") global file_count filename = "up" + str(file_count) if ext != "wav": ut.get_console_output( 'ffmpeg -n -i "{}/{}.{}" "{}/{}.wav"'.format("../../media/ORG", filename, ext, "../../media/WAV", filename)) # ๋ฐ”๋กœ ํŒŒ์ผ ์ €์žฅ - store in the volume file_count += 1 response = StreamingHttpResponse(streaming_content=request.data["audio_file"]) response['Content-Disposition'] = f'attachment; filename="{request.data["audio_file"]}"' return response @api_view(['POST']) def skeletal_after_interval(request): """ :param request: audio_id, start_sec, end_sec :return: """ audio_id = request.data.get('audio_id') user_start_sec = request.data['start_sec'] user_end_sec = request.data['end_sec'] UserRedisHandler.set_user_info(audio_id, user_start_sec, user_end_sec) if bool(AudioSlice.objects.filter(audio_slice_id__contains=audio_id)): start_arr = AudioSlice.objects.values_list('start_sec', flat=True) start_audio_slice_id = AudioSlice.objects.get( start_sec=ut.find_nearest(start_arr, user_start_sec)).only('audio_slice_id') end_audio_slice_id = request.data.get('audio_id') + AudioSlice.objects.get( start_sec=ut.find_nearest(start_arr, user_end_sec)).only('audio_slice_id').split("_")[1] else: audio_handler = AudioPreprocessor(Audio.objects.get(audio_id=audio_id)) audio_handler.preprocess() start_audio_slice_id = audio_handler.get_slice_id(ut.find_nearest(audio_handler.beat_track, user_start_sec)) end_audio_slice_id = audio_handler.get_slice_id(ut.find_nearest(audio_handler.beat_track, user_end_sec)) interval_number = int(end_audio_slice_id.split("ใ…ก")[1]) - int(start_audio_slice_id.split("ใ…ก")[1]) # Task 1. Similarity process & get into redis # smlr_app = Celery('redis_dao', backend=cc.result_smlr_backend, broker=cc.broker_smlr_url) # smlr_app.config_from_object('celery_config') --๊ผญ ์•ˆํ•ด๋„ ๋  ๋“ฏ # ์—ฌ๊ธฐ์— ํ˜œ๋ฆฐ์ด๊ฐ€ ํ•œ ๋ถ€๋ถ„์„ ์–ด๋–ป๊ฒŒ ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค์–ด์„œ.. # cluster_smlr.apply_async(filter_kmeans_labels, filter_feat, 0, 6)) # Task 2. Amplitude process & get into redis # ampl_app = Celery(backend=cc.result_ampl_backend, broker=cc.broker_ampl_url) # get_amplitude.apply_async((3, 56), task_id=audio_id, expires=datetime.now() + timedelta(days=1)) return Response( AudioSliceSerializer(start_audio_slice_id=start_audio_slice_id, end_audio_slice_id=end_audio_slice_id, interval_number=interval_number).data) # app = Celery('redis_dao', backend=cc.result_backend, broker=cc.broker_url) # app.config_from_object('celery_config') # def youtube(request): # # task_id๋Š” audio์˜ id # audio_id = uuid.uuid4() # ์ฒ˜์Œ ๋“ค์–ด์˜ค๋Š” ๊ฒฝ์šฐ, ๊ทธ๊ฒŒ ์•„๋‹ˆ๋ฉด database์—์„œ ๊บผ๋‚ด์˜ค๊ธฐ # preprocess.apply_async((3, 56), task_id=audio_id, expires=datetime.now() + timedelta(days=1)) # def serve(request): # return FileResponse(open(request.data.get('music'), 'rb')) @api_view(['POST']) def get_music(request): with open(request.data.get('music'), 'rb') as f: # ํ•„์š”ํ•œ ์‘๋‹ตํ—ค๋” ์„ธํŒ… return set_audio_response('์˜ค๋””์˜คํŒŒ์ผ ๊ฒฝ๋กœ, wav ํ™•์žฅ์ž๊นŒ์ง€ ๊ผญ ์ž…๋ ฅํ•  ๊ฒƒ', "์˜ค๋””์˜ค ํŒŒ์ผ id(youtube id)", "wav", "์˜ค๋””์˜คํŒŒ์ผ duration float ํ˜•ํƒœ๋กœ") def set_audio_response(audio_src, audio_id, ext, duration): response = HttpResponse(open(audio_src, "rb")) response["Access-Control-Allow-Origin"] = "*" response['Content-Type'] = "application/octet-stream" response['Content-Disposition'] = f'attachment; filename="{audio_id}.{ext}"' # wav๋งŒ ๋ณด๋‚ด์ง€ ์•Š์•„๋„ ๋˜๋„๋ก response['audio_id'] = audio_id response['duration'] = duration return response # data = { # "audio_id": "dfsdff", # "interval_number": 14, # "music": open(request.data.get('music'), 'rb') # } # return HttpResponse(data) # response = HttpResponse(content=open(request.data.get('music'), 'rb')) # response['Content-Type'] = 'application/json' # return FileResponse(open(request.data.get('music'), 'rb'))
Choleor/choleor-audio-reboot
audio/views_old.py
views_old.py
py
8,450
python
en
code
0
github-code
6
26255854051
from MainA1 import Mainfun from unigramIndex import Linkedlist import string from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import pickle class QueryProcess: def __init__(self): '''Attribute for each Query processing results, Totdocmatch for total documentmatch, comparison for total comparison done in a merging algo, and fnamelist for list of all matched file''' self.Totdocmatch = 0 self.comparison = 0 self.fnamelist = [] '''function for preprocessing of a query including converting into lower letter, remove punctuation, tokenization, remove stopping words and Lemmatization''' def preprocess(self, query): #normalisation result1 = query.lower() result2 = result1.translate(str.maketrans("","", string.punctuation)) #tokenization tokens = word_tokenize(result2) #removing the stopping words stop_words = set(stopwords.words('english')) result3 = [w for w in tokens if w not in stop_words] #Lemmatization lem = WordNetLemmatizer() result4query = [] for word in result3: lmword = lem.lemmatize(word) result4query.append(lmword) return(result4query) def MergingAlgo(self, postlink, operatorseq, maxDocID, filename): length = len(operatorseq) #retrieve first posting list post1 = postlink[0] #Process the query from Left to Right, Iterate the query starting from query operator list for i in range(length): #REtrieve the operator and second postinglist operator = operatorseq[i] post2 = postlink[i+1] if (operator == 'AND'): p1 = post1.headptr p2 = post2.headptr #Calling the specific intersection Merge Algo post1 = self.MergeAND(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 elif(operator == 'OR'): p1 = post1.headptr p2 = post2.headptr #Calling the specific Union Merge Algo post1 = self.MergeOR(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 elif(operator == 'AND NOT'): tp2 = post2.headptr #Computing the complement of second posting list resulttp = self.ListCompliment(tp2, maxDocID) p1 = post1.headptr p2 = resulttp.headptr #Calling the specific intersection Merge Algo post1 = self.MergeAND(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 elif(operator == 'OR NOT'): tp2 = post2.headptr #Computing the complement of second posting list resulttp = self.ListCompliment(tp2, maxDocID) p1 = post1.headptr p2 = resulttp.headptr #Calling the specific Union Merge Algo post1 = self.MergeOR(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 '''After completing the merging Algo, the final resultant posting list will be post1 retreiving the Document name acc. to the docID present in the final posting list''' self.Totdocmatch = post1.freq pt = post1.headptr while(pt is not None): self.fnamelist.append(filename[pt.IDval]) pt = pt.next def MergeAND(self, ptr1, ptr2): answer = Linkedlist() #ptr1 and ptr2 , iterate the both pointer till the end of the linkedlist, both linkedlist are already in sorted form while(ptr1 is not None and ptr2 is not None): if(ptr1.IDval == ptr2.IDval): #here when both pointer node value matches, then add the nodevalue to the answer linked list answer.addnode(ptr1.IDval) #move both pointer by one node ptr1 = ptr1.next ptr2 = ptr2.next #here counting the comarison, in this algo this is the first comparison so just add 1 to the comparison variable self.comparison = self.comparison + 1 elif(ptr1.IDval < ptr2.IDval): #here the ptr1 is behind the ptr2, so just move ptr1 by one node ptr1 = ptr1.next #here counting the comarison, in this algo this is the second comparison so just add 2 to the comparison variable self.comparison = self.comparison + 2 else: #here in the else, the ptr2 is behind the ptr1, so just move ptr2 by one node ptr2 = ptr2.next #here counting the comarison, in this algo 2 comparison are already done in above, so just add 2 to the comparison variable self.comparison = self.comparison + 2 return answer def MergeOR(self, ptr1, ptr2): answer = Linkedlist() #ptr1 and ptr2 , iterate the both pointer till the end of the linkedlist, both linkedlist are already in sorted form while(ptr1 is not None and ptr2 is not None): if(ptr1.IDval < ptr2.IDval): #add the nodevalue to the answer linked list answer.addnode(ptr1.IDval) #here the ptr1 is behind the ptr2, so just move ptr1 by one node ptr1 = ptr1.next #here counting the comarison, in this algo this is the first comparison so just add 1 to the comparison variable self.comparison = self.comparison + 1 elif(ptr1.IDval > ptr2.IDval): #add the nodevalue to the answer linked list answer.addnode(ptr2.IDval) #the ptr2 is behind the ptr1, so just move ptr2 by one node ptr2 = ptr2.next #here counting the comarison, in this algo this is the second comparison so just add 2 to the comparison variable self.comparison = self.comparison + 2 else: #here in the else, when both pointer node value matches, then add the nodevalue to the answer linked list answer.addnode(ptr1.IDval) #move both pointer by one node ptr1 = ptr1.next ptr2 = ptr2.next #here counting the comarison, in this algo 2 comparison are already done in above, so just add 2 to the comparison variable self.comparison = self.comparison + 2 #if ptr2 becomes none but ptr1 is not none, so just add the remaining node value of ptr1 to the answer linkedlsit while(ptr1 is not None): answer.addnode(ptr1.IDval) ptr1 = ptr1.next #if ptr1 becomes none but ptr2 is not none, so just add the remaining node value of ptr2 to the answer linkedlsit while(ptr2 is not None): answer.addnode(ptr2.IDval) ptr2 = ptr2.next return answer #Function for finding the complement of a linkedlist def ListCompliment(self, ptr, maxDocID): i = 0 answer = Linkedlist() #here maxDOCID is representing the number that the max docID that allocate to the document(0-maxdocID) while(i < maxDocID and ptr is not None): #if the docID present in the list, so just move to the next node if(i == ptr.IDval): i = i+1 ptr = ptr.next #if the docID not present in the list, so just add to the answer linkedlist elif(i < ptr.IDval): answer.addnode(i) i=i+1 #adding the remaining docID to the answer linkedlist while(i < maxDocID): answer.addnode(i) i=i+1 return(answer) if __name__ == '__main__': #Deserailization of MainA1 class object, in which unigram data structure has stored with open('store.dat' , 'rb') as fr: tempomainobj = pickle.load(fr) #retriving the unigram data structure, list of all doc, max doc ID dictlist = tempomainobj.postinglist filename = tempomainobj.docname maxDocID = tempomainobj.docID #Input the no. of query from the User n = int(input("Enter the number of Query: ")) for i in range(n): #input the query and query operator query = input("Input Query: ") queryoperatorseq = input("Input Query operator: ").split(', ') #Preprocessing of Query Queryobj = QueryProcess() prepresult = Queryobj.preprocess(query) #Retriving the postinglist of each tokenize word of a query in postlink[] list postlink = [] for qword in prepresult: LinkL = dictlist.get(qword) postlink.append(LinkL) #Process the Query and query operator by merging Algoruthm Queryobj.MergingAlgo(postlink, queryoperatorseq, maxDocID, filename) #print the desirable result of a query print('Number of document matched: ', end=' ') print(Queryobj.Totdocmatch) print('Number of comparison Done in Merging Algorithm: ', end=' ') print(Queryobj.comparison) print('List of matched document name:') print(Queryobj.fnamelist)
prashant18360/Information-Retrieval-Assignment-1
Qprocessing.py
Qprocessing.py
py
10,931
python
en
code
0
github-code
6
4817137896
import cv2 import os import numpy as np import imutils def open_picture(image): """We open picture""" img = cv2.imread(image) return img def show_picture(name, image, mode, destroy): cv2.imshow(name, image) cv2.waitKey(mode) if mode == 1: time.sleep(0.2) if destroy == "y": cv2.destroyAllWindows() def save_picture(name, image): path = "dataset/data_analysing/{}" cv2.imwrite(path.format(str(name)), image) def blanck_picture(img): """Create a black background picture same dimension of original picture""" blank_image = np.zeros((img.shape[0],img.shape[1],3), np.uint8) blank_image[0:img.shape[0], 0:img.shape[1]] = 0, 0, 0 return blank_image def find_object(img): """ We binarising picture for only have a form of our object. We search contours now """ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray,250,255,cv2.THRESH_BINARY_INV) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours def recup_object(contours, img): """ We search the max contours. Sometimes there are noise of litle area of the rest of the background of pixels (5x5) of background. We don't want it ! After we make a crop of that. """ maxi = 0 for cnts in contours: if cv2.contourArea(cnts) > maxi: maxi = cv2.contourArea(cnts) for cnts in contours: if cv2.contourArea(cnts) == maxi: x, y, w, h = cv2.boundingRect(cnts) crop = img[y:y+h, x:x+w] return crop def main_croping(picture): img = open_picture(picture) contours = find_object(img) crop = recup_object(contours, img) return crop
LeGrosLezard/qu-est-ce-qu-il-y-a-dans-une-salle-a-manger-
program/training/crop_object.py
crop_object.py
py
1,965
python
en
code
0
github-code
6
30777340619
from unittest import TestCase from mapper.file_mapper import FileMapper from container.file import File class TestFileMapper(TestCase): def test_get_files_from_diff_should_return_four_files(self): diff = '4\t0\t.gitignore\n' \ '8\t8\tIZIFarmaProm/build.gradle\n' \ '1\t1\tIZIFarmaProm/src/dev/res/values/strings.xml\n' \ '2\t6\tIZIFarmaProm/src/main/AndroidManifest.xml\n' \ ' ' file_mapper = FileMapper(diff) actual = file_mapper.map_files('', get_file_content_mock) self.assertEqual(4, actual.__len__()) def test_get_files_from_diff_should_return_correct_array(self): diff = '4\t0\t.gitignore\n' \ ' ' file_mapper = FileMapper(diff) diffed_files = file_mapper.map_files('', get_file_content_mock) actual = diffed_files[0] expected = File('.gitignore', None, 4, 0) self.assertEqual(expected.file_path, actual.file_path) self.assertEqual(expected.deleted_lines, actual.deleted_lines) self.assertEqual(expected.added_lines, actual.added_lines) def get_file_content_mock(project_path, file_path): pass
farmapromlab/GITAG
test/test_fileMapper.py
test_fileMapper.py
py
1,191
python
en
code
1
github-code
6
20538043919
""" You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list. You may assume the two numbers do not contain any leading zero, except the number 0 itself. """ """ Time complexity:- O(max(n,m)) Space Complexity:- O(1) """ from typing import Optional # Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def addTwoNumbers( self, l1: Optional[ListNode], l2: Optional[ListNode] ) -> Optional[ListNode]: # Create a dummy head and a tail pointer for the result linked list dummyHead = ListNode(0) tail = dummyHead carry = 0 # Initialize the carry to 0 while l1 or l2 or carry != 0: # Get the current digits of l1 and l2 (or 0 if one of them is None) digit1 = l1.val if l1 else 0 digit2 = l2.val if l2 else 0 # Calculate the sum of the digits and the carry _sum = digit1 + digit2 + carry digit = _sum % 10 carry = _sum // 10 # Create a new node with the calculated digit newNode = ListNode(digit) # Append the new node to the result linked list tail.next = newNode tail = tail.next # Move to the next nodes in l1 and l2 (if available) l1 = l1.next if l1 else None l2 = l2.next if l2 else None # Get the result linked list starting from the node after the dummy head result = dummyHead.next # Remove the reference to the rest of the linked list dummyHead.next = None return result # Return the result linked list
Amit258012/100daysofcode
Day14/add_two_numbers_linked_list.py
add_two_numbers_linked_list.py
py
1,871
python
en
code
0
github-code
6
31211286041
# -*- coding: utf-8 -*- """ Created on Wed Oct 28 07:07:43 2015 @author: RAHUL JAIN """ from xml.dom.minidom import parse import xml.dom.minidom DOMTree = xml.dom.minidom.parse("chemsep1.xml") compounds = DOMTree.documentElement compound = compounds.getElementsByTagName("compound") i = 1 for comp in compound: compName = comp.getElementsByTagName("CompoundID")[0].getAttribute("value") CompName = compName.replace(" ","") CompName = CompName.replace("-","") CompName = CompName.replace(",","") CompName = CompName.replace("1","One") CompName = CompName.replace("2","Two") CompName = CompName.replace("3","Three") CompName = CompName.replace("4","Four") CompName = CompName.replace("5","Five") CriticalTemp = comp.getElementsByTagName("CriticalTemperature")[0].getAttribute("value") CriticalPres = comp.getElementsByTagName("CriticalPressure")[0].getAttribute("value") CriticalVol = comp.getElementsByTagName("CriticalVolume")[0].getAttribute("value") CriticalComp = comp.getElementsByTagName("CriticalCompressibility")[0].getAttribute("value") try: NormalBoilPoint = comp.getElementsByTagName("NormalBoilingPointTemperature")[0].getAttribute("value") except IndexError: NormalBoilPoint = "0" try: NormalMeltingPoint = comp.getElementsByTagName("NormalMeltingPointTemperature")[0].getAttribute("value") except IndexError: NormalMeltingPoint = "0" try: TripPntTemp = comp.getElementsByTagName("TriplePointTemperature")[0].getAttribute("value") except IndexError: TripPntTemp = "0" try: TripPntPres = comp.getElementsByTagName("TriplePointPressure")[0].getAttribute("value") except IndexError: TripPntPres = "0" MolWt = comp.getElementsByTagName("MolecularWeight")[0].getAttribute("value") try: LiqVolAtBoilPnt = comp.getElementsByTagName("LiquidVolumeAtNormalBoilingPoint")[0].getAttribute("value") except IndexError: LiqVolAtBoilPnt = "0" try: AcenFactor = comp.getElementsByTagName("AcentricityFactor")[0].getAttribute("value") except IndexError: AcenFactor = "0" try: SolParam = comp.getElementsByTagName("SolubilityParameter")[0].getAttribute("value") except IndexError: SolParam = "0" try: DipoleMoment = comp.getElementsByTagName("DipoleMoment")[0].getAttribute("value") except IndexError: DipoleMoment = "0" try: IGHF = comp.getElementsByTagName("HeatOfFormation")[0].getAttribute("value") except IndexError: IGHF = "0" try: GEF = comp.getElementsByTagName("GibbsEnergyOfFormation")[0].getAttribute("value") except IndexError: GEF = "0" try: AbsEntropy = comp.getElementsByTagName("AbsEntropy")[0].getAttribute("value") except IndexError: AbsEntropy = "0" try: HeatFusionMeltPnt = comp.getElementsByTagName("HeatOfFusionAtMeltingPoint")[0].getAttribute("value") except IndexError: HeatFusionMeltPnt = "0" try: HOC = comp.getElementsByTagName("HeatOfCombustion")[0].getAttribute("value") except IndexError: HOC = "0" try: UniquacR = comp.getElementsByTagName("UniquacR")[0].getAttribute("value") except IndexError: UniquacR = "0" try: UniquacQ = comp.getElementsByTagName("UniquacQ")[0].getAttribute("value") except IndexError: UniquacQ = "0" try: RacketParam = comp.getElementsByTagName("RacketParameter")[0].getAttribute("value") except IndexError: RacketParam = "0" try: LiqDen = comp.getElementsByTagName("LiquidDensity")[0] LiqDenEqn = LiqDen.getElementsByTagName("eqno")[0].getAttribute("value") A=LiqDen.getElementsByTagName("A")[0].getAttribute("value") B=LiqDen.getElementsByTagName("B")[0].getAttribute("value") C=LiqDen.getElementsByTagName("C")[0].getAttribute("value") D=LiqDen.getElementsByTagName("D")[0].getAttribute("value") try: E=LiqDen.getElementsByTagName("E")[0].getAttribute("value") except IndexError: E = "0" except IndexError: LiqDenEqn = "0" A = "0" B = "0" C = "0" D = "0" E = "0" try: VapPres = comp.getElementsByTagName("VaporPressure")[0] VapPresEqn = VapPres.getElementsByTagName("eqno")[0].getAttribute("value") VA=VapPres.getElementsByTagName("A")[0].getAttribute("value") VB=VapPres.getElementsByTagName("B")[0].getAttribute("value") VC=VapPres.getElementsByTagName("C")[0].getAttribute("value") try: VD=VapPres.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VD = "0" try: VE=VapPres.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VE = "0" except IndexError: VapPresEqn = "0" VA = "0" VB = "0" VC = "0" VD = "0" VE = "0" try: LiqCp = comp.getElementsByTagName("LiquidHeatCapacityCp")[0] LiqCpEqn = LiqCp.getElementsByTagName("eqno")[0].getAttribute("value") LCpA=LiqCp.getElementsByTagName("A")[0].getAttribute("value") LCpB=LiqCp.getElementsByTagName("B")[0].getAttribute("value") LCpC=LiqCp.getElementsByTagName("C")[0].getAttribute("value") try: LCpD=LiqCp.getElementsByTagName("D")[0].getAttribute("value") except IndexError: LCpD = "0" try: LCpE=LiqCp.getElementsByTagName("E")[0].getAttribute("value") except IndexError: LCpE = "0" except IndexError: LiqCpEqn = "0" LCpA = "0" LCpB = "0" LCpC = "0" LCpD = "0" LCpE = "0" try: HOV = comp.getElementsByTagName("HeatOfVaporization")[0] HOVEqn = HOV.getElementsByTagName("eqno")[0].getAttribute("value") HOVA=HOV.getElementsByTagName("A")[0].getAttribute("value") HOVB=HOV.getElementsByTagName("B")[0].getAttribute("value") HOVC=HOV.getElementsByTagName("C")[0].getAttribute("value") try: HOVD=HOV.getElementsByTagName("D")[0].getAttribute("value") except IndexError: HOVD = "0" try: HOVE=HOV.getElementsByTagName("E")[0].getAttribute("value") except IndexError: HOVE = "0" except IndexError: HOVEqn = "0" HOVA = "0" HOVB = "0" HOVC = "0" HOVD = "0" HOVE = "0" if (float(NormalBoilPoint) > 298.15 ): HA = float(HOVA) HB = float(HOVB) HC = float(HOVC) HD = float(HOVD) HE = float(HOVE) Tr = 298.15/float(CriticalTemp) SHOV = HA*(pow((1-Tr),(HB + HC*Tr + HD*pow(Tr,2) + HE*pow(Tr,3)))) AbsEnthalpy = float(IGHF) - SHOV else: AbsEnthalpy = float(IGHF) SH = str(AbsEnthalpy) try: VapCp = comp.getElementsByTagName("IdealGasHeatCapacityCp")[0] VapCpEqn = VapCp.getElementsByTagName("eqno")[0].getAttribute("value") VCpA=VapCp.getElementsByTagName("A")[0].getAttribute("value") VCpB=VapCp.getElementsByTagName("B")[0].getAttribute("value") VCpC=VapCp.getElementsByTagName("C")[0].getAttribute("value") try: VCpD=VapCp.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VCpD = "0" try: VCpE=VapCp.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VCpE = "0" except IndexError: VapCpEqn = "0" VCpA = "0" VCpB = "0" VCpC = "0" VCpD = "0" VCpE = "0" try: LiqVis = comp.getElementsByTagName("LiquidViscosity")[0] LiqVisEqn = LiqVis.getElementsByTagName("eqno")[0].getAttribute("value") LiqVisA=LiqVis.getElementsByTagName("A")[0].getAttribute("value") LiqVisB=LiqVis.getElementsByTagName("B")[0].getAttribute("value") LiqVisC=LiqVis.getElementsByTagName("C")[0].getAttribute("value") try: LiqVisD=LiqVis.getElementsByTagName("D")[0].getAttribute("value") except IndexError: LiqVisD = "0" try: LiqVisE=LiqVis.getElementsByTagName("E")[0].getAttribute("value") except IndexError: LiqVisE = "0" except IndexError: LiqVisEqn = "0" LiqVisA = "0" LiqVisB = "0" LiqVisC = "0" LiqVisD = "0" LiqVisE = "0" try: VapVis = comp.getElementsByTagName("VaporViscosity")[0] VapVisEqn = VapVis.getElementsByTagName("eqno")[0].getAttribute("value") VapVisA=VapVis.getElementsByTagName("A")[0].getAttribute("value") VapVisB=VapVis.getElementsByTagName("B")[0].getAttribute("value") VapVisC=VapVis.getElementsByTagName("C")[0].getAttribute("value") try: VapVisD=VapVis.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VapVisD = "0" try: VapVisE=VapVis.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VapVisE = "0" except IndexError: VapVisEqn = "0" VapVisA = "0" VapVisB = "0" VapVisC = "0" VapVisD = "0" VapVisE = "0" try: LiqK = comp.getElementsByTagName("LiquidThermalConductivity")[0] LiqKEqn = LiqK.getElementsByTagName("eqno")[0].getAttribute("value") LiqKA=LiqK.getElementsByTagName("A")[0].getAttribute("value") LiqKB=LiqK.getElementsByTagName("B")[0].getAttribute("value") LiqKC=LiqK.getElementsByTagName("C")[0].getAttribute("value") try: LiqKD=LiqK.getElementsByTagName("D")[0].getAttribute("value") except IndexError: LiqKD = "0" try: LiqKE=LiqK.getElementsByTagName("E")[0].getAttribute("value") except IndexError: LiqKE = "0" except IndexError: LiqKEqn = "0" LiqKA = "0" LiqKB = "0" LiqKC = "0" LiqKD = "0" LiqKE = "0" try: VapK = comp.getElementsByTagName("VaporThermalConductivity")[0] VapKEqn = VapK.getElementsByTagName("eqno")[0].getAttribute("value") VapKA=VapK.getElementsByTagName("A")[0].getAttribute("value") VapKB=VapK.getElementsByTagName("B")[0].getAttribute("value") VapKC=VapK.getElementsByTagName("C")[0].getAttribute("value") try: VapKD=VapK.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VapKD = "0" try: VapKE=VapK.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VapKE = "0" except IndexError: VapKEqn = "0" VapKA = "0" VapKB = "0" VapKC = "0" VapKD = "0" VapKE = "0" f = open('File5.txt','a') f.write('model '+CompName) f.write('\n') f.write('extends General_Properties(') f.write('\n') f.write('SN ' + '=' + str(i) +',') f.write('\n') f.write('name' + '=' + '"'+ CompName + '",') f.write('\n') f.write('Tc ' + '=' + CriticalTemp + ',') f.write('\n') f.write('Pc ' + '=' + CriticalPres + ',') f.write('\n') f.write('Vc ' + '=' + CriticalVol + ',') f.write('\n') f.write('Cc ' + '=' + CriticalComp + ',') f.write('\n') f.write('Tb ' + '=' + NormalBoilPoint + ',') f.write('\n') f.write('Tm ' + '=' + NormalMeltingPoint + ',') f.write('\n') f.write('TT ' + '=' + TripPntTemp + ',') f.write('\n') f.write('TP ' + '=' + TripPntPres + ',') f.write('\n') f.write('MW ' + '=' + MolWt + ',') f.write('\n') f.write('LVB ' + '=' + LiqVolAtBoilPnt + ',') f.write('\n') f.write('AF ' + '=' + AcenFactor + ',') f.write('\n') f.write('SP ' + '=' + SolParam + ',') f.write('\n') f.write('DM ' + '=' + DipoleMoment + ',') f.write('\n') f.write('SH ' + '=' + SH + ',') f.write('\n') f.write('IGHF ' + '=' + IGHF + ',') f.write('\n') f.write('GEF ' + '=' + GEF + ',') f.write('\n') f.write('AS ' + '=' + AbsEntropy + ',') f.write('\n') f.write('HFMP ' + '=' + HeatFusionMeltPnt + ',') f.write('\n') f.write('HOC ' + '=' + HOC + ',') f.write('\n') f.write('LiqDen = {'+LiqDenEqn+","+A+","+B+","+C+","+D+","+E+'},') f.write('\n') f.write('VP = {'+VapPresEqn+","+VA+","+VB+","+VC+","+VD+","+VE+'},') f.write('\n') f.write('LiqCp = {'+LiqCpEqn+","+LCpA+","+LCpB+","+LCpC+","+LCpD+","+LCpE+'},') f.write('\n') f.write('HOV = {'+HOVEqn+","+HOVA+","+HOVB+","+HOVC+","+HOVD+","+HOVE+'},') f.write('\n') f.write('VapCp = {'+VapCpEqn+","+VCpA+","+VCpB+","+VCpC+","+VCpD+","+VCpE+'},') f.write('\n') f.write('LiqVis = {'+LiqVisEqn+","+LiqVisA+","+LiqVisB+","+LiqVisC+","+LiqVisD+","+LiqVisE+'},') f.write('\n') f.write('VapVis = {'+VapVisEqn+","+VapVisA+","+VapVisB+","+VapVisC+","+VapVisD+","+VapVisE+'},') f.write('\n') f.write('LiqK = {'+LiqKEqn+","+LiqKA+","+LiqKB+","+LiqKC+","+LiqKD+","+LiqKE+'},') f.write('\n') f.write('VapK = {'+VapKEqn+","+VapKA+","+VapKB+","+VapKC+","+VapKD+","+VapKE+'},') f.write('\n') f.write('Racketparam = '+RacketParam +',') f.write('\n') f.write('UniquacR = '+ UniquacR + ',') f.write('\n') f.write('UniquacQ = '+ UniquacQ + ');') f.write('\n') f.write('end '+CompName+';') f.write('\n') f.write('\n') # f.write('function Psat') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Vp;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Vp := exp(VP[2] + VP[3] / T + VP[4] * log(T) + VP[5] * T ^ VP[6]);') # f.write('\n') # f.write('end Psat;') # f.write('\n') # f.write('\n') # # f.write('function LCp') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Cp;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Cp := (LiqCp[2] + exp(LiqCp[3] / T + LiqCp[4] + LiqCp[5] * T + LiqCp[6] * T ^ 2)) / 1000;') # f.write('\n') # f.write('end LCp;') # f.write('\n') # f.write('\n') # # f.write('function HV') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Hv;') # f.write('\n') # f.write('protected') # f.write('\n') # f.write('Real Tr = T / Tc;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Hv := HOV[2] * (1 - Tr) ^ (HOV[3] + HOV[4] * Tr + HOV[5] * Tr ^ 2 + HOV[6] * Tr ^ 3) / 1000;') # f.write('\n') # f.write('end HV;') # f.write('\n') # f.write('\n') # # f.write('function HLiq') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Ent;') # f.write('\n') # f.write('protected') # f.write('\n') # f.write('Real Temp = 298.15;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Ent := 0;') # f.write('\n') # f.write('while Temp < T loop') # f.write('\n') # f.write('Ent := Ent + LCp(Temp) * 1;') # f.write('\n') # f.write('Temp := Temp + 1;') # f.write('\n') # f.write('end while;') # f.write('\n') # f.write('Ent := SH / 1000 + Ent;') # f.write('\n') # f.write('end HLiq;') # f.write('\n') # f.write('\n') # # f.write('function HVap') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Ent;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Ent := HLiq(T) + HV(T);') # f.write('\n') # f.write('end HVap;') # f.write('\n') i = i + 1 f.close()
RahulJain7/Openmodelica-Thermodynamic-Engine
PythonFiles/getComp.py
getComp.py
py
15,689
python
en
code
3
github-code
6
17609260691
# encoding: utf-8 import badgrlog import datetime from django.utils import timezone from rest_framework import permissions from rest_framework.response import Response from rest_framework import serializers from rest_framework import status from backpack.models import BackpackCollection, BackpackBadgeShare, BackpackCollectionShare from backpack.serializers_v1 import CollectionSerializerV1, LocalBadgeInstanceUploadSerializerV1 from backpack.serializers_v2 import BackpackAssertionSerializerV2, BackpackCollectionSerializerV2, \ BackpackImportSerializerV2, BackpackAssertionAcceptanceSerializerV2 from entity.api import BaseEntityListView, BaseEntityDetailView from issuer.models import BadgeInstance from issuer.permissions import AuditedModelOwner, VerifiedEmailMatchesRecipientIdentifier, BadgrOAuthTokenHasScope from issuer.public_api import ImagePropertyDetailView from apispec_drf.decorators import apispec_list_operation, apispec_post_operation, apispec_get_operation, \ apispec_delete_operation, apispec_put_operation, apispec_operation from mainsite.permissions import AuthenticatedWithVerifiedIdentifier logger = badgrlog.BadgrLogger() _TRUE_VALUES = ['true', 't', 'on', 'yes', 'y', '1', 1, 1.0, True] _FALSE_VALUES = ['false', 'f', 'off', 'no', 'n', '0', 0, 0.0, False] def _scrub_boolean(boolean_str, default=None): if boolean_str in _TRUE_VALUES: return True if boolean_str in _FALSE_VALUES: return False return default class BackpackAssertionList(BaseEntityListView): model = BadgeInstance v1_serializer_class = LocalBadgeInstanceUploadSerializerV1 v2_serializer_class = BackpackAssertionSerializerV2 create_event = badgrlog.BadgeUploaded permission_classes = (AuthenticatedWithVerifiedIdentifier, VerifiedEmailMatchesRecipientIdentifier, BadgrOAuthTokenHasScope) http_method_names = ('get', 'post') valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'post': ['rw:backpack'], } include_defaults = { 'include_expired': {'v1': 'true', 'v2': 'false'}, 'include_revoked': {'v1': 'false', 'v2': 'false'}, 'include_pending': {'v1': 'false', 'v2': 'false'}, } def get_objects(self, request, **kwargs): version = kwargs.get('version', 'v1') include_expired = request.query_params.get( 'include_expired', self.include_defaults['include_expired'][version] ).lower() in ['1', 'true'] include_revoked = request.query_params.get( 'include_revoked', self.include_defaults['include_revoked'][version] ).lower() in ['1', 'true'] include_pending = request.query_params.get( 'include_pending', self.include_defaults['include_pending'][version] ).lower() in ['1', 'true'] def badge_filter(b): if ((b.acceptance == BadgeInstance.ACCEPTANCE_REJECTED) or (not include_expired and b.expires_at != None and b.expires_at < timezone.now()) or (not include_revoked and b.revoked) or (not include_pending and b.pending)): return False return True return list(filter(badge_filter, self.request.user.cached_badgeinstances())) @apispec_list_operation('Assertion', summary="Get a list of Assertions in authenticated user's backpack ", tags=['Backpack'] ) def get(self, request, **kwargs): mykwargs = kwargs.copy() mykwargs['expands'] = [] expands = request.GET.getlist('expand', []) if 'badgeclass' in expands: mykwargs['expands'].append('badgeclass') if 'issuer' in expands: mykwargs['expands'].append('issuer') return super(BackpackAssertionList, self).get(request, **mykwargs) @apispec_post_operation('Assertion', summary="Upload a new Assertion to the backpack", tags=['Backpack'] ) def post(self, request, **kwargs): if kwargs.get('version', 'v1') == 'v1': try: return super(BackpackAssertionList, self).post(request, **kwargs) except serializers.ValidationError as e: self.log_not_created(e) raise e raise NotImplementedError("use BackpackImportBadge.post instead") def log_not_created(self, error): request = self.request user = request.user image_data = '' user_entity_id = '' error_name = '' error_result = '' if request.data.get('image', None) is not None: image_data = request.data.get('image', '')[:1024] if user is not None: user_entity_id = user.entity_id if len(error.detail) <= 1: #grab first error e = error.detail[0] error_name = e.get('name', '') error_result = e.get('result', '') invalid_badge_upload_report = badgrlog.InvalidBadgeUploadReport(image_data, user_entity_id, error_name, error_result) logger.event(badgrlog.InvalidBadgeUploaded(invalid_badge_upload_report)) def get_context_data(self, **kwargs): context = super(BackpackAssertionList, self).get_context_data(**kwargs) context['format'] = self.request.query_params.get('json_format', 'v1') # for /v1/earner/badges compat return context class BackpackAssertionDetail(BaseEntityDetailView): model = BadgeInstance v1_serializer_class = LocalBadgeInstanceUploadSerializerV1 v2_serializer_class = BackpackAssertionSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, VerifiedEmailMatchesRecipientIdentifier, BadgrOAuthTokenHasScope) http_method_names = ('get', 'delete', 'put') valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'put': ['rw:backpack'], 'delete': ['rw:backpack'], } def get_context_data(self, **kwargs): context = super(BackpackAssertionDetail, self).get_context_data(**kwargs) context['format'] = self.request.query_params.get('json_format', 'v1') # for /v1/earner/badges compat return context @apispec_get_operation('BackpackAssertion', summary="Get detail on an Assertion in the user's Backpack", tags=['Backpack'] ) def get(self, request, **kwargs): mykwargs = kwargs.copy() mykwargs['expands'] = [] expands = request.GET.getlist('expand', []) if 'badgeclass' in expands: mykwargs['expands'].append('badgeclass') if 'issuer' in expands: mykwargs['expands'].append('issuer') return super(BackpackAssertionDetail, self).get(request, **mykwargs) @apispec_delete_operation('BackpackAssertion', summary='Remove an assertion from the backpack', tags=['Backpack'] ) def delete(self, request, **kwargs): obj = self.get_object(request, **kwargs) related_collections = list(BackpackCollection.objects.filter(backpackcollectionbadgeinstance__badgeinstance=obj)) if obj.source_url is None: obj.acceptance = BadgeInstance.ACCEPTANCE_REJECTED obj.save() else: obj.delete() for collection in related_collections: collection.save() request.user.save() return Response(status=status.HTTP_204_NO_CONTENT) @apispec_put_operation('BackpackAssertion', summary="Update acceptance of an Assertion in the user's Backpack", tags=['Backpack'] ) def put(self, request, **kwargs): fields_whitelist = ('acceptance',) data = {k: v for k, v in list(request.data.items()) if k in fields_whitelist} obj = self.get_object(request, **kwargs) if not self.has_object_permissions(request, obj): return Response(status=status.HTTP_404_NOT_FOUND) context = self.get_context_data(**kwargs) update_serializer = BackpackAssertionAcceptanceSerializerV2(obj, data, context=context) update_serializer.is_valid(raise_exception=True) update_serializer.save(updated_by=request.user) main_serializer_class = self.get_serializer_class() serializer = main_serializer_class(update_serializer.instance, context=context) return Response(serializer.data) class BackpackAssertionDetailImage(ImagePropertyDetailView, BadgrOAuthTokenHasScope): model = BadgeInstance prop = 'image' valid_scopes = ['r:backpack', 'rw:backpack'] class BackpackCollectionList(BaseEntityListView): model = BackpackCollection v1_serializer_class = CollectionSerializerV1 v2_serializer_class = BackpackCollectionSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, AuditedModelOwner, BadgrOAuthTokenHasScope) valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'post': ['rw:backpack'], } def get_objects(self, request, **kwargs): return self.request.user.cached_backpackcollections() @apispec_get_operation('Collection', summary='Get a list of Collections', tags=['Backpack'] ) def get(self, request, **kwargs): return super(BackpackCollectionList, self).get(request, **kwargs) @apispec_post_operation('Collection', summary='Create a new Collection', tags=['Backpack'] ) def post(self, request, **kwargs): return super(BackpackCollectionList, self).post(request, **kwargs) class BackpackCollectionDetail(BaseEntityDetailView): model = BackpackCollection v1_serializer_class = CollectionSerializerV1 v2_serializer_class = BackpackCollectionSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, AuditedModelOwner, BadgrOAuthTokenHasScope) valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'post': ['rw:backpack'], 'put': ['rw:backpack'], 'delete': ['rw:backpack'] } @apispec_get_operation('Collection', summary='Get a single Collection', tags=['Backpack'] ) def get(self, request, **kwargs): return super(BackpackCollectionDetail, self).get(request, **kwargs) @apispec_put_operation('Collection', summary='Update a Collection', tags=['Backpack'] ) def put(self, request, **kwargs): return super(BackpackCollectionDetail, self).put(request, **kwargs) @apispec_delete_operation('Collection', summary='Delete a collection', tags=['Backpack'] ) def delete(self, request, **kwargs): return super(BackpackCollectionDetail, self).delete(request, **kwargs) class BackpackImportBadge(BaseEntityListView): v2_serializer_class = BackpackImportSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, BadgrOAuthTokenHasScope,) http_method_names = ('post',) valid_scopes = ['rw:backpack'] @apispec_operation( summary="Import a new Assertion to the backpack", tags=['Backpack'], parameters=[ { "in": "body", "name": "body", "required": True, "schema": { "type": "object", "properties": { "url": { "type": "string", "format": "url", "description": "URL to an OpenBadge compliant badge", 'required': False }, "image": { 'type': "string", 'format': "data:image/png;base64", 'description': "base64 encoded Baked OpenBadge image", 'required': False }, "assertion": { 'type': "json", 'description': "OpenBadge compliant json", 'required': False }, } }, } ] ) def post(self, request, **kwargs): context = self.get_context_data(**kwargs) serializer_class = self.get_serializer_class() serializer = serializer_class(data=request.data, context=context) serializer.is_valid(raise_exception=True) new_instance = serializer.save(created_by=request.user) self.log_create(new_instance) response_serializer = BackpackAssertionSerializerV2(new_instance, context=context) return Response(response_serializer.data, status=status.HTTP_201_CREATED) class ShareBackpackAssertion(BaseEntityDetailView): model = BadgeInstance permission_classes = (permissions.AllowAny,) # this is AllowAny to support tracking sharing links in emails http_method_names = ('get',) allow_any_unauthenticated_access = True def get(self, request, **kwargs): """ Share a single badge to a support share provider --- parameters: - name: provider description: The identifier of the provider to use. Supports 'facebook', 'linkedin' required: true type: string paramType: query """ redirect = _scrub_boolean(request.query_params.get('redirect', "1")) provider = request.query_params.get('provider') if not provider: return Response({'error': "unspecified share provider"}, status=status.HTTP_400_BAD_REQUEST) provider = provider.lower() source = request.query_params.get('source', 'unknown') badge = self.get_object(request, **kwargs) if not badge: return Response(status=status.HTTP_404_NOT_FOUND) include_identifier = _scrub_boolean(request.query_params.get('include_identifier', False)) share = BackpackBadgeShare(provider=provider, badgeinstance=badge, source=source) share_url = share.get_share_url(provider, include_identifier=include_identifier) if not share_url: return Response({'error': "invalid share provider"}, status=status.HTTP_400_BAD_REQUEST) share.save() logger.event(badgrlog.BadgeSharedEvent(badge, provider, datetime.datetime.now(), source)) if redirect: headers = {'Location': share_url} return Response(status=status.HTTP_302_FOUND, headers=headers) else: return Response({'url': share_url}) class ShareBackpackCollection(BaseEntityDetailView): model = BackpackCollection permission_classes = (permissions.AllowAny,) # this is AllowAny to support tracking sharing links in emails http_method_names = ('get',) def get(self, request, **kwargs): """ Share a collection to a supported share provider --- parameters: - name: provider description: The identifier of the provider to use. Supports 'facebook', 'linkedin' required: true type: string paramType: query """ redirect = _scrub_boolean(request.query_params.get('redirect', "1")) provider = request.query_params.get('provider') if not provider: return Response({'error': "unspecified share provider"}, status=status.HTTP_400_BAD_REQUEST) provider = provider.lower() source = request.query_params.get('source', 'unknown') collection = self.get_object(request, **kwargs) if not collection: return Response(status=status.HTTP_404_NOT_FOUND) share = BackpackCollectionShare(provider=provider, collection=collection, source=source) share_url = share.get_share_url(provider, title=collection.name, summary=collection.description) if not share_url: return Response({'error': "invalid share provider"}, status=status.HTTP_400_BAD_REQUEST) share.save() if redirect: headers = {'Location': share_url} return Response(status=status.HTTP_302_FOUND, headers=headers) else: return Response({'url': share_url})
reedu-reengineering-education/badgr-server
apps/backpack/api.py
api.py
py
16,711
python
en
code
2
github-code
6
7068326150
#!/usr/bin/env python # -*- coding=utf-8 -*- # Author: kaname # QQ: 1394041054 """ C4d analyzer """ # RUN: # 1. From C4Dloader.py to loading RBAnalzer.py to do it. # 2. AnalyzeC4d.py loading C4Dloader.py to do it. import os import sys import subprocess import string import logging import time import shutil reload(sys) sys.setdefaultencoding('utf-8') from C4d import C4d from C4dLoader import C4dLoader from C4dPluginManager import C4dPlugin, C4dPluginMgr from CommonUtil import RBCommon as CLASS_COMMON_UTIL class AnalyzeC4d(C4d): def __init__(self, **paramDict): C4d.__init__(self, **paramDict) self.format_log('AnalyzeC4d.init', 'start') self.G_TIPS_TXT_NODE=os.path.join(self.G_WORK_RENDER_TASK_CFG, 'tips.json').replace('\\','/') for key, value in self.__dict__.items(): self.G_DEBUG_LOG.info(key + '=' + str(value)) self.format_log('done','end') def RB_CONFIG(self): self.G_DEBUG_LOG.info('[.hldoing]') self.G_DEBUG_LOG.info('[.้…็ฝฎๆ’ไปถๅผ€ๅง‹]') self.G_DEBUG_LOG.info('[C4d.Plugin.config.start......]') self.plugin_config() self.G_DEBUG_LOG.info('[.hldone]') self.G_DEBUG_LOG.info('[.้…็ฝฎๆ’ไปถๅฎŒๆˆ]') self.G_DEBUG_LOG.info('[C4d.Plugin.config.end......]') def RB_RENDER(self): self.G_DEBUG_LOG.info('[c4d.RBanalyse.start.....]') self.G_FEE_PARSER.set('render','start_time',str(int(time.time()))) cg_ver = self.G_CG_VERSION task_id = self.G_TASK_ID cg_file = self.G_INPUT_CG_FILE task_json = self.G_TASK_JSON asset_json = self.G_ASSET_JSON tips_json = self.G_TIPS_TXT_NODE c4d_loader = C4dLoader(cg_ver, task_id, cg_file, task_json, asset_json, tips_json) c4d_loader.execute() self.G_FEE_PARSER.set('render','end_time',str(int(time.time()))) self.G_DEBUG_LOG.info('[c4d.RBanalyse.end.....]')
