seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
74975645307
from model.plot_utils import * from model.allocations import solve def allocation_chart(x, solutions, ax=None, xlabel="", legend=True): if not ax: fig, ax = plt.subplots(1, 1, figsize=(5, 3)) x = np.array(list(x)) strategies = ["Eucalyptus 25", "Mahogany 100", "Mahogany 200", "Reserve"] allocation_changes = {} for strategy in strategies: allocation_changes[strategy] = np.array([s.allocations[strategy] for s in solutions]) bottom = np.zeros(len(x)) w = x[1] - x[0] for s in strategies: # assert x.shape == allocation_changes[s].shape, f"mismatch for {s}, {x.shape} vs {allocation_changes[s].shape}" ax.bar(x, allocation_changes[s], color=colors[s], label=s, bottom=bottom, width=w) bottom += allocation_changes[s] if legend: ax.legend(framealpha=1, fontsize="xx-small", loc="lower left") ax.margins(x=0, y=0) ax.set_xticklabels([int(i) for i in ax.get_xticks()], rotation = 45) ax.set_xlabel(xlabel) ax.set_ylabel('Allocations (Hectares)') def plot_constrained_allocations(): min_habs = range(0, 200) solutions_given_habs = [] for min_hab in min_habs: solutions_given_habs.append(solve(set_min_habitats=min_hab)) min_yield = range(100000, 200000, 1000) solutions_given_yield = [] for min_y in min_yield: solutions_given_yield.append(solve(set_min_yield=min_y)) fig, axes = plt.subplots(2, 2, figsize=(4.5, 5), width_ratios=[1, 0.25]) fig.suptitle("Only Eucalyptus Satisfies Stricter Constraints") allocation_chart(min_habs, solutions_given_habs, ax=axes[0, 0], xlabel="Minimum Habitats", legend=False) allocation_chart(min_yield, solutions_given_yield, ax=axes[1, 0], xlabel="Minimum Yield", legend=False) axes[0, 1].axis('off') axes[1, 1].axis('off') axes[0, 1].legend(legend_content[:-2], legend_names[:-2], fontsize=8, frameon=False) plt.tight_layout()
leo-ware/forest-model
model/make_plots.py
make_plots.py
py
1,944
python
en
code
0
github-code
6
38047305072
from flask import Flask, jsonify, render_template import psutil import subprocess app = Flask(__name__) def get_gpu_usage(): result = subprocess.check_output("nvidia-smi --query-gpu=utilization.gpu --format=csv,noheader,nounits", shell=True) gpu_usage = float(result.strip()) return gpu_usage @app.route('/') def home(): return render_template('index.html') @app.route('/system_info') def system_info(): info = { "cpu_usage": psutil.cpu_percent(), "ram_usage": psutil.virtual_memory().percent, "disk_usage": psutil.disk_usage('/').percent, "network_info": psutil.net_io_counters(pernic=True), "gpu_usage": get_gpu_usage() } return jsonify(info) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
agbld/webserver_for_system_infos
app.py
app.py
py
784
python
en
code
0
github-code
6
31788083835
f = open("marks.txt", "rt") for line in f.readlines(): parts = line.strip().split(",") if len(parts) < 2: continue #print(parts) name = parts[0] marks = [int(v) for v in parts[1:] if v.isdigit()] #print(marks) total = sum(marks) # total = sum(map(int, parts[1:])) print(f"{name:15} {total:3} {total/len(marks):5.2f}") f.close()
srikanthpragada/PYTHON_18_JULY_2022
demo/libdemo/marks_list.py
marks_list.py
py
377
python
en
code
0
github-code
6
30364393271
import os.path import shutil import sys import tempfile import textwrap import testfixtures from okonomiyaki.file_formats import EggMetadata, PackageInfo from okonomiyaki.utils.test_data import NOSE_1_3_4_RH5_X86_64 from okonomiyaki._cli import main if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest class TestMain(unittest.TestCase): maxDiff = None def setUp(self): self.tempdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tempdir) def test_spec_depend(self): # Given egg = NOSE_1_3_4_RH5_X86_64 r_output = textwrap.dedent("""\ metadata_version = '1.3' name = 'nose' version = '1.3.4' build = 1 arch = 'amd64' platform = 'linux2' osdist = 'RedHat_5' python = '2.7' python_tag = 'cp27' abi_tag = 'cp27m' platform_tag = 'linux_x86_64' packages = [] """) # When with testfixtures.OutputCapture() as capture: main(["spec-depend", egg]) # Then self.assertMultiLineEqual(capture.output.getvalue(), r_output) def test_pkg_info(self): # Given egg = NOSE_1_3_4_RH5_X86_64 r_output = PackageInfo.from_egg(egg).to_string() # When with testfixtures.OutputCapture() as capture: main(["pkg-info", egg]) # Then self.assertMultiLineEqual(capture.output.getvalue(), r_output) def test_summary(self): # Given egg = NOSE_1_3_4_RH5_X86_64 r_output = textwrap.dedent("""\ Extends the Python Unittest module with additional disocvery and running options """) # When with testfixtures.OutputCapture() as capture: main(["summary", egg]) # Then self.assertMultiLineEqual(capture.output.getvalue(), r_output) def test_no_pkg_info(self): # Given path = os.path.join( self.tempdir, os.path.basename(NOSE_1_3_4_RH5_X86_64) ) m = EggMetadata.from_egg(NOSE_1_3_4_RH5_X86_64) m._pkg_info = None m.dump(path) # When/Then with testfixtures.OutputCapture() as capture: with self.assertRaises(SystemExit) as exc: main(["pkg-info", path]) if sys.version_info < (2, 7): code = exc.exception else: code = exc.exception.code self.assertEqual(code, -1) capture.compare("No PKG-INFO")
enthought/okonomiyaki
okonomiyaki/_cli/tests/test_cli.py
test_cli.py
py
2,580
python
en
code
2
github-code
6
36466168685
#!/usr/bin/env python import utils import gzip import argparse from pysam import TabixFile import numpy as np import glob def get_args(): parser = argparse.ArgumentParser() parser.add_argument('-r', dest='rate_dir', required=True, help='Path to directory containing rate files') args = parser.parse_args() return args def main(): args = get_args() regions = [] first_file = True file_i = 0 for rate_file in glob.glob(args.rate_dir + '*.probe.coverage_rate.bed.gz'): with gzip.open(rate_file,'rt') as f: line_i = 0 for l in f: A = l.rstrip().split('\t') region = utils.Interval(chrom=A[0], start=int(A[1]), end=int(A[2]), data=A[3:] if len(A) > 3 else None) if region.start == region.end: continue interval = utils.Interval(chrom=A[0], start=int(A[1]), end=int(A[2]), data=A[3:] if len(A) > 3 else None) if first_file: regions.append([interval]) else: regions[line_i].append(interval) line_i += 1 first_file = False file_i += 1 for region in regions: depths = [] for interval in region: depths.append(float(interval.data[1])) print('\t'.join([str(x) for x in [region[0].chrom, region[0].start, region[0].end, region[0].data[0], np.mean(depths), np.std(depths)]])) if __name__ == '__main__': main()
ryanlayerlab/layer_lab_chco
bin/get_regions_zscores.py
get_regions_zscores.py
py
2,039
python
en
code
1
github-code
6
8692787672
from strong.models import Project, Images from rest_framework import serializers class ImagesSerializers(serializers.HyperlinkedModelSerializer): project_id = serializers.PrimaryKeyRelatedField(queryset=Project.objects.all(),source='project.id') class Meta: model = Images fields = ('project_id', 'image') def create(self, validated_data): subject = Images.objects.create(parent=validated_data['project']['id'], child_name=validated_data['image']) return child class ProjectSerializers(serializers.ModelSerializer): images = ImagesSerializers(many=True, read_only=True) class Meta: model = Project fields = ('type_of_project', 'description', 'images') # fields = "__all__"
urielcookies/RESTFUL_API
strong/serializers.py
serializers.py
py
753
python
en
code
0
github-code
6
38861064997
import sys sys.setrecursionlimit(10000) def check_array(N): return [[False for _ in range(10)]for i in range(N)] N, K = map(int, input().split()) board = [list(input()) for i in range(N)] ck1 = check_array(N) ck2 = check_array(N) dx, dy = [0, 1, 0, -1], [1, 0, -1, 0] def countDFS(x, y): ck1[x][y] = True ret = 1 for i in range(4): nx, ny = x + dx[i], y+dy[i] if nx < 0 or ny < 0 or nx >= N or ny >= 10: continue elif ck1[nx][ny] or board[x][y] != board[nx][ny]: continue ret += countDFS(nx, ny) return ret def removeDFS(x, y, num): ck2[x][y] = True board[x][y] = '0' for i in range(4): nx, ny = x+dx[i], y+dy[i] if nx < 0 or ny < 0 or nx >= N or ny >= 10: continue elif ck2[nx][ny] or num != board[nx][ny]: continue removeDFS(nx, ny, num) def down(): for i in range(10): temp = [] for j in range(N): if board[j][i] != '0': temp.append(board[j][i]) for j in range(N-len(temp)): board[j][i] = '0' for j in range(N-len(temp), N): board[j][i] = temp[j-(N-len(temp))] while True: exit = False ck1 = check_array(N) ck2 = check_array(N) for i in range(N): for j in range(10): if board[i][j] == '0' or ck1[i][j]: continue res = countDFS(i, j) if res >= K: removeDFS(i, j, board[i][j]) exit = True # 제거할게 False이면, 없는상태라는거니까, while문 종료 if not exit: break # 그게아니면, 내려주고 다시 반복 down() for i in board: print(''.join(i)) ''' [code Review] 1. 반복문을 탈출할때, ck, exit등 존재유무, 방문여부 등을 체크하는 변수를 두고 탈출하는 것을 자꾸 잊는다. 2. 위 방법을 사용하면 꽤나 많은 문제가 풀렸음에도, 자꾸 안쓰는건 연습부족. 3. 다시 한번 연습차원에서 보지 않고, MooyoMooyo_2.py로 작성해보기! '''
minhee0327/Algorithm
python/BOJ/12_탐색/16768_MooyoMooyo.py
16768_MooyoMooyo.py
py
2,117
python
en
code
0
github-code
6
34508758020
# https://www.geeksforgeeks.org/find-zeroes-to-be-flipped-so-that-number-of-consecutive-1s-is-maximized/ # https://leetcode.com/problems/max-consecutive-ones-iii/discuss/1304346/Simple-Solution-w-Explanation-or-Sliding-Window-Approach-with-Comments # https://leetcode.com/problems/max-consecutive-ones-iii/discuss/278322/Easy-to-understand-Python-solution # https://leetcode.com/problems/max-consecutive-ones-iii/discuss/432952/Python-sliding-window-9-lines # https://leetcode.com/discuss/interview-question/algorithms/125017/amazon-max-consecutive-ones def longest_ones(nums, k): n ,ans, l = len(nums), 0,0 for r in range(n): if nums[r] == 0: if k == 0: while nums[l]!= 0: l = l + 1 l = l + 1 else: k = k-1 ans = max(ans, r-l+1) return ans if __name__ == "__main__": a = [1,1,1,0,0,0,1,1,1,1,0,0,1,0,1,1,1] k =2 print(longest_ones(a,k))
ved93/deliberate-practice-challenges
code-everyday-challenge/n189_maximize_number_of_ones.py
n189_maximize_number_of_ones.py
py
997
python
en
code
0
github-code
6
73416501948
""" Selection Sort, inefficient swapping sort. Practiced for understanding algorithmic design, however, python sorting functions are the way to go here. """ def selectionSort(L): """Assumes that L is a list of elements that can be compared using >. Sorts L in ascending order """ suffixStart = 0 while suffixStart != len(L): # look at each element in suffix for i in range(suffixStart, len(L)): if L[i] < L[suffixStart]: # swap position of elements L[suffixStart], L[i] = L[i], L[suffixStart] suffixStart += 1 return L lst = [1,56,4,3,3,2,15,13,5] print(selectionSort(lst))
AndreiBratkovski/Training
MIT-Guttag/selectionSort.py
selectionSort.py
py
598
python
en
code
1
github-code
6
21833792754
#!/usr/bin/env python3 import os import sys sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/..') from test_framework.test_framework import BitcoinTestFramework BLOCKS = 100 TXS = 100 class TXFlood(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): self.nodes[0].createwallet('miner') addr = self.nodes[0].getnewaddress() self.generatetoaddress(self.nodes[0], 200, addr) for b in range(BLOCKS): for t in range(TXS): txid = self.nodes[0].sendtoaddress(address=addr, amount=0.001) print(f"sending tx {t}/{TXS}: {txid}") block = self.generate(self.nodes[0], 1) print(f"generating block {b}/{BLOCKS}: {block}") if __name__ == '__main__': TXFlood().main()
pinheadmz/warnet-scenarios
scenarios/tx-flood.py
tx-flood.py
py
869
python
en
code
0
github-code
6
20755734857
import pandas as pd import logging as lg import pickle lg.basicConfig(filename='data_test_automation.log', level=lg.INFO, format='%(asctime)s %(name)-12s %(levelname)-8s %(' 'message)s', datefmt='%m-%d %H:%M', filemode='w') def automated(a): """This function takes the input of the test data file location, and performs all the data processing done on the test data set. For logs check the data_test_automation.log file in your system""" try: lg.warning("user gave the input path/file as:"+' '+str(a)) df=pd.read_excel(a) lg.warning("data successfully loaded from the file/path"+' '+str(a)) lg.info("starting all the pre-processing done for the train dataset") df.dropna(inplace=True) lg.warning("successfully dropped all null values in the given dataset") def change_into_datetime(col): df[col]=pd.to_datetime(df[col]) for i in ['Date_of_Journey','Dep_Time', 'Arrival_Time']: change_into_datetime(i) lg.info("successfully changed the required columns into datetime format") df['journey_day']=df['Date_of_Journey'].dt.day lg.info("successfully extracted day from Date_of_journey and creating a separate column for day") df['journey_month']=df['Date_of_Journey'].dt.month lg.info("successfully extracted month from Date_of_Journey and creating a separate column for month") def extract_hour(data,col): data[col+'_hour']=data[col].dt.hour def extract_min(data,col): data[col+'_min']=data[col].dt.minute def drop_col(data,col): data.drop(col,axis=1,inplace=True) extract_hour(df,'Dep_Time') lg.info("successfully extracted hours from Dep_Time and dumped the data into new column Dep_Time_hour") extract_min(df,'Dep_Time') lg.info("successfully extracted minutes from Dep_Time and dumped the data into new column Dep_Time_min") drop_col(df,'Dep_Time') lg.warning("dropping the original Dep_Time column as we extracted the values form that column") extract_hour(df,'Arrival_Time') lg.info("successfully extracted hours from Arrival_Time and dumped the data into new column Arrival_Time_hour") extract_min(df,'Arrival_Time') lg.info("successfully extracted min from Arrival_Time and dumped the data into new column Arrival_Time_min") drop_col(df,'Arrival_Time') lg.warning("dropping the original Arrival_Time column as we extracted the values form that column") duration = list(df["Duration"]) for i in range(len(duration)): if len(duration[i].split()) != 2: if "h" in duration[i]: duration[i] = duration[i].strip() + " 0m" else: duration[i] = "0h " + duration[i] duration_hours = [] duration_mins = [] for i in range(len(duration)): duration_hours.append(int(duration[i].split(sep = "h")[0])) duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) df["Duration_hours"] = duration_hours lg.info("successfully extracted hours from Duration column and dumped the data into new column Duration_hours") df["Duration_mins"] = duration_mins lg.info("successfully extracted minutes from Duration column and dumped the data into new column Duration_mins") df.drop(["Date_of_Journey","Duration","Additional_Info"], inplace=True,axis=1) lg.warning("dropping the Date_of_Journey, Duration, Additional_Info columns as we extracted the required " "information") Airline=pd.get_dummies(df['Airline'],drop_first=True) lg.info("creating dummy variables for Airline and dropping the first dummy column") source=pd.get_dummies(df['Source'],drop_first=True) lg.info("creating dummy variables for Source and dropping the first dummy column") destination=pd.get_dummies(df['Destination'],drop_first=True) lg.info("creating dummy variables for Destination and dropping the first dummy column") dict={'non-stop':0, '2 stops':2, '1 stop':1, '3 stops':3, '4 stops':4} df['Total_Stops']=df['Total_Stops'].map(dict) lg.info("successfully mapped the Total_Stops column to 0,1,2,3,4 respectfully") df=pd.concat([df, Airline, source, destination], axis = 1) lg.warning("concatenating all the newly created columns into the main dataframe") df.drop(["Airline", 'Source', 'Destination','Route'],inplace=True,axis=1) lg.warning("dropping the categorical columns as we dummy encoded them") df['Trujet']=0 lg.info("adding an extra column as this feature is not there in our test dataset") model = open('flight_rf.pkl','rb') forest = pickle.load(model) lg.info("loading our test model for prediction") y_prediction = forest.predict(df) lg.info("processing the prediction") a=pd.DataFrame(y_prediction) lg.info("dumping all our predicted values into a dataframe and showing the results") print(a) return a except Exception as e: lg.warning("error occurred during execution, which is:"+' '+str(e)) return "error occurs is:"+' '+str(e) a=input(str("give the file path or file name:")) automated(a)
InduMouliMahamkali/flightfareprediction
pre-processing and modeling/automated_model_test.py
automated_model_test.py
py
5,520
python
en
code
3
github-code
6
16601473639
import socket import serial import sqlite3 import select import time import datetime HEADERSIZE = 10 running_on_pie = False # pie or windows if running_on_pie: host = '192.168.1.10' pos = '192.168.1.10' win1 = '192.168.1.11' win2 = '192.168.1.12' conn = sqlite3.connect('/home/sysop/pos/order.db') robot = serial.Serial('/dev/ttyUSB0', 19200) else: host = '192.168.86.26' pos = '192.168.86.26' win1 = '192.168.86.26' win2 = '192.168.86.11' conn = sqlite3.connect('order.db') robot = serial.Serial('COM9', 19200) port = 12345 c = conn.cursor() send_to_bot = False send_to_w1 = False send_to_w2 = False send_to_pos = False bot_data = '' bot_hold = '' old_data = '' serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serverSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) serverSocket.bind((host, port)) serverSocket.listen(5) sockets_list = [serverSocket] clients = {} print('Listening for connections on {}:{}...'.format(host, port)) def un_start(): command = "/usr/bin/sudo /sbin/shutdown -r now" import subprocess process = subprocess.Popen(command.split(), stdout=subprocess.PIPE) output = process.communicate()[0] print(output) def log_it(note): if running_on_pie: f = open("/home/sysop/pos/log.txt", "a+") else: f = open("log.txt", "a+") ts = time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%d-%m-%Y %H:%M:%S') info = st + ' > ' info += note info += '\n\r' f.write(info) def create_table(): c.execute('CREATE TABLE IF NOT EXISTS donut(donutID int, drink int, topping int, orderNUM int,' ' pay int)') def data_test(a1): c.execute("SELECT * FROM donut WHERE orderNUM=:a1", {"a1": str(a1)}) data1 = c.fetchall() if data1: return data1 def data_delete(a1): c.execute("DELETE FROM donut WHERE orderNUM=:a1", {"a1": str(a1)}) conn.commit() # Handles message receiving def receive_message(client_socket1): try: message_header = client_socket1.recv(HEADERSIZE) if not len(message_header): return False message_length = int(message_header.decode('utf-8').strip()) return {'header': message_header, 'data': client_socket1.recv(message_length)} except Exception as e: print(e) return False def order_process(order): if len(order) == 4: xa = str(data_test(order)) if xa != 'None': xa = xa.strip('[]()') xa = xa.replace(" ", "") xa = xa.split(",") dm = '$A' + str(xa[0]) if str(xa[1]) == '0': dm += '1000#' else: dm += str(xa[1]) dm += '#' else: dm = xa return dm create_table() while True: read_sockets, _, exception_sockets = select.select(sockets_list, [], sockets_list) for notified_socket in read_sockets: if notified_socket == serverSocket: client_socket, client_address = serverSocket.accept() # Client should send his name right away, receive it user = receive_message(client_socket) # If False - client disconnected before he sent his name if user is False: continue # Add accepted socket to select.select() list sockets_list.append(client_socket) # Also save username and username header clients[client_socket] = user print('Accepted connection from {}, username: {}'.format(client_address, user['data'].decode('utf-8'))) log_it('Accepted connection from {}, username: {}'.format(client_address, user['data'].decode('utf-8'))) else: # Receive message message = receive_message(notified_socket) # If False, client disconnected, cleanup if message is False: print('Closed connection from: {}'.format(clients[notified_socket]['data'].decode('utf-8'))) log_it('Closed connection from: {}'.format(clients[notified_socket]['data'].decode('utf-8'))) # Remove from list for socket.socket() sockets_list.remove(notified_socket) # Remove from our list of users del clients[notified_socket] continue # Get user by notified socket, so we will know who sent the message user = clients[notified_socket] data = message["data"].decode("utf-8") line = '' if data != 'ready': if data != old_data: print('Received message from {}: {}'.format(user["data"].decode("utf-8"), data)) log_it('Received message from {}: {}'.format(user["data"].decode("utf-8"), data)) old_data = data if user["data"] == 'm1'.encode("utf-8"): # start the order if data == 'A order In': message2_header = '{:10}'.format(len(data)) message['header'] = message2_header.encode("utf-8") message['data'] = data.encode("utf-8") send_to_w1 = True # pos info if user["data"] == 'pos'.encode("utf-8"): robot.write(data.encode("utf-8")) time.sleep(1) line_in = robot.readline() line = line_in.decode("utf-8") line = line.rstrip() if line[0] == '$': message2_header = '{:10}'.format(len(line)) message['header'] = message2_header.encode("utf-8") message['data'] = line.encode("utf-8") print(line.encode("utf-8")) send_to_pos = True # window A data and processing if user["data"] == 'w1'.encode("utf-8"): if len(data) == 4: if data == '0000': un_start() message2 = order_process(data) bot_hold = message2 time.sleep(1) message2_header = '{:10}'.format(len(message2)) message['header'] = message2_header.encode("utf-8") message['data'] = message2.encode("utf-8") send_to_w1 = True if len(data) == 5: if data == 'start': robot.write(bot_hold.encode("utf-8")) time.sleep(1) if data == 'ready': line_in = robot.readline() line = line_in.decode("utf-8") line = line.rstrip() # if line == 'end': message2_header = '{:10}'.format(len(line)) message['header'] = message2_header.encode("utf-8") message['data'] = line.encode("utf-8") send_to_w1 = True # main com arduino # if robot.in_waiting > 0: # line_in = robot.readline() # line = line_in.decode("utf-8") # line = line.rstrip() # # if len(line) > 1: # # if line == 'end' and user["data"] == 'w1'.encode("utf-8"): # message2_header = '{:10}'.format(len(line)) # message['header'] = message2_header.encode("utf-8") # message['data'] = line.encode("utf-8") # send_to_w1 = True # if line[0] == '$' and user["data"] == 'pos'.encode("utf-8"): # message2_header = '{:10}'.format(len(line)) # message['header'] = message2_header.encode("utf-8") # message['data'] = line.encode("utf-8") # send_to_pos = True # Iterate over connected clients and broadcast message for client_socket in clients: # sent it the_ip = client_socket.getpeername()[0] if the_ip == win1 and send_to_w1: client_socket.send(user['header'] + user['data'] + message['header'] + message['data']) print(user['header'] + user['data'] + message['header'] + message['data']) send_to_w1 = False if the_ip == win2 and send_to_w2: client_socket.send(user['header'] + user['data'] + message['header'] + message['data']) send_to_w2 = False if the_ip == pos and send_to_pos: client_socket.send(user['header'] + user['data'] + message['header'] + message['data']) print(user['header'] + user['data'] + message['header'] + message['data']) send_to_pos = False line = '' # It's not really necessary to have this, but will handle some socket exceptions just in case for notified_socket in exception_sockets: # Remove from list for socket.socket() sockets_list.remove(notified_socket) # Remove from our list of users del clients[notified_socket]
RG11rant/donuts
server.py
server.py
py
9,334
python
en
code
1
github-code
6
30282625342
from dataclasses import dataclass, replace from typing import Any from uuid import UUID from topics.domain.repositories.topic_repository import TopicRepository from topics.domain.usecases.base import Usecase @dataclass(kw_only=True) class UpdateTopicRequest: id: UUID content: str | None = None discussed: bool | None = None @dataclass(kw_only=True) class UpdateTopicUsecase(Usecase[UpdateTopicRequest, None]): topic_repository: TopicRepository def handle(self, request: UpdateTopicRequest) -> None: topic = self.topic_repository.get(request.id) updated_fields: dict[str, Any] = {} if request.content is not None: updated_fields["content"] = request.content if request.discussed is not None: updated_fields["discussed"] = request.discussed self.topic_repository.update(replace(topic, **updated_fields))
cbenavid/topics
src/topics/domain/usecases/topic/update_topic.py
update_topic.py
py
893
python
en
code
0
github-code
6
5949670885
import time dic_function_time = {} def store_time(function): """Décorateur qui stocke le nombre de secondes écoulées entre le début et la fin de l'exécution de la fonction. Un décorateur est une fonction qui prend une autre fonction (ou classe) en paramètre pour modifier son comportement lors de son exécution.""" def modified_function(*args, **kwargs): """On est dans la fonction modifiée qui a pour but de calculer et stocker le temps d'exécution de 'function' dans le dictionnaire. 'function' est bien accessible dans ce bloc étant dans la définition de 'store_time'. :param args: tuple des paramètres non nommés (arguments). :param kwargs: dictionnaire des paramètres nommés (key word arguments). """ t1 = time.time() value_returned = function(*args, **kwargs) t2 = time.time() elapsed_time = t2 - t1 if function not in dic_function_time: dic_function_time[function] = [elapsed_time] else: dic_function_time[function].append(elapsed_time) # On retourne dans 'modified' la valeur retournée de 'function' (2) return value_returned # On retourne dans 'store_time' la fonction 'modified_function' (1) return modified_function """ NUMEROS = ORDRE EXECUTION Les décorateurs ne sont pas magiques, dans notre cas, considérons le cas suivant : @store_time def function(a, b, c): return a, b, c Le décorateur ne fait rien d'autre que ça : modified_function = store_time(function) (Vu que store_time retourne 'modified_function') function est en fait remplacée par modified_function et puisqu'on a défini plus haut 'def modified_function(*args, **kwargs)' on peut lui passer les paramètres a b et c comme si c'était 'function'. Donc dans ce cas à chaque fois qu'on fait function(1, 2, 3) on exécute en fait store_time(function)(1, 2, 3) c'est à dire modified_function(1, 2, 3) (Vu que store_time retourne 'modified_function') On calcule le temps d'exécution de 'function' en pensant bien à récupérer la sortie (value_returned) de 'function' et afin de ne pas altérer son fonctionnement on retourne value, c'est à dire ce qu'aurait dû retourner 'function' à la fin de son exécution. Donc à la fin on a juste ajouté une fonctionnalité à notre fonction avec notre fonction 'store_time'. ==> C'est le but d'un décorateur Si on veut ajouter des paramètres à store_time il faut rajouter une couche de fonction : """ def store_time2(min_time): def decorator(function): def modified_function(*args_function, **kwargs_function): t1 = time.time() value_returned = function(*args_function, **kwargs_function) t2 = time.time() elapsed_time = t2 - t1 if elapsed_time >= min_time: if function not in dic_function_time: dic_function_time[function] = [elapsed_time] else: dic_function_time[function].append(elapsed_time) # On retourne dans 'modified'_function la valeur retournée de 'function'(3) return value_returned # On retourne dans 'decorator' la fonction 'modified_function' pour s'en servir (2) return modified_function # On retourne dans 'store_time2' notre fonction decorateur (1) return decorator """ Cela revient alors au même que de faire modified_function = store_time2(1)(function) (Uniquement les durées de chaque exécution >= 1 seront stockées) Puis si on exécute store_time2(1)(function)(1, 2, 3) c'est à dire : decorator(function)(1, 2, 3), (en gardant à l'esprit qu'on a accès à min_time puisqu'on est toujours dans la définition de 'store_time2') c'est à a dire modified_function(1, 2, 3). """
JeremyRozier/SawImageProject
version1/decorators.py
decorators.py
py
3,861
python
fr
code
0
github-code
6
47533751
from typing import List class Solution: def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int: # dp table dp = [[0] * (len(nums2)+1) for _ in range(len(nums1)+1)] # initialize # pass # traverse dp table for i in range(1, len(nums1)+1): for j in range(1, len(nums2)+1): if nums1[i-1] == nums2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[-1][-1] if __name__ == "__main__": nums1 = [1,4,2] nums2 = [1,2,4] s = Solution() assert s.maxUncrossedLines(nums1, nums2) == 2
code-cp/leetcode
solutions/1035/main.py
main.py
py
689
python
en
code
0
github-code
6
29944774792
import os import sys sys.path.insert(1, os.path.join(sys.path[0], 'utils')) import numpy as np import pandas as pd import argparse import h5py import librosa from scipy import signal import matplotlib.pyplot as plt import time import csv import random from concurrent.futures import ProcessPoolExecutor from functools import partial from multiprocessing import cpu_count from utilities import read_audio, create_folder, read_meta import config from tqdm import tqdm # Global flags and variables. PLOT_FEATURES = False class LogMelExtractor(): def __init__(self, sample_rate, window_size, overlap, mel_bins): self.window_size = window_size self.overlap = overlap # Loading hamming window and Mel-filters. self.ham_win = np.hamming(window_size) self.melW = librosa.filters.mel(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=50., fmax=sample_rate // 2).T # transform: Assumes a numpy array representing raw audio-signal. def transform(self, audio): ham_win = self.ham_win window_size = self.window_size overlap = self.overlap # Compute a spectrogram with consecutive Fourier transforms. [f, t, x] = signal.spectral.spectrogram( audio, window=ham_win, nperseg=window_size, noverlap=overlap, detrend=False, return_onesided=True, mode='magnitude') x = x.T # Applying mel-filters on sequence of fourier transforms. x = np.dot(x, self.melW) # Applying log on mel-filters. x = np.log(x + 1e-8) x = x.astype(np.float32) return x def calculate_logmel(audio_path, sample_rate, feature_extractor, n=-1): # Read audio (first 4 seconds only). (audio, fs) = read_audio(audio_path, target_fs=sample_rate) # Extract feature feature = feature_extractor.transform(audio) return feature, n def calculate_features(args): n_jobs = cpu_count() executor = ProcessPoolExecutor(max_workers=n_jobs) futures = [] print("Using {} workers in parallel.".format(n_jobs)) # Arguments. dataset_dir = args.dataset_dir workspace = args.workspace features_type = args.mode features_file_name = args.features_file_name # Parameters for feature extraction. metadata_delimiter = config.metadata_delimiter sample_rate = config.sample_rate window_size = config.window_size overlap = config.overlap seq_len = config.seq_len mel_bins = config.mel_bins # Dislaying arguments and parameters. print("Arguments and Parameters:") print("Dataset Directory: {}".format(dataset_dir)) print("Workspace: {}".format(workspace)) print("Sample Rate: {}".format(sample_rate)) print("Window Size: {}".format(window_size)) print("Overlapping Frames: {}".format(overlap)) print("Sequence Length: {}".format(seq_len)) # Dimension of feature corresponding to each audio file: (seq_len, mel_bins) print("Mel Bins: {}".format(mel_bins)) # Paths audio_dir = os.path.join(dataset_dir, 'audio') meta_csv = os.path.join(dataset_dir, 'metadata', 'UrbanSound8K.csv') hdf5_path = os.path.join(workspace, 'features', features_type, features_file_name) # Displaying paths. print("Reading audio from: {}".format(audio_dir)) print("Reading meatadata file form: {}".format(meta_csv)) print("Saving the extracted features at: {}".format(hdf5_path)) create_folder(os.path.dirname(hdf5_path)) # Feature extractor feature_extractor = LogMelExtractor(sample_rate=sample_rate, window_size=window_size, overlap=overlap, mel_bins=mel_bins) audio_names, fs_IDs, start_times, end_times, saliences, folds, class_IDs, classes = read_meta(meta_csv, metadata_delimiter) # Create hdf5 file hf = h5py.File(hdf5_path, 'w') # Intialising hdf5 file to store audios/labels of all folds. for fold_id in range(1, 11): hf.create_dataset( name='features_fold{}'.format(fold_id), shape=(0, seq_len, mel_bins), maxshape=(None, seq_len, mel_bins), dtype=np.float32) hf.create_dataset( name='labels_fold{}'.format(fold_id), shape=(0, 1), maxshape=(None, 1), dtype=np.float32) # To remember number of audio files processed in each fold. fold_count = [0] * 11 for (n, audio_name) in enumerate(audio_names): # Calculate feature. audio_path = os.path.join(audio_dir, 'fold{}'.format(folds[n]), audio_name) futures.append(executor.submit(partial(calculate_logmel, audio_path, sample_rate, feature_extractor, n))) for future in tqdm(futures): if future.result() is not None: feature, n = future.result() hf['features_fold{}'.format(folds[n])].resize((fold_count[folds[n]] + 1, seq_len, mel_bins)) hf['features_fold{}'.format(folds[n])][fold_count[folds[n]]] = feature hf['labels_fold{}'.format(folds[n])].resize((fold_count[folds[n]] + 1, 1)) hf['labels_fold{}'.format(folds[n])][fold_count[folds[n]]] = class_IDs[n] fold_count[folds[n]] += 1 # Plot log-Mel for debug. if PLOT_FEATURES: plt.matshow(feature.T, origin='lower', aspect='auto', cmap='jet') plt.show() hf.close() # Displaying total files processed from each fold. print("Files Processed from each fold:") for fold_id in range(1, 11): print("Fold {}: {} files.".format(fold_id, fold_count[fold_id])) # USAGE: python features.py logmel --dataset_dir=$DATASET_DIR --workspace=$WORKSPACE if __name__ == '__main__': parser = argparse.ArgumentParser(description='') subparsers = parser.add_subparsers(dest='mode') # Different modes can be added to extract different type of features. parser_logmel = subparsers.add_parser('logmel') parser_logmel.add_argument('--dataset_dir', type=str, required=True) # Path to the UrbanSound8K folder. parser_logmel.add_argument('--workspace', type=str, required=True) # Directory where extracted features, model and logs of experiments are stored. parser_logmel.add_argument('--features_file_name', type=str, required=True) # logmel-features.h5 args = parser.parse_args() if args.mode == 'logmel': calculate_features(args) else: raise Exception('Incorrect arguments!')
iamjanvijay/Background-Sound-Classification-in-Speech-Audio-Segments
utils/features.py
features.py
py
7,026
python
en
code
4
github-code
6
36766561062
''' 점수중에 최대값을 M. 모든 점수를 점수/M*100으로 고쳤다. 최고점이 70이고, 수학점수가 50이었으면 수학점수는 50/70*100이 되어 71.43점이 된다. 세준이의 성적을 위의 방법대로 새로 계산했을 때, 새로운 평균을 구하는 프로그램을 작성하시오. 3 40 80 60 75.0 ''' from sys import stdin n = int(input()) score_list = list(map(int, stdin.readline().split())) max_score = max(score_list) new_score_list = [] for score in score_list: new_score_list.append(score / max_score * 100) print(sum(new_score_list) / n)
jiyoung-dev/Algorithm
Baekjoon/단계별(Python)/5단계_1차원배열/b1546_평균.py
b1546_평균.py
py
593
python
ko
code
0
github-code
6
70952127868
import re book1=open("Book1.txt",'r') book2=open("Book2.txt",'r') book3=open("Book3.txt",'r') line=book1.read() line=book2.read() line=book3.read() word=line.strip(" ") nn=word.split() longest_word = max(word, key=len) print (longest_word)
inwk6312fall2017/programming-task-final-bhagi162
task1c.py
task1c.py
py
243
python
en
code
0
github-code
6
35543810797
from django.urls import path from . import views app_name='cv' urlpatterns = [ path('curriculo', views.index, name='index'), path('curriculo/dados-pessoais', views.cadastrar_ou_aletarar_foto_e_objetivo, name='editar_dados'), path('curriculo/educacao', views.cadastrar_educacao, name='educacao'), path('curriculo/educacao/<id>/excluir', views.excluir_educacao, name='excluir_educacao'), path('curriculo/experiencia', views.cadastrar_experiencia, name='experiencia'), path('curriculo/experiencia/<id>/excluir', views.excluir_experiencia, name='excluir_experiencia'), path('curriculo/visualizar', views.curriculo, name='curriculo'), ]
smctinf/casa_do_trabalhador
curriculo/urls.py
urls.py
py
662
python
pt
code
0
github-code
6
13442824529
import pygame, os from modules.entitysets._puresensor import PureSensor from imageload import loadImage from button import Button from menustate import MenuState from staticimage import StaticImage from gridrounding import gridRound from selectionbox import SelectionBox from label import Label class RemoveSensorButton( Button ): image = loadImage("remove.png", 2 ) def __init__( self, menu=None ): Button.__init__( self, None, None, menu ) self.rect = self.image.get_rect() self.rect.topleft = ( 54, 24 ) def push( self, clickKey, click ): if "up" in clickKey: self.parentState.toggleRemove() class SnapToGridButton( Button ): image = loadImage( "gridbutton.png", 2 ) def __init__( self, menu=None ): Button.__init__( self, None, None, menu ) self.rect = self.image.get_rect() self.rect.topleft = ( 24, 24 ) def push( self, clickKey, click ): if "up" in clickKey: self.parentState.toggleSnapToGrid() class SensorEditButton( Button ): image = loadImage( "sensoreditbutton.png", 2 ) rect = image.get_rect() rect.topleft = ( 24, 144 ) def __init__( self, menu=None ): Button.__init__( self, None, None, menu ) def push( self, clickKey, click ): if "up" in clickKey: aBoundEditState = SensorEditState( self.parentState.menu ) self.parentState.menu.loadMenuState( aBoundEditState ) class SensorEditState( MenuState ): def __init__( self, menu, sprites=[] ): MenuState.__init__( self, menu, sprites ) self.sprites = [self.fileNameLabel, self.miniMap] self.buttons = [] self.panel = StaticImage(loadImage( "devmenu.png", 2 ), (10, 10)) self.addSprite( self.panel ) self.snapToGridButton = SnapToGridButton( self ) self.addButton( self.snapToGridButton ) self.removeButton = RemoveSensorButton( self ) self.addButton( self.removeButton ) self.gridButtonSelectionBox = None self.removeButtonSelectionBox = None self.addingMode = True self.removingMode = False self.curGrabbedSens = None self.curStart = None self.gridX = 40 self.gridY = 40 self.snapToGrid = False self.whereEntWasGrabbed = None def toggleSnapToGrid( self ): self.snapToGrid = not self.snapToGrid if self.gridButtonSelectionBox is None: self.gridButtonSelectionBox = SelectionBox( self.snapToGridButton.rect, self ) self.addSprite( self.gridButtonSelectionBox ) else: self.removeSprite( self.gridButtonSelectionBox ) self.gridButtonSelectionBox = None self.menu.loadMenuState( self ) def toggleRemove( self ): self.removingMode = not self.removingMode if self.removeButtonSelectionBox is None: self.removeButtonSelectionBox = SelectionBox( self.removeButton.rect, self ) self.addSprite( self.removeButtonSelectionBox ) else: self.removeSprite( self.removeButtonSelectionBox ) self.removeButtonSelectionBox = None self.menu.loadMenuState( self ) def getPressedSensor( self, point ): """See which sensor is at this point""" escape = False for eachSpriteList in ( eachGroup.sprites() for eachGroup in self.menu.playState.groups ): for eachSprite in [ sprite for sprite in eachSpriteList if sprite.pureSensor]: if eachSprite.rect.collidepoint( point ): return eachSprite def update( self, dt, click, clickKey, curMousePos=None ): MenuState.update( self, dt, click, clickKey, curMousePos ) playState = self.menu.playState curMousePos = curMousePos[0]-playState.panX, curMousePos[1]-playState.panY if self.snapToGrid: curMousePos = gridRound( curMousePos, self.gridX, self.gridY, trueRounding=True ) else: curMousePos = curMousePos if self.curStart is not None: self.menu.playState.lineVisualiser.devMenuLineGroups = [ [ self.curStart, ( self.curStart[0], curMousePos[1] ) ], [ ( self.curStart[0], curMousePos[1] ), curMousePos ], [ curMousePos, ( curMousePos[0], self.curStart[1] ) ], [ ( curMousePos[0], self.curStart[1] ), self.curStart ] ] self.menu.playState.lineVisualiser.devMenuLineGroups = [ [ (each[0]+playState.panX, each[1]+playState.panY) for each in eachLine ] for eachLine in self.menu.playState.lineVisualiser.devMenuLineGroups ] self.menu.playState.lineVisualiser.flush = True self.menu.playState.lineVisualiser.renderLines = True self.menu.playState.lineVisualiser.renderPhysicsLines = True self.menu.playState.lineVisualiser.forceNoRender = True if click is not None: if clickKey is 'mouse1down' and self.curStart is None: self.curStart = curMousePos elif clickKey is 'mouse1up': #ADD SENSOR HERE destPoint = min( self.curStart[0], curMousePos[0] ), min( self.curStart[1], curMousePos[1] ) w = abs( self.curStart[0] - curMousePos[0] ) h = abs( self.curStart[1] - curMousePos[1] ) if w != 0 or h != 0: destPoint = destPoint[0] + w/2, destPoint[1] + h/2 destGroup = getattr( self.menu.playState, PureSensor.playStateGroup ) PureSensor( pos=destPoint, group=destGroup, width=w, height=h ) self.curStart = None elif clickKey is 'mouse3down': self.curGrabbedSens = self.getPressedSensor( (curMousePos[0]+playState.panX, curMousePos[1]+playState.panY) ) if self.curGrabbedSens is not None: entPos = self.curGrabbedSens.getPosition() self.whereEntWasGrabbed = curMousePos[0] - entPos[0], curMousePos[1] - entPos[1] elif clickKey is 'mouse3up': pickedSensor = self.getPressedSensor( (curMousePos[0]+playState.panX, curMousePos[1]+playState.panY) ) if pickedSensor is not None: if self.removingMode: pickedSensor.kill() self.curGrabbedSens = None self.whereEntWasGrabbed = None elif curMousePos is not None: if self.curGrabbedSens is not None: curEnt = self.curGrabbedSens newPos = curMousePos[0]-self.whereEntWasGrabbed[0], curMousePos[1]-self.whereEntWasGrabbed[1] curEnt.setPosition( newPos )
Occuliner/ThisHackishMess
modules/menuentries/sensoredit.py
sensoredit.py
py
6,709
python
en
code
2
github-code
6
31373127129
# encoding=utf8 import datefinder from datetime import datetime import sys import csv import boto3 from data import Data from PIL import Image import pytesseract import cv2 import os import re class TestData: """docstring for TestData""" @staticmethod def get(): data = Data() data.set('Filename', 'in.jpg') data.set('Extracted text', 'abc xxx def') return data @staticmethod def extract(filename): """ with open('/home/ubuntu/date-extraction-from-image/credentials.csv', 'r') as input: next(input) reader = csv.reader(input) for line in reader: access_key_id = line[2] secret_access_key = line[3] """ access_key_id = 'AKIA6LRPMXT6S5TPPDIO' secret_access_key = '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' client = boto3.client('rekognition', aws_access_key_id=access_key_id, aws_secret_access_key=secret_access_key, region_name='us-east-1') UPLOADED_FILE = '/tmp/'+filename filename = "{}.png|jpeg|jpg".format(os.getpid()) with open(UPLOADED_FILE, 'rb') as source_image: source_bytes = source_image.read() response = client.detect_text(Image={'Bytes': source_bytes}) text = str(" ".join(re.findall(r"[a-z0-9\/\-\.\,]+", str(response), flags=re.I))).strip().title() text = re.sub(r"([a-z]+)([0-9]+)", r"\1 \2", text, flags=re.I) text = re.sub(r"([0-9]+)([a-z]+)", r"\1 \2", text, flags=re.I) l1=[] date=[] opt = dict() date_reg_exp2 = re.compile(r'detectedtext\s*[a-zA-Z0-9\s]{0,30}((?:(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:0[1-9]|1[0-2])(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2}))|(?:(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|(Nov|Dec)(?:ember)?)(?:\D)(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2}))|(?:(?:0[1-9]|1[0-2])(?:\D)(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2}))|(?:(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|(Nov|Dec)(?:ember)?)(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2})))',flags=re.I) line = re.search(date_reg_exp2, str(text)) if line: l1 =list(filter(None,line.groups())) newDate = [ x for x in datefinder.find_dates(l1[0]) ][0] date=re.split('[- / . ' ' ]',l1[0]) #opt["date"] = [date[2] + "/" + date[1] + "/" + date[0]] opt["Date"] = [ newDate.strftime("%Y - %m - %d") ] return opt else: opt['date'] = "date is not present" return opt # os.remove(filename) # return text
prasadbiradar/date-extraction-from-images
testdata.py
testdata.py
py
2,928
python
en
code
0
github-code
6
25849126163
import random import time from colorama import Back, Fore, init from SudokuF import * from SudokuT import * from Menus import * from Ahorcado import * lop = 0 while lop == 0: menuprincipal() opcionprincipal = input(Fore.BLUE + "[4] Finalizar: " + Fore.RESET) if opcionprincipal == "Fernando": #Easter egg newgame() if opcionprincipal == "Endgame": #Easter egg creditoss() exit() if opcionprincipal == "Ayuda": #Easter egg jueguito() if opcionprincipal == "Mario": from mario_level_1 import * if __name__ == '__main__': main() pg.quit() #sys.exit() numbers2 = opcionprincipal.split() while len(numbers2) != 1 or not numbers2[0].isdigit() or int(numbers2[0]) > 4 or int(numbers2[0]) < 1: print(Fore.RED + "...Opción incorrecta. Intente nuevamente." + Fore.RESET) opcionprincipal = input(Fore.BLUE + "[4] Finalizar: " + Fore.RESET) numbers2 = opcionprincipal.split() opcionprincipal = int(numbers2[0]) loop = True while loop == True: if opcionprincipal == 1: name = input(Fore.MAGENTA + "Nombre del jugador: " + Fore.RESET) name_tablero = input(Fore.LIGHTMAGENTA_EX +"Nombre del tablero: " + Fore.RESET) tablero = tableros() #[[1,3,4,5,8,9,2,6,7],[8,5,7,2,6,3,1,9,4],[9,6,2,1,4,7,8,3,5],[2,9,3,7,1,8,4,5,6],[5,4,1,3,2,6,7,8,9],[7,8,6,9,5,4,3,2,1],[4,7,9,8,3,5,6,1,2],[6,2,8,4,9,1,5,7,3],[3,1,5,6,7,2,9,4,0]] imprimeTablero(tablero, name_tablero) tablerverificar = [] for i in range(9): tablerverificar.append([]) for j in range(9): tablerverificar[i].append(tablero[i][j]) while not tableroCompleto(tablero): numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() while verificardigitosvalidos(numbers) == False: numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() x = int(numbers[0]) y = int(numbers[1]) d = int(numbers[2]) if verificarjugadavalida(tablero, x, y, d, tablerverificar) == True: tablero[x-1][y-1] = d imprimeTablero(tablero, name_tablero) if final(tablero, name, name_tablero) == True: loop = False elif opcionprincipal == 2: print("Desea cargar un tablero propio?") print("[1] Si") opcion = (input("[2] Cargar Tableros predefinidos: ")) while opcion != "1" and opcion != "2": print(Fore.RED + "Opción incorrecta. Intente nuevamente." + Fore.RESET) opcion = (input("[2] Cargar Tableros predefinidos: ")) opcion = int(opcion) if opcion == 1: vertablerosguardados() if opcion == 2: print() alltableros() numero = input("Ingrese el número del tablero que desea ver/jugar: ") while not numero.isdigit() or int(numero) > 10 or int(numero) < 1: print(Fore.RED + "Opción incorrecta. Intente nuevamente." + Fore.RESET) numero = input("Ingrese el número del tablero que desea ver/jugar: ") numero = int(numero) tablero = selecionartablero(numero) imprimeTablero(tablero, " ") print("Desea jugar este tablero?:") print("[1] Si") opcion = (input("[2] Regresar: ")) opcion = opcion.split() while len(opcion) != 1 or not opcion[0].isdigit() or int(opcion[0]) > 2 or int(opcion[0]) < 1: print(Fore.RED + "...Opción incorrecta. Intente nuevamente." + Fore.RESET) opcion = (input("[2] Regresar: ")) opcion = opcion.split() opcion = int(opcion[0]) # verificar que la opcion introducida sea valida if opcion == 1: tablerverificar = [] for i in range(9): tablerverificar.append([]) for j in range(9): tablerverificar[i].append(tablero[i][j]) imprimeTablero(tablero, name_tablero = "") while not tableroCompleto(tablero): numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() while verificardigitosvalidos(numbers) == False: numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() x = int(numbers[0]) y = int(numbers[1]) d = int(numbers[2]) if verificarjugadavalida(tablero, x, y, d, tablerverificar) == True: tablero[x-1][y-1] = d imprimeTablero(tablero, name_tablero = "") creditosfinales() print(Fore.MAGENTA + "Felicidades, has ganado el juego" + Fore.RESET) loop = False elif opcion == 2: print("volviendo al menu principal") loop = False elif opcionprincipal == 3: print("Selecione la dificultad del tablero") print(Fore.GREEN + "[1] Fácil" + Fore.RESET) print(Fore.YELLOW+ "[2] Medio" + Fore.RESET) print(Fore.RED + "[3] Difícil"+ Fore.RESET) opcion = (input("[4] Regresar: ")) while opcion != "1" and opcion != "2" and opcion != "3" and opcion != "4": print(Fore.RED + "Opción incorrecta. Intente nuevamente." + Fore.RESET) opcion = (input("[4] Regresar: ")) opcion = int(opcion) tablero = tablerodificultad(opcion) name = input(Fore.MAGENTA + "Nombre del jugador: " + Fore.RESET) name_tablero = input(Fore.LIGHTMAGENTA_EX +"Nombre del tablero: " + Fore.RESET) imprimeTablero(tablero, name_tablero) tablerverificar = [] for i in range(9): tablerverificar.append([]) for j in range(9): tablerverificar[i].append(tablero[i][j]) while not tableroCompleto(tablero): numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() while verificardigitosvalidos(numbers) == False: numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() x = int(numbers[0]) y = int(numbers[1]) d = int(numbers[2]) if verificarjugadavalida(tablero, x, y, d, tablerverificar) == True: tablero[x-1][y-1] = d imprimeTablero(tablero, name_tablero) if final(tablero, name, name_tablero) == True: loop = False elif opcionprincipal == 4: print(Fore.RED + "Gracias por jugar."+ Fore.RESET) exit()
K23NO/Soduko
Sudoku.py
Sudoku.py
py
7,562
python
es
code
0
github-code
6
40176574464
import re import urllib.parse from bs4 import BeautifulSoup from . import url def name(soup): title_bar = soup.find('div', {"class": "titleBar"}) name = title_bar.h1.text #logger.debug("parse_brewery_name: name: {}".format(name)) return name def beers(soup): baContent = soup.find("div", {"id":"ba-content"}) #logger.debug("parse_beers_from_brewery: ba-content: {}".format(baContent)) sortable_table = soup.find("table", {"class": "sortable"}) if not sortable_table: return [] t_body = sortable_table.tbody this_brewery_beers = [] for row in t_body: cols = row.find_all('td') beer = {} # Get Link and Name from 1st col #a = cols[0].find('a', href=re.compile('/beer/profile/')) a = cols[0].a link = a['href'] beer['id'] = url.beer_id(link) # NOTE The brewery ID is extracted from the link to every beer because # some places list beers that redirect to different breweries. beer['brewery_id'] = url.brewery_id(link) beer['name'] = a.text # Get Style from 2nd col beer['style'] = a = cols[1].a.text # Get ABV from 3rd col abv_text = cols[2].text try: beer['abv'] = float(abv_text) except: beer['abv'] = None # Get Ratings from 4th col ratings_text = cols[3].text try: beer['ratings'] = float(ratings_text) except: beer['ratings'] = None # Get Score from 5th col score_text = cols[4].text try: beer['score'] = float(score_text) except: beer['score'] = None this_brewery_beers.append(beer) return this_brewery_beers
JohnMcAninley/beer-goggles
scraper/src/parse/brewery.py
brewery.py
py
1,516
python
en
code
0
github-code
6
21527705720
from .models import Order, Customer from django.http import HttpResponse def cartData(request): try: customer = request.user.customer except: device = request.COOKIES['device'] customer, created = Customer.objects.get_or_create(device=device) order, created = Order.objects.get_or_create(customer=customer, complete=False) items = order.orderitem_set.all() counterCartItems = order.get_amount_of_items_cart cartItems = order.get_cart_items return {'cartItems': cartItems, 'counterCartItems': counterCartItems, 'customer': customer, 'order': order, 'items':items}
SonnyTopG/Ecommerce-Website
website/shop/utils.py
utils.py
py
618
python
en
code
0
github-code
6
4975361004
def is_pent(n): quad = (1 + (1+24 * n)**(1/2))/6 if quad == int(quad): return True return False def is_hex(n): quad = (1 + (1+ 8 * n)**(1/2))/4 if quad == int(quad): return True return False stop = False i = 286 while not stop: tn = i * (i+1) / 2 if is_hex(tn): if is_pent(tn): stop = True print('Tn: ',tn) i+=1 print(is_hex(7906276))
colinmiller94/Project_Euler
e45.py
e45.py
py
427
python
en
code
0
github-code
6
15974434638
# Api Agenda Lionx from src.infrastructures.mongo.mongo_infrastructure import MongoInfrastructure # Third party from decouple import config from pymongo.cursor import Cursor from pymongo.collection import InsertOneResult, UpdateResult class MongoRepository: def __init__(self): self.mongo_client = MongoInfrastructure.get_client() self.database = self.mongo_client.get_database(config("DATABASE_NAME")) self.collection = self.database.get_collection(config("COLLECTION_NAME")) def get_all_contacts(self) -> Cursor: remove_pymongo_id = {"_id": 0} contacts_cursor = self.collection.find({}, remove_pymongo_id) return contacts_cursor def get_contact_by_id(self, id) -> dict: filter_by_id = {"contact_id": id, "situation": "active"} remove_pymongo_id = {"_id": 0} contact = self.collection.find_one(filter_by_id, remove_pymongo_id) return contact def get_contacts_by_first_letters(self, letters) -> Cursor: regex_first_letters_contact = {"$regex": f"^{letters}", "$options": "i"} filter_by_first_name_letters = {"firstName": regex_first_letters_contact, "situation": "active"} remove_pymongo_id = {"_id": 0} contacts_cursor = self.collection.find(filter_by_first_name_letters, remove_pymongo_id) return contacts_cursor def register_contact(self, new_contact) -> InsertOneResult: insert_result = self.collection.insert_one(new_contact) return insert_result def update_contact(self, edited_contact, id) -> UpdateResult: filter_by_id = {"contact_id": id} new_values = {"$set": edited_contact} update_result = self.collection.update_one(filter_by_id, new_values) return update_result def soft_delete_contact(self, id) -> UpdateResult: filter_by_id = {"contact_id": id} field_to_update = {"$set": {"situation": "deactivated"}} update_result = self.collection.update_one(filter_by_id, field_to_update) return update_result
vinireeis/api_agenda_lionx
src/repositories/mongo/repository.py
repository.py
py
2,050
python
en
code
1
github-code
6
7368403785
#!/usr/bin/env python2.6 # -*- coding: utf-8 -*- # mainframe.py # Pomodoro # # Created by Roman Rader on 22.06.11. # New BSD License 2011 Antigluk https://github.com/antigluk/Pomodoro """ Contains main frame of application. """ import wx from state import PomodoroStateProxy as PomodoroState from NotificationCenter.NotificationCenter import NotificationCenter import logging logging.getLogger('Pomodoro') class MainFrameController(wx.Frame): """Main frame of Pomodoro""" def __init__(self): wx.Frame.__init__( self, None, -1, 'Pomodoro it!', style=wx.BORDER_DEFAULT | wx.STAY_ON_TOP, size=(220, 120), ) state = PomodoroState() self.__state_dict = { state.StateNoState: {'bs': '...'}, state.StateInPomodoro: {'bs': u"Отменить..."}, state.StateInRest: {'bs': u"Отдыхайте!"}, state.StateWaitingPomodoro: {'bs': u"Начать помидору"}, state.StateWaitingRest: {'bs': u"Начать отдых"}, state.StatePomodoroKilled: {'bs': u"Начать помидору"}, } self.buildFrame() self.updateUI() self.makeMenu() self.Show(False) NotificationCenter().addObserver(self,self.onDBUpdate,"dbUpdated") NotificationCenter().addObserver(self,self.onUpdateUI,"updateUI") def buildFrame(self): self.panel = wx.Panel(self) self.txt = wx.StaticText(self.panel, pos=(10, 10), label='Pomodoro!') self.times_l = wx.StaticText(self.panel, pos=(120, 10), label=u"0 помидор") self.timer_ctrl = wx.TextCtrl(self.panel, pos=(10, 30), size=(200, -1), style=wx.TE_READONLY | wx.TE_CENTER) self.start_button = wx.Button(self.panel, pos=(20, 70), label='' , size=(170, -1)) self.start_button.Bind(wx.EVT_BUTTON, self.bClick) def onUpdateUI(self, event): self.updateUI() def updateUI(self): #TODO: проверять видимо ли окно. иначе не обновлять #TODO: remove this ugly method state = PomodoroState() self.timer_ctrl.SetValue(state.text) self.start_button.SetLabel(self.__state_dict[state.active]['bs']) self.txt.SetLabel(state.caption) self.times_l.SetLabel(u"%d помидор" % state.GetTodayCount()) def bClick(self, m): logging.debug("Toggle state called from menu") self.controller.toggleState() def onExit(self,m): logging.debug("Quit called from menu") self.controller.quit() def makeMenu(self): self.menuBar = wx.MenuBar() self.filemenu = wx.Menu() self.pomodmenu = wx.Menu() item = self.filemenu.Append(wx.ID_ANY, "Hide") self.Bind(wx.EVT_MENU, self.hideFrame, item) item = self.filemenu.Append(wx.ID_ANY, "Toggle pomodoro") self.Bind(wx.EVT_MENU, self.bClick, item) self.filemenu.AppendSeparator() item = self.filemenu.Append(wx.ID_EXIT, "&Quit", "quit") self.Bind(wx.EVT_MENU, self.onExit, id=wx.ID_EXIT) item = self.pomodmenu.Append(wx.ID_ANY, "All", "List of pomodoros") self.Bind(wx.EVT_MENU, self.showListOfPomodoros, item) item = self.pomodmenu.Append(wx.ID_ANY, "Statistics", "Statistics") self.Bind(wx.EVT_MENU, self.showStatistics, item) self.menuBar.Append(self.filemenu, "&File") self.menuBar.Append(self.pomodmenu, "&Pomodors") self.SetMenuBar(self.menuBar) def onDBUpdate(self, obj): pass def hideFrame(self, m): logging.debug("Hide frame called from menu") self.Show(False) def showListOfPomodoros(self, m): logging.debug("Show list of pomodors called from menu") self.controller.showListOfPomodoros() def showStatistics(self, m): logging.debug("Show statistics of pomodors called from menu") self.controller.showStatistics()
rrader/Pomodoro
pomodoro/mainframe.py
mainframe.py
py
4,124
python
en
code
1
github-code
6
17600865196