kRayvison/Pycharm_python36
new_render_data/input/p/script/abort/back20180419/CG/C4d/python34_bak/process/AnalyzeC4d_201712191500.py
AnalyzeC4d_201712191500.py
py
1,972
python
en
code
1
github-code
6
39732689560
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 7 10:43:00 2022 @author: Christopher Corbell """ from tttoe.board import Board class GameTree: """ A GameTree can generate a tree of tic tac toe Board nodes. The tree is generate as tiers of boards at each ply. Boards are labeled to indicate their paths through the tree. Board 'aliases' can be used to prune isomorphic subtrees that arise from different parents at the same play; only one of such isomorphs is continued, the others have their .alias field set to the label of that one for reference. This is optional behavior; set 'skipAliases' to True in the generateTree() call to identify and skip such isomorphs. (Note that isomorphic children of the -same- parent board are always skipped, only unique children of each parent are considered) """ def __init__(self, rootBoard:Board=None): if None == rootBoard: self.root = Board() self.root.label = '0' self.plies = [] else: self.root = rootBoard self.plies = [] def generateTree(self, skipAliases:bool): lastPly = [self.root] currentPly = [] depth = 0 while depth < 9: for parent in lastPly: if True == skipAliases: if not (None == parent.alias): print (f"skipping parent {parent.label}, alias of {parent.alias}...") continue if parent.isWin(): print (f"skipping parent {parent.label}, {parent.winString()}") continue #if parent.isDraw(): # continue children = GameTree.generateChildBoards(parent) print (f"...generated {len(children)} child boards from parent {parent.label}") currentPly.extend(children) if skipAliases: GameTree.determineAliases(currentPly) self.plies.append(currentPly) lastPly = currentPly currentPly = [] depth += 1 def print_tree_size(self): totalSize = 1 for n in range(0, len(self.plies)): print(f"ply {n+1} size: {len(self.plies[n])}") totalSize += len(self.plies[n]) print(f"total tree size (including root, excluding isomorphic branches): {totalSize}") def print_tree(self): print (self.root) for n in range(0, len(self.plies)): print ('===========================================') print (f'ply {n+1}:') for board in self.plies[n]: print (board) print('') def print_ply(self, index): if index == 0: print ('=========================================== 1 board at root') print (f"{self.root}\n") else: print (f'=========================================== {len(self.plies[index-1])} boards in ply {index}') for board in self.plies[index - 1]: print(f"{board}\n") def generateChildBoards(parent: Board): """ Given a parent game board, generate all of its next-move boards up to isomorphism. Boards are canonical and are labeled with increasing integers appended to the parent label. For example, if parent is labeled '0.3' and there are 4 child boards, they will be labeled '0.3.0, '0.3.1', 0.3.2', 0.3.3'. Parameters ---------- parent : Board A parent board. Returns ------- childBoards : [Board] A list of all possible child boards (next plays of the game from the parent board state) up to isomorphism. """ childBoardCanonicalStrings = [] blocks = set() isPlayingX = parent.nextPlayer() == Board.X_TOKEN emptyIndices = parent.empty_indices() for playIndex in emptyIndices: childBoard = parent.copy() if isPlayingX: childBoard.xplay(playIndex) else: childBoard.oplay(playIndex) childStr = childBoard.canonicalString() if childBoard.block: blocks.add(childStr) if not childStr in childBoardCanonicalStrings: childBoardCanonicalStrings.append(childStr) del childBoard childBoards = [] index = 0 for gridString in childBoardCanonicalStrings: child = Board() child.grid = list(gridString) child.label = parent.label + "." + str(index) if gridString in blocks: print(f"- block played in board {child.label}") child.block = True index += 1 childBoards.append(child) return childBoards def determineAliases(plyboards): """ Given a list of child-board lists of the same ply, determine aliases of isomorphic boards. This assumes all boards are already canonical so we can simply compare lexical string representation. As a subtle improvement, we use the block property of each board to prefer blocks as alias targets (so continuing isomorphic branches explicitly have blocking plays as parent nodes) (A block is a play which removes a winning next-move opportunity) Parameters ---------- childBoardLists : [[Board]] A list of Board lists, expected to be returned by generateChildBoards for the same ply level (game-tree depth) Returns ------- None; alias value is set on Board objects passed in """ # resolve aliases to block-play boards first block_indices = [idx for idx, element in enumerate(plyboards) if element.block] for block_index in block_indices: target = plyboards[block_index] for otherIndex in range(0, len(plyboards)): if otherIndex in block_indices: continue other = plyboards[otherIndex] if not None == other.alias: # already determined continue if target.lexstring() == other.lexstring(): other.alias = target.label # now resolve everything else targetIndex = 0 for targetIndex in range(0, len(plyboards) - 1): target = plyboards[targetIndex] if target.block: # already processed continue if not None == target.alias: # already determined to be alias continue for laterIndex in range(targetIndex+1, len(plyboards)): later = plyboards[laterIndex] if not None == later.alias: # already determined continue if target.lexstring() == later.lexstring(): # found an alias later.alias = target.label
ccorbell/gametheory
tttoe/gametree.py
gametree.py
py
7,352
python
en
code
0
github-code
6
3990110801
from functions import * from create_directory import * from Crypto.Cipher import AES import os import shutil import time home = user_home() if os.path.exists(home + "DataShareSecure") == False: print("\nNous vous prions de lire le fichier \"Readme.txt\" et de suivre ces consignes.\n") sys.exit() print("BIENVENUE DANS CE PROGRAMME DE DECHIFFREMENT DE FICHIERS\n") print("######### BON ร€ SAVOIR ##########\n") print("Vous exรฉcutez ce programme stipule que:\n\n" "1- Vous avez pris connaissance du fonctionnement de DataShareSecure grรขce au \"Readme.txt\" \n" "2- Vous avez exรฉcutรฉ le programme \"Public_Key_Manage.py\" au moins une fois et disposer donc d'une " "paire de clรฉs\n" "3- Vous dรฉsirez dรฉchiffrer des fichiers que vous avez reรงus d'un correspondant\n") print("Si vous ne remplissez pas toutes les conditions du \"BON ร€ SAVOIR\", je vous invite ร  fermer ce programme.\n" "Et ร  prendre le temps de remplir ces conditions.\n") choix = input("Remplissez-vous les conditions sus-citรฉs ? (O)ui ou (N)on : ") if choix == 'O' or choix =='o': print("\nBien. Nous pouvons donc continuer\n") vide_directory(home + "DataShareSecure/Encrypted") vide_directory(home + "DataShareSecure/Decrypted") os.chdir(home + "DataShareSecure/Received") path = home + 'DataShareSecure/Received/key_used' with open(path, "r") as file: key_encrypted = file.read() key = dechiffrer(key_encrypted) buffer_size = 65536 # 64kb ########## MOVE FILE ############ print("######## DECHIFFREMENT DES FICHIERS ET VERIFIVATION DES SIGNATURES ######## \n") file_dir = [] file = [f for f in os.listdir(home + "DataShareSecure/Received") if os.path.isfile(f)] for f in file: if ".dss" in f: shutil.copy(f, home + "DataShareSecure/Encrypted") elif ".asc" in f: shutil.copy(f, home + "DataShareSecure/Decrypted") ########## DECRYPT ############### print("\n############# DECHIFFREMENT DES FICHIERS REร‡UES ############\n") os.chdir(home + "DataShareSecure/Encrypted") files_dir = [] files = [f for f in os.listdir(home + "DataShareSecure/Encrypted") if os.path.isfile(f)] for f in files: files_dir.append(f) for x in files_dir: with open(home + "DataShareSecure/Encrypted/" + x, "rb") as f: f.seek(0) path = home + 'DataShareSecure/Decrypted/' + x output_file = open(path[:-4], "wb") iv = f.read(16) cipher_encrypt = AES.new(key, AES.MODE_CFB, iv=iv) buffer = f.read(buffer_size) while len(buffer) > 0: decrypted_bytes = cipher_encrypt.decrypt(buffer) output_file.write(decrypted_bytes) buffer = f.read(buffer_size) print("Vos fichiers dรฉchiffrรฉs sont enregistrรฉs dans le repertoire \"Decrypted\". \n") ########## VERIFY SIGNATURE ############### print("\n############ VERIFICATION DES FICHERS REร‡UES #################\n") os.chdir(home + "DataShareSecure/Decrypted/") files_dir = [] files = [f for f in os.listdir(home + "DataShareSecure/Decrypted/") if os.path.isfile(f)] for f in files: if ".asc" in f: files_dir.append(f) for x in files_dir: with open(home + "DataShareSecure/Decrypted/" + x, "rb") as f: file = x[:-4] verified = gpg.verify_file(f, file) print(file + " : ", verified.status + "") print("\nNOUS VOICI ร€ LA FIN\n")
Su1M01/DataShareSecure
Receiver.py
Receiver.py
py
3,616
python
fr
code
0
github-code
6
26061079286
import nltk from nltk.tokenize import * import numpy as np #-------------------------------------------------------- alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] punctuation = ['?',',','!','.',':',';'] char_count= [0] * len(alphabet) punctuation_count = [0] * len(punctuation) #-------------------------------------------------------- # PART OF SPEECH STUFF #-------------------------------------------------------- #part of speech ratios + lexical variety # - determiners # - prepositions # - pronouns # - modal auxiliary-verbs -> CAN, COULD, WILL, WOULD # - adverbs # - coord-conjuctions # - nouns # - proper-nouns # - adjectives # - verbs # - lexical variety = nouns + proper_nouns + adjectives + verbs + adverbs pronouns_list = ['PRP', 'PRP$', 'WP', 'WP$'] adverbs_list = ['RB' ,'RBR', 'RBS', 'WRB'] adjectives_list = ['JJ', 'JJR', 'JJS'] verbs_list = ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'] pos_ratios = [0] * 11 avg_sentence_length = 0 avg_word_length = 0 total_words = 0 #-------------------------------------------------------- def main(): np.set_printoptions(suppress=True) features = [] text = open("training_set\Abraham Lincoln\Abraham Lincoln___Lincoln Letters.txt").read() #total useful char t_u_c = total_useful_char(text) total_puctuation = count_punctuation(text) total_words = len(word_tokenize(text)) #FEATURES 1 - 26 letters_frequency(text, t_u_c) #FEATURES 27 - 32 punctuation_frequency(text, total_puctuation) #FEATIRES 33 - 44 part_of_speech_ratios(text, total_words) #FEATURES 44 - 45 avg_sentence_length = average_sentence_length(text) avg_word_length = average_word_length(text) features.extend(char_count) features.extend(punctuation_count) features.extend(pos_ratios) features.append(avg_sentence_length) features.append(avg_word_length) features.append(total_words) features = np.array(features).reshape(-1,1) print("\n\n FEATURES final array: \n", features) print(features.shape) def average_word_length(text): words = word_tokenize(text) sum = 0 for word in words: sum += len(word) return sum/len(words) def average_sentence_length(text): sentences = sent_tokenize(text) sum = 0 for sentence in sentences: sum += len(word_tokenize(sentence)) return sum/len(sentences) def count_punctuation(text): return text.count('?') + text.count(',') + text.count('!') + text.count('.') + text.count(':') + text.count(';') def total_useful_char(text): return len(text) - text.count(" ") - text.count("\n") def letters_frequency(text, tChar): for char in text.lower(): if char in alphabet: char_count[alphabet.index(char)] += 1 for letter in char_count: char_count[char_count.index(letter)] /= tChar def punctuation_frequency(text, total_puctuation): for char in text: if char in punctuation: punctuation_count[punctuation.index(char)] += 1 for element in punctuation_count: punctuation_count[punctuation_count.index(element)] /= total_puctuation def part_of_speech_ratios(text, total_words): words = word_tokenize(text) tagged_words = nltk.pos_tag(words) # lexical variety = nouns + proper_nouns + adjectives + verbs + adverbs for tagged_word in tagged_words: is_a_pronoun = [pronoun for pronoun in pronouns_list if(pronoun in tagged_word)] is_a_adverb = [adverb for adverb in adverbs_list if(adverb in tagged_word)] is_a_adjective = [adjective for adjective in adjectives_list if(adjective in tagged_word)] is_a_verb = [verb for verb in verbs_list if(verb in tagged_word)] if 'DT' in tagged_word: pos_ratios[0] += 1 elif 'IN' in tagged_word: pos_ratios[1] += 1 elif is_a_pronoun: pos_ratios[2] += 1 elif 'MD' in tagged_word: pos_ratios[3] += 1 elif is_a_adverb: pos_ratios[4] += 1 pos_ratios[10] += 1 elif 'CC' in tagged_word: pos_ratios[5] += 1 elif ('NN' in tagged_word or 'NNS' in tagged_word): pos_ratios[6] += 1 pos_ratios[10] += 1 elif ('NNP' in tagged_word or 'NNPS' in tagged_word): pos_ratios[7] += 1 pos_ratios[10] += 1 elif is_a_adjective: pos_ratios[8] += 1 pos_ratios[10] += 1 elif is_a_verb: pos_ratios[9] += 1 pos_ratios[10] += 1 for element in pos_ratios: pos_ratios[pos_ratios.index(element)] /= total_words if __name__ == '__main__': main()
andresOchoaHernandez/AuthorshipRecognition
PythonPrototype/extract_features.py
extract_features.py
py
4,777
python
en
code
0
github-code
6
35374859965
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 8 22:42:38 2022 @author: sanggupark """ import numpy as np import traci from dataclasses import dataclass import math from shapely.geometry import LineString, Point from SimpleMath import create_vehicle_shape @dataclass(init = True) class Object_sensed: ID: str xpos: float ypos: float vel: float angle: float width: float length: float acc_max: float = 4.0 dec_max: float = 7.0 dec_min: float = 2.0 response: float = 0.2 blinker: int = 0 def lidar_sensing(ego, veh_other): xpos = ego.xpos ypos = ego.ypos length = ego.length rad = np.radians(ego.angle) p_tail = Point([xpos-(length)*math.sin(rad), ypos-(length)*math.cos(rad)]) # FOV control if "LF" in ego.behavior: angles = np.linspace(rad+(ego.sensor.fov/4), rad-(ego.sensor.fov/4), 100) elif "LC_R" in ego.behavior: angles = np.linspace(rad+(ego.sensor.fov/2.0), rad-(ego.sensor.fov/2.0), 100) elif "LC_L" in ego.behavior: angles = np.linspace(rad+(ego.sensor.fov/2.0), rad-(ego.sensor.fov/2.0), 100) distance = ego.sensor.radius * 1.00 lines = [] for angle in angles: line = LineString([[p_tail.x, p_tail.y], [p_tail.x + distance*math.sin(angle), p_tail.y + distance*math.cos(angle)]]) lines.append(line) vehicles_sensed = [] follower = traci.vehicle.getFollower(ego.ID, dist=5.0)[0] """ LIDAR Sensing """ for veh in veh_other: is_detected = False poly_veh = create_vehicle_shape(veh) if veh.ID != ego.ID: for line in lines: is_detected = poly_veh.intersects(line) if is_detected: break if is_detected and not (veh.ID == follower): vehicles_sensed.append(veh) return vehicles_sensed def blinker_sensing(ego, vehicles_sensed): """ Blinker Sensing """ for veh in vehicles_sensed: blinker = traci.vehicle.getSignals(veh.ID) # If LF """ if blinker == 0: veh.blinker = 0 # If LC_R """ elif blinker == 1: veh.blinker = -1 # If LC_L """ elif blinker == 2: veh.blinker = 1 return vehicles_sensed def update_prev_info(ego, vehicles_sensed): """ Update Old info """ for veh in vehicles_sensed: if 'auv' in veh.ID: object_add = Object_sensed(veh.ID, veh.xpos, veh.ypos, veh.vel, veh.angle, veh.width, veh.length, blinker=veh.blinker) elif 'huv' in veh.ID: blinker = traci.vehicle.getSignals(veh.ID) if blinker == 1: blinker = -1 elif blinker == -1: blinker = 1 else: blinker = 0 object_add = Object_sensed(veh.ID, veh.xpos, veh.ypos, veh.vel, veh.angle, veh.width, veh.length, blinker=-traci.vehicle.getSignals(veh.ID)) if len(ego.objects_sensed): flag = False for obj in ego.objects_sensed: if obj.ID == object_add.ID: # replacement due to overlaps ego.objects_sensed[np.where(ego.objects_sensed==obj)] = object_add flag = True if not flag: # add if no overlaps ego.objects_sensed = np.append(ego.objects_sensed, object_add) else: # if the list is empty ego.objects_sensed = np.append(ego.objects_sensed, object_add) return
sanggu-park/blaft_simulation
Sensing.py
Sensing.py
py
3,640
python
en
code
0
github-code
6
9169202815
from tkinter import * from tkinter.messagebox import * def sum(): r='' r=int(e.get()) if r=='': showinfo('messae','Enter the value') else: t=r*r l2.configure(bg='#209f49',text='Area of circle: {:.1f}'.format(t)) root=Tk() root.title('Calculate') root.geometry('280x220') root.configure(bg='white') l1=Label(text='Enter the radius of circle',font='times 20') l2=Label(font='times 20') e=Entry(width=15,bd='5px',font='times 20',bg='#6ec1ff') b3=Button(root,text='Ok',width=10,font=('times',15,'bold'),bd='3px',bg='#6ec1ff',command=sum) l2.grid(row=4,column=0) b3.grid(row=2,column=0) l1.grid(row=0,column=0) e.grid(row=1,column=0) root.mainloop()
Devcoder980/twinkle
calculcircel.py
calculcircel.py
py
688
python
en
code
1
github-code
6
37957784515
''' eg> nodes value - key a - 5 b - 15 c - 3 d - 10 e - 25 in huffing tree: Each node is either a leaf with one of the key and value specified or has 2 children with value '*' and key with value addition of both children node. This important property will be exploited to make an easy tree There will be total n leaf nodes and n-1 non-leaf nodes (in our case 5 leaf and 4 non-leaf nodes) eg. of formed tree 58 (*) 33 25 (*) (E) 18 15 (*) (B) 10 8 (D) (*) 5 3 (A) (C) Array Structure: 0 1 2 3 4 5 6 7 8 * * E * B D * A C 58 33 25 18 15 10 8 5 3 ''' data=[ ('a',5), ('b',15), ('c',3), ('d',10), ('e',25), ] from operator import itemgetter data = sorted(data, key = itemgetter(1)) print('INPUT DATA:') print (data) data2=[] while(len(data)>1): a=data[0] b=data[1] c=('*',a[1]+b[1]) data.pop(0) data.pop(0) data.append(c) data = sorted(data, key = itemgetter(1)) if(a[0]!='*'): data2.append(a) if(b[0]!='*'): data2.append(b) data2.append(c) #a=data[0] data.pop(0) #data2.append(a) print('\nTREE DATA:') print(data2) data2=sorted(data2, key = itemgetter(1)) data2=data2[::-1] print('\nSORTED TREE DATA or TREE STRUCTURE') print(data2) ''' In assembly code this can be achieved by storing all the elements in array and finally sorting them as mentioned in previous assembly functions. Achieved Array Structure: 0 1 2 3 4 5 6 7 8 * * E * B D * A C 58 33 25 18 15 10 8 5 3 ''' ###TREE PERCOLATION and CREATING NEW BINARIES indexes=[1] for i in range(len(data2)): if(data2[i][0]=='*'): indexes.append(2*indexes[i]) indexes.append(2*indexes[i]+1) print('\nINDICES') print(indexes) ''' Data Structures: 0 1 2 3 4 5 6 7 8 ARRAY * * E * B D * A C 58 33 25 18 15 10 8 5 3 INDICES 1 2 3 4 5 8 9 18 19 These indices are what should be the actual indices is this was a complete(balanced) binary tree. 58 (*) (1) 33 25 (*) (E) (2) (3) 18 15 (*) (B) (4) (5) 10 8 (D) (*) (8) (9) 5 3 (A) (C) (18) (19) Now only step left is to find out the frequencies. Compressed representations will simply be the binary representation of these numbers with the significant bit removed. eg (For this tree) letters freq index binary repr. compressed repr. a 5 18 10010 0010 b 15 5 101 01 c 3 19 10011 0011 d 10 8 1000 000 e 25 3 11 1 ''' print('\nCompressed bit representations') for i in range(len(data2)): if(data2[i][0]!='*'): print(str(data2[i][0])+': '+bin(indexes[i])[3:]) ''' Thanks ~~Work originally done by ANIKET AGRAWAL ~~NOT COPIED FROM ANY SOURCES '''
vjg28/Huffman-Coding-ARM
tree.py
tree.py
py
3,009
python
en
code
1
github-code
6
35512343107
# ะ”ะฐะฝะพ: ะฟะพัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพัั‚ัŒ ัั‚ั€ะพะบ. # # ะ—ะฐะดะฐะฝะธะต: ะฒั‹ ะดะพะปะถะฝั‹ ะพะฑัŠะตะดะธะฝะธั‚ัŒ ัั‚ะธ ัั‚ั€ะพะบะธ ะฒ ะฑะปะพะบ ั‚ะตะบัั‚ะฐ, ั€ะฐะทะดะตะปะธะฒ ะธะทะฝะฐั‡ะฐะปัŒะฝั‹ะต ัั‚ั€ะพะบะธ ะทะฐะฟัั‚ั‹ะผะธ. # ะ’ ะบะฐั‡ะตัั‚ะฒะต ัˆัƒั‚ะบะธ ะฝะฐะด ะฟั€ะฐะฒะพั€ัƒะบะธะผะธ ั€ะพะฑะพั‚ะฐะผะธ, ะฒั‹ ะดะพะปะถะฝั‹ ะทะฐะผะตะฝะธั‚ัŒ ะฒัะต ะฒั…ะพะถะดะตะฝะธั ัะปะพะฒะฐ "right" ะฝะฐ ัะปะพะฒะฐ "left", # ะดะฐะถะต ะตัะปะธ ัั‚ะพ ั‡ะฐัั‚ัŒ ะดั€ัƒะณะพะณะพ ัะปะพะฒะฐ. ะ’ัะต ัั‚ั€ะพะบะธ ะดะฐะฝั‹ ะฒ ะฝะธะถะฝะตะผ ั€ะตะณะธัั‚ั€ะต. right: str = "right" left: str = "left" def is_exist_left(value): try: value.index(left) return True except: return False def is_exist_right(value): try: value.index(right) return True except: return False value_list: list = ["left", "right", "left", "stop", "bright aright", "ok", "enough", "jokes"] result: str = '' for value in value_list: if(is_exist_right(value)): value = value.replace(right, left) result += value + "," elif(is_exist_left(value)): value = value.replace(left, right) result += value + "," else: result += value + "," print("ะ ะตะทัƒะปัŒั‚ะฐั‚: ", result[:-1])
annapodl18/Command-flow
Left_hand.py
Left_hand.py
py
1,256
python
ru
code
0
github-code
6
71842718268
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #autograd oops import torch.optim as optim # core code of TRADES # shhhhhh where does the author use l2-norm????? def squared_l2_norm(x): flattened = x.view(x.unsqueeze(0).shape[0], -1) return (flattened ** 2).sum(1) def l2_norm(x): return squared_l2_norm(x).sqrt() # core function for TRADES calculating traded_loss def trades_loss(model, x_natural, y, optimizer, step_size=0.003, epsilon=0.031, perturb_steps=10, beta=1.0, # the coeff of second term distance='l_inf'): # define KL-loss for inner maximization https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html?highlight=kldivloss#torch.nn.KLDivLoss # If the field size_average is set to False, the losses are instead summed for each minibatch. criterion_kl = nn.KLDivLoss(size_average=False) # how to use loss : f_loss(*args)(input) <- two parenthesis #eval() for BN and Dropout model.eval() # feed x_natural here into the loss as a batch batch_size = len(x_natural) # generate adversarial example # initiate an x_adv for skipping the concave x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cpu().detach() # detach() tensor won't give it grad calculations anymore. if distance == 'l_inf': # L-infinity ball # no random start here for _ in range(perturb_steps): # FGSM_k x_adv.requires_grad_() # start from x_adv with torch.enable_grad(): # enable_grad vs no_grad # For the maximization problem, using torch.nn.KLDivLoss and cross entropy is equivalent because they differ by a constant additive term. loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)) # why first term log while second term origin: because in the loss_criteria, there is no "log_target = True" grad = torch.autograd.grad(loss_kl, [x_adv])[0] # Computes and returns the sum of gradients of outputs w.r.t. the inputs. x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) #clamp .. x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon) #clamp original pic x_adv = torch.clamp(x_adv, 0.0, 1.0) elif distance == 'l_2':# L_2 we will come back later about l_2....not commented yet delta = 0.001 * torch.randn(x_natural.shape).cpu().detach() delta = Variable(delta.data, requires_grad=True) # Setup optimizers optimizer_delta = optim.SGD([delta], lr=epsilon / perturb_steps * 2) for _ in range(perturb_steps): adv = x_natural + delta # optimize optimizer_delta.zero_grad() with torch.enable_grad(): loss = (-1) * criterion_kl(F.log_softmax(model(adv), dim=1), F.softmax(model(x_natural), dim=1)) loss.backward() # renorming gradient grad_norms = delta.grad.view(batch_size, -1).norm(p=2, dim=1) delta.grad.div_(grad_norms.view(-1, 1, 1, 1)) # avoid nan or inf if gradient is 0 if (grad_norms == 0).any(): delta.grad[grad_norms == 0] = torch.randn_like(delta.grad[grad_norms == 0]) optimizer_delta.step() # projection delta.data.add_(x_natural) delta.data.clamp_(0, 1).sub_(x_natural) delta.data.renorm_(p=2, dim=0, maxnorm=epsilon) x_adv = Variable(x_natural + delta, requires_grad=False) # not implemented for other losses else: x_adv = torch.clamp(x_adv, 0.0, 1.0) # adding two losses: L(fx,y) , L(fx',fx) model.train() x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) # not the main part, code related only # zero gradient again, zero_grad -> loss_back -> updae? optimizer.zero_grad() # calculate robust loss logits = model(x_natural) # pred of fx loss_natural = F.cross_entropy(logits, y) # loss of fx,y # loss of fx' fx loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)) loss = loss_natural + beta * loss_robust return loss
yaoyugua/TRADES
TRADES-master/trades.py
trades.py
py
4,661
python
en
code
0
github-code
6
20493833703
import json d1 = { 'Pessoa 1': { 'nome:': 'Luiz Augusto', 'idade:': 25, }, 'Pessoa 2': { 'nome:': 'Adriano Santos', 'idade:': 30, }, } print() print(d1,'\n') d1_json = json.dumps(d1, indent=True) with open('arquivo.json', 'w+') as file: file.write(d1_json) print(d1_json)
Adriano1976/Curso-de-Python
Secao03-Programacao-Procedural/Aula087-Arquivos-Criar-ler-escrever-e-apagar/main.py
main.py
py
329
python
pt
code
0
github-code
6
71674830588
import genanki import functools import os TRUE_FALSE_MODEL_ID = 1803127777 @functools.lru_cache() def load_true_false_model(): data = {} for fname in ['fields.json', 'templates.yaml', 'cards.css']: path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'true_false_model', fname) with open(path) as f: data[fname] = f.read() return genanki.Model( TRUE_FALSE_MODEL_ID, 'Anatomy True False', fields=data['fields.json'], templates=data['templates.yaml'], css=data['cards.css'], ) class AnatomyTrueFalseNote(genanki.Note): def __init__(self, *args, **kwargs): super().__init__(load_true_false_model(), *args, **kwargs) MULTIPLE_CHOICE_MODEL_ID = 1803127778 @functools.lru_cache() def load_multiple_choice_model(): data = {} for fname in ['fields.json', 'templates.yaml', 'cards.css']: path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'multiple_choice_model', fname) with open(path) as f: data[fname] = f.read() return genanki.Model( MULTIPLE_CHOICE_MODEL_ID, 'Anatomy Multiple Choice', fields=data['fields.json'], templates=data['templates.yaml'], css=data['cards.css'], ) class AnatomyMultipleChoiceNote(genanki.Note): def __init__(self, *args, **kwargs): super().__init__(load_multiple_choice_model(), *args, **kwargs)
kerrickstaley/anatomyquestions
note.py
note.py
py
1,414
python
en
code
0
github-code
6
38696996514
# coding=utf-8 import requests from browse_airbnb import get_reviews from time import strftime from pablo import Pablo def get_all_reviews(logement_id): bdd = Pablo() insert_query = """INSERT INTO airbnb_review_global (review_id, author_id, listing_id, recipient_id, content, date_creation, language, date_extract) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)""" for review in get_reviews(logement_id): review_id = review['id'] author_id = review['author_id'] listing_id = review['listing_id'] recipient_id = review['recipient_id'] content = review['comments'] date_creation = review['created_at'][:10] language = review['language'] params = (review_id, author_id, listing_id, recipient_id, content, date_creation, language, strftime("%Y%m%d")) bdd.exec_req_with_args(insert_query, params) bdd.close() def get_some_review_paris(): bdd = Pablo() i = 0 # bdd.executerReq("SELECT distinct listing_id from airbnb_reviews_20k order by id desc") req = """SELECT listing_id FROM airbnb_reviews_20k WHERE listing_id NOT IN (SELECT DISTINCT listing_id FROM airbnb_review_global WHERE date_creation > 20170531 AND date_creation < 20170701)""" bdd.executerReq(req) for listing in bdd.resultatReq()[::-1]: i += 1 id_listing = listing[0] print("listing number : %s" % i) get_all_reviews(id_listing) bdd.close() if __name__ == '__main__': get_some_review_paris()
pablo-a/airbnb
get_all_reviews_listing.py
get_all_reviews_listing.py
py
1,585
python
en
code
1
github-code
6
33850641451
# ็ฌฌ 0002 ้ข˜๏ผš็”Ÿๆˆ็š„200ไธชๆฟ€ๆดป็ ไฟๅญ˜ๅœจmysqlๅ…ณ็ณปๅž‹ๆ•ฐๆฎๅบ“ไธญ import random, string import pymysql def get_string(num, length=10): codes = [] chars = string.ascii_uppercase + string.digits for i in range(num): one_code = random.sample(chars, length) codes.append(''.join(one_code)) return codes def save_code_mysql(): try: conn = pymysql.connect(host='localhost', user='root', password='123456', charset='UTF8') cur = conn.cursor() except BaseException as e: print(e) else: try: cur.execute("CREATE DATABASE IF NOT EXISTS code_mysql") cur.execute("USE code_mysql") cur.execute("CREATE TABLE IF NOT EXISTS codes (id INT AUTO_INCREMENT PRIMARY KEY, code VARCHAR(32))") codes = get_string(200) for code in codes: cur.execute("INSERT INTO codes(code) values(%s)", (code)) conn.commit() cur.execute("SELECT * FROM codes") result = cur.fetchall() for i in result: print(i) except BaseException as e: print(e) finally: cur.close() conn.close() if __name__ == '__main__': save_code_mysql()
akenYu/learnpy
showme/02/savemysql.py
savemysql.py
py
1,070
python
en
code
0
github-code
6
70167475709
#!/usr/bin/env python from setuptools import setup, Extension import os from os import popen from os.path import dirname, join class lazy_cythonize(list): def __init__(self, callback): self._list = None self.callback = callback def c_list(self): if self._list is None: self._list = self.callback() return self._list def __iter__(self): return iter(self.c_list()) def __getitem__(self, ii): return self.c_list()[ii] def __len__(self): return len(self.c_list()) # for CWB 2.2 #extra_libs = [] # for CWB >= 3.0 extra_libs = ['pcre', 'glib-2.0'] if 'CWB_DIR' in os.environ: cqp_dir = os.environ['CWB_DIR'] else: cqp_location = popen('which cqp').read().rstrip() cqp_dir = dirname(cqp_location) def extensions(): try: from Cython.Build import cythonize incdirs = ['src', join(cqp_dir, 'include')] except ImportError: cythonize = lambda x: x incdirs = [] ext_modules = [Extension('CWB.CL', ['src/CWB/CL.pyx'], include_dirs=incdirs, library_dirs=[join(cqp_dir, 'lib')], libraries=['cl'] + extra_libs)] return cythonize(ext_modules) def read(fname): return open(fname).read() setup( name='cwb-python', description='CQP and CL interfaces for Python', author='Yannick Versley / Jorg Asmussen', version='0.2.1', author_email='[email protected]', url='https://bitbucket.org/yannick/cwb-python', ext_modules=lazy_cythonize(extensions), py_modules=['PyCQP_interface'], packages=['CWB', 'CWB.tools'], long_description=read('README'), entry_points={ 'console_scripts': [ 'cqp2conll = CWB.tools.cqp2conll:main', 'cqp_bitext = CWB.tools.make_bitext:main', 'cqp_vocab = CWB.tools.cqp2vocab:cqp2vocab_main' ]}, install_requires=['setuptools>=17', 'cython>=0.19', 'six'], package_dir={'': 'py_src'})
bogdanbabych/paralex4cfields
tests/cwb-python/setup.py
setup.py
py
2,041
python
en
code
0
github-code
6
71969151547
from django.contrib import admin from django.urls import path, re_path from . import views urlpatterns = [ path('',views.index,name="words-index"), #index homePage path('words/',views.index,name="words-index"),#index homePage path('random/',views.get_random,name="random"), #Random word path('words/<str:word_name>/', views.detail, name='words-detail'), # detail page path('words/add/<str:word_name>', views.add_word, name="words-add_word_details"),# add word page path('add/', views.add_word, name="words-add_word_details"), path('about/',views.about,name="about-page"), #about page path('contact/',views.contact,name="contact"), #contact page path('tag/',views.all_tags,name="all-tags-page"), #Case for empty tag entering path('tag/<str:str_Tag>',views.tag_page,name="tag-detail-page"), #Tag page for words of a certain tag path('tagList/', views.all_tags, name="all-tags-page"), #page where all tags are displayed path('words/votes/<str:slug>/<str:direction>/',views.vote, name="vote"), # This view Manages votes ]
gystr/words
words/urls.py
urls.py
py
1,067
python
en
code
1
github-code
6
9963863734
import numpy as np import scipy.sparse as sp import torch import time import random from utils.tool import read_data, write_dic, dictionary, normalize, sparse_mx_to_torch_sparse_tensor def encoding_test(test_graph_path, test_fact_path, train_dataset = "fb237_v1"): """load test-graph and test-facts, and do the encoding on the test-graph""" t_start = time.time() path = "data" #these two paths are for loading relation_dic_path = "{}/{}/train/relation-dic.txt".format(path, train_dataset) type_dic_path = "{}/{}/train/type-dic.txt".format(path, train_dataset) test_graph_triples = read_data(test_graph_path) test_fact_triples_with_label = read_data(test_fact_path) #load relation dic and type dic generated by training f_relation_dic = open(relation_dic_path) relations = [] for line in f_relation_dic: relation_new = line.strip().split("\t")[1] relations.append(relation_new) f_type_dic = open(type_dic_path) types = [] for line in f_type_dic: type_new = line.strip().split("\t")[1] types.append(type_new) relation_set = set(relations) all_triples_with_label = test_graph_triples + test_fact_triples_with_label test_graph_real_triples = [] test_graph_type_triples = [] for triple in test_graph_triples: if triple[1] != "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>": test_graph_real_triples.append(triple) else: test_graph_type_triples.append(triple) test_fact_real_triples_with_label = [] test_fact_type_triples_with_label = [] for triple in test_fact_triples_with_label: if triple[1] != "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>": test_fact_real_triples_with_label.append(triple) else: test_fact_type_triples_with_label.append(triple) all_real_triples_with_label = [] all_type_triples_with_label = [] constant_set = set() for triple in all_triples_with_label: if triple[1] != "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>": constant_set.add(triple[0]) constant_set.add(triple[2]) all_real_triples_with_label.append(triple) else: constant_set.add(triple[0]) all_type_triples_with_label.append(triple) constants = list(constant_set) constant2index = dictionary(constants) relation2index = dictionary(relations) type2index = dictionary(types) #print("time:",time.time()-t_start) #generate list of pairs for encoding pairs = [] pair_set = set() for triple in all_real_triples_with_label: sub_idx = constant2index[triple[0]] obj_idx = constant2index[triple[2]] if sub_idx < obj_idx: if (sub_idx, obj_idx) not in pair_set: pair_set.add((sub_idx, obj_idx)) pairs.append((sub_idx, obj_idx)) if sub_idx > obj_idx: if (obj_idx, sub_idx) not in pair_set: pair_set.add((obj_idx, sub_idx)) pairs.append((obj_idx, sub_idx)) for constant_idx in range(len(constants)): pairs.append((constant_idx, constant_idx)) pair_set.add((constant_idx, constant_idx)) pair2index = dictionary(pairs) s_time = time.time() #collect related pairs for each constant pairs_for_constant = dict([(i,set()) for i in range(len(constants))]) p_idx = 0 for pair in pairs: p_idx = pair2index[pair] c1 = pair[0] c2 = pair[1] pairs_for_constant[c1].add(p_idx) pairs_for_constant[c2].add(p_idx) #collect neighbors for each pair node pneighbors_for_pair = dict([(i,set()) for i in range(len(pairs))]) for c_idx in range(len(constants)): pairs_c = set(pairs_for_constant[c_idx]) #pair and n_pair would contain one common constant for pair in pairs_c: for n_pair in pairs_c: if pair != n_pair: pneighbors_for_pair[pair].add(n_pair) #generate edge list edges = [] for i in range(len(pairs)): pneighbors = pneighbors_for_pair[i] for pneighbor in pneighbors: edges.append([i, pneighbor]) edges.append([pneighbor, i]) #print("Finished generating edges", time.time() - s_time) #generate a normalized adjencency matrix (strategy for GCN) #print(edges) edges = np.array(edges) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(len(pairs), len(pairs)), dtype=np.float32) adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj) adj = normalize(adj + sp.eye(adj.shape[0])) adj = sparse_mx_to_torch_sparse_tensor(adj) del edges #print("Total time for adj: {:.4f}s".format(time.time() - s_time)) #print("Start to generate features, labels, and masks") def initialize(test_graph_real_triples, test_graph_type_triples, test_fact_real_triples_with_label, test_fact_type_triples_with_label): labels = torch.zeros(len(pairs), len(types) + 2*len(relations)) masks = torch.zeros(len(pairs), len(types) + 2*len(relations)) features = torch.zeros(len(pairs), len(types) + 2*len(relations)) #labels and masks are generated for all triples in test-facts (pos&neg) for triple in test_fact_type_triples_with_label: cons = triple[0] typ = triple[2] label = triple[3] pair_idx= pair2index[(constant2index[cons], constant2index[cons])] typ_idx = type2index[typ] if label == "1": labels[pair_idx][typ_idx] = 1 elif label == "0": labels[pair_idx][typ_idx] = 0 masks[pair_idx][typ_idx] = 1 for triple in test_fact_real_triples_with_label: sub = triple[0] rel = triple[1] obj = triple[2] label = triple[3] sub_idx = constant2index[sub] rel_idx = relation2index[rel] obj_idx = constant2index[obj] try: pair_idx = pair2index[(sub_idx, obj_idx)] except: pair_idx = pair2index[(obj_idx, sub_idx)] rel_idx = rel_idx + len(relations) if label == "1": labels[pair_idx][len(types) + rel_idx] = 1 elif label == "0": labels[pair_idx][len(types) + rel_idx] = 0 masks[pair_idx][len(types) + rel_idx] = 1 #features are generated for all triples in test-graph (pos&neg) for triple in test_graph_type_triples: cons = triple[0] typ = triple[2] pair_idx= pair2index[(constant2index[cons], constant2index[cons])] typ_idx = type2index[typ] features[pair_idx][typ_idx] = 1 for triple in test_graph_real_triples: sub = triple[0] rel = triple[1] obj = triple[2] sub_idx = constant2index[sub] rel_idx = relation2index[rel] obj_idx = constant2index[obj] try: pair_idx = pair2index[(sub_idx, obj_idx)] except: pair_idx = pair2index[(obj_idx, sub_idx)] rel_idx = rel_idx + len(relations) features[pair_idx][len(types) + rel_idx] = 1 features.requires_grad = True labels.requires_grad = False return features, labels, masks features, labels, masks = initialize(test_graph_real_triples, test_graph_type_triples, test_fact_real_triples_with_label, test_fact_type_triples_with_label) num_type = len(types) num_relation = len(relations) def triple2index(triple_now): sub_idx = constant2index[triple_now[0]] try: relation_idx = relation2index[triple_now[1]] except: pair_idx = pair2index[(sub_idx, sub_idx)] dim_idx = type2index[triple_now[2]] return pair_idx, dim_idx obj_idx = constant2index[triple_now[2]] if (sub_idx, obj_idx) in pair_set: pair_idx = pair2index[(sub_idx, obj_idx)] dim_idx = len(types) + relation_idx elif (obj_idx, sub_idx) in pair_set: pair_idx = pair2index[(obj_idx, sub_idx)] dim_idx = len(types) + len(relations) + relation_idx else: print(triple_now, sub_idx, relation_idx, obj_idx) print("wrong") return pair_idx, dim_idx hits_true = [] for triple in test_fact_triples_with_label: if triple[-1] == "1": hits_true.append(triple2index(triple)) #print("Finished generation") #print("Total time elapsed for encoding: {:.4f}s".format(time.time() - t_start)) return adj, features, labels, masks, num_type, num_relation, constants, relations, types, pairs, hits_true
shuwen-liu-ox/INDIGO
utils/utils_test_pattern.py
utils_test_pattern.py
py
9,170
python
en
code
22
github-code
6
40411376601
#!/usr/bin/env python3 """ Name: locator_led_status.py Description: NXAPI: display locator-led status for chassis, modules, fans Example output: % ./locator_led_status.py --vault hashicorp --devices cvd_bgw_1 --module 1,2 --fan 1,2 ip hostname status locator-led 192.168.11.110 cvd-1111-bgw ON chassis 192.168.11.110 cvd-1111-bgw OFF module_1 192.168.11.110 cvd-1111-bgw ON module_2 192.168.11.110 cvd-1111-bgw ON fan_1 192.168.11.110 cvd-1111-bgw OFF fan_2 % """ our_version = 106 script_name = "locator_led_status" # standard libraries import argparse import re from concurrent.futures import ThreadPoolExecutor # local libraries from nxapi_netbox.args.args_cookie import ArgsCookie from nxapi_netbox.args.args_nxapi_tools import ArgsNxapiTools from nxapi_netbox.general.log import get_logger from nxapi_netbox.netbox.netbox_session import netbox, get_device_mgmt_ip from nxapi_netbox.vault.vault import get_vault from nxapi_netbox.nxapi.nxapi_locator_led import NxapiLocatorLedStatus def get_parser(): ex_prefix = "Example:" help_module = ( "Either a single module/linecard, or a comma-separate list of modules/linecards" ) help_fan = "Either a single fan, or a comma-separate list of fans" help_on = "If present, print only locator-leds whose status is ON. If not present, print status for all locator-leds" ex_module = "{} --module 2,3,6".format(ex_prefix) ex_fan = "{} --fan 3".format(ex_prefix) ex_on = "{} --on".format(ex_prefix) parser = argparse.ArgumentParser( description="DESCRIPTION: NXAPI: display locator-led status for chassis, modules, fans", parents=[ArgsCookie, ArgsNxapiTools], ) mandatory = parser.add_argument_group(title="MANDATORY SCRIPT ARGS") optional = parser.add_argument_group(title="OPTIONAL SCRIPT ARGS") optional.add_argument( "--on", dest="on", required=False, action="store_true", default=False, help="{} {}".format(help_on, ex_on), ) optional.add_argument( "--module", dest="module", required=False, default=None, help="(default: %(default)s) " + help_module + ex_module, ) optional.add_argument( "--fan", dest="fan", required=False, default=None, help="(default: %(default)s) " + help_fan + ex_fan, ) parser.add_argument( "--version", action="version", version="{} v{}".format("%(prog)s", our_version) ) return parser.parse_args() def get_device_list(): try: return cfg.devices.split(",") except: log.error( "exiting. Cannot parse --devices {}. Example usage: --devices leaf_1,spine_2,leaf_2".format( cfg.devices ) ) exit(1) def print_output(futures): for future in futures: output = future.result() if output == None: continue for line in output: print(line) if len(output) > 0: print() def print_header(): print(fmt.format("ip", "hostname", "status", "locator-led")) def collect_output(ip, nx, modules, fans): lines = list() if not cfg.on: lines.append(fmt.format(ip, nx.hostname, nx.chassis, "chassis")) elif cfg.on and nx.chassis == "ON": lines.append(fmt.format(ip, nx.hostname, nx.chassis, "chassis")) for module in modules: nx.module = module if cfg.on and nx.module_status != "ON": continue lines.append( fmt.format(ip, nx.hostname, nx.module_status, "module_{}".format(module)) ) for fan in fans: nx.fan = fan if cfg.on and nx.fan_status != "ON": continue lines.append(fmt.format(ip, nx.hostname, nx.fan_status, "fan_{}".format(fan))) return lines def worker(device, vault, modules, fans): ip = get_device_mgmt_ip(nb, device) nx = NxapiLocatorLedStatus(vault.nxos_username, vault.nxos_password, ip, log) nx.nxapi_init(cfg) nx.refresh() return collect_output(ip, nx, modules, fans) def cfg_to_list(cfg_list, desc): _list = list() if cfg_list == None: return _list for item in re.split(",", str(cfg_list)): if item == None: continue try: _list.append(int(item)) except: log.error("Exiting. Expected int() for {}. Got {}".format(desc, cfg_list)) log.error("Usage examples:") log.error(" --{} 3".format(desc)) log.error(" --{} 1,2,4".format(desc)) exit(1) return _list cfg = get_parser() modules = cfg_to_list(cfg.module, "module") fans = cfg_to_list(cfg.fan, "fan") log = get_logger(script_name, cfg.loglevel, "DEBUG") vault = get_vault(cfg.vault) vault.fetch_data() nb = netbox(vault) devices = get_device_list() fmt = "{:<15} {:<18} {:<6} {:<12}" print_header() executor = ThreadPoolExecutor(max_workers=len(devices)) futures = list() for device in devices: args = [device, vault, modules, fans] futures.append(executor.submit(worker, *args)) print_output(futures)
allenrobel/nxapi-netbox
scripts/locator_led_status.py
locator_led_status.py
py
5,240
python
en
code
0
github-code
6
36413210728
# --------------- # ParamCopy - Substance 3D Designer plugin # (c) 2019-2022 Eyosido Software SARL # --------------- from sd.api.sdpackage import SDPackage from sd.api.sdnode import SDNode from sd.api.sdgraph import SDGraph from sd.api.sdarray import SDArray from sd.api.sdproperty import SDPropertyCategory from sd.api.apiexception import APIException from paramcopy.pccore.pchelper import PCHelper from paramcopy.pccore.pcnodeid import PCNodeIdentifier from paramcopy.pccore.pcparam import PCParam, PCParamCollection class PCNodeState: def __init__(self, node, storeBaseParams = True, storeSpecificParams = True, graph = None): self.nodeIdentifier = PCNodeIdentifier(node, graph) self.state = PCParamCollection() def recallInto(self, destNode, copyBaseAndSpecific = True, propertyIds = None): for propertyId, propertyData in self.state.params.items(): if not propertyIds or (propertyIds and propertyId in propertyIds): # filter properties isBaseParam = PCHelper.isBaseParameter(propertyId) if copyBaseAndSpecific or isBaseParam: # verify whether property exists in destination node try: destVal = destNode.getInputPropertyValueFromId(propertyId) if destVal: destProp = destNode.getPropertyFromId(propertyId, SDPropertyCategory.Input) isFunctionDriven = PCHelper.isInputParamFunctionDriven(destNode, destProp) if not isFunctionDriven: # make sure not to copy over a user function if propertyData.inheritanceMethod != -1: #inheritance method is to be set *before* property value destNode.setInputPropertyInheritanceMethodFromId(propertyData.id, propertyData.inheritanceMethod) destNode.setInputPropertyValueFromId(propertyData.id, propertyData.value) except APIException as e: PCHelper.logSDException(e) finally: pass def retrieveNode(self): return self.nodeIdentifier.retrieveNode() def storeState(self, node, storeBaseParams = True, storeSpecificParams = True, propertyIds = None): #if propertyIds are defined, only those will be stored regardless of storeBaseParams/storeSpecificParams properties = node.getProperties(SDPropertyCategory.Input) if properties: p = 0 psize = properties.getSize() while p < psize: prop = properties.getItem(p) if prop.getType().getClassName() != "SDTypeTexture": # do not process node inputs propertyId = prop.getId() isBaseParam = PCHelper.isBaseParameter(propertyId) if (propertyIds and propertyId in propertyIds) or \ (not propertyIds and \ ( (isBaseParam and storeBaseParams) or (not isBaseParam and storeSpecificParams) ) \ ): if not PCHelper.isHiddenParam(node, propertyId): groupName = PCHelper.getParamGroupName(node, propertyId) inheritanceMethod = PCHelper.getInheritanceMethod(node, propertyId) value = node.getPropertyValue(prop) # PCHelper.newPropertyValue(node, prop) ?? param = PCParam(propertyId, prop.getLabel(), inheritanceMethod, value, groupName) self.state.params[propertyId] = param p += 1 class PCNodeStateSet: def __init__(self, graph, stateSetName): self.graphName = graph.getIdentifier() package = graph.getPackage() self.packageName = PCHelper.getPackageName(package) self.id = PCHelper.getPackageId(package) + "_" + graph.getIdentifier() + "_" + stateSetName self.name = stateSetName self.nodeStates = [] def storeNodeStates(self, nodeArray, graph, storeBaseParams = True, storeSpecificParams = True): size = nodeArray.getSize() for n in range(0, size): node = nodeArray.getItem(n) nodeState = PCNodeState(node, graph) nodeState.storeState(node, storeBaseParams, storeSpecificParams) self.nodeStates.append(nodeState) def recallNodeStates(self): misses = 0 for nodeState in self.nodeStates: node = nodeState.retrieveNode() if node: nodeState.recallInto(node) else: misses += 1 return misses class PCStateMgr: """ Store sets of node states for later recall """ inst = None @classmethod def instance(cls): if not cls.inst: cls.inst = PCStateMgr() return cls.inst def __init__(self): self.nodeStateSets = {} # key: state set name, value, PCNodeStateSet def stateSetNameExists(self, stateSetName): return self.nodeStateSets.get(stateSetName) != None def addStateSet(self, stateSet): self.nodeStateSets[stateSet.name] = stateSet def deleteStateSet(self, stateSetName): if self.nodeStateSets.get(stateSetName): del self.nodeStateSets[stateSetName] return True else: return False def deleteAll(self): self.nodeStateSets = {}
eyosido/ParamCopy
src/paramcopy/pccore/pcstatemgr.py
pcstatemgr.py
py
5,587
python
en
code
9
github-code
6
22195221109