#encoding:UTF-8 import urllib import urllib.request import json from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] import matplotlib.lines as mlines import numpy as np import time data = urllib.request.urlopen('https://stationdata.wunderground.com/cgi-bin/stationdata?iconsize=3&width=2048&height=2048&maxage=3600&format=json&maxstations=100000&rf_filter=1&minlat=38&minlon=-85&maxlat=48&maxlon=-73').read() record = data.decode('UTF-8') record = record.replace('},}', '}}') a = open("/Users/hsw/Desktop/CA_region_rawdata.txt", "w+") a.write(record) a.close() data = json.loads(record) #print(data) print(data['conds']) preprocess = data['conds'] station = [] T = [] lats = [] lons = [] for o in preprocess: id = str(o) station.append(preprocess[id]['id']) T.append(5/9*(float(preprocess[id]['tempf'])-32)) lats.append(float(preprocess[id]['lat'])) lons.append(float(preprocess[id]['lon'])) # ============================================ # plot # ============================================initialize the plot plt.figure(figsize=(11, 8), dpi=120) axes = plt.subplot(111) # set up map projection with # use low resolution coastlines. map = Basemap(llcrnrlon=-87, llcrnrlat=38, urcrnrlon=-73, urcrnrlat=48, \ rsphere=(6378137.00, 6356752.3142), \ resolution='i', projection='merc', \ lat_0=40., lon_0=-20., lat_ts=20.) # draw coastlines, country boundaries, fill continents. map.drawcoastlines(linewidth=0.25) map.drawcountries(linewidth=0.25) # draw the edge of the map projection region (the projection limb) map.drawmapboundary(fill_color='#87CEFA')#689CD2 # draw lat/lon grid lines every 30 degrees. #map.drawmeridians(np.arange(0, 360, 10)) map.drawmeridians(np.arange(0, 360, 10),labels=[0,0,0,1],fontsize=10) #map.drawparallels(np.arange(-90, 90, 10)) map.drawparallels(np.arange(-90, 90, 10),labels=[1,0,0,0],fontsize=10) # Fill continent wit a different color map.fillcontinents(color='#FFFFFF', lake_color='#EEEEEE', zorder=0) # ============================================draw the stations and data # compute native map projection coordinates of lat/lon grid. x, y = map(lons, lats) max_T = max(T) # Plot each city in a loop. # Set some parameters size_factor = 100.0 x_offset = 20.0 y_offset = -20.0 rotation = 0 temp=0 f = open("/Users/hsw/Desktop/CA_region_Tdata.txt", "w+") f.close() #draw station point analyze = '' for i, j, k, l in zip(x, y, T, station): temp = temp+1 size = size_factor * k / max_T if k <= -10.0 and k >= -100.0: cs1 = map.scatter(i, j, s=15, marker='o', color='#00008F') if -10 < k and k <= -5: cs2 = map.scatter(i, j, s=15, marker='o', color='#00009F') if -5 < k and k <= -2: cs3 = map.scatter(i, j, s=15, marker='o', color='#0000FF') if -2 < k and k <= 2: cs4 = map.scatter(i, j, s=15, marker='o', color='#006FFF') if 2 < k and k <= 6: cs5 = map.scatter(i, j, s=15, marker='o', color='#00BFFF') if 6 <= k and k <= 10: cs5 = map.scatter(i, j, s=15, marker='o', color='#00FFFF') if 10 <= k and k <= 14: cs5 = map.scatter(i, j, s=15, marker='o', color='#4FFFAF') if 14 <= k and k <= 18: cs5 = map.scatter(i, j, s=15, marker='o', color='#7FF77F') if 18 <= k and k <= 22: cs5 = map.scatter(i, j, s=15, marker='o', color='#FFFF00') if 22 <= k and k <= 26: cs5 = map.scatter(i, j, s=15, marker='o', color='#FFBF00') if 26 <= k and k <= 30: cs5 = map.scatter(i, j, s=15, marker='o', color='#FF6F00') if 30 <= k and k <= 35: cs5 = map.scatter(i, j, s=15, marker='o', color='#FF0000') if 35 < k and k <= 100: cs6 = map.scatter(i, j, s=15, marker='o', color='#7F0000') #if k != 9999: # plt.text(i, j, str(k) + '°C', rotation=rotation, fontsize=10) f = open("/Users/hsw/Desktop/CA_region_Tdata.txt", "a+") f.write(' Station:'+ l + ' Temperature:' + str(k) + '\n') f.close() title = '多伦多及附近地区气温分布图\n' + '数据更新时间:' + time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()- 8 * 60 * 60 * 1000)) + 'UTC\n数据来自:wunderground weather, 绘制@Louis_He' # ============================================#define legends a = mlines.Line2D([], [], color='#7F0000', marker='o', markersize=5, label='>35°C',ls='') b = mlines.Line2D([], [], color='#FF0000', marker='o', markersize=5, label='>30°C',ls='') c = mlines.Line2D([], [], color='#FF6F00', marker='o', markersize=5, label='26~30°C',ls='') d = mlines.Line2D([], [], color='#FFBF00', marker='o', markersize=5, label='22~26°C',ls='') e = mlines.Line2D([], [], color='#FFFF00', marker='o', markersize=5, label='18~22°C',ls='') f = mlines.Line2D([], [], color='#7FF77F', marker='o', markersize=5, label='14~18°C',ls='') g = mlines.Line2D([], [], color='#4FFFAF', marker='o', markersize=5, label='10~14°C',ls='') h = mlines.Line2D([], [], color='#00FFFF', marker='o', markersize=5, label='6~10°C',ls='') i = mlines.Line2D([], [], color='#00BFFF', marker='o', markersize=5, label='2~6°C',ls='') j = mlines.Line2D([], [], color='#006FFF', marker='o', markersize=5, label='-2~2°C',ls='') k = mlines.Line2D([], [], color='#0000FF', marker='o', markersize=5, label='-5~-2°C',ls='') l = mlines.Line2D([], [], color='#00009F', marker='o', markersize=5, label='-10~-5°C',ls='') m = mlines.Line2D([], [], color='#00008F', marker='o', markersize=5, label='<-10°C',ls='') plt.legend(handles=[b, c, d, e, f, g, h, i, j, k, l, m]) plt.title(title) save = '/Users/hsw/Desktop/CA_region_Tsample.png' plt.savefig(save, dpi=120)
Louis-He/weather_map
wunderground_weather.py
wunderground_weather.py
py
6,022
python
en
code
0
github-code
6
74903206266
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque class Solution: def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]: if not root: return [] queue = deque([root]) result = [] while queue: levelLength = len(queue) levelResult = [] for i in range(levelLength): current_node = queue.popleft() levelResult.append(current_node.val) if current_node.left: queue.append(current_node.left) if current_node.right: queue.append(current_node.right) result.append(levelResult) return result
eungang3/Leetcode
binary-tree-level-order-traversal/binary-tree-level-order-traversal.py
binary-tree-level-order-traversal.py
py
973
python
en
code
0
github-code
6
71836229628
from PyQt5 import QtCore, QtGui, QtWidgets class Ui_insertar(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(570, 518) self.verticalLayout = QtWidgets.QVBoxLayout(Form) self.verticalLayout.setObjectName("verticalLayout") self.groupBox = QtWidgets.QGroupBox(Form) self.groupBox.setFlat(True) self.groupBox.setObjectName("groupBox") self.verticalLayout_9 = QtWidgets.QVBoxLayout(self.groupBox) self.verticalLayout_9.setObjectName("verticalLayout_9") self.frame_11 = QtWidgets.QFrame(self.groupBox) self.frame_11.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_11.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_11.setObjectName("frame_11") self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.frame_11) self.horizontalLayout_5.setSizeConstraint(QtWidgets.QLayout.SetMinimumSize) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.verticalLayout_9.addWidget(self.frame_11) spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.verticalLayout_9.addItem(spacerItem) self.frame_12 = QtWidgets.QFrame(self.groupBox) self.frame_12.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_12.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_12.setObjectName("frame_12") self.verticalLayout_10 = QtWidgets.QVBoxLayout(self.frame_12) self.verticalLayout_10.setObjectName("verticalLayout_10") self.label_12 = QtWidgets.QLabel(self.frame_12) self.label_12.setFrameShadow(QtWidgets.QFrame.Plain) self.label_12.setAlignment(QtCore.Qt.AlignCenter) self.label_12.setObjectName("label_12") self.verticalLayout_10.addWidget(self.label_12) self.verticalLayout_9.addWidget(self.frame_12) self.frame_13 = QtWidgets.QFrame(self.groupBox) self.frame_13.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_13.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_13.setObjectName("frame_13") self.horizontalLayout_6 = QtWidgets.QHBoxLayout(self.frame_13) self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.frame_14 = QtWidgets.QFrame(self.frame_13) self.frame_14.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_14.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_14.setObjectName("frame_14") self.verticalLayout_11 = QtWidgets.QVBoxLayout(self.frame_14) self.verticalLayout_11.setObjectName("verticalLayout_11") self.label_13 = QtWidgets.QLabel(self.frame_14) self.label_13.setObjectName("label_13") self.verticalLayout_11.addWidget(self.label_13) self.label_14 = QtWidgets.QLabel(self.frame_14) self.label_14.setObjectName("label_14") self.verticalLayout_11.addWidget(self.label_14) self.label_15 = QtWidgets.QLabel(self.frame_14) self.label_15.setObjectName("label_15") self.verticalLayout_11.addWidget(self.label_15) self.horizontalLayout_6.addWidget(self.frame_14) self.frame_15 = QtWidgets.QFrame(self.frame_13) self.frame_15.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_15.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_15.setObjectName("frame_15") self.verticalLayout_12 = QtWidgets.QVBoxLayout(self.frame_15) self.verticalLayout_12.setObjectName("verticalLayout_12") self.text_act1 = QtWidgets.QLineEdit(self.frame_15) self.text_act1.setObjectName("text_act1") self.verticalLayout_12.addWidget(self.text_act1) self.text_act2 = QtWidgets.QLineEdit(self.frame_15) self.text_act2.setObjectName("text_act2") self.verticalLayout_12.addWidget(self.text_act2) self.text_act3 = QtWidgets.QLineEdit(self.frame_15) self.text_act3.setObjectName("text_act3") self.verticalLayout_12.addWidget(self.text_act3) self.horizontalLayout_6.addWidget(self.frame_15) self.frame_16 = QtWidgets.QFrame(self.frame_13) self.frame_16.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_16.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_16.setObjectName("frame_16") self.verticalLayout_13 = QtWidgets.QVBoxLayout(self.frame_16) self.verticalLayout_13.setObjectName("verticalLayout_13") self.label_16 = QtWidgets.QLabel(self.frame_16) self.label_16.setObjectName("label_16") self.verticalLayout_13.addWidget(self.label_16) self.label_17 = QtWidgets.QLabel(self.frame_16) self.label_17.setObjectName("label_17") self.verticalLayout_13.addWidget(self.label_17) self.label_18 = QtWidgets.QLabel(self.frame_16) self.label_18.setObjectName("label_18") self.verticalLayout_13.addWidget(self.label_18) self.horizontalLayout_6.addWidget(self.frame_16) self.frame_17 = QtWidgets.QFrame(self.frame_13) self.frame_17.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_17.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_17.setObjectName("frame_17") self.verticalLayout_14 = QtWidgets.QVBoxLayout(self.frame_17) self.verticalLayout_14.setObjectName("verticalLayout_14") self.text_act4 = QtWidgets.QLineEdit(self.frame_17) self.text_act4.setObjectName("text_act4") self.verticalLayout_14.addWidget(self.text_act4) self.text_act5 = QtWidgets.QLineEdit(self.frame_17) self.text_act5.setObjectName("text_act5") self.verticalLayout_14.addWidget(self.text_act5) self.text_act6 = QtWidgets.QLineEdit(self.frame_17) self.text_act6.setObjectName("text_act6") self.verticalLayout_14.addWidget(self.text_act6) self.horizontalLayout_6.addWidget(self.frame_17) self.verticalLayout_9.addWidget(self.frame_13) self.frame_18 = QtWidgets.QFrame(self.groupBox) self.frame_18.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_18.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_18.setObjectName("frame_18") self.verticalLayout_15 = QtWidgets.QVBoxLayout(self.frame_18) self.verticalLayout_15.setObjectName("verticalLayout_15") self.label_19 = QtWidgets.QLabel(self.frame_18) self.label_19.setAlignment(QtCore.Qt.AlignCenter) self.label_19.setObjectName("label_19") self.verticalLayout_15.addWidget(self.label_19) self.verticalLayout_9.addWidget(self.frame_18) self.frame_19 = QtWidgets.QFrame(self.groupBox) self.frame_19.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_19.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_19.setObjectName("frame_19") self.horizontalLayout_7 = QtWidgets.QHBoxLayout(self.frame_19) self.horizontalLayout_7.setObjectName("horizontalLayout_7") self.label_20 = QtWidgets.QLabel(self.frame_19) self.label_20.setObjectName("label_20") self.horizontalLayout_7.addWidget(self.label_20) self.text_estado = QtWidgets.QLineEdit(self.frame_19) self.text_estado.setObjectName("text_estado") self.horizontalLayout_7.addWidget(self.text_estado) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_7.addItem(spacerItem1) self.verticalLayout_9.addWidget(self.frame_19) self.verticalLayout.addWidget(self.groupBox) self.frame_10 = QtWidgets.QFrame(Form) self.frame_10.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_10.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_10.setObjectName("frame_10") self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.frame_10) self.horizontalLayout_4.setObjectName("horizontalLayout_4") spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem2) self.btn_guardar = QtWidgets.QPushButton(self.frame_10) self.btn_guardar.setObjectName("btn_guardar") self.horizontalLayout_4.addWidget(self.btn_guardar) spacerItem3 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem3) self.verticalLayout.addWidget(self.frame_10) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Insetar datos")) self.groupBox.setTitle(_translate("Form", "Insertar datos de entrenamiento")) self.label_12.setText(_translate("Form", "Para cada actividad, introduce \"A\" si aprobo, \"R\" si reprobo o \"NP\" si no presento.")) self.label_13.setText(_translate("Form", "Actividad 1:")) self.label_14.setText(_translate("Form", "Actividad 2:")) self.label_15.setText(_translate("Form", "Actividad 3:")) self.label_16.setText(_translate("Form", "Actividad 4:")) self.label_17.setText(_translate("Form", "Actividad 5:")) self.label_18.setText(_translate("Form", "Actividad 6:")) self.label_19.setText(_translate("Form", "Introduce \"SI\" o \"NO\"")) self.label_20.setText(_translate("Form", "Aprobo: ")) self.text_estado.setPlaceholderText(_translate("Form", "Ingrese \"SI\" o \"NO\"")) self.btn_guardar.setText(_translate("Form", "Guardar datos"))
JoseVale99/simulador_prediccion_desemepe-o
view/insertar.py
insertar.py
py
9,728
python
en
code
0
github-code
6
170942993
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from rp_ui_harness import RequestPolicyTestCase from marionette import expectedFailure from marionette_driver import Wait import re msg = ("Marionette -- test_logging_error_detection -- " "this test is expected to fail") class ErrorDetectionTests(object): ################ # Test Methods # ################ def test_normal_error(self, n=1): self.error_triggerer.trigger_error( "error", "backgroundscript", msg=msg) self._do_checks( n, r'^console.error:\s+\[RequestPolicy\] ' + msg + '$') def test_reference_error(self, n=1): self.error_triggerer.trigger_error( "ReferenceError", "backgroundscript") self._do_checks( n, ( r"^JavaScript error: " r"chrome://rpcontinued/content/ui-testing/services\.js, " r"line [0-9]+: ReferenceError: " ) ) def test_reference_error_in_promise_chain(self, n=1): self.error_triggerer.trigger_error( "ReferenceError:Promise", "backgroundscript") self._do_checks( n, ( r"^JavaScript error: " r"chrome://rpcontinued/content/ui-testing/services\.js, " r"line [0-9]+: ReferenceError: " ) ) ########################## # Private Helper Methods # ########################## def _do_checks(self, n, message_regexp): raise NotImplementedError class ErrorDetectionTestCase(RequestPolicyTestCase): expected_error = False def setUp(self): super(ErrorDetectionTestCase, self).setUp() self.gecko_log.start_ignoring_errors(expected=self.expected_error) def tearDown(self): try: self.gecko_log.stop_ignoring_errors() finally: super(ErrorDetectionTestCase, self).tearDown() class TestGeckoLog(ErrorDetectionTests, ErrorDetectionTestCase): def setUp(self): super(TestGeckoLog, self).setUp() self._assert_n_errors(0) ########################## # Private Helper Methods # ########################## def _do_checks(self, n, message_regexp): self._assert_n_errors(n) self._assert_error(message_regexp) def _get_error_lines_including_ignored_errors(self): return self.gecko_log.get_error_lines_of_current_test( return_ignored_as_well=True) def _get_error_lines(self): return self.gecko_log.get_error_lines_of_current_test() def _assert_n_errors(self, n): Wait(self.marionette).until( lambda _: ( len(self._get_error_lines_including_ignored_errors()) == n ) ) self.assertEqual(0, len(self._get_error_lines())) def _assert_error(self, message_regexp): error_lines = self._get_error_lines_including_ignored_errors() line = error_lines[-1] self.assertTrue( re.search(message_regexp, line), msg=("String \"" + line + "\" matched!")) class TestFailureOnTearDown(ErrorDetectionTests, ErrorDetectionTestCase): expected_error = True @expectedFailure def tearDown(self): super(TestFailureOnTearDown, self).tearDown() ########################## # Private Helper Methods # ########################## # Explicitly do *not* perform checks in _do_checks(), to test if the # TestRunner's tearDown fn waits long enough to detect all logging errors. def _do_checks(self, n, message_regexp): pass
RequestPolicyContinued/requestpolicy
tests/marionette/rp_puppeteer/tests-quick/test_error_detection.py
test_error_detection.py
py
3,791
python
en
code
253
github-code
6
73652353149
# 给你 二维 平面上两个 由直线构成且边与坐标轴平行/垂直 的矩形,请你计算并返回两个矩形覆盖的总面积。 # 每个矩形由其 左下 顶点和 右上 顶点坐标表示: # 第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。 # 第二个矩形由其左下顶点 (bx1, by1) 和右上顶点 (bx2, by2) 定义。 class Solution(object): def computeArea(self, ax1, ay1, ax2, ay2, bx1, by1, bx2, by2): """ :type ax1: int :type ay1: int :type ax2: int :type ay2: int :type bx1: int :type by1: int :type bx2: int :type by2: int :rtype: int """ lengthX = max(min(ax2, bx2) - max(ax1, bx1), 0) lengthY = max(min(ay2, by2) - max(ay1, by1), 0) area1 = (ax2 - ax1) * (ay2 - ay1) area2 = (bx2 - bx1) * (by2 - by1) return area1 + area2 - lengthX * lengthY ax1 = -3 ay1 = 0 ax2 = 3 ay2 = 4 bx1 = 0 by1 = -1 bx2 = 9 by2 = 2 a = Solution() print(a.computeArea(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2))
xxxxlc/leetcode
array/computeArea.py
computeArea.py
py
1,096
python
zh
code
0
github-code
6
16791541041
# -*- coding: utf-8 -*- """ Created on Wed Nov 23 12:32:47 2022 @author: maksi """ import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.datasets import load_digits from keras.models import Sequential from keras.layers import Dense from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split data = load_digits() X = data.data y = data.target y = pd.Categorical(y) y = pd.get_dummies(y).values class_num = y.shape[1] model = Sequential() model.add(Dense(64, input_shape = (X.shape[1],), activation = 'relu')) model.add(Dense(64, activation = 'relu')) model.add(Dense(64, activation = 'relu')) model.add(Dense(class_num, activation = 'softmax')) learning_rate = 0.0001 model.compile(optimizer= Adam(learning_rate), loss='categorical_crossentropy',metrics=('accuracy')) model.summary() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model.fit(X_train, y_train, batch_size=32, epochs=100, validation_data=(X_test, y_test), verbose=2) historia = model.history.history floss_train = historia['loss'] floss_test = historia['val_loss'] acc_train = historia['accuracy'] acc_test = historia['val_accuracy'] fig,ax = plt.subplots(1,2, figsize=(20,10)) epochs = np.arange(0, 100) ax[0].plot(epochs, floss_train, label = 'floss_train') ax[0].plot(epochs, floss_test, label = 'floss_test') ax[0].set_title('Funkcje strat') ax[0].legend() ax[1].set_title('Dokladnosci') ax[1].plot(epochs, acc_train, label = 'acc_train') ax[1].plot(epochs, acc_test, label = 'acc_test') ax[1].legend()
makspervov/Podstawy-SI-Python
lab5/lab5_zad2.py
lab5_zad2.py
py
1,785
python
en
code
0
github-code
6
30459355654
#!/usr/bin/python3 """ This is a file to print squares with a given number I am making up some words to get a better score I think """ def print_square(size): """Prints a square with a given size""" if type(size) is not int: TypeError("size must be an integer") if size < 0: ValueError("size must be >= 0") for i in range(size): for j in range(size): print("#", end="") print()
Ethan-23/holbertonschool-higher_level_programming
0x07-python-test_driven_development/4-print_square.py
4-print_square.py
py
440
python
en
code
0
github-code
6
11278711462
""" Here we test a basic strategy that includes an indicator and FX rate movements. We'll start with an ($100K) AUD denominated portfolio and buy 100 shares of SPY only if the VIX < 26. Also, buying in SPY will make us short USD. Generate funding trades, to be executed the day after we buy SPY, so that we aren't short USD. For the sake of testing we'll focus on the dates 1st Sep -> 1st Oct. Points to note: - We'll buy 100 shares of SPY @337.11 on Sep 14th VIX=25.85 - Hold until Oct 1st when SPY=337.04, AUDUSD=0.7167 - Because our portfolio is denominated in AUD we need to calculate AUD prices. - So buying SPY at 337.11 (Sep 14th price) / 0.729682 (fx 15th) = AUD 462 - And holding to a value of 337.04 / 0.716651 = AUD 470.30 - PNL will be $8.30 (= 470.30 - 462.00) for each of 100 shares purchased. """ from datetime import date import pandas as pd from pxtrade import Trade from pxtrade.assets import reset, Stock, Cash, FxRate, Portfolio from pxtrade.backtest import Backtest from pxtrade.strategy import Strategy from pxtrade.events.yahoo import load_yahoo_prices from pxtrade.compliance import Compliance, UnitLimit from pxtrade.history import History def test_buy_spy_with_indicator(): # create your stock and portfolio reset() spy = Stock("SPY", currency_code="USD") aud = Cash("AUD") usd = Cash("USD") audusd = FxRate("AUDUSD") portfolio = Portfolio("AUD") starting_value = 1e5 # start with $100K AUD portfolio.transfer(aud, starting_value) # impose a compliance rule so we are unable to # hold more than 100 shares. portfolio.compliance = Compliance().add_rule(UnitLimit(spy, 100)) # define a strategy to buy 100 shares of SPY # if we are short USD then also fund this shortfall with AUD class BuySpyWithIndicator(Strategy): def show(self, trades): if len(trades) == 0: return print(backtest.datetime) print("^VIX: ", backtest.get_indicator("^VIX")) print("AUDUSD: ", audusd.rate) print("SPY: ", spy.price) for trade in trades: print(trade) print("-------") def generate_trades(self): trades = list() usd_holding = portfolio.get_holding_units("USD") if usd_holding < 0: trades.append(Trade(portfolio, usd, int(-usd_holding) + 1)) if backtest.get_indicator("^VIX") >= 26: # don't buy any spy, just fund usd (if required) self.show(trades) return trades trades.append(Trade(portfolio, spy, 100)) self.show(trades) return trades # create your backtest instance backtest = Backtest(BuySpyWithIndicator()) history = History( portfolios=portfolio, backtest=backtest, ) # load price events from yahoo for spy, audusd, vix start_date = date(2020, 9, 1) end_date = date(2020, 10, 1) load_yahoo_prices( [spy, audusd, "^VIX"], backtest, start_date=start_date, end_date=end_date, ) # run the backtest and check pnl backtest.run() df = history.get() # print(portfolio) # print(audusd.rate) print(backtest.datetime) print(df) # Note that when running on windows the last FX rate we get from yahoo # is on the 30 Sep AUDUSD = 7.716651. However, running on linux we get # a price from 1 Oct of AUDUSD = 0.718288. # This looks to be an issue with the yahoo api, but it has implications # for our assertions around portfolio value. starting_aud_price = 462 # this has not changed ending_aud_price = 337.04 / audusd.rate expected_pnl = (ending_aud_price - starting_aud_price) * 100 expected_value = starting_value + expected_pnl assert round(portfolio.value, -1) == round(expected_value, -1) start_date = pd.Timestamp(start_date) end_date = pd.Timestamp(end_date) assert int(df.at[start_date, "Portfolio"]) == int(starting_value) assert round(df.at[end_date, "Portfolio"], -1) == round(expected_value, -1) assert round(df.at[pd.Timestamp(date(2020, 9, 14)), "^VIX"], 2) == 25.85
simongarisch/pxtrade
tests/test_strategy2.py
test_strategy2.py
py
4,212
python
en
code
2
github-code
6
17282581755
from pynput.keyboard import Listener, Key import time from threading import Thread from canvas import Canvas from pedal import Pedal from snake import Snake from ball import Ball import os def on_press(key): if hasattr(key, 'char'): # Write the character pressed if available print(key.char) elif key == Key.up: # If space was pressed, write a space print('up') snake.up() elif key == Key.down: # If space was pressed, write a space print('down') snake.down() elif key == Key.left: # If space was pressed, write a space print('left') snake.left() elif key == Key.right: # If space was pressed, write a space print('right') snake.right() canvas = Canvas(15, 50) snake = Snake(10, 5) snake.left() pedal = Pedal(1, 7) ball = Ball(8,7) gameover = False while(not gameover): with Listener(on_press=on_press) as ls: def time_out(period_sec: int): time.sleep(period_sec) # Listen to keyboard for period_sec seconds ls.stop() os.system('cls' if os.name == 'nt' else 'clear') Thread(target=time_out, args=(0.5,)).start() ls.join() #move entities ball.collision(canvas) ball.move() snake.move() pedal.move(canvas) canvas.clear() canvas.createBorder() if(snake.detectColission(canvas) or ball.getgameOver()): gameover = True #print entities canvas = snake.drawSnake(canvas) canvas = pedal.print(canvas) canvas = ball.print(canvas) canvas.print() print("your score: ",ball.score) os.system('cls' if os.name == 'nt' else 'clear') print("Loser your score was: ",ball.score)
devbit-algorithms/snakepong-snaka69
gameLoop.py
gameLoop.py
py
1,665
python
en
code
0
github-code
6
13918838862
# License LGPL-3.0 or later (https://www.gnu.org/licenses/lgpl.html). import time from collections import defaultdict from datetime import datetime from odoo import api, models class ManagementDashboard(models.Model): _name = 'management.dashboard' _description = "Project Management Dashboard" @api.model def get_task_chart_data(self): """ Map the Stage Colour and Name to id Returns: dictionary -- stage_id as key and details as value """ task_obj = self.env['project.task'] task_rec = task_obj.search([]) groups = defaultdict(list) for obj in task_rec: groups[obj.stage_id].append(obj) result = {} for rec in groups.items(): result.update({ rec[0].name: { 'count': len(rec[1]), 'color': rec[0].color, 'name': rec[0].name, }}) return result @api.model def get_config_values(self): """ To get the Colour value for dashboard. Using sudo env to bypass the access right. Returns: dictionary -- Dictionary of config colours. """ result = self.env['res.config.settings'].sudo().get_values() return { 'color_close_state': result.get('color_close_state', False), 'color_control_state': result.get('color_control_state', False), 'color_execute_state': result.get('color_execute_state', False), 'color_init_state': result.get('color_init_state', False), 'color_plan_state': result.get('color_plan_state', False), 'card_header_color': result.get('card_header_color', False), } @api.model def get_color_code(self, project): # 0:Green, 1:Orange, 2:Red open_task = 0 open_issue = 0 spent_budget = 0 pending_invoice = 0 # ('date_start', '>=', self._context.get('start_date')), # ('date_start', '<=', self._context.get('end_date')), project_tasks = self.env['project.task'].search( [('project_id', '=', project['id']), ('stage_id.name', 'not in', ("Done", "Completed", "Approval", "Canceled", "Closure", "Release", "Implementation")), ('date_end', '=', False)]) today_date = datetime.strptime( time.strftime('%Y-%m-%d'), '%Y-%m-%d').date() for task in project_tasks: if task.schedule_date: schedule_date = datetime.strptime( str(task.schedule_date), '%Y-%m-%d %H:%M:%S').date() daysdiff = (schedule_date - today_date).days if daysdiff <= 1: open_task = 2 if daysdiff <= 7 and daysdiff > 1 and open_task != 2: open_task = 1 if daysdiff > 7 and open_task not in (2, 1): open_task = 0 project_issues = self.env['helpdesk.ticket'].with_context( view_project_issues=1).search([ ('stage_id.closed', '!=', True), ('project_id.id', '=', project['id']), ('closed_date', '=', False)]) for issue in project_issues or []: if ((int(int(issue.ticket_aging)) > 30 and issue.priority == '0') or (int(issue.ticket_aging) > 10 and issue.priority == '1') or (int(issue.ticket_aging) > 2 and issue.priority in ('2', '3'))): open_issue = 2 if ((int(issue.ticket_aging) > 10 and int(issue.ticket_aging) <= 30 and issue.priority == '0') or (int(issue.ticket_aging) > 2 and int(issue.ticket_aging) <= 10 and issue.priority == '1') or (int(issue.ticket_aging) > 0 and int(issue.ticket_aging) <= 2 and issue.priority in ('2', '3')) and open_issue != 2): open_issue = 1 if ((int(issue.ticket_aging) <= 10 and issue.priority == '0') or (int(issue.ticket_aging) <= 2 and issue.priority == '1') or (int(issue.ticket_aging) == 0 and issue.priority in ('2', '3')) and open_issue not in (2, 1)): open_issue = 0 budget = 0 if project['spent_budget'] > 0 and project['actual_budget'] > 0: budget = ((project['spent_budget'] - project['actual_budget'])/project['actual_budget']) * 100 if budget > 30: spent_budget = 2 elif budget > 10 and budget <= 30: spent_budget = 1 elif budget <= 10: spent_budget = 0 invoices = self.env['timesheet.invoice'].search([ ('project_id', '=', project['id']), ('state', 'in', ('draft', 'confirm', 'pre-approved'))]) for inv in invoices or []: if int(inv.timesheet_inv_age) > 30: pending_invoice = 2 elif int(inv.timesheet_inv_age) > 10 and int(inv.timesheet_inv_age) < 30 and pending_invoice != 2: pending_invoice = 1 elif int(inv.timesheet_inv_age) < 10 and pending_invoice not in (2, 1): pending_invoice = 0 return { 'spent_budget': spent_budget, 'pending_invoice': pending_invoice, 'open_task': open_task, 'open_issue': open_issue} @api.model def get_treeview_id(self, view): return self.env.ref(view).id,
onesteinbv/ProjectManagement
management_dashboard/models/management_dashboard.py
management_dashboard.py
py
5,708
python
en
code
1
github-code
6
30059046061
from pyswarms.base.base_discrete import DiscreteSwarmBase import numpy as np from scipy.spatial import cKDTree class PerezPSO(DiscreteSwarmBase): def assertions(self): """Assertion method to check various inputs. Raises ------ KeyError When one of the required dictionary keys is missing. ValueError When the number of neighbors is not within the range :code:`[0, n_particles]`. When the p-value is not in the list of values :code:`[1,2]`. """ super(PerezPSO, self).assertions() if not all(key in self.options for key in ('k', 'p')): raise KeyError('Missing either k or p in options') if not 0 <= self.k <= self.n_particles: raise ValueError('No. of neighbors must be between 0 and no. of' 'particles.') if self.p not in [1, 2]: raise ValueError('p-value should either be 1 (for L1/Minkowski)' 'or 2 (for L2/Euclidean).') def __init__(self, n_particles, dimensions, alpha, options, velocity_clamp=None): """Initializes the swarm. Attributes ---------- n_particles : int number of particles in the swarm. dimensions : int number of dimensions in the space. velocity_clamp : tuple (default is :code:`None`) a tuple of size 2 where the first entry is the minimum velocity and the second entry is the maximum velocity. It sets the limits for velocity clamping. options : dict with keys :code:`{'c1', 'c2', 'k', 'p'}` a dictionary containing the parameters for the specific optimization technique * c1 : float cognitive parameter * c2 : float social parameter * w : float inertia parameter * k : int number of neighbors to be considered. Must be a positive integer less than :code:`n_particles` * p: int {1,2} the Minkowski p-norm to use. 1 is the sum-of-absolute values (or L1 distance) while 2 is the Euclidean (or L2) distance. """ # Initialize logger # self.logger = logging.getLogger(__name__) binary = False # Assign k-neighbors and p-value as attributes self.k, self.p = options['k'], options['p'] # Initialize parent class super(PerezPSO, self).__init__(n_particles, dimensions, binary, options, velocity_clamp) # Invoke assertions self.assertions() # Initialize the resettable attributes self.reset() # Set initial glo self.glo = np.full((1, self.dimensions), np.inf) self.glo_cost = np.inf self.y = np.full(self.n_particles, 0) self.alpha = alpha self.loc_pos = 0 def optimize(self, objective_func, iters, print_step=1, verbose=1): """Optimizes the swarm for a number of iterations. Performs the optimization to evaluate the objective function :code:`f` for a number of iterations :code:`iter.` Parameters ---------- objective_func : function objective function to be evaluated iters : int number of iterations print_step : int (the default is 1) amount of steps for printing into console. verbose : int (the default is 1) verbosity setting. Returns ------- tuple the local best cost and the local best position among the swarm. """ for i in range(iters): # Compute cost for current position and personal best current_cost = objective_func(self.pos) # Obtain the indices of the best position for each # neighbour-space, and get the local best cost and # local best positions from it. nmin_idx = self._get_neighbors(current_cost) # get index of loc for each neighborhood of the cur position self.best_cost = current_cost[nmin_idx] # the loc optimum cost for each particle cost_abs = np.abs(current_cost) loc_min = cost_abs.min() if loc_min < np.abs(self.glo_cost): pos_min_index = np.where(cost_abs == loc_min)[0][0] # index of pos min self.glo = self.pos[pos_min_index] self.glo_cost = current_cost[pos_min_index] del loc_min, cost_abs # Get the local min realative to each point self.loc_pos = self.pos[nmin_idx] self.y = self._get_y(self.loc_pos) # Perform position velocity update self._update_velocity() # must be called first self._update_position() care = r""" Iter: {} glo: {}, {} Cur_cost: {} loc_pos: {} nmin_idx: {} y: {} velocity: {} position: {} """.format(i, self.glo, self.glo_cost, current_cost, self.loc_pos, nmin_idx, self.y, self.velocity, self.pos) if i % print_step == 0: print(care + "\n\n") if all_eq(self.pos): break if self.glo_cost == 0: break # Obtain the final best_cost and the final best_position # final_best_cost_arg = np.argmin(self.best_cost) # final_best_cost = np.min(self.best_cost) # final_best_pos = self.best_pos[final_best_cost_arg] return self.glo_cost, self.glo def _get_neighbors(self, pbest_cost): """Helper function to obtain the best position found in the neighborhood. This uses the cKDTree method from :code:`scipy` to obtain the nearest neighbours Parameters ---------- pbest_cost : numpy.ndarray of size (n_particles, ) the cost incurred at the historically best position. Will be used for mapping the obtained indices to its actual cost. Returns ------- array of size (n_particles, ) dtype=int64 indices containing the best particles for each particle's neighbour-space that have the lowest cost """ # Use cKDTree to get the indices of the nearest neighbors tree = cKDTree(self.pos) _, idx = tree.query(self.pos, p=self.p, k=self.k) # Map the computed costs to the neighbour indices and take the # argmin. If k-neighbors is equal to 1, then the swarm acts # independently of each other. if self.k == 1: # The minimum index is itself, no mapping needed. best_neighbor = pbest_cost[idx][:, np.newaxis].argmin(axis=1) else: idx_min = pbest_cost[idx].argmin(axis=1) best_neighbor = idx[np.arange(len(idx)), idx_min] return best_neighbor def _update_velocity(self): """Updates the velocity matrix of the swarm. This method updates the attribute :code:`self.velocity` of the instantiated object. It is called by the :code:`self.optimize()` method. """ # Define the hyperparameters from options dictionary c1, c2, w = self.options['c1'], self.options['c2'], self.options['w'] # Compute for cognitive and social terms cognitive = (c1 * np.random.uniform(0, 1) * (-1 - self.y)) social = (c2 * np.random.uniform(0, 1) * (1 - self.y)) temp_velocity = (w * self.velocity) + cognitive + social # Create a mask to clamp the velocities if self.velocity_clamp is not None: # Create a mask depending on the set boundaries min_velocity, max_velocity = self.velocity_clamp[0], \ self.velocity_clamp[1] _b = np.logical_and(temp_velocity >= min_velocity, temp_velocity <= max_velocity) # Use the mask to finally clamp the velocities self.velocity = np.where(~_b, self.velocity, temp_velocity) else: self.velocity = temp_velocity def _update_position(self): """Updates the position matrix of the swarm. This method updates the attribute :code:`self.pos` of the instantiated object. It is called by the :code:`self.optimize()` method. """ del self.pos next_pos = np.random.randint(-2000, 2000, size=self.swarm_size) _decision = self.y + self.velocity # print("des: {}".format(_decision)) # mext_pos = np.where(_decision > self.alpha, self.glo, next_pos) # next_pos = np.where(_decision < self.alpha, self.loc_pos, next_pos) for i in range(self.n_particles): if _decision[i] > self.alpha: next_pos[i] = self.glo elif _decision[i] < -self.alpha: next_pos[i] = self.loc_pos[i] self.pos = next_pos def _get_y(self, loc): _y = np.array([]) for i in range(self.n_particles): if np.array_equal(self.glo, self.pos[i]): _y = np.concatenate((_y, [1])) elif np.array_equal(loc[i], self.pos[i]): _y = np.concatenate((_y, [-1])) else: _y = np.concatenate((_y, [0])) return _y def _sigmoid(self, x): """Helper sigmoid function. Inputs ------ x : numpy.ndarray Input vector to compute the sigmoid from Returns ------- numpy.ndarray Output sigmoid computation """ return 1 / (1 + np.exp(x)) def all_eq(position): first = position[0] for x in position: if not np.array_equal(x, first): return False return True if __name__ == "__main__": record_holder = np.fromstring("-1251 -555 -1024 1119 273 -1101 1728 -1835 3 1968 1375 139 -1051 -547 -1531 298") # -16047022661760 # print(record_holder) from Particle import majic_func as obj_func from pyswarms.utils.environments import PlotEnvironment file = open("best_record.txt", "a") for loop in range(10): test = PerezPSO(12345, 16, 0.3, {"k": 10, 'c1': 0.8, 'c2': 0.2, 'w': 0.75, 'p': 2}) test.pos = np.random.randint(-2000, 2000, size=test.swarm_size) test.velocity = np.full(test.n_particles, 0) # test.pos[0] = record_holder # print(test.pos) proposed = test.optimize(obj_func, iters=200, print_step=50) file.write("{}: {}\n\n".format(proposed[0], proposed[1])) file.close()
Ninalgad/PerezSwarm
base_discrete.py
base_discrete.py
py
10,842
python
en
code
1
github-code
6
33584979695
__author__ = 'Vivek' def nextPermutation(A): """ :param: List of integer :return : numerically next greater permutation of integers """ i = -1 last = False for k in range(len(A)-1) : if A[k] < A[k+1] : i = k if i == -1 : last = True j = -1 if not last : for k in range(len(A)) : if k > i and A[k] > A[i] : j = k A[i], A[j] = A[j], A[i] temp = A[i+1:] temp.reverse() temp1 = A[:i+1] temp1.extend(temp) return temp1 if last : A.reverse() return A print(nextPermutation([1,4,3,2])) # will return [2, 1, 3, 4] print(nextPermutation([1,2,3,4])) # Will return [1, 2, 4, 3]
viveksyngh/InterviewBit
Arrays/NEXTPERM.py
NEXTPERM.py
py
740
python
en
code
3
github-code
6
11859412516
import logging from copy import deepcopy from datetime import datetime, timedelta, timezone from pathlib import Path from typing import Any, Dict, List, Union from pandas import DataFrame, to_datetime from tabulate import tabulate from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT, Config) from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change, calculate_max_drawdown) from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename logger = logging.getLogger(__name__) def store_backtest_stats( recordfilename: Path, stats: Dict[str, DataFrame], dtappendix: str) -> None: """ Stores backtest results :param recordfilename: Path object, which can either be a filename or a directory. Filenames will be appended with a timestamp right before the suffix while for directories, <directory>/backtest-result-<datetime>.json will be used as filename :param stats: Dataframe containing the backtesting statistics :param dtappendix: Datetime to use for the filename """ if recordfilename.is_dir(): filename = (recordfilename / f'backtest-result-{dtappendix}.json') else: filename = Path.joinpath( recordfilename.parent, f'{recordfilename.stem}-{dtappendix}' ).with_suffix(recordfilename.suffix) # Store metadata separately. file_dump_json(get_backtest_metadata_filename(filename), stats['metadata']) del stats['metadata'] file_dump_json(filename, stats) latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN) file_dump_json(latest_filename, {'latest_backtest': str(filename.name)}) def store_backtest_signal_candles( recordfilename: Path, candles: Dict[str, Dict], dtappendix: str) -> Path: """ Stores backtest trade signal candles :param recordfilename: Path object, which can either be a filename or a directory. Filenames will be appended with a timestamp right before the suffix while for directories, <directory>/backtest-result-<datetime>_signals.pkl will be used as filename :param stats: Dict containing the backtesting signal candles :param dtappendix: Datetime to use for the filename """ if recordfilename.is_dir(): filename = (recordfilename / f'backtest-result-{dtappendix}_signals.pkl') else: filename = Path.joinpath( recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_signals.pkl' ) file_dump_joblib(filename, candles) return filename def _get_line_floatfmt(stake_currency: str) -> List[str]: """ Generate floatformat (goes in line with _generate_result_line()) """ return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f', '.2f', 'd', 's', 's'] def _get_line_header(first_column: str, stake_currency: str, direction: str = 'Entries') -> List[str]: """ Generate header lines (goes in line with _generate_result_line()) """ return [first_column, direction, 'Avg Profit %', 'Cum Profit %', f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration', 'Win Draw Loss Win%'] def generate_wins_draws_losses(wins, draws, losses): if wins > 0 and losses == 0: wl_ratio = '100' elif wins == 0: wl_ratio = '0' else: wl_ratio = f'{100.0 / (wins + draws + losses) * wins:.1f}' if losses > 0 else '100' return f'{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}' def _generate_result_line(result: DataFrame, starting_balance: int, first_column: str) -> Dict: """ Generate one result dict, with "first_column" as key. """ profit_sum = result['profit_ratio'].sum() # (end-capital - starting capital) / starting capital profit_total = result['profit_abs'].sum() / starting_balance return { 'key': first_column, 'trades': len(result), 'profit_mean': result['profit_ratio'].mean() if len(result) > 0 else 0.0, 'profit_mean_pct': result['profit_ratio'].mean() * 100.0 if len(result) > 0 else 0.0, 'profit_sum': profit_sum, 'profit_sum_pct': round(profit_sum * 100.0, 2), 'profit_total_abs': result['profit_abs'].sum(), 'profit_total': profit_total, 'profit_total_pct': round(profit_total * 100.0, 2), 'duration_avg': str(timedelta( minutes=round(result['trade_duration'].mean())) ) if not result.empty else '0:00', # 'duration_max': str(timedelta( # minutes=round(result['trade_duration'].max())) # ) if not result.empty else '0:00', # 'duration_min': str(timedelta( # minutes=round(result['trade_duration'].min())) # ) if not result.empty else '0:00', 'wins': len(result[result['profit_abs'] > 0]), 'draws': len(result[result['profit_abs'] == 0]), 'losses': len(result[result['profit_abs'] < 0]), } def generate_pair_metrics(pairlist: List[str], stake_currency: str, starting_balance: int, results: DataFrame, skip_nan: bool = False) -> List[Dict]: """ Generates and returns a list for the given backtest data and the results dataframe :param pairlist: Pairlist used :param stake_currency: stake-currency - used to correctly name headers :param starting_balance: Starting balance :param results: Dataframe containing the backtest results :param skip_nan: Print "left open" open trades :return: List of Dicts containing the metrics per pair """ tabular_data = [] for pair in pairlist: result = results[results['pair'] == pair] if skip_nan and result['profit_abs'].isnull().all(): continue tabular_data.append(_generate_result_line(result, starting_balance, pair)) # Sort by total profit %: tabular_data = sorted(tabular_data, key=lambda k: k['profit_total_abs'], reverse=True) # Append Total tabular_data.append(_generate_result_line(results, starting_balance, 'TOTAL')) return tabular_data def generate_tag_metrics(tag_type: str, starting_balance: int, results: DataFrame, skip_nan: bool = False) -> List[Dict]: """ Generates and returns a list of metrics for the given tag trades and the results dataframe :param starting_balance: Starting balance :param results: Dataframe containing the backtest results :param skip_nan: Print "left open" open trades :return: List of Dicts containing the metrics per pair """ tabular_data = [] if tag_type in results.columns: for tag, count in results[tag_type].value_counts().items(): result = results[results[tag_type] == tag] if skip_nan and result['profit_abs'].isnull().all(): continue tabular_data.append(_generate_result_line(result, starting_balance, tag)) # Sort by total profit %: tabular_data = sorted(tabular_data, key=lambda k: k['profit_total_abs'], reverse=True) # Append Total tabular_data.append(_generate_result_line(results, starting_balance, 'TOTAL')) return tabular_data else: return [] def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]: """ Generate small table outlining Backtest results :param max_open_trades: Max_open_trades parameter :param results: Dataframe containing the backtest result for one strategy :return: List of Dicts containing the metrics per Sell reason """ tabular_data = [] for reason, count in results['exit_reason'].value_counts().items(): result = results.loc[results['exit_reason'] == reason] profit_mean = result['profit_ratio'].mean() profit_sum = result['profit_ratio'].sum() profit_total = profit_sum / max_open_trades tabular_data.append( { 'exit_reason': reason, 'trades': count, 'wins': len(result[result['profit_abs'] > 0]), 'draws': len(result[result['profit_abs'] == 0]), 'losses': len(result[result['profit_abs'] < 0]), 'profit_mean': profit_mean, 'profit_mean_pct': round(profit_mean * 100, 2), 'profit_sum': profit_sum, 'profit_sum_pct': round(profit_sum * 100, 2), 'profit_total_abs': result['profit_abs'].sum(), 'profit_total': profit_total, 'profit_total_pct': round(profit_total * 100, 2), } ) return tabular_data def generate_strategy_comparison(bt_stats: Dict) -> List[Dict]: """ Generate summary per strategy :param bt_stats: Dict of <Strategyname: DataFrame> containing results for all strategies :return: List of Dicts containing the metrics per Strategy """ tabular_data = [] for strategy, result in bt_stats.items(): tabular_data.append(deepcopy(result['results_per_pair'][-1])) # Update "key" to strategy (results_per_pair has it as "Total"). tabular_data[-1]['key'] = strategy tabular_data[-1]['max_drawdown_account'] = result['max_drawdown_account'] tabular_data[-1]['max_drawdown_abs'] = round_coin_value( result['max_drawdown_abs'], result['stake_currency'], False) return tabular_data def generate_edge_table(results: dict) -> str: floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd') tabular_data = [] headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio', 'Required Risk Reward', 'Expectancy', 'Total Number of Trades', 'Average Duration (min)'] for result in results.items(): if result[1].nb_trades > 0: tabular_data.append([ result[0], result[1].stoploss, result[1].winrate, result[1].risk_reward_ratio, result[1].required_risk_reward, result[1].expectancy, result[1].nb_trades, round(result[1].avg_trade_duration) ]) # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def _get_resample_from_period(period: str) -> str: if period == 'day': return '1d' if period == 'week': return '1w' if period == 'month': return '1M' raise ValueError(f"Period {period} is not supported.") def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dict[str, Any]]: results = DataFrame.from_records(trade_list) if len(results) == 0: return [] results['close_date'] = to_datetime(results['close_date'], utc=True) resample_period = _get_resample_from_period(period) resampled = results.resample(resample_period, on='close_date') stats = [] for name, day in resampled: profit_abs = day['profit_abs'].sum().round(10) wins = sum(day['profit_abs'] > 0) draws = sum(day['profit_abs'] == 0) loses = sum(day['profit_abs'] < 0) stats.append( { 'date': name.strftime('%d/%m/%Y'), 'profit_abs': profit_abs, 'wins': wins, 'draws': draws, 'loses': loses } ) return stats def generate_trading_stats(results: DataFrame) -> Dict[str, Any]: """ Generate overall trade statistics """ if len(results) == 0: return { 'wins': 0, 'losses': 0, 'draws': 0, 'holding_avg': timedelta(), 'winner_holding_avg': timedelta(), 'loser_holding_avg': timedelta(), } winning_trades = results.loc[results['profit_ratio'] > 0] draw_trades = results.loc[results['profit_ratio'] == 0] losing_trades = results.loc[results['profit_ratio'] < 0] holding_avg = (timedelta(minutes=round(results['trade_duration'].mean())) if not results.empty else timedelta()) winner_holding_avg = (timedelta(minutes=round(winning_trades['trade_duration'].mean())) if not winning_trades.empty else timedelta()) loser_holding_avg = (timedelta(minutes=round(losing_trades['trade_duration'].mean())) if not losing_trades.empty else timedelta()) return { 'wins': len(winning_trades), 'losses': len(losing_trades), 'draws': len(draw_trades), 'holding_avg': holding_avg, 'holding_avg_s': holding_avg.total_seconds(), 'winner_holding_avg': winner_holding_avg, 'winner_holding_avg_s': winner_holding_avg.total_seconds(), 'loser_holding_avg': loser_holding_avg, 'loser_holding_avg_s': loser_holding_avg.total_seconds(), } def generate_daily_stats(results: DataFrame) -> Dict[str, Any]: """ Generate daily statistics """ if len(results) == 0: return { 'backtest_best_day': 