from __future__ import print_function from __future__ import division from __future__ import absolute_import import numpy as np from btk import btk import os import matplotlib import matplotlib.pyplot as plt from tkinter import * from tkinter.messagebox import * from tkinter import ttk # Label = strike / off ; context = droite / gauche def filtreExtremum(extrem, originalData): if 0 in extrem: extrem = extrem[1:] if len(originalData)-1 in extrem: extrem = extrem[:-1] return extrem # But : trouvรฉ tous les maximum locaux # In : un vecteur de taille nx1 # Out : les positions x des max locaux (pas leur valeur y) def maxLocal(a): TFarray = np.array(np.r_[True, a[1:] > a[:-1]] & np.r_[a[:-1] > a[1:], True]) # Rempli un vecteur avec que des False, sauf lorsqu'une donnรฉe dans le vecteur est plus grande que son voisin de droite et de gauche (il met alors True) indMax = np.ravel( np.where( TFarray == True ) ) # On rรฉcupรจre les index oรน il y a les True indMax = filtreExtremum(indMax, a) return indMax # Fonctions en cours, pas encore effective def semiMaxLocal(a): TFarray = np.array(np.r_[True, a[1:] > a[:-1]] & np.r_[a[:-1] == a[1:], True]) indSemiMax = np.where( TFarray == True ) return indSemiMax def findMinMin(data, Min): minMin = minLocal(data[Min]) return Min[minMin] # Pareil que maxLocal, mais pour trouver les minimum locaux def minLocal(a): TFarray = np.array(np.r_[True, a[1:] < a[:-1]] & np.r_[a[:-1] < a[1:], True]) indMin = np.ravel( np.where( TFarray == True ) ) indMin = filtreExtremum(indMin, a) return indMin #clean the arrays of all local extremum that are too close of eachother (extremums super local) def cleanMinMax(indMin, indMax): for i in indMax: for j in np.flip(indMin,0): if(np.abs(i-j)<7): indMax = np.extract(indMax!=i,indMax) indMin = np.extract(indMin!=j,indMin) break return indMin, indMax # Dico avec comme clรฉ les labels, et comme valeur un entier # e.g. : DicoLabels = {"LSHO" = 0, "RSHO" = 1, "RANK" = 2, ...} # Fonction jamais utilisรฉ pour l'instant def dicLab(metadata): point_labels = metadata.FindChild("POINT").value().FindChild("LABELS").value().GetInfo().ToString() dicoLabels = {} index = 0 for lab in point_labels: dicoLabels[lab] = index index += 1 return dicoLabels # Plot les events dans la figure "ax", lignes verticales # In : acq, qui contient les events ; ax, oรน on va ploter les lignes verticales # Out : la nouvelle figure, oรน on a plotรฉ les lignes def plotEvent(acq, ax): n_events = acq.GetEventNumber() # On rรฉcupรจre le nombre d'รฉvรจnements, pour les parcourirs for numevent in range(n_events): # On parcours les indices des รฉvรจnements event = acq.GetEvent(numevent) # On rรฉcupรจre un รฉvรจnement, grรขce ร  son indice correspondant event_frame = event.GetFrame() # On rรฉcupรจre la frame oรน se situe l'รฉvรจnement context = event.GetContext() # On rรฉcupรจre le context (e.g. Left ou Right) label = event.GetLabel() # On rรฉcupรจre le label (e.g. : Foot_Strike_GS) if context == 'Left': # Test si c'est le pied gauche if label == 'Foot_Strike_GS': # Test si c'est quand le pied touche le sol leftLineStrike = ax.axvline(x = event_frame, color='r', label='Left - Strike', linestyle='--') # Plot en rouge, avec des tirets # ax.legend([leftLineStrike], 'Left - Strike') elif label == 'Foot_Off_GS': # Test si c'est quand le pied ne touche plus le sol leftLineOff = ax.axvline(x = event_frame, color='r', label='Left - Off', linestyle='-.') # Plot en rouge, avec des tirets et des points if context == 'Right': # Test si c'est le pied droit if label == 'Foot_Strike_GS': # Test si c'est quand le pied touche le sol rightLineStrike = ax.axvline(x = event_frame, color='g', label='Righ - Strike', linestyle='--') # Plot en vert, avec des tirets elif label == 'Foot_Off_GS': # Test si c'est quand le pied ne touche plus le sol rightLineOff = ax.axvline(x = event_frame, color='g', label='Right - Off', linestyle='-.') # Plot en rouge, avec des tirets et des points # On rajoute la lรฉgende # S'IL Y A UNE ERREUR, ENLEVER CETTE LIGNE # ax.legend((leftLineOff, rightLineStrike, rightLineOff), ('Left - Off', 'Right - Strike', 'Right - Off')) return ax # Selectionne les รฉlรฉments de files ayant un event correspondant au label et au contexte # Renvoie en training set (3/4) et un testing set (1/4) constituรฉs de ces รฉlรฉments. def selectWithExistingEvent(files, lab, cont): eventfiles = [] for acq in files: n_events = acq.GetEventNumber() # On rรฉcupรจre le nombre d'รฉvรจnements, pour les parcourirs for numevent in range(n_events): # On parcours les indices des รฉvรจnements event = acq.GetEvent(numevent) # On rรฉcupรจre un รฉvรจnement, grรขce ร  son indice correspondant if event.GetLabel() == lab and event.GetContext()==cont: # Test si c'est le label recherchรฉ eventfiles.append(acq) break test = np.random.choice(eventfiles, (len(eventfiles)//4), replace = False).tolist() train = list(set(eventfiles)-set(test)) return train, test # But : Rรฉcupรฉrer les donnรฉes # In : path des donnรฉes (Attention : le chemin commence de lร  oรน est le fichier) # Out : les donnรฉes def initial(pathFile): reader = btk.btkAcquisitionFileReader() reader.SetFilename(pathFile) reader.Update() acq = reader.GetOutput() return acq def save(acq, pathFile): writer = btk.btkAcquisitionFileWriter() writer.SetInput(acq) writer.SetFilename(pathFile) writer.Update() def allFiles(path): files = [] # Pour trouver tous les fichiers .c3d for r, d, f in os.walk(path): for file in f: if '.c3d' in file: files.append(initial(os.path.join(r, file))) return files # But : avoir des infos ร  propos des frames de "acq" # In : les donnรฉes acq # Out : nombres de frames, numรฉro de la 1รจre frame, numรฉro de la derniรจre frame def frameData(acq): # get some parameters n_frames = acq.GetPointFrameNumber() # give the number of frames first_frame = acq.GetFirstFrame() last_frame = acq.GetLastFrame() return n_frames, first_frame, last_frame # But : crรฉer un nouvel รฉvรจnement # Un nouvel รฉvรจnement est caractรฉrisรฉ par un label, un context, et un numรฉro de frame # In : les donnรฉes "acq", un label, un context, et une frame def addEvent(acq, label, context, frameNumber): newEvent = btk.btkEvent() # Crรฉer un nouvel รฉvรจnement vide newEvent.SetLabel(label) # Met un label newEvent.SetContext(context) # Met un context newEvent.SetFrame(frameNumber) # Met la positoin, la frame acq.AppendEvent(newEvent) # Rajoute l'รฉvรจnement parmi tous les autres รฉvรจnements # But : รฉquivalent ร  print('obj = ', obj) # Pas nรฉcessaire pour le projet def printName(obj, namespace): nom = [name for name in namespace if namespace[name] is obj] print(nom[0],' = ', obj) # But : Avoir toutes les infos d'un รฉvรจnements # In : les donnรฉes "acq", et le numรฉro de l'รฉvรจnement # Out : l'รฉvรจnement, le label, le context, et le num de la frame def eventInfo(acq, numEvent): event = acq.GetEvent(0) # extract the first event of the aquisition label = event.GetLabel() # return a string representing the Label context = event.GetContext() # return a string representing the Context frame = event.GetFrame() # return the frame as an integer return event, label, context, frame # But : trouver l'รฉvรจnement le plus proche d'une position, frame donnรฉe # In : des donnรฉes "data", l'ensemble des รฉvรจnements (AllEvents), le label et le context recherchรฉ , et la position depuis laquel on recherche # Out : l'รฉvรจnement, et la frame cprrespondante def closestEvent(data, AllEvents, label=0, context=0, start=1): if (label == 0) and (context == 0): return AllEvents.GetItem(0), AllEvents.GetItem(0).GetFrame() eventVIP = [] # Array qui contiendra tous les รฉvรจnements correspondant au mรชme label et mรชme contexte que demandรฉ numberEvent = AllEvents.GetItemNumber() # Nombre d'รฉvรจnements au total for num in range(numberEvent): # On regarde tout les รฉvรจnement event = AllEvents.GetItem(num) # On rรฉcupรจre un รฉvรจnement if (event.GetContext() == context) and (event.GetLabel() == label): # Test si on a les mรชmes context et label eventVIP.append(event) # On rajoute l'รฉvรจnement if len(eventVIP) == 0: # Si on a trouvรฉ aucun รฉvรจnement recherchรฉ, on arrรชte return 0, 0 dist = 1000 # On initialise une distance trรจs grande, qui diminuera even = eventVIP[0] # On commence par le premier รฉvรจnement for event in eventVIP: # On parcours les รฉvรจnements if np.abs(event.GetFrame() - start) < dist: # On test si la distance entre la position de dรฉpart et un รฉvรจnement correspondant dist = np.abs(event.GetFrame() - start) # On mรฉmorise la nouvel distance even = event # On mรฉmorise le nouvel รฉvรจnement return even, even.GetFrame() # But : trouver l'extremum le plus proche d'une position de dรฉpart # In : position de dรฉpart "start", les indices (position x) d'extremum (les min ou les max) # Out : position x de l'extremum, la distance par rapport au point de dรฉpart (start), et l'indice dans l'array des min ou max def closestExtrem(start, indExtrem): # Renvoie la position de l'extrem par rapport ร  la frame Start AllDistance = indExtrem - start # Soustraction d'un vecteur par un scalaire, ici les positions des indices moins la position de dรฉpart (start) absDist = np.abs(AllDistance) # On met en valeur absolue indexMinimDist = np.argmin(absDist) # On rรฉcupรจre l'indice de la distance minimale positionExtrem = indExtrem[indexMinimDist] # On rรฉcupรจre la position x de l'extremum distance = AllDistance[indexMinimDist] # On rรฉcupรจre la distance (sans la valeur absolue) return positionExtrem, distance, indexMinimDist def plotPosi(acq, position, axe, ax, event=0): dicoAxe = {"x" : 0, "y" : 1, "z" : 2} data = np.array(acq.GetPoint(position).GetValues()[:, dicoAxe[axe]]) n_frames, first_frame, last_frame = frameData(acq) Min, Max = minLocal(data), maxLocal(data) Min, Max = cleanMinMax(Min, Max) #used to clean some local extremums # Plot part ax.plot(np.array(range(first_frame, last_frame + 1)), data, 'k') ax.plot(Min, data[Min], 'o b') ax.plot(Max, data[Max], 'o', color='purple') ax = plotEvent(acq, ax) if (event != 0): print('Position de depart :', event.GetFrame()) positionExtrem, distance, indexMinimDist = closestExtrem(event.GetFrame(), Max) ax.plot(positionExtrem, data[positionExtrem], 'o g') print('Position :', positionExtrem) plt.title(" Position = {} - axis = {}".format(position, axe)) # ax.show(block = False) return ax def simple(files, posiCombo, axeCombo , buttonCombo, fileCombo): posiCombo['values'] = ['LFHD', 'RFHD', 'LBHD', 'RBHD', 'C7', 'T10', 'STRN', 'CLAV', 'RBAK', 'LSHO', 'LELB', 'LWRA', 'LWRB', 'RSHO', 'RELB', 'RWRA', 'RWRB', 'LASI', 'RASI', 'LPSI', 'RPSI', 'LTHI', 'RTHI', 'LKNE', 'RKNE', 'LTIB', 'RTIB', 'LANK', 'RANK', 'LHEE', 'RHEE', 'RTOE', 'LTOE'] posiCombo.current(0) buttonCombo["text"] = "PLOT" buttonCombo["command"] = lambda: onePlot(files, posiCombo, axeCombo, fileCombo ) def double(files, posiCombo, axeCombo , buttonCombo, fileCombo): posiCombo['values'] = ["FHD", "BHD", "SHO", "ELB", "WRA", "WRB", "ASI", "PSI", "THI", "KNE", "TIB", "ANK", "HEE", "TOE"] posiCombo.current(0) buttonCombo["text"] = "PLOT x2" buttonCombo["command"] = lambda: twoPlot(files, posiCombo, axeCombo, fileCombo ) def onePlot (files, posiCombo, axeCombo, fileCombo ): acq = files[int(fileCombo.get())] # voir le chapitre sur les รฉvรฉnements n_frames, first_frame, last_frame = frameData(acq) plt.figure(figsize=(9,7)) guiPlot = plt.subplot() guiPlot = plotPosi(acq, posiCombo.get(), axeCombo.get(), guiPlot) plt.show(block=False) def twoPlot(files, posiCombo, axeCombo, fileCombo ): # voir le chapitre sur les รฉvรฉnements acq = files[int(fileCombo.get())] n_frames, first_frame, last_frame = frameData(acq) dr = 'R' + posiCombo.get() ga = 'L' + posiCombo.get() plt.figure(figsize=(9,7)) guiPlot = plt.subplot(2,1,1) guiPlot = plotPosi(acq, dr, axeCombo.get(), guiPlot) guiPlot = plt.subplot(2,1,2) guiPlot = plotPosi(acq, ga, axeCombo.get(), guiPlot) plt.show(block=False) def GUIplot(files): acq = files[0] metadata = acq.GetMetaData() point_labels = list(metadata.FindChild("POINT").value().FindChild("LABELS").value().GetInfo().ToString()) win = Tk() win.title("BTK Project") # win.geometry("500x100") ttk.Label(win, text="Choix du capteur").grid(column=1, row=0) posiCombo = ttk.Combobox(win, values=point_labels) posiCombo.grid(column=1, row=1) ttk.Label(win, text="Choix de l'axe").grid(column=2, row=0) axeCombo = ttk.Combobox(win, values=["x", "y", "z"]) axeCombo.grid(column=2, row=1) ttk.Label(win, text="Choix du fichier").grid(column=0, row=0) fileCombo = ttk.Combobox(win, values=list(range(len(files)))) fileCombo.grid(column=0, row=1) posiCombo.current(newindex=28) axeCombo.current(2) fileCombo.current(0) buttonCombo = Button (win, text="PLOT", command= lambda: onePlot(files, posiCombo, axeCombo, fileCombo )) buttonCombo.grid(column=3, row=1) v = IntVar() # v.set(1) R1 = Radiobutton(win, text="Plot unique", variable=v, value=1, command= lambda: simple(files, posiCombo, axeCombo , buttonCombo, fileCombo)) R1.grid(column=0, row=2) R2 = Radiobutton(win, text="Double Plot", variable=v, value=2, command= lambda: double(files, posiCombo, axeCombo , buttonCombo, fileCombo)) R2.grid(column=1, row=2) v.set(1) win.mainloop()
staufga0/DM_Project
Source/file.py
file.py
py
14,754
python
fr
code
0
github-code
6
2914350136
class Block: """ A block is the smallest unit of data in Meshcash A block includes a list of transactions and knowledge regarding the view of the creating miner """ def __init__(self): # The layer of which this block belongs to self.layerId = None # The public key of this block generating miner # This will be used to reward the miner self.minerPk = None # Binary value of the weak coin protocol self.weakCoinValue = None # All recent blocks observed by the miner generating this block # This list contains only blocks with in-degree 0 (that otherwise wouldn't appear in the recent blocks list) self.viewHeads = [] # Subset of view edges declared valid by the hare protocol self.validRecentBlocks = [] # A flag set to True if the block was created up to t_delta_coin time after layer creation # When this flag is turned out the block "abstains" from block voting self.beforeCoin = None # A flag set to True if the block was created up to delta_time after layer creation # When this flag is turned out the block "abstains" from block voting self.earlyBlock = None # List of included transactions self.txs = [] # Proofs of work over the block contents # This serves as a digital signature to assure data was not changed since finding the proofs of work self.pow = None def has_in_view(self, other_block): """ Returns true if current block points otherBlock :param other_block: :return: """ if other_block.layerId >= self.layerId: return False pointed_blocks = set(self.viewHeads).union(set(self.validRecentBlocks)) if other_block in pointed_blocks: return True # Very inefficient algorithm return max([pointedBlock.has_in_view(other_block) for pointedBlock in pointed_blocks]) def is_syntactically_valid(self, pow_protocol, tmin): """ Returns True if the block syntactically valid, that is: 1. recursive: points to TMIN syntactically valid blocks in previous layer AND 2. has a valid proofs-of-work w.r.t. challenge and difficulty AND 3. all of its transactions are syntactically valid :return: """ if self.layerId == 0: # Genesis layer's blocks are always syntactically valid return True if not pow_protocol.verify_pow(self.pow): return False prev_layer_blocks = filter(lambda x: x.layerId + 1 == self.layerId, self.viewHeads) prev_layer_valid_blocks = sum([block.is_syntactically_valid(pow_protocol) for block in prev_layer_blocks]) if prev_layer_valid_blocks < tmin: # Block must point to at least tmin syntactically valid previous layer's blocks return False return True def generate_block_id(self): """ Return the block's id based on all of its content :return: """ # Use the proofs-of-work as the block's id return self.pow
anon444/meshcash
src/DataSturcutres/Block.py
Block.py
py
3,265
python
en
code
0
github-code
6
8469582185
from calculations import get_standings, get_current_track_data from utils import get_player_name, get_telegram_name from plots import timedelta_to_string def info_about_current_weeks_ladder_changes(old_data, new_data): new_data = get_current_track_data(new_data) new_data = new_data[new_data["Origin"] == "Player"] new_ladder = get_standings(new_data) current_track = new_data["track_id"].unique()[0] old_data = old_data[old_data["track_id"] == current_track] old_data = old_data[old_data["Origin"] == "Player"] old_ladder = get_standings(old_data) player_overlap = list(set(new_ladder.index) & set(old_ladder.index)) new_ladder = new_ladder.loc[new_ladder.index.isin(player_overlap)] old_ladder = old_ladder.loc[old_ladder.index.isin(player_overlap)] changes = new_ladder.index != old_ladder.index new_ladder = new_ladder[changes].reset_index().reset_index().set_index("Player") old_ladder = old_ladder[changes].reset_index().reset_index().set_index("Player") new_ladder["index_change"] = new_ladder["index"] - old_ladder["index"] messages = [] for player in new_ladder.index.values: overtakes = new_ladder.loc[player, "index_change"] if not overtakes > 0: continue index = new_ladder.loc[player, "index"] overtook = new_ladder[(new_ladder["index"] >= index-overtakes) & (new_ladder["index"] < index)].index.values have_scored = old_data.loc[old_data["Origin"] == "Player", "Player"].unique() overtook = ", ".join([get_telegram_name(p) for p in overtook if p in have_scored]) new_record = new_data.groupby(["Player", "track_id"])["Time"].min().loc[player, current_track] messages.append( f"{get_player_name(player)} scored a {timedelta_to_string(new_record)} and overtook {overtook}." ) return messages def info_about_new_times(old_data, new_data): messages = [] new_entries_index = new_data[~new_data.isin(old_data)].dropna(how="all").index new_entries = new_data.loc[new_entries_index] for row_index, entry in new_entries.iterrows(): player_name = entry["Player"] new_record = timedelta_to_string(entry["Time"]) track = entry["Track"] message = f"{track}: {get_player_name(player_name)} scored a new record of {new_record}!" messages.append(message) return messages
Excidion/trackmania_nations_challenge_bot
messages.py
messages.py
py
2,399
python
en
code
1
github-code
6
45897381316
import os from PIL import Image class ImageUpscaler: def __init__(self, image_path, scale_factor): self.image_path = image_path self.scale_factor = scale_factor def upscale_image(self, image_file): # Open the image image = Image.open(image_file) # Calculate the new dimensions width, height = image.size new_width = int(width * self.scale_factor) new_height = int(height * self.scale_factor) # Resize the image upscaled_image = image.resize((new_width, new_height), Image.BICUBIC) # Save the upscaled image upscaled_folder = os.path.join(self.image_path, 'upscaled') os.makedirs(upscaled_folder, exist_ok=True) file_name = os.path.splitext(os.path.basename(image_file))[0] save_path = os.path.join(upscaled_folder, f'{file_name}_upscaled.png') upscaled_image.save(save_path) # print(f"Upscaled image saved: {save_path}") def upscale_images_in_directory(self): # Get a list of all image files in the directory image_files = [ os.path.join(self.image_path, file_name) for file_name in os.listdir(self.image_path) if file_name.endswith(('.jpg', '.jpeg', '.png')) ] for image_file in image_files: self.upscale_image(image_file) if __name__ == '__main__': directory_path = '../private_keys' scale_factor = 4 # Increase the dimensions by a factor of 4 upscaler = ImageUpscaler(directory_path, scale_factor) upscaler.upscale_images_in_directory()
huju-tub/visual-cryptography-generator
classes/image_upscaler.py
image_upscaler.py
py
1,598
python
en
code
0
github-code
6
21095535591
import torch import torch.nn as nn import numpy as np from torch.nn.functional import upsample, interpolate from Spa_downs import * import torch.nn.functional as F from torch.autograd import Variable import argparse from torch.nn import init import scipy.io as sio import os import random class ReshapeTo2D(nn.Module): def __init__(self): super(ReshapeTo2D, self).__init__() def forward(self,x): return torch.reshape(x, (x.shape[0], x.shape[1], x.shape[2]*x.shape[3])) class ReshapeTo3D(nn.Module): def __init__(self): super(ReshapeTo3D, self).__init__() def forward(self,x): return torch.reshape(x, (x.shape[0], x.shape[1], int(np.sqrt(x.shape[2])), int(np.sqrt(x.shape[2])))) class TransDimen(nn.Module): def __init__(self): super(TransDimen, self).__init__() def forward(self,x): return torch.Tensor.permute(x,[0,2,1]) def channel_crop(data, position, length): assert data.size(1) >= position + length, 'the cropped channel out of size.' return data[:, position: position + length, :, :] def ins (list_, data, index): list_start = list_[:index] list_start = [ Variable(i, requires_grad=False).type(torch.cuda.FloatTensor) for i in list_start] data = [Variable(data, requires_grad=False).type(torch.cuda.FloatTensor)] list_end = list_[index:] list_end = [ Variable(i, requires_grad=False).type(torch.cuda.FloatTensor) for i in list_end] return list_start + data + list_end def to_gpu(data): return Variable(data, requires_grad=False).type(torch.cuda.FloatTensor) class L_Dspec(nn.Module): def __init__(self,in_channel,out_channel,P_init): super(L_Dspec, self).__init__() self.in_channle = in_channel self.out_channel = out_channel self.P = nn.Parameter(P_init) def forward(self,input): S = input.shape out = torch.reshape(input,[S[0],S[1],S[2]*S[3]]) out = torch.matmul(self.P,out) return torch.reshape(out,[S[0],self.out_channel,S[2],S[3]]) def add_wgn(x, snr): P_signal=torch.sum(x.abs()**2) P_noise = P_signal/10**(snr/10.0) sigma = torch.sqrt(P_noise/x.numel()) noise = torch.randn(x.shape).type(torch.cuda.FloatTensor) return x + sigma * noise def tensor_copy(x): return x.clone() def parse_arg(): parser = argparse.ArgumentParser() parser.add_argument('--model' , default='MSDANet', help='MSDANet') parser.add_argument('--fusion' , default='Concate', help='Concate') parser.add_argument('--lr' , default=1e-4, type=float, help='learning rate for optimizer') parser.add_argument('--batch_size', default=16, type=int, help='batch size for training') parser.add_argument('--factor' , default=8, type=int, help='scale factor. 4/8/16') parser.add_argument('--dataset' , default='Houston', help='Houston/PaviaU/dc/PaviaC') parser.add_argument('--patch_size', default=64, type=int, help='patch size of training') parser.add_argument('--stride' , default=32, type=int, help='stride of training') parser.add_argument('--pan' , action='store_true', help='pan_sharpening or MSI + HSI') parser.add_argument('--mem_load' , action='store_true', help='load the all dataset into memory or disk') parser.add_argument('--phase' , default='train', help='train/test') parser.add_argument('--noise' , action='store_true', help='wheater to add noise to LR_HSI and HR_MSI') return parser.parse_args() def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Conv2d') != -1: init.kaiming_normal(m.weight.data) def split(full_list,shuffle=False,ratio=0.2): n_total = len(full_list) offset = int(n_total * ratio) if n_total==0 or offset<1: return [],full_list random.seed(4) if shuffle: random.shuffle(full_list) sublist_1 = full_list[:offset] sublist_2 = full_list[offset:] return sublist_1,sublist_2 def all_data_in(Path='Data/Houston/', datasets='Houston', Train_image_num=10): names = get_img_name(Path=Path, datasets=datasets) allData = [] for i in range(Train_image_num): Data = sio.loadmat(os.path.join(Path, names[i])+'.mat') HSI = Data['hsi'] HSI = HSI.transpose((2, 0, 1)) allData.append(HSI) return allData dataset_dict = dict( PaviaC = [10, 5, 300, 8000, 102, 1, (55, 41, 12)], ### [train_img_num, val_img_num, stop epoch, max_value, band_number, RGB] PaviaU = [10, 5, 300, 8000, 103, 1, (46, 27, 10)], Houston = [3, 2, 300, 65535, 144, 1, (65, 51, 22)], dc = [11, 5, 300, 65535, 191, 4, (51, 35, 21)], ) def get_img_name(Path='Data/Houston/', datasets='Houston'): names_PaviaC_list = [ 'PaviaC_01', 'PaviaC_02', 'PaviaC_03', 'PaviaC_04', 'PaviaC_05', 'PaviaC_06', 'PaviaC_07', 'PaviaC_08', 'PaviaC_09', 'PaviaC_10', 'PaviaC_11', 'PaviaC_12', 'PaviaC_13', 'PaviaC_14', 'PaviaC_15' ] names_Houston_list = [ 'Houston_01', 'Houston_02', 'Houston_03', 'Houston_04', 'Houston_05' ] names_dc_list = [ 'dc_01', 'dc_02', 'dc_03', 'dc_04', 'dc_05', 'dc_06', 'dc_07', 'dc_08', 'dc_09', 'dc_10', 'dc_11', 'dc_12', 'dc_13', 'dc_14', 'dc_15', 'dc_16', ] names_PaviaU_list = [ 'PaviaU_01', 'PaviaU_02', 'PaviaU_03', 'PaviaU_04', 'PaviaU_05', 'PaviaU_06', 'PaviaU_07', 'PaviaU_08', 'PaviaU_09', 'PaviaU_10', 'PaviaU_11', 'PaviaU_12', 'PaviaU_13', 'PaviaU_14', 'PaviaU_15' ] names_Houston, names_Houston_valid = split(names_Houston_list, shuffle=True, ratio=0.6) names_dc, names_dc_valid = split(names_dc_list, shuffle=True, ratio=0.7) names_PaviaU, names_PaviaU_valid = split(names_PaviaU_list, shuffle=True, ratio=0.67) names_PaviaC, names_PaviaC_valid = split(names_PaviaC_list, shuffle=True, ratio=0.67) if datasets == 'PaviaC': names = names_PaviaC elif datasets == 'PaviaC_val': names = names_PaviaC_valid elif datasets == 'PaviaU': names = names_PaviaU elif datasets == 'PaviaU_val': names = names_PaviaU_valid elif datasets == 'Houston': names = names_Houston elif datasets == 'Houston_val': names = names_Houston_valid elif datasets == 'dc': names = names_dc elif datasets == 'dc_val': names = names_dc_valid else: assert 'wrong dataset name' return names
pyguan88/MDA-Net
function.py
function.py
py
6,689
python
en
code
8
github-code
6
39472033874
from paystackapi.paystack import Paystack from paystackapi.transaction import Transaction from paystackapi.verification import Verification paystack_secret_key = "sk_test_a18b4a0dcad6d60a03b5be78a47e14f8d28686ce" paystack_public_key = "pk_test_80c9e3e62c12dca2e7a51baaccf342279ffa8f1a" paystack = Paystack(secret_key=paystack_secret_key) paramz = '9sxzb9weo8' details = Transaction.verify(reference=paramz) status = details['data']['status'] print(details) print(status)
gidex19/signacode
my_app/pay.py
pay.py
py
474
python
en
code
0
github-code
6
485113359
import pytest from graph_pkg.edit_cost.edit_cost_proteins_tu import EditCostProteinsTU from graph_pkg.graph.label.label_node_proteins_tu import LabelNodeProteinsTU from graph_pkg.graph.node import Node @pytest.mark.parametrize('coord1, e_cost, expected', [ ((1,), (1., 1., 1., 1., 'dirac'), 1.), ((0,), (1., 1., 1., 1., 'dirac'), 1.), ((2,), (1., 1., 1., 1., 'dirac'), 1.), ((0,), (11., 1., 1., 1., 'dirac'), 11.), ((0,), (1., 1.9, 1.9, 1.9, 'dirac'), 1.), ]) def test_dirac_proteins_tu_add_node(coord1, e_cost, expected): node0 = Node(0, LabelNodeProteinsTU(*coord1)) edit_cost = EditCostProteinsTU(*e_cost) result = edit_cost.cost_insert_node(node0) assert result == expected @pytest.mark.parametrize('coord1, e_cost, expected', [ ((1,), (1., 1., 1., 1., 'dirac'), 1.), ((0,), (1., 1., 1., 1., 'dirac'), 1.), ((1,), (16., 12., 18., 17., 'dirac'), 12.), ]) def test_dirac_proteins_tu_delete_node(coord1, e_cost, expected): node0 = Node(0, LabelNodeProteinsTU(*coord1)) edit_cost = EditCostProteinsTU(*e_cost) result = edit_cost.cost_delete_node(node0) assert result == expected @pytest.mark.parametrize('coord1, coord2, e_cost, expected', [ ((1,), (1,), (1., 1., 1., 1., 'dirac'), 0.), ((0,), (1,), (1., 1., 1., 1., 'dirac'), 2.), ((1,), (0,), (1., 1., 1., 1., 'dirac'), 2.), ((1,), (2,), (3., 2., 2.5, 1., 'dirac'), 5.), ]) def test_dirac_proteins_tu_substitution(coord1, coord2, e_cost, expected): node0 = Node(0, LabelNodeProteinsTU(*coord1)) node1 = Node(1, LabelNodeProteinsTU(*coord2)) edit_cost = EditCostProteinsTU(*e_cost) result = edit_cost.cost_substitute_node(node0, node1) assert result == expected
CheshireCat12/graph_project
tests/unit_edit_cost/test_edit_cost_proteins_tu.py
test_edit_cost_proteins_tu.py
py
2,168
python
en
code
1
github-code
6
16480507143
"""Original from https://github.com/yhenon/pytorch-retinanet""" import torch import torch.nn as nn import numpy as np import skimage.io import skimage.transform import skimage.color import skimage from PIL import Image def comptue_dim(dim, padding, kernel_size, stride): return np.floor((dim + 2*padding - kernel_size) / stride) + 1 def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class BBoxTransform(nn.Module): def __init__(self, mean=None, std=None): super(BBoxTransform, self).__init__() if mean is None: self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)).cuda() else: self.mean = mean if std is None: self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)).cuda() else: self.std = std def forward(self, boxes, deltas): widths = boxes[:, :, 2] - boxes[:, :, 0] heights = boxes[:, :, 3] - boxes[:, :, 1] ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights dx = deltas[:, :, 0] * self.std[0] + self.mean[0] dy = deltas[:, :, 1] * self.std[1] + self.mean[1] dw = deltas[:, :, 2] * self.std[2] + self.mean[2] dh = deltas[:, :, 3] * self.std[3] + self.mean[3] pred_ctr_x = ctr_x + dx * widths pred_ctr_y = ctr_y + dy * heights pred_w = torch.exp(dw) * widths pred_h = torch.exp(dh) * heights pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2) return pred_boxes class ClipBoxes(nn.Module): def __init__(self, width=None, height=None): super(ClipBoxes, self).__init__() def forward(self, boxes, img): batch_size, num_channels, height, width = img.shape boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width) boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height) return boxes class Resizer(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, image, annots, min_side=608, max_side=1024): image = np.array(image) annots = np.array([[*annot['bbox'], annot['category_id']] for annot in annots]) rows, cols, cns = image.shape smallest_side = min(rows, cols) # rescale the image so the smallest side is min_side scale = min_side / smallest_side # check if the largest side is now greater than max_side, which can happen # when images have a large aspect ratio largest_side = max(rows, cols) if largest_side * scale > max_side: scale = max_side / largest_side # resize the image with the computed scale image = skimage.transform.resize(image, (int(round(rows * scale)), int(round((cols * scale))))) rows, cols, cns = image.shape pad_w = 32 - rows % 32 pad_h = 32 - cols % 32 new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32) new_image[:rows, :cols, :] = image.astype(np.float32) annots[:, 4] = annots[:, 4] * scale return Image.fromarray(np.uint8(new_image)), torch.from_numpy(annots), scale class Augmenter(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, flip_x=0.5): if np.random.rand() < flip_x: image, annots = sample['img'], sample['annot'] image = image[:, ::-1, :] rows, cols, channels = image.shape x1 = annots[:, 0].copy() x2 = annots[:, 2].copy() x_tmp = x1.copy() annots[:, 0] = cols - x2 annots[:, 2] = cols - x_tmp sample = {'img': image, 'annot': annots} return sample class Normalizer(object): def __init__(self): self.mean = np.array([[[0.485, 0.456, 0.406]]]) self.std = np.array([[[0.229, 0.224, 0.225]]]) def __call__(self, sample): image, annots = sample['img'], sample['annot'] return {'img': ((image.astype(np.float32) - self.mean) / self.std), 'annot': annots} class UnNormalizer(object): def __init__(self, mean=None, std=None): if mean == None: self.mean = [0.485, 0.456, 0.406] else: self.mean = mean if std == None: self.std = [0.229, 0.224, 0.225] else: self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor
sebastiani/pytorch-attention-augmented-convolution
utils/utils.py
utils.py
py
7,137
python
en
code
18
github-code
6
27016970830
from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) from django.utils.translation import ugettext_lazy as _ from GameFeb19_intro.models import add_currency, add_tokens, TRNSL_ERR_MSG, translated_languages import csv import random author = 'Tatiana Mayskaya' doc = """ Cognitive Reflection Test & IQ Test & GRE-based Test :: whatever counts as cognitive test """ class Constants(BaseConstants): name_in_url = 'GameFeb19_questions_cognitive' players_per_group = None # this is done only to count the number of questions in the quiz # (assuming Russian and English versions have the same number) with open('GameFeb19_questions_cognitive/cognitive_en.csv') as file: questions = list(csv.DictReader(file)) num_rounds = len(questions) class Subsession(BaseSubsession): def creating_session(self): assert self.session.config['language'] in translated_languages, TRNSL_ERR_MSG if self.round_number == 1: if self.session.config['language'] == 'en': with open('GameFeb19_questions_cognitive/cognitive_en.csv', encoding='utf-8-sig') as test_file: self.session.vars['test_file_list'] = list(csv.DictReader(test_file)) else: with open('GameFeb19_questions_cognitive/cognitive_ru.csv', encoding='utf-8-sig') as test_file: self.session.vars['test_file_list'] = list(csv.DictReader(test_file)) for p in self.get_players(): p.random_questions() self.session.vars['num_questions_CT'] = Constants.num_rounds for p in self.get_players(): question_data = p.current_question() p.question_id = question_data['id'] p.question = question_data['question'] p.solution = int(question_data['solution']) if int(question_data['n_choices']) == 0: p.solution_text = question_data['solution'] else: p.solution_text = question_data['choice{}'.format(p.solution)] p.participant.vars['questions_CT'] = [] def vars_for_admin_report(self): players = [] for p in self.get_players(): players.append((p.participant.label, p.question, p.submitted_answer_text, p.solution_text, p.get_is_correct_display())) return {'players': players} class Group(BaseGroup): pass class Player(BasePlayer): question_id = models.IntegerField() question = models.StringField() solution = models.IntegerField() solution_text = models.StringField() submitted_answer = models.IntegerField() submitted_answer_options = models.IntegerField(widget=widgets.RadioSelect) submitted_answer_text = models.StringField() is_correct = models.BooleanField(initial=False, choices=[[True, _('Yes')], [False, _('No')]]) def random_questions(self): randomized_questions = random.sample(range(1, Constants.num_rounds + 1, 1), Constants.num_rounds) self.participant.vars['questions_order_CT'] = randomized_questions def current_question(self): num = self.participant.vars['questions_order_CT'][self.round_number - 1] return self.session.vars['test_file_list'][num - 1] def check_correct(self): question_data = self.current_question() if int(question_data['n_choices']) > 0: self.submitted_answer = self.submitted_answer_options self.is_correct = (self.submitted_answer == self.solution) if int(question_data['n_choices']) == 0: self.submitted_answer_text = str(self.submitted_answer) else: self.submitted_answer_text = question_data['choice{}'.format(self.submitted_answer)] self.participant.vars['questions_CT'].append( (self.round_number, self.question, self.submitted_answer_text, self.solution_text, self.get_is_correct_display())) if self.is_correct: self.payoff = self.session.vars['rate_CT'] def set_payoffs(self): self.participant.vars['questions_correct_CT'] = sum([int(p.is_correct) for p in self.in_all_rounds()]) self.participant.vars['payment_formula'] = \ self.participant.vars['payment_formula'] + \ ' + ' + str(self.participant.vars['questions_correct_CT']) + '*' + \ add_currency(self.session.config['currency_used'], self.session.vars['rate_CT'] * self.session.config['real_world_currency_per_point'])
TatianaMayskaya/oTree
GameFeb19_questions_cognitive/models.py
models.py
py
4,609
python
en
code
0
github-code
6
71669765628
cricketer = { "VinayKumar": [102, 5], "Yuzvendra Chahal": [89, 10], "Sandeep Sharma": [95, 8], "Umesh Yadav": [85, 6], "BhuvaneswarKumar": [106, 10], "Basil Thampi": [70, 5] } for player, stats in cricketer.items(): runs_conceded, wickets_taken = stats bowling_average = runs_conceded / wickets_taken cricketer[player] = [round(bowling_average, 2)] sorted_cricketer = dict(sorted(cricketer.items(), key=lambda x: x[1])) print(sorted_cricketer)
Rjeyyy/PythonProgramming
Dictionaries/program5.py
program5.py
py
483
python
en
code
0
github-code
6
17270713471
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_regression from mpl_toolkits import mplot3d # Training phase/ Training the LR model/ Find optimal weights def fit(X, y): """ X: Feature matrix: (n_samples, n_features) y: y_true: (n_samples,1) Returns: weights weights: optimal weights (n_features, 1) """ X = X.copy() ones_column = np.ones((len(X),1)) X = np.concatenate([ones_column, X], axis=1) w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) return w # prediction def predict(X, w): """ X: Feature matrix: (n_samples, n_features) w: weight vector: (n_fetures, 1) Returns: y: y_pred = X.w (n_samples,1) """ X = X.copy() ones_column = np.ones((len(X),1)) X = np.concatenate([ones_column, X], axis=1) return X.dot(w) # r_squared def r_squared(ytrue, ypred): e_method = ((ytrue-ypred)**2).sum() # sum of squares of residuals e_baseline = ((ytrue-ytrue.mean())**2).sum() # total sum of squares return 1 - e_method/e_baseline # loss function def loss(ytrue, ypred): return ((ytrue-ypred)**2).sum() X, y, coeff = make_regression(n_samples=100, n_features=2, coef=True, noise=0.5, bias=3, random_state=70) # print(X.shape, y.shape) # Train the model/ learn the optimal weights w = fit(X, y) #################################################### fig = plt.figure(figsize=(8,8)) ax = plt.axes(projection='3d') ax.scatter(X[:,0], X[:,1], y, c=y, cmap='seismic') f1 = np.linspace(X[:,0].min(), X[:,0].max(), 50) f2 = np.linspace(X[:,1].min(), X[:,1].max(), 50) f1, f2 = np.meshgrid(f1, f2) # prediction plane X_ = np.concatenate([f1.reshape(-1,1), f2.reshape(-1,1)], axis=1) pred = predict(X_, w).reshape(f1.shape) ax.plot_surface(f1, f2, pred, alpha=0.5, cmap='seismic') ax.set_xlabel("Feature 1") ax.set_ylabel("Feature 2") ax.set_zlabel("Output (y)") plt.show()
princeyyadav/CB-DS-LV-May21
DS/S13-linear-regression/viz.py
viz.py
py
1,905
python
en
code
0
github-code
6
26459920205
from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..nnutils import geom_utils from ..nnutils import loss_utils from ..nnutils import train_utils from ..nnutils import discriminators from ..nnutils.smr import SoftRenderer from ..nnutils import cub_mesh_s1 as mesh_net from ..nnutils.nmr_pytorch import NeuralRenderer from ..data import cub as cub_data from ..utils import image as image_utils from ..utils import tf_visualizer from ..utils.tf_visualizer import Visualizer as TfVisualizer import os import time import copy import numpy as np import os.path as osp from absl import app, flags from collections import OrderedDict import torch import torchvision import soft_renderer as sr import torchvision.utils as vutils # Weights: flags.DEFINE_float('mask_loss_wt', 3.0, 'mask loss weight') flags.DEFINE_float('grl_wt', .2, 'gradient reversal layer weight') flags.DEFINE_float('gan_loss_wt', 1., 'adversarial training weight') flags.DEFINE_float('triangle_reg_wt', 0.15, 'weights to triangle smoothness prior') flags.DEFINE_float('flatten_reg_wt', 0.0004, 'weights to flatten smoothness prior') flags.DEFINE_float('deform_reg_wt', 5., 'reg to deformation') flags.DEFINE_float('ori_reg_wt', 0.4, 'reg to orientation') flags.DEFINE_float('stop_ori_epoch', 3., 'when to stop usint this constraint') flags.DEFINE_float('tex_loss_wt', 3.0, 'weights to tex loss') flags.DEFINE_float('tex_dt_loss_wt', 3.0, 'weights to tex dt loss') flags.DEFINE_float('tex_cycle_loss_wt', .5, 'weights to tex cycle loss') # Data: flags.DEFINE_integer('image_size', 256, 'training image size') # Model: flags.DEFINE_string('renderer_type', 'softmax', 'choices are [hard, softmax]') flags.DEFINE_boolean('use_gan', True, 'If true uses GAN training') flags.DEFINE_boolean('pred_cam', True, 'If true predicts camera') flags.DEFINE_boolean('detach_shape', True, 'If true detach shape from the texture branch.') flags.DEFINE_boolean('detach_cam', True, 'If true detach camera from the texture branch.') flags.DEFINE_boolean('use_scops', False, 'If true read part segmentations in the loader.') flags.DEFINE_integer('update_template_freq', 5, 'template update frequency') flags.DEFINE_integer('axis', 1, 'symmetric axis') opts = flags.FLAGS curr_path = osp.dirname(osp.abspath(__file__)) cache_path = osp.join(curr_path, '..', 'cachedir') class ShapenetTrainer(train_utils.Trainer): def define_model(self): opts = self.opts # define model self.symmetric = opts.symmetric img_size = (opts.img_size, opts.img_size) self.model = mesh_net.MeshNet( img_size, opts, nz_feat=opts.nz_feat, axis = opts.axis) self.model = self.model.cuda() if(opts.multi_gpu): self.model = torch.nn.DataParallel(self.model) if(opts.use_gan): self.discriminator = discriminators.Discriminator(lambda_ = opts.grl_wt, img_size = opts.image_size) self.discriminator = self.discriminator.cuda() if(opts.multi_gpu): self.discriminator = torch.nn.DataParallel(self.discriminator) if(opts.multi_gpu): faces = self.model.module.faces.view(1, -1, 3) else: faces = self.model.faces.view(1, -1, 3) self.faces = faces.repeat(opts.batch_size, 1, 1) # define renderers self.renderer = SoftRenderer(opts.image_size, opts.renderer_type) self.dis_renderer = SoftRenderer(opts.image_size, opts.renderer_type) self.hard_renderer = SoftRenderer(opts.image_size, "hard") if opts.use_texture: self.tex_renderer = SoftRenderer(opts.image_size, opts.renderer_type) self.tex_renderer.ambient_light_only() self.vis_renderer = NeuralRenderer(opts.image_size) self.vis_renderer.ambient_light_only() self.vis_renderer.set_bgcolor([1, 1, 1]) self.vis_renderer.set_light_dir([0, 1, -1], 0.4) self.iter_time = 0 return def init_dataset(self): opts = self.opts self.data_module = cub_data self.dataloader = self.data_module.data_loader(opts) self.resnet_transform = torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def define_criterion(self): # shape objectives self.mask_loss_fn = loss_utils.neg_iou_loss if(opts.multi_gpu): verts = self.model.module.get_mean_shape().cpu() faces = self.model.module.faces.cpu() else: verts = self.model.get_mean_shape().cpu() faces = self.model.faces.cpu() self.laplacian_loss_fn = sr.LaplacianLoss(verts, faces).cuda() self.flatten_loss_fn = sr.FlattenLoss(faces).cuda() if(opts.multi_gpu): self.laplacian_loss_fn = torch.nn.DataParallel(self.laplacian_loss_fn) self.flatten_loss_fn = torch.nn.DataParallel(self.flatten_loss_fn) # shape constraints self.deform_reg_fn = loss_utils.deform_l2reg self.ori_reg_fn = loss_utils.sym_reg self.gan_loss_fn = torch.nn.functional.binary_cross_entropy_with_logits # texture objectives if self.opts.use_texture: self.texture_loss = loss_utils.PerceptualTextureLoss() self.texture_dt_loss_fn = loss_utils.texture_dt_loss self.texture_cycle_fn = loss_utils.TexCycle(int(opts.batch_size/opts.gpu_num)) self.texture_cycle_fn = self.texture_cycle_fn.cuda() if(opts.multi_gpu): self.texture_cycle_fn = torch.nn.DataParallel(self.texture_cycle_fn) def set_input(self, batch): opts = self.opts input_img_tensor = batch['img'].type(torch.FloatTensor) for b in range(input_img_tensor.size(0)): input_img_tensor[b] = self.resnet_transform(input_img_tensor[b]) img_tensor = batch['img'].type(torch.FloatTensor) mask_tensor = batch['mask'].type(torch.FloatTensor) self.input_imgs = input_img_tensor.cuda() self.imgs = img_tensor.cuda() self.masks = mask_tensor.cuda() if(opts.use_texture): # Compute barrier distance transform. mask_dts = np.stack([image_utils.compute_dt_barrier(m) for m in mask_tensor]) dt_tensor = torch.FloatTensor(mask_dts).cuda() self.dts_barrier = dt_tensor.unsqueeze(1) def forward(self): opts = self.opts outputs = self.model.forward(self.input_imgs) # shape self.delta_v = outputs['delta_v'] if(opts.symmetric): if(opts.multi_gpu): delta_v = self.model.module.symmetrize(self.delta_v) self.mean_shape = self.model.module.get_mean_shape() else: delta_v = self.model.symmetrize(self.delta_v) self.mean_shape = self.model.get_mean_shape() else: delta_v = self.delta_v self.pred_vs = self.mean_shape + delta_v # camera proj_cam = outputs['cam'] self.proj_cam = proj_cam # shape losses self.pred_seen, _, _ = self.renderer.forward(self.pred_vs, self.faces, proj_cam) self.mask_pred_seen = self.pred_seen[:,3,:,:] self.mask_loss = self.mask_loss_fn(self.mask_pred_seen, self.masks) self.triangle_loss = self.laplacian_loss_fn(self.pred_vs).mean() self.flatten_loss = self.flatten_loss_fn(self.pred_vs).mean() self.deform_loss = self.deform_reg_fn(self.delta_v) self.ori_loss = self.ori_reg_fn(self.pred_vs) # texture losses if(opts.use_texture): self.tex_flow = outputs['tex_flow'] self.uvimage_pred = outputs['uvimage_pred'] self.tex = geom_utils.sample_textures(self.tex_flow, self.imgs) self.tex = self.tex.contiguous() bs, fs, ts, _, _ = self.tex.size() self.tex = self.tex.view(bs, fs, -1, 3) texture_rgba, p2f_info, _ = self.tex_renderer.forward(self.pred_vs.detach(), self.faces, proj_cam.detach(), self.tex) self.texture_pred = texture_rgba[:,0:3,:,:] self.tex_loss = self.texture_loss(self.texture_pred, self.imgs, self.masks, self.mask_pred_seen) self.tex_dt_loss = self.texture_dt_loss_fn(self.tex_flow, self.dts_barrier) # texture cycle loss _, _, aggr_info = self.hard_renderer(self.pred_vs.detach(), self.faces, proj_cam.detach()) aggr_info = aggr_info[:, 1, :, :].view(bs, -1) tex_cycle_loss, self.avg_flow = self.texture_cycle_fn(self.tex_flow, p2f_info.detach(), aggr_info.detach()) # The mean is used to collect loss from different GPUs self.tex_cycle_loss = torch.mean(tex_cycle_loss) self.p2f_info = p2f_info if(opts.use_gan): # render at unobserved view angles = np.random.randint(0, 180, size=bs) random_cams = geom_utils.rotate_cam(proj_cam.detach(), angles) pred_unseen, _, _ = self.dis_renderer.forward(self.pred_vs, self.faces, random_cams) self.mask_pred_unseen = pred_unseen[:,3,:,:] pred = torch.cat((self.pred_seen.detach(), pred_unseen)) gan_labels = torch.cat((torch.ones(self.pred_seen.shape[0]), torch.zeros(pred_unseen.shape[0])), dim = 0) gan_labels = gan_labels.cuda() gan_preds = self.discriminator(pred[:,3,:,:].unsqueeze(1)) self.gan_loss = self.gan_loss_fn(gan_preds.squeeze(), gan_labels) # add up all losses # shape self.total_loss = self.mask_loss * opts.mask_loss_wt self.total_loss += self.triangle_loss * opts.triangle_reg_wt self.total_loss += self.flatten_loss * opts.flatten_reg_wt if(self.curr_epoch < opts.stop_ori_epoch): # constrain prediction to be symmetric on the given axis self.total_loss += self.ori_loss * opts.ori_reg_wt if(self.curr_epoch > opts.update_template_freq): # constrain prediction from deviating from template self.total_loss += self.deform_loss * opts.deform_reg_wt # texture if(opts.use_texture): self.total_loss += self.tex_loss * opts.tex_loss_wt self.total_loss += self.tex_dt_loss * opts.tex_dt_loss_wt self.total_loss += self.tex_cycle_loss * opts.tex_cycle_loss_wt # GAN if(opts.use_gan): self.total_loss += self.gan_loss * opts.gan_loss_wt def get_current_visuals(self): vis_dict = {} # UV maps if self.opts.use_texture: uv_flows = self.uvimage_pred uv_flows = uv_flows.permute(0, 2, 3, 1) uv_images = torch.nn.functional.grid_sample(self.imgs, uv_flows) vis_dict['uv_images'] = uv_images # mask vis_dict['mask_pred'] = self.mask_pred_seen.unsqueeze(1) nb, nf, _, nc = self.tex.size() tex = self.tex.detach().view(nb, nf, opts.tex_size, opts.tex_size, nc).unsqueeze(4).repeat(1, 1, 1, 1, opts.tex_size, 1) vis_dict['mask_gt'] = self.masks.unsqueeze(1) # image vis_dict['image_pred'] = self.vis_renderer(self.pred_vs.detach(), self.faces, self.proj_cam.detach(), tex) vis_dict['image_gt'] = self.imgs * self.masks.unsqueeze(1).repeat(1, 3, 1, 1) # instance mesh if(self.opts.use_texture): mesh_ = sr.Mesh(self.pred_vs[0], self.faces[0], self.tex[0].view(self.faces.size(1),-1,3)) else: mesh_ = sr.Mesh(self.pred_vs[0], self.faces[0]) vis_dict['mesh'] = mesh_ # template mesh if(opts.multi_gpu): template_mesh_ = sr.Mesh(self.model.module.get_mean_shape(), self.faces[0]) else: template_mesh_ = sr.Mesh(self.model.get_mean_shape(), self.faces[0]) vis_dict['template_mesh'] = template_mesh_ return vis_dict def get_current_scalars(self): opts = self.opts sc_dict = OrderedDict([ ('smoothed_total_loss', self.smoothed_total_loss), ('total_loss', self.total_loss), ('mask_loss', self.mask_loss), ('tri_loss', self.triangle_loss), ('flatten_loss', self.flatten_loss), ('deform_loss', self.deform_loss), ('ori_loss', self.ori_loss), ('lr', self.optimizer.param_groups[0]['lr']), ('iter_time', self.iter_time), ]) if opts.use_texture: sc_dict['tex_loss'] = self.tex_loss sc_dict['tex_dt_loss'] = self.tex_dt_loss sc_dict['tex_cycle_loss'] = self.tex_cycle_loss return sc_dict '''Overwrite train function for template update.''' def train(self): opts = self.opts self.visualizer = TfVisualizer(opts) self.smoothed_total_loss = 0 visualizer = self.visualizer total_steps = 0 optim_steps = 0 dataset_size = len(self.dataloader) for epoch in range(opts.num_pretrain_epochs, opts.num_epochs): epoch_iter = 0 self.curr_epoch = epoch for i, batch in enumerate(self.dataloader): self.iteration_num += 1 self.adjust_learning_rate(self.optimizer) t_init = time.time() self.set_input(batch) t_batch = time.time() if not self.invalid_batch: optim_steps += 1 self.optimizer.zero_grad() start_time = time.time() self.forward() self.smoothed_total_loss = self.smoothed_total_loss*0.99 + 0.01*self.total_loss t_forw = time.time() self.total_loss.backward() t_backw = time.time() if optim_steps % opts.optim_bs == 0: self.optimizer.step() end_time = time.time() self.iter_time = end_time - start_time t_opt = time.time() total_steps += 1 epoch_iter += 1 if opts.display_visuals and (total_steps % opts.display_freq == 0): iter_end_time = time.time() vis_dict = self.get_current_visuals() for k,v in vis_dict.items(): if('mesh' in k): v.save_obj(os.path.join(self.vis_dir,'{}.obj'.format(k)), save_texture=True) else: vutils.save_image(v, os.path.join(self.vis_dir, k + '.png')) print(tf_visualizer.green("Visualization saved at {}.".format(self.vis_dir))) if opts.print_scalars and (total_steps % opts.print_freq == 0): scalars = self.get_current_scalars() visualizer.print_current_scalars(epoch, epoch_iter, scalars) if total_steps % opts.save_latest_freq == 0: print(tf_visualizer.green('saving the model at the end of epoch {:d}, iters {:d}'.format(epoch, total_steps))) self.save('latest') if total_steps == opts.num_iter: return # update template if((epoch+1) % opts.update_template_freq == 0): print(tf_visualizer.green('Updating template...')) self.feat = torch.zeros(opts.batch_size, opts.z_dim) self.feat = self.feat.cuda() # compute average encoder features for i, batch in enumerate(self.dataloader): self.set_input(batch) with torch.no_grad(): outputs = self.model(self.input_imgs) self.feat += outputs['feat'] self.feat = self.feat / (i + 1) self.feat = torch.mean(self.feat, dim=0).unsqueeze(0) # feed averaged features into the shape decoder if(opts.multi_gpu): with torch.no_grad(): delta_v = self.model.module.shape_predictor(self.feat) self.model.module.mean_v += delta_v.squeeze() else: with torch.no_grad(): delta_v = self.model.shape_predictor(self.feat) self.model.mean_v += delta_v.squeeze() print(tf_visualizer.green('Template updated.')) if (epoch+1) % opts.save_epoch_freq == 0: print(tf_visualizer.green('saving the model at the end of epoch {:d}, iters {:d}'.format(epoch, total_steps))) self.save('latest') self.save(epoch+1) def main(_): torch.manual_seed(0) trainer = ShapenetTrainer(opts) trainer.init_training() trainer.train() if __name__ == '__main__': app.run(main)
NVlabs/UMR
experiments/train_s1.py
train_s1.py
py
17,158
python
en
code
223
github-code
6
43077970864