0, 'backtest_worst_day': 0, 'backtest_best_day_abs': 0, 'backtest_worst_day_abs': 0, 'winning_days': 0, 'draw_days': 0, 'losing_days': 0, 'daily_profit_list': [], } daily_profit_rel = results.resample('1d', on='close_date')['profit_ratio'].sum() daily_profit = results.resample('1d', on='close_date')['profit_abs'].sum().round(10) worst_rel = min(daily_profit_rel) best_rel = max(daily_profit_rel) worst = min(daily_profit) best = max(daily_profit) winning_days = sum(daily_profit > 0) draw_days = sum(daily_profit == 0) losing_days = sum(daily_profit < 0) daily_profit_list = [(str(idx.date()), val) for idx, val in daily_profit.items()] return { 'backtest_best_day': best_rel, 'backtest_worst_day': worst_rel, 'backtest_best_day_abs': best, 'backtest_worst_day_abs': worst, 'winning_days': winning_days, 'draw_days': draw_days, 'losing_days': losing_days, 'daily_profit': daily_profit_list, } def generate_strategy_stats(pairlist: List[str], strategy: str, content: Dict[str, Any], min_date: datetime, max_date: datetime, market_change: float ) -> Dict[str, Any]: """ :param pairlist: List of pairs to backtest :param strategy: Strategy name :param content: Backtest result data in the format: {'results: results, 'config: config}}. :param min_date: Backtest start date :param max_date: Backtest end date :param market_change: float indicating the market change :return: Dictionary containing results per strategy and a strategy summary. """ results: Dict[str, DataFrame] = content['results'] if not isinstance(results, DataFrame): return {} config = content['config'] max_open_trades = min(config['max_open_trades'], len(pairlist)) start_balance = config['dry_run_wallet'] stake_currency = config['stake_currency'] pair_results = generate_pair_metrics(pairlist, stake_currency=stake_currency, starting_balance=start_balance, results=results, skip_nan=False) enter_tag_results = generate_tag_metrics("enter_tag", starting_balance=start_balance, results=results, skip_nan=False) exit_reason_stats = generate_exit_reason_stats(max_open_trades=max_open_trades, results=results) left_open_results = generate_pair_metrics( pairlist, stake_currency=stake_currency, starting_balance=start_balance, results=results.loc[results['exit_reason'] == 'force_exit'], skip_nan=True) daily_stats = generate_daily_stats(results) trade_stats = generate_trading_stats(results) best_pair = max([pair for pair in pair_results if pair['key'] != 'TOTAL'], key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None worst_pair = min([pair for pair in pair_results if pair['key'] != 'TOTAL'], key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None winning_profit = results.loc[results['profit_abs'] > 0, 'profit_abs'].sum() losing_profit = results.loc[results['profit_abs'] < 0, 'profit_abs'].sum() profit_factor = winning_profit / abs(losing_profit) if losing_profit else 0.0 backtest_days = (max_date - min_date).days or 1 strat_stats = { 'trades': results.to_dict(orient='records'), 'locks': [lock.to_json() for lock in content['locks']], 'best_pair': best_pair, 'worst_pair': worst_pair, 'results_per_pair': pair_results, 'results_per_enter_tag': enter_tag_results, 'exit_reason_summary': exit_reason_stats, 'left_open_trades': left_open_results, # 'days_breakdown_stats': days_breakdown_stats, 'total_trades': len(results), 'trade_count_long': len(results.loc[~results['is_short']]), 'trade_count_short': len(results.loc[results['is_short']]), 'total_volume': float(results['stake_amount'].sum()), 'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0, 'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0, 'profit_median': results['profit_ratio'].median() if len(results) > 0 else 0, 'profit_total': results['profit_abs'].sum() / start_balance, 'profit_total_long': results.loc[~results['is_short'], 'profit_abs'].sum() / start_balance, 'profit_total_short': results.loc[results['is_short'], 'profit_abs'].sum() / start_balance, 'profit_total_abs': results['profit_abs'].sum(), 'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(), 'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(), 'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']), 'profit_factor': profit_factor, 'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT), 'backtest_start_ts': int(min_date.timestamp() * 1000), 'backtest_end': max_date.strftime(DATETIME_PRINT_FORMAT), 'backtest_end_ts': int(max_date.timestamp() * 1000), 'backtest_days': backtest_days, 'backtest_run_start_ts': content['backtest_start_time'], 'backtest_run_end_ts': content['backtest_end_time'], 'trades_per_day': round(len(results) / backtest_days, 2), 'market_change': market_change, 'pairlist': pairlist, 'stake_amount': config['stake_amount'], 'stake_currency': config['stake_currency'], 'stake_currency_decimals': decimals_per_coin(config['stake_currency']), 'starting_balance': start_balance, 'dry_run_wallet': start_balance, 'final_balance': content['final_balance'], 'rejected_signals': content['rejected_signals'], 'timedout_entry_orders': content['timedout_entry_orders'], 'timedout_exit_orders': content['timedout_exit_orders'], 'canceled_trade_entries': content['canceled_trade_entries'], 'canceled_entry_orders': content['canceled_entry_orders'], 'replaced_entry_orders': content['replaced_entry_orders'], 'max_open_trades': max_open_trades, 'max_open_trades_setting': (config['max_open_trades'] if config['max_open_trades'] != float('inf') else -1), 'timeframe': config['timeframe'], 'timeframe_detail': config.get('timeframe_detail', ''), 'timerange': config.get('timerange', ''), 'enable_protections': config.get('enable_protections', False), 'strategy_name': strategy, # Parameters relevant for backtesting 'stoploss': config['stoploss'], 'trailing_stop': config.get('trailing_stop', False), 'trailing_stop_positive': config.get('trailing_stop_positive'), 'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset', 0.0), 'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False), 'use_custom_stoploss': config.get('use_custom_stoploss', False), 'minimal_roi': config['minimal_roi'], 'use_exit_signal': config['use_exit_signal'], 'exit_profit_only': config['exit_profit_only'], 'exit_profit_offset': config['exit_profit_offset'], 'ignore_roi_if_entry_signal': config['ignore_roi_if_entry_signal'], **daily_stats, **trade_stats } try: max_drawdown_legacy, _, _, _, _, _ = calculate_max_drawdown( results, value_col='profit_ratio') (drawdown_abs, drawdown_start, drawdown_end, high_val, low_val, max_drawdown) = calculate_max_drawdown( results, value_col='profit_abs', starting_balance=start_balance) # max_relative_drawdown = Underwater (_, _, _, _, _, max_relative_drawdown) = calculate_max_drawdown( results, value_col='profit_abs', starting_balance=start_balance, relative=True) strat_stats.update({ 'max_drawdown': max_drawdown_legacy, # Deprecated - do not use 'max_drawdown_account': max_drawdown, 'max_relative_drawdown': max_relative_drawdown, 'max_drawdown_abs': drawdown_abs, 'drawdown_start': drawdown_start.strftime(DATETIME_PRINT_FORMAT), 'drawdown_start_ts': drawdown_start.timestamp() * 1000, 'drawdown_end': drawdown_end.strftime(DATETIME_PRINT_FORMAT), 'drawdown_end_ts': drawdown_end.timestamp() * 1000, 'max_drawdown_low': low_val, 'max_drawdown_high': high_val, }) csum_min, csum_max = calculate_csum(results, start_balance) strat_stats.update({ 'csum_min': csum_min, 'csum_max': csum_max }) except ValueError: strat_stats.update({ 'max_drawdown': 0.0, 'max_drawdown_account': 0.0, 'max_relative_drawdown': 0.0, 'max_drawdown_abs': 0.0, 'max_drawdown_low': 0.0, 'max_drawdown_high': 0.0, 'drawdown_start': datetime(1970, 1, 1, tzinfo=timezone.utc), 'drawdown_start_ts': 0, 'drawdown_end': datetime(1970, 1, 1, tzinfo=timezone.utc), 'drawdown_end_ts': 0, 'csum_min': 0, 'csum_max': 0 }) return strat_stats def generate_backtest_stats(btdata: Dict[str, DataFrame], all_results: Dict[str, Dict[str, Union[DataFrame, Dict]]], min_date: datetime, max_date: datetime ) -> Dict[str, Any]: """ :param btdata: Backtest data :param all_results: backtest result - dictionary in the form: { Strategy: {'results: results, 'config: config}}. :param min_date: Backtest start date :param max_date: Backtest end date :return: Dictionary containing results per strategy and a strategy summary. """ result: Dict[str, Any] = { 'metadata': {}, 'strategy': {}, 'strategy_comparison': [], } market_change = calculate_market_change(btdata, 'close') metadata = {} pairlist = list(btdata.keys()) for strategy, content in all_results.items(): strat_stats = generate_strategy_stats(pairlist, strategy, content, min_date, max_date, market_change=market_change) metadata[strategy] = { 'run_id': content['run_id'], 'backtest_start_time': content['backtest_start_time'], } result['strategy'][strategy] = strat_stats strategy_results = generate_strategy_comparison(bt_stats=result['strategy']) result['metadata'] = metadata result['strategy_comparison'] = strategy_results return result ### # Start output section ### def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str: """ Generates and returns a text table for the given backtest data and the results dataframe :param pair_results: List of Dictionaries - one entry per pair + final TOTAL row :param stake_currency: stake-currency - used to correctly name headers :return: pretty printed table with tabulate as string """ headers = _get_line_header('Pair', stake_currency) floatfmt = _get_line_floatfmt(stake_currency) output = [[ t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'], t['duration_avg'], generate_wins_draws_losses(t['wins'], t['draws'], t['losses']) ] for t in pair_results] # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(output, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str: """ Generate small table outlining Backtest results :param sell_reason_stats: Exit reason metrics :param stake_currency: Stakecurrency used :return: pretty printed table with tabulate as string """ headers = [ 'Exit Reason', 'Exits', 'Win Draws Loss Win%', 'Avg Profit %', 'Cum Profit %', f'Tot Profit {stake_currency}', 'Tot Profit %', ] output = [[ t.get('exit_reason', t.get('sell_reason')), t['trades'], generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), t['profit_mean_pct'], t['profit_sum_pct'], round_coin_value(t['profit_total_abs'], stake_currency, False), t['profit_total_pct'], ] for t in exit_reason_stats] return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right") def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str: """ Generates and returns a text table for the given backtest data and the results dataframe :param pair_results: List of Dictionaries - one entry per pair + final TOTAL row :param stake_currency: stake-currency - used to correctly name headers :return: pretty printed table with tabulate as string """ if (tag_type == "enter_tag"): headers = _get_line_header("TAG", stake_currency) else: headers = _get_line_header("TAG", stake_currency, 'Exits') floatfmt = _get_line_floatfmt(stake_currency) output = [ [ t['key'] if t['key'] is not None and len( t['key']) > 0 else "OTHER", t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'], t['duration_avg'], generate_wins_draws_losses( t['wins'], t['draws'], t['losses'])] for t in tag_results] # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(output, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]], stake_currency: str, period: str) -> str: """ Generate small table with Backtest results by days :param days_breakdown_stats: Days breakdown metrics :param stake_currency: Stakecurrency used :return: pretty printed table with tabulate as string """ headers = [ period.capitalize(), f'Tot Profit {stake_currency}', 'Wins', 'Draws', 'Losses', ] output = [[ d['date'], round_coin_value(d['profit_abs'], stake_currency, False), d['wins'], d['draws'], d['loses'], ] for d in days_breakdown_stats] return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right") def text_table_strategy(strategy_results, stake_currency: str) -> str: """ Generate summary table per strategy :param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies :param stake_currency: stake-currency - used to correctly name headers :return: pretty printed table with tabulate as string """ floatfmt = _get_line_floatfmt(stake_currency) headers = _get_line_header('Strategy', stake_currency) # _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless # therefore we slip this column in only for strategy summary here. headers.append('Drawdown') # Align drawdown string on the center two space separator. if 'max_drawdown_account' in strategy_results[0]: drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results] else: # Support for prior backtest results drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results] dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results]) dd_pad_per = max([len(dd) for dd in drawdown]) drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%' for t, dd in zip(strategy_results, drawdown)] output = [[ t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'], t['duration_avg'], generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), drawdown] for t, drawdown in zip(strategy_results, drawdown)] # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(output, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def text_table_add_metrics(strat_results: Dict) -> str: if len(strat_results['trades']) > 0: best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio']) worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio']) short_metrics = [ ('', ''), # Empty line to improve readability ('Long / Short', f"{strat_results.get('trade_count_long', 'total_trades')} / " f"{strat_results.get('trade_count_short', 0)}"), ('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"), ('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"), ('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'], strat_results['stake_currency'])), ('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'], strat_results['stake_currency'])), ] if strat_results.get('trade_count_short', 0) > 0 else [] drawdown_metrics = [] if 'max_relative_drawdown' in strat_results: # Compatibility to show old hyperopt results drawdown_metrics.append( ('Max % of account underwater', f"{strat_results['max_relative_drawdown']:.2%}") ) drawdown_metrics.extend([ ('Absolute Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}") if 'max_drawdown_account' in strat_results else ( 'Drawdown', f"{strat_results['max_drawdown']:.2%}"), ('Absolute Drawdown', round_coin_value(strat_results['max_drawdown_abs'], strat_results['stake_currency'])), ('Drawdown high', round_coin_value(strat_results['max_drawdown_high'], strat_results['stake_currency'])), ('Drawdown low', round_coin_value(strat_results['max_drawdown_low'], strat_results['stake_currency'])), ('Drawdown Start', strat_results['drawdown_start']), ('Drawdown End', strat_results['drawdown_end']), ]) entry_adjustment_metrics = [ ('Canceled Trade Entries', strat_results.get('canceled_trade_entries', 'N/A')), ('Canceled Entry Orders', strat_results.get('canceled_entry_orders', 'N/A')), ('Replaced Entry Orders', strat_results.get('replaced_entry_orders', 'N/A')), ] if strat_results.get('canceled_entry_orders', 0) > 0 else [] # Newly added fields should be ignored if they are missing in strat_results. hyperopt-show # command stores these results and newer version of freqtrade must be able to handle old # results with missing new fields. metrics = [ ('Backtesting from', strat_results['backtest_start']), ('Backtesting to', strat_results['backtest_end']), ('Max open trades', strat_results['max_open_trades']), ('', ''), # Empty line to improve readability ('Total/Daily Avg Trades', f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"), ('Starting balance', round_coin_value(strat_results['starting_balance'], strat_results['stake_currency'])), ('Final balance', round_coin_value(strat_results['final_balance'], strat_results['stake_currency'])), ('Absolute profit ', round_coin_value(strat_results['profit_total_abs'], strat_results['stake_currency'])), ('Total profit %', f"{strat_results['profit_total']:.2%}"), ('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'), ('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor' in strat_results else 'N/A'), ('Trades per day', strat_results['trades_per_day']), ('Avg. daily profit %', f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"), ('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'], strat_results['stake_currency'])), ('Total trade volume', round_coin_value(strat_results['total_volume'], strat_results['stake_currency'])), *short_metrics, ('', ''), # Empty line to improve readability ('Best Pair', f"{strat_results['best_pair']['key']} " f"{strat_results['best_pair']['profit_sum']:.2%}"), ('Worst Pair', f"{strat_results['worst_pair']['key']} " f"{strat_results['worst_pair']['profit_sum']:.2%}"), ('Best trade', f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"), ('Worst trade', f"{worst_trade['pair']} " f"{worst_trade['profit_ratio']:.2%}"), ('Best day', round_coin_value(strat_results['backtest_best_day_abs'], strat_results['stake_currency'])), ('Worst day', round_coin_value(strat_results['backtest_worst_day_abs'], strat_results['stake_currency'])), ('Days win/draw/lose', f"{strat_results['winning_days']} / " f"{strat_results['draw_days']} / {strat_results['losing_days']}"), ('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"), ('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"), ('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')), ('Entry/Exit Timeouts', f"{strat_results.get('timedout_entry_orders', 'N/A')} / " f"{strat_results.get('timedout_exit_orders', 'N/A')}"), *entry_adjustment_metrics, ('', ''), # Empty line to improve readability ('Min balance', round_coin_value(strat_results['csum_min'], strat_results['stake_currency'])), ('Max balance', round_coin_value(strat_results['csum_max'], strat_results['stake_currency'])), *drawdown_metrics, ('Market change', f"{strat_results['market_change']:.2%}"), ] return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl") else: start_balance = round_coin_value(strat_results['starting_balance'], strat_results['stake_currency']) stake_amount = round_coin_value( strat_results['stake_amount'], strat_results['stake_currency'] ) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited' message = ("No trades made. " f"Your starting balance was {start_balance}, " f"and your stake was {stake_amount}." ) return message def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str, backtest_breakdown=[]): """ Print results for one strategy """ # Print results print(f"Result for strategy {strategy}") table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency) if isinstance(table, str): print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '=')) print(table) if (results.get('results_per_enter_tag') is not None or results.get('results_per_buy_tag') is not None): # results_per_buy_tag is deprecated and should be removed 2 versions after short golive. table = text_table_tags( "enter_tag", results.get('results_per_enter_tag', results.get('results_per_buy_tag')), stake_currency=stake_currency) if isinstance(table, str) and len(table) > 0: print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '=')) print(table) exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary')) table = text_table_exit_reason(exit_reason_stats=exit_reasons, stake_currency=stake_currency) if isinstance(table, str) and len(table) > 0: print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '=')) print(table) table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency) if isinstance(table, str) and len(table) > 0: print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '=')) print(table) for period in backtest_breakdown: days_breakdown_stats = generate_periodic_breakdown_stats( trade_list=results['trades'], period=period) table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats, stake_currency=stake_currency, period=period) if isinstance(table, str) and len(table) > 0: print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '=')) print(table) table = text_table_add_metrics(results) if isinstance(table, str) and len(table) > 0: print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '=')) print(table) if isinstance(table, str) and len(table) > 0: print('=' * len(table.splitlines()[0])) print() def show_backtest_results(config: Config, backtest_stats: Dict): stake_currency = config['stake_currency'] for strategy, results in backtest_stats['strategy'].items(): show_backtest_result( strategy, results, stake_currency, config.get('backtest_breakdown', [])) if len(backtest_stats['strategy']) > 1: # Print Strategy summary table table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency) print(f"{results['backtest_start']} -> {results['backtest_end']} |" f" Max open trades : {results['max_open_trades']}") print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '=')) print(table) print('=' * len(table.splitlines()[0])) print('\nFor more details, please look at the detail tables above') def show_sorted_pairlist(config: Config, backtest_stats: Dict): if config.get('backtest_show_pair_list', False): for strategy, results in backtest_stats['strategy'].items(): print(f"Pairs for Strategy {strategy}: \n[") for result in results['results_per_pair']: if result["key"] != 'TOTAL': print(f'"{result["key"]}", // {result["profit_mean"]:.2%}') print("]")
robcaulk/freqai
freqtrade/optimize/optimize_reports.py
optimize_reports.py
py
41,632
python
en
code
42
github-code
6
71601601789
def tabung ( b, c): volume = 22/7 * b * c luas = 2*22/7*b*(b + c) return volume,luas def balok ( a, b , c): volume = a * b * c return volume def main(): ma = input("masukkan yang ingin di pake rumus (tabung, balok): ") if ma == "tabung": b = float(input("masukkan jari")) c = float(input("masukkan tinggi")) volume, luas = tabung( b, c) elif ma == "balok": a = float(input("panjang : ")) b = float(input("lebar : ")) c = float(input("tinggi")) volume =balok (a, b, c) else: print("Tidak ada rumus.") return print(f"volume: {volume}") print(f"luas: {luas}") if __name__ == "__main__": main()
MErlanggaa/Tugas
Python/tugas/menghitungtabungdanbalok.py
menghitungtabungdanbalok.py
py
733
python
id
code
0
github-code
6
41457469135
""" flaskr.utils.db ~~~~~~~~~~~~~~~ Utilities for database operations. """ import sqlite3 from typing import List, Optional from datetime import datetime, timezone from flask import g from flask import current_app from flaskr.utils.node import Node def convert_timestamp(t): return datetime.fromisoformat(t.decode()).replace(tzinfo=timezone.utc).timestamp() # Register the converter sqlite3.register_converter("timestamp", convert_timestamp) def get_db(): """Connect to the application's configured database. The connection is unique for each request and will be reused if this is called again. """ if "db" not in g: g.db = sqlite3.connect( current_app.config["DATABASE"], detect_types=sqlite3.PARSE_DECLTYPES ) g.db.row_factory = sqlite3.Row return g.db def close_db(e=None): """If this request connected to the database, close the connection. """ db = g.pop("db", None) if db is not None: db.close() def init_db(app): """Clear existing data and create new tables.""" with app.app_context(): db = get_db() with app.open_resource("schema.sql") as f: db.executescript(f.read().decode("utf8")) def init_app(app): """Register database functions with the Flask app. This is called by the application factory. """ app.teardown_appcontext(close_db) # modified from https://github.com/matthiask/django-tree-queries/blob/8863c5237f32585cc5ddc21041231155cb806149/tree_queries/compiler.py#L120 CTE = """WITH RECURSIVE __tree(tree_depth, tree_path, tree_ordering, tree_pk) AS ( SELECT 0 tree_depth, printf("%s ", id) tree_path, printf(" %020s ", id) tree_ordering, T.id tree_pk FROM comment T WHERE T.parent_id IS NULL UNION ALL SELECT __tree.tree_depth + 1, __tree.tree_path || printf("%s ", T.id), __tree.tree_ordering || printf("%020s ", T.id), T.id FROM comment T JOIN __tree ON T.parent_id = __tree.tree_pk ) SELECT comment.id, comment.parent_id, comment.post_id, comment.body, comment.created, comment.author_id, user.username as author_name, -- __tree.tree_depth __tree.tree_path FROM __tree JOIN comment ON comment.id=__tree.tree_pk JOIN user ON user.id=comment.author_id WHERE comment.post_id=? -- AND instr(__tree.tree_path, '3') !=0 ORDER BY __tree.tree_ordering; """ def get_all_comments(post_id: int) -> List[Node]: root_nodes = Node.build_from_cte_rows(get_db().execute(CTE, (post_id, ))) return list(root_nodes) def put_in_child(parent: dict, child: dict): if 'children' in parent: parent['children'].append(child) else: parent['children'] = [child] def get_post(post_id, with_comments=True) -> Optional[dict]: """Get a post and its author by id. :param post_id: id of post to get :param with_comments: if return with comments :return: the post with author information """ post = ( get_db() .execute( "SELECT p.id, title, body, created, author_id, username" " FROM post p JOIN user u ON p.author_id = u.id" " WHERE p.id = ?", (post_id,), ) .fetchone() ) if post is None: return None if with_comments: comments = get_all_comments(post_id=post['id']) return dict(post) | dict(comments=comments) else: return dict(post) def get_all_posts(): db = get_db() rst = [] for post in db.execute( "SELECT p.id, title, body, created, author_id, username as author_name" " FROM post p JOIN user u ON p.author_id = u.id" " ORDER BY p.created DESC, p.id DESC" ): rst.append(dict(post) | dict(comments=get_all_comments(post["id"]))) return rst
MioYvo/unlimited-level-messages
backend/flaskr/utils/db.py
db.py
py
3,870
python
en
code
0
github-code
6
12830935610
class Solution: def isSubsequence(self, s: str, t: str) -> bool: if len(s) > len(t): return False if len(s) == 0: return True index_s = 0 for char_t in t: if char_t == s[index_s]: index_s += 1 if index_s == len(s): return True return False print(Solution().isSubsequence("abcc", "ahbgdc"))
theRobertSan/LeetCode-Solutions-Python
392.py
392.py
py
426
python
en
code
1
github-code
6
42012547996
# python 3 has different package names try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse from collections import defaultdict def _new_collection(): """ Collection data type is {path: {method: (ResponseClass,) }} So e.g. a POST request to http://venmo.com/feed is stored as {'/feed': {'POST': (ResponseClass,)}} the ResponseClass will have had the the constructor partially applied with the specified stubbed data so after finding it we finish instantiatiing with the request we received and return it. Why? So the request attribute on the response is the request that was made, not just the matching criteria in the stub """ return defaultdict(lambda: defaultdict(lambda: ())) class RequestCollection(object): _requests = _new_collection() @classmethod def add(cls, request, response): parsed = urlparse(request.url) cls._requests[parsed.path][request.method] = \ cls._requests[parsed.path][request.method] + (response,) @classmethod def find(cls, request): parsed = urlparse(request.url) responses = cls._requests[parsed.path][request.method] if len(responses) > 0: head = responses[0] cls._requests[parsed.path][request.method] = \ cls._requests[parsed.path][request.method][1:] + (head,) else: head = None return head @classmethod def remove(cls, request): parsed = urlparse(request.url) del cls._requests[parsed.path][request.method] @classmethod def reset(cls): cls._requests = _new_collection()
venmo/tornado-stub-client
tornado_stub_client/collection.py
collection.py
py
1,717
python
en
code
9
github-code
6
29542340141
import re from collections import defaultdict from string import Template from odoo import _ from odoo.exceptions import MissingError DEFAULT_REFERENCE_SEPARATOR = "" PLACE_HOLDER_4_MISSING_VALUE = "/" class ReferenceMask(Template): pattern = r"""\[(?: (?P<escaped>\[) | (?P<named>[^\]]+?)\] | (?P<braced>[^\]]+?)\] | (?P<invalid>) )""" def extract_token(s): pattern = re.compile(r"\[([^\]]+?)\]") return set(pattern.findall(s)) def sanitize_reference_mask(product, mask): tokens = extract_token(mask) attribute_names = set() for line in product.attribute_line_ids: attribute_names.add(line.attribute_id.name) if not tokens.issubset(attribute_names): raise MissingError( _("Found unrecognized attribute name in " '"Partcode Template"') ) def get_rendered_default_code(product, mask): product_attrs = defaultdict(str) reference_mask = ReferenceMask(mask) for value in product.product_template_attribute_value_ids: if value.attribute_id.code: product_attrs[value.attribute_id.name] += value.attribute_id.code if value.product_attribute_value_id.code: product_attrs[ value.attribute_id.name ] += value.product_attribute_value_id.code all_attrs = extract_token(mask) missing_attrs = all_attrs - set(product_attrs.keys()) missing = dict.fromkeys(missing_attrs, PLACE_HOLDER_4_MISSING_VALUE) product_attrs.update(missing) default_code = reference_mask.safe_substitute(product_attrs) return default_code def render_default_code(product, mask): sanitize_reference_mask(product, mask) product.default_code = get_rendered_default_code(product, mask)
odoonz/odoonz-addons
product_code_builder/models/helper_methods.py
helper_methods.py
py
1,828
python
en
code
14
github-code
6
39993181023
import os import numpy as np import matplotlib.pyplot as plt import cv2 import open3d as o3d def mkdirs(path): try: os.makedirs(path) except: pass class Saver(object): def __init__(self, save_dir): self.idx = 0 self.save_dir = os.path.join(save_dir, "results") if not os.path.exists(self.save_dir): mkdirs(self.save_dir) def save_as_point_cloud(self, depth, rgb, path, mask=None): h, w = depth.shape Theta = np.arange(h).reshape(h, 1) * np.pi / h + np.pi / h / 2 Theta = np.repeat(Theta, w, axis=1) Phi = np.arange(w).reshape(1, w) * 2 * np.pi / w + np.pi / w - np.pi Phi = -np.repeat(Phi, h, axis=0) X = depth * np.sin(Theta) * np.sin(Phi) Y = depth * np.cos(Theta) Z = depth * np.sin(Theta) * np.cos(Phi) if mask is None: X = X.flatten() Y = Y.flatten() Z = Z.flatten() R = rgb[:, :, 0].flatten() G = rgb[:, :, 1].flatten() B = rgb[:, :, 2].flatten() else: X = X[mask] Y = Y[mask] Z = Z[mask] R = rgb[:, :, 0][mask] G = rgb[:, :, 1][mask] B = rgb[:, :, 2][mask] XYZ = np.stack([X, Y, Z], axis=1) RGB = np.stack([R, G, B], axis=1) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(XYZ) pcd.colors = o3d.utility.Vector3dVector(RGB) o3d.io.write_point_cloud(path, pcd) def save_samples(self, rgbs, gt_depths, pred_depths, depth_masks=None): """ Saves samples """ rgbs = rgbs.cpu().numpy().transpose(0, 2, 3, 1) depth_preds = pred_depths.cpu().numpy() gt_depths = gt_depths.cpu().numpy() if depth_masks is None: depth_masks = gt_depths != 0 else: depth_masks = depth_masks.cpu().numpy() for i in range(rgbs.shape[0]): self.idx = self.idx+1 mkdirs(os.path.join(self.save_dir, '%04d'%(self.idx))) cmap = plt.get_cmap("rainbow_r") depth_pred = cmap(depth_preds[i][0].astype(np.float32)/10) depth_pred = np.delete(depth_pred, 3, 2) path = os.path.join(self.save_dir, '%04d' % (self.idx) ,'_depth_pred.jpg') cv2.imwrite(path, (depth_pred * 255).astype(np.uint8)) depth_gt = cmap(gt_depths[i][0].astype(np.float32)/10) depth_gt = np.delete(depth_gt, 3, 2) depth_gt[..., 0][~depth_masks[i][0]] = 0 depth_gt[..., 1][~depth_masks[i][0]] = 0 depth_gt[..., 2][~depth_masks[i][0]] = 0 path = os.path.join(self.save_dir, '%04d' % (self.idx), '_depth_gt.jpg') cv2.imwrite(path, (depth_gt * 255).astype(np.uint8)) path = os.path.join(self.save_dir, '%04d'%(self.idx) , '_pc_pred.ply') self.save_as_point_cloud(depth_preds[i][0], rgbs[i], path) path = os.path.join(self.save_dir, '%04d'%(self.idx) , '_pc_gt.ply') self.save_as_point_cloud(gt_depths[i][0], rgbs[i], path, depth_masks[i][0]) rgb = (rgbs[i] * 255).astype(np.uint8) path = os.path.join(self.save_dir, '%04d'%(self.idx) , '_rgb.jpg') cv2.imwrite(path, rgb[:,:,::-1])
zhijieshen-bjtu/PanoFormer
PanoFormer/saver.py
saver.py
py
3,346
python
en
code
79
github-code
6
43229119277
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("shop", "0005_auto_20150527_1127"), ] operations = [ migrations.AlterField( model_name="order", name="key", field=models.CharField(max_length=40, db_index=True), ), ]
stephenmcd/cartridge
cartridge/shop/migrations/0006_auto_20150916_0459.py
0006_auto_20150916_0459.py
py
345
python
en
code
696
github-code
6
22083785095
def sieve_of_primes(n): # n = 20 sev=[True for x in range(n+1)] sev[1]=False p=2 while (p*p<=n): if sev[p] == True: for i in range(p*p,n+1,p): sev[i] = False p += 1 return sev hours,part=input().split() hours = int(hours) part = int(part) div=hours//part sev = sieve_of_primes(500) # print(sev) count=0 for x in range(1,div+1): flg=0 for y in range(part): if not sev[x+y*div]: flg=1 break if flg==0: count+=1 print(count)
vamshipv/code-repo
TCS Codevita/primetime.py
primetime.py
py
453
python
en
code
0
github-code
6
33359783594
from unittest import TestCase import unittest # from unittest.mock import patch, Mock # import csv # from flask import request, jsonify import requests # import sys # # sys.path.insert(0, '../../src') class TestLoadDailyReports(TestCase): # def setUp(self): # self.app = app. def test_load_data_success(self): f = open("tests/routes/01-01-2021.csv", "rb") file = f.read() url = 'https://covid-monitor-61.herokuapp.com/daily_reports/data' r = requests.post(url, data=file, headers={"Content-Type": "text/csv"}) f.close() self.assertEqual(r.status_code, 200) def test_query_data_success(self): url = 'https://covid-monitor-61.herokuapp.com/daily_reports/cases' body = {"return_type": "json", "types": ["Confirmed", "Deaths", "Active"], "locations": [ {"Country/Region": "Belgium"}, {"Country/Region": "Canada", "Province/State": "Ontario"}, {"Country/Region": "Australia", "Province/State": "Queensland", "Combined_Key": "Australian Capital Territory, Australia"} ] } r = requests.post(url, json=body, headers={"Content-Type": "application/json"}) print(r.json()) self.assertEqual(r.status_code, 200) if __name__ == '__main__': unittest.main()
shin19991207/CSC301-A2
tests/routes/test_daily_reports.py
test_daily_reports.py
py
1,472
python
en
code
0
github-code
6
13504549380
#For randomly choice; we need import keyword and random module. import random customers = ['Jimmy', 'kim', 'John', 'Stacie'] #Choose one customer randomly and put the value as winner. winner = random.choice(customers) #Set a variable named flavor to the text vanilla. flavor = 'vanilla' #Printing Congratulations, #Name of the winner which was chosen randomly as winner #And you have won an ice cream sundae! print('Congratulations ' + winner + ' you have won an ice cream sundae!') #Set another variable named prompt to the text Would you like a cherry on top? prompt = 'Would you like a cherry on top? ' #Set wants_cherry as input. User would be ask to give the input . wants_cherry = input(prompt) #Set a variable named order contains flavor (declared before as vanilla) and sundae. order = flavor + ' sundae ' #Set up a condition that if user give input as yes, #order variable will add with a cherry on top. if (wants_cherry == 'yes'): order = order + ' with a cherry on top' #Printing , One selected order(flavor and details) for winner’s (name) is coming right up. print('One ' + order + ' for ' + winner + ' coming right up...')
mainurrasel/Learn-To-Code
Assignments/ch1/pg-11/iceCream_writing_python_pg_11.py.py
iceCream_writing_python_pg_11.py.py
py
1,151
python
en
code
0
github-code
6
40787879761
from time import sleep import time import datetime from datetime import timedelta from time import sleep, strftime motionTimeOutSeconds = 5 lastMotionTime = datetime.datetime.now() def motionTimedOut(): myNow = datetime.datetime.now() deltaTime = (myNow - lastMotionTime).total_seconds() if deltaTime > motionTimeOutSeconds: print('Motion timed out after {0} seconds'.format(deltaTime)) return True return False sleep(2) # bTime = datetime.datetime.now() # deltaT = (bTime-lastMotionTime).total_seconds() # print(deltaT) if motionTimedOut(): print('Motion timeout test of 2 seconds failed!') exit(-1) print('No timeout after 2 seconds.') lastMotionTime = datetime.datetime.now() sleep(6) if motionTimedOut(): print('Motion timeout test is working after 6 seconds')
mrncmoose/smart_controller
pi-code/thermalPreTest.py
thermalPreTest.py
py
816
python
en
code
3
github-code
6
19601192171
#-*- coding: utf-8 -*- from django.shortcuts import render, redirect from blog.models import Mypost, MainPage from blog.forms import CreateForms # Create your views here. def index(request): all_posts = Mypost.objects.all() maintext = MainPage.objects.all() # print('all_posts_all') # print(all_posts) context = {'maintext': maintext} return render(request, 'index.html', context) def BlogList(request): all_posts = Mypost.objects.all() # print('all_posts_all') # print(all_posts) context = {'all_posts': all_posts} return render(request, 'blogs_list.html', context) def PostDitail(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) print('post_ditail') print(post_ditail[0]) return render(request, 'blog_ditail.html', {'post_ditail': post_ditail[0]}) def CreatePost(request): if request.method == 'POST': form = CreateForms(request.POST, request.FILES) if form.is_valid(): create_post = form.save(commit=False) create_post.author = request.user create_post.save() return redirect('blog:ditail', pk=create_post.pk) else: form = CreateForms return render(request, 'create.html', {'form': form}) def EditPost(request, pk): # edit_post1 = get_object_or_404(Mypost, pk=pk) edit_post = Mypost.objects.filter(pk=pk).get() if request.method == 'POST': form = CreateForms(request.POST, request.FILES, instance=edit_post) # print('form') # print(form) if form.is_valid(): edit = form.save(commit=False) # edit.author = request.user # print('edit.author') # print(edit.author) edit.save() return redirect('blog:ditail', pk=edit.pk) else: form = CreateForms(instance=edit_post) return render(request, 'edit.html', {'form': form}) def DelPost(request, pk): del_post = Mypost.objects.get(pk=pk) if request.method == 'POST': form = CreateForms(request.POST, instance=del_post) if form.is_valid(): del_post = form.save(commit=False) del_post.delete() return redirect('blog:blogs_list') else: form = CreateForms(instance=del_post) return render(request, 'delete.html', {'form': form}) # def PagePostApi(request): # # if request.method == 'POST': # form = CreateForms(request.POST) # if form.is_valid(): # create_post = form.save(commit=False) # create_post.author = request.user # create_post.save() # return redirect('blog:ditail', pk=create_post.pk) # else: # form = CreateForms # return render(request, 'index.html', {'form': form} ) def ApiBlogjs(request): return render(request, 'apiblogjs.html', ) def ApiCreateblogjs(request): return render(request, 'apicreateblogjs.html',) def ApiDetailblogjs(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'apidetailblogjs.html',{'post_ditail': post_ditail[0]}) def ApiEditblogjs(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'apieditblogjs.html',{'post_ditail': post_ditail[0]}) ### ResctJS ##### def AllPostsReact(request): return render(request, 'react_post/allreact.html', ) def CreatePostReact(request): return render(request, 'react_post/createpostreact.html',) def DetailPostReact(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'react_post/detailreact.html',{'post_ditail': post_ditail[0]}) def EditPostReact(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'react_post/editpostreact.html',{'post_ditail': post_ditail[0]})
drhtka/forms_urls_drf
blog/views.py
views.py
py
3,836
python
en
code
0
github-code
6
5694314611
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.reduce_dim_5 = nn.Conv2d(2048, 256, kernel_size=(1, 1), stride=1, padding=0) self.reduce_dim_4 = nn.Conv2d(1024, 256, kernel_size=(1, 1), stride=1, padding=0) self.reduce_dim_3 = nn.Conv2d(512, 256, kernel_size=(1, 1), stride=1, padding=0) self.reduce_dim_2 = nn.Conv2d(256, 256, kernel_size=(1, 1), stride=1, padding=0) self.double_conv_5 = self._make_dobule_conv(256, 128) self.double_conv_4 = self._make_dobule_conv(256, 128) self.double_conv_3 = self._make_dobule_conv(256, 128) self.double_conv_2 = self._make_dobule_conv(256, 128) def _up_add(self, x, y): (_, _, H, W) = y.size() x_up = nn.functional.upsample(x, size=(H, W), mode='nearest') return x_up + y def _make_dobule_conv(self, in_dims, out_dims): conv_layer = nn.Sequential( nn.Conv2d(in_dims, out_dims, kernel_size=(3, 3), stride=1, padding=1), nn.BatchNorm2d(out_dims), nn.ReLU(), nn.Conv2d(out_dims, out_dims, kernel_size=(3, 3), stride=1, padding=1), nn.BatchNorm2d(out_dims), nn.ReLU() ) return conv_layer def forward(self, c2, c3, c4, c5): m5 = self.reduce_dim_5(c5) m4 = self._up_add(m5, self.reduce_dim_4(c4)) m3 = self._up_add(m4, self.reduce_dim_3(c3)) m2 = self._up_add(m3, self.reduce_dim_2(c2)) m5 = self.double_conv_5(m5) m4 = self.double_conv_4(m4) m3 = self.double_conv_3(m3) m2 = self.double_conv_2(m2) return m5, m4, m3, m2
dmdm2002/FPN
Model/TopDown.py
TopDown.py
py
1,762
python
en
code
2
github-code
6
31102190444
from distutils.core import setup import sys sys.path.insert(1, "lib") from maxicom.strings import * files = ["glade/*"] setup(name = PACKAGE, version = VERSION, description = DESCRIPTION, author = AUTHOR, author_email = AUTHOR_EMAIL, url = URL, license = LICENSE, package_dir = {'': 'lib'}, packages = ['maxicom'], package_data = {'maxicom' : files }, scripts = ["maxicom"], )
gsmcmullin/maxicom
setup.py
setup.py
py
420
python
en
code
1
github-code
6
8352946523
from setuptools import find_packages, setup with open("./README.md") as fp: description = fp.read() setup( name="pyC8", version="1.1.1", description="Python SDK for Macrometa Global Data Mesh", long_description=description, long_description_content_type="text/markdown", author="Macrometa", author_email="[email protected]", url="https://www.macrometa.com", packages=find_packages(exclude=["tests"]), include_package_data=True, install_requires=["requests==2.25.1", "six", "websocket-client==0.57.0"], tests_require=["pytest", "mock", "flake8"], classifiers=[ "Intended Audience :: Developers", "Intended Audience :: End Users/Desktop", "Intended Audience :: Information Technology", "Operating System :: MacOS", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: Unix", "Programming Language :: Python", "Programming Language :: Python :: 3", "Topic :: Documentation :: Sphinx", ], )
Macrometacorp/pyC8
setup.py
setup.py
py
1,074
python
en
code
6
github-code
6
33349139375
from data_test import DataGarbageCollector from conftest import * def test_function(setup_teardown): node_name = "k3d-p3" ip_address = get_ip(node_name) setup_sessions_metadata(node_name) setup_node_metadata(node_name) con = Connection(node_name='k3d-p3', ip=ip_address) session = 'marco' assert DataGarbageCollector.test_before == con.get( 'session-offloading-manager?command=test-function&type=session&value=' + session) assert DataGarbageCollector.garbage_collector == con.get('session-offloading-manager-garbage-collector?command=garbage-collector&deletePolicy=forced&sessionId=' + session) assert DataGarbageCollector.test_after == con.get( 'session-offloading-manager?command=test-function&type=session&value=' + session)
leonardobarilani/edge-computing-thesis
FaaS/openfaas-offloading-session/tests/test_garbage_collector.py
test_garbage_collector.py
py
785
python
en
code
4
github-code
6
34327083443
import pickle import re from pathlib import Path from typing import List from IPython.display import display import os.path as op from datetime import datetime import pandas as pd from tqdm.notebook import tqdm from matplotlib import pyplot as plt from sklearn.metrics import ( accuracy_score, balanced_accuracy_score, f1_score, matthews_corrcoef, precision_score, recall_score, ) from src.helpers.mylogger import get_handler import logging handler = get_handler() log = logging.getLogger(__name__) log.handlers[:] = [] log.addHandler(handler) log.setLevel(logging.DEBUG) class EntryNotFoundError(Exception): pass class BidirectionalEntriesFoundError(Exception): pass class MultipleEntryFoundError(Exception): pass class ClassLabels: DISRUPTIVE = "Disruptive" NON_DISRUPTIVE = "Non-disruptive" NOT_AVAILABLE = "N/A" def unzip_res_range(res_range): """ Converts ranges in the form: [2-210] or [3-45,47A,47B,51-67] into lists of strings including all numbers in these ranges in order . Items are of type <str>. """ res_ranges = res_range.strip()[1:-1].split(',') index_list = [] for r in res_ranges: if re.match('.+-.+', r): a, b = r.split('-') index_list += [str(n) for n in range(int(a), int(b) + 1)] else: index_list.append(r) return index_list # print(unzip_res_range("[95-96,98-100,102-103,122,262,266-267,270,273,294]")) def get_mutation_position(mutation): return mutation[1:-1] class CancerValidation: def __init__(self, interfaces_data_path): self.interfaces_data = self.load_data(interfaces_data_path) @staticmethod def load_data(data_path): interfaces_data = pd.read_csv( data_path, sep="\t", usecols=["P1", "P2", "P1_IRES", "P2_IRES"] ) interfaces_data["P1_IRES"] = interfaces_data["P1_IRES"].apply(lambda x: unzip_res_range(x)) interfaces_data["P2_IRES"] = interfaces_data["P2_IRES"].apply(lambda x: unzip_res_range(x)) return interfaces_data def check(self, protein: str, mutation: str, interactor: str): # print(f"Checking ..\n" # f"> PROTEIN: {protein} \n" # f"> MUTATION: {mutation} \n" # f"> INTERACTOR: {interactor}") try: data, res = self._get_entry(protein, interactor) except EntryNotFoundError: return ClassLabels.NOT_AVAILABLE mut_pos = get_mutation_position(mutation) if mut_pos in res: return ClassLabels.DISRUPTIVE else: return ClassLabels.NON_DISRUPTIVE @staticmethod def _handle_check_duplicated_entries(data, p_ires) -> List[int]: """ Checks if all entries of given data duplicated. Each cell contains list in it. If all entries are duplicated entries, then we have no problem, just get the res. """ # display(data) # In order for us to check if the entries are duplicated, we'll have to # convert list item in the cells to tuple. Otherwise, we get the following error: # TypeError: unhashable type: 'list' data_tuple = data[["P1_IRES", "P2_IRES"]].applymap(lambda x: tuple(x)) data_tuple.duplicated(keep=False).all() # no problem, then. if p_ires == "P1_IRES": [p1] = data["P1"].unique() [p2] = data["P2"].unique() elif p_ires == "P2_IRES": [p2] = data["P1"].unique() [p1] = data["P2"].unique() else: raise ValueError(f"Illegal argument provided for parameter `p_ires`: {p_ires}") # check if all entries are duplicated if data_tuple.duplicated(keep=False).all(): log.warning( f"Multiple entries but they were duplicated. PROTEIN: {p1}, INTERACTOR: {p2}" ) [p_res] = data_tuple[p_ires].unique() p_res = list(p_res) return p_res else: log.error("MultipleEntryError with following data: ") display(data) p_res_list = data[p_ires].tolist() p_res = sorted( set([item for sublist in p_res_list for item in sublist]) ) log.error(F"Returned RES: {p_res}") return p_res # data.to_csv("ERROR_data.csv", index=False) # raise MultipleEntryFoundError def _get_entry(self, protein, interactor): a_b_interface_data = self.interfaces_data[ (self.interfaces_data["P1"] == protein) & (self.interfaces_data["P2"] == interactor) ] b_a_interface_data = self.interfaces_data[ (self.interfaces_data["P1"] == interactor) & (self.interfaces_data["P2"] == protein) ] # Both of them contains entry -- this is an unlikely situation, unless there is problem with the text file.. if len(a_b_interface_data) != 0 and len(b_a_interface_data) != 0: raise BidirectionalEntriesFoundError # First data contains entry and the second one is empty elif len(a_b_interface_data) != 0 and len(b_a_interface_data) == 0: if len(a_b_interface_data) != 1: p1_res = self._handle_check_duplicated_entries(a_b_interface_data, "P1_IRES") else: [p1_res] = a_b_interface_data["P1_IRES"] return a_b_interface_data, p1_res # First data is empty and the second one contains entry elif len(a_b_interface_data) == 0 and len(b_a_interface_data) != 0: if len(b_a_interface_data) != 1: p2_res = self._handle_check_duplicated_entries(b_a_interface_data, "P2_IRES") else: [p2_res] = b_a_interface_data["P2_IRES"] return b_a_interface_data, p2_res # Both of them are empty else: raise EntryNotFoundError def validate( self, tcga_type: str, tcga_data: pd.DataFrame, ): tcga_data_validation = tcga_data.copy() validation_results = [] for index, row in tqdm( tcga_data_validation.iterrows(), total=len(tcga_data_validation) ): protein = row["UniProt_ID"] mutation = row["Mutation"] interactor = row["Interactor_UniProt_ID"] valid_label = self.check( protein=protein, mutation=mutation, interactor=interactor ) # print(f">> RESULT: {valid_label}") validation_results.append(valid_label) tcga_data_validation["Validation"] = validation_results tcga_data_validation["Validation"].value_counts().plot( kind="bar", title=f"{tcga_type} Validation Results" ) plt.show() tcga_data_validation_processed = process_validation_data(tcga_data_validation) tcga_data_validation_processed["Validation"].value_counts().plot( kind="bar", title=f"{tcga_type} Validation Processed Results" ) plt.show() metrics_data = get_scoring_metrics(tcga_data_validation_processed) num_entries = len(tcga_data_validation) counts = tcga_data_validation_processed["Validation"].value_counts().to_dict() num_disruptive = counts[0] num_non_disruptive = counts[1] metrics_data.insert(0, "TCGA", tcga_type) metrics_data.insert(1, "#_Entries", num_entries) metrics_data.insert(2, "#_Disruptive", num_disruptive) metrics_data.insert(3, "#_Non_disruptive", num_non_disruptive) return { "data_validation": tcga_data_validation, "data_validation_processed": tcga_data_validation_processed, "metrics_data": metrics_data, } @staticmethod def validate_single_class( tcga_type: str, output_already_calculated: dict, single_class: int, ): """ Requires the positions to be already calculated. """ tcga_data_validation = output_already_calculated["data_validation"] print(f"Using the class {single_class} only.") tcga_data_validation = tcga_data_validation[ tcga_data_validation["Prediction"] == single_class ].copy() tcga_data_validation_processed = process_validation_data(tcga_data_validation) metrics_data = get_scoring_metrics(tcga_data_validation_processed) num_entries = len(tcga_data_validation) counts = tcga_data_validation_processed["Validation"].value_counts().to_dict() num_disruptive = counts[0] num_non_disruptive = counts[1] metrics_data.insert(0, "TCGA", tcga_type) metrics_data.insert(1, "#_Entries", num_entries) metrics_data.insert(2, "#_Disruptive", num_disruptive) metrics_data.insert(3, "#_Non_disruptive", num_non_disruptive) return { "data_validation": tcga_data_validation, "data_validation_processed": tcga_data_validation_processed, "metrics_data": metrics_data, } @staticmethod def extract_output_dict(name, dict_obj): folder_path = "outputs" Path(f"{folder_path}").mkdir(parents=True, exist_ok=True) current_date = datetime.now().strftime("%Y-%m-%d") file_name = f"{name}_{current_date}.pickle" file_path = op.join(folder_path, file_name) if op.exists(file_path): raise FileExistsError("File already exists") pickle.dump(dict_obj, open(file_path, "wb")) print("Object extracted successfully.") @staticmethod def load_output_dict(pickle_path): obj_loaded = pickle.load(open(pickle_path, "rb")) return obj_loaded def test_entry_not_found(df, p, i): a_b = df[ (df["P1"] == p) & (df["P2"] == i) ] b_a = df[ (df["P1"] == i) & (df["P2"] == p) ] assert len(a_b) == len(b_a) == 0 def get_scoring_metrics(tcga_validation_data): y_true = tcga_validation_data["Validation"] y_pred = tcga_validation_data["Prediction"] metrics_data = pd.DataFrame( [ accuracy_score(y_true, y_pred), balanced_accuracy_score(y_true, y_pred), f1_score(y_true, y_pred), precision_score(y_true, y_pred), recall_score(y_true, y_pred), matthews_corrcoef(y_true, y_pred), ], index=["ACCURACY", "BALANCED_ACCURACY", "F1", "PRECISION", "RECALL", "MATTHEWS_COR"] ).T return metrics_data def process_validation_data(tcga_data: pd.DataFrame): """ Process the validation data. 1. Drop N/A entries 2. Convert Labels as follows: DISRUPTIVE → 0 NON_DISRUPTIVE → 1 3. Convert its type to int. """ tcga_processed = tcga_data[tcga_data["Validation"] != "N/A"].copy() tcga_processed["Validation"] = tcga_processed["Validation"].replace( { ClassLabels.DISRUPTIVE: 0, ClassLabels.NON_DISRUPTIVE: 1, } ) tcga_processed = tcga_processed.astype({"Validation": "int"}) return tcga_processed
ibrahimberb/Predicting-Mutation-Effects
src/dev/CancerValidation/A1/utils.py
utils.py
py
11,283
python
en
code
0
github-code
6
4818420912
import numpy as np #this script contains all the necessary function required for training data using linear regression. Run gradient_Descent function and it will return the w vector, b and cost_history, which #models your data. You can also apply the model to the new data for prediction. def compute_pderivatives(listX, listY, listW, b): m = listX.shape[0] n = listX.shape[1] listPDerivatives = np.zeros(n) for i in range(n): pDerivative = 0 for j in range(m): pDerivative += (np.dot(listW,listX[j]) + b - listY[j]) * (listX[j][i]) listPDerivatives[i] = pDerivative pDerivativeb = 0 for i in range(m): pDerivativeb += (np.dot(listW,listX[i]) + b - listY[i]) pDerivativeb = pDerivativeb/m listPDerivatives = listPDerivatives/m return listPDerivatives, pDerivativeb def costFunc(listX, listY, listW, b, lamb): cost1 = 0.0 cost2 = 0.0 m = listX.shape[0] for i in range(m): cost1 += ((np.dot(listX[i],listW) + b) - listY[i])**2 cost1 = cost1/(2 *listX.shape[0]) for i in range(listW.shape[0]): cost2 += (listW[i] ** 2) cost2 = (cost2 * lamb)/2*m return cost1+cost2 def gradient_Descent(listX, listY, listW, b, alpha, lamb): costHistory = np.zeros(100000) m = listX.shape[0] for i in range(100000): cost = costFunc(listX, listY, listW, b, lamb) costHistory[i] = cost listPDerivatives, pDerivativeB = compute_pderivatives(listX, listY, listW, b) listW = listW - alpha * (lamb/m) * listW - alpha * listPDerivatives b = b - alpha * pDerivativeB return listW,b,costHistory
slama0077/ML-Packages
RLinearDescent.py
RLinearDescent.py
py
1,664
python
en
code
0
github-code
6
48709281
from typing import * class Solution: @staticmethod def gcd(a, b): while b: a, b = b, a%b return a def dfs(self, nums, opt, mask): # mask: 0 unused, 1 used n = len(nums) ans = 0 if mask == (1 << n - 1): return ans if self.memo[mask] > 0: return self.memo[mask] for i in range(n): if mask & (1 << i) == 0: for j in range(i+1, n): if mask & (1 << j) == 0: ans = max(ans, opt * self.gcd(nums[i], nums[j]) + self.dfs(nums, opt+1, mask | (1<<i) | (1<<j))) self.memo[mask] = ans return ans def maxScore(self, nums: List[int]) -> int: n = len(nums) self.memo = [0] * (1<<n) self.dfs(nums, 1, 0) return self.memo[0] if __name__ == "__main__": s = Solution() nums = [3,4,6,8] assert s.maxScore(nums) == 11
code-cp/leetcode
solutions/1799/main.py
main.py
py
984
python
en
code
0
github-code
6
29528131446
from flask import Flask, request app = Flask(__name__) @app.route('/') def home(): return "TP Florian Marques" @app.route('/means', methods=['GET']) def meanOfList(): list = request.args.getlist('int', type=int) if len(list) == 0: return "Given list is null" else: return "Mean of the list is : {}".format(sum(list)/len(list))
MarquesFlorian/python_server_testing_florian_marques
app.py
app.py
py
362
python
en
code
0
github-code
6
12486639819
import multiprocessing import time import hashlib memory = list(range(30_000_000)) def function(name): for i in range(10): print("Current:", name, i) time.sleep(1) def slow_function(name): for i in range(10): print("Current:", name, i) for j in range(300_000): hashlib.md5(str(j).encode("utf-8")).hexdigest() if __name__ == "__main__": for i in range(3): name = chr(97 + i) multiprocessing.Process(target=slow_function, args=(name, )).start()
tt-n-walters/21-tuesday-python
core/multiple_processes.py
multiple_processes.py
py
524
python
en
code
0
github-code
6
43082395961
n, nums = input().split(" ", 1) n = int(n) nums = list(map(int, nums.split(" "))) # dynamic programming def max_sum_increasing_subsequence(nums, n): maximum = 0 dp = [0 for _ in range(n)] for i in range(n): dp[i] = nums[i] for i in range(n): for j in range(i): if nums[i] > nums[j] and dp[i] < dp[j] + nums[i]: dp[i] = dp[j] + nums[i] for i in range(n): if maximum < dp[i]: maximum = dp[i] return maximum print(max_sum_increasing_subsequence(nums, n))
chaosdevil/leetcode-problem-solving
dynamic_programming/maximum_sum_increasing_subsequence.py
maximum_sum_increasing_subsequence.py
py
547
python
en
code
0
github-code
6
16644551299
import matplotlib.pyplot as plt import pandas as pd import numpy as np def ex_deal(df_Int, df_ex): columns = ['顺序', '氮素', '频率', '刈割'] df_Int = pd.concat([df_Int, pd.DataFrame(columns=columns)]) for item in range(df_Int.shape[0]): for jtem in range(df_ex.shape[0]): if int(df_Int.iloc[item, 0]) == int(df_ex.iloc[jtem, 1]): df_Int.loc[item, '顺序'] = df_ex.iloc[jtem, 1] df_Int.loc[item, '氮素'] = df_ex.iloc[jtem, 2] df_Int.loc[item, '频率'] = df_ex.iloc[jtem, 3] df_Int.loc[item, '刈割'] = df_ex.iloc[jtem, 4] # df_Int.drop([0, 19], inplace=True) return df_Int def MF(g, N="氮素",year=2010): # if year==2008: # if N == "刈割": # g= # if N == "频率": # # else: if N == "刈割": if g == 0.0: g = "nm" else: g = "m" if N == "频率": if g == 2.0: g = "l" elif g == 0.0: g = "nan" else: g = "h" return g def loop_chain_nan(year, gb, D, N="氮素"): # if year == 2008: # g = MF(g_[0], N,year=2008) # D["loop"][g], D["nan"][g], D["chain"][g] = 0, 0, 0 # for g_ in gb: # print(g_[1][3]) # for item in g_[1][3]: # if item == 0: # 链 # D["chain"][g] += 1 # elif item == -0.15: # D["nan"][g] += 1 # print(2008,item) # else: # 环 # D["loop"][g] += 1 if year == 2009: for g_ in gb: g = MF(g_[0], N) # if g!=0.0: D["loop"][g],D["nan"][g], D["chain"][g] = 0, 0, 0 for item in g_[1][3]: if item == 0: # 链 D["chain"][g] += 1 elif item == -0.15: D["nan"][g] += 1 else: # 环 D["loop"][g] += 1 elif year > 2009: for g_ in gb: g = MF(g_[0], N) for item in g_[1][3]: if item == 0: D["chain"][g] += 1 elif item == -0.15: D["nan"][g] += 1 else: D["loop"][g] += 1 return D def main(): path = "C:/Users/97899/Desktop/N/" df_ex = pd.read_excel(path + "实验处理_ex.xls") ind = np.linspace(2008, 2020, 13) D = {} D["loop"], D["chain"], D["nan"] = {}, {}, {} for year in ind: df_cir = pd.read_excel(path + "Network/circle20.xls", sheet_name=str(int(year))) df_cir = ex_deal(df_cir, df_ex) gb = df_cir.groupby("氮素") D = loop_chain_nan(year, gb, D) gm = df_cir.groupby("刈割") D = loop_chain_nan(year, gm, D, "刈割") gf = df_cir.groupby("频率") D = loop_chain_nan(year, gf, D, "频率") print(D) net_loop = [] net_chain = [] net_nan = [] '''氮素''' for key in D["loop"].keys(): sum_ = D["loop"][key] + D["chain"][key] + D["nan"][key] print(key,sum_) net_loop.append(D["loop"][key] / sum_) net_chain.append(D["chain"][key] / sum_) net_nan.append(D["nan"][key] / sum_) print("非竞争", len(net_nan), "链", len(net_chain), "环", len(net_loop)) labels = ['N=0', 'N=1', 'N=2', 'N=3', 'N=5', 'N=10', 'N=15', 'N=20', 'N=50'] width = 0.5 # the width of the bars: can also be len(x) sequence net = (np.array(net_loop) + np.array(net_chain)).tolist() print("竞争主导", len(net)) plt.xticks(fontsize=15) plt.yticks(fontsize=15) ax1 = plt.subplot(212) print(net_loop[:9],net_chain[:9],net_nan[:9]) ax1.bar(labels, net_loop[:9], width, label='ICN', color="darkcyan") ax1.bar(labels, net_chain[:9], width, bottom=net_loop[:9], label='TCN', color="turquoise") ax1.bar(labels, net_nan[:9], width, bottom=net[:9], label='SCS', color="yellow") ax1.set_ylabel('Ratio', fontdict={"size": 20}) ax1.set_xlabel('N addition rater'"$(gNm^{-2}year^{-1})$", fontdict={"size": 15}) width2 = 0.4 '''刈割''' label_2 = ['No-Mowing', 'Mowing'] ax2 = plt.subplot(221) ax2.bar(label_2, net_loop[9:11], width2, label='ICN', color="darkcyan") ax2.bar(label_2, net_chain[9:11], width2, bottom=net_loop[9:11], label='TCN', color="turquoise") ax2.bar(label_2, net_nan[9:11], width2, bottom=net[9:11], label='SCS', color="yellow") ax2.set_ylabel('Ratio', fontdict={"size": 20}) ax2.set_xlabel('Mowing', fontdict={"size": 15}) '''频率''' label_3 = ['Zero','Low (Twice)', 'High (Monthly)'] ax3 = plt.subplot(222) # 222 ax3.bar(label_3, net_loop[11:14], width2, label='ICN', color="darkcyan") ax3.bar(label_3, net_chain[11:14], width2, bottom=net_loop[11:14], label='TCN', color="turquoise") ax3.bar(label_3, net_nan[11:14], width2, bottom=net[11:14], label='SCS', color="yellow") # [11:13] # ax3.set_ylabel('Ratio', fontdict={"size": 15}) ax3.set_xlabel('Frequency', fontdict={"size": 15}) ax3.legend(ncol=1, bbox_to_anchor=(1.2, 1), fontsize=13) plt.show() plt.savefig(path+'Figure/bar_distribution.png') main()
QingqingSun-Bao/GitResp2
micro/Fig10_bar_distribution.py
Fig10_bar_distribution.py
py
5,270
python
en
code
0
github-code
6
27933308570
import time from clusterbot import ClusterBot, activate_logger # Print confirmation about sent Slack messages activate_logger() # Debug mode # activate_logger('DEBUG') # Send a message to the default user specified in you config files. bot = ClusterBot() message_id = bot.send("Starting example script.") # Reply to the default user message from above (open a ne Thread). bot.reply(message_id, "Waiting for 5s.") # Wait 5 seconds. time.sleep(5) # Reply again. bot.reply(message_id, "5s have passed.") # Send a message to someone else (not default user) message_id = bot.send( "Hi Denis. I started using ClusterBot :tada:", user_name="Denis Alevi" ) # Reply to that message (message_id has to belong to a message exchanged with # ``user_name``) bot.reply(message_id, "And I ran the example script!", user_name="Denis Alevi") # Upload a file to your slack chat message_id = bot.upload(file_name="README.md", message="Upload of README.md") # Update or append to a previously send message message_id = bot.reply(message_id, "An answer to this file") bot.update(message_id, "An updated answer to this figure, deleting the previous one.") bot.append(message_id, "Another update, which is appended and keeps the previous one") # Initialize and update a progress bar bot.init_pbar(10, title="This is a progress bar with a title") for i in range(10): message_new = bot.update_pbar() time.sleep(1)
sprekelerlab/slack-clusterbot
example_script.py
example_script.py
py
1,406
python
en
code
2
github-code
6
23907002609
import numpy as np import pandas as pd import scipy.spatial.distance as spd import scipy.stats as sps import sklearn.model_selection as skm import sklearn.metrics as skmetrics import matplotlib.pyplot as plt import seaborn as sb from hw1_modules import * # read data from CSV to array data = np.array(pd.read_csv("train.csv").values) #separate values and labels into separate arrays values = data[:,1:] labels = data[:,0] #convert labels array to vertical, 2d array of one column labels = np.expand_dims(labels, axis=1) #initialize confusion matrix cf = np.ones((10,10), dtype=int) #initialize cumulative accuracy accuracy = 0 #set number of folds number_folds = 3 #set k for k neighbors k_neighbors = 3 #create kfold iterating object kf = skm.KFold(n_splits=number_folds) for train_idx, test_idx in kf.split(values, labels): print("Dividing data") #subset data using indexes generated by kfold object train_data = values[train_idx] test_data = values[test_idx] train_labels = labels[train_idx] test_lables = labels[test_idx] #run one iteration of testing with knn print("Testing data") predicted_labels = knn_predict_class(train_data, train_labels, test_data, k_neighbors) print("Accuracy for this run" + str(sum(predicted_labels == test_lables)/len(test_lables))) #cumulative accuracy accuracy += sum(predicted_labels == test_lables)/len(test_lables) #add this run's confusion values to cumulative confusion matrix cf = cf + skmetrics.confusion_matrix(test_lables, predicted_labels) #calculate average accuracy from cumulative accuracy = accuracy/number_folds print(accuracy) #Create and display plot for confusion matrix ax = sb.heatmap(cf, annot=True, fmt="d") ax.set(xlabel="Predicted Label", ylabel="True Label") plt.show()
terry99999/M_hw1
knn.py
knn.py
py
1,791
python
en
code
0
github-code
6
32474300219
from django.conf.urls import url, include from rest_framework import routers from api import views router = routers.DefaultRouter() router.register(r'signup', views.ProfileViewSet) router.register(r'add_animal', views.AddAnimalViewSet) # Wire up our API using automatic URL routing. # Additionally, we include login URLs for the browsable API. urlpatterns = [ url(r'^', include(router.urls)), url(r'^login/', views.login), ]
stoic1979/pashu_palak_sahayak
api/urls.py
urls.py
py
439
python
en
code
1
github-code
6
5070831792
import pandas as pd import matplotlib.pyplot as plt # Load the CSV file and set the type of the date column reviews = pd.read_csv("branch_reviews.csv", index_col=0, parse_dates=["date"]) # Display a histogram of the number of reviews by date reviews["date"].hist() #plt.show() # Create a new dataframe from reviews with the average rating for each date reviews_by_date = reviews.groupby("date").mean() # Plot a 30-day moving average rating per date reviews_by_date[90:].rolling(30).mean().plot() #plt.show() # Print the number of reviews by rating print(reviews["rating"].value_counts()) # Describe reviews print(reviews.describe())
carsten-hohnke/review_analysis
analyze_reviews.py
analyze_reviews.py
py
638
python
en
code
0
github-code
6
70047131707
import xml.etree.ElementTree as ET import pandas as pd import numpy as np import cv2 as cv def draw_label(path): tree = ET.parse(path) img_out = np.zeros(shape=(1024, 1280)) img_list_x = [] img_list_y = [] for elem in tree.iterfind('object'): mylist_x = [] mylist_y = [] # print(elem.tag, elem.attrib) for elem_1 in elem.iterfind('polygon/pt'): object_x = elem_1.find("x").text object_y = elem_1.find("y").text x = int(object_x) y = 1024 - int(object_y) if x < 0: x = 0 if x > 1279: x = 1279 if y < 0: y = 0 if y > 1023: y = 1023 mylist_x.append(x) mylist_y.append(y) img_list_x.append(x) img_list_y.append(y) img_out.itemset((y, x), 255) mylist = list(zip(mylist_x, mylist_y)) pts = np.array(mylist, np.int32) cv.polylines(img_out, [pts], True, (255, 255, 255), 2) # 画线 cv.fillPoly(img_out, [pts], (255, 255, 255)) # 填充内部 Alllist = list(zip(img_list_x, img_list_y)) # 统计标注点 # cv.imwrite('./picture/label.png', img_out) return img_out def getlabel(path): img1 = draw_label(path) list_out = np.zeros(shape=(1024, 1280)) for i in range(img1.shape[0]): for j in range(img1.shape[1]): if img1[i, j] == 255: list_out[i, j] = 1 return list_out
Bagpip/-HSI-
label_test.py
label_test.py
py
1,589
python
en
code
0
github-code
6
10164344104
import sys import os def print_usage(): print("Usage:") print("stringer.py 1 <file> <string_to_count>") print(" 2 <file> <string_to_remove>") if __name__ == "__main__": if len(sys.argv) < 2 or sys.argv[1] == "-h": print_usage() exit(1) if (sys.argv[1] == '1'): print(f"Counting '{sys.argv[3]}' in {os.path.join(os.getcwd(), sys.argv[2])}") occurrences = 0 with open(sys.argv[2]) as input_file: for line in input_file: if line.find(sys.argv[3]) != -1: occurrences += 1 print(f"There are {occurrences} occurrences")
twono/PythonUtils
stringer.py
stringer.py
py
646
python
en
code
0
github-code
6
14400222496
#!/usr/bin/env python3.8 """ Given two rectangles, determine if they overlap. The rectangles are defined as a Dictionary, for example: r1 = { # x and y coordinates of the bottom-left corner of the rectangle 'x': 2 , 'y': 4, # Width and Height of rectangle 'w':5,'h':12} """ import copy def overlap(coord1, dim1, coord2, dim2): greater = max(coord1, coord2) smaller = min(coord1+dim1, coord2+dim2) if greater > smaller: return None, None return greater, smaller - greater def rectOverlap(R_1, R_2): x_overlap, x_dim = overlap(R_1['x'], R_1['w'], R_2['x'], R_2['w']) y_overlap, y_dim = overlap(R_1['y'], R_1['h'], R_2['y'], R_2['h']) if not y_dim or not x_dim: if x_overlap and y_overlap: if x_dim or y_dim: print('side overlap at',x_overlap,x_dim,y_overlap,y_dim) else: print("point overlap at",x_overlap,y_overlap) else: print("no overlap") return print(x_overlap, x_dim, y_overlap, y_dim) r1 = {'x': 2, 'y': 4, 'w':5, 'h':12} r2 = {'x': 1, 'y': 5, 'w':7, 'h':14} rectOverlap(r1, r2) r1 = {'x': 5, 'y': 5, 'w':5, 'h':5} r2 = {'x': 1, 'y': 5, 'w':4, 'h':14} rectOverlap(r1, r2) r1 = {'x': 5, 'y': 4, 'w':5, 'h':5} r2 = {'x': 1, 'y': 1, 'w':4, 'h':3} rectOverlap(r1, r2) r1 = {'x': 5, 'y': 4, 'w':5, 'h':5} r2 = {'x': 1, 'y': 1, 'w':4, 'h':2} rectOverlap(r1, r2)
dnootana/Python
Interview/RectangleOverlap.py
RectangleOverlap.py
py
1,356
python
en
code
0
github-code
6
854208264
import core.modules import core.modules.module_registry from core.modules.vistrails_module import Module, ModuleError import numpy import scipy import scipy.ndimage from Array import * from Matrix import * class ArrayImaging(object): my_namespace = 'numpy|imaging' class ExtractRGBAChannel(ArrayImaging, Module): """ Extract a single color channel from an array representing an RGBA type image. This will return a 2D array with the single channel specified as the scalar elements """ def compute(self): im = self.get_input("Image").get_array() chan = self.get_input("Channel") ar = im[:,:,chan] out = NDArray() out.set_array(ar) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Image", (NDArray, 'Image Array')) reg.add_input_port(cls, "Channel", (basic.Integer, 'Channel')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class GaussianGradientMagnitude(ArrayImaging, Module): """ Calculate the Gradient Magnitude of an input NDArray using gaussian derivatives. The standard-deviation of the Gaussian filter are given for each axis as a sequence or as a single number, in which case the filter will be isotropic. """ def compute(self): im = self.get_input("Image") sigma = self.get_input_list("Sigmas") if len(sigma) <= 1: sigma = sigma[0] der = scipy.ndimage.gaussian_gradient_magnitude(im.get_array(), sigma) out = NDArray() out.set_array(der) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Image", (NDArray, 'Image Array')) reg.add_input_port(cls, "Sigmas", (basic.Float, 'Standard Deviations')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class JointHistogram(ArrayImaging, Module): """ Calculate the Joint Histogram of 2 inputs. The inputs can be of arbitrary dimension, but must be equivalently sized. """ def compute(self): in_x = self.get_input("Array One").get_array() in_y = self.get_input("Array Two").get_array() size_x = self.get_input("Bins X") size_y = self.get_input("Bins Y") take_log = True if self.has_input("Log10"): take_log = self.get_input("Log10") out_ar = numpy.zeros((size_x, size_y)) min_x = in_x.min() max_x = in_x.max() - min_x min_y = in_y.min() max_y = in_y.max() - min_y in_x = in_x.flatten() in_y = in_y.flatten() for i in xrange(in_x.size): x_cor = int(((in_x[i] - min_x)/max_x) * (size_x - 1)) y_cor = int(((in_y[i] - min_y)/max_y) * (size_y - 1)) out_ar[x_cor,y_cor] += 1.0 if take_log: out_ar = out_ar + 1.0 out_ar = scipy.log(out_ar) out = NDArray() out_ar = out_ar.transpose() out_ar = out_ar[::-1] out.set_array(out_ar) self.set_output("Joint Histogram", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Array One", (NDArray, 'X Axis Input')) reg.add_input_port(cls, "Array Two", (NDArray, 'Y Axis Input')) reg.add_input_port(cls, "Log10", (basic.Boolean, 'Use Log of Histogram'), True) reg.add_input_port(cls, "Bins X", (basic.Integer, 'Number of X Bins')) reg.add_input_port(cls, "Bins Y", (basic.Integer, 'Number of Y Bins')) reg.add_output_port(cls, "Joint Histogram", (NDArray, 'Joint Histogram')) class GaussianSmooth(ArrayImaging, Module): """ Smooth the Input array with a multi-dimensional gaussian kernel. The standard-deviation of the Gaussian filter are given for each axis as a sequence or as a single number, in which case the filter will be isotropic. """ def compute(self): im = self.get_input("Input Array") sigma = self.get_input_list("Sigmas") if len(sigma) <= 1: sigma = sigma[0] der = scipy.ndimage.gaussian_filter(im.get_array(), sigma) out = NDArray() out.set_array(der) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input Array", (NDArray, 'Image Array')) reg.add_input_port(cls, "Sigmas", (basic.Float, 'Standard Deviations')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class MedianFilter(ArrayImaging, Module): """ Smooth the Input array with a multi-dimensional median filter. """ def compute(self): im = self.get_input("Input Array") k_size = self.get_input("Size") der = scipy.ndimage.median_filter(im.get_array(), size=k_size) out = NDArray() out.set_array(der) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input Array", (NDArray, 'Image Array')) reg.add_input_port(cls, "Size", (basic.Integer, 'Kernel Size')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class ImageDifference(ArrayImaging, Module): """ Calculate the difference between two input images. """ def compute(self): im = self.get_input("Input 1") im2 = self.get_input("Input 2") da_ar = im.get_array() - im2.get_array() da_ar = numpy.abs(da_ar) out = NDArray() out.set_array(da_ar) self.set_output("Output", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input 1", (NDArray, 'Image Array')) reg.add_input_port(cls, "Input 2", (NDArray, 'Image Array')) reg.add_output_port(cls, "Output", (NDArray, 'Output Array')) class ImageNormalize(ArrayImaging, Module): """ Move the range of the image to [0,1] """ def compute(self): im = self.get_input("Input") im_max = im.get_array().max() im_ar = im.get_array() / im_max out = NDArray() out.set_array(im_ar) self.set_output("Output", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input", (NDArray, 'Image Array')) reg.add_output_port(cls, "Output", (NDArray, 'Output Array')) class SobelGradientMagnitude(ArrayImaging, Module): """ Use n-dimensional sobel kernels to compute the gradient magnitude of an image """ def compute(self): im = self.get_input("Input").get_array() mag = numpy.zeros(im.shape) for i in xrange(im.ndim): kern = scipy.ndimage.sobel(im, axis=i) mag += kern*kern out = NDArray() out.set_array(numpy.sqrt(mag)) self.set_output("Output", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input", (NDArray, 'Image Array')) reg.add_output_port(cls, "Output", (NDArray, 'Output Array'))