from typing import Any, Callable, Dict, Optional, Type, Union from fugue.execution.execution_engine import ExecutionEngine, SQLEngine from fugue.execution.native_execution_engine import NativeExecutionEngine from triad.utils.convert import to_instance from triad import assert_or_throw, ParamDict class _ExecutionEngineFactory(object): def __init__(self): self._funcs: Dict[str, Callable] = {} self._type_funcs: Dict[Type, Callable] = {} self._sql_funcs: Dict[str, Callable] = {} self.register_default(lambda conf, **kwargs: NativeExecutionEngine(conf=conf)) self.register_default_sql_engine(lambda engine, **kwargs: engine.sql_engine) def register( self, name_or_type: Union[str, Type], func: Callable, on_dup="overwrite" ) -> None: if isinstance(name_or_type, str): self._register(self._funcs, name=name_or_type, func=func, on_dup=on_dup) else: self._register( self._type_funcs, name=name_or_type, func=func, on_dup=on_dup ) def register_default(self, func: Callable, on_dup="overwrite") -> None: self.register("", func, on_dup) def register_sql_engine( self, name: str, func: Callable, on_dup="overwrite" ) -> None: self._register(self._sql_funcs, name=name, func=func, on_dup=on_dup) def register_default_sql_engine(self, func: Callable, on_dup="overwrite") -> None: self.register_sql_engine("", func, on_dup) def make( self, engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: if isinstance(engine, tuple): execution_engine = self.make_execution_engine( engine[0], conf=conf, **kwargs ) sql_engine = self.make_sql_engine(engine[1], execution_engine) execution_engine.set_sql_engine(sql_engine) return execution_engine else: return self.make((engine, None), conf=conf, **kwargs) def make_execution_engine( self, engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: # Apply this function to an Execution Engine instance can # make sure the compile conf is a superset of conf # TODO: it's a mess here, can we make the logic more intuitive? def make_engine(engine: Any) -> ExecutionEngine: if isinstance(engine, str) and engine in self._funcs: return self._funcs[engine](conf, **kwargs) for k, f in self._type_funcs.items(): if isinstance(engine, k): return f(engine, conf, **kwargs) if isinstance(engine, ExecutionEngine): if conf is not None: engine.compile_conf.update(conf) engine.compile_conf.update(kwargs) return engine return to_instance( engine, ExecutionEngine, kwargs=dict(conf=conf, **kwargs) ) result = make_engine(engine or "") result.compile_conf.update(result.conf, on_dup=ParamDict.IGNORE) result.compile_conf.update(conf, on_dup=ParamDict.OVERWRITE) result.compile_conf.update(kwargs, on_dup=ParamDict.OVERWRITE) return result def make_sql_engine( self, engine: Any = None, execution_engine: Optional[ExecutionEngine] = None, **kwargs: Any, ) -> SQLEngine: if engine is None: engine = "" if isinstance(engine, str) and engine in self._sql_funcs: return self._sql_funcs[engine](execution_engine, **kwargs) if isinstance(engine, SQLEngine): assert_or_throw( execution_engine is None and len(kwargs) == 0, lambda: ValueError( f"{engine} is an instance, can't take arguments " f"execution_engine={execution_engine}, kwargs={kwargs}" ), ) return engine return to_instance( engine, SQLEngine, kwargs=dict(execution_engine=execution_engine, **kwargs) ) def _register( self, callables: Dict[Any, Callable], name: Any, func: Callable, on_dup="overwrite", ) -> None: if name not in callables: callables[name] = func if on_dup in ["raise", "throw"]: raise KeyError(f"{name} is already registered") if on_dup == "overwrite": callables[name] = func return if on_dup == "ignore": return raise ValueError(on_dup) _EXECUTION_ENGINE_FACTORY = _ExecutionEngineFactory() def register_execution_engine( name_or_type: Union[str, Type], func: Callable, on_dup="overwrite" ) -> None: """Register :class:`~fugue.execution.execution_engine.ExecutionEngine` with a given name. :param name_or_type: alias of the execution engine, or type of an object that can be converted to an execution engine :param func: a callable taking |ParamsLikeObject| and ``**kwargs`` and returning an :class:`~fugue.execution.execution_engine.ExecutionEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples Alias registration examples: .. code-block:: python # create a new engine with name my (overwrites if existed) register_execution_engine("my", lambda conf: MyExecutionEngine(conf)) # 0 make_execution_engine("my") make_execution_engine("my", {"myconfig":"value}) # 1 with FugueWorkflow("my") as dag: dag.create([[0]],"a:int").show() # 2 dag = FugueWorkflow() dag.create([[0]],"a:int").show() dag.run("my", {"myconfig":"value}) # 3 fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run("my") Type registration examples: .. code-block:: python from pyspark.sql import SparkSession from fugue_spark import SparkExecutionEngine from fugue_sql import fsql register_execution_engine( SparkSession, lambda session, conf: SparkExecutionEngine(session, conf)) spark_session = SparkSession.builder.getOrCreate() fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run(spark_session) """ _EXECUTION_ENGINE_FACTORY.register(name_or_type, func, on_dup) def register_default_execution_engine(func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.ExecutionEngine` as the default engine. :param func: a callable taking |ParamsLikeObject| and ``**kwargs`` and returning an :class:`~fugue.execution.execution_engine.ExecutionEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_default_execution_engine(lambda conf: MyExecutionEngine(conf)) # the following examples will use MyExecutionEngine # 0 make_execution_engine() make_execution_engine(None, {"myconfig":"value}) # 1 with FugueWorkflow() as dag: dag.create([[0]],"a:int").show() # 2 dag = FugueWorkflow() dag.create([[0]],"a:int").show() dag.run(None, {"myconfig":"value}) # 3 fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run("", {"myconfig":"value}) """ _EXECUTION_ENGINE_FACTORY.register_default(func, on_dup) def register_sql_engine(name: str, func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.SQLEngine` with a given name. :param name: name of the SQL engine :param func: a callable taking :class:`~fugue.execution.execution_engine.ExecutionEngine` and ``**kwargs`` and returning a :class:`~fugue.execution.execution_engine.SQLEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_sql_engine("mysql", lambda engine: MySQLEngine(engine)) # create execution engine with MySQLEngine as the default make_execution_engine(("", "mysql")) # create DaskExecutionEngine with MySQLEngine as the default make_execution_engine(("dask", "mysql")) # default execution engine + MySQLEngine with FugueWorkflow(("","mysql")) as dag: dag.create([[0]],"a:int").show() """ _EXECUTION_ENGINE_FACTORY.register_sql_engine(name, func, on_dup) def register_default_sql_engine(func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.SQLEngine` as the default engine :param func: a callable taking :class:`~fugue.execution.execution_engine.ExecutionEngine` and ``**kwargs`` and returning a :class:`~fugue.execution.execution_engine.SQLEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. note:: You should be careful to use this function, because when you set a custom SQL engine as default, all execution engines you create will use this SQL engine unless you are explicit. For example if you set the default SQL engine to be a Spark specific one, then if you start a NativeExecutionEngine, it will try to use it and will throw exceptions. So it's always a better idea to use ``register_sql_engine`` instead .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_default_sql_engine(lambda engine: MySQLEngine(engine)) # create NativeExecutionEngine with MySQLEngine as the default make_execution_engine() # create SparkExecutionEngine with MySQLEngine instead of SparkSQLEngine make_execution_engine("spark") # NativeExecutionEngine with MySQLEngine with FugueWorkflow() as dag: dag.create([[0]],"a:int").show() """ _EXECUTION_ENGINE_FACTORY.register_default_sql_engine(func, on_dup) def make_execution_engine( engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: """Create :class:`~fugue.execution.execution_engine.ExecutionEngine` with specified ``engine`` :param engine: it can be empty string or null (use the default execution engine), a string (use the registered execution engine), an :class:`~fugue.execution.execution_engine.ExecutionEngine` type, or the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance , or a tuple of two values where the first value represents execution engine and the second value represents the sql engine (you can use ``None`` for either of them to use the default one), defaults to None :param conf: |ParamsLikeObject|, defaults to None :param kwargs: additional parameters to initialize the execution engine :return: the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance .. admonition:: Examples .. code-block:: python register_default_execution_engine(lambda conf: E1(conf)) register_execution_engine("e2", lambda conf, **kwargs: E2(conf, **kwargs)) register_sql_engine("s", lambda conf: S2(conf)) # E1 + E1.default_sql_engine make_execution_engine() # E2 + E2.default_sql_engine make_execution_engine(e2) # E1 + S2 make_execution_engine((None, "s")) # E2(conf, a=1, b=2) + S2 make_execution_engine(("e2", "s"), conf, a=1, b=2) # SparkExecutionEngine + SparkSQLEngine make_execution_engine(SparkExecutionEngine) make_execution_engine(SparkExecutionEngine(spark_session, conf)) # SparkExecutionEngine + S2 make_execution_engine((SparkExecutionEngine, "s")) """ import fugue._utils.register # pylint: disable=W0611 # noqa: F401 return _EXECUTION_ENGINE_FACTORY.make(engine, conf, **kwargs) def make_sql_engine( engine: Any = None, execution_engine: Optional[ExecutionEngine] = None, **kwargs: Any, ) -> SQLEngine: """Create :class:`~fugue.execution.execution_engine.SQLEngine` with specified ``engine`` :param engine: it can be empty string or null (use the default SQL engine), a string (use the registered SQL engine), an :class:`~fugue.execution.execution_engine.SQLEngine` type, or the :class:`~fugue.execution.execution_engine.SQLEngine` instance (you can use ``None`` to use the default one), defaults to None :param execution_engine: the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance to create the :class:`~fugue.execution.execution_engine.SQLEngine`. Normally you should always provide this value. :param kwargs: additional parameters to initialize the sql engine :return: the :class:`~fugue.execution.execution_engine.SQLEngine` instance .. note:: For users, you normally don't need to call this function directly. Use ``make_execution_engine`` instead .. admonition:: Examples .. code-block:: python register_default_sql_engine(lambda conf: S1(conf)) register_sql_engine("s2", lambda conf: S2(conf)) engine = NativeExecutionEngine() # S1(engine) make_sql_engine(None, engine) # S1(engine, a=1) make_sql_engine(None, engine, a=1) # S2(engine) make_sql_engine("s2", engine) # SqliteEngine(engine) make_sql_engine(SqliteEngine) """ import fugue._utils.register # pylint: disable=W0611 # noqa: F401 return _EXECUTION_ENGINE_FACTORY.make_sql_engine(engine, execution_engine, **kwargs)
ofili/Wrangle-and-Analyze-Data
venv/Lib/site-packages/fugue/execution/factory.py
factory.py
py
15,192
python
en
code
0
github-code
6
70037278908
import math from cmath import exp import numpy as np import pandas as pd from Operators import Operator, Density_Matrix, Observable from Many_Body import tensor_product from Nuclear_Spin import Nuclear_Spin, Many_Spins def h_zeeman(spin, theta_z, phi_z, B_0): """ Computes the term of the Hamiltonian associated with the Zeeman interaction between the nuclear spin and the external static field. Parameters ---------- - spin: Nuclear_Spin Spin under study; - theta_z: float Polar angle of the magnetic field in the laboratory coordinate system (expressed in radians); - phi_z: float Azimuthal angle of the magnetic field in the laboratory coordinate system (expressed in radians); - B_0: non-negative float Magnitude of the external magnetic field (expressed in tesla). Returns ------- An Observable object which represents the Zeeman Hamiltonian in the laboratory reference frame (expressed in MHz). Raises ------ ValueError, when the passed B_0 is a negative number. """ if B_0<0: raise ValueError("The modulus of the magnetic field must be a non-negative quantity") h_z = -spin.gyro_ratio_over_2pi*B_0* \ (math.sin(theta_z)*math.cos(phi_z)*spin.I['x'] + \ math.sin(theta_z)*math.sin(phi_z)*spin.I['y'] + \ math.cos(theta_z)*spin.I['z']) return Observable(h_z.matrix) def h_quadrupole(spin, e2qQ, eta, alpha_q, beta_q, gamma_q): """ Computes the term of the Hamiltonian associated with the quadrupolar interaction. Parameters ---------- - spin: Nuclear_Spin Spin under study; - e2qQ: float Product of the quadrupole moment constant, eQ, and the eigenvalue of the EFG tensor which is greatest in absolute value, eq. e2qQ is measured in MHz; - eta: float in the interval [0, 1] Asymmetry parameter of the EFG; - alpha_q, beta_q, gamma_q: float Euler angles for the conversion from the system of the principal axes of the EFG tensor (PAS) to the lab system (LAB) (expressed in radians). Returns ------- If the quantum number of the spin is 1/2, the whole calculation is skipped and a null Observable object is returned. Otherwise, the function returns the Observable object which correctly represents the quadrupolar Hamiltonian in the laboratory reference frame (expressed in MHz). """ if math.isclose(spin.quantum_number, 1/2, rel_tol=1e-10): return Observable(spin.d)*0 I = spin.quantum_number h_q = (e2qQ/(I*(2*I-1)))* \ ((1/2)*(3*(spin.I['z']**2) - Operator(spin.d)*I*(I+1))*v0_EFG(eta, alpha_q, beta_q, gamma_q)+\ (math.sqrt(6)/4)* ((spin.I['z']*spin.I['+'] + spin.I['+']*spin.I['z'])*\ v1_EFG(-1, eta, alpha_q, beta_q, gamma_q) + \ (spin.I['z']*spin.I['-'] + spin.I['-']*spin.I['z'])*\ v1_EFG(+1, eta, alpha_q, beta_q, gamma_q) + \ (spin.I['+']**2)*\ v2_EFG(-2, eta, alpha_q, beta_q, gamma_q) + \ (spin.I['-']**2)*\ v2_EFG(2, eta, alpha_q, beta_q, gamma_q))) return Observable(h_q.matrix) def v0_EFG(eta, alpha_q, beta_q, gamma_q): """ Returns the component V0 of the EFG tensor (divided by eq) as seen in the LAB system. This quantity is expressed in terms of the Euler angles which relate PAS and LAB systems and the parameter eta. Parameters ---------- - eta: float in the interval [0, 1] Asymmetry parameter of the EFG; - alpha_q, beta_q, gamma_q: float Euler angles connecting the system of the principal axes of the EFG tensor (PAS) to the lab system (LAB) (expressed in radians). Returns ------- A float representing the component V0 (divided by eq) of the EFG tensor evaluated in the LAB system. Raises ValueError, when the passed eta is not in the interval [0, 1]. """ if eta<0 or eta>1: raise ValueError("The asymmetry parameter must fall in the interval [0, 1]") v0 = (1/2)*(((3*(math.cos(beta_q))**2-1)/2) - (eta*(math.sin(beta_q))**2)*(math.cos(2*gamma_q))/2) return v0 def v1_EFG(sign, eta, alpha_q, beta_q, gamma_q): """ Returns the components V+/-1 of the EFG tensor (divided by eq) as seen in the LAB system. These quantities are expressed in terms of the Euler angles which relate PAS and LAB systems and the parameter eta. Parameters ---------- - sign: float Specifies wether the V+1 or the V-1 component is to be computed; - eta: float in the interval [0, 1] Asymmetry parameter of the EFG; - alpha_q, beta_q, gamma_q: float Euler angles connecting the system of the principal axes of the EFG tensor (PAS) to the lab system (LAB) (expressed in radians). Returns ------- A complex number representing the component: - V<sup>+1</sup>, if sign is positive; - V<sup>-1</sup>, if sign is negative. of the EFG tensor (divided by eq). Raises ------ ValueError, when the passed eta is not in the interval [0, 1]. """ if eta<0 or eta>1: raise ValueError("The asymmetry parameter must fall within the interval [0, 1]") sign = np.sign(sign) v1 = (1/2)*\ ( -1j*sign*math.sqrt(3/8)*math.sin(2*beta_q)*exp(sign*1j*alpha_q)+\ 1j*(eta/(math.sqrt(6)))*math.sin(beta_q)*\ ( ((1+sign*math.cos(beta_q))/2)*exp(1j*(sign*alpha_q+2*gamma_q))-\ ((1-sign*math.cos(beta_q))/2)*exp(1j*(sign*alpha_q-2*gamma_q)) ) ) return v1 def v2_EFG(sign, eta, alpha_q, beta_q, gamma_q): """ Returns the components V+/-2 of the EFG tensor (divided by eq) as seen in the LAB system. These quantities are expressed in terms of the Euler angles which relate PAS and LAB systems and the parameter eta. Parameters ---------- - sign: float Specifies wether the V+2 or the V-2 component is to be returned; - eta: float in the interval [0, 1] Asymmetry parameter of the EFG tensor; - alpha_q, beta_q, gamma_q: float Euler angles connecting the system of the principal axes of the EFG tensor (PAS) to the lab system (LAB) (expressed in radians). Returns ------- A float representing the component: - V+2, if sign is positive; - V-2, if sign is negative. of the EFG tensor (divided by eq). Raises ------ ValueError, when the passed eta is not in the interval [0, 1]. """ if eta<0 or eta>1: raise ValueError("The asymmetry parameter must fall in the interval [0, 1]") sign = np.sign(sign) v2 = (1/2)*\ (math.sqrt(3/8)*((math.sin(beta_q))**2)*exp(sign*2j*alpha_q)+\ (eta/math.sqrt(6))*exp(sign*2j*alpha_q)*\ ( exp(2j*gamma_q)*((1+sign*math.cos(beta_q))**2)/4 +\ exp(-2j*gamma_q)*((1-sign*math.cos(beta_q))**2)/4 ) ) return v2 def h_single_mode_pulse(spin, frequency, B_1, phase, theta_1, phi_1, t): """ Computes the term of the Hamiltonian describing the interaction with a monochromatic and linearly polarized electromagnetic pulse. Parameters ---------- - spin: Nuclear_Spin Spin under study. - frequency: non-negative float Frequency of the monochromatic wave (expressed in MHz). - phase: float Inital phase of the wave (at t=0) (expressed in radians). - B_1: non-negative float Maximum amplitude of the oscillating magnetic field (expressed in tesla). - theta_1, phi_1: float Polar and azimuthal angles of the direction of polarization of the magnetic wave in the LAB frame (expressed in radians); - t: float Time of evaluation of the Hamiltonian (expressed in microseconds). Returns ------- An Observable object which represents the Hamiltonian of the coupling with the electromagnetic pulse evaluated at time t (expressed in MHz). Raises ------ ValueError, in two distinct cases: 1. When the passed frequency parameter is a negative quantity; 2. When the passed B_1 parameter is a negative quantity. """ if frequency < 0: raise ValueError("The modulus of the angular frequency of the electromagnetic wave must be a positive quantity") if B_1 < 0: raise ValueError("The amplitude of the electromagnetic wave must be a positive quantity") h_pulse = -spin.gyro_ratio_over_2pi*B_1*\ (math.sin(theta_1)*math.cos(phi_1)*spin.I['x'] +\ math.sin(theta_1)*math.sin(phi_1)*spin.I['y'] +\ math.cos(theta_1)*spin.I['z'] )*\ math.cos(2*math.pi*frequency*t-phase) return Observable(h_pulse.matrix) def h_multiple_mode_pulse(spin, mode, t): """ Computes the term of the Hamiltonian describing the interaction with a superposition of single-mode electromagnetic pulses. If the passed argument spin is a Nuclear_Spin object, the returned Hamiltonian will describe the interaction between the pulse of radiation and the single spin; if it is a Many_Spins object, it will represent the interaction with the whole system of many spins. Parameters ---------- - spin: Nuclear_Spin or Many_Spins Spin or spin system under study; - mode: pandas.DataFrame Table of the parameters of each electromagnetic mode in the superposition. It is organised according to the following template: | index | 'frequency' | 'amplitude' | 'phase' | 'theta_p' | 'phi_p' | | ----- | ------------- | ------------- | --------- | ----------- | --------- | | | (MHz) | (T) | (rad) | (rad) | (rad) | | 0 | omega_0 | B_0 | phase_0 | theta_0 | phi_0 | | 1 | omega_1 | B_1 | phase_1 | theta_1 | phi_1 | | ... | ... | ... | ... | ... | ... | | N | omega_N | B_N | phase_N | theta_N | phi_N | where the meaning of each column is analogous to the corresponding parameters in h_single_mode_pulse. - t: float Time of evaluation of the Hamiltonian (expressed in microseconds). Returns ------- An Observable object which represents the Hamiltonian of the coupling with the superposition of the given modes evaluated at time t (expressed in MHz). """ h_pulse = Operator(spin.d)*0 omega = mode['frequency'] B = mode['amplitude'] phase = mode['phase'] theta = mode['theta_p'] phi = mode['phi_p'] if isinstance(spin, Many_Spins): for i in mode.index: h_pulse = Operator(spin.d)*0 for n in range(spin.n_spins): term_n = h_single_mode_pulse(spin.spin[n], omega[i], B[i], phase[i], theta[i], phi[i], t) for m in range(spin.n_spins)[:n]: term_n = tensor_product(Operator(spin.spin[m].d), term_n) for l in range(spin.n_spins)[n+1:]: term_n = tensor_product(term_n, Operator(spin.spin[l].d)) h_pulse = h_pulse + term_n elif isinstance(spin, Nuclear_Spin): for i in mode.index: h_pulse = h_pulse + h_single_mode_pulse(spin, omega[i], B[i], phase[i], theta[i], phi[i], t) return Observable(h_pulse.matrix) # Global Hamiltonian of the system (stationary term + pulse term) cast in the picture generated by # the Operator h_change_of_picture def h_changed_picture(spin, mode, h_unperturbed, h_change_of_picture, t): """ Returns the global Hamiltonian of the system, made up of the time-dependent term h_multiple_mode_pulse(spin, mode, t) and the stationary term h_unperturbed, cast in the picture generated by h_change_of_picture. Parameters ---------- - spin, mode, t: same meaning as the corresponding arguments of h_multiple_mode_pulse; - h_unperturbed: Operator Stationary term of the global Hamiltonian (in MHz); - h_change_of_picture: Operator Operator which generates the new picture (in MHz). Returns ------- Observable object representing the Hamiltonian of the pulse evaluated at time t in the new picture (in MHz). """ h_cp = (h_unperturbed + h_multiple_mode_pulse(spin, mode, t) - \ h_change_of_picture).changed_picture(h_change_of_picture, t) return Observable(h_cp.matrix) def h_j_coupling(spins, j_matrix): """ Returns the term of the Hamiltonian describing the J-coupling between the spins of a system of many nuclei. Parameters ---------- - spins: Many_Spins Spins' system under study; - j_matrix: np.ndarray Array storing the coefficients Jmn which enter the formula for the computation of the Hamiltonian for the j-coupling. Remark: j_matrix doesn't have to be symmetric, since the function reads only those elements located in the upper half with respect to the diagonal. This means that the elements j_matrix[m, n] which matter are those for which m<n. Returns ------- Observable object acting on the full Hilbert space of the spins' system representing the Hamiltonian of the J-coupling between the spins. """ h_j = Operator(spins.d)*0 for m in range(j_matrix.shape[0]): for n in range(m): term_nm = j_matrix[n, m]*spins.spin[n].I['z'] for l in range(n): term_nm = tensor_product(Operator(spins.spin[l].d), term_nm) for k in range(m)[n+1:]: term_nm = tensor_product(term_nm, Operator(spins.spin[k].d)) term_nm = tensor_product(term_nm, spins.spin[m].I['z']) for j in range(spins.n_spins)[m+1:]: term_nm = tensor_product(term_nm, Operator(spins.spin[j].d)) h_j = h_j + term_nm return h_j.cast_to_observable()
DavideCandoli/PULSEE
Code/Hamiltonians.py
Hamiltonians.py
py
14,405
python
en
code
1
github-code
6
1130853243
# Get all positions around given point within 2 km circle. # ZHOU Kunpeng, 14 Dec 2018 from model import models from controller import utils # Get all positions around 2km range centered at given point class GetPositionsAround(): # params: longitude (float), latitude(float) # returns: a list of positions with their item information def getPositionsAround(self, longitude, latitude): # Range of the circle (only get positions within range) RANGE = 2 positionsAround = [] positions = models.Position.objects.all() for position in positions: # within 2 km range dist = utils.getDistance(longitude, latitude, position.longitude, position.latitude) if dist <= RANGE: # positionsAround.append([position.id, position.longitude, position.latitude, position]) positionsAround.append(position) return positionsAround # Get all positions on map class GetAllPositions(): # params: longitude (float), latitude(float) # returns: a list of positions with their item information def getAllPositions(self): positionsRet = [] positions = models.Position.objects.all() for position in positions: positionsRet.append(position) return positionsRet # update last location of a user class UpdateUserLocation(): # params: user(string), longitude(float), latitude(float) def updateUserLocation(self, userId, longitude, latitude): user = models.User.objects.get(wechatId = userId) user.lastLongitude = longitude user.lastLatitude = latitude user.save() from controller.pet import petDAOs # A user checks in a given position class CheckIn(): # params: wechatId (string), positionId (int) # returns: a dictionary that shows total effect on user's pet. def checkIn(self, wechatId, positionId): # get user and position user = models.User.objects.filter(wechatId = wechatId)[0] position = models.Position.objects.filter(id = positionId)[0] if user == None or position == None: return None # check if this place (position) has been checked in by this user checkInQuery = models.CheckInRecord.objects.filter(user=user, point=position) if len(checkInQuery) != 0: return None # Create a check-in record checkInRecord = models.CheckInRecord.objects.create(user=user, point=position) # Upgrade pet's ability pet = user.pets.all()[0] item = position.itemLinked # pet.experience += item.addExp pet.health += item.addHealth pet.attack += item.addAttack pet.defend += item.addDefend pet.speed += item.addSpeed pet.dodgeRate += item.addDodgeRate pet.save() # update pet's experience (if leveled-up, ability will be updated accordingly) petDAOs.UpdateExperience().updateExperience(pet.id, pet.experience + item.addExp) return item
wangtong2015/EnjoyWideWorld
back-end/EnjoyWideWorld/controller/map/mapDAOs.py
mapDAOs.py
py
3,048
python
en
code
0
github-code
6
18823308841
import random DESCRIPTION = "Find the greatest common divisor of given numbers." def find_gcd(x, y): while x and y: if x > y: x = x % y else: y = y % x gcd = str(x + y) return gcd def get_question_and_answer(): a = random.randint(1, 100) b = random.randint(1, 100) question = f"{a} {b}" correct_answer = str(find_gcd(a, b)) return question, correct_answer
QQpy3ko/project-lvl1-s566
brain_games/games/brain_gcd.py
brain_gcd.py
py
436
python
en
code
0
github-code
6
39201428004
import cv2 import time import os import HandTrackingModule as htm from dronekit import connect, VehicleMode, LocationGlobalRelative, APIException import time import socket import math import argparse from pymavlink import mavutil from time import sleep import numpy as np ################################################################################### def connectMyCopter(): parser=argparse.ArgumentParser(description='commands') parser.add_argument('--connect', default='127.0.0.1:14550') args=parser.parse_args() connection_string=args.connect baud_rate=921600 vehicle=connect(connection_string, baud=baud_rate, wait_ready=True) return vehicle ################################################################################### # Function to arm and takeoff def arm_and_takeoff(TargetAltitude): # Switch vehicle to Guided Mode vehicle.mode = VehicleMode("GUIDED") while vehicle.mode!="GUIDED": print("Waiting for guided mode") time.sleep(1) # Arming the Vehicle vehicle.armed = True while vehicle.armed == False: print("Waiting for the vehicle to be armed") time.sleep(1) vehicle.simple_takeoff(TargetAltitude) while True: print("Current Altitude: %d" , vehicle.location.global_relative_frame.alt) if vehicle.location.global_relative_frame.alt >= TargetAltitude*.95: break time.sleep(1) print("Target Altitude reached") return None ################################################################## #-- Define the function for sending mavlink velocity command in body frame def set_velocity_body(vehicle, vx, vy, vz): """ Remember: vz is positive downward!!! http://ardupilot.org/dev/docs/copter-commands-in-guided-mode.html Bitmask to indicate which dimensions should be ignored by the vehicle (a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored). Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: """ msg = vehicle.message_factory.set_position_target_local_ned_encode( 0, 0, 0, mavutil.mavlink.MAV_FRAME_BODY_NED, 0b0000111111000111, #-- BITMASK -> Consider only the velocities 0, 0, 0, #-- POSITION vx, vy, vz, #-- VELOCITY 0, 0, 0, #-- ACCELERATIONS 0, 0) vehicle.send_mavlink(msg) vehicle.flush() ################################################################### vehicle = connectMyCopter() wCam, hCam = 640, 480 deadZone = 100 pTime = 0 cap = cv2.VideoCapture(0) cap.set(3, wCam) cap.set(4, hCam) detector = htm.handDetector(detectionCon=0.8, maxHands=1) x = [300, 245, 200, 170, 145, 130, 112, 103, 93, 87, 80, 75, 70, 67, 62, 59, 57] y = [20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100] coff = np.polyfit(x, y, 2) # y = AX^2 + BX + C c = [] i = 0 tipIds = [4, 8, 12, 16, 20] while True: success, img = cap.read() img = detector.findHands(img) lmList = detector.findPosition(img, draw=False) #print(lmList) if len(lmList) !=0: fingers = [] # Thumb . Here the x value of thumb tip is compared with the x value of mid thumb if lmList[tipIds[0]][1] > lmList[tipIds[0] - 1][1]: fingers.append(1) else: fingers.append(0) # Other Fingers for id in range(1,5): if lmList[tipIds[id]][2] < lmList[tipIds[id]-2][2]: fingers.append(1) else: fingers.append(0) #print(sum(fingers)) x1, y1 = lmList[5][1], lmList[5][2] x2, y2 = lmList[17][1], lmList[17][2] cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 ty = lmList[4][2] #print(cx, cy) cv2.circle(img, (cx, cy), 5, (255, 0, 255), cv2.FILLED) #length = int(math.hypot(x2 - x1, y2 - y1)) #A, B, C = coff #distanceCM = A*length**2 + B*length + C #print(distanceCM) if sum(fingers) == 0: print(" Arm and Takeoff ") arm_and_takeoff(2) if sum(fingers) == 5: if ((cx < int(wCam/2) + deadZone) and (cx > int(wCam/2) - deadZone)): print("Hold Position") set_velocity_body(vehicle, 0, 0, 0) if (cx < int(wCam/2) - deadZone): print("Moving Right") set_velocity_body(vehicle, 0, 0.5, 0) if (cx > int(wCam/2) + deadZone): print("Moving Left") set_velocity_body(vehicle, 0, -0.5, 0) if sum(fingers) == 1: if ((ty < int(hCam/2) + deadZone) and (ty > int(hCam/2) - deadZone)): print("Hold Position") set_velocity_body(vehicle, 0, 0, 0) if (ty < int(hCam/2) - deadZone): print("Moving Up") set_velocity_body(vehicle, 0, 0, -1) if (ty > int(hCam/2) + deadZone): print("Moving Down") set_velocity_body(vehicle, 0, 0, 1) #if sum(fingers) == 5: # c.append(cx) # if len(c)!=0: # for i in range(len(c)): # difference = c[i]-c[i-1] #print(difference) # if difference > 0: # print("Moving Left") # set_velocity_body(vehicle, 0, -3, 0) # elif difference < 0: # print("Moving Right") # set_velocity_body(vehicle, 0, 3, 0) # elif difference == 0: # print("Hold Position") # set_velocity_body(vehicle, 0, 0, 0) # #print(" Moving Right ") #set_velocity_body(vehicle, distanceCM*0.05, 0, 0) cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, f'FPS: {int(fps)}', (40, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 0, 0), 3) cv2.imshow("Image", img) cv2.waitKey(1)
2ashishmohan/Hand-Gesture-Controlled-Quadcopter-UAV
HandTrackingDemo.py
HandTrackingDemo.py
py
6,355
python
en
code
0
github-code
6
70096829629
import sys """ ์ด๋ถ„ ํƒ์ƒ‰ ๊ธฐ๋ฐ˜ ํ’€์ด ์‹œ์ž‘ ์ง€์ ์ด end๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์•„์งˆ ๋•Œ ๊นŒ์ง€ ์ง„ํ–‰ ์‹œ์ž‘์„ 1, ๋์„ ๋ - ์‹œ์ž‘์œผ๋กœ ์ง„ํ–‰. ๋‘˜ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ตœ๋Œ€๋กœ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” middle๋ณด๋‹ค ์ปค์•ผํ•œ๋‹ค. x๋ฅผ ๊ฐฑ์‹ ํ•ด์„œ ๊ณต์œ ๊ธฐ ์œ„์น˜๋ฅผ ์กฐ์ •ํ•œ๋‹ค. cnt๊ฐ€ c๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์„ ๊ฒฝ์šฐ -> ๊ณต์œ ๊ธฐ๋ฅผ ๋งŽ์ด ์„ค์น˜ํ•œ ์ผ€์ด์Šค -> start ์—…๋ฐ์ดํŠธ ํ•˜๊ณ , ans๋ฅผ middle๋กœ ์„ค์ • cnt๊ฐ€ c๋ณด๋‹ค ์ ์„ ๊ฒฝ์šฐ -> ๊ณต์œ ๊ธฐ๋ฅผ ์ ๊ฒŒ ์„ค์น˜ํ•œ ์ผ€์ด์Šค -> end ์—…๋ฐ์ดํŠธ """ n, c = map(int, sys.stdin.readline().split(" ")) house = [] for _ in range(n): house.append(int(sys.stdin.readline())) house.sort() start = 1 end = house[-1] - house[0] while start <= end: middle = (start + end) // 2 x = house[0] cnt = 1 for i in range(len(house)): if house[i] - x >= middle: x = house[i] cnt += 1 if cnt >= c: start = middle + 1 ans = middle elif cnt < c: end = middle - 1 print(ans)
YooGunWook/coding_test
๋ฐฑ์ค€/๋ฐฑ์ค€_2110๋ฒˆ.py
๋ฐฑ์ค€_2110๋ฒˆ.py
py
1,031
python
ko
code
0
github-code
6
10702973519
'''from math import prod a=int(input()) for i in range(10,10001): if prod(list(map(int,str(i))))==a: print(i) break else: print("Not Possible") ''' n=int(input()) a=[] for i in range(n): a+=[int(input())] if n<2: print("Invalid Input") else: a.sort() if n == a.count(a[0]): print("Equal") else: print(a[0],a[1],sep=" ")
hariss0411/Python-Codes
tcs_digital.py
tcs_digital.py
py
408
python
en
code
0
github-code
6
33145366381
def read(): file = open("PuzzleInput_9.txt", "r") dict = [] line_count = 0 for x in file.readlines(): x = x.strip() x = int(x) dict.append(x) line_count += 1 file.close() return dict dict = read() for x in range(25, len(dict)): check = False for y in dict[x-25: x]: if dict[x] - y in dict[x-25: x]: check = True if not check: invalid_number = dict[x] print(f"gedeelte 1:{invalid_number}") index_number = 0 index_check = 0 answer = [] answer_fnd = True while answer_fnd: check_sum = 0 index_check = index_number while True: if check_sum == invalid_number: for x in dict[index_number:index_check]: answer.append(x) answer_fnd = False break if check_sum > invalid_number: break if index_check == len(dict): break check_sum += dict[index_check] index_check += 1 index_number += 1 print(f"gedeelte 2:{max(answer) + min(answer)}")
ArviWasTaken/AdventOfCode
src/main/python/2020/DAY_09/Code_9.py
Code_9.py
py
1,063
python
en
code
1
github-code
6
18405151031
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 12 17:56:03 2020 @author: mints """ import logging import itertools import joblib import warnings import numpy as np from astropy.utils.exceptions import AstropyUserWarning from pandas.core.common import SettingWithCopyWarning from semiphore_public.cuda.cudaprocessor import CudaProcessor from semiphore_public.utils import interpolate warnings.filterwarnings('ignore', category=AstropyUserWarning, append=True) warnings.filterwarnings('ignore', category=SettingWithCopyWarning, append=True) def distance(w1, w2, sed1, sed2, err1, err2): """Calculate distance between two SED templates Args: w1 (float): weight of the first SED w2 (float): weight of the second SED sed1 (float[]): magnitudes of the first SED sed2 (float[]): magnitudes of the second SED err1 (float[]): width of the first SED err2 (float[]): width of the second SED Returns: "Distance" """ d = (w1 * (sed1 - sed2)**2 / (err1**2 + 1e-2), w2 * (sed1 - sed2)**2 / (err2**2 + 1e-2)) return np.sum(np.sqrt(d)) def get_order(w1, w2, sed1, sed2, err1, err2): """Reorder SEDs. Here all parameters are arrays along the redshift. Args: w1 (float[]): weight of the first SED w2 (float[]): weight of the second SED sed1 (float[][]): magnitudes of the first SED sed2 (float[][]): magnitudes of the second SED err1 (float[][]): width of the first SED err2 (float[][]): width of the second SED Returns: [type]: [description] """ nn = len(w1) d = np.zeros((nn, nn)) for i in range(nn): for j in range(nn): d[i, j] = distance(w1[i], w2[j], sed1[i], sed2[j], err1[i], err2[j]) smin = np.inf tOk = None for t in itertools.permutations(np.arange(nn, dtype=int), nn): s = 0 for i in range(nn): s += d[i, t[i]] if s < smin: smin = s tOk = t return tOk if __name__ == '__main__': import argparse import logging logger = logging.getLogger("FIT") logger.setLevel(logging.DEBUG) logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') parser = argparse.ArgumentParser(description=""" Perform a full CUDA-based SED-PhotoZ fit. """, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-i', '--input', type=str, default=None, help='Input filename') parser.add_argument('-c', '--catalogs', type=str, default=None, required=True, help='Input catalogs to use (comma separated)') parser.add_argument('-o', '--output', type=str, default=None, help='Output filename') parser.add_argument('-n', '--nsed', type=int, default=1, help='Number of SEDs to fit') parser.add_argument('-V', '--verbose', action="store_true", default=False, help='Be verbose') args = parser.parse_args() processor = CudaProcessor(args.catalogs.split(','), args.nsed) results = [] sizes = [] logger.info("Load data from %s", args.catalogs) processor.load_data(filename=args.input) z_len = len(processor.z) is_ok = [] izs = [] # Forward run for z0, mags, errs in processor.iterate_data(size=1000): logger.info("Forward run, redshift=%.2f", processor.z[int(z0)]) if len(results) > 0: output = processor.run_on_data(mags, errs, custom_params=results[-1][0]) else: output = processor.run_on_data(mags, errs) if output is not None: res, size, _ = output if res[1] >= processor.MAX_ITERATIONS * args.nsed: logger.warn(f'Iteration count exceeded for z nr {z0}') is_ok.append(False) else: is_ok.append(True) results.append(res) sizes.append(size) izs.append(z0) # Backward run: for ii in range(len(izs)-2, 0, -1): if not is_ok[ii + 1] or not is_ok[ii]: continue old_norm = results[ii][2] / sizes[ii] if results[ii + 1][2] / sizes[ii + 1] > old_norm: logger.info("Backward run, redshift=%.2f", processor.z[int(izs[ii])]) mags, errs = processor.get_data_for_zs(izs[ii]) output = processor.run_on_data(mags, errs, custom_params=results[ii+1][0]) if output is not None: res, size, _ = output if res[2] / size >= results[ii][2] / sizes[ii]: logger.debug(f'...new l_norm={res[2] / size} is better') results[ii] = res sizes[ii] = size else: logger.debug(f'...new l_norm={res[2] / size} is lower, rejecting') iz_min = int(np.ceil(np.min(izs))) iz_max = int(np.ceil(np.max(izs))) izs = processor.z[0] + np.array(izs) * 0.02 sed_shape = (z_len, processor.n_seds, len(processor.columns)) output = {'z': processor.z, 'names': processor.names, 'weights': np.zeros((z_len, processor.n_seds)), 'sed': np.zeros(sed_shape), 'err': np.zeros(sed_shape), 'l_values': np.zeros(len(izs)), 'iterations': np.zeros(len(izs)), 'sizes': sizes, } w = np.array([results[ii][0][0] for ii in range(len(results))]) sed = np.array([results[ii][0][1] for ii in range(len(results))]) err = np.array([results[ii][0][2] for ii in range(len(results))]) output['iterations'] = np.array([results[ii][1] for ii in range(len(results))]) output['l_values'] = np.array([results[ii][2] for ii in range(len(results))]) ind = np.argsort(w) logger.info("Reordering...") # Reordering output['weights00'] = w output['sed00'] = sed output['err00'] = err w_order = [w[0]] sed_order = [sed[0]] err_order = [err[0]] for i in range(0, len(w)-1): new_order = list(get_order(w_order[i], w[i+1], sed_order[i], sed[i+1], err_order[i], err[i+1])) w_order.append(w[i + 1][new_order]) sed_order.append(sed[i + 1][new_order]) err_order.append(err[i + 1][new_order]) logger.info("Interpolating...") # Interpolation output['weights0'] = w_order output['sed0'] = sed_order output['err0'] = err_order output['weights'] = interpolate.curve_processor(izs, np.array(w_order), processor.z, is_log=True) output['sed'] = interpolate.curve_processor(izs, np.array(sed_order), processor.z, is_log=False) output['err'] = interpolate.curve_processor(izs, np.array(err_order), processor.z, is_log=True, bounded=True) output['weights'] = output['weights'] / \ output['weights'].sum(axis=1)[:, np.newaxis] output['z_base'] = izs output['input_file'] = args.input if args.output is None: names = '_'.join(processor.names) outname = f'../calibrations/seds/{names}_{processor.n_seds}seds.joblib' else: outname = args.output logger.info('Saving calibration to %s', outname) joblib.dump(output, outname) logger.info("Finished")
minzastro/semiphore_public
fit/complete_fit.py
complete_fit.py
py
7,837
python
en
code
0
github-code
6
7165513164
# Answer to almostIncreasingSequence # https://app.codesignal.com/arcade/intro/level-2/2mxbGwLzvkTCKAJMG def almostIncreasingSequence(sequence): droppped = False last = prev = min(sequence) - 1 for elm in sequence: if elm <= last: if droppped: return False else: droppped = True if elm <= prev: prev = last elif elm >= prev: prev = last = elm else: prev, last = last, elm return True # I had to take help to solve this. # And this is taken from a user pharfenmeister
CompetitiveCode/CodeSignal
Arcade/Intro/Edge of the Ocean/almostIncreasingSequence.py
almostIncreasingSequence.py
py
648
python
en
code
1
github-code
6
72579481788
from flask import Flask, request, redirect, url_for from flask_jsonpify import jsonify from flask import render_template from flask import abort from flask import Response from flask_api import status import json from flaskext.mysql import MySQL import pandas as pd import requests from datetime import datetime, timedelta import matplotlib as plt import base64 import io app = Flask(__name__) mysql = MySQL() # MySQL configurations app.config['MYSQL_DATABASE_USER'] = 'root' app.config['MYSQL_DATABASE_PASSWORD'] = '' app.config['MYSQL_DATABASE_DB'] = 'cloud' app.config['MYSQL_DATABASE_HOST'] = 'localhost' mysql.init_app(app) db = mysql.connect() cursor = db.cursor() @app.route('/') def homepage(): return render_template('forecast.html') @app.route('/historical/', methods=['GET','POST']) #lists all the dates def historical(): if(request.method=='GET'): dates_list = [] cursor.execute("select DATE from dailyweather") query=cursor.fetchall() my_hist = [i[0] for i in query] for item in my_hist: a = {"DATE":str(item)} dates_list.append(a) js = json.dumps(dates_list) return js, 200 else: l=request.get_json() d=l['DATE'] tmax=l['TMAX'] tmin=l['TMIN'] obj = {} cursor.execute("select DATE from dailyweather") q=cursor.fetchall() list=[i[0] for i in q] x=0 for item in list: if(int(d)==item): x=1 if(x==1): cursor.execute("update dailyweather set TMAX=%f, TMIN=%f where DATE=%d" %(float(tmax),float(tmin),int(d))) else: cursor.execute("insert into dailyweather values(%d,%f,%f)" % (int(d),float(tmax),float(tmin))) db.commit() obj={"DATE":str(d)} return jsonify(obj), 201 @app.route('/historical/<string:DATE>', methods=['GET']) #gets the weather info of a particular day def get_info(DATE): obj = {} l=[] cursor.execute("select DATE,TMAX,TMIN from dailyweather where DATE =%d" % int(DATE)) q=cursor.fetchall() if(len(q)>0): for i in range(3): l.append(q[0][i]) obj = { "DATE": str(l[0]), "TMAX": l[1], "TMIN": l[2] } return jsonify(obj), 200 else: return '', 404 @app.route('/historical/<int:DATE>', methods=['DELETE']) def del_info(DATE): obj={} l=[] cursor.execute("select DATE,TMAX,TMIN from dailyweather where DATE=%d" % int(DATE)) query=cursor.fetchall() cursor.execute("delete from dailyweather where DATE=%d" % int(DATE)) db.commit() if(len(query)>0): for i in range(3): l.append(str(query[0][i])) obj = { "DATE": l[0], "TMAX": l[1], "TMIN": l[2] } return jsonify(obj), 200 else: return '', 204 @app.route('/forecast/<DATE>', methods=['GET']) #forecasts weather info of the next 7days def forecast(DATE): lst_dates = [] lst_obj = [] current_date = pd.to_datetime(DATE,format='%Y%m%d') stop_date = current_date+timedelta(days=7) while current_date<stop_date: lst_dates.append(str(pd.to_datetime(current_date)).split(' ')[0].replace("-","")) current_date = current_date+timedelta(days=1) for curr_date in lst_dates: cursor.execute("select DATE,TMAX,TMIN from dailyweather where DATE =%d" % int(curr_date)) query=cursor.fetchall() if (len(query) > 0): obj = { "DATE": curr_date, "TMAX": query[0][1], "TMIN": query[0][2] } lst_obj.append(obj) else: cursor.execute("select ROUND(RAND()*(80-75+1),1)+75") q=cursor.fetchall() cursor.execute("select ROUND(RAND()*(50-45+1),1)+45") q1=cursor.fetchall() obj = { "DATE": curr_date, "TMAX": q[0][0], "TMIN": q1[0][0] } lst_obj.append(obj) return jsonify(lst_obj), 200 if __name__ == '__main__': app.run(host='0.0.0.0',debug=True,port=80)
cotraak/weather-app-flask
app.py
app.py
py
4,277
python
en
code
0
github-code
6
70373498108
from typing import Optional, Any, Union, Callable import torch from torch import Tensor import torch.nn.functional as F from torch.nn.modules import Module from .linear import Linear from .normalization import LayerNorm from .activation import MultiheadAttention from .dropout import Dropout class TransformerEncoderLayer(Module): r"""Pytorch 2.0 TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of the intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu layer_norm_eps: the eps value in layer normalization components (default=1e-5). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). norm_first: if ``True``, layer norm is done prior to attention and feedforward operations, respectively. Otherwise it's done after. Default: ``False`` (after). Examples:: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src) Alternatively, when ``batch_first`` is ``True``: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) >>> src = torch.rand(32, 10, 512) >>> out = encoder_layer(src) Fast path: forward() will use a special optimized implementation described in `FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following conditions are met: - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad`` - training is disabled (using ``.eval()``) - batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``) - activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu`` - at most one of ``src_mask`` and ``src_key_padding_mask`` is passed - if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask`` nor ``src_key_padding_mask`` is passed - the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case unless the caller has manually modified one without modifying the other) If the optimized implementation is in use, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for ``src`` to represent padding more efficiently than using a padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be returned, and an additional speedup proportional to the fraction of the input that is padding can be expected. .. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`: https://arxiv.org/abs/2205.14135 """ __constants__ = ["batch_first", "norm_first"] def __init__( self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, device=None, dtype=None, B: int = 1, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.B = B self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first, B=B, **factory_kwargs) # Implementation of Feedforward model self.linear1 = Linear(d_model, dim_feedforward, B=B, **factory_kwargs) self.dropout = Dropout(dropout) self.linear2 = Linear(dim_feedforward, d_model, B=B, **factory_kwargs) self.norm_first = norm_first self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, B=B, **factory_kwargs) self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, B=B, **factory_kwargs) self.dropout1 = Dropout(dropout) self.dropout2 = Dropout(dropout) # For Hydro scaling self.d_model = d_model self.nhead = nhead self.dim_feedforward = dim_feedforward self.dropout_value = dropout self.layer_norm_eps = layer_norm_eps self.batch_first = batch_first # Legacy string support for activation function. if isinstance(activation, str): self.activation = _get_activation_fn(activation) else: self.activation = activation # We can't test self.activation in forward() in TorchScript, # so stash some information about it instead. if activation is F.relu or isinstance(activation, torch.nn.ReLU): self.activation_relu_or_gelu = 1 elif activation is F.gelu or isinstance(activation, torch.nn.GELU): self.activation_relu_or_gelu = 2 else: self.activation_relu_or_gelu = 0 def __setstate__(self, state): super().__setstate__(state) if not hasattr(self, "activation"): self.activation = F.relu def forward( self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, is_causal: bool = False, ) -> Tensor: r"""Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). is_causal: If specified, applies a causal mask as src_mask. Default: ``False``. src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in Transformer class. """ src_key_padding_mask = F._canonical_mask( mask=src_key_padding_mask, mask_name="src_key_padding_mask", other_type=F._none_or_dtype(src_mask), other_name="src_mask", target_type=src.dtype, ) # Fast path NOT support training # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf why_not_sparsity_fast_path = "" if not src.dim() == 3: why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}" elif self.training: why_not_sparsity_fast_path = "training is enabled" elif not self.self_attn.batch_first: why_not_sparsity_fast_path = "self_attn.batch_first was not True" elif not self.self_attn._qkv_same_embed_dim: why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True" elif not self.activation_relu_or_gelu: why_not_sparsity_fast_path = "activation_relu_or_gelu was not True" elif not (self.norm1.eps == self.norm2.eps): why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps" elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None): why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input" elif self.self_attn.num_heads % 2 == 1: why_not_sparsity_fast_path = "num_head is odd" elif torch.is_autocast_enabled(): why_not_sparsity_fast_path = "autocast is enabled" if not why_not_sparsity_fast_path: tensor_args = ( src, self.self_attn.in_proj_weight, self.self_attn.in_proj_bias, self.self_attn.out_proj.weight, self.self_attn.out_proj.bias, self.norm1.weight, self.norm1.bias, self.norm2.weight, self.norm2.bias, self.linear1.weight, self.linear1.bias, self.linear2.weight, self.linear2.bias, ) # We have to use list comprehensions below because TorchScript does not support # generator expressions. if torch.overrides.has_torch_function(tensor_args): why_not_sparsity_fast_path = "some Tensor argument has_torch_function" elif not all((x.is_cuda or "cpu" in str(x.device)) for x in tensor_args): why_not_sparsity_fast_path = "some Tensor argument is neither CUDA nor CPU" elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args): why_not_sparsity_fast_path = ( "grad is enabled and at least one of query or the " "input/output projection weights or biases requires_grad" ) if not why_not_sparsity_fast_path: merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src) return torch._transformer_encoder_layer_fwd( src, self.self_attn.embed_dim, self.self_attn.num_heads, self.self_attn.in_proj_weight, self.self_attn.in_proj_bias, self.self_attn.out_proj.weight, self.self_attn.out_proj.bias, self.activation_relu_or_gelu == 2, self.norm_first, self.norm1.eps, self.norm1.weight, self.norm1.bias, self.norm2.weight, self.norm2.bias, self.linear1.weight, self.linear1.bias, self.linear2.weight, self.linear2.bias, merged_mask, mask_type, ) x = src if self.norm_first: x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask) x = x + self._ff_block(self.norm2(x)) else: x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask)) x = self.norm2(x + self._ff_block(x)) return x # self-attention block def _sa_block(self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor]) -> Tensor: x = self.self_attn(x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)[0] return self.dropout1(x) # feed forward block def _ff_block(self, x: Tensor) -> Tensor: x = self.linear2(self.dropout(self.activation(self.linear1(x)))) return self.dropout2(x) def extra_repr(self) -> str: s = "{d_model}, {nhead}, dim_feedforward={dim_feedforward}, dropout={dropout_value}, layer_norm_eps={layer_norm_eps}, B={B}" if self.activation != F.relu: if isinstance(self.activation, str): s += ", activation={activation}" else: s += ", activation={activation.__name__}" if self.batch_first: s += ", batch_first=True" if self.norm_first: s += ", norm_first=True" return s.format(**self.__dict__) def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: if activation == "relu": return F.relu elif activation == "gelu": return F.gelu raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
S-Lab-System-Group/Hydro
hydro/fuse_ops/transformer.py
transformer.py
py
12,254
python
en
code
18
github-code
6
2929688634
""" Python script, Python v 2.7 written 1/30/17 by James Novakowski This script was developed to summarize anonymized claims data for Radial Analytics as part of a coding assessment. To run the script, the script file should be in the same folder as the data file, called "data.csv". The script will generate an output csv file called "State_Level_Summary.csv", which will provide a summary of claims data by state, gender, and age. Note: The current implementation of this script leaves out data points where the state is undefined, the gender is undefined, or the age is undefined. The sript will also generate an output file called "Claims_Utilization_Summary.csv", whcih will provide a summary of claims data by the Utilization Range, providing the counts of claims and the percentage of claims that fall into each range bucket. """ import csv #Create data dictionary for state summary data data = {} state_code = range(1,67) for item in range(97,100): state_code.append(item) for state in state_code: data[state] = {"male":0, "female":0, "age_under_65":0, "age_65_to_74":0, "age_over_74":0, "state":str(state) } #Create data dictionary for Utilization Range data util_days = {} util_code = range(0,6) for item in util_code: util_days[str(item)] = 0 util_days["6_to_10"] = 0 util_days["11_to_30"] = 0 util_days["over_30"] = 0 """ Read the data from the csv file to a dictionary. Note: Current implementation ignores values 0: Unknown in Gender and Age fields. Then: Summarize the data. Data fields coded as follows: Gender Code from Claim 0 = Unknown 1 = Male 2 = Female LDS Age Category 0 = Unknown 1 = <65 2 = 65 Thru 69 3 = 70 Thru 74 4 = 75 Thru 79 5 = 80 Thru 84 6 = >84 And want the following fields in the final tabulation: State Gender (male) Gender (female) Age (under 65) Age (65-74) Age (75 +) """ data_file = "data.csv" f = open(data_file) d = csv.DictReader(f) for row in d: #print row age = int(row["LDS Age Category"]) gender = int(row["Gender Code from Claim"]) state = int(row["State Code from Claim (SSA)"]) day_count = int(row["Claim Utilization Day Count"]) #Read the data into the data nested dictionary if gender == 1: data[state]["male"] += 1 elif gender == 2: data[state]["female"] += 1 if age == 1: data[state]["age_under_65"] += 1 elif age > 1 and age < 4: data[state]["age_65_to_74"] += 1 elif age >= 4: data[state]["age_over_74"] += 1 if day_count < 6: util_days[str(day_count)] += 1 elif day_count >= 6 and day_count <= 10: util_days["6_to_10"] += 1 elif day_count >= 11 and day_count <= 30: util_days["11_to_30"] += 1 elif day_count > 30: util_days["over_30"] += 1 f.close() """ Generate an output csv file for the state claim summary data. """ with open("State_Level_Summary.csv", 'w') as csvfile: fieldnames = ['state', 'female', 'male', 'age_under_65', 'age_65_to_74', 'age_over_74'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writerow({'state':'State', 'female':'Female', 'male':'Male', 'age_under_65':'Ages < 65', 'age_65_to_74':'Ages 65-74', 'age_over_74':'Ages75+' }) for state in data: writer.writerow(data[state]) """ Generate an output csv file for the utilization days summary data. Also use this step to calculate the total claims, and the percentage of claims falling into each utilization range bucket. """ total_claims = 0 for key, value in util_days.iteritems(): total_claims += value with open("Claims_Utilization_Summary.csv", 'w') as csvfile: fieldnames = ['Utilization Range', 'Counts', 'Percentages'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for key, value in util_days.iteritems(): if value > 0: percent = (value / float(total_claims)) * 100 percent = round(percent, 2) percent = str(percent) + "%" else: percent = "0.00%" new_row = {'Utilization Range':key, 'Counts':str(value), 'Percentages':percent} writer.writerow(new_row)
jamesnovakowski/python_examples_rsg
State_Summary_and_Utilization_Range_Summary.py
State_Summary_and_Utilization_Range_Summary.py
py
4,569
python
en
code
0
github-code
6
15426226201
import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), 'classes')) from classes import data_manager from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import SGDClassifier from sklearn.ensemble import StackingClassifier, VotingClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Dense, Embedding, GlobalMaxPool1D, Conv1D from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import Sequential, load_model from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import autokeras as ak from xgboost import XGBRegressor from xgboost import XGBClassifier # Prediction models: # regressors and classifiers that take a positinal embedding vector as input, # output storypoints (or other impact related value) seed=42 class regressors: @staticmethod def get_autokeras_paraphrase5(): model = load_model("regression_models/autokeras5_desc_paraphrase_rmse", custom_objects=ak.CUSTOM_OBJECTS) return model @staticmethod def get_autokeras_roberta3_mae(): model = load_model("regression_models/autokeras3_roberta_mae", custom_objects=ak.CUSTOM_OBJECTS) return model @staticmethod def keras_convolutional(X_train, y_train, X_test, y_test, vocab_size, max_len): #https://realpython.com/python-keras-text-classification/ callbacks = [ EarlyStopping(patience=5, restore_best_weights=True, mode='min') ] model = Sequential() model.add(Embedding(input_dim=vocab_size+1, output_dim=50, input_length=max_len)) model.add(Conv1D(50, 5, activation='relu')) model.add(GlobalMaxPool1D()) model.add(Dense(units=25, activation='relu')) model.add(Dense(units=1, activation='relu')) model.compile(optimizer=Adam(learning_rate=0.0001), loss='mae', metrics=['mse'], run_eagerly=True) history = model.fit(X_train, y_train, epochs=15, verbose=True, validation_data=(X_test, y_test), batch_size=50, callbacks=callbacks) return model @staticmethod def create_MLP(X, y): model = MLPRegressor(random_state=seed) model = model.fit(X, y) pipe = Pipeline([('mlp', model)]) param_grid = { 'mlp__solver': ['sgd'], 'mlp__alpha': [0.01], 'mlp__learning_rate_init': [0.0001], 'mlp__max_iter': [300] } gs = gridsearch(pipe, param_grid, 'neg_mean_squared_error') gs.fit(X, y) data_manager.print_gridsearch_best_stats(gs) return model @staticmethod def create_SVR(X, y): model = svm.SVR() pipe = Pipeline([('standardize', StandardScaler()), ('svr', model)]) param_grid = { 'svr__C': [1.75], #1.957,1.8,2,1.7 #multi lang 1.75 'svr__gamma': ['scale'], 'svr__kernel': ['rbf'], 'svr__epsilon': [0.01], #0.1,0.01 #multi lang 0.01 'svr__degree': [2] #2,3,4 } gs = gridsearch(pipe, param_grid, 'neg_mean_absolute_error') #neg_mean_squared_error gs.fit(X, y) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod def create_Randomforest(X, y): model = RandomForestRegressor(random_state=seed, n_estimators=300, min_samples_leaf=4, max_depth=20) pipe = Pipeline([('rtree', model)]) param_grid = { # 'rtree__n_estimators': [300], # 'rtree__min_samples_leaf': [4], # 'rtree__max_depth': [20] } gs = gridsearch(pipe, param_grid, 'neg_mean_absolute_error') gs.fit(X, y) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod def create_XGBregressor(X_train, y_train): model = XGBRegressor(learning_rate=0.001, n_estimators=400, n_jobs=5, random_state=seed) pipe = Pipeline([('XGB', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'neg_mean_squared_error') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return model @staticmethod def keras_sequential_network(X_train, y_train, X_test, y_test, lr=0.001): input_dim = len(X_train[0]) callbacks = [ EarlyStopping(patience=5, restore_best_weights=True, mode='min') ] model = Sequential() model.add(Dense(100, input_dim=input_dim, kernel_initializer='normal', activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='linear')) model.compile(loss='mse', optimizer=Adam(learning_rate=lr), metrics=['mse', 'mae'], run_eagerly=True) model.fit(X_train, y_train, epochs=15, verbose=True, validation_data=(X_test, y_test), batch_size=50, callbacks=callbacks) pipe = Pipeline([('nn', model)]) param_grid = {} gs = gridsearch(pipe, param_grid, 'neg_mean_squared_error') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return model class classifiers(object): @staticmethod #0.7133 - F 0.7220 - H 0.7281 - H2 0.73152 def create_mlpclassifier(X_train, y_train): model = MLPClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('sgd', model)]) param_grid = { 'mlp__max_iter':[200], #200, 400, 600, 800 | 200 'mlp__solver':['adam'], #'adam', 'lbfgs' | 'adam' 'mlp__alpha':[0.001], #0.0001, 0.001 | 0.001 'mlp__batch_size':[50], #100, 150, 200, 400 | 50 'mlp__learning_rate_init':[0.0001] #0.01, 0.001, 0.0001 | 0.0001 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6709 - F 0.6817 def create_Randomforest(X_train, y_train): model = RandomForestClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('sgd', model)]) param_grid = { # 'rtree__n_estimators': [700], #best from range 150 - 700 # 'rtree__min_samples_leaf': [2], #best from range 1 - 7 # 'rtree__max_depth': [20] } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.7147 - F 0.7206 - H 0.7256 - H2 0.72656 def create_XGB(X_train, y_train): model = XGBClassifier(seed=seed, use_label_encoder=False) pipe = Pipeline([('standardize', StandardScaler()), ('xgb', model)]) param_grid = { 'xgb__learning_rate':[0.05, 0.03], #0.2, 0.1, 0.15, 0.01 | 0.05 'xgb__n_estimators':[600, 800], #100, 300, 400, 500 | 600 'xgb__max_depth':[7], #4, 5, 6, 7, 8 | 7 'xgb__colsample_bytree':[0.2], #0.1, 0.2 | 0.2 'xgb__reg_lambda':[4, 6, 8] #1, 2, 3, 4 | 4 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6750 - F 0.6885 def create_GB(X_train, y_train): #max_depth=6, n_estimators=500, random_state=42))]) # best parms: {'gb__learning_rate': 0.1, 'gb__max_depth': 6, 'gb__n_estimators': 500} model = GradientBoostingClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('gb', model)]) param_grid = { # 'gb__n_estimators': [500], #50 - 600 # 'gb__learning_rate': [0.1], #0.2 - 0.01 # 'gb__max_depth': [6], #1-7 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.7152 - F 0.7195 H 0.73417 def create_SVC(X_train, y_train): model = svm.SVC(random_state=seed, probability=True) pipe = Pipeline([('standardize', StandardScaler()), ('svc', model)]) param_grid = { 'svc__kernel': ['rbf'], #'rbf', 'linear' | rbf 'svc__degree': [2], #2,3,4 | 2 'svc__gamma': ['scale'], #'auto', 'scale' | 'scale' 'svc__C': [1.95] #1, 1.95 | 1.95 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6670 - F 0.6735 def create_KNN(X_train, y_train): model = KNeighborsClassifier() pipe = Pipeline([('standardize', StandardScaler()), ('KNN', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6764 - F 0.667 def create_SGD(X_train, y_train): model = SGDClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('sgd', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #F - 0.7311 - H2 0.73587 def create_voting(X_train, y_train): SVC = svm.SVC(random_state=seed, probability=True, kernel='rbf', degree=2, gamma='scale', C=1.95) XGB = XGBClassifier(seed=seed, learning_rate=0.05, n_estimators=600, max_depth=7, reg_lambda=4, colsample_bytree=0.2, use_label_encoder=False) MLP = MLPClassifier(random_state=seed, max_iter=200, solver='adam', alpha=0.001, batch_size=50, learning_rate_init=0.0001) estimators = [ ('svc', SVC), ('xgb', XGB), ('mlp', MLP) ] model = VotingClassifier( estimators=estimators, voting='soft', weights=[1,1,1], n_jobs=-1, verbose=True) pipe = Pipeline([('standardize', StandardScaler()), ('vc', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) print('voting done') return gs @staticmethod #F - 0.72848 - H2 0.7373 def create_stacking(X_train, y_train): SVC = svm.SVC(random_state=seed, probability=True, kernel='rbf', degree=2, gamma='scale', C=1.95) XGB = XGBClassifier(seed=seed, learning_rate=0.05, n_estimators=600, max_depth=7, reg_lambda=4, colsample_bytree=0.2, use_label_encoder=False) MLP = MLPClassifier(random_state=seed, max_iter=200, solver='adam', alpha=0.001, batch_size=50, learning_rate_init=0.0001) estimators = [ ('svc', SVC), ('xgb', XGB), ('mlp', MLP) ] model = StackingClassifier( estimators=estimators, final_estimator=LogisticRegression(random_state=42) ) pipe = Pipeline([('standardize', StandardScaler()), ('stack', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) print('stacking done') data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod def create_logisticregression(X_train, y_train): model = LogisticRegression(random_state=42) pipe = Pipeline([('standardize', StandardScaler()), ('lg', model)]) param_grid = { 'lg__max_iter':[600] } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs def gridsearch(pipe, param_grid, metric): gs = GridSearchCV(pipe, param_grid, verbose=0, cv=5, scoring=metric, n_jobs=4, return_train_score=True) return gs
JaapvDijk/PredictTaskImpactNLP
classes/prediction_models.py
prediction_models.py
py
14,556
python
en
code
0
github-code
6
28428365301
import os from app import create_app if __name__ == '__main__': verify_token = os.getenv("VERIFY_TOKEN", None) access_token = os.getenv("ACCESS_TOKEN", None) url = os.getenv("URL", None) if not verify_token: raise Exception("verify_token not set") if not access_token: raise Exception("access_token not set") env = { "VERIFY_TOKEN": verify_token, "ACCESS_TOKEN": access_token, "URL": url } app = create_app.create_app(env=env) app.logger.info("Initializing") app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 8080)))
lolney/messenger-gpt2-chatbot
server/app.py
app.py
py
619
python
en
code
1
github-code
6
18834111771
# -*- coding: utf-8 -*- # Author๏ผšsen # Date๏ผš9090/3/94 10:48 from typing import List from heapq import * class Solution: def majorityElement(self, nums: List[int]) -> int: from collections import Counter counter = Counter(nums) for item in counter.items(): # item: (ๅ…ƒ็ด , ๆ•ฐ้‡) if item[1] > (len(nums) / 2.0): return item[0] class Solution2: def majorityElement(self, nums: List[int]) -> int: # ไธไฝฟ็”จ่‡ชๅธฆCounter counter = {} for num in nums: counter[num] = counter.get(num, 0) + 1 for item in counter.items(): if item[1] > (len(nums) / 2.0): return item[0] if __name__ == '__main__': nums = [9,9,8,8,8,9,9] so = Solution() print(so.majorityElement(nums)) so = Solution2() print(so.majorityElement(nums))
PandoraLS/CodingInterview
ProgrammingOJ/LeetCode_python/169_ๅคšๆ•ฐๅ…ƒ็ด .py
169_ๅคšๆ•ฐๅ…ƒ็ด .py
py
892
python
en
code
2
github-code
6
22248410521
""" Very simple HTTP server in python for logging requests Usage:: ./server.py [<port>] """ from http.server import BaseHTTPRequestHandler, HTTPServer from urllib import parse import os import logging class S(BaseHTTPRequestHandler): def _set_response(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_POST(self): content_length = int(self.headers['Content-Length']) # <--- Gets the size of data post_data = self.rfile.read(content_length) # <--- Gets the data itself # logging.info("POST request,\nPath: %s\nHeaders:\n%s\n\nBody:\n%s\n", # str(self.path), str(self.headers), post_data.decode('utf-8')) standard = post_data.decode("utf-8") dump = parse.parse_qs(standard) if "type" in dump.keys(): if dump["type"][0] == "vote": writeVoteToFile(dump["titleID"][0]) if dump["type"][0] == "chat": writeChatToFile(dump) self._set_response() def run(server_class=HTTPServer, handler_class=S, port=3000): # logging.basicConfig(level=logging.INFO) server_address = ('', port) httpd = server_class(server_address, handler_class) # logging.info('Starting httpd...\n') try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() # logging.info('Stopping httpd...\n') # Safety operations def doesIDExist(titleID): with open("/resources/text/titleinfo.txt", "r") as f: for line in f: if line[8:16] == titleID[8:16]: return True return False # Saving operations def writeVoteToFile(titleID): if doesIDExist(titleID): with open("/resources/text/vote.txt", "a") as f: f.write(titleID + "\r") os.system("echo \"$(tail -n 200 /resources/text/vote.txt)\" > /resources/text/vote.txt") else: print("Could not write vote for: " + titleID) def writeChatToFile(details): with open("/resources/text/msg.txt", "a") as f: f.write(details["author"][0] + ";;" + details["time"][0] + ";;" + details["message"][0] +"\r") os.system("echo \"$(tail -n 200 /resources/text/msg.txt)\" > /resources/text/msg.txt") # Main function if __name__ == '__main__': from sys import argv if len(argv) == 2: run(port=int(argv[1])) else: run()
jacquesCedric/newWWP-server
listener/Listener.py
Listener.py
py
2,426
python
en
code
0
github-code
6
4072987057
#Lokaverkefni For3 #Hรถfundur: Jรณn Benediktsson #dags: 27.12.2017 from ctypes import * from random import randint import color_console as cons import sys #linkar #Print here commandiรฐ #https://rosettacode.org/wiki/Terminal_control/Cursor_positioning#Python #litir #https://www.burgaud.com/bring-colors-to-the-windows-console-with-python/ #"bitwise or" #https://wiki.python.org/moin/BitwiseOperators default_colors = cons.get_text_attr() default_bg = default_colors & 0x0070 default_fg = default_colors & 0x0007 class COORD(Structure): pass COORD._fields_ = [("X", c_short), ("Y", c_short)] def print_at(r, c, s): h = windll.kernel32.GetStdHandle(-11) windll.kernel32.SetConsoleCursorPosition(h, COORD(c, r)) c = s.encode("UTF-8") windll.kernel32.WriteConsoleA(h, c_char_p(c), len(c), None, None) #================================================================= # minn kรณรฐi #================================================================= #color format til aรฐ geta haldiรฐ รญ vissa liti fyrir vissa hluti class Color_Form(): def __init__(self, *args): TempBin=0x0000 #รฉg reyndi aรฐ lรฆra aรฐeins รก รพetta og รฉg bara fatta ekki hvaรฐ รพetta รพรฝรฐir for x in args: #รพaรฐ รก aรฐ vera einhverskonar binary number hlutur eรฐa eithvaรฐ TempBin=(TempBin|x) #og รพetta hรฉr รก aรฐ gera "bitwise or" รฉg nรกรฐi รพessu samt til aรฐ virka self.__Color__=TempBin def GetColor(self): return self.__Color__ #Standard fyrir munstriรฐ รก borderinum #0-1-2 #| | #7 8 3 #| | #6-5-4 #รพetta gerir รพannig"โ•”โ•โ•—โ•‘โ•โ•โ•šโ•‘ " #รพetta #โ•”โ•โ•— #โ•‘ โ•‘ #โ•šโ•โ• RandomEn=[["Ananas",5,1,-10,5],["Snakur",10,3,1,20],["Dvergur",30,5,-1,100]] class kassi(): def __init__(self,LiturBorder,LiturInni,X,Y,Breydd,Haed,Munstur): self.LiturBorder=LiturBorder self.LiturInni=LiturInni self.X=Y self.Y=X self.Breydd=Haed #รพaรฐ var einhver villa รญ รพessu hjรก mรฉr svo รฉg bara vรญxlaรฐi รพvรญ self.Haed=Breydd #print at gerir y svo x รญ staรฐ x,y รพaรฐ er vandamรกliรฐ self.Munstur=Munstur def teikna(self): PH="0" #heldur um munstriรฐ sem รก aรฐ prenta eรฐa Print Holder Litur=0x0000 #heldur um litin sem รก aรฐ nota for x in range(self.Breydd): for y in range(self.Haed): if x+y==0: #0 PH=self.Munstur[0] Litur=self.LiturBorder elif y == self.Haed-1 and x ==0: #2 PH = self.Munstur[2] Litur = self.LiturBorder elif x == self.Breydd-1 and y ==0: #4 PH = self.Munstur[4] Litur = self.LiturBorder elif x == self.Breydd-1 and y == self.Haed-1: #6 PH = self.Munstur[6] Litur = self.LiturBorder elif y==0: #7 PH = self.Munstur[7] Litur = self.LiturBorder elif x==self.Breydd-1: #5 PH = self.Munstur[5] Litur = self.LiturBorder elif y==self.Haed-1: #3 PH = self.Munstur[3] Litur = self.LiturBorder elif x==0: #1 PH = self.Munstur[1] Litur = self.LiturBorder else: #8 PH = self.Munstur[8] Litur = self.LiturInni cons.set_text_attr(Litur) print_at((self.X+x),(self.Y+y),PH) #litir sem eru notaรฐir รญ kassana รก skjรกnum og fleyrra Grunnur= Color_Form(default_bg,default_fg) Border= Color_Form(cons.FOREGROUND_BLACK,cons.BACKGROUND_GREY) StatsColor=Color_Form(default_bg,cons.FOREGROUND_MAGENTA) CommandColor=Color_Form(default_bg,cons.FOREGROUND_RED) #samsetninginn og teknuninn รก menuinu MainBack=kassi(Border.GetColor(),Border.GetColor(),0,0,120,47,"0-0|0-0| ") MainBack.teikna() MainPlay=kassi(Border.GetColor(),Grunnur.GetColor(),5,2,61,32,"0-0|0-0| ") MainPlay.teikna() StatsBox=kassi(StatsColor.GetColor(),Grunnur.GetColor(),80,3,20,30,"0-0|0-0| ") StatsBox.teikna() CommandBox=kassi(CommandColor.GetColor(),Grunnur.GetColor(),7,35,59,8,"0-0|0-0| ") CommandBox.teikna() CTLoc=[37,9] #command retun location print_at(0,0,"") input() class Character(): def __init__(self,Nafn,MaxHp,Str,Dex,Vopn,Def,Agi,Int): self._Nafn=Nafn self._MaxHp=MaxHp self._Str=Str self._Dex=Dex self._Vopn=Vopn self._Def=Def self._Agi=Agi self._Int=Int self._Peningar=0 self._lookrange=5 self._Hp=MaxHp def AddMoney(self,Ammount): self._Peningar=self._Peningar+Ammount def Money(self): return self._Peningar def Look(self): return self._lookrange def Attack(self): return self._Vopn.Dmg() def Recive_Damage(self,Damage): if Damage > self._Def: pass else: self._Hp=self._Hp-Damage+self._Def def Print_Stats(self): cons.set_text_attr(default_colors) print_at(4,89-(len("Hp: "+str(self._Hp)+"/"+str(self._MaxHp))//2),"Hp: "+str(self._Hp)+"/"+str(self._MaxHp)) health_bar="<|==============|>" cons.set_text_attr(default_bg|cons.FOREGROUND_GREEN) print_at(5, 81 ,health_bar) if self._Hp<self._MaxHp: cons.set_text_attr(default_bg|cons.BACKGROUND_RED) print_at(4, 90 ,"|>") class items(): def __init__(self,verd,typa): self._verd=verd self._typa=typa def GetType(self): return self._typa def GetWorth(self): return self._verd class Vopn(items): def __init__(self,Drif,Dmg,Virdi): items.__init__(self,Virdi,"Vopn") self._Drif=Drif self._Dmg=Dmg def Drif(self): return self._Drif def Dmg(self): return self._Dmg class Enemy(): def __init__(self,Nafn,Hp,Dmg,Agi,Gold): self._Nafn=Nafn self._Stafur=Nafn[0] self._Hp=Hp self._Dmg=Dmg self._Agi=Agi self._Gold=Gold self._seen=False self._Dead=False def GetAgi(self): return self._Agi def GetStafur(self): return self._Stafur def IsDead(self): return self._Dead def Loot(self): goldcar=int(self._Gold) self._Gold=0 return goldcar def Recive_Damage(self,Damage): self._Hp=self._Hp-Damage if self._Hp<1: self._Dead=True CTL("Thu drapst eithvad sem bar nafnid "+self._Nafn) else: CTL("Thu gerdir aras a eithvad sem ber nafnid " + self._Nafn) def Attack(self): return self._Dmg Grasyda=Vopn(1,4,70) Anton=Character("Anton",20,2,2,Grasyda,1,1,0) class Map(): def __init__(self,File): self._enemypos=[] self._itempos=[] self._Characterpos=[] self._Enemies=[] #รพarf aรฐ laga รพetta seinna svo รพetta sรฉ ekki eins mikiรฐ klusterfuck skra=open(File,"r",encoding="UTF-8") tempCopy=skra.read() skra.close() tempcopyx=tempCopy.split("\n") self._Holder=[]#รพetta heldur mappinu for y in range(len(tempcopyx)): self._Holder.append([]) for x in range(len(tempcopyx[y])): self._Holder[y].append(tempcopyx[y][x]) if tempcopyx[y][x]=="E": self._enemypos.append([x,y]) RaChoice=RandomEn[randint(0,len(RandomEn)-1)]#les random enemy รบr listanum self._Enemies.append(Enemy(RaChoice[0],RaChoice[1],RaChoice[2],RaChoice[3],RaChoice[4])) self._Holder[y][x]="." if tempcopyx[y][x]=="I": self._itempos.append([x,y]) self._Holder[y][x] = "." if tempcopyx[y][x]=="S": self._Characterpos=[x,y] self._Holder[y][x] = "." def searchOnscreen(self,dist,listi): outp=[] for x in range(len(listi)): if listi[x][0] in range(self._Characterpos[0]-dist,self._Characterpos[0]+dist) and listi[x][1] in range(self._Characterpos[1]-dist,self._Characterpos[1]+dist): outp.append(x) return outp def draw(self): WallColor=Color_Form(cons.FOREGROUND_INTENSITY,cons.FOREGROUND_GREY,cons.BACKGROUND_INTENSITY,cons.BACKGROUND_RED) EnemyColor=Color_Form(cons.FOREGROUND_RED,default_bg) ItemColor = Color_Form(cons.FOREGROUND_YELLOW, default_bg) CharacterColor = Color_Form(cons.FOREGROUND_CYAN, default_bg) for x in range(0,30): for y in range(0,30): if self._Holder[y+self._Characterpos[1]-15][x+self._Characterpos[0]-15]=="#": cons.set_text_attr(WallColor.GetColor()) else: cons.set_text_attr(default_colors) print_at(3+y,6+(x*2),self._Holder[y+self._Characterpos[1]-15][x+self._Characterpos[0]-15]) EnemyOnscreen=self.searchOnscreen(15,self._enemypos) ItemOnscreen = self.searchOnscreen(15, self._itempos) cons.set_text_attr(EnemyColor.GetColor()) for x in EnemyOnscreen: print_at(18-(self._Characterpos[1]-self._enemypos[x][1]),36-(2*(self._Characterpos[0]-self._enemypos[x][0])),self._Enemies[x].GetStafur()) cons.set_text_attr(ItemColor.GetColor()) for x in ItemOnscreen: print_at(18-(self._Characterpos[1]-self._itempos[x][1]),36-(2*(self._Characterpos[0]-self._itempos[x][0])),"I") cons.set_text_attr(CharacterColor.GetColor()) print_at(18,36,"@") def Action(self,command): testloc=list(self._Characterpos) if command== "w": testloc[1]=testloc[1]-1 elif command== "s": testloc[1]=testloc[1]+1 elif command== "a": testloc[0]=testloc[0]-1 elif command== "d": testloc[0]=testloc[0]+1 if self._Holder[testloc[1]][testloc[0]]=="#": CTL("thad er eithvad fyrir ther") return False elif testloc in self._enemypos: EnemyId=self._enemypos.index(testloc) if self._Enemies[EnemyId].IsDead(): Gold=int(self._Enemies[EnemyId].Loot()) if Gold==0: self._Characterpos=testloc else: Anton.AddMoney(Gold) CTL("thu fanst "+str(Gold)+" kronur a likinu") else: self._Enemies[EnemyId].Recive_Damage(Anton.Attack()) return True else: self._Characterpos=testloc return True def CTL(message): cons.set_text_attr(CommandColor.GetColor()) print_at(CTLoc[0], CTLoc[1], " ") print_at(CTLoc[0], CTLoc[1], message) cons.set_text_attr(cons.FOREGROUND_CYAN | default_bg) print_at(CTLoc[0] + 1, CTLoc[1], " ") print_at(CTLoc[0] + 1, CTLoc[1], "") Leikur=Map("Test_2.txt") def CTI(Message): cons.set_text_attr(cons.FOREGROUND_YELLOW | default_bg) print_at(CTLoc[0] -1, CTLoc[1], " ") print_at(CTLoc[0] -1, CTLoc[1], "") class Turns(): def __init__(self,EnemyList): self._ind = 0 self._Turnlist=[] for x in range(21): self._Turnlist.append(["filler"]) self._Turnlist[0].append("C") for x in range(len(EnemyList)): self._Turnlist[randint(1,20)].append(x) def GetTurn(self): if len(self._Turnlist[0])<=self._ind: self._ind = 0 for x in range(20): self._Turnlist[x]=self._Turnlist[x+1] self._Turnlist[20] = ["filler"] self._ind = self._ind +1 return self._Turnlist[0][self._ind-1] def SetTurn(self,hlutur,Agi): self._Turnlist[10-Agi].append(hlutur) Rodinn=Turns(Leikur._Enemies) Trust=False #hรฉr birjar leikurinn aรฐ gera hluti while True: while not Trust: Anton.Print_Stats() Leikur.draw() print_at(CTLoc[0] + 1, CTLoc[1], " ") print_at(CTLoc[0] + 1, CTLoc[1], "") inp=input() if "/" in inp: pass elif inp in "asdw": Trust=Leikur.Action(inp) Rodinn.SetTurn("C",Anton._Agi) while Trust: Onscreen=Leikur.searchOnscreen(10,Leikur._enemypos) Engaged=Leikur.searchOnscreen(2,Leikur._enemypos) Gera=Rodinn.GetTurn() if Gera=="C": Trust=False elif Gera=="filler": pass elif Leikur._Enemies[Gera].IsDead(): pass else: if Gera in Onscreen: if Gera in Engaged: Anton.Recive_Damage(Leikur._Enemies[Gera].Attack()) else: if Leikur._enemypos[Gera][1]==Leikur._Characterpos[1]: if Leikur._enemypos[Gera][0]>Leikur._Characterpos[0]: tempdir=-1 else: tempdir=1 Leikur._enemypos[Gera][0]=Leikur._enemypos[Gera][0]+tempdir if Leikur._enemypos[Gera][0]==Leikur._Characterpos[0]: if Leikur._enemypos[Gera][1]>Leikur._Characterpos[1]: tempdir=-1 else: tempdir=1 Leikur._enemypos[Gera][1]=Leikur._enemypos[Gera][1]+tempdir else: randdir=randint(0,1) if randdir==0: if Leikur._enemypos[Gera][0] > Leikur._Characterpos[0]: tempdir = -1 else: tempdir = 1 else: if Leikur._enemypos[Gera][1] > Leikur._Characterpos[1]: tempdir = -1 else: tempdir = 1 Leikur._enemypos[Gera][randdir] = Leikur._enemypos[Gera][randdir] + tempdir else: randdir = randint(0, 1) randdir2= randint(0, 1) Leikur._enemypos[Gera][randdir] = Leikur._enemypos[Gera][randdir] + [-1,1][randdir2] Rodinn.SetTurn(Gera,Leikur._Enemies[Gera].GetAgi())
Mergjunarhola/TextBasedDungeonCrawler-1
Dungeoncrawler/GamePlayerV1.py
GamePlayerV1.py
py
15,523
python
en
code
0
github-code
6
35412611474
# Ces programmes sont sous licence CeCILL-B V1. # Provisoire : il faudrait crรฉer en python l'รฉquivalent de la classe # Isn pour la gestion du graphisme. Mes connaissances graphiques sont # assez limitรฉes, je me suis contentรฉ pour l'instant de quelque chose # de simple. # # Guillaume from tkinter import Tk,Frame,Button,Canvas,LEFT,RIGHT,TOP root = None application = None canvas = None btnQuitter = None def initDrawing(titre,x,y,largeur,hauteur): global root,application,canvas,btnQuitter root = Tk() application = Frame(root) application.pack() application.master.title(titre) canvas = Canvas(application, width=largeur, height=hauteur) canvas.pack(side=TOP) btnQuitter = Button(application, text="Quitter", command=application.quit) btnQuitter.pack(side=RIGHT) def drawRectangle(x1,y1,x2,y2,rouge,vert,bleu): global canvas couleur = "#%02x%02x%02x" % (rouge,vert,bleu) canvas.create_rectangle(x1,y1,x2,y2,outline=couleur,fill="white") def drawCircle(x,y,rayon,rouge,vert,bleu): global canvas couleur = "#%02x%02x%02x" % (rouge,vert,bleu) canvas.create_oval(x-rayon,y-rayon,x+rayon,y+rayon,outline=couleur,fill="white") def drawPixel(x,y,rouge,vert,bleu): global canvas couleur = "#%02x%02x%02x" % (rouge,vert,bleu) canvas.create_rectangle(x,y,x,y,outline=couleur) def drawLine(x1,y1,x2,y2,rouge,vert,bleu): global canvas couleur = "#%02x%02x%02x" % (rouge,vert,bleu) canvas.create_line(x1,y1,x2,y2,fill=couleur) def showDrawing(): global root root.mainloop() gauche = 0 droite = 1 haut = 2 bas = 3 aucun = 4 def dessiner (x,y,rayon,interdit): drawCircle(x,y,rayon,0,0,0) if rayon > 1: if interdit != droite: dessiner(x + 3 * rayon // 2,y,rayon // 2,gauche) if interdit != gauche: dessiner(x - 3 * rayon // 2,y,rayon // 2,droite) if interdit != haut: dessiner(x,y - 3 * rayon // 2,rayon // 2,bas) if interdit != bas: dessiner(x,y + 3 * rayon // 2,rayon // 2,haut) initDrawing("DessinRรฉcursif",10,10,400,400) dessiner(200,200,64,aucun) showDrawing()
OCamlPro/ISN-OCaml
chap5/DessinRecursif.py
DessinRecursif.py
py
2,138
python
fr
code
4
github-code
6
43317278578
# Scrapy settings for sci_abs project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html from shutil import which BOT_NAME = 'sci_abs' SPIDER_MODULES = ['sci_abs.spiders'] NEWSPIDER_MODULE = 'sci_abs.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'sci_abs (+http://www.yourdomain.com)' # Obey robots.txt rules # ROBOTSTXT_OBEY = True DOWNLOAD_DELAY = 2 RANDOMIZE_DOWNLOAD_DELAY = True SELENIUM_DRIVER_NAME = 'firefox' SELENIUM_DRIVER_EXECUTABLE_PATH = which('geckodriver') SELENIUM_DRIVER_ARGUMENTS = ['-headless'] # '--headless' if using chrome instead of firefox RETRY_TIMES = 3 # Retry on most error codes since proxies fail for different reasons RETRY_HTTP_CODES = [500, 503, 504, 400, 403, 404, 408] PROXY_LIST = 'sci_abs/spiders/proxies_round2' PROXY_MODE = 0 # different proxy for each request RANDOM_UA_PER_PROXY = True FAKEUSERAGENT_FALLBACK = 'Mozillapip install scrapy_proxies' # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'sci_abs.middlewares.SciAbsSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'sci_abs.middlewares.SciAbsDownloaderMiddleware': 543, #} DOWNLOADER_MIDDLEWARES = { # 'news_oil_gas.middlewares.NewsOilGasDownloaderMiddleware': 543, 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 'scrapy_user_agents.middlewares.RandomUserAgentMiddleware': 400, 'scrapy.downloadermiddlewares.retry.RetryMiddleware': 900, # 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': None, 'scrapy_proxies.RandomProxy': 700, 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 710, 'scrapy_selenium.SeleniumMiddleware': 750, # 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware': None, # 'scrapy.downloadermiddlewares.cookies.PersistentCookiesMiddleware': 751, 'scrapy_splash.SplashCookiesMiddleware': 650, 'scrapy_splash.SplashMiddleware': 652, 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810, } ITEM_PIPELINES = { 'sci_abs.pipelines.SciAbsPipeline': 300, } MONGO_URI= 'mongodb://root:[email protected]:27017/' MONGO_DATABASE='abstracts' SCHEDULER = "scrapy_redis.scheduler.Scheduler" SCHEDULER_PERSIST = True SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # Specify the host and port to use when connecting to Redis (optional). REDIS_HOST = '139.198.191.224' REDIS_PORT = 6379 # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # SCHEDULER = "scrapy_redis.scheduler.Scheduler" # SCHEDULER_PERSIST = True # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # # STATS_CLASS = "scrapy_redis.stats.RedisStatsCollector" # # STATS_CLASS = "scrapy_redis.stats.RedisStatsCollector" # # # SCHEDULER_PERSIST = True # DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # # Specify the host and port to use when connecting to Redis (optional). # REDIS_HOST = '139.198.191.224' # # REDIS_HOST='localhost' # REDIS_PORT = 6379 # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'sci_abs.pipelines.SciAbsPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
RayFromUiS/sci_abs_scraper
sci_abs/sci_abs/settings.py
settings.py
py
5,479
python
en
code
0
github-code
6
22218777486
import director.tasks.robottasks as rt taskLibrary = [ ['utils', [ [rt.PrintTask, {}], [rt.UserPromptTask, {}], [rt.DelayTask, {}], [rt.PauseTask, {}], [rt.QuitTask, {}], ]], ['perception sensors', [ [rt.WaitForMultisenseLidar, {}], [rt.SnapshotMultisensePointcloud, {}], [rt.SnapshotSelectedPointcloud, {}], [rt.SnapshotStereoPointcloud, {}], [rt.FindHorizontalSurfaces, {}], ]], ['fitting', [ [rt.UserAnnotatePointCloud, {}], [rt.UserSelectAffordanceCandidate, {}], [rt.ProjectAffordanceToGround, {}], [rt.FindHorizontalSurfaces, {}], [rt.FitWallFrameFromAnnotation, {}], [rt.FitShelfItem, {}], [rt.FindRotaryDrillByAnnotation, {}], [rt.ComputeRobotFootFrame, {}], [rt.TransformFrame, {}], ]], ['spawn affordances', [ [rt.SpawnDrillBarrelAffordance, {}], [rt.SpawnDrillRotaryAffordance, {}], [rt.SpawnValveAffordance, {}], ]], ['planning', [ [rt.RequestFootstepPlan, {}], [rt.RequestWalkingPlan, {}], [rt.PlanPostureGoal, {}], [rt.PlanReachToFrame, {}], [rt.PlanGazeTrajectory, {}], [rt.PlanStandPosture, {}], [rt.PlanNominalPosture, {}], ]], ['execution', [ [rt.CommitManipulationPlan, {}], [rt.CommitFootstepPlan, {}], [rt.WaitForManipulationPlanExecution, {}], [rt.WaitForWalkExecution, {}], [rt.WaitForAtlasBehavior, {}], ]], ['hand control', [ [rt.CloseHand, {}], [rt.OpenHand, {}], ]], ]
RobotLocomotion/director
src/python/director/tasks/descriptions/taskLibrary.py
taskLibrary.py
py
1,505
python
en
code
176
github-code
6
30503616911
# Author: Ron Jones # Date Created: 7-3-17 # Date Last Modified: 7-4-17 # Purpose: Check CDS Overlay Excel Sheet with Master Data Sheet # Status: Working perfectly with MDS and CDS_Overlay_Final2.xlsx as of July 4, 2017 '''Note: The "compare dicts function iterates through every correct combination of entries from the overlay and data files to check for any discrepancies, then checks every entry from the overlay against the data to see if there are any entire records erroneously absent from the MDS. For more detailed instructions, check FM_Overlay_Script, the structure is basically the same''' # Import openpyxl module to allow python to access data from Excel documents import openpyxl as xl, sys def main(): # Pull data from workbooks data = xl.load_workbook(sys.argv[1]) overlay = xl.load_workbook(sys.argv[2]) # Pull worksheets from workbooks data_sheet = data.get_sheet_by_name('Data') overlay_sheet = overlay.get_sheet_by_name('Table 1') # Open output file (validation comments) for writing comments = open('Classified_Information_Comments', 'w') #Write heading to output file comments.write("Inconsistencies:" + "\n" + "\n") # Open empty dictionary for overlay info overlay_dict = {} # Open empty dictionary for master info data_dict = {} populate_overlay_dict(overlay_sheet, overlay_dict) populate_data_dict(data_sheet, data_dict) compare_dicts(data_dict, overlay_dict, comments) def populate_overlay_dict(sheet, inp_dict): titles = ['CONTROL', 'CLASSIFIED INFORMATION OVERLAY'] for i in range(60, 157): if not sheet.cell(row=i, column=1).value in titles: inp_dict[sheet.cell(row=i, column=1).value] = sheet.cell(row=i, column=2).value #print("Overlay dictionary: ", inp_dict) def populate_data_dict(worksheet, inp): for i in range(4, worksheet.max_row + 1): if not worksheet.cell(row=i, column=3).value in inp: inp[worksheet.cell(row=i, column=3).value] = [worksheet.cell(row=i, column=50).value] else: inp[worksheet.cell(row=i, column=3).value].append(worksheet.cell(row=i, column=50).value) #print("Data Dict: ", inp) def compare_dicts(data, overlay, outfile): switch = 0 #For loop to check for incorrect/missing entries for key in data: for key2 in overlay: if key == key2: for elt in data[key]: if elt == overlay[key2]: #Can uncomment for visual evidence that loop executed #print("Data validated " + str(key) + " " + str(key2)) continue else: outfile.write("Discrepancy with control " + str(key) + "\n" + "\n") switch = 1 break continue #For loop to check for missing records for key2 in overlay: if not key2 in data: outfile.write(((str(key2) + " should include a " + str(overlay[key2]) + " in the overlay column of MDS, but the record itself does not exist" + "\n" + "\n"))) switch = 1 if switch == 0: print("No discrepancies found") else: print("There were some discrepancies. Check 'Classified_Information_Comments for more information") main()
NISTBoard/data_validation
Classified_Info_Script.py
Classified_Info_Script.py
py
3,365
python
en
code
0
github-code
6
3238678172
"""Contains the class system_objects. Used to compute systems of thermal objects. """ import copy from .. import solvers from . import Object class SystemObjects: """System_objects class. This class creates a system of unidimensional thermal objects, establishes contact between them and computes the respective thermal processes. """ def __init__(self, number_objects=2, materials=('Cu', 'Cu'), objects_length=(10, 10), amb_temperature=293, dx=0.01, dt=0.1, file_name=None, initial_state=False, boundaries=((2, 0), (3, 0)), materials_path=False): """System object initialization. `number_objects` is the integer number of thermal objects. `materials` is the list of strings of all the used materials present in `material_path`. `amb_temperature` is the ambient temperature of the whole system. `object_length` is the list of thermal object lengths (spacial steps). `dx` and `dt` are the space and time steps, respectively. `file_name` is the file name where the temperature is saved. `boundaries` is a list of tuples of length two that define each boundary condition for temperature. If 0 the boundary condition is insulation. `materials_path` is absolute path of the materials database. If false, then the materials database is the standard heatrapy database. """ # check the validity of inputs materials = tuple(materials) objects_length = tuple(objects_length) boundaries = tuple(boundaries) cond01 = isinstance(amb_temperature, float) cond01 = cond01 or isinstance(amb_temperature, int) cond02 = isinstance(materials, tuple) cond03 = isinstance(number_objects, int) cond04 = isinstance(objects_length, tuple) cond05 = isinstance(dx, int) or isinstance(dx, float) cond06 = isinstance(dt, int) or isinstance(dt, float) cond07 = isinstance(file_name, str) cond07 = cond07 or (file_name is None) cond08 = isinstance(boundaries, tuple) cond09 = isinstance(initial_state, bool) condition = cond01 and cond02 and cond03 and cond04 and cond05 condition = condition and cond06 and cond07 and cond08 and cond09 if not condition: raise ValueError # initial definitions self.objects = [] for i in range(number_objects): if file_name: file_name = file_name + '_' + str(i) + '.txt' self.objects.append(Object(amb_temperature, materials=(materials[i],), borders=(1, objects_length[i]+1), materials_order=(0,), dx=dx, dt=dt, file_name=file_name, boundaries=(0, 0), Q=[], Q0=[], initial_state=initial_state, materials_path=materials_path)) self.contacts = set() self.boundaries = boundaries self.dt = dt self.q1 = 0. self.q2 = 0. for i in boundaries: if i[1] != 0: for j in range(len(self.objects[i[0]].temperature)): self.objects[i[0]].temperature[j] = [i[1], i[1]] def contact_filter(self, object): """Filter self.contacts by thermal object id. object: thermal object id """ # check the validity of inputs condition = object in range(len(self.objects)) if not condition: raise ValueError filtered = [x for x in self.contacts if (x[0][0] == object or x[1][0] == object)] return set(filtered) def contact_add(self, contact): """Add contact to self.contacts. The `contact` parameter is a tuple of length 3 (one element for thermal object A, one for thermal object B, and one for the heat transfer coefficient). Each thermal object element is a tuple of length 2 where the first element is the index of the thermal object and the second is the spatial point index. """ # check the validity of inputs if isinstance(contact, list) or isinstance(contact, tuple): if len(contact) == 3: condition = True else: condition = False else: condition = False if not condition: raise ValueError self.contacts.add(contact) def contact_remove(self, object_one, object_two): """Contact removal. Removes all contacts between `object_one` id and `object_two` id. """ # check the validity of inputs condition = isinstance(object_one, int) condition = condition and isinstance(object_two, int) if not condition: raise ValueError contact_list = list(self.contacts) for i in range(len(contact_list)): cond_1 = contact_list[i][0][0] == object_one cond_1 = cond_1 and contact_list[i][1][0] == object_two cond_2 = contact_list[i][0][0] == object_two cond_2 = cond_2 and contact_list[i][1][0] == object_one if cond_1 or cond_2: self.contacts.remove(contact_list[i]) def change_boundaries(self, object_id, boundaries): """Change boundaries. Changes the `boundaries` of `object_id`. """ # check the validity of inputs condition = isinstance(object_id, int) condition = condition and isinstance(boundaries, tuple) if condition: if len(boundaries) == 2: condition = True else: condition = False if not condition: raise ValueError self.objects[object_id].boundaries = boundaries def compute(self, time_interval, write_interval, solver='implicit_k(x)', verbose=True): """Compute the thermal process. Computes the system for `time_interval`, and writes into the `file_name` file every `write_interval` time steps. Four different solvers can be used: `'explicit_general'`, `'explicit_k(x)'`, `'implicit_general'`, and `'implicit_k(x)'`. If `verbose = True`, then the progress of the computation is shown. """ # check the validity of inputs cond1 = isinstance(time_interval, float) cond1 = cond1 or isinstance(time_interval, int) cond2 = isinstance(write_interval, int) cond3 = isinstance(solver, str) cond4 = isinstance(verbose, bool) condition = cond1 and cond2 and cond3 and cond4 if not condition: raise ValueError # number of time steps for the given timeInterval nt = int(time_interval / self.dt) # number of time steps counting from the last writing process nw = 0 # computes for j in range(nt): for obj in self.objects: obj.Q0 = copy.copy(obj.Q0_ref) for contact in self.contacts: ind1 = int(contact[1][1]) ind2 = int(contact[0][1]) td1 = self.objects[contact[1][0]].temperature[ind1][0] td2 = self.objects[contact[0][0]].temperature[ind2][0] heat_contact_1 = contact[2] * (td1 - td2) heat_contact_2 = contact[2] * (td2 - td1) self.objects[contact[0][0]].Q0[ind2] = heat_contact_1 self.objects[contact[1][0]].Q0[ind1] = heat_contact_2 object_number = -1 for obj in self.objects: object_number = object_number + 1 obj.time_passed = obj.time_passed + obj.dt cond1 = object_number not in [l[0] for l in self.boundaries] if cond1 or (object_number, 0) in self.boundaries: # defines the material properties for i in range(1, obj.num_points - 1): if obj.state[i] is True: ind = obj.materials_index[i] obj.rho[i] = obj.materials[ind].rhoa( obj.temperature[i][0]) obj.Cp[i] = obj.materials[ind].cpa( obj.temperature[i][0]) obj.k[i] = obj.materials[ind].ka( obj.temperature[i][0]) if obj.state[i] is False: ind = obj.materials_index[i] obj.rho[i] = obj.materials[ind].rho0( obj.temperature[i][0]) obj.Cp[i] = obj.materials[ind].cp0( obj.temperature[i][0]) obj.k[i] = obj.materials[ind].k0( obj.temperature[i][0]) # SOLVERS # implicit k constant if solver == 'implicit_general': value = solvers.implicit_general(obj) obj.temperature, obj.lheat = value # implicit k dependent on x if solver == 'implicit_k(x)': obj.temperature, obj.lheat = solvers.implicit_k(obj) # explicit k constant if solver == 'explicit_general': value = solvers.explicit_general(obj) obj.temperature, obj.lheat = value # explicit k dependent on x if solver == 'explicit_k(x)': obj.temperature, obj.lheat = solvers.explicit_k(obj) # writes the temperature to file_name file ... # if the number of time steps is verified if obj.file_name: if nw + 1 == write_interval or j == 0 or j == nt - 1: line = '%f' % obj.time_passed for i in obj.temperature: new_line = ',%f' % i[1] line = line + new_line f = open(obj.file_name, 'a') f.write(line+'\n') f.close() else: heat = [p*self.dt*obj.dx for p in obj.Q0 if p is not None] heat = sum(heat)/(len(heat)*obj.dx) if object_number == self.boundaries[0][0]: self.q1 = self.q1 + heat q = self.q1 else: self.q2 = self.q2 + heat q = self.q2 # writes the temperature to file_name file ... # if the number of time steps is verified if obj.file_name: if nw + 1 == write_interval or j == 0 or j == nt - 1: line = '%f' % obj.time_passed for i in obj.temperature: new_line = ',%f' % i[1] line = line + new_line new_line = ',%f' % q line = line + new_line f = open(obj.file_name, 'a') f.write(line+'\n') f.close() if nw == write_interval: nw = 0 if verbose: print('progress:', int(100*j/nt), '%', end='\r') else: nw = nw + 1 if verbose: print('Finished simulation')
djsilva99/heatrapy
heatrapy/dimension_1/objects/system.py
system.py
py
11,858
python
en
code
51
github-code
6
39654407914
import os import logging import yaml from typing import Dict, Any from yacs.config import CfgNode as _CfgNode BASE_KEY = "__BASE__" class CfgNode(_CfgNode): @staticmethod def load_yaml_with_base(filename: str, allow_unsafe: bool = False): with open(filename, 'r') as file: try: cfg = yaml.safe_load(file) except: logger = logging.getLogger(__name__) logger.warning( "Loading config {} with yaml.unsafe_load. Your machine may " "be at risk if the file contains malicious content.".format( filename ) ) file.close() with open(filename, "r") as file: cfg = yaml.unsafe_load(file) def merge_a_into_b(a: Dict[Any, Any], b: Dict[Any, Any]) -> None: # merge dict a into dict b. values in a will overwrite b. for k, v in a.items(): if isinstance(v, dict) and k in b: assert isinstance( b[k], dict ), "Cannot inhert key '{}' from base !".format(k) merge_a_into_b(v, b[k]) else: b[k] = v if BASE_KEY in cfg: base_cfg_file = cfg[BASE_KEY] if base_cfg_file.startswith("~"): base_cfg_file = os.path.expanduser(base_cfg_file) if not any( map(base_cfg_file.startswith, ["/", "https://", "http://"]) ): # the path to base cfg is relative to the config file itself base_cfg_file = os.path.join(os.path.dirname(filename), base_cfg_file) base_cfg = CfgNode.load_yaml_with_base( base_cfg_file, allow_unsafe=allow_unsafe ) del cfg[BASE_KEY] merge_a_into_b(cfg, base_cfg) return base_cfg return cfg def merge_from_file(self, cfg_filename: str, allow_unsave: bool=False) -> None: loaded_cfg = CfgNode.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsave) loaded_cfg = type(self)(loaded_cfg) self.merge_from_other_cfg(loaded_cfg) def merge_from_other_cfg(self, cfg_other): assert ( BASE_KEY not in cfg_other ), "The reserved key '{}' can only be used in files!".format(BASE_KEY) return super(CfgNode, self).merge_from_other_cfg(cfg_other) def merge_from_list(self, cfg_list): keys = set(cfg_list[0::2]) assert ( BASE_KEY not in keys ), "The reserved key '{}' can obly be used in files!".format(BASE_KEY) return super(CfgNode, self).merge_from_list(cfg_list) def __setattr__(self, name: str, value: Any) -> None: if name.startswith("COMPUTED_"): if name in self: old_val = self[name] if old_val == value: return raise KeyError( "Computed attributed '{}' alread exists" "with a different value! old={}, net={}".format( name, old_val, value ) ) self[name] = value else: super(CfgNode, self).__setattr__(name=name, value=value) def dump(self, **kwargs): return super(CfgNode, self).dump()
lqxisok/llSeg
configs/base.py
base.py
py
3,491
python
en
code
2
github-code
6
9649531902
class Node: def __init__(self,value): self.value=value self.left=None self.right=None def find_max(node): max1=max2=0 if not node: return -1 else: res=node.value if node.left: max1=find_max(node.left) if node.right: max2=find_max(node.right) if res<max1: res=max1 if res<max2: res=max2 return res if __name__=="__main__": node=Node(12) node.left=Node(21) node.right=Node(14) node.left.left=Node(16) node.left.right=Node(19) node.right.left=Node(23) node.right.right=Node(17) print(find_max(node))
babiswas2020/Python
tree_54.py
tree_54.py
py
651
python
ru
code
0
github-code
6
71927845947
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals import logging import sys import os import urlparse import xbmcgui import xbmcplugin import xbmcaddon from resources.lib import loghandler loghandler.config() LOG = logging.getLogger() PLUGIN_PATH = 'plugin://plugin.video.proof-of-concept' __addon__ = xbmcaddon.Addon() __addon_path__ = __addon__.getAddonInfo('path').decode('utf-8') # Dummy video file with a lenght of 10min, 5s VIDEO_FILE_PATH = os.path.join(__addon_path__, 'dummy-movie.mkv').encode('utf-8') TOTAL_LENGTH = 10 * 60 + 5 RESUME = 5 * 60 def directory_item(label, path): """ Adds a xbmcplugin.addDirectoryItem() directory itemlistitem """ listitem = xbmcgui.ListItem(label, path=path) xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]), url=path, listitem=listitem, isFolder=True) def main_menu(): xbmcplugin.setContent(int(sys.argv[1]), 'files') directory_item('Proof of concept', '%s/?mode=demo' % PLUGIN_PATH) xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_demo(): xbmcplugin.setContent(int(sys.argv[1]), 'movies') listitem = xbmcgui.ListItem('Demo video file', path=VIDEO_FILE_PATH) # PROOF-OF-CONCEPT: Let's add a resume point listitem.setProperty("totaltime", str(TOTAL_LENGTH)) listitem.setProperty("resumetime", str(RESUME)) listitem.setProperty("StartOffset", str(RESUME)) # END xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]), url=VIDEO_FILE_PATH, listitem=listitem) xbmcplugin.endOfDirectory(int(sys.argv[1])) if __name__ == '__main__': LOG.info('Full sys.argv received: %s', sys.argv) args = sys.argv[2][1:].decode('utf-8') args = dict(urlparse.parse_qsl(args)) mode = args.get('mode') if mode == 'demo': show_demo() else: main_menu()
croneter/plugin.video.proof-of-concept
default.py
default.py
py
2,070
python
en
code
1
github-code
6
22514895256
#!/usr/bin/env python3 from fastapi import APIRouter, Body, Request, Response, HTTPException, status from bson.objectid import ObjectId from typing import List from lib.mongo import insert_one, find_one, find_many, update_one from models.prescription import Prescription, PrescriptionUpdate router = APIRouter() coll = "prescription" @router.get("/{nss}", response_description="Get all prescriptions for a patient", status_code=status.HTTP_200_OK, response_model=List[Prescription]) def find_precriptions(request: Request, nss: str): find_criteria = {"nss": nss} return find_many(request, find_criteria, coll) @router.post("/", response_description="Create a new prescription", status_code=status.HTTP_201_CREATED, response_model=Prescription) def create_prescription(request: Request, prescription: PrescriptionUpdate = Body(...)): inserted = insert_one(request, prescription, coll) return find_one(request, {'_id': inserted.inserted_id}, coll) @router.post("/associate_checkup", response_description="Links a checkup to the 'checkup' field for a prescription", status_code=status.HTTP_200_OK, response_model=Prescription) def associate_checkup_with_prescription(request: Request, data=Body(...)): print(data) prescription_find_criteria = {"_id": ObjectId(data['prescription_id'])} update_one(request, prescription_find_criteria, { "$set": { "consulta": data['checkup_id'] } }, coll) return find_one(request, prescription_find_criteria, coll)
Serlych/national-medical-record
routes/prescription.py
prescription.py
py
1,582
python
en
code
0
github-code
6
13126886716
from itertools import combinations def make_all_cases(user_info_array): all_cases_from_user = []; for i in range(5): combination_array = combinations([0,1,2,3],i) for combination in combination_array: case = "" #[] -> ---- for j in range(4): if j in combination: case += user_info_array[j] else : case += "-" all_cases_from_user.append(case); return all_cases_from_user def get_lower_bound(target,array): current_min = 0; current_max = len(array) while current_min < current_max: current_guess = (current_min + current_max) // 2; if array[current_guess] >= target: current_max = current_guess; else: current_min = current_guess +1; return current_max def solution(info, query): answer = []; all_cases_from_users = {} for user_info in info: user_info_array = user_info.split() all_cases_from_user = make_all_cases(user_info_array); for case in all_cases_from_user: if case not in all_cases_from_users.keys(): all_cases_from_users[case] = [int(user_info_array[4])] else : all_cases_from_users[case].append(int(user_info_array[4])) for key in all_cases_from_users.keys(): all_cases_from_users[key].sort() for query_info in query: query_info_array = query_info.split() case = query_info_array[0] + query_info_array[2] +query_info_array[4] + query_info_array[6]; if case in all_cases_from_users.keys(): target_users = all_cases_from_users[case] answer.append(len(target_users) - get_lower_bound(int(query_info_array[7]), target_users)) else : answer.append(0) return answer
39world/Today-Algorithm-Study-
old_test/al_pg_08.py
al_pg_08.py
py
2,005
python
en
code
0
github-code
6
41040069910
from tracemalloc import start import pyaudio import wave import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.ticker import * import numpy as np import struct import time from scipy import interpolate plt.style.use('gray-background') class Fourier: def __init__(self, scale, dt): self.scale = scale def fourier(self, f): # ไบบ้–“ใฎๅฏ่ดๅŸŸใฏ20~20,000Hz f = np.array([f]).reshape(-1) len_f = len(f) # resize inv_F_ = np.resize(f, int(len_f*self.scale)) # ใƒชใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐ t = np.arange(0, len(inv_F_)) f_linear = interpolate.interp1d(t, inv_F_, kind='cubic') t = np.arange(0, len(inv_F_)-1.0, self.scale) inv_F_ = f_linear(t) inv_F_ = np.array(inv_F_, dtype='int16') binv_F = struct.pack('h' * len(inv_F_), *inv_F_) #ใƒใ‚คใƒŠใƒชใธๅค‰ๆ› return binv_F class Audio: def __init__(self, chunk=2**10, format=pyaudio.paInt16, channels=1, rate=44100, record_time=50, interval=0.01, output_path="./data/output.wav"): self.chunk = chunk #ใƒใƒƒใƒ•ใ‚กใฎใ‚ตใ‚คใ‚บ self.format = format #้‡ๅญๅŒ–ใƒ“ใƒƒใƒˆๆ•ฐ(่งฃๅƒๅบฆ)ใ€€โ€ปไบบ้–“ใฏ16 bit ไปฅไธŠใฏ่žใๅˆ†ใ‘ใŒ้›ฃใ—ใใชใ‚‹ self.channels = channels #ๅ…ฅๅŠ›ใซไฝฟ็”จใ™ใ‚‹ใƒžใ‚คใ‚ฏใฎๆœฌๆ•ฐ self.rate = rate #ใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐๅ‘จๆณขๆ•ฐ self.record_time = record_time #้Œฒ้Ÿณๆ™‚้–“ self.interval = interval #ใ‚ฐใƒฉใƒ•ใ‚’ๅ‡บๅŠ›ใ™ใ‚‹ๆ™‚้–“้–“้š” [ms] self.output_path = output_path #ใƒ‡ใƒผใ‚ฟๅ‡บๅŠ›ใ™ใ‚‹ใƒ•ใ‚กใ‚คใƒซๅ self.p = pyaudio.PyAudio() #ใ‚คใƒณใ‚นใ‚ฟใƒณใ‚นใฎ่จญๅฎš self.stream = self.p.open(format=self.format, channels=self.channels, rate=self.rate, input=True, output=True, frames_per_buffer=self.chunk) #ใƒ‘ใƒฉใƒกใƒผใ‚ฟใฎ่จญๅฎš def exit(self): self.stream.stop_stream() # ๅ†็”Ÿใƒป้Œฒ้Ÿณใฎไธ€ๆ™‚ๅœๆญข self.stream.close() # ใ‚นใƒˆใƒชใƒผใƒ ใฎ็ต‚ไบ† self.p.terminate() # ใ‚คใƒณใ‚นใ‚ฟใƒณใ‚นใฎ็ ดๆฃ„ class Output: def __init__(self, audio, scale=1): self.audio = audio del_x = 1/self.audio.rate self.end_t = del_x*self.audio.chunk self.scale = scale #self.frames = [] def draw_init(self, ax): ax.set_xlabel('Time') ax.set_ylabel('Amplitude') def draw(self): frames = [] f = Fourier(scale=self.scale, dt=self.audio.interval) print("Recording ...") # for i in range(0, int(self.audio.rate / self.audio.chunk * self.audio.record_time)): while self.audio.stream.is_active(): data = self.audio.stream.read(self.audio.chunk) wavy_ = np.frombuffer(data, dtype='int16') binv_F = f.fourier(wavy_) self.audio.stream.write(binv_F) # frames.append(binv_F) print("Done.") return frames def write(self, frames): # ใƒ‡ใƒผใ‚ฟใฎๆ›ธใ่พผใฟ wf = wave.open(self.audio.output_path, 'wb') wf.setnchannels(self.audio.channels) wf.setsampwidth(self.audio.p.get_sample_size(self.audio.format)) wf.setframerate(self.audio.rate*self.scale) wf.writeframes(b''.join(frames)) wf.close() if __name__=="__main__": scale = 2.0 audio = Audio() output=Output(audio, scale=scale) frames = output.draw() # output.write(frames) audio.exit()
MoeMatsuda-ai/SWVC
test/fft_live_test/inout_live.py
inout_live.py
py
3,531
python
en
code
0
github-code
6
31653995407
#!/usr/local/bin/python3 from priority_queue import * from graph_adt import * def dijkstra(G, s): """ Performs Dijktra's algorithm to find the shortest path from a single source to all other vertices in a weighted graph. Parameters: G - Graph represented with an adjacency list mapping the vertices to lists of edges s - source vertex Returns: A list of tuples representing the parent child relationships during the discovery paths. I.e. tuple = (parent, child) """ q_cap = G.vertex_count() + G.edge_count() #capacity of the priority queue S = [] Q = PriorityQueue(q_cap) s.set_d_val(0) #initialize source's current distance Q.insert(0, s) while not Q.is_empty() : min_element = Q.extract_min() u = min_element.get_value() if u not in S: S.append(u) for e in G.Adj[u]: priority, v = relax(u, e.opposite(u), e.get_weight()) if priority and v: Q.insert(priority, v) return S def relax(u, v, w): """ Performs edge relaxation during Dijktra's exploration Parameters: u - source node v - destination node w - weight from u to v Returns: tuple: (updated weight, v), if relaxation was performed. v is updated with its new parent. """ if v.get_d_val() > (u.get_d_val() + w): v.set_d_val(u.get_d_val() + w) v.set_parent(u) #make u the parent of v return(v.get_d_val(), v) else: return (None, None) def main(): #Instantiate undirected graph Gr = Graph() #Create vertices W = Gr.insert_vertex("w") P = Gr.insert_vertex("p") Y = Gr.insert_vertex("y") R = Gr.insert_vertex("r") B = Gr.insert_vertex("b") #Create edges W_P = Gr.insert_edge(W, P, 7) W_Y = Gr.insert_edge(W, Y, 19) P_Y = Gr.insert_edge(P, Y, 11) P_R = Gr.insert_edge(P, R, 15) P_B = Gr.insert_edge(P, B, 5) Y_R = Gr.insert_edge(Y, R, 4) B_R = Gr.insert_edge(B, R, 13) print("Number of vertices: ", Gr.vertex_count()) print("Number of edges: ", Gr.edge_count()) paths = dijkstra(Gr, R) print("Shortest paths (parent, destination):") for node in paths: parent = node.get_parent().get_element() if node.get_parent() is not None else None print(parent, ", ", node.get_element()) if __name__ == '__main__': main()
ilee38/practice-python
graphs/dijkstra.py
dijkstra.py
py
2,316
python
en
code
0
github-code
6
20250267652
from mimetypes import init import requests import urllib.parse import json class MapBox: def __init__(self, access_token) -> None: self.root_url = "https://api.mapbox.com/geocoding/v5/mapbox.places/{}.json?types=place%2Caddress%2Cregion&access_token={}" self.access_token = access_token def getCoordinates(self, location_str): if location_str == "": return (0,0) formatted_location = urllib.parse.quote(location_str) url = self.root_url.format(formatted_location, self.access_token) response = requests.get(url) data = json.loads(response.text) if (len(data["features"]) > 0): coordinates = data["features"][0]["center"] if coordinates != None and len(coordinates) == 2: return (coordinates[1], coordinates[0]) else: return (0,0) mb = MapBox("pk.eyJ1IjoiYW5kcmV3aHVhbmciLCJhIjoiY2t5a3dzbDMxMWdrMTJ4b2wzMjlqNXZvNyJ9.K6nzS4XPLOfQ0srwV3M5rw") # https://api.mapbox.com/geocoding/v5/mapbox.places/Collegeville%2C%20PA.json?access_token=pk.eyJ1IjoiYW5kcmV3aHVhbmciLCJhIjoiY2t5a3dyZWJvMzBrMTJxcG0xenBtYTdhZiJ9.uFJLIrcDl4OHJu1S-To2xA # https://api.mapbox.com/geocoding/v5/mapbox.places/Collegeville%2C%20PA..hson?access_token=pk.eyJ1IjoiYW5kcmV3aHVhbmciLCJhIjoiY2t5a3dzbDMxMWdrMTJ4b2wzMjlqNXZvNyJ9.K6nzS4XPLOfQ0srwV3M5rw
andrewhuang427/WashU-Athletics-Demographics
utils/MapBox.py
MapBox.py
py
1,369
python
en
code
0
github-code
6
35041229962
from toscaparser.imports import ImportsLoader from configuration_tool.common import utils from configuration_tool.common.configuration import Configuration from configuration_tool.common.tosca_reserved_keys import * from configuration_tool.providers.common.provider_configuration import ProviderConfiguration from configuration_tool.providers.common.provider_resource import ProviderResource import os, copy, logging, sys SEPARATOR = ':' class ProviderToscaTemplate(object): REQUIRED_CONFIG_PARAMS = (TOSCA_ELEMENTS_MAP_FILE, TOSCA_ELEMENTS_DEFINITION_FILE) DEPENDENCY_FUNCTIONS = (GET_PROPERTY, GET_ATTRIBUTE, GET_OPERATION_OUTPUT) DEFAULT_ARTIFACTS_DIRECTOR = ARTIFACTS def __init__(self, template, provider, configuration_tool, cluster_name, host_ip_parameter, is_delete, grpc_cotea_endpoint): self.host_ip_parameter = host_ip_parameter self.provider = provider self.grpc_cotea_endpoint = grpc_cotea_endpoint self.is_delete = is_delete self.configuration_tool = configuration_tool self.provider_config = ProviderConfiguration(self.provider) self.base_config = Configuration() self.cluster_name = cluster_name self.software_types = set() for sec in self.REQUIRED_CONFIG_PARAMS: if not self.provider_config.config[self.provider_config.MAIN_SECTION].get(sec): logging.error("Provider configuration parameter \'%s\' has missing value" % sec) logging.error("Translating failed") raise Exception("Provider configuration parameter \'%s\' has missing value" % sec) self.definitions = {} import_definition_file = ImportsLoader([self.definition_file()], None, list(SERVICE_TEMPLATE_KEYS), template.get(TOPOLOGY_TEMPLATE)) self.definitions.update(import_definition_file.get_custom_defs()) import_definition_file = ImportsLoader(self.base_definition_file(), None, list(SERVICE_TEMPLATE_KEYS), template.get(TOPOLOGY_TEMPLATE)) self.definitions.update(import_definition_file.get_custom_defs()) self.definitions.update(template.get(NODE_TYPES, {})) self.definitions.update(template.get(RELATIONSHIP_TYPES, {})) self.definitions.update(template.get(CAPABILITY_TYPES, {})) self.definitions.update(template.get(DATA_TYPES, {})) self.definitions.update(template.get(POLICY_TYPES, {})) self.definitions.update(template.get(GROUP_TYPES, {})) self.definitions.update(template.get(INTERFACE_TYPES, {})) self.fulfil_definitions_with_parents() self.node_templates = {} self.relationship_templates = {} self.inputs = {} self.outputs = {} if template.get(TOPOLOGY_TEMPLATE).get(NODE_TEMPLATES): self.node_templates = template.get(TOPOLOGY_TEMPLATE)[NODE_TEMPLATES] if template.get(TOPOLOGY_TEMPLATE).get(RELATIONSHIP_TEMPLATES): self.relationship_templates = template.get(TOPOLOGY_TEMPLATE)[RELATIONSHIP_TEMPLATES] if template.get(TOPOLOGY_TEMPLATE).get(OUTPUTS): self.outputs = template.get(TOPOLOGY_TEMPLATE)[OUTPUTS] if template.get(TOPOLOGY_TEMPLATE).get(INPUTS): self.inputs = template.get(TOPOLOGY_TEMPLATE)[INPUTS] self.configuration_content = None self.configuration_ready = None self.template_dependencies = dict() self._relation_target_source = dict() self.resolve_in_template_dependencies() # After this step self.node_templates has requirements with node_filter parameter self.replace_requirements_with_node_filter() self.provider_nodes = self._provider_nodes() self.provider_relations = self._provider_relations() self.provider_operations, self.reversed_provider_operations = self.sort_nodes_and_operations_by_graph_dependency() def resolve_in_template_dependencies(self): """ TODO think through the logic to replace mentions by id Changes all mentions of node_templates by name in requirements, places dictionary with node_filter instead :return: """ for node_name, node in self.node_templates.items(): for req in node.get(REQUIREMENTS, []): for req_name, req_body in req.items(): # Valid keys are ('node', 'node_filter', 'relationship', 'capability', 'occurrences') # Only node and relationship might be a template name or a type req_relationship = req_body.get(RELATIONSHIP) req_node = req_body.get(NODE) if req_relationship is not None: (_, _, type_name) = utils.tosca_type_parse(req_relationship) if type_name is None: self.add_template_dependency(node_name, req_relationship) self._relation_target_source[req_relationship] = { 'source': node_name, 'target': req_node } if req_node is not None: (_, _, type_name) = utils.tosca_type_parse(req_node) if type_name is None: self.add_template_dependency(node_name, req_node) node_types_from_requirements = set() req_definitions = self.definitions[node[TYPE]].get(REQUIREMENTS, []) for req in req_definitions: for req_name, req_def in req.items(): if req_def.get(NODE, None) is not None: if req_def[NODE] != node[TYPE]: node_types_from_requirements.add(req_def[NODE]) for req_node_name, req_node_tmpl in self.node_templates.items(): if req_node_tmpl[TYPE] in node_types_from_requirements: self.add_template_dependency(node_name, req_node_name) def add_template_dependency(self, node_name, dependency_name): if not dependency_name == SELF and not node_name == dependency_name: if self.template_dependencies.get(node_name) is None: self.template_dependencies[node_name] = {dependency_name} else: self.template_dependencies[node_name].add(dependency_name) def base_definition_file(self): file_definitions = self.base_config.config['main'][TOSCA_ELEMENTS_DEFINITION_FILE].split(',') def_list = [] for file_definition in file_definitions: if not os.path.isabs(file_definition): file_definition = os.path.join(utils.get_project_root_path(), file_definition) def_list.append(file_definition) if not os.path.isfile(file_definition): logging.error("TOSCA definition file not found: %s" % file_definition) raise Exception("TOSCA definition file not found: %s" % file_definition) return def_list def definition_file(self): file_definition = self.provider_config.config['main'][TOSCA_ELEMENTS_DEFINITION_FILE] if not os.path.isabs(file_definition): file_definition = os.path.join(self.provider_config.config_directory, file_definition) if not os.path.isfile(file_definition): logging.error("TOSCA definition file not found: %s" % file_definition) raise Exception("TOSCA definition file not found: %s" % file_definition) return file_definition def replace_requirements_with_node_filter(self): for node_name, node in self.node_templates.items(): for req in node.get(REQUIREMENTS, []): for req_name, req_body in req.items(): if req_body.get(NODE): node_tmpl = self.node_templates.get(req_body[NODE]) node_filter = dict() properties = node_tmpl.get(PROPERTIES) props_list = [] if properties: for prop_name, prop in properties.items(): props_list.append({prop_name: prop}) capabilities = node_tmpl.get(CAPABILITIES) caps_list = [] if capabilities: for cap_name, cap in capabilities.items(): cap_props = cap.get(PROPERTIES, {}) cap_props_list = [] for prop_name, prop in cap_props.items(): cap_props_list.append({prop_name, prop}) caps_list.append({PROPERTIES: cap_props_list}) if properties: node_filter[PROPERTIES] = props_list if capabilities: node_filter[CAPABILITIES] = caps_list req_body[NODE_FILTER] = node_filter req[req_name] = req_body def _provider_nodes(self): """ Create a list of ProviderResource classes to represent a node in TOSCA :return: list of class objects inherited from ProviderResource """ provider_nodes = dict() for node_name, node in self.node_templates.items(): (namespace, category, type_name) = utils.tosca_type_parse(node[TYPE]) is_software_component = node[TYPE] in self.software_types if namespace != self.provider and not is_software_component or category != NODES: logging.error('Unexpected values: node \'%s\' not a software component and has a provider \'%s\'. ' 'Node will be ignored' % (node.name, namespace)) else: provider_node_instance = ProviderResource(self.provider, self.is_delete, self.grpc_cotea_endpoint, self.configuration_tool, node, node_name, self.host_ip_parameter, self.definitions[node[TYPE]], is_software_component=is_software_component) provider_nodes[node_name] = provider_node_instance return provider_nodes def _provider_relations(self): provider_relations = dict() for rel_name, rel_body in self.relationship_templates.items(): provider_rel_instance = ProviderResource(self.provider, self.is_delete, self.grpc_cotea_endpoint, self.configuration_tool, rel_body, rel_name, self.host_ip_parameter, self.definitions[rel_body[TYPE]], is_relationship=True, relation_target_source=self._relation_target_source) provider_relations[rel_name] = provider_rel_instance return provider_relations def _provider_nodes_by_name(self): """ Get provider_nodes_by_name :return: self.provider_nodes_by_name """ provider_nodes_by_name = dict() for node in self.provider_nodes: provider_nodes_by_name[node.nodetemplate.name] = node return provider_nodes_by_name def sort_nodes_and_operations_by_graph_dependency(self): """ This method generates dict fith ProviderTemplates with operation, sorted by dependencies from normative and provider TOSCA templates """ nodes = set(self.provider_nodes.keys()) nodes = nodes.union(set(self.provider_relations.keys())) dependencies = {} lifecycle = ['configure', 'start', 'stop'] # ['delete'] now we cant support deleting while creating, # deleting operations executes only when --delete option activated reversed_full_lifecycle = lifecycle[::-1] + ['create'] # generate only dependencies from nodes for templ_name in nodes: set_intersection = nodes.intersection(self.template_dependencies.get(templ_name, set())) templ = self.provider_nodes.get(templ_name, self.provider_relations.get(templ_name)) (_, element_type, _) = utils.tosca_type_parse(templ.type) if element_type == NODES: if INTERFACES in templ.tmpl and 'Standard' in templ.tmpl[INTERFACES]: new_operations = ['create'] # operation create always exists for elem in lifecycle: if elem in templ.tmpl[INTERFACES]['Standard']: new_operations.append(elem) # if there is any other operations - add ti new_operations and translate to dict # in format {node.op: {node1, node2}} # node requieres node1 and node2 if len(new_operations) == 1: utils.deep_update_dict(dependencies, {templ_name + SEPARATOR + 'create': set_intersection}) else: for i in range(1, len(new_operations)): utils.deep_update_dict(dependencies, { templ_name + SEPARATOR + new_operations[i]: { templ_name + SEPARATOR + new_operations[i - 1]}}) utils.deep_update_dict(dependencies, {templ_name + SEPARATOR + new_operations[0]: set_intersection}) else: utils.deep_update_dict(dependencies, {templ_name + SEPARATOR + 'create': set_intersection}) new_dependencies = {} # new_dependencies is needed for updating set operations # dict must be in format {node.op: {node1, node2}} for key, value in dependencies.items(): new_set = set() for elem in value: for oper in reversed_full_lifecycle: if elem + SEPARATOR + oper in dependencies: new_set.add(elem + SEPARATOR + oper) break elif elem in dependencies: new_set.add(elem) break new_dependencies[key] = new_set # Adding relationships operations pre_configure_source after create source node # pre_configure_target after create target node # add_source in parallel with pre_configure_source but in will be executed on target # post_configure_target after configure target node (if not configure then create - in parallel # with pre_configure_target) # post_configure_source after configure target node (if not configure then create - in parallel # with pre_configure_source) # other - not supported! for templ_name in nodes: templ = self.provider_nodes.get(templ_name, self.provider_relations.get(templ_name)) (_, element_type, _) = utils.tosca_type_parse(templ.type) if element_type == RELATIONSHIPS: if INTERFACES in templ.tmpl and 'Configure' in templ.tmpl[INTERFACES]: if 'pre_configure_source' in templ.tmpl[INTERFACES]['Configure']: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'pre_configure_source', 'create', ['add_source']) if 'pre_configure_target' in templ.tmpl[INTERFACES]['Configure']: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.target, 'pre_configure_target', 'create') if 'post_configure_source' in templ.tmpl[INTERFACES]['Configure']: if templ.source + SEPARATOR + 'configure' in new_dependencies: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'post_configure_source', 'configure') else: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'post_configure_source', 'create') if 'post_configure_target' in templ.tmpl[INTERFACES]['Configure']: if templ.target + SEPARATOR + 'configure' in new_dependencies: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.target, 'post_configure_target', 'configure') else: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.target, 'post_configure_target', 'create') if 'add_source' in templ.tmpl[INTERFACES]['Configure']: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'add_source', 'create', ['pre_configure_source']) if 'add_target' in templ.tmpl[INTERFACES]['Configure']: logging.warning('Operation add_target not supported, it will be skipped') if 'target_changed' in templ.tmpl[INTERFACES]['Configure']: logging.warning('Operation target_changed not supported, it will be skipped') if 'remove_target' in templ.tmpl[INTERFACES]['Configure']: logging.warning('Operation remove_target not supported, it will be skipped') # mapping strings 'node.op' to provider template of this node with this operation templ_mappling = {} for elem in new_dependencies: templ_name = elem.split(SEPARATOR)[0] templ = copy.deepcopy(self.provider_nodes.get(templ_name, self.provider_relations.get(templ_name))) templ.operation = elem.split(SEPARATOR)[1] if INTERFACES in templ.tmpl: if 'Configure' in templ.tmpl[INTERFACES]: templ.tmpl[INTERFACES]['Configure'] = {templ.operation: templ.tmpl[INTERFACES]['Configure'][templ.operation]} if 'Standard' in templ.tmpl[INTERFACES]: templ.tmpl[INTERFACES]['Standard'] = {templ.operation: templ.tmpl[INTERFACES]['Standard'][templ.operation]} templ_mappling[elem] = templ templ_dependencies = {} reversed_templ_dependencies = {} # create dict where all elements will be replaced with provider template from templ_mappling # reversed_templ_dependencies needed for delete - it just a reversed version of graph for key, value in new_dependencies.items(): new_list = [] for elem in value: new_list.append(templ_mappling[elem]) if templ_mappling[elem] not in reversed_templ_dependencies: reversed_templ_dependencies[templ_mappling[elem]] = [templ_mappling[key]] elif templ_mappling[key] not in reversed_templ_dependencies[templ_mappling[elem]]: reversed_templ_dependencies[templ_mappling[elem]].append(templ_mappling[key]) templ_dependencies[templ_mappling[key]] = new_list if len(templ_dependencies) <= 1: reversed_templ_dependencies = copy.copy(templ_dependencies) return templ_dependencies, reversed_templ_dependencies def update_relationships(self, new_dependencies, templ_name, direction, rel_name, post_op, banned_ops=[]): utils.deep_update_dict(new_dependencies, { templ_name + SEPARATOR + rel_name: {direction + SEPARATOR + post_op}}) for key, value in new_dependencies.items(): for elem in value: if elem == direction + SEPARATOR + post_op and key != templ_name + SEPARATOR + rel_name and \ key not in [templ_name + SEPARATOR + x for x in banned_ops]: utils.deep_update_dict(new_dependencies, {key: {templ_name + SEPARATOR + rel_name}}) return new_dependencies def _get_full_defintion(self, definition, def_type, ready_set): if def_type in ready_set: return definition, def_type in self.software_types (_, _, def_type_short) = utils.tosca_type_parse(def_type) is_software_type = def_type_short == 'SoftwareComponent' is_software_parent = False parent_def_name = definition.get(DERIVED_FROM, None) if parent_def_name is not None: if def_type == parent_def_name: logging.critical("Invalid type \'%s\' is derived from itself" % def_type) raise Exception("Invalid type \'%s\' is derived from itself" % def_type) if parent_def_name in ready_set: parent_definition = self.definitions[parent_def_name] is_software_parent = parent_def_name in self.software_types else: parent_definition, is_software_parent = \ self._get_full_defintion(self.definitions[parent_def_name], parent_def_name, ready_set) parent_definition = copy.deepcopy(parent_definition) definition = utils.deep_update_dict(parent_definition, definition) if is_software_type or is_software_parent: self.software_types.add(def_type) ready_set.add(def_type) return definition, def_type in self.software_types def fulfil_definitions_with_parents(self): ready_definitions = set() for def_name, definition in self.definitions.items(): self.definitions[def_name], _ = self._get_full_defintion(definition, def_name, ready_definitions) if self.definitions[def_name].get(DERIVED_FROM): del self.definitions[def_name][DERIVED_FROM]
sadimer/clouni_configuration_tool
configuration_tool/providers/common/tosca_template.py
tosca_template.py
py
22,563
python
en
code
0
github-code
6
32659197304
from werkzeug.exceptions import ClientDisconnected from flask import Flask, request from flask import current_app from flask_cache import Cache from mongoengine import connect from flask_superadmin import Admin from flask_mail import Mail from flaskext.markdown import Markdown from flask_restful import Api from reverse_proxied import ReverseProxied from assets import assets import json class ExtensionAccessObject(object): def __init__(self): self.cache = Cache(current_app, config={'CACHE_TYPE': 'simple'}) self.mongo = connect(current_app.config["MONGO_DB"]) self.mail = Mail(current_app) self.admin = Admin(current_app) self.rest_api = Api(current_app, prefix="/api") self.markdown = Markdown(current_app, safe_mode="escape") self.assets = assets(current_app) def construct_application(config_override=None): # Setup App application = Flask(__name__) # Setup Extensions ReverseProxied(application) # Setup Jinja Env application.jinja_env.add_extension('jinja2.ext.do') from util import pretty_date_since, full_date application.jinja_env.filters['pretty_date'] = pretty_date_since application.jinja_env.filters['full_date'] = full_date application.jinja_env.filters['json_dump'] = json.dumps # Load local_config with application.app_context(): from config import local_config application.config.from_object(local_config) application.config.from_object(config_override) with application.app_context(): application.extension_access_object = ExtensionAccessObject() # Load blueprints files with application.app_context(): from config import blueprint_config application.config.from_object(blueprint_config) # Setup blueprints from config for blueprint in application.config["BLUEPRINTS"]: # TODO: Find a way to replace this, its shit application.register_blueprint(**blueprint) # Read the git hash from a file. This should be set by the deploy script try: with open('version_hash', 'r') as version_file: application.config['version_hash'] = version_file.readline() except IOError: application.config['version_hash'] = "DEVELOP" # Setup airbrake/errbit if application.config.get('AIRBRAKE_ENABLED', True): from airbrake import AirbrakeErrorHandler from flask.signals import got_request_exception @got_request_exception.connect_via(application) def log_exception(sender, exception, **extra): if isinstance(exception, (ClientDisconnected, )): return handler = AirbrakeErrorHandler( api_key=application.config['AIRBRAKE_API_KEY'], api_url=application.config['AIRBRAKE_API_URL'], env_name=application.config['version_hash'], env_variables={'type': 'caught'}, request_url=request.url, request_path=request.path, request_method=request.method, request_args=request.args, request_headers=request.headers) handler.emit(exception) def log_error(exception): handler = AirbrakeErrorHandler( api_key=application.config['AIRBRAKE_API_KEY'], api_url=application.config['AIRBRAKE_API_URL'], env_name=application.config['version_hash'], env_variables={'type': 'logged'}, request_url=request.url, request_path=request.path, request_method=request.method, request_args=request.args, request_headers=request.headers) handler.emit(exception) application.log_error = log_error else: def dummy_log_error(exception): print(exception) application.log_error = dummy_log_error # Load debug stuffs if application.config['DEBUG']: with application.app_context(): import debug debug.setup_env() return application
JunctionAt/JunctionWWW
constructor.py
constructor.py
py
4,126
python
en
code
1
github-code
6
477748253
import torch as t import ipdb class AttentionPooling(t.nn.Module): def __init__(self, input_size, hidden_size, dropout): super(AttentionPooling, self).__init__() self.projection1 = t.nn.Linear(input_size, hidden_size, bias=True) self.dropout = t.nn.Dropout(dropout) self.projection2 = t.nn.Linear(hidden_size, 1, bias=False) self.projection3 = t.nn.Linear(input_size, hidden_size) t.nn.init.xavier_normal_(self.projection1.weight) t.nn.init.xavier_normal_(self.projection2.weight) t.nn.init.xavier_normal_(self.projection3.weight) def forward(self, inputs, input_mask=None): """ :param inputs: [B, L, E] :param input_mask: [B, L] :return: [B, E] """ if input_mask is not None: input_mask = input_mask.byte() net = t.nn.functional.tanh(self.projection1(inputs)) # [B, L, H] net = self.projection2(net).squeeze(-1) # [B, L, 1] if input_mask is not None: net = net.masked_fill(1-input_mask, -float('inf')) net = t.nn.functional.softmax(net, -1).unsqueeze(-1) # [B, L, 1] net = inputs * net # [B, L, E] net = net.sum(-2) net = self.projection3(net) # [B, E] return net
CNDPlab/MSMARCO_Reshaped
Predictor/ModelUtils/query_pooling.py
query_pooling.py
py
1,316
python
en
code
1
github-code
6
18716841287
#! /user/bin/env python # -*- coding:utf-8 -*- ''' ็ˆฌๅ–ๅˆ—่กจไฟกๆฏ ''' import json from scrapy.http import Request from scrapy.spiders import CrawlSpider from douyin.items import DouyinCategoryItem class categorySpider(CrawlSpider): name = 'categorySpider' redis_key = 'categorySpider' cursor_num = 0 count_size = 10 url = "https://aweme.snssdk.com/aweme/v1/category/list/?version_code=181&count=10&cursor=" start_urls = [url + str(cursor_num)] def parse(self, response): jsonresp = json.loads(response.body_as_unicode()) if jsonresp['status_code'] == 0: if jsonresp['has_more'] == 1: aweme_list = list(jsonresp['category_list']) for jsonobj in aweme_list: item = self.init_item(jsonobj) yield item self.cursor_num += self.count_size nexturl = self.url + str(self.cursor_num) yield Request(nexturl, callback=self.parse) else: aweme_list = list(jsonresp['category_list']) for jsonobj in aweme_list: item = self.init_item(jsonobj) yield item def init_item(self, jsonobj): item = DouyinCategoryItem() if str(jsonobj['desc']) == "็ƒญ้—จๆŒ‘ๆˆ˜": item['category_type'] = jsonobj['desc'] item['category_id'] = jsonobj['challenge_info']['cid'] item['category_desc'] = jsonobj['challenge_info']['desc'] item['category_title'] = jsonobj['challenge_info']['cha_name'] item['category_url'] = jsonobj['challenge_info']['schema'] item['category_user_count'] = jsonobj['challenge_info']['user_count'] else: # print("ๆ‰ง่กŒ็ƒญ้—จ้Ÿณไน่ต‹ๅ€ผ") item['category_type'] = jsonobj['desc'] item['category_title'] = jsonobj['music_info']['title'] item['category_id'] = jsonobj['music_info']['mid'] item['category_url'] = 'https://api.amemv.com/aweme/v1/music/aweme/?music_id=' + \ str(jsonobj['music_info']['mid']) item['category_desc'] = jsonobj['music_info']['offline_desc'] item['category_user_count'] = jsonobj['music_info']['user_count'] return item
gisShield/douyin
douyin/spiders/categoryspider.py
categoryspider.py
py
2,313
python
en
code
24
github-code
6
73027828029
import senticnet5 as sent_dict import pandas as pd import numpy as np from itertools import islice from sklearn.model_selection import train_test_split import re # returns numpy array def get_ratings(ratings_filename): return np.load(ratings_filename) # returns array of document arrays with words def get_reviews(reviews_filename): reviews = [] with open(reviews_filename, "r") as f: for line in f: reviews.append([w.lower() for w in re.sub('[^A-Za-z \']+', "", line).split()]) return reviews # returns word polarity: float # if word not in dictionary return None def word_polarity(word): try: return float(sent_dict.senticnet[word][7]) except: return None # return average polarity of a given document # if none of the words are in dictionary return None # accounts all single words and combinations of 2 words def document_polarity(doc): polarity_sum = 0.0 num_words_accounted = 0 phrases = get_phrases(doc, 2) for phrase in phrases: current_polarity = word_polarity(phrase) if current_polarity is not None: polarity_sum += current_polarity num_words_accounted += 1 if num_words_accounted > 0: return polarity_sum / num_words_accounted return None # calculates polarities for given txt file with documents # saves dictionary with average document polarity at given rating and number of rating occurrences def train(filename): print("TRAINING SIMPLE SENTIMENT") results = { 0.0: [0.0, 0], # average polarity at given rating 1.0: [0.0, 0], 2.0: [0.0, 0], 3.0: [0.0, 0], 4.0: [0.0, 0], "Undefined": [0.0, 0] # if polarity can't be determined use this to determine average rating for such occurrences } ratings = get_ratings(filename + "_ratings.npy") reviews = get_reviews(filename + "_reviews.txt") x_train, x_test, y_train, y_test = train_test_split(reviews, ratings, test_size=0.2, random_state=1) for doc, rating in zip(x_train, y_train): polarity = document_polarity(doc) if polarity is None: results["Undefined"][0] += rating results["Undefined"][1] += 1 else: results[rating][0] += polarity results[rating][1] += 1 for key in results: results[key][0] = results[key][0] / max(results[key][1], 1) pd.DataFrame(results).to_csv(filename + "_polarities.csv") # gives rating prediction based on closest average document polarity def predictions(filename): print("PREDICTING SIMPLE SENTIMENT") predictions = [] ratings = get_ratings(filename + "_ratings.npy") reviews = get_reviews(filename + "_reviews.txt") rating_polarities = pd.read_csv(filename + "_polarities.csv") default_rating = float(round(rating_polarities.loc[0, "Undefined"])) polarities = rating_polarities[["0.0", "1.0", "2.0", "3.0", "4.0"]].iloc[0].tolist() x_train, x_test, y_train, y_test = train_test_split(reviews, ratings, test_size=0.2, random_state=1) for doc, rating in zip(x_test, y_test): polarity = document_polarity(doc) prediction = default_rating if polarity is not None: prediction = float(polarities.index(min(polarities, key=lambda x:abs(x - polarity)))) predictions.append(prediction) pd_ratings = pd.Series(ratings[:len(predictions)], name="Actual") pd_predictions = pd.Series(predictions, name="Predicted") confusion_matrix = pd.crosstab(pd_predictions, pd_ratings) return confusion_matrix # generates exhaustible sliding window over a sequence # [1, 2, 3, 4], 2 => 12 23, 34, 4 # [1, 2, 3, 4], 3 => 123, 234, 34, 4 def get_windows(sequence, n): windows = [] for i, x in enumerate(sequence): windows.append(list(islice(sequence, i, i+n))) return windows # returns all combinations retaining the order # eg. 1, 2, 3 => 1, 1_2, 1_2_3 def get_combinations(sequence): combinations = [] for i, x in enumerate(sequence): combinations.append("_".join(sequence[:i] + [x])) return combinations # returns all posible combinations with a sliding window # eg. window_size = 2 # 1, 2, 3, 4 => 1, 1_2, 2, 2_3, 3, 3_4, def get_phrases(doc, window_size): phrases = [] for window in get_windows(doc, window_size): phrases += get_combinations(window) return phrases
jgombac/RatingPredictor
simple_sentiment.py
simple_sentiment.py
py
4,427
python
en
code
0
github-code
6
41400484106
#!/usr/bin/env python3 __author__ = 'smw' __email__ = '[email protected]' __status__ = 'Development' import os import sys import arcpy import timeit start = timeit.default_timer() lcm_vector = r'E:\land-cover-map\data\LCM2015_GB.gdb\lcm2015gbvector' print('\n\nlcm_vector:\t\t{0}'.format(lcm_vector)) shp_folder = r'E:\land-cover-map\data\ShapeFiles' print('\n\nshp_folder:\t\t{0}'.format(shp_folder)) out_gdb = r'E:\land-cover-map\data\out_gdb.gdb' print('\n\nout_gdb:\t\t{0}'.format(out_gdb)) if arcpy.Exists(out_gdb): print('\n\nout_gdb exists.') else: print('\n\nCreating out_gdb...') arcpy.CreateFileGDB_management(out_folder_path=os.path.dirname(out_gdb), out_name=os.path.basename(out_gdb)) print('\n\nLooping through shapefiles...') arcpy.env.workspace = shp_folder featureclasses = arcpy.ListFeatureClasses(wild_card='*', feature_type='Polygon') for fc in featureclasses: print('\tfc:\t\t{0}'.format(fc)) out_fc = os.path.join(out_gdb, '{0}_{1}'.format(os.path.basename(lcm_vector), os.path.splitext(fc)[0])) print('\t\tout_fc:\t\t{0}'.format(out_fc)) if arcpy.Exists(out_fc): arcpy.Delete_management(out_fc) # print('\t\tClipping...') # arcpy.Clip_analysis(in_features=lcm_vector, # clip_features=fc, # out_feature_class=out_fc) print('\t\tSelecting...') fl = 'featurelayer' if arcpy.Exists(fl): arcpy.Delete_management(fl) arcpy.MakeFeatureLayer_management(in_features=lcm_vector, out_layer=fl) arcpy.SelectLayerByLocation_management(in_layer=fl, overlap_type='INTERSECT', select_features=fc, selection_type='NEW_SELECTION') selected_features = int(arcpy.GetCount_management(fl)[0]) print('\t\tselected_features:\t\t{0}'.format(selected_features)) if selected_features > 0: arcpy.CopyFeatures_management(in_features=fl, out_feature_class=out_fc) copied_features = int(arcpy.GetCount_management(out_fc)[0]) print('\t\tcopied_features:\t\t{0}'.format(copied_features)) if arcpy.Exists(fl): arcpy.Delete_management(fl) stop = timeit.default_timer() total_time = stop - start mins, secs = divmod(total_time, 60) hours, mins = divmod(mins, 60) print('\n\nTotal running time:\t\t{0}:{1}:{2:.2f}\n'.format(str(int(hours)).zfill(2), str(int(mins)).zfill(2), secs))
smwCEH/land-cover-map-clipping
multi-clip.py
multi-clip.py
py
2,658
python
en
code
0
github-code
6
71177753467
from math import * from operator import concat from random import randint, random, choice, uniform import colorsys import pysvg.structure import pysvg.builders img_side = 1024 img_xmid = img_side/2 img_ymid = img_side/2 starting_rad = 128 class Circle: __slots__ = ('x', 'y', 'rad', 'depth') def __init__(self, x, y, rad, depth): self.x = x self.y = y self.rad = rad self.depth = depth circles = [] def rgb_to_hex(rgb): return "#" + reduce(concat, map(lambda x: "%02x" % x, rgb)) def make_child(circle): # ang = random() * (1 * pi) ang = uniform(1.9 * pi, 2.1 * pi) if random() < 0.10 else uniform(.9 * pi, 1.1 * pi) px = (2 * circle.rad) * cos(ang) + circle.x py = (2 * circle.rad) * sin(ang) + circle.y return Circle(px, py, circle.rad * 0.5, circle.depth + 1) def make_tree(root, branch, depth): if depth == 0: return children = [] for _ in range(branch): child = make_child(root) children.append(child) circles.append(child) for child in children: make_tree(child, branch, depth - 1) # Add the root root = Circle(img_xmid, img_ymid, starting_rad, 0) circles.append(root) # Make the tree depth = 6 branching_factor = 7 make_tree(root, branching_factor, depth) # Make the SVG svg = pysvg.structure.svg() sb = pysvg.builders.ShapeBuilder() bot_y = min(circles, key = lambda circ: circ.y).y top_y = max(circles, key = lambda circ: circ.y).y bot_x_circ = min(circles, key = lambda circ: circ.x - circ.rad) bot_x = bot_x_circ.x - bot_x_circ.rad bot_y_circ = min(circles, key = lambda circ: circ.y - circ.rad) bot_y = bot_y_circ.y - bot_y_circ.rad highest_dist_circ = max(circles, key = lambda circ: sqrt((circ.x - bot_x)**2 + (circ.y-bot_y)**2)) highest_dist = sqrt((highest_dist_circ.x - bot_x)**2 + (highest_dist_circ.y - bot_y)**2) for circ in circles: # darkness = (float(circ.depth) / depth) * 255 # light = float(circ.depth) / depth light = 0.5 # hue = float(circ.y - bot_y) / (top_y - bot_y) hue = sqrt((circ.x - bot_x)**2 + (circ.y - bot_y)**2) / highest_dist hue += choice((-1, 1)) * random() * 0.25 # sat = float(circ.depth) / depth sat = 0.5 rgb = map(lambda x: int(255 * x), colorsys.hls_to_rgb(hue, light, sat)) color = rgb_to_hex(rgb) if(circ.depth > 2): svg.addElement(sb.createCircle(circ.x - bot_x, circ.y - bot_y, circ.rad, strokewidth = 0, fill = color)) # Hack fill opacity in because PySVG doesn't have it :( xml = svg.getXML().replace("; \"", "; fill-opacity:0.75; \"") with open("angletree.svg", "w") as f: f.write(xml)
bitbanger/algoart
angletree.py
angletree.py
py
2,549
python
en
code
13
github-code
6
37226419252
N = int(input()) A = list(map(int, input().split())) MaxVal = 0 for l in range(N): for m in range(l+1, N+1): x = min(A[l:m]) * (m - l) if x > MaxVal: MaxVal = x print(MaxVal)
konamilk/atcoder-abc189
C.py
C.py
py
211
python
en
code
0
github-code
6
37392717665
import streamlit as st import requests,random,time from deta import Deta deta = Deta(st.secrets['key']) # Base key db= deta.Base("usernames") st.set_page_config(page_title="Github Shoutout",page_icon="images/githublogo.png",layout="centered",initial_sidebar_state="auto") # setting the page config def verifying(username): if username: try: api_url = f"https://api.github.com/users/{username}" # api url response = requests.get(api_url) # get response data = response.json() # parse data as json if db.get(username): st.warning("Username already exists") elif data["followers"] and data["name"] and data["bio"]: # if followers or following is not zero db.put({"key":username}) # add entryin database with key lowercase username st.success("Username stored in database.") else: st.error("Sorry, you don't have followers or your name and bio is not setup") except Exception as e: # if username is not valid print(e) st.error("Invalid github username") def random_username(): names = db.fetch().items github_username=list(names[random.randint(0,len(names)-1)].values())[0] try: api_url = f"https://api.github.com/users/{github_username}" # api url response = requests.get(api_url) data = response.json() acc_link=data['html_url'] st.markdown(f"""<div id='container'><img id='pfp' src="https://github.com/{github_username}.png" alt="github profile pic"/> <h3>Name:&nbsp;&nbsp; {data['name']}</h3> <p id="bio">Bio:&nbsp;&nbsp; {data['bio']}</p> <p id="ff">Followers: &nbsp;&nbsp; {data["followers"]} &nbsp;&nbsp; &nbsp;&nbsp;| &nbsp;&nbsp; Following: &nbsp;&nbsp; {data["following"]}</p> <table> <tr> <th>Stats</th> <th>Streak</th> <th>Languages</th> </tr> <tr> <td><img src='http://github-profile-summary-cards.vercel.app/api/cards/stats?username={github_username}&theme=github_dark' width=200px height=100px></td> <td><img src='https://streak-stats.demolab.com?user={github_username}&theme=github-dark&hide_border=true&border_radius=32&date_format=j%20M%5B%20Y%5D&ring=888888' width=180px height=100px></td> <td><img src='http://github-profile-summary-cards.vercel.app/api/cards/repos-per-language?username={github_username}&theme=github_dark' width= 200px height=100px></td> </tr> </table><br><br> <a target="_blank" href="{acc_link}"> <button id='btn'> Follow {github_username} on GitHub </button><br><br> </a></div>""",unsafe_allow_html=True) #displaying the data # except Exception as e: st.error("Something went wrong, try again later") def main(): st.markdown("""<a href='https://github.com/samadpls/Github-Shoutout'><img src='https://img.shields.io/github/stars/samadpls/Github-Shoutout?color=red&label=star%20me&logoColor=red&style=social'></a>""",unsafe_allow_html=True) img , heading = st.columns([1,8]) # using columns to display the heading and image with img: st.image("images/githublogo.png",width=70) # github logo with heading: st.markdown('# Shoutout to Github User') # heading st.markdown("`Click on the button to see the profile`") # description if st.button("Press Me"): with st.spinner('Wait for it...'): time.sleep(2) random_username() #New username with st.expander("Add your profile :"): # sub header text = st.empty() username=text.text_input("Enter your github username",max_chars=40) st.markdown(""" ` Made with ๐Ÿค by samadpls ` """) # footer verifying(username.strip().lower()) if __name__=="__main__": with open('styles.css') as f: st.markdown(f"<style>{f.read()}</style>",unsafe_allow_html=True) # loading the css file main()
samadpls/Github-Shoutout
app.py
app.py
py
4,179
python
en
code
10
github-code
6
692617342
#!/usr/bin/python import keras_ocr import sys if __name__ == "__main__": image_filepath = sys.argv[0] recognizer = keras_ocr.recognition.Recognizer() recognizer.compile() recognizer.model.load_weights('./assets/dataset/trained_recognizer.h5') predicted = recognizer.recognize(image_filepath) print(" prediction:",predicted)
prakashsellathurai/ML-ASSIGNMENT-IDfy
predict.py
predict.py
py
358
python
en
code
0
github-code
6
29836585751
# #Unzip the test directory # !unzip drive/My\ Drive/CatVSDog/test1.zip # #Unzip the train directory # !unzip drive/My\ Drive/CatVSDog/train.zip # Plotting the images of dog import shutil from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint from keras.layers import Dense from keras.layers import Flatten from keras.layers import MaxPooling2D from keras.layers import Conv2D from keras.models import Sequential import random import os from keras.preprocessing.image import img_to_array from keras.preprocessing.image import load_img from numpy import save from numpy import asarray from os import listdir from matplotlib import pyplot from matplotlib.image import imread folder = 'train/' for i in range(9): # define subplot pyplot.subplot(330+1+i) # define the filename filename = folder + 'dog.'+str(i)+'.jpg' # load image pixels image = imread(filename) # plot raw pixel data pyplot.imshow(image) pyplot.show() # Plotting the images of cat folder = 'train/' for i in range(9): # define subplot pyplot.subplot(330+1+i) # define the filename filename = folder + 'cat.'+str(i)+'.jpg' # load image pixels image = imread(filename) # plot raw pixel data pyplot.imshow(image) pyplot.show() # define location of dataset folder = 'train/' photos, labels = list(), list() # enumerate files in the directory # for file in listdir(folder): # #determine class # output = 0.0 # if file.startswith('cat'): # output = 1.0 # #load image # photo = load_img(folder+file,target_size = (200,200)) # photo = img_to_array(photo) # #store # photos.append(photo) # labels.append(output) # #convert to a numpy arrays # photos = asarray(photos) # labels = asarray(labels) # print(photos.shape,labels.shape) # #save the reshaped photos # save('dogs_vs_cats_photos.npy',photos) # save('dogs_vs_cats_labels.npy',labels) # #loading from numpy data # from numpy import load # photos = load('dogs_vs_cats_photos.npy') # labels = load('dogs_vs_cats_labels.npy') # print(photos.shape,labels.shape) # Alternate method # creating seperate directory for test->cat and test->dog as this is required dataset_home = 'dataset_dogs_vs_cats/' subdirs = ['train/', 'test/'] for subdir in subdirs: labeldirs = ['dogs/', 'cats/'] for labeldir in labeldirs: newdir = dataset_home+subdir+labeldir os.makedirs(newdir, exist_ok=True) print("DONE") # Partitioning the test and train sets random.seed(1) val_ratio = 0.25 src_directory = 'train/' for file in listdir(src_directory): src = src_directory+'/'+file dst_dir = 'train/' if random.random() < val_ratio: dst_dir = 'test/' if file.startswith('cat'): dst = dataset_home+dst_dir+'cats/'+file shutil.copyfile(src, dst) elif file.startswith('dog'): dst = dataset_home + dst_dir+'dogs/'+file shutil.copyfile(src, dst) # Initialising the CNN classifier = Sequential() # Convolution classifier.add(Conv2D(32, (3, 3), input_shape=( 200, 200, 3), activation='relu')) # Pooling classifier.add(MaxPooling2D(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(Conv2D(32, (3, 3), activation='relu')) classifier.add(MaxPooling2D(pool_size=(2, 2))) # Flattening classifier.add(Flatten()) # Full connection classifier.add(Dense(units=128, activation='relu')) classifier.add(Dense(units=1, activation='sigmoid')) # Loading the model # classifier.load_weights("/kaggle/output/weights.best.hdf5") # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) training_set = train_datagen.flow_from_directory('dataset_dogs_vs_cats/train/', target_size=(200, 200), batch_size=32, class_mode='binary') test_set = test_datagen.flow_from_directory('dataset_dogs_vs_cats/test/', target_size=(200, 200), batch_size=32, class_mode='binary') # Select the path to store the final checkpoint after a epoch filepath = "weights.best.hdf5" checkpoint = ModelCheckpoint( filepath, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] classifier.fit_generator(training_set, steps_per_epoch=8000, epochs=50, validation_data=test_set, callbacks=callbacks_list, validation_steps=2000)
mcaupybugs/CatsVSDogs
catvsdog.py
catvsdog.py
py
4,994
python
en
code
0
github-code
6
25066459905
from django.contrib.auth import mixins from oauth2_provider.contrib.rest_framework import ( OAuth2Authentication as BaseOAuth2Authentication, ) from purplship.server.core.authentication import ( JWTAuthentication, TokenAuthentication, get_request_org, ) class OAuth2Authentication(BaseOAuth2Authentication): def authenticate(self, request): auth = super().authenticate(request) if auth is not None: user, _ = auth request.org = get_request_org(request, user) return auth class AccessMixin(mixins.AccessMixin): """Verify that the current user is authenticated.""" def dispatch(self, request, *args, **kwargs): try: auth = ( OAuth2Authentication().authenticate(request) or JWTAuthentication().authenticate(request) or TokenAuthentication().authenticate(request) ) if auth is not None: user, *_ = auth request.user = user finally: return super().dispatch(request, *args, **kwargs)
danh91/purplship
insiders/server/iam/purplship/server/iam/authentication.py
authentication.py
py
1,109
python
en
code
null
github-code
6
4956999019
import sys def herdle(): puzzle_answer = [] puzzle_guess = [] def split_into_chars(string): res = [] for char in string: res.append(char) return res answer_as_oned = [] for _ in range(3): temp = sys.stdin.readline().strip() splitted = split_into_chars(temp) answer_as_oned += splitted puzzle_answer.append(splitted) for _ in range(3): temp = sys.stdin.readline().strip() splitted = split_into_chars(temp) puzzle_guess.append(splitted) same_place = 0 exists = 0 for x in range(3): for y in range(3): if puzzle_answer[x][y] == puzzle_guess[x][y]: same_place += 1 answer_as_oned.remove(puzzle_answer[x][y]) for x in range(3): for y in range(3): if puzzle_guess[x][y] in answer_as_oned and puzzle_answer[x][y] != puzzle_guess[x][y]: exists += 1 answer_as_oned.remove(puzzle_guess[x][y]) return [same_place, exists] answer = herdle() print(answer[0]) print(answer[1])
jjliewie/usaco-jan-bronze-2022
herdle-answer.py
herdle-answer.py
py
1,116
python
en
code
3
github-code
6
29916785411
import unittest from livecli.plugins.vgtv import VGTV class TestPluginVGTV(unittest.TestCase): def test_can_handle_url(self): should_match = [ "http://ap.vgtv.no/webtv/video/114339/tempo-sport-motorsykkelen-som-gjenoppstod", "http://ap.vgtv.no/webtv#!/video/114339/tempo-sport-motorsykkelen-som-gjenoppstod", "https://tv.aftonbladet.se/abtv/articles/243105", "https://www.vgtv.no/live/139125/sportsnyhetene-doegnet-rundt", "https://www.vgtv.no/video/153967/vi-fulgte-hopp-stor-bakke-menn", ] for url in should_match: self.assertTrue(VGTV.can_handle_url(url)) should_not_match = [ "https://ap.vgtv.no", ] for url in should_not_match: self.assertFalse(VGTV.can_handle_url(url))
ariesw/livecli
tests/test_plugin_vgtv.py
test_plugin_vgtv.py
py
828
python
no
code
0
github-code
6
26632967906
import collections import math import socket DEF_MACADDR = ['2VTX', '2VR7', '2ZX7', '2VN8'] # This class read data from watches via UDP. class watchData(object): def __init__(self, ip, port, watch_num, watch_queue): self.ip = ip self.port = port self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.watch_num = watch_num self.data_queue = watch_queue def sock_bind(self): self.sock.bind((self.ip, self.port)) def read(self): while True: data, addr = self.sock.recvfrom(1024) parsed_data = data.split(' ') if (parsed_data[2] == '3'): gyro_x = float(parsed_data[3]) gyro_y = float(parsed_data[4]) gyro_z = float(parsed_data[5]) gyro_mag = math.sqrt(gyro_x*gyro_x + gyro_y*gyro_y + gyro_z*gyro_z) * 57.3 for i in range(self.watch_num): if (parsed_data[0] == DEF_MACADDR[i]): self.data_queue[i].append(gyro_mag) def get_data(self): return self.data_queue
jianwuesp/Registration
watch.py
watch.py
py
1,108
python
en
code
0
github-code
6
34540343891
import argparse import sys from operator import add import os import shlex import shutil from subprocess import Popen, PIPE from pyspark import SparkContext, SparkConf import pyspark.serializers import subprocess import boto3 import re global parser_result if sys.version > "3.4": pyspark.serializers.protocol = 4 APPLICATION_FOLDER = "/app" GENOME_REFERENCES_FOLDER = "/mnt/ref" TEMP_OUTPUT_FOLDER = "/mnt/output" HDFS_TEMP_OUTPUT_FOLDER = "/tmp/sam_chunks" ################################# # File splitting ################################# def split_interleaved_file(file_prefix, file_content, output_dir): """ Unpacks an interleaved file into the standard FASTQ format :param file_prefix: the prefix of the file name :param file_content: the lines of content from the input file :param output_dir: the location to store the unpacked files :return: a tuple with first element being a list of output file names (1 for se, 2 for pe); 2nd element a boolean flag - True if pe data, False otherwise """ fastq_line_count_se = 4 fastq_line_count_pe = 8 paired_reads = False output_file_names = [] file_prefix = output_dir + "/" + file_prefix output_file = file_prefix + "_1.fq" output_file_names.append(output_file) output_file_writer = open(output_file, 'w') count = 0 for line in file_content.strip().split("\n"): # In the first line, check if it's paired or not if count == 0 and len(line.strip().split("\t")) == fastq_line_count_pe: paired_reads = True output_file_pair = file_prefix + "_2.fq" output_file_names.append(output_file_pair) output_pair_writer = open(output_file_pair, 'w') if paired_reads: parts = line.strip().split("\t") if len(parts) != fastq_line_count_pe: continue read_one = parts[:fastq_line_count_se] read_two = parts[fastq_line_count_se:] output_file_writer.write("\n".join(read_one) + "\n") output_pair_writer.write("\n".join(read_two) + "\n") else: output_file_writer.writelines(line.strip().replace("\t", "\n") + "\n") count += 1 output_file_writer.close() if paired_reads: output_pair_writer.close() return output_file_names, paired_reads ################################# # Aligner ################################# def align_reads_star(sample_name, file_names, alignment_output_dir): # If paired read flag is required # paired_read = True if len(file_names) == 2 else False print("Aligning reads...") aligner_args = "{app_folder}/STAR/STAR --runThreadN 4 {aligner_extra_args} --genomeDir {index_folder} " \ "--readFilesIn {fastq_file_names} --outFileNamePrefix {output_folder} --outSAMtype BAM Unsorted".\ format(app_folder=APPLICATION_FOLDER, aligner_extra_args="" if parser_result.aligner_extra_args is None else parser_result.aligner_extra_args, index_folder=GENOME_REFERENCES_FOLDER + "/star_index", fastq_file_names=" ".join(file_names), output_folder=alignment_output_dir + "/") print("Command: " + aligner_args) aligner_process = Popen(shlex.split(aligner_args), stdout=PIPE, stderr=PIPE) aligner_out, aligner_error = aligner_process.communicate() if aligner_process.returncode != 0: raise ValueError("STAR failed to complete (Non-zero return code)!\n" "STAR stdout: {std_out} \nSTAR stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) if aligner_error.decode("utf8").strip() != "" or not os.path.isfile(alignment_output_dir + "/Log.final.out"): raise ValueError("STAR failed to complete (No output file is found)!\n" "STAR stdout: {std_out} \nSTAR stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) print('Completed reads alignment') bam_file_name_output = "Aligned.out.bam" return bam_file_name_output def align_reads_hisat(sample_name, file_names, alignment_output_dir): # If paired read flag is required paired_read = True if len(file_names) == 2 else False print("Aligning reads...") if paired_read: fastq_file_args = "-1 {} -2 {}".format(*file_names) else: fastq_file_args = "-U {}".format(*file_names) aligner_args = "{app_folder}/hisat/hisat2 -p 4 --tmo {aligner_extra_args} -x {index_folder}/hisat2.index " \ "{fastq_file_names} -S {output_folder}/output.sam".\ format(app_folder=APPLICATION_FOLDER, aligner_extra_args="" if parser_result.aligner_extra_args is None else parser_result.aligner_extra_args, index_folder=GENOME_REFERENCES_FOLDER + "/hisat_index", fastq_file_names=fastq_file_args, output_folder=alignment_output_dir) print("Command: " + aligner_args) aligner_process = Popen(shlex.split(aligner_args), stdout=PIPE, stderr=PIPE) aligner_out, aligner_error = aligner_process.communicate() if aligner_process.returncode != 0: raise ValueError("HISAT2 failed to complete (Non-zero return code)!\n" "HISAT2 stdout: {std_out} \nHISAT2 stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) print('Completed reads alignment') samtools_args = "{app_folder}/samtools/samtools view -@ 4 -o {output_folder}/output.bam {output_folder}/output.sam". \ format(app_folder=APPLICATION_FOLDER, output_folder=alignment_output_dir) print("Command: " + samtools_args) samtools_process = Popen(shlex.split(samtools_args), stdout=PIPE, stderr=PIPE) samtools_out, samtools_error = samtools_process.communicate() if samtools_process.returncode != 0: raise ValueError("Samtools failed to complete (Non-zero return code)!\n" "Samtools stdout: {std_out} \nSamtools stderr: {std_err}".format( std_out=samtools_out.decode("utf8"), std_err=samtools_error.decode("utf8"))) sam_file_name_output = "output.bam" return sam_file_name_output def align_reads_subread(sample_name, file_names, alignment_output_dir): # If paired read flag is required paired_read = True if len(file_names) == 2 else False print("Aligning reads...") print("Aligning with subread") if paired_read: fastq_file_args = "-r {} -R {}".format(*file_names) else: fastq_file_args = "-r {}".format(*file_names) aligner_args = "{app_folder}/subread/subread-align -T 4 -t 0 --SAMoutput {aligner_extra_args} " \ "-i {index_folder}/genome {fastq_file_names} -o {output_folder}/output.bam".\ format(app_folder=APPLICATION_FOLDER, aligner_extra_args="" if parser_result.aligner_extra_args is None else parser_result.aligner_extra_args, index_folder=GENOME_REFERENCES_FOLDER + "/subread_index", fastq_file_names=fastq_file_args, output_folder=alignment_output_dir) print("Command: " + aligner_args) aligner_process = Popen(shlex.split(aligner_args), stdout=PIPE, stderr=PIPE) aligner_out, aligner_error = aligner_process.communicate() if aligner_process.returncode != 0: raise ValueError("Subread failed to complete (Non-zero return code)!\n" "Subread stdout: {std_out} \nSubread stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) print('Completed reads alignment') sam_file_name_output = "output.bam" return sam_file_name_output ################################# # Main functions ################################# def alignment_step(keyval): # Input: file_name, file_content as key,val # Output: [sample_name, file_name] as [key,val] global parser_result prefix_regex = r"(.*_part[0-9]*)\." file_name, file_content = keyval prefix_match = re.findall(prefix_regex, file_name.rstrip("/").split("/")[-1]) if len(prefix_match) != 1: raise ValueError("Filename can not be resolved (invalid, pattern mismatch): {}".format(file_name)) prefix = prefix_match[0] sample_name = prefix.rsplit("_part", 1)[0] alignment_dir = TEMP_OUTPUT_FOLDER + "/alignment_" + prefix try: os.mkdir(alignment_dir) except: print('Alignment directory {} exist.'.format(alignment_dir)) print("Recreating FASTQ file(s)") split_file_names, paired_reads = split_interleaved_file(prefix, file_content, alignment_dir) print("Recreating FASTQ file(s) complete. Files recreated: {}".format(",".join(split_file_names))) alignment_output_dir = alignment_dir + "/aligner_output" try: os.mkdir(alignment_output_dir) except: print('Alignment output directory {} exist.'.format(alignment_output_dir)) if parser_result.aligner.lower() == "star": aligned_sam_output = align_reads_star(sample_name, split_file_names, alignment_output_dir) elif parser_result.aligner.lower() == "hisat" or parser_result.aligner.lower() == "hisat2": aligned_sam_output = align_reads_hisat(sample_name, split_file_names, alignment_output_dir) elif parser_result.aligner.lower() == "subread": aligned_sam_output = align_reads_subread(sample_name, split_file_names, alignment_output_dir) else: print("Aligner specified is not yet supported. Defaulting to STAR") aligned_sam_output = align_reads_star(sample_name, split_file_names, alignment_output_dir) aligned_output_filepath = "{}/{}".format(alignment_output_dir.rstrip("/"), aligned_sam_output) aligned_output_hdfs_filepath = "{}/{}".format(HDFS_TEMP_OUTPUT_FOLDER, prefix) subprocess.call(["hdfs", "dfs", "-rm", aligned_output_hdfs_filepath]) subprocess.call(["hdfs", "dfs", "-put", aligned_output_filepath, aligned_output_hdfs_filepath]) shutil.rmtree(alignment_dir, ignore_errors=True) return sample_name, [prefix] def fuse_alignment(keyval): # Input: sample_name, [file_name,...] as key, val # Output: sample_name global parser_result key, file_lists = keyval fuse_alignment_dir = TEMP_OUTPUT_FOLDER.rstrip("/") + "/" + key ordered_file_lists = sorted([(f, int(f.rsplit("part", 1)[-1])) for f in file_lists], key=lambda x:x[-1]) print(ordered_file_lists) try: os.mkdir(fuse_alignment_dir) except: print('Fuse alignment directory {} exist.'.format(fuse_alignment_dir)) fuse_alignment_file = key + ".bam" previous_file_path = "" for index, file_name_pair in enumerate(ordered_file_lists): file_name, number = file_name_pair local_file_path = fuse_alignment_dir + "/" + file_name + ".bam" subprocess.call(["hdfs", "dfs", "-get", HDFS_TEMP_OUTPUT_FOLDER.rstrip("/") + "/" + file_name, local_file_path]) if index != 0: new_merged_file_path = "{}/temp_{}.bam".format(fuse_alignment_dir, index) subprocess.call(["samtools", "cat", "-o", new_merged_file_path, previous_file_path, local_file_path]) os.remove(previous_file_path) os.remove(local_file_path) previous_file_path = new_merged_file_path else: previous_file_path = local_file_path subprocess.call(["hdfs", "dfs", "-rm", HDFS_TEMP_OUTPUT_FOLDER.rstrip("/") + "/" + file_name]) if parser_result.output_dir.startswith("s3://"): # From S3 s3_client = boto3.client('s3', region_name=parser_result.aws_region) print("uploading to S3") output_bucket, key_prefix = parser_result.output_dir.strip().strip("/")[5:].split("/", 1) s3_client.upload_file(previous_file_path, output_bucket, key_prefix + "/" + fuse_alignment_file) else: print("outputting to HDFS") subprocess.call(["hdfs", "dfs", "-mkdir", "-p", parser_result.output_dir.rstrip("/")]) subprocess.call(["hdfs", "dfs", "-put", previous_file_path, parser_result.output_dir.rstrip("/") + "/" + fuse_alignment_file]) os.remove(previous_file_path) return key if __name__ == "__main__": global parser_result parser = argparse.ArgumentParser(description='Spark-based RNA-seq Pipeline Alignment') parser.add_argument('--input', '-i', action="store", dest="input_dir", help="Input directory - HDFS or S3") parser.add_argument('--output', '-o', action="store", dest="output_dir", help="Output directory - HDFS or S3") parser.add_argument('--aligner_tools', '-at', action="store", dest="aligner", nargs='?', help="Aligner to be used (STAR|HISAT2|Subread)", default="STAR") parser.add_argument('--aligner_extra_args', '-s', action="store", dest="aligner_extra_args", nargs='?', help="Extra argument to be passed to alignment tool", default="") parser.add_argument('--region', '-r', action="store", dest="aws_region", help="AWS region") parser_result = parser.parse_args() split_num = 0 conf = SparkConf().setAppName("Spark-based RNA-seq Pipeline Alignment") sc = SparkContext(conf=conf) if parser_result.input_dir.startswith("s3://"): # From S3 s3_client = boto3.client('s3', region_name=parser_result.aws_region) # Get number of input files s3_paginator = s3_client.get_paginator('list_objects') input_bucket, key_prefix = parser_result.input_dir[5:].strip().split("/", 1) input_file_num = 0 for result in s3_paginator.paginate(Bucket=input_bucket, Prefix=key_prefix): for file in result.get("Contents"): input_file_num += 1 if input_file_num == 0: raise ValueError("Input directory is invalid or empty!") split_num = input_file_num else: # From HDFS hdfs_process = Popen(shlex.split("hdfs dfs -count {}".format(parser_result.input_dir)), stdout=PIPE, stderr=PIPE) hdfs_out, hdfs_error = hdfs_process.communicate() if hdfs_error: raise ValueError("Input directory is invalid or empty!") dir_count, file_count, size, path = hdfs_out.strip().split() split_num = int(file_count) subprocess.call(["hdfs", "dfs", "-mkdir", "-p", HDFS_TEMP_OUTPUT_FOLDER]) input_files = sc.wholeTextFiles(parser_result.input_dir, split_num) aligned_files = input_files.map(alignment_step) aligned_file_lists = aligned_files.reduceByKey(add) aligned_samples = aligned_file_lists.map(fuse_alignment) aligned_samples.collect()
VCCRI/Falco
source/spark_runner/run_pipeline_alignment.py
run_pipeline_alignment.py
py
15,126
python
en
code
37
github-code
6
43855241031
import os import matplotlib.pyplot as plt import numpy as np import torch from torch import nn import torch.optim as optim import torchvision from torchvision import transforms, models, datasets import imageio import time import warnings import random import sys import copy import json from PIL import Image #################################################################### # ๆŠŠๅฝ’ไธ€ๅŒ–ๅค„็†่ฟ‡็š„ๅ›พๅƒๆ•ฐๆฎๆขๅคไธบ[0,1]ๅŒบ้—ด็š„ๆ•ฐๆฎ๏ผŒๆ‰่ƒฝๆ˜พ็คบ def im_convert(tensor): # ๅฑ•็คบๆ•ฐๆฎ image = tensor.to("cpu").clone().detach() image = image.numpy().squeeze() image = image.transpose(1, 2, 0) # mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] image = image * np.array((0.229, 0.224, 0.225)) + \ np.array((0.485, 0.456, 0.406)) # ๆŠŠไฝŽไบŽ0็š„ๅ€ผ่ฎพ็ฝฎไธบ0๏ผŒ่ถ…่ฟ‡1็š„ๆ•ฐๆฎ่ฎพ็ฝฎไธบ1 image = image.clip(0, 1) return image #################################################################### #################################################################### def set_parameter_requires_grad(a_model, bol_frozen_param): if bol_frozen_param: for param in a_model.parameters(): param.requires_grad = False #################################################################### def initialize_model(model_name, num_classes, bol_frozen_nn_params, use_pretrained=True): # ้€‰ๆ‹ฉๅˆ้€‚็š„ๆจกๅž‹๏ผŒไธๅŒๆจกๅž‹็š„ๅˆๅง‹ๅŒ–ๆ–นๆณ•็จๅพฎๆœ‰็‚นๅŒบๅˆซ model_ft = None input_size = 0 if model_name == "resnet": """ Resnet152 """ model_ft = models.resnet152(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, bol_frozen_nn_params) # ๅ†ๆ นๆฎ num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102), nn.LogSoftmax(dim=1)) input_size = 224 elif model_name == "vgg": """ VGG11_bn """ model_ft = models.vgg16(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, bol_frozen_nn_params) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "inception": """ Inception v3 Be careful, expects (299,299) sized images and has auxiliary output """ model_ft = models.inception_v3(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, bol_frozen_nn_params) # Handle the auxilary net num_ftrs = model_ft.AuxLogits.fc.in_features model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes) # Handle the primary net num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_classes) input_size = 299 else: print("Invalid model name, exiting...") exit() return model_ft, input_size data_dir = './flower_data/' train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' # data_transformsๆ˜ฏไธ€ไธชๅญ—ๅ…ธ๏ผŒ่ฎฐๅฝ•ๅฏน [่ฎญ็ปƒๆ•ฐๆฎ] ๅ’Œ [้ชŒ่ฏๆ•ฐๆฎ] ็š„้ข„ๅค„็†็š„ ๆ“ไฝœ data_transforms = { 'train': transforms.Compose( [transforms.RandomRotation(45), # ้šๆœบๆ—‹่ฝฌ๏ผŒ-45ๅˆฐ45ๅบฆไน‹้—ด้šๆœบ้€‰ transforms.CenterCrop(224), # ไปŽไธญๅฟƒๅผ€ๅง‹่ฃๅ‰ช transforms.RandomHorizontalFlip(p=0.5), # ้šๆœบๆฐดๅนณ็ฟป่ฝฌ ้€‰ๆ‹ฉไธ€ไธชๆฆ‚็އๆฆ‚็އ transforms.RandomVerticalFlip(p=0.5), # ้šๆœบๅž‚็›ด็ฟป่ฝฌ # ๅ‚ๆ•ฐ1ไธบไบฎๅบฆ๏ผŒๅ‚ๆ•ฐ2ไธบๅฏนๆฏ”ๅบฆ๏ผŒๅ‚ๆ•ฐ3ไธบ้ฅฑๅ’Œๅบฆ๏ผŒๅ‚ๆ•ฐ4ไธบ่‰ฒ็›ธ transforms.ColorJitter( brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1), transforms.RandomGrayscale(p=0.025), # ๆฆ‚็އ่ฝฌๆขๆˆ็ฐๅบฆ็އ๏ผŒ3้€š้“ๅฐฑๆ˜ฏR=G=B transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [ 0.229, 0.224, 0.225]) # ๅ‡ๅ€ผ๏ผŒๆ ‡ๅ‡†ๅทฎ ]), 'valid': transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } batch_size = 4 # image_datasetsๆ˜ฏไธ€ไธชๅญ—ๅ…ธ๏ผŒๅˆ†ๅˆซๅญ˜ๆ”พ2ไธชๆ•ฐๆฎ้›†็š„ไฟกๆฏ๏ผŒๅŒ…ๆ‹ฌๅ›พๅƒๆ•ฐๆฎๅ’Œๅˆ†็ฑปๆ ‡็ญพ image_datasets = {x: datasets.ImageFolder(os.path.join( data_dir, x), data_transforms[x]) for x in ['train', 'valid']} # ๅˆ†ๅˆซไธบ train ๅ’Œ valid ไธคไธชๆ•ฐๆฎ้›†ๅฎšไน‰ๅ„่‡ช็š„ dataloader dataloaders = {x: torch.utils.data.DataLoader( image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']} # ็ปŸ่ฎก ่ฎญ็ปƒ้›† ๅ’Œ ้ชŒ่ฏ้›† ็š„ๆ•ฐๆฎ้‡ # dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']} # class_idsๆ˜ฏๅˆ—่กจ๏ผŒไพ‹ๅฆ‚๏ผš['1', '10', '100', '101', '102', '11', ...] class_ids = image_datasets['train'].classes with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) # ๅ‡†ๅค‡ไธ€ไธชๆ•ฐๆฎ่ฏปๅ–็š„่ฟญไปฃๅ™จ data_iter = iter(dataloaders['valid']) # region ๆผ”็คบๅ–ไธ€ไธชbatch็š„ๆ•ฐๆฎ๏ผŒๅนถๅฑ•็คบ # fig = plt.figure(figsize=(18, 10)) # columns = 3 # rows = 3 # # ๅ–ไธ€ไธชbatch_size็š„ๆ•ฐๆฎ. # # ๆณจๆ„:category_idsๅญ˜ๅ‚จ็š„ๆ˜ฏ็ฑปๅˆซๅœจimage_datasets['train'].classesๅˆ—่กจไธญ็š„ๅบๅท๏ผŒไธๆ˜ฏ็›ดๆŽฅๅญ˜็ฑปๅˆซ็ผ–ๅท # inputs, category_ids = data_iter.next() # for idx in range(columns*rows): # ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[]) # ax.set_title(str(int(class_ids[category_ids[idx]])) + ':' + # cat_to_name[str(int(class_ids[category_ids[idx]]))]) # plt.imshow(im_convert(inputs[idx])) # plt.tight_layout() # plt.show() # endregion ๆผ”็คบๅ–ไธ€ไธชbatch็š„ๆ•ฐๆฎ๏ผŒๅนถๅฑ•็คบ # ๅฏ้€‰็š„ๆฏ”่พƒๅคš ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception'] model_name = 'resnet' # ๆ˜ฏๅฆ็”จไบบๅฎถ่ฎญ็ปƒๅฅฝ็š„็‰นๅพๆๅ–ๆจกๅž‹ๆฅๅš๏ผŒไนŸๅฐฑๆ˜ฏๆฒฟ็”จๅˆซไบบ็š„ๆƒ้‡ bol_frozen_nn_param = True # ๆ˜ฏๅฆ็”จGPU่ฎญ็ปƒ train_on_gpu = torch.cuda.is_available() my_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_ft = models.resnet152(pretrained=True) model_ft, input_size = initialize_model( model_name, 102, bol_frozen_nn_param, use_pretrained=True) # GPU่ฎก็ฎ— model_ft = model_ft.to(my_device) #ย ๆจกๅž‹ไฟๅญ˜ filename = 'checkpoint.pth' # ๆ˜ฏๅฆ่ฎญ็ปƒๆ‰€ๆœ‰ๅฑ‚ params_to_update = model_ft.parameters() # print('params_to_update:\n', params_to_update) # params_to_update = model_ft.named_parameters() # print('params_to_update:\n', params_to_update) print("Params to learn:") if bol_frozen_nn_param: params_to_update = [] for name, param in model_ft.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("\t", name) else: for name, param in model_ft.named_parameters(): if param.requires_grad == True: print("\t", name) # ไผ˜ๅŒ–ๅ™จ่ฎพ็ฝฎ optimizer_ft = optim.Adam(params_to_update, lr=1e-2) scheduler = optim.lr_scheduler.StepLR( optimizer_ft, step_size=7, gamma=0.1) # ๅญฆไน ็އๆฏ7ไธชepoch่กฐๅ‡ๆˆๅŽŸๆฅ็š„1/10 # ๆœ€ๅŽไธ€ๅฑ‚ๅทฒ็ปLogSoftmax()ไบ†๏ผŒๆ‰€ไปฅไธ่ƒฝnn.CrossEntropyLoss()ๆฅ่ฎก็ฎ—ไบ†๏ผŒnn.CrossEntropyLoss()็›ธๅฝ“ไบŽlogSoftmax()ๅ’Œnn.NLLLoss()ๆ•ดๅˆ criterion = nn.NLLLoss() # ่ฟ™้‡Œไธ็”จ criterion = nn.CrossEntropyLoss() # ===================================================================================================== # ===================================================================================================== def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False, filename=filename): since = time.time() best_acc = 0 # region ๅŠ ่ฝฝๆจกๅž‹ ''' checkpoint = torch.load(filename) best_acc = checkpoint['best_acc'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) model.class_to_idx = checkpoint['mapping'] ''' # endregion model.to(my_device) val_acc_history = [] train_acc_history = [] train_losses = [] valid_losses = [] LRs = [optimizer.param_groups[0]['lr']] best_model_wts = copy.deepcopy(model.state_dict()) for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # ่ฎญ็ปƒๅ’Œ้ชŒ่ฏ for phase in ['train', 'valid']: if phase == 'train': model.train() # ่ฎญ็ปƒ else: model.eval() # ้ชŒ่ฏ running_loss = 0.0 running_corrects = 0 # ๆŠŠๆ•ฐๆฎ้ƒฝๅ–ไธช้ for inputs, labels in dataloaders[phase]: inputs = inputs.to(my_device) labels = labels.to(my_device) # ๆธ…้›ถ optimizer.zero_grad() # ๅชๆœ‰่ฎญ็ปƒ็š„ๆ—ถๅ€™่ฎก็ฎ—ๅ’Œๆ›ดๆ–ฐๆขฏๅบฆ with torch.set_grad_enabled(phase == 'train'): if is_inception and phase == 'train': outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4*loss2 else: # resnetๆ‰ง่กŒ็š„ๆ˜ฏ่ฟ™้‡Œ outputs = model(inputs) loss = criterion(outputs, labels) # torch.max(outputs, 1)่ฟ”ๅ›žๆฏไธ€่กŒ็š„ๆœ€ๅคงๅ€ผ๏ผŒไปฅๅŠๆœ€ๅคงๅ€ผๆ‰€ๅœจ็š„ๅˆ—ๅบๅท # ้ข„ๆต‹ๅ€ผไธบๅˆ†็ฑปๅœจๅˆ†็ฑปๅˆ—่กจไธญ็š„ๅบๅท๏ผŒๆ ‡็ญพๅ€ผไธบๅˆ†็ฑปๅœจๅˆ†็ฑปๅˆ—่กจไธญ็š„ๅบๅท pred_values, pred_idxs = torch.max(outputs, 1) print('outputs:', outputs) print('predict value:', pred_values) print('prdict_category:', pred_idxs) print('labels:', labels.data) # ่ฎญ็ปƒ้˜ถๆฎตๆ›ดๆ–ฐๆƒ้‡ if phase == 'train': loss.backward() optimizer.step() # ่ฎก็ฎ—ๆŸๅคฑ running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(pred_idxs == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double( ) / len(dataloaders[phase].dataset) time_elapsed = time.time() - since print('Time elapsed {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # ๅพ—ๅˆฐๆœ€ๅฅฝ้‚ฃๆฌก็š„ๆจกๅž‹ if phase == 'valid' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) state = { 'state_dict': model.state_dict(), 'best_acc': best_acc, 'optimizer': optimizer.state_dict(), } torch.save(state, filename) if phase == 'valid': val_acc_history.append(epoch_acc) valid_losses.append(epoch_loss) scheduler.step(epoch_loss) if phase == 'train': train_acc_history.append(epoch_acc) train_losses.append(epoch_loss) print('Optimizer learning rate : {:.7f}'.format( optimizer.param_groups[0]['lr'])) LRs.append(optimizer.param_groups[0]['lr']) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # ่ฎญ็ปƒๅฎŒๅŽ็”จๆœ€ๅฅฝ็š„ไธ€ๆฌกๅฝ“ๅšๆจกๅž‹ๆœ€็ปˆ็š„็ป“ๆžœ model.load_state_dict(best_model_wts) return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs # ===================================================================================================== # ่ฎญ็ปƒ่‡ชๅฎšไน‰็š„ๆœ€ๅŽไธ€ๅฑ‚ โ€”โ€”โ€”โ€” ๅ…จ่ฟžๆŽฅๅฑ‚ # model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model( # model_ft, dataloaders, criterion, optimizer_ft, num_epochs=1, is_inception=(model_name == "inception")) # ๆŠŠ็ฝ‘็ปœๅ‚ๆ•ฐๅ†่ฎพ็ฝฎไธบๅฏๅญฆไน ็š„็Šถๆ€ for param in model_ft.parameters(): param.requires_grad = True # ๅ†็ปง็ปญ่ฎญ็ปƒๆ‰€ๆœ‰็š„ๅ‚ๆ•ฐ๏ผŒๅญฆไน ็އ่ฐƒๅฐไธ€็‚น optimizer = optim.Adam(params_to_update, lr=1e-4) scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # ๆŸๅคฑๅ‡ฝๆ•ฐ criterion = nn.NLLLoss() # Load the checkpoint checkpoint = torch.load(filename) best_acc = checkpoint['best_acc'] model_ft.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) #model_ft.class_to_idx = checkpoint['mapping'] # ๅ†ๆฌก่ฎญ็ปƒ๏ผŒ่ฟ™ๆฌก่ฎญ็ปƒๆ•ดไธชๆจกๅž‹ # model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model( # model_ft, dataloaders, criterion, optimizer, num_epochs=1, is_inception=(model_name == "inception")) # ๅพ—ๅˆฐไธ€ไธชbatch็š„ๆต‹่ฏ•ๆ•ฐๆฎ dataiter = iter(dataloaders['valid']) images, labels = dataiter.next() # ่ฎญ็ปƒๅฎŒtrain_datasetsไน‹ๅŽ๏ผŒmodel่ฆๆฅๆต‹่ฏ•ๆ ทๆœฌไบ†ใ€‚ๅœจmodel(test_datasets)ไน‹ๅ‰๏ผŒ้œ€่ฆๅŠ ไธŠmodel.eval(). # ๅฆๅˆ™็š„่ฏ๏ผŒๆœ‰่พ“ๅ…ฅๆ•ฐๆฎ๏ผŒๅณไฝฟไธ่ฎญ็ปƒ๏ผŒๅฎƒไนŸไผšๆ”นๅ˜ๆƒๅ€ผใ€‚่ฟ™ๆ˜ฏmodelไธญๅซๆœ‰batch normalizationๅฑ‚ๆ‰€ๅธฆๆฅ็š„็š„ๆ€ง่ดจใ€‚ model_ft.eval() if train_on_gpu: output = model_ft(images.cuda()) else: output = model_ft(images) predict_value, preds_tensor = torch.max(output, 1) preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze( preds_tensor.cpu().numpy()) print(predict_value) print(preds) print(labels) # region ๆ˜พ็คบ้ชŒ่ฏ็š„ๅ›พๅƒๅ’Œๅˆ†็ฑป็ป“ๆžœ fig = plt.figure(figsize=(18, 12)) columns = 2 rows = 2 for idx in range(columns*rows): ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[]) plt.imshow(im_convert(images[idx])) ax.set_title("{} (label:{}/{})".format(cat_to_name[class_ids[int(preds[idx])]], class_ids[labels[idx].item()], cat_to_name[class_ids[labels[idx].item()]]), color=("green" if cat_to_name[str(preds[idx])] == cat_to_name[str(labels[idx].item())] else "red")) plt.tight_layout() plt.show() # endregion
harryjd/keras_dogs_vs_cats
ๅ›พๅƒ่ฏ†ๅˆซ_ไปฟๅ†™ๅ”ๅฎ‡่ฟช็š„ไพ‹ๅญ.py
ๅ›พๅƒ่ฏ†ๅˆซ_ไปฟๅ†™ๅ”ๅฎ‡่ฟช็š„ไพ‹ๅญ.py
py
14,465
python
en
code
0
github-code
6
8385118921
from __future__ import absolute_import from __future__ import print_function import os import sys import subprocess import optparse from collections import namedtuple if 'SUMO_HOME' in os.environ: tools = os.path.join(os.environ['SUMO_HOME'], 'tools') sys.path.append(tools) import sumolib # noqa else: sys.exit("please declare environment variable 'SUMO_HOME'") from sumolib.output import parse_fast # noqa TLTuple = namedtuple('TLTuple', ['edgeID', 'dist', 'time', 'connection']) PairKey = namedtuple('PairKey', ['edgeID', 'edgeID2', 'dist']) PairData = namedtuple('PairData', ['otl', 'oconnection', 'tl', 'connection', 'betweenOffset', 'startOffset', 'travelTime', 'prio', 'numVehicles', 'ogreen', 'green']) def pair2str(p, full=True): brief = "%s,%s s=%.1f b=%.1f t=%.1f" % ( p.otl.getID(), p.tl.getID(), p.startOffset, p.betweenOffset, p.travelTime) if full: return brief + " og=%s g=%s p=%s n=%s" % (p.ogreen, p.green, p.prio, p.numVehicles) else: return brief def logAddedPair(TLSP, sets, operation): print("added pair %s,%s with operation %s" % (TLSP.otl.getID(), TLSP.tl.getID(), operation)) for s in sets: print(" " + " ".join([pair2str(p, False) for p in s])) def get_options(args=None): optParser = optparse.OptionParser() optParser.add_option("-n", "--net-file", dest="netfile", help="define the net file (mandatory)") optParser.add_option("-o", "--output-file", dest="outfile", default="tlsOffsets.add.xml", help="define the output filename") optParser.add_option("-r", "--route-file", dest="routefile", help="define the inputroute file (mandatory)") optParser.add_option("-a", "--additional-file", dest="addfile", help="define replacement tls plans to be coordinated") optParser.add_option("-v", "--verbose", action="store_true", default=False, help="tell me what you are doing") optParser.add_option("-i", "--ignore-priority", dest="ignorePriority", action="store_true", default=False, help="Ignore road priority when sorting TLS pairs") optParser.add_option("--speed-factor", type="float", default=0.8, help="avg ration of vehicle speed in relation to the speed limit") optParser.add_option("-e", "--evaluate", action="store_true", default=False, help="run the scenario and print duration statistics") (options, args) = optParser.parse_args(args=args) if not options.netfile or not options.routefile: optParser.print_help() sys.exit() return options def locate(tlsToFind, sets): """return - the set in which the given traffic light exists - the pair in which it was found - the index within the pair """ for s in sets: for pair in s: if tlsToFind == pair.otl: return s, pair, 0 elif tlsToFind == pair.tl: return s, pair, 1 return None, None, None def coordinateAfterSet(TLSP, l1, l1Pair, l1Index): # print "coordinateAfter\n TLSP: %s\n l1Pair: %s\n l1Index=%s" % ( # pair2str(TLSP), pair2str(l1Pair), l1Index) if l1Index == 0: TLSPdepart = l1Pair.startOffset - TLSP.ogreen TLSParrival = TLSPdepart + TLSP.travelTime TLSPstartOffset2 = TLSParrival - TLSP.green TLSP = TLSP._replace(startOffset=l1Pair.startOffset, betweenOffset=TLSPstartOffset2 - l1Pair.startOffset) else: l1depart = l1Pair.startOffset + l1Pair.betweenOffset + TLSP.ogreen TLSParrival = l1depart + TLSP.travelTime TLSPstartOffset = TLSParrival - TLSP.green TLSP = TLSP._replace( startOffset=l1depart, betweenOffset=TLSPstartOffset - l1depart) l1.append(TLSP) return TLSP def coordinateBeforeSet(TLSP, l2, l2Pair, l2Index): # print "coordinateBeforeSet\n TLSP: %s\n l2Pair: %s\n l2Index=%s" % ( # pair2str(TLSP), pair2str(l2Pair), l2Index) if l2Index == 0: l2arrival = l2Pair.startOffset + TLSP.green TLSPdepart = l2arrival - TLSP.travelTime TLSPstartOffset = TLSPdepart - TLSP.ogreen TLSP = TLSP._replace( startOffset=TLSPstartOffset, betweenOffset=l2Pair.startOffset - TLSPstartOffset) else: l2arrival = l2Pair.startOffset + l2Pair.betweenOffset + TLSP.green TLSPdepart = l2arrival - TLSP.travelTime TLSPstartOffset = TLSPdepart - TLSP.ogreen TLSP = TLSP._replace( startOffset=TLSPstartOffset, betweenOffset=l2arrival - TLSPstartOffset) l2.append(TLSP) return TLSP def computePairOffsets(TLSPList, verbose): c1, c2, c3, c4, c5 = 0, 0, 0, 0, 0 sets = [] # sets of coordinate TLPairs operation = "" for TLSP in TLSPList: l1, l1Pair, l1Index = locate(TLSP.otl, sets) l2, l2Pair, l2Index = locate(TLSP.tl, sets) # print(l1) if l1 is None and l2 is None: # new set newlist = [] newlist.append(TLSP) sets.append(newlist) c1 += 1 operation = "newSet" elif l2 is None and l1 is not None: # add to set 1 - add after existing set TLSP = coordinateAfterSet(TLSP, l1, l1Pair, l1Index) c2 += 1 operation = "addAfterSet" elif l1 is None and l2 is not None: # add to set 2 - add before existing set TLSP = coordinateBeforeSet(TLSP, l2, l2Pair, l2Index) c3 += 1 operation = "addBeforeSet" else: if l1 == l2: # cannot uncoordinated both tls. coordinate the first # arbitrarily TLSP = coordinateAfterSet(TLSP, l1, l1Pair, l1Index) c4 += 1 operation = "addHalfCoordinated" else: # merge sets TLSP = coordinateAfterSet(TLSP, l1, l1Pair, l1Index) if verbose: logAddedPair(TLSP, sets, "addAfterSet (intermediate)") # print "merge\n TLSP: %s\n l1Pair: %s\n l1Index=%s\n l2Pair: %s\n l2Index=%s" % ( # pair2str(TLSP), pair2str(l1Pair), l1Index, pair2str(l2Pair), # l2Index) if l2Index == 0: dt = TLSP.startOffset + \ TLSP.betweenOffset - l2Pair.startOffset else: dt = TLSP.startOffset + TLSP.betweenOffset - \ (l2Pair.startOffset + l2Pair.betweenOffset) merge(sets, l1, l2, dt) c5 += 1 operation = "mergeSets" if verbose: logAddedPair(TLSP, sets, operation) print("operations: newSet=%s addToSet=%s addToSet2=%s addHalfCoordinated=%s mergeSets=%s" % ( c1, c2, c3, c4, c5)) return(sets) def merge(sets, list1, list2, dt): for elem in list2: list1.append(elem._replace(startOffset=elem.startOffset + dt)) sets.remove(list2) def finalizeOffsets(sets): offsetDict = {} for singleSet in sets: singleSet.sort( key=lambda pd: (pd.prio, pd.numVehicles / pd.travelTime), reverse=True) for pair in singleSet: # print " %s,%s:%s,%s" % (pair.otl.getID(), pair.tl.getID(), # pair.startOffset, pair.betweenOffset) tl1 = pair.otl.getID() tl2 = pair.tl.getID() betweenOffset = pair.betweenOffset startOffset = pair.startOffset if tl1 not in offsetDict: # print " added %s offset %s" % (tl1, startOffset) offsetDict[tl1] = startOffset if tl2 not in offsetDict: # print " added %s offset %s" % (tl2, startOffset + # betweenOffset) offsetDict[tl2] = startOffset + betweenOffset return offsetDict def getTLSInRoute(net, edge_ids): rTLSList = [] # list of traffic lights along the current route dist = 0 time = 0 for edgeID, nextEdgeID in zip(edge_ids[:-1], edge_ids[1:]): edge = net.getEdge(edgeID) nextEdge = net.getEdge(nextEdgeID) connection = edge.getOutgoing()[nextEdge][0] TLS = edge.getTLS() dist += edge.getLength() time += edge.getLength() / edge.getSpeed() alreadyFound = [item for item in rTLSList if item[0] == edgeID] if TLS and not alreadyFound: rTLSList.append(TLTuple(edgeID, dist, time, connection)) dist = 0 time = 0 return rTLSList def getFirstGreenOffset(tl, connection): index = connection._tlLink tlp = tl.getPrograms() if len(tlp) != 1: raise RuntimeError("Found %s programs for tl %s" % (len(tlp), connection._tls)) phases = list(tlp.values())[0].getPhases() start = 0 for p in phases: if p.state[index] in ['G', 'g']: return start else: start += p.duration raise RuntimeError( "No green light for tlIndex %s at tl %s" % (index, connection._tls)) def getTLPairs(net, routeFile, speedFactor, ignorePriority): # pairs of traffic lights TLPairs = {} # PairKey -> PairData for route in parse_fast(routeFile, 'route', ['edges']): rTLSList = getTLSInRoute(net, route.edges.split()) for oldTL, TLelement in zip(rTLSList[:-1], rTLSList[1:]): key = PairKey(oldTL.edgeID, TLelement.edgeID, oldTL.dist) numVehicles = 0 if key not in TLPairs else TLPairs[key].numVehicles tl = net.getEdge(TLelement.edgeID).getTLS() otl = net.getEdge(oldTL.edgeID).getTLS() edge = net.getEdge(TLelement.edgeID) connection = TLelement.connection oconnection = oldTL.connection ogreen = getFirstGreenOffset(otl, oconnection) green = getFirstGreenOffset(tl, connection) travelTime = TLelement.time / speedFactor betweenOffset = travelTime + ogreen - green startOffset = 0 # relevant data for a pair of traffic lights prio = 1 if ignorePriority else edge.getPriority() TLPairs[key] = PairData(otl, oconnection, tl, connection, betweenOffset, startOffset, travelTime, prio, numVehicles + 1, ogreen, green) return TLPairs def removeDuplicates(TLPairs): # @todo: for multiple pairs with the same edges but different dist, keep only the one with the largest numVehicles return TLPairs def main(options): net = sumolib.net.readNet(options.netfile, withLatestPrograms=True) if options.addfile is not None: sumolib.net.readNet(options.addfile, withLatestPrograms=True, net=net) TLPairs = getTLPairs(net, options.routefile, options.speed_factor, options.ignorePriority) TLPairs = removeDuplicates(TLPairs) sortHelper = [( (pairData.prio, pairData.numVehicles / pairData.travelTime), # sortKey (pairKey, pairData)) # payload for pairKey, pairData in TLPairs.items()] tlPairsList = [ value for sortKey, value in sorted(sortHelper, reverse=True)] print("number of tls-pairs: %s" % len(tlPairsList)) if options.verbose: print('\n'.join(["edges=%s,%s prio=%s numVehicles/time=%s" % ( pairKey.edgeID, pairKey.edgeID2, pairData.prio, pairData.numVehicles / pairData.travelTime) for pairKey, pairData in tlPairsList])) coordinatedSets = computePairOffsets( [pairData for pairKey, pairData in tlPairsList], options.verbose) offsetDict = finalizeOffsets(coordinatedSets) with open(options.outfile, 'w') as outf: outf.write('<additional>\n') for ID, startOffset in sorted(offsetDict.items()): programID = list(net.getTLSSecure(ID).getPrograms().keys())[0] outf.write(' <tlLogic id="%s" programID="%s" offset="%.2f"/>\n' % (ID, programID, startOffset)) outf.write('</additional>\n') sumo = sumolib.checkBinary('sumo') if options.evaluate: additionals = [options.outfile] if options.addfile: additionals = [options.addfile] + additionals subprocess.call([sumo, '-n', options.netfile, '-r', options.routefile, '-a', ','.join(additionals), '-v', '--no-step-log', '--duration-log.statistics'], stdout=sys.stdout) if __name__ == "__main__": options = get_options(sys.argv) main(options)
ngctnnnn/DRL_Traffic-Signal-Control
sumo-rl/sumo/tools/tlsCoordinator.py
tlsCoordinator.py
py
12,854
python
en
code
17
github-code
6
24337846458
# -*- coding: utf-8 -*- import os import sys import shutil import datetime import numpy as np from sklearn.model_selection import train_test_split from PIL import Image from keras import models from keras import layers from keras import optimizers from keras import regularizers from keras import backend as K from keras.callbacks import EarlyStopping from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt models_save_dir = './models/' if not os.path.exists(models_save_dir): os.mkdir(models_save_dir) dataset_dir = './datasets/raw_datasets/Images/' train_dir = './datasets/train/' validation_dir = './datasets/validation/' test_dir = './datasets/test/' # if the second arguments is '-n' then split data again if len(sys.argv) >= 2 and sys.argv[1] == '-n': if os.path.exists(train_dir): shutil.rmtree(train_dir) if os.path.exists(validation_dir): shutil.rmtree(validation_dir) if os.path.exists(test_dir): shutil.rmtree(test_dir) os.mkdir(train_dir) os.mkdir(validation_dir) os.mkdir(test_dir) for i in range(0, 43): #ไธ€ๅ…ฑ43ไธชๅˆ†็ฑป๏ผŒๆฏไธชๅพช็Žฏไธ€ๆฌก๏ผŒๆŒ‰็…ง8:1:1็š„ๆฏ”ไพ‹ๅˆ†้… ่ฎญ็ปƒ/validation/ๆต‹่ฏ• ๆ•ฐๆฎ category = i foldername = str(i).zfill(5) foldername_new = str(i) dataset_path = os.path.join(dataset_dir, foldername) train_path = os.path.join(train_dir, foldername_new) os.mkdir(train_path) validation_path = os.path.join(validation_dir, foldername_new) os.mkdir(validation_path) test_path = os.path.join(test_dir, foldername_new) os.mkdir(test_path) dataset = np.array(os.listdir(dataset_path)) np.random.shuffle(dataset) #train_dataset, test_dataset = train_test_split(dataset, target, test_size=0.2) """ train_test_split method raise 'too many values to unpack' error so use array slice simplely """ train_dataset = dataset[0:int(len(dataset)*0.8)] validation_dataset = dataset[int(len(dataset)*0.8):int(len(dataset)*0.9)] test_dataset = dataset[int(len(dataset)*0.9):] for train_item in train_dataset: im = Image.open(os.path.join(dataset_path, train_item)) im.save(os.path.join(train_path, train_item.split('.')[0] + '.png')) #shutil.copy(os.path.join(dataset_path, train_item), train_path) for validation_item in validation_dataset: im = Image.open(os.path.join(dataset_path, validation_item)) im.save(os.path.join(validation_path, validation_item.split('.')[0] + '.png')) #shutil.copy(os.path.join(dataset_path, validation_item), validation_path) for test_item in test_dataset: im = Image.open(os.path.join(dataset_path, test_item)) im.save(os.path.join(test_path, test_item.split('.')[0] + '.png')) #shutil.copy(os.path.join(dataset_path, test_item), test_path) """ clear_session every trian """ K.clear_session() batch_size = 10 steps_per_epoch = int(sum([len(files) for r, d, files in os.walk(train_dir)])/batch_size) model = models.Sequential() model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(50, 50, 3))) model.add(layers.MaxPooling2D((2,2))) model.add(layers.Conv2D(64, (3,3), activation='relu')) model.add(layers.MaxPooling2D((2,2))) model.add(layers.Conv2D(128, (3,3), activation='relu')) model.add(layers.MaxPooling2D((2,2))) model.add(layers.Flatten()) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(43, activation='softmax')) """ check our model summary """ #model.summary() model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['accuracy'] ) """ start processing input data turn raw image to numpy array """ train_datagen = ImageDataGenerator(rescale=1./255, #rotation_range=40, #width_shift_range=0.2, #height_shift_range=0.2, #shear_range=0.2, #zoom_range=0.2, #horizontal_flip=True, #fill_mode='nearest' ) validation_datagen = ImageDataGenerator(rescale=1./255, #rotation_range=40, #width_shift_range=0.2, #height_shift_range=0.2, #shear_range=0.2, #zoom_range=0.2, #horizontal_flip=True, #fill_mode='nearest' ) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(50,50), batch_size=batch_size, class_mode='categorical') validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(50,50), batch_size=batch_size, class_mode='categorical') earlystopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto') history = model.fit_generator(train_generator, steps_per_epoch=steps_per_epoch, epochs=20, validation_data=validation_generator, validation_steps=15, callbacks=[earlystopping]) from keras.models import load_model from keras.preprocessing.image import ImageDataGenerator test_datagen = ImageDataGenerator(rescale=1./255) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(50,50), batch_size=20, class_mode='categorical') loss, acc = model.evaluate_generator(test_generator, 20) model.save(os.path.join(models_save_dir, 'traffic_' + datetime.datetime.now().strftime('%Y%m%d_%H:%M:%S') + '_' + str(acc) + '.h5'))
jabez128/dl-trafficsigns-detection
classifier.py
classifier.py
py
5,975
python
en
code
3
github-code
6
22982145642
import sys import json import os import io import collections import argparse import logging from e2edutch import conll from e2edutch import minimize from e2edutch import util from e2edutch import coref_model as cm from e2edutch import naf import tensorflow.compat.v1 as tf logger = logging.getLogger('e2edutch') class Predictor(object): """ A predictor object loads a pretrained e2e model to predict coreferences. It can be used to predict coreferences on tokenized text. """ def __init__(self, model_name='final', config=None, verbose=False): if verbose: logger.setLevel(logging.INFO) if config: self.config = config else: # if no configuration is provided, try to get a default config. self.config = util.initialize_from_env(model_name=model_name) # Clear tensorflow context: tf.reset_default_graph() self.session = tf.compat.v1.Session() try: self.model = cm.CorefModel(self.config) self.model.restore(self.session) except ValueError: raise Exception("Trying to reload the model while the previous " + "session hasn't been ended. Close the existing " + "session with predictor.end_session()") def predict(self, example): """ Predict coreference spans for a tokenized text. Args: example (dict): dict with the following fields: sentences ([[str]]) doc_id (str) clusters ([[(int, int)]]) (optional) Returns: [[(int, int)]]: a list of clusters. The items of the cluster are spans, denoted by their start end end token index """ tensorized_example = self.model.tensorize_example( example, is_training=False) feed_dict = {i: t for i, t in zip( self.model.input_tensors, tensorized_example)} _, _, _, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores = self.session.run( self.model.predictions, feed_dict=feed_dict) predicted_antecedents = self.model.get_predicted_antecedents( top_antecedents, top_antecedent_scores) predicted_clusters, _ = self.model.get_predicted_clusters( top_span_starts, top_span_ends, predicted_antecedents) return predicted_clusters def end_session(self): """ Close the session, clearing the tensorflow model context. """ self.session.close() tf.reset_default_graph() def get_parser(): parser = argparse.ArgumentParser() parser.add_argument('input_filename') parser.add_argument('-o', '--output_file', type=argparse.FileType('w'), default=sys.stdout) parser.add_argument('-f', '--format_out', default='conll', choices=['conll', 'jsonlines', 'naf']) parser.add_argument('-m', '--model', type=str, default='final', help="model name") parser.add_argument('-c', '--word_col', type=int, default=2) parser.add_argument('--cfg_file', type=str, default=None, help="config file") parser.add_argument('--model_cfg_file', type=str, default=None, help="model config file") parser.add_argument('-v', '--verbose', action='store_true') return parser def read_jsonlines(input_filename): for line in open(input_filename).readlines(): example = json.loads(line) yield example def main(args=None): parser = get_parser() args = parser.parse_args() if args.verbose: logger.setLevel(logging.INFO) # Input file in .jsonlines format or .conll. input_filename = args.input_filename ext_input = os.path.splitext(input_filename)[-1] if ext_input not in ['.conll', '.jsonlines', '.txt', '.naf']: raise Exception( 'Input file should be .naf, .conll, .txt or .jsonlines, but is {}.' .format(ext_input)) if ext_input == '.conll': labels = collections.defaultdict(set) stats = collections.defaultdict(int) docs = minimize.minimize_partition( input_filename, labels, stats, args.word_col) elif ext_input == '.jsonlines': docs = read_jsonlines(input_filename) elif ext_input == '.naf': naf_obj = naf.get_naf(input_filename) jsonlines_obj, term_ids, tok_ids = naf.get_jsonlines(naf_obj) docs = [jsonlines_obj] else: text = open(input_filename).read() docs = [util.create_example(text)] output_file = args.output_file config = util.initialize_from_env(model_name=args.model, cfg_file=args.cfg_file, model_cfg_file=args.model_cfg_file) predictor = Predictor(config=config) sentences = {} predictions = {} for example_num, example in enumerate(docs): example["predicted_clusters"] = predictor.predict(example) if args.format_out == 'jsonlines': output_file.write(json.dumps(example)) output_file.write("\n") else: predictions[example['doc_key']] = example["predicted_clusters"] sentences[example['doc_key']] = example["sentences"] if example_num % 100 == 0: logger.info("Decoded {} examples.".format(example_num + 1)) if args.format_out == 'conll': conll.output_conll(output_file, sentences, predictions) elif args.format_out == 'naf': # Check number of docs - what to do if multiple? # Create naf obj if input format was not naf if ext_input != '.naf': # To do: add linguistic processing layers for terms and tokens logger.warn( 'Outputting NAF when input was not naf,' + 'no dependency information available') for doc_key in sentences: naf_obj, term_ids = naf.get_naf_from_sentences( sentences[doc_key]) naf_obj = naf.create_coref_layer( naf_obj, predictions[doc_key], term_ids) naf_obj = naf.add_linguistic_processors(naf_obj) buffer = io.BytesIO() naf_obj.dump(buffer) output_file.write(buffer.getvalue().decode('utf-8')) # To do, make sepearate outputs? # TO do, use dependency information from conll? else: # We only have one input doc naf_obj = naf.create_coref_layer( naf_obj, example["predicted_clusters"], term_ids) naf_obj = naf.add_linguistic_processors(naf_obj) buffer = io.BytesIO() naf_obj.dump(buffer) output_file.write(buffer.getvalue().decode('utf-8')) if __name__ == "__main__": main()
Filter-Bubble/e2e-Dutch
e2edutch/predict.py
predict.py
py
7,163
python
en
code
9
github-code
6
38684469232
# pylint: disable=attribute-defined-outside-init,wrong-import-order,redefined-outer-name,invalid-name import gc from configparser import ConfigParser from tempfile import TemporaryDirectory import magic import pytest from storage.binary_service import BinaryService from storage.db_interface_backend import BackEndDbInterface from storage.MongoMgr import MongoMgr from test.common_helper import create_test_firmware, get_config_for_testing, store_binary_on_file_system TEST_FW = create_test_firmware() @pytest.fixture def binary_service(): with TemporaryDirectory(prefix='fact_test_') as tmp_dir: config = get_config_for_testing(temp_dir=tmp_dir) mongo_server = MongoMgr(config=config) _init_test_data(config, tmp_dir) yield BinaryService(config=config) mongo_server.shutdown() gc.collect() def _init_test_data(config: ConfigParser, tmp_dir: str): backend_db_interface = BackEndDbInterface(config=config) backend_db_interface.add_firmware(TEST_FW) store_binary_on_file_system(tmp_dir, TEST_FW) backend_db_interface.shutdown() def test_get_binary_and_file_name(binary_service): binary, file_name = binary_service.get_binary_and_file_name(TEST_FW.uid) assert file_name == TEST_FW.file_name, 'file_name not correct' assert binary == TEST_FW.binary, 'invalid result not correct' def test_get_binary_and_file_name_invalid_uid(binary_service): binary, file_name = binary_service.get_binary_and_file_name('invalid_uid') assert binary is None, 'should be none' assert file_name is None, 'should be none' def test_get_repacked_binary_and_file_name(binary_service): tar, file_name = binary_service.get_repacked_binary_and_file_name(TEST_FW.uid) assert file_name == f'{TEST_FW.file_name}.tar.gz', 'file_name not correct' file_type = magic.from_buffer(tar, mime=False) assert 'gzip compressed data' in file_type, 'Result is not an tar.gz file' def test_get_repacked_binary_and_file_name_invalid_uid(binary_service): binary, file_name = binary_service.get_repacked_binary_and_file_name('invalid_uid') assert binary is None, 'should be none' assert file_name is None, 'should be none' def test_read_partial_binary(binary_service): partial_binary = binary_service.read_partial_binary(TEST_FW.uid, 30, 14) assert len(partial_binary) == 14 assert partial_binary == b'get_files_test', 'invalid result not correct' def test_read_partial_binary_invalid_uid(binary_service): result = binary_service.read_partial_binary('invalid_uid', 0, 1337) assert result == b'', 'result should be empty'
5am1i/Fact
src/test/integration/storage/test_binary_service.py
test_binary_service.py
py
2,626
python
en
code
0
github-code
6
26169526568
import argparse import json import os import time import torch from redsandt.encoder.bert_encoder import BERTEncoder from redsandt.framework.bag_re import BagRE from redsandt.selector.bag_attention import BagAttention # Pass arguments parser = argparse.ArgumentParser( description='Improving Distantly-Supervised Relation Extraction through BERT-based Label & Instance Embeddings') parser.add_argument('--train', dest="train", action='store_true', help='training mode') parser.add_argument('--eval', dest="eval", action='store_true', help='evaluation mode') parser.add_argument('--dataset', dest="dataset", required=True, help='dataset') parser.add_argument('--config', dest="config", required=True, help='configuration file') parser.add_argument('--model_dir', dest="model_dir", required=True, help='model dir') parser.add_argument('--model_name', dest="model_name", required=True, help='model name') args = parser.parse_args() # Some basic settings ROOT_PATH = '.' DATASET = args.dataset # NYT-10 or GDS MODEL_DIR = args.model_dir MODEL_NAME = args.model_name config = json.load(open(args.config)) # Create folders if not os.path.exists('experiments/ckpt/' + DATASET + '/' + MODEL_DIR): os.makedirs('experiments/ckpt/' + DATASET + '/' + MODEL_DIR) if not os.path.exists('experiments/outputs/' + DATASET + '/' + MODEL_DIR): os.makedirs('experiments/outputs/' + DATASET + '/' + MODEL_DIR) ckpt = 'experiments/ckpt/' + DATASET + '/' + MODEL_DIR + '/' + MODEL_NAME + '.pth.tar' if DATASET == 'NYT-10': rel2id = json.load(open(os.path.join(ROOT_PATH, 'benchmark/NYT-10-enhanced/nyt10_rel2id.json'))) elif DATASET == 'GDS': rel2id = json.load(open(os.path.join(ROOT_PATH, 'benchmark/GDS-enhanced/gids_rel2id.json'))) # DEFINE SENTENCE ENCODER print('Defining the sentence encoder...') sentence_encoder = BERTEncoder(max_length=config['encoder']['max_length'], num_labels=config['encoder']['num_labels'], pretrained_model=config['encoder']['pretrained_model'], drop=config['encoder']['encoder_dropout'], freeze_bert=config['encoder']['freeze_bert'], text_stp=config['encoder']['text_stp'], entity_types=config['encoder'][ 'entity_types'], dataset=DATASET) # DEFINE MODEL print("\nDefining model...") model = BagAttention(sentence_encoder, len(rel2id), rel2id, config['framework']['selector_dropout']) # DEFINE TRAINING FRAMEWORK print("\nDefining learning framework...") model_path = DATASET + '/' + MODEL_DIR framework = BagRE(train_path=config['train_data_path'], val_path=config['val_data_path'], test_path=config['test_data_path'], model_name=model_path, model=model, ckpt=ckpt, batch_size=config['framework']['batch_size'], max_epoch=config['framework']['max_epoch'], lr=config['framework']['lr'], weight_decay=config['framework']['weight_decay'], warmup_step_ratio=config['framework']['warmup_step_ratio'], opt=config['framework']['opt'], weighted_loss=config['framework']['weighted_loss'], bag_size=config['framework']['bag_size']) # TRAIN MODEL if args.train: print("\nTraining model...") start = time.time() framework.train_model() end = time.time() print("Training time: ", end - start, "sec.") # EVALUATE MODEL if args.eval: print("\nEvaluate model on testing data...") start = time.time() framework.load_state_dict(torch.load(ckpt)['state_dict']) result = framework.eval_model(framework.test_loader, save_eval_metrics=True) end = time.time() print("Testing time: ", end - start, "sec.") # Print Statistics print('AUC: {}'.format(result['auc'])) print('P@100: {}'.format(result['p@100'])) print('P@200: {}'.format(result['p@200'])) print('P@300: {}'.format(result['p@300'])) print('P@500: {}'.format(result['p@500'])) print('P@1000: {}'.format(result['p@1000'])) print('P@2000: {}'.format(result['p@2000'])) print('P@all: {}'.format(result['p@all'])) print('\nRelation Distribution on Top 300 predictions:') for key, value in result['rel_dist_at_300'].items(): print(key, ": ", value)
DespinaChristou/REDSandT
redsandt.py
redsandt.py
py
4,210
python
en
code
22
github-code
6
38827999454
import random import qrcode import qrcode.image.svg from io import BytesIO from django.shortcuts import render from django.views.generic import View class IndexView(View): def get(self, request, *args, **kwargs): template = 'index.html' return render( request, template, ) def generate_random_code(): num = "12345678900987654321" numbers = random.sample(num, 5) five_last_number = '' for number in numbers: five_last_number += number return five_last_number class CustomerQrAndBarcodeScan(View): def post(self, request, *args, **kwargs): templates_text = request.POST['qr_text'] print(templates_text) factory = qrcode.image.svg.SvgImage text = generate_random_code() print(text) img = qrcode.make(text, image_factory=factory, box_size=20) streem = BytesIO() img.save(streem) context = {} context['svg'] = streem.getvalue().decode() return render(request, "index.html", context)
AbrahamAdekunle/Bashir_abraham_ERP
bar_qr_code/views.py
views.py
py
1,087
python
en
code
0
github-code
6
25823990802
import numpy as np import pygame import constants class Driver(object): """ This class implements the car's driver: visibility, controls etc. """ def __init__(self, view_distance=constants.MAX_VIEW_DISTANCE, view_resolution=constants.VIEW_RESOLUTION, view_angle=constants.VIEW_ANGLE): self.view_distance = view_distance self.view_resolution = view_resolution self.view_angle = view_angle self.draw_visual = True self.init_view() self.error = 0. def init_view(self): """ Initialize the driver's view. """ self.view_distances = np.linspace(constants.MIN_VIEW_DISTANCE, self.view_distance, self.view_resolution[1]) self.view_angles = np.linspace(-self.view_angle/2., self.view_angle/2., self.view_resolution[0]) * np.pi/180. self.view_x = np.empty(self.view_resolution) self.view_y = np.empty(self.view_resolution) self.view_field = np.zeros(self.view_resolution) def look(self, car, track): """ Evaluate the driver's view ahead. """ cos_angles = np.cos(car.direction + self.view_angles) self.view_x = (car.rect.center[0] + np.outer(cos_angles, self.view_distances) ).astype(int) sin_angles = np.sin(car.direction + self.view_angles) self.view_y = (car.rect.center[1] - np.outer(sin_angles, self.view_distances) ).astype(int) # limit coordinates within track area (only for checking if off track) x_matrix0 = np.where((self.view_x < 0) | (self.view_x >= constants.WIDTH_TRACK), 0, self.view_x) y_matrix0 = np.where((self.view_y < 0) | (self.view_y >= constants.HEIGHT_TRACK), 0, self.view_y) self.view_field[:] = track.off_track(x_matrix0, y_matrix0) # block the view behind corners etc. if constants.BLOCK_VIEW: for ii in range(self.view_resolution[0]): lineview = self.view_field[ii,:] if np.any(lineview): lineview[np.argmax(lineview):] = 1 def draw_viewfield(self, screen): """ Draw the field of view. """ for xx, yy, colind in zip(self.view_x.flatten(), self.view_y.flatten(), self.view_field.flatten()): pygame.draw.circle(screen, constants.COLOR_VIEWFIELD[int(colind)], (xx, yy), 3) def update(self, car, *args): """ Default actions for drivers. """ car.accelerate = constants.ALWAYS_FULLGAS car.brake = False car.turn_left = False car.turn_right = False class Player(Driver): """ This class implements the driver for the player car. """ def __init__(self, *args, **kwargs): super(Player, self).__init__(*args, **kwargs) def update(self, car): """ Read keyboard for controlling the player car. """ super(Player, self).update(car) keys = pygame.key.get_pressed() if keys[pygame.K_UP]: car.accelerate = True if keys[pygame.K_DOWN]: car.brake = True if keys[pygame.K_LEFT]: car.turn_left = True if keys[pygame.K_RIGHT]: car.turn_right = True class AI_TIF(Driver): """ This class implements a simple AI driver that tries to keep most of the track in front of its view field. """ def __init__(self, *args, **kwargs): super(AI_TIF, self).__init__(*args, **kwargs) # speed that still (kind of) allows a 90 degree turn self.allowed_speed = constants.MAX_VIEW_DISTANCE / ( np.pi / (1.5 * constants.TURN_SPEED)) def update(self, car): """ The car turns depending on whether its closest side checks are off track. Brake is applied if the car is going too fast with wall in front, and especially if the corner is tight. """ # TODO: tuned for track and settings, generalize! super(AI_TIF, self).update(car) car.accelerate = True if self.view_field[0,0] and not self.view_field[-1,0]: car.turn_left = True elif self.view_field[-1,0] and not self.view_field[0,0]: car.turn_right = True if self.view_field[self.view_resolution[0]//2, -1]: car.brake = car.speed > self.allowed_speed # special handling of tight corners if not all(self.view_field[[0,-1], 1]) and car.speed > 1.: car.brake = True class ANN_Online(Driver): """ This class implements the AI driver for a neural network. The network is trained online using stochastic gradient descent. """ def __init__(self, n_hidden_neurons=5, model_car=None, learning_rate=0.2, regularization=1., *args, **kwargs): super(ANN_Online, self).__init__(*args, **kwargs) self.model_car = model_car # the car to learn from self.learning_rate = learning_rate self.regularization = regularization n_inputs = self.view_resolution[0] * self.view_resolution[1] + 1 # viewpoints + speed n_outputs = 4 # accelerate, brake, left, right self.ann = ann.ANN(n_inputs, n_hidden_neurons, n_outputs) def update(self, own_car): super(ANN_Online, self).update(own_car) if constants.PLOT_ERROR: self.evaluate_error() self.learn() inputs = self.prepare_inputs(own_car) outputs = self.ann.feedforward(inputs) self.process_output(outputs, own_car) def learn(self): model_inputs = self.prepare_inputs(self.model_car) self.ann.train1(model_inputs, self.model_actions(), self.learning_rate, self.regularization) def prepare_inputs(self, car): inputs = car.driver.view_field.flatten().astype(float) # speed_transform = np.exp(-car.speed) speed_transform = 1. / max(car.speed, 1.) inputs = np.insert(inputs, 0, speed_transform, axis=0) return inputs def model_actions(self): return np.array([self.model_car.accelerate, self.model_car.brake, self.model_car.turn_left, self.model_car.turn_right]).astype(float) def process_output(self, outputs, car): threshold = 0.5 if outputs[0] > threshold: car.accelerate = True if outputs[1] > threshold: car.brake = True if outputs[2] > threshold: car.turn_left = True if outputs[3] > threshold: car.turn_right = True def evaluate_error(self): """ Evaluate the cost function with model input data. """ inputs = self.prepare_inputs(self.model_car) outputs = self.ann.feedforward(inputs) wanted = self.model_actions() self.error = self.ann.cost(outputs, wanted) class ANN_Batch(ANN_Online): """ This class implements the AI driver for a neural network. The network is trained online using gradient descent with a batch of accumulated samples. """ def __init__(self, n_hidden_neurons=5, model_car=None, learning_rate=0.2, regularization=0.1, epochs=60, mini_batch_size=100, *args, **kwargs): super(ANN_Batch, self).__init__(n_hidden_neurons, model_car, learning_rate, regularization, *args, **kwargs) self.epochs = epochs self.mini_batch_size = mini_batch_size self.reset_samples() def learn(self): """ This method is called by the update method in the parent class. Here we only spy the model car. """ self.input_samples.append(self.prepare_inputs(self.model_car)) self.output_samples.append(self.model_actions()) def train(self): """ Train the whole set of samples. NOTE: May take a while and pause the game! """ print("Training {} samples for {} epochs in batches of {}".format( len(self.input_samples), self.epochs, self.mini_batch_size)) self.ann.train_set(self.input_samples, self.output_samples, self.learning_rate, self.regularization, self.epochs, self.mini_batch_size) self.reset_samples() def reset_samples(self): self.input_samples = [] self.output_samples = []
vuolleko/FormulaPF
driver.py
driver.py
py
9,079
python
en
code
0
github-code
6
21216112261
import requests NEWS_ENDPOINT = "https://newsapi.org/v2/everything" NEWS_API_KEY = 'caa8a3621a5e481c96807e77fe1dfc91' news_params = { 'q': "Tesla Inc", 'apiKey': NEWS_API_KEY } response = requests.get(url=NEWS_ENDPOINT, params=news_params) response.raise_for_status() data = response.json()["articles"] article = [] for i in range(3): article.append(data[i]) print(article)
myoaung99/Stock-news
eg.py
eg.py
py
390
python
en
code
0
github-code
6
16104415512
import RPI.GPIO as GPIO import os import time #GPIO mode (BOARD/BCM) GPIO.setup(GPIO.BOARD) TO_BUTTON = 32 FROM_BUTTON = 33 GPIO.setup(TO_BUTTON, GPIO.OUT) GPIO.setup(FROM_BUTTON, GPIO.IN) GPIO.output(TO_BUTTON, False) GPIO.output(FROM_BUTTON, False) while 1: GPIO.output(TO_BUTTON, True) #Calling the face recognition program if GPIO.output(FROM_BUTTON, True): os.system('python recognizer.py') ############################
iamjoelgeorge/AssistanceForTheBlind
Obstacle Detection/face_recog.py
face_recog.py
py
462
python
en
code
0
github-code
6
31266417589
import pygame import os from tkinter import messagebox import time import threading pygame.init() pygame.mixer.set_num_channels(20) width = 150 height = 151 channel = 0 stop_music = False fon_m = pygame.mixer.music fon_m.load(os.path.join("sounds", "fon_m.mp3")) fon_m.play() fon = pygame.image.load(os.path.join("images", "fon.png")) HEIGHT, WIDTH = fon.get_height(), fon.get_width() dis = pygame.display.set_mode([WIDTH, HEIGHT]) dis.blit(pygame.transform.scale(pygame.image.load(os.path.join("images", "ะทะฒัƒะบ.png")), (WIDTH, HEIGHT)), (0, 0)) class Monster(): def __init__(self, name, x, y, money, max_money, count): self.image = pygame.transform.scale(pygame.image.load(os.path.join("images", f"{name}.png")), (width, height)) self.x = x self.y = y self.money = money self.max_money = max_money self.count = count class Magazine(): def __init__(self, name, all_seconds): self.image = pygame.transform.scale(pygame.image.load(os.path.join("images", f"{name}.png")), (width, height)) self.name = name self.all_seconds = all_seconds self.all_seconds_pit = all_seconds self.image_egg = pygame.transform.scale(pygame.image.load(os.path.join("images", f"{name}_egg.png")), (100, 71)) def draw_image(dict): for x in dict: dis.blit(x.image, (x.x, x.y)) def monster_draw(): for elem in all_vorabularu: draw_image(elem) def muzic(dict, muz): global channel if len(dict) > 0: try: pygame.mixer.Channel(channel).play(pygame.mixer.Sound(os.path.join("sounds", muz))) channel += 1 except FileNotFoundError: pass def all_music(): global channel global stop_music for i in range(channel): pygame.mixer.Channel(i).stop() channel = 0 if not stop_music: muzic(bas, "ba_m.mp3") muzic(tus, "tu_m.mp3") muzic(mas, 'ma_m.mp3') muzic(pas, 'pa_m.mp3') muzic(tis, 'ti_m.mpeg') muzic(mars, 'mar_m.mp3') muzic(ras, 'ra_m.ogg') muzic(sms, 'sm_m.mp3.mpeg') muzic(lus, 'la_m.mp3') muzic(izs, 'iz_m.mpeg') muzic(izs, 'iz_m.mp3') threading.Timer(7, all_music).start() def monster_money_every_minuts(): global times times += 60 all_draw() threading.Timer(60, monster_money_every_minuts).start() def staving(vocabulary, name, money, max_money, count): global file global vrem_name vocabulary.append(Monster(stav, mouse[0] - width // 2, mouse[1] - height // 2, money, max_money, count)) file.write(str(vocabulary[-1].x) + ' '+ str(vocabulary[-1].y) + ' ' + str(name) + '\n') vrem_name = '' all_draw() pygame.display.update() def staving_(vocabulary, name, x, y, money, max_money, count): vocabulary.append(Monster(name, x, y, money, max_money, count)) def draw_money(): x, y = 0, 0 text = font.render(str(my_money), True, YELLOW, BLACK) dis.blit(text, (x, y)) y += text.get_height() text = font.render(str(almaz), True, BLUE, BLACK) dis.blit(text, (x, y)) def close_coor(): for i in range(mouse[0] - width//2, mouse[0] + width//2): for j in range(mouse[1] - height//2, mouse[1] + height//2): close.append((i, j)) def forx(voraluary: list, elem : str): global ans global count for x in voraluary: for i in range(x.x, x.x + width): for j in range(x.y, x.y + height): if mouse == (i, j): ans += elem monsters_in_pit.append(x.count) count += 1 def clik_monster(voraluary): for x in voraluary: for i in range(x.x, x.x + width): for j in range(x.y, x.y + height): if mouse == (i, j): return True def magazin_clik(int, image_x): global stav global game global eggs global vrem_name global all_seconds global my_money global monster_in_p mouse = pygame.mouse.get_pos() if mouse[0] in range(image_x[0], image_x[1]) and mouse[1] in range(HEIGHT // 3 - height // 2, HEIGHT // 3 + height): if my_money - 300 >= 0 and vrem_name == '' and all_seconds <= 0: my_money -= 300 game = True all_draw() dis.blit(magazine[int].image_egg, (WIDTH - 500 + width//2, height//2 + 27)) pygame.display.update() vrem_name = magazine[int].name all_seconds = magazine[int].all_seconds monster_in_p = int timer() elif my_money <= 300: messagebox.showinfo("", "ะฃ ะฒะฐั ะฝะต ั…ะฒะฐั‚ะฐะตั‚ ะดะตะฝะตะณ") game = True all_draw() pygame.display.update() else: messagebox.showinfo("", "ะŸะธั‚ะพะผะฝะธะบ ัƒะถะต ะทะฐะฝัั‚") game = True all_draw() pygame.display.update() def monster_money(vocabulary): for x in vocabulary: if x.money*(times//60) < x.max_money: text = str(x.money*(times//60)) else: text = str(x.max_money) text = font.render((text), True, YELLOW) dis.blit(text, (x.x + width // 4, x.y + height)) def sbor_money(vocabulary): global my_money global times for x in vocabulary: if x.money * (times // 60) <= x.max_money: my_money += x.money * (times // 60) else: my_money += x.max_money def all_draw(): global monster_in_p global monster_in_pit global monsters_in_pit dis.blit(fon, (0, 0)) pygame.draw.rect(dis, YELLOW, (WIDTH - 100, HEIGHT - 100, 100, 100)) draw_money() dis.blit(pit, (300, 0)) dis.blit(ppp, (WIDTH - 500, 0)) pygame.draw.rect(dis, BLACK, (0, HEIGHT - 100, 100, 100)) pygame.draw.rect(dis, BLACK, (200, 0, 100, 100)) text = font.render("-2", True, BLUE, BLACK) dis.blit(text, (0, 150)) dis.blit(pygame.transform.scale(pygame.image.load(os.path.join("images", "ะทะฒัƒะบ.png")), (100, 100)),(100, HEIGHT - 100)) monster_draw() if monster_in_p != -1: dis.blit(magazine[monster_in_p].image_egg, (WIDTH - 500 + width//2, height//2 + 27)) stroka = str(all_seconds - seconds) dis.blit(font.render(str(all_seconds - seconds), True, WHITE), ((WIDTH - (400 + 10 *len(stroka)-1)) , 240)) if monster_in_pit != -1: # dis.blit(magazine[monsters_in_pit[0]].image_egg, (300, 15)) # dis.blit(magazine[monsters_in_pit[1]].image_egg, (450, 15)) stroka = str(all_seconds_pit - seconds_pit) dis.blit(font.render(stroka, True, WHITE), (300 - (10 * len(stroka)-1), 240)) for elem in all_vorabularu: monster_money(elem) def timer_pit(): global monster_in_p global all_seconds_pit global vrem_name global seconds_pit global all_seconds global monster_in_pit global all_seconds_pit global monsters_in_pit global vrem_name_pit global stav if game: all_draw() pygame.display.update() if seconds_pit < all_seconds_pit: seconds_pit += 1 threading.Timer(1, timer_pit).start() else: if all_seconds == -1 and vrem_name == '' and monster_in_pit != -1: all_draw() dis.blit(magazine[monster_in_pit].image_egg, (300, 20)) all_seconds = magazine[monster_in_pit].all_seconds monster_in_p = monster_in_pit monster_in_pit = -1 seconds_pit = 0 monsters_in_pit = [] vrem_name_pit = '' # vrem_name = magazine[monster_in_pit].name vrem_name = stav pygame.display.update() timer() else: threading.Timer(1, timer_pit).start() def timer(): global eggs global stav global seconds global vrem_name global seall_seconds global monster_in_p global all_seconds if game: all_draw() pygame.display.update() if seconds < all_seconds: seconds += 1 threading.Timer(1, timer).start() else: stav = vrem_name eggs = True monster_in_p = -1 seconds = 0 all_seconds = -1 def all_sbor_money(): for elem in all_vorabularu: sbor_money(elem) bas = [] tus = [] mas = [] pas = [] lus = [] osms = [] zes = [] uts = [] uds = [] kus = [] tis = [] ras = [] mars = [] sms = [] izs = [] magazine = [] WHITE = (255, 255, 255) YELLOW = (255, 255, 0) BLACK = (0, 0, 0) BLUE = (0, 0, 255) RED = (255, 0, 0) my_money = 1000 almaz = 100 all_vorabularu = [bas, tus, mas, pas, lus, zes, uts, uds, kus, osms, tis, sms, mars, ras, izs] font = pygame.font.Font('freesansbold.ttf', 70) count = 0 # fon = pygame.transform.scale(fon, (WIDTH, HEIGHT)) close = [] stav = '' times = 0 seconds = 0 seconds_pit = 0 monsters_in_pit = [] vrem_name = '' vrem_name_pit = '' monster_in_p = -1 monster_in_pit = -1 ba = pygame.transform.scale(pygame.image.load(os.path.join("images", "ba.png")), (width, height)) tu = pygame.transform.scale(pygame.image.load(os.path.join("images", "tu.png")), (width, height)) ma = pygame.transform.scale(pygame.image.load(os.path.join("images", "ma.png")), (width, height)) pa = pygame.transform.scale(pygame.image.load(os.path.join("images", "pa.png")), (width, height)) lu = pygame.transform.scale(pygame.image.load(os.path.join("images", "lu.png")), (width, height)) ku = pygame.transform.scale(pygame.image.load(os.path.join("images", "ku.png")), (width, height)) ze = pygame.transform.scale(pygame.image.load(os.path.join("images", "ze.png")), (width, height)) osm =pygame.transform.scale( pygame.image.load(os.path.join("images", "osm.png")), (width, height)) ud = pygame.transform.scale(pygame.image.load(os.path.join("images", "ud.png")), (width, height)) ut = pygame.transform.scale(pygame.image.load(os.path.join("images", "ut.png")), (width, height)) mar =pygame.transform.scale( pygame.image.load(os.path.join("images", "mar.png")), (width, height)) ti = pygame.transform.scale(pygame.image.load(os.path.join("images", "ti.png")), (width, height)) ra = pygame.transform.scale(pygame.image.load(os.path.join("images", "ra.png")), (width, height)) sm = pygame.transform.scale(pygame.image.load(os.path.join("images", "sm.png")), (width, height)) iz = pygame.image.load(os.path.join("images", f"iz.png")) file = open('my single monsters.txt','r+') pit = pygame.image.load(os.path.join("images", "ะฟะธั‚ะพะผะฝะธะบ.png")) ppp = pygame.image.load(os.path.join("images", "ppp.png")) pit_width = 220 pit_height = 300 pit = pygame.transform.scale(pit, (pit_width, pit_height)) ppp = pygame.transform.scale(ppp, (pit_width + 50, pit_height)) dis.blit(fon, (0, 0)) dis.blit(pit, (300, 0)) dis.blit(ppp, (WIDTH - 500, 0)) pygame.draw.rect(dis, YELLOW, (WIDTH - 100, HEIGHT - 100, 100, 100)) draw_money() ee = '' monster_money_every_minuts() pygame.draw.rect(dis, BLACK, (0, HEIGHT - 100, 100, 100)) pygame.display.update() all_seconds = -1 all_seconds_pit = -1 game = True for line in file: try: x, y, name = line.split(' ') x = int(x) y = int(y) if len(name) == 3: ee += name[-3] ee += name[-2] if ee == 'ba': staving_(bas, 'ba', x, y, 4, 18, 0) ee = '' elif ee == 'tu': staving_(tus, 'tu', x, y, 2, 30, 1) ee = '' elif ee == 'ma': staving_(mas, 'ma', x, y, 3, 30, 2) ee = '' elif ee == 'pa': staving_(pas, 'pa', x, y, 3, 18, 3) ee = '' elif ee == 'ze': staving_(zes, 'ze', x, y, 5, 225, 5) ee = '' elif ee == 'ud': staving_(uds, 'ud', x, y, 6, 180, 7) ee = '' elif ee == 'ut': staving_(uts, 'ut', x, y, 4, 300, 6) ee = '' elif ee == 'ku': staving_(kus, 'ku', x, y, 6, 120, 8) ee = '' elif ee == 'lu': staving_(lus, 'lu', x, y, 5, 225, 4) ee = '' elif ee == 'osm': staving_(osms, 'osm', x, y, 5, 300, 9) ee = '' elif ee == 'ti': staving_(tis, 'ti', x, y, 8, 2160, 10) ee = '' elif ee == 'sm': staving_(sms, 'sm', x, y, 7, 1890, 11) ee = '' elif ee == 'mar': staving_(mars, 'mar', x, y, 8, 1872, 12) ee = '' elif ee == 'ra': staving_(ras, 'ra', x, y, 9, 1872, 13) ee = '' elif ee == 'iz': staving_(izs, 'iz', x, y, 12, 11232, 14) ee = '' elif len(name) == 4: ee += name[-4] ee += name[-3] ee += name[-2] if name == 'osm': staving_(osms, 'osm', x, y, 5, 300, 9) ee = '' pygame.display.update() except: try: my_money, almaz = map(int, (line.split(' '))) monster_draw() pygame.display.update() except: try: all_seconds_pit, vrem_name_pit, monster_in_pit = line.split(' ') if int(all_seconds_pit) - times >= 0: all_seconds_pit = int(all_seconds_pit) - times else: all_seconds_pit = 0 monster_in_pit = int(monster_in_pit) except: try: all_seconds, vrem_name, monster_in_p = line.split(' ') if int(all_seconds) - times >= 0: all_seconds = int(all_seconds) - times else: all_seconds = -1 monster_in_p = int(monster_in_p) except: try: a, b, c, d, e = line.split(' ') times = int(time.time()) - int(a) + int(b) except: pass for elem in all_vorabularu: draw_image(elem) for i in range(300, 300 + pit_width): for j in range(pit_height): close.append((i, j)) pygame.display.update() cloak = time.time() pit_ak = False ans = '' run = True for elem in all_vorabularu: monster_money(elem) pygame.display.update() eggs = False magazine.append(Magazine('ba', 5)) magazine.append(Magazine('tu', 60)) magazine.append(Magazine('ma', 2 * 60)) magazine.append(Magazine('pa', 2 * 60 * 60)) magazine.append(Magazine('lu', 30 * 60)) magazine.append(Magazine('ze', 8 * 60 * 60)) magazine.append(Magazine('ut', 8 * 60 * 60)) magazine.append(Magazine('ud', 8 * 60 * 60)) magazine.append(Magazine('ku', 8 * 60 * 60)) magazine.append(Magazine('osm', 8 * 60 * 60)) magazine.append(Magazine('ti', 8 * 60 * 60)) magazine.append(Magazine('sm', 12 * 60 * 60)) magazine.append(Magazine('mar',12 * 60 * 60)) magazine.append(Magazine('ra', 12 * 60 * 60)) magazine.append(Magazine('iz', 24 * 60 * 60)) if all_seconds >= 0: timer() if all_seconds_pit >= 0: timer_pit() # all_music() fon_m.stop() while run: for event in pygame.event.get(): if event.type == pygame.QUIT: file.write(str(my_money) + ' ' + str(almaz) + '\n') file.write(str(int(time.time())) + ' ' + str(times) + ' ' + '2 ' +'3 ' + '\n') try: file.write((str(all_seconds - seconds)) + ' ' + str(vrem_name) + ' ' + str(monster_in_p) + '\n') except: pass try: if all_seconds_pit > -1: file.write(str(all_seconds_pit - seconds_pit) + ' ' + str(vrem_name_pit) + ' ' + str(monster_in_pit) + '\n') except: pass file.close() run = False pygame.quit() exit() if event.type == pygame.MOUSEBUTTONDOWN: mouse = pygame.mouse.get_pos() if game: if eggs == True and stav!= '' and game: if 1100 > mouse[0] > 200 and 600 > mouse[1] > 150: if mouse not in close: eggs = False seconds = 0 if stav == 'ba': staving(bas, 'ba', 4, 18, 0) elif stav == 'tu': staving(tus, 'tu', 2, 30, 1) elif stav == 'ma': staving(mas, 'ma', 3, 30, 2) elif stav == 'pa': staving(pas, 'pa', 3, 18, 3) elif stav == 'lu': staving(lus, 'lu', 5, 225, 4) elif stav == 'ze': staving(zes, 'ze', 5, 225, 5) elif stav == 'ku': staving(kus, 'ku', 6, 120, 8) elif stav == 'ut': staving(uts, 'ut', 4, 300, 6) elif stav == 'ud': staving(uds, 'ud', 6, 180, 7) elif stav == 'osm': staving(osms, 'osm', 5, 300, 9) elif stav == 'ti': staving(tis, 'ti', 8, 2160, 10) elif stav == 'mar': staving(mars, 'mar', 8, 1872, 12) elif stav == 'sm': staving(sms, 'sm', 7, 1890, 11) elif stav == 'ra': staving(ras, 'ra', 9, 1872, 13) elif stav == 'iz': staving(izs, 'iz', 12, 11232, 14) close_coor() # song_f = False stav = '' all_draw() pygame.display.update() elif pit_ak == True: forx(bas, 'ba') forx(tus, 'tu') forx(mas, 'ma') forx(pas, 'pa') forx(lus, 'batu') forx(uds, 'bama') forx(uts, 'tuma') forx(osms, 'tupa') forx(zes, 'pama') forx(osms, 'tupa') forx(kus, 'tupa') if count == 2: seconds_pit = 0 if 'ba' in ans and 'tu' in ans and 'ma' in ans and 'pa' in ans: all_seconds_pit = 24 * 60 * 60 monster_in_pit = 14 vrem_name_pit = 'iz' timer_pit() stav = 'iz' elif 'ba' in ans and 'tu' in ans and 'ma' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 10 vrem_name_pit = 'ti' timer_pit() stav = 'ti' elif 'ba' in ans and 'tu' in ans and 'pa' in ans: all_seconds_pit = 12 * 60 * 60 monster_in_pit = 12 vrem_name_pit = 'mar' timer_pit() stav = 'mar' elif 'ba' in ans and 'pa' in ans and 'ma' in ans: all_seconds_pit = 12 * 60 * 60 monster_in_pit = 13 timer_pit() vrem_name_pit = 'ra' stav = 'ra' elif 'pa' in ans and 'tu' in ans and 'ma' in ans: all_seconds_pit = 12 * 60 * 60 monster_in_pit = 11 vrem_name_pit = 'sm' timer_pit() stav = 'sm' elif 'tu' in ans and 'ba' in ans: all_seconds_pit = 30 * 60 monster_in_pit = 4 vrem_name_pit = 'lu' timer_pit() stav = 'lu' elif 'ma' in ans and 'tu' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 6 vrem_name_pit = 'ut' timer_pit() stav = 'ut' elif 'ba' in ans and 'ma' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 7 vrem_name_pit = 'ud' timer_pit() stav = 'ud' elif 'tu' in ans and 'pa' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 9 vrem_name_pit = 'osm' timer_pit() stav = 'osm' elif 'ba' in ans and 'pa' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 8 vrem_name_pit = 'ku' timer_pit() stav = 'ku' elif 'ma' in ans and 'pa' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 5 vrem_name_pit = 'ze' timer_pit() stav = 'ze' all_draw() pygame.display.update() ans = '' pit_ak = False count = 0 elif mouse[0] in range(WIDTH - 100, WIDTH) and mouse[1] in range(HEIGHT - 100, HEIGHT): all_sbor_money() times = 0 dis.fill(WHITE) pygame.draw.rect(dis, BLACK, (WIDTH - 100, HEIGHT - 100, 100, 100)) game = False draw_money() for x in range(0, 4): a = 0 if x == 1: a = WIDTH // 4 elif x == 2: a = WIDTH // 2 elif x == 3: a = WIDTH - WIDTH // 4 dis.blit(magazine[x].image, (a, HEIGHT // 3)) text = font.render('300', True, YELLOW, WHITE) dis.blit(text, (a, HEIGHT // 3 + height)) elif mouse[0] in range(0, 100) and mouse[1] in range(HEIGHT - 100, HEIGHT): all_sbor_money() times = 0 all_draw() pygame.display.update() elif mouse[0] in range(300, 300 + pit_width) and mouse[1] in range(pit_height): if pit_ak == False: pit_ak = True elif mouse[0] in range(0, 100) and mouse[1] in range(150, 250): almaz -= 2 if seconds_pit + 3600 <= all_seconds_pit: seconds_pit += 3600 else: seconds_pit = all_seconds_pit if seconds + 3600 <= all_seconds: seconds += 3600 else: seconds = all_seconds elif mouse[0] in range(200, 300) and mouse[1] in range(0, 100): bas = [] tus = [] mas = [] pas = [] lus = [] osms = [] zes = [] uts = [] uds = [] kus = [] tis = [] ras = [] mars = [] sms = [] izs = [] all_vorabularu = [bas, tus, mas, pas, lus, zes, uts, uds, kus, osms, tis, sms, mars, ras, izs] my_money = 1000 almaz = 1000 close = [] vrem_name = '' vrem_name_pit = '' seconds = 0 seconds_pit = 0 all_seconds = -1 all_seconds_pit = -1 monster_in_p = -1 monster_in_pit = -1 monsters_in_pit = [] channel = 0 count = 0 stav = '' times = 0 file.truncate(0) all_draw() pygame.display.update() elif mouse[0] in range(WIDTH - 300, WIDTH) and mouse[1] in range (0, 300): my_money += 10000 almaz += 100 seconds = all_seconds seconds_pit = all_seconds_pit all_draw() pygame.display.update() elif mouse[0] in range(100, 200) and mouse[1] in range(HEIGHT - 100, HEIGHT): if not stop_music: stop_music = True else: stop_music = False all_music() pygame.display.update() else: magazin_clik(0, (0, 0 + width)) magazin_clik(1, (WIDTH // 4, WIDTH // 4 + width)) magazin_clik(2, (WIDTH // 2, WIDTH // 2 + width)) magazin_clik(3, (WIDTH - WIDTH // 4, WIDTH - WIDTH // 4 + width)) if mouse[0] in range(WIDTH - 100, WIDTH) and mouse[1] in range(HEIGHT - 100, HEIGHT): game = True all_draw() pygame.display.update()
solvalkon/python_study
my single monsters/my single monsters class.py
my single monsters class.py
py
26,982
python
en
code
0
github-code
6
29157621722
# -*- coding: utf-8 -*- import logging import aiogrpc class AsyncPluginManager: """ Connects to a running mavsdk server or starts one and manages plugins """ @classmethod async def create(cls, host, port=50051): self = AsyncPluginManager() self.host = host self.port = port self.plugins = {} await self._connect_backend() return self async def _connect_backend(self): """ Initializes the connection to the running backend """ #: gRPC channel self._channel = aiogrpc.insecure_channel( "{}:{}".format(self.host, self.port), standalone_pool_for_streaming=True ) logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) # Avoid errors when user has not configured logging logger.debug("Waiting for mavsdk_server to be ready...") await aiogrpc.channel_ready_future(self._channel) logger.debug("Connected to mavsdk_server!") @property def channel(self): """ gRPC channel to the backend """ return self._channel
mavlink/MAVSDK-Python
mavsdk/async_plugin_manager.py
async_plugin_manager.py
py
1,162
python
en
code
246
github-code
6
40607525974
''' ETTTP_Client_skeleton.py 34743-02 Information Communications Term Project on Implementation of Ewah Tic-Tac-Toe Protocol Skeleton Code Prepared by JeiHee Cho May 24, 2023 ''' import random import tkinter as tk from socket import * import _thread from ETTTP_TicTacToe import TTT, check_msg if __name__ == '__main__': SERVER_IP = '127.0.0.1' MY_IP = '127.0.0.1' SERVER_PORT = 12000 SIZE = 1024 SERVER_ADDR = (SERVER_IP, SERVER_PORT) with socket(AF_INET, SOCK_STREAM) as client_socket: client_socket.connect(SERVER_ADDR) ################################################################### # Receive who will start first from the server start_move_message = client_socket.recv(SIZE).decode().strip() check_result = (check_msg(start_move_message, MY_IP)) start_index = start_move_message.index("First-Move:") + len("First-Move:") start_user = start_move_message[start_index:] if start_user=="ME": print("์„œ๋ฒ„ ์„ ") start=0 else: print("ํด๋ผ์ด์–ธํŠธ ์„ ") start=1 # etttp์— ๋งž๋Š” ํ˜•์‹์ธ ๊ฒƒ์„ ํ™•์ธํ•˜๊ณ  Send ACK if check_result: ack_message ="ACK"+start_move_message[4:] client_socket.sendall(ack_message.encode()) else: print("๋ฉ”์„ธ์ง€๊ฐ€ ํ‹€๋ฆผ") quit() ################################################################### # Start game root = TTT(target_socket=client_socket, src_addr=MY_IP,dst_addr=SERVER_IP) root.play(start_user=start) root.mainloop()
seung-eon/TicTacToe
ETTTP_Client.py
ETTTP_Client.py
py
1,681
python
en
code
0
github-code
6
23065976802
import numpy as np import os, sys, math import pandas as pd import dash #import dash_core_components as dcc from dash import dcc #import dash_html_components as html from dash import html from dash.dependencies import Input, Output import plotly.graph_objs as go class Obstacle(): def __init__(self, df, dataset, frame_name): self.df = df self.coordinate_system = dataset.coordinate_system if 'id' in df.keys(): self.id = df['id'] else: self.id = -1. if self.coordinate_system == 'camera_coordinate_system': self.x_center, self.y_center, self.z_center, self.yaw = dataset.project_center_camera_to_lidar(frame_name, df['x'], df['y'], df['z'], df['yaw']) elif self.coordinate_system == 'lidar_coordinate_system': self.x_center = df['x'] self.y_center = df['y'] self.z_center = df['z'] self.yaw = df['yaw'] else: print("Coordinate System: {} NOT implemented!".format(self.coordinate_system)) sys.exit(1) self.w = df['w'] self.l = df['l'] self.h = df['h'] if 'score' in df.keys(): self.score = df['score'] else: self.score = -1. self.label = df['label'] def print_obstacle(self): print('------') print(self.df) print('------\n') ################################ 3D BOXES ################################ def return_vertex(df, dataset, frame_name): all_vertex = [] all_labels = [] all_obstacles = [] for i in range(len(df)): # Parser obstacle obstacle = Obstacle(df.iloc[int(i)], dataset, frame_name) #obstacle.print_obstacle() id_box = int(obstacle.id) x_center = obstacle.x_center y_center = obstacle.y_center z_center = obstacle.z_center yaw = obstacle.yaw w_half = obstacle.w / 2. l_half = obstacle.l / 2. h = obstacle.h # Construir vertices point_A_x = (x_center - l_half * math.cos(-yaw) - w_half * math.sin(-yaw)) point_A_y = (y_center + l_half * math.sin(-yaw) - w_half * math.cos(-yaw)) # Get B point point_B_x = (x_center + l_half* math.cos(-yaw) - w_half * math.sin(-yaw)) point_B_y = (y_center - l_half* math.sin(-yaw) - w_half * math.cos(-yaw)) # Get C point point_C_x = (x_center + l_half * math.cos(-yaw) + w_half * math.sin(-yaw)) point_C_y = (y_center - l_half * math.sin(-yaw) + w_half * math.cos(-yaw)) # Get D point point_D_x = (x_center - l_half * math.cos(-yaw) + w_half * math.sin(-yaw)) point_D_y = (y_center + l_half * math.sin(-yaw) + w_half * math.cos(-yaw)) vertices = np.array([ [point_A_x, point_A_y, z_center], [point_B_x, point_B_y, z_center], [point_C_x, point_C_y, z_center], [point_D_x, point_D_y, z_center], [point_A_x, point_A_y, z_center+h], [point_B_x, point_B_y, z_center+h], [point_C_x, point_C_y, z_center+h], [point_D_x, point_D_y, z_center+h] ]) indices = np.array([ [0, 1, 2, 3], [0, 1, 5, 4], [1, 2, 6, 5], [2, 3, 7, 6], [3, 0, 4, 7], [4, 5, 6, 7] ]) all_vertex.append(vertices) all_labels.append('{}-{}: {:.3f}'.format(obstacle.label, id_box, obstacle.score)) return all_vertex, all_labels def draw_annotations_frame(dataset, frame_list, frame, fig): if frame_list is None: return fig df = pd.read_csv(os.path.join(dataset.annotations_data_path, frame_list[frame]), delimiter=' ', names=dataset.annotations_format) # Calcular los vertices de la caja all_vertex, all_labels = return_vertex(df, dataset, frame_list[frame]) for i, _ in enumerate(all_vertex): vertices = all_vertex[i] label = all_labels[i] faces = go.Mesh3d( x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2], i = [7, 0, 0, 0, 4, 4, 6, 6, 4, 0, 3, 2], j = [3, 4, 1, 2, 5, 6, 5, 2, 0, 1, 6, 3], k = [0, 7, 2, 3, 6, 7, 1, 1, 5, 5, 7, 6], name=label, opacity=0.3 ) fig.add_trace(faces) return fig ################################ LiDAR ################################ def draw_lidar(dataset, lidar_frame_list, frame, lidar_res): filename = os.path.join(dataset.lidar_data_path, lidar_frame_list[frame]) points = dataset.load_lidar(filename) PC_scatter = go.Scatter3d( x=points["x"], y=points["y"], z=points["z"], mode='markers', marker=dict( size=lidar_res, color=[0,0,0], opacity=0.3 ) ) return PC_scatter
ArmanAstud/3D_detection_visualizer
scripts/utils.py
utils.py
py
4,363
python
en
code
0
github-code
6
35818166590
import sublime import os import platform import re import subprocess class MergedSettings(): def __init__(self): # This is a Sublime settings object. self.plugin = sublime.load_settings("GoTools.sublime-settings") # This is just a dict. self.project = sublime.active_window().active_view().settings().get('GoTools', {}) def get(self, key, default = None): return self.project.get(key, self.plugin.get(key, default)) class GoToolsSettings(): def __init__(self): if not self.GoEnv: raise Exception("GoTools doesn't appear to be initialized") # Load the Sublime settings files. settings = MergedSettings() self.goroot = self.GoEnv["GOROOT"] self.goarch = self.GoEnv["GOHOSTARCH"] self.goos = self.GoEnv["GOHOSTOS"] self.go_tools = self.GoEnv["GOTOOLDIR"] if not self.goroot or not self.goarch or not self.goos or not self.go_tools: raise Exception("GoTools: ERROR: Couldn't detect Go runtime information from `go env`.") # The GOROOT bin directory is namespaced with the GOOS and GOARCH. self.gorootbin = os.path.join(self.goroot, "bin", self.goos + "_" + self.goarch) # For GOPATH, env < plugin < project, and project supports replacement of # ${gopath} with whatever preceded in the hierarchy. self.gopath = settings.plugin.get('gopath', os.getenv('GOPATH', '')) if len(self.gopath) == 0: self.gopath = self.GoEnv['GOPATH'] if 'gopath' in settings.project: self.gopath = settings.project['gopath'].replace('${gopath}', self.gopath) if self.gopath is None or len(self.gopath) == 0: raise Exception("GoTools: ERROR: You must set either the `gopath` setting or the GOPATH environment variable.") # Plugin feature settings. self.debug_enabled = settings.get("debug_enabled") self.format_on_save = settings.get("format_on_save") self.format_backend = settings.get("format_backend") self.autocomplete = settings.get("autocomplete") self.goto_def_backend = settings.get("goto_def_backend") # Project feature settings. self.project_package = settings.get("project_package") self.build_packages = settings.get("build_packages", []) self.test_packages = settings.get("test_packages", []) self.tagged_test_tags = settings.get("tagged_test_tags", []) self.tagged_test_packages = settings.get("tagged_test_packages", []) self.verbose_tests = settings.get("verbose_tests", False) self.test_timeout = settings.get("test_timeout", None) # For Go runtime information, verify go on PATH and ask it about itself. def load_goenv(): # Look up the system PATH. ospath = os.getenv('PATH', '') # For Darwin, get a login shell to resolve PATH as launchd won't always # provide it. This technique is borrowed from SublimeFixMacPath[1]. # [1] https://github.com/int3h/SublimeFixMacPath. if platform.system() == "Darwin": command = "/usr/bin/login -fqpl $USER $SHELL -l -c 'printf \"%s\" \"$PATH\"'" stdout, stderr = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True).communicate() if stderr and len(stderr) > 0: raise Exception("GoTools: couldn't resolve system PATH: " + stderr.decode()) ospath = stdout.decode() # Find the go binary on PATH, and abort initialization if it can't be found. gobinary = None goname = "go" if platform.system() == "Windows": goname = "go.exe" for segment in ospath.split(os.pathsep): candidate = os.path.join(segment, goname) if os.path.isfile(candidate): gobinary = candidate break if not gobinary: raise Exception("GoTools: couldn't find the go binary in PATH: " + ospath) # Hide popups on Windows si = None if platform.system() == "Windows": si = subprocess.STARTUPINFO() si.dwFlags |= subprocess.STARTF_USESHOWWINDOW # Gather up the Go environment using `go env`. print("GoTools: initializing using Go binary: " + gobinary) goenv = {} stdout, stderr = subprocess.Popen([gobinary, 'env'], stdout=subprocess.PIPE, startupinfo=si).communicate() if stderr and len(stderr) > 0: raise Exception("GoTools: '" + gobinary + " env' failed during initialization: " + stderr.decode()) for env in stdout.decode().splitlines(): match = re.match('(.*)=\"(.*)\"', env) if platform.system() == "Windows": match = re.match('(?:set\s)(.*)=(.*)', env) if match and match.group(1) and match.group(2): goenv[match.group(1)] = match.group(2) return goenv # Load and keep a cache of the Go runtime information during plugin init. GoToolsSettings.GoEnv = load_goenv() print("GoTools: initialized with Go environment: "+str(GoToolsSettings.GoEnv))
uraza/GoTools
gotools_settings.py
gotools_settings.py
py
4,663
python
en
code
null
github-code
6
25068490855
from typing import Tuple, List from asendia_us_lib.shipping_rate_request import ShippingRateRequest from asendia_us_lib.shipping_rate_response import ShippingRate from purplship.core.units import Packages, Services, Options from purplship.core.utils import Serializable, DP, NF from purplship.core.models import ( RateRequest, RateDetails, Message ) from purplship.providers.asendia_us.units import Service, Option, ProcessingLocation from purplship.providers.asendia_us.error import parse_error_response from purplship.providers.asendia_us.utils import Settings def parse_rate_response(response: dict, settings: Settings) -> Tuple[List[RateDetails], List[Message]]: errors = parse_error_response(response, settings) details = [ _extract_details(detail, settings) for detail in (response.get('shippingRates') or []) ] return details, errors def _extract_details(detail: dict, settings: Settings) -> RateDetails: rate = DP.to_object(ShippingRate, detail) return RateDetails( carrier_id=settings.carrier_id, carrier_name=settings.carrier_name, currency=rate.currencyType, service=Service.map(rate.productCode).name_or_key, base_charge=NF.decimal(rate.rate), total_charge=NF.decimal(rate.rate) ) def rate_request(payload: RateRequest, settings: Settings) -> Serializable[ShippingRateRequest]: package = Packages(payload.parcels).single service = (Services(payload.services, Service).first or Service.asendia_us_all).value options = Options(payload.options, Option) request = ShippingRateRequest( accountNumber=settings.account_number, subAccountNumber=options.asendia_sub_account_number, processingLocation=ProcessingLocation.map(options.asendia_processing_location or "SFO").name, recipientPostalCode=payload.recipient.postal_code, recipientCountryCode=payload.recipient.country_code, totalPackageWeight=package.weight.value, weightUnit=package.weight_unit.value.lower(), dimLength=package.length.value, dimWidth=package.width.value, dimHeight=package.height.value, dimUnit=package.dimension_unit.value, productCode=service, ) return Serializable(request, DP.to_dict)
danh91/purplship
sdk/extensions/asendia_us/purplship/providers/asendia_us/rate.py
rate.py
py
2,301
python
en
code
null
github-code
6