VisTrails/VisTrails
contrib/NumSciPy/Imaging.py
Imaging.py
py
7,502
python
en
code
100
github-code
6
29580890531
# -*- coding: utf-8 -*- ############################################################################## # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see http://www.gnu.org/licenses/. # ############################################################################## from openerp import models, api class ProductTemplate(models.Model): _inherit = 'product.template' @api.multi def open_related_partnerinfo(self): result = self._get_act_window_dict( 'product_pricelist_partnerinfo.pricelist_partnerinfo_action') result['domain'] = "[('product_tmpl_id', 'in', " + str(self.ids) + ")]" return result class ProductProduct(models.Model): _inherit = 'product.product' @api.multi def open_related_partnerinfo(self): self.ensure_one() result = self.product_tmpl_id._get_act_window_dict( 'product_pricelist_partnerinfo.pricelist_partnerinfo_action') result['domain'] = ("[('product_tmpl_id', '=', " + str(self.product_tmpl_id.id) + ")]") return result
odoomrp/odoomrp-utils
product_pricelist_partnerinfo/models/product.py
product.py
py
1,677
python
en
code
36
github-code
6
23497624891
#!/usr/bin/env python # -*- coding: utf-8 -*- import socket import sys BUFSIZE = 1024 def start_client(address): tcpCliSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcpCliSock.connect(address) while True: data = raw_input('> ') if not data: break tcpCliSock.send(data) data = tcpCliSock.recv(BUFSIZE) if not data: break print(data) if __name__ == '__main__': host = '127.0.0.1' port = 1234 if len(sys.argv) == 2: host = sys.argv[1] elif len(sys.argv) == 3: host = sys.argv[1] port = int(sys.argv[2]) start_client((host, port))
Furzoom/learnpython
app/test/tsTclnt.py
tsTclnt.py
py
675
python
en
code
0
github-code
6
31533830486
x_house_height = float(input()) y_side_wall_lenght = float(input()) h_triangle_side_height = float(input()) window_side = 1.5 door_side_a = 1.2 door_side_b = 2 window_area = window_side * window_side windows_total_area = window_area * 2 door_area = door_side_a * door_side_b side_wall_area = x_house_height * y_side_wall_lenght side_walls_area = side_wall_area * 2 - windows_total_area front_wall_area = x_house_height * x_house_height front_back_walls_area = front_wall_area * 2 - door_area roof_side_wall_area = x_house_height * y_side_wall_lenght roof_side_walls_area = roof_side_wall_area * 2 roof_front_side_area = x_house_height * h_triangle_side_height / 2 roof_front_back_sides_area = roof_front_side_area * 2 walls_total_area = side_walls_area + front_back_walls_area roof_total_area = roof_side_walls_area + roof_front_back_sides_area green_paint = walls_total_area / 3.4 red_paint = roof_total_area / 4.3 print(f'{green_paint:.2f}') print(f'{red_paint:.2f}')
iliyan-pigeon/Soft-uni-Courses
programming_basics_python/first_steps_more_exercises/house_painting.py
house_painting.py
py
970
python
en
code
0
github-code
6
31366334882
import torch import torch.nn as nn from GAWWN.tools.config import cfg from GAWWN.tools.tools import replicate class keyMulD(nn.Module): def __init__(self): super(keyMulD, self).__init__() self.ndf = cfg.GAN.NDF self.nt_d = cfg.TEXT.TXT_FEATURE_DIM self.keypoint_dim = cfg.KEYPOINT.DIM self.conv = nn.Sequential( nn.Conv2d(self.nt_d + self.ndf * 2, self.ndf * 2, 3, 1, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True) ) def forward(self, imgGlobal, prep_txt_d, locs): prep_txt_d = replicate(prep_txt_d, 2, self.keypoint_dim) # (bs, nt_d, 16) prep_txt_d = replicate(prep_txt_d, 3, self.keypoint_dim) # (bs, nt_d, 16, 16) imgTextGlobal = torch.cat((imgGlobal, prep_txt_d), 1) # (bs, nt_d + ndf * 2, 16, 16) imgTextGlobal = self.conv(imgTextGlobal) # (bs, ndf * 2, 16, 16) # loc (bs, num_elt, keypoint_dim, keypoint_dim) locs = torch.sum(locs, 1) # (bs, keypoint_dim, keypoint_dim) locs = torch.clamp(locs, 0, 1) locs = replicate(locs, 1, self.ndf * 2) x = imgTextGlobal * locs return x class regionD(nn.Module): def __init__(self): super(regionD, self).__init__() self.ndf = cfg.GAN.NDF self.num_elt = cfg.KEYPOINT.NUM_ELT self.F_KeyMulD = keyMulD() self.conv = nn.Sequential( nn.Conv2d(self.ndf * 2 + self.num_elt, self.ndf * 2, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 2, self.ndf, 2) ) self.LReLU = nn.LeakyReLU(0.2, True) def forward(self, imgGlobal, prep_txt_d, locs): keyMul = self.F_KeyMulD(imgGlobal, prep_txt_d, locs) x = torch.cat((keyMul, locs), 1) # (bs, ngf * 2 + num_elt, 16, 16) x = x.contiguous() x = self.conv(x) x = x.mean(3) x = x.mean(2) x = self.LReLU(x) return x class globalD(nn.Module): def __init__(self): super(globalD, self).__init__() self.ndf = cfg.GAN.NDF self.nt_d = cfg.TEXT.TXT_FEATURE_DIM self.convGlobal = nn.Sequential( nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1), nn.BatchNorm2d(self.ndf * 4), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1), nn.BatchNorm2d(self.ndf * 8), nn.LeakyReLU(0.2, True) ) self.conv = nn.Sequential( nn.Conv2d(self.ndf * 8 + self.nt_d, self.ndf * 4, 1), nn.BatchNorm2d(self.ndf * 4), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 4, self.ndf, 4), nn.BatchNorm2d(self.ndf), nn.LeakyReLU(0.2, True) ) def forward(self, imgGlobal, prep_txt_d): img = self.convGlobal(imgGlobal) # (bs, ndf * 8, 4, 4) txtGlobal = replicate(prep_txt_d, 2, 4) # (bs, nt_d, 4) txtGlobal = replicate(txtGlobal, 3, 4) # (bs, nt_d, 4, 4) imgTxtGlobal = torch.cat((img, txtGlobal), 1) # (bs, nt_d + ndf * 8, 4 ,4) imgTxtGlobal = imgTxtGlobal.contiguous() imgTxtGlobal = self.conv(imgTxtGlobal) # (bs, ndf, 1, 1) imgTxtGlobal = imgTxtGlobal.view(-1, self.ndf) return imgTxtGlobal class Dis(nn.Module): def __init__(self): super(Dis, self).__init__() self.ndf = cfg.GAN.NDF self.nt = cfg.TEXT.TXT_EMBEDDING_DIM self.nt_d = cfg.TEXT.TXT_FEATURE_DIM self.prep_txtD = nn.Sequential( nn.Linear(self.nt, self.nt_d), nn.LeakyReLU(0.2, True) ) self.imgGlobalD = nn.Sequential( nn.Conv2d(3, self.ndf, 4, 2, 1), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf, self.ndf, 4, 2, 1), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 2, self.ndf * 2, 3, 1, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True) ) self.F_regionD = regionD() self.F_globalD = globalD() self.judge = nn.Sequential( nn.Linear(self.ndf * 2, self.ndf), nn.BatchNorm1d(self.ndf), nn.LeakyReLU(0.2, True), nn.Linear(self.ndf, 1), nn.Sigmoid() ) def forward(self, img, txt, locs): prep_txt_d = self.prep_txtD(txt) image_Global = self.imgGlobalD(img) region_d = self.F_regionD(image_Global, prep_txt_d, locs) global_d = self.F_globalD(image_Global, prep_txt_d) x = torch.cat((region_d, global_d), 1) x = self.judge(x) return x
LosSherl/GAWWN.Pytorch
GAWWN/model/discriminator.py
discriminator.py
py
4,867
python
en
code
0
github-code
6
27535721148
import json from web3 import Web3 from decimal import Decimal from router import* import time # add blockchain connection information cronos_mainnet_rpc = "ws://rpc.vvs.finance/" w3 = Web3(Web3.WebsocketProvider(cronos_mainnet_rpc, websocket_timeout= 6000)) ERC20ABI = json.load(open('./erc20_abi.abi')) #getSelector("swapExactTokensForTokens(uint256,uint256,address[],address,uint256)")= 0x38ed1739 #getSelector("swapExactETHForTokens(uint256 amountOutMin, address[] path, address to, uint256 deadline)")= 0x7ff36ab5 #getSelector("swapExactTokensForETH(uint256,uint256,address[],address,uint256)")= 0x18cbafe5 mycontract = '0x109C48345e84459C658e79e806F6DdB236DbDD26' # multilswap = Web3.toChecksumAddress(mycontract) # multilswap_abi = json.loads() # multilswap_contract = w3.eth.contract(address = multilswap, abi= multilswap_abi) # amountIn = optimalAmount def dataswap_encode(contract, amountIn, amountOut, path, mycontract): deadline = 1000 dataswap = contract.encodeABI(fn_name="swapExactTokensForTokens", args=[amountIn,amountOut, path, mycontract,deadline]) return dataswap def dataswap(route,tokenIn, tokenOut, amountIn, mycontract): # route = trade['route'] tos = [] tos = [t['router:'] for t in route] data = [] _tokenInapproveaddr = [] n= 0 for pair in route: if pair['router:'] == '0x145863Eb42Cf62847A6Ca784e6416C1682b1b2Ae': contract = VVS_ROUTER_CONTRACT elif pair['router:'] == '0x145677FC4d9b8F19B5D56d1820c48e0443049a30': contract = MMF_ROUTER_CONTRACT elif pair['router:'] == '0xcd7d16fB918511BF7269eC4f48d61D79Fb26f918': contract = CRONA_ROUTER_CONTRACT elif pair['router:'] == '0x5bFc95C3BbF50579bD57957cD074fa96a4d5fF9F': contract = CYBORG_ROUTER_CONTRACT if n == 0: amountIn = amountIn if pair['token0']['address'] == tokenIn['address']: tokenOut = pair['token1'] else: tokenOut = pair['token0'] path = [tokenIn['address'],tokenOut['address']] _tokenInapproveaddr.append(tokenIn['address']) amountOut_list = contract.functions.getAmountsOut(amountIn, path).call() amountOut= amountOut_list[1] print('amountout1:',amountOut) encode = dataswap_encode(contract, amountIn, amountOut, path, mycontract) data.append(encode) # approve = tokenIn = tokenOut amountIn = amountOut if n > 0: if pair['token0']['address'] == tokenIn['address']: tokenOut = pair['token1'] else: tokenOut = pair['token0'] path = [tokenIn['address'],tokenOut['address']] _tokenInapproveaddr.append(tokenIn['address']) amountOut_list = contract.functions.getAmountsOut(amountIn, path).call() amountOut= amountOut_list[1] print('amountout2:',amountOut) encode = dataswap_encode(contract, amountIn, amountOut, path, mycontract) data.append(encode) # approve = tokenIn = tokenOut amountIn = amountOut n+=1 print('profit:', amountIn - 50*pow(10,18)) return tos, data, _tokenInapproveaddr
Galahad091/My-arb-on-fantom
test/encode_data.py
encode_data.py
py
2,926
python
en
code
0
github-code
6
10426113272
from measurements.models import Location, Station, SourceType, Network from django.contrib.gis.geos import Point import requests from bs4 import BeautifulSoup from datetime import datetime, timedelta import pandas as pd import re IOC = "http://www.ioc-sealevelmonitoring.org/station.php?code={}" stations = ( ('Trieste', 'TR22'), ('Venice', 'VE19'), ('Ancona', 'AN15'), ('S. Benedetto Del Tronto', 'SB36'), ('Stari Grad', 'stari'), ('Vela Luka', 'vela'), ('Sobra', 'sobr'), ('Otranto', 'OT15'), ('Kerkyra, Corfu', 'corf'), ('Crotone', 'CR08'), ('Le Castella', 'lcst'), ('Itea', 'itea'), ('Panormos', 'pano'), ('Aigio', 'aigi'), ('Katakolo', 'kata'), # ('Kyparissia', 'kypa'), ) ioc_source, created = SourceType.objects.get_or_create(code='ioc') ioc_network, created = Network.objects.get_or_create(code='ioc') # IOC stations for label, code in stations: r = requests.get(IOC.format(code)) # print(r.text) soup = BeautifulSoup(r.text) for elem in soup(text='Latitude '): lat = float(elem.find_next('td').contents[0]) for elem in soup(text='Longitude '): lon = float(elem.find_next('td').contents[0]) # print(lon, lat) l, created = Location.objects.get_or_create(label=label) l.geo = Point(lon, lat) l.save() # print(label, l) s, created = Station.objects.get_or_create(code=code, label=label, source=ioc_source, network=ioc_network, location=l)
CNR-ISMAR/ecoads
scripts/import_station_locations.py
import_station_locations.py
py
1,738
python
en
code
0
github-code
6
2048923412
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' sort.Sort Sort algorithm. ''' class Sort(object): __CUTOFF = 5 def _median3(arr, beg, end): mid = (beg + end) // 2 if arr[beg] > arr[mid]: arr[beg], arr[mid] = arr[mid], arr[beg] if arr[mid] > arr[end]: arr[mid], arr[end] = arr[end], arr[mid] if arr[beg] > arr[mid]: arr[beg], arr[mid] = arr[mid], arr[beg] arr[mid], arr[end-1] = arr[end-1], arr[mid] return arr[end-1] def _qsort(arr, low, high, cmp_obj): if high - low < Sort.__CUTOFF: Sort._isort(arr, low, high, cmp_obj) else: pivot = Sort._median3(arr, low, high) lbeg = low + 1 rend = high - 2 while True: while arr[lbeg] < pivot: lbeg += 1 while arr[rend] > pivot: rend -= 1 if lbeg < rend: arr[lbeg], arr[rend] = arr[rend], arr[lbeg] lbeg += 1 rend -= 1 else: arr[lbeg], arr[high-1] = arr[high-1], arr[lbeg] break Sort._qsort(arr, low, lbeg - 1, cmp_obj) Sort._qsort(arr, lbeg + 1, high, cmp_obj) def _isort(arr, low, high, cmp_obj): i = low + 1 while i <= high: tmp = arr[i] j = i - 1 while j >= low: if tmp < arr[j]: arr[j+1] = arr[j] else: break j -= 1 arr[j+1] = tmp # bug: j+1 instead of j i += 1 def _shsort(arr, low, high, cmp_obj): step = (high - low + 1) // 2 while step > 0: i = step while i <= high: tmp = arr[i] j = i - step while j >= low: if tmp < arr[j]: arr[j+step] = arr[j] else: break j -= step arr[j+step] = tmp # bug: j+1 instead of j i += 1 step //= 2 def _perc_down(arr, pos, cnt, cmp_obj): '''Used for heap ajustment''' lchild = lambda x: 2 * x + 1 tmp = arr[pos] p = pos while lchild(p) < cnt: lc = lchild(p) rc = lc + 1 min_child = rc if rc < cnt and arr[rc] < arr[lc] else lc if tmp > arr[min_child]: arr[p] = arr[min_child] p = min_child else: break arr[p] = tmp def _swim_up(arr, pos, cmp_obj): '''Used for heap ajustment''' root = lambda x: x//2-1 if x%2 == 0 else x//2 tmp = arr[pos] p = pos while root(p) >= 0: min_child = root(p) if tmp < arr[min_child]: arr[p] = arr[min_child] p = min_child else: break arr[p] = tmp def make_heap(arr, cmp_obj): cnt = len(arr) pos = cnt // 2 - 1 # From the last node which has children, # to the first node, do perc_down while pos >= 0: Sort._perc_down(arr, pos, cnt, cmp_obj) pos -= 1 def _merge(arr, beg, mid, end, cmp_obj): i = 0 lbeg = beg rbeg = mid rend = end aux = [None] * (end - beg + 1) while lbeg < mid and rbeg < end + 1: if arr[lbeg] < arr[rbeg]: aux[i] = arr[lbeg] lbeg += 1 else: aux[i] = arr[rbeg] rbeg += 1 i += 1 while lbeg < mid: aux[i] = arr[lbeg] i += 1 lbeg += 1 while rbeg < end + 1: aux[i] = arr[rbeg] i += 1 rbeg += 1 # copy sorted data back i = 0 while beg <= end: arr[beg] = aux[i] beg += 1 i += 1 def _msort(arr, beg, end, cmp_obj): if end - beg + 1 < Sort.__CUTOFF: Sort._isort(arr, beg, end, cmp_obj) else: Sort._msort(arr, beg, (beg+end)//2, cmp_obj) Sort._msort(arr, (beg+end)//2+1, end, cmp_obj) Sort._merge(arr, beg, (beg+end)//2+1, end, cmp_obj) def is_sorted(arr, cmp_obj = None): ret = True i = 1 while i < len(arr): if arr[i] < arr[i-1]: ret = False break i += 1 return ret def qsort(arr, cmp_obj=None): Sort._qsort(arr, 0, len(arr)-1, cmp_obj) def isort(arr, cmp_obj=None): Sort._isort(arr, 0, len(arr)-1, cmp_obj) def shsort(arr, cmp_obj=None): Sort._shsort(arr, 0, len(arr)-1, cmp_obj) def msort(arr, cmp_obj=None): Sort._msort(arr, 0, len(arr)-1, cmp_obj) def hsort(arr, cmp_obj=None): Sort.make_heap(arr, cmp_obj=None) i = len(arr) - 1 while i > 0: arr[0], arr[i] = arr[i], arr[0] Sort._perc_down(arr, 0, i, cmp_obj) i -= 1 if __name__ == '__main__': import random arr = random.sample(range(500), 10) arr = arr * 3 print("before sort: %s" %arr) Sort.shsort(arr) print("after shsort: %s" %arr) assert Sort.is_sorted(arr) Sort.msort(arr) print("after msort: %s" %arr) assert Sort.is_sorted(arr) Sort.hsort(arr) print("after hsort: %s" %arr) Sort.qsort(arr) assert Sort.is_sorted(arr) Sort.qsort(arr) assert Sort.is_sorted(arr) print("after qsort: %s" %arr)
zhencliu/learning_python
sort/Sort.py
Sort.py
py
5,879
python
en
code
0
github-code
6
23055488423
""" Creation: Author: Martin Grunnill Date: 2022-11-01 Description: Getting prevelance data for world cup teams. """ import copy import pandas as pd import datetime schedule_df = pd.read_csv('data_extraction/Fifa 2022 Group stages matches with venue capacity.csv') covid_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv') population_df = pd.read_csv('data_extraction/Population estimates world bank.csv',header=2, index_col='Country Name') # downloaded from https://data.worldbank.org/indicator/SP.POP.TOTL https://api.worldbank.org/v2/en/indicator/SP.POP.TOTL?downloadformat=csv # need to change covid_data to datetime type covid_data.date = pd.to_datetime(covid_data.date) date_to = datetime.datetime(2022, 11, 18) covid_data = covid_data[covid_data.date<=date_to] #%% # select data for only countries in the world cup countries = set(schedule_df['Team A'].unique().tolist() + schedule_df['Team B'].unique().tolist()) # looking at the data set (https://covid.ourworldindata.org/data/owid-covid-data.csv) new cases smoothed # for England and Wales is pooled under United Kingdom proxies = copy.deepcopy(countries) proxies.add('United Kingdom') proxies.remove('England') proxies.remove('Wales') covid_data = covid_data[covid_data.location.isin(proxies)] # sense check to make sure we have selected the right places selected_proxies = covid_data.location.unique() len(proxies)==len(selected_proxies) #%% Selecting most recent available data for new_cases_smoothed # remove missing data covid_data.new_cases_smoothed = covid_data.new_cases_smoothed.replace({0:None}) covid_data = covid_data[pd.notnull(covid_data.new_cases_smoothed)] prevelance_records = [] for country in countries: if country in ['England', 'Wales']: proxy = 'United Kingdom' else: proxy = country # select proxie location_data = covid_data[covid_data.location==proxy] # latest date for which we have information latest_date = location_data.date.max() latest_date_data = location_data[location_data.date==latest_date] cases_smoothed = latest_date_data.new_cases_smoothed.iloc[0] if proxy=='South Korea': population = population_df.loc['Korea, Rep.', '2021'] elif proxy == 'Iran': population = population_df.loc['Iran, Islamic Rep.', '2021'] else: population = population_df.loc[proxy,'2021'] entry = {'country': country, 'proxy': proxy, 'date': latest_date, 'case_prevalence': cases_smoothed/population, } prevelance_records.append(entry) prevelance_df = pd.DataFrame(prevelance_records) #%% Adding data on infection to detection ratio # Getting data frame # location of zip file downloaded from https://ghdx.healthdata.org/sites/default/files/record-attached-files/HME_COVID_19_IES_2019_2021_RATIOS.zip zip_file = 'data_extraction/HME_COVID_19_IES_2019_2021_RATIOS.zip' # read file detection_raio_df = pd.read_csv(zip_file) # Selecting detections/infections detection_raio_df.measure_name.unique() detection_raio_df = detection_raio_df[detection_raio_df.measure_name=='Cumulative infection-detection ratio'] # change date to date detection_raio_df['date'] = pd.to_datetime(detection_raio_df['date']) detection_raio_df = detection_raio_df[detection_raio_df.date==detection_raio_df.date.max()] detection_raio_df.location_name = detection_raio_df.location_name.replace({'USA':'United States','UK':'United Kingdom'}) values_list = ['value_mean','value_lower','value_upper'] # Change percent to raw number for column in values_list: detection_raio_df[column] = detection_raio_df[column]/100 detection_raio_df.metric_name = 'raw' # invert values so they are now infections/detected cases. for column in values_list: detection_raio_df[column] = detection_raio_df[column]**-1 to_merge = detection_raio_df[detection_raio_df.location_name.isin(proxies)] to_merge = to_merge[['location_name']+values_list] prevelance_df = prevelance_df.merge(to_merge, left_on='proxy', right_on='location_name') prevelance_df.rename(columns={'value_lower': 'ratio_upper', 'value_mean': 'ratio_mean', 'value_upper': 'ratio_lower'}, inplace=True) prevelance_df['infection_prevalence_lower'] = prevelance_df.case_prevalence*prevelance_df.ratio_lower prevelance_df['infection_prevalence_mean'] = prevelance_df.case_prevalence*prevelance_df.ratio_mean prevelance_df['infection_prevalence_upper'] = prevelance_df.case_prevalence*prevelance_df.ratio_upper # host min and max host_min = prevelance_df[prevelance_df.country=='Qatar']['infection_prevalence_lower'].tolist()[0] host_max = prevelance_df[prevelance_df.country=='Qatar']['infection_prevalence_upper'].tolist()[0] # Everybody elses min max visior_min = prevelance_df[prevelance_df.country!='Qatar']['infection_prevalence_lower'].min() visior_max = prevelance_df[prevelance_df.country!='Qatar']['infection_prevalence_upper'].max()
LIAM-COVID-19-Forecasting/Modelling-Disease-Mitigation-at-Mass-Gatherings-A-Case-Study-of-COVID-19-at-the-2022-FIFA-World-Cup
Running_and_analysing_simulations/parameters/data_extraction/getting_prevelance_data.py
getting_prevelance_data.py
py
5,030
python
en
code
0
github-code
6
37009381909
class Solution: def minCostClimbingStairs(self, cost) -> int: """ dp[i]表示登上第i个阶梯所花费的体力值。 登上楼顶所花费的体力值为0, 所以我们要登上n层阶梯的阶梯顶部,则要求dp[n+1] """ n = len(cost) if n < 1: return 0 dp = [0] * (n+1) cost.append(0) dp[0] = cost[0] dp[1] = cost[1] for i in range(2, n+1): dp[i] = min(dp[i-1], dp[i-2]) + cost[i] return dp[n] s = Solution() print(s.minCostClimbingStairs([]))
wangluolin/Algorithm-Everyday
dp/746-爬楼梯.py
746-爬楼梯.py
py
591
python
en
code
0
github-code
6
1118355565
'''02-05-2021 Baekjoon Algorithm 단계별 문제 풀이 - 12단계 언어 - Python''' # 2751 # N개의 수가 주어졌을 때, 이를 오름차순으로 정렬하는 프로그램을 작성하시오. ''' N = int(input()) num = [] for _ in range(0, N): num.append(int(input())) num.sort() for i in range(0, N): print(num[i]) ################################################################################# ## 시간초과 -> PyPy로 아래 코드 제출시 해결 / 아래 코드와 무엇이 다른지 잘 모르겠음## ################################################################################# N = int(input()) nums = [] for i in range(N): nums.append(int(input())) nums = sorted(nums) for i in range(N): print(nums[i]) ''' # 10989 # N개의 수가 주어졌을 때, 이를 오름차순으로 정렬하는 프로그램을 작성하시오. N = int(input()) num = [] for _ in range(0, N): num.append(int(input())) num = sorted(num) for i in range(0, N): print(num[i])
shiningnight93/Baekjoon_Algorithm
02-05-2021.py
02-05-2021.py
py
1,068
python
ko
code
0
github-code
6
38315691636
#khai báo hàm long_words với 2 tham số là n và str def long_words(n, str): #khai báo list rỗng word_len=[] #gán list mới bằng cách tách các từ trong str( mỗi chữ cách nhau bởi dấu cách sẽ biến thành một phần tử của list) txt=str.split(" ") for x in txt: #nếu số ký tự của chuỗi x trong list txt lớn hơn n thì thêm vào cuối list word_len chuỗi x if len(x)>n: word_len.append(x) # trả về gía trị của list word_len return word_len # hàm long_words được truyền tham số n = 3 và str = "The quick brown fox jumps over the lazy dog" và in print(long_words(3, "The quick brown fox jumps over the lazy dog"))
lananh104/chepcode_ham.split-
chepcode.py
chepcode.py
py
743
python
vi
code
0
github-code
6
23125697422
import os import sys sys.path.append("..") import taobaoTry.taobaoTryUtils from task.logUtils import logUtils class taobaoTryTask: def enum(**enums): return type('Enum', (), enums) taskType = enum(JingXuan=1, All=2) mTaskTypeFor = taskType.All taobaoTryTaskLockFile = ".." + os.path.sep + "lockFile" + os.path.sep + "taobaoTry.lock" def __init__(self,taskTypeFor=taskType.All): global mTaskTypeFor taobaoTryTask.mTaskTypeFor = taskTypeFor if(taskTypeFor==taobaoTryTask.taskType.JingXuan): taobaoTryTask.taobaoTryTaskLockFile = ".." + os.path.sep + "lockFile" + os.path.sep + "taobaoJingXuanTry.lock" else: taobaoTryTask.taobaoTryTaskLockFile = ".." + os.path.sep + "lockFile" + os.path.sep + "taobaoAllTry.lock" if (os.path.exists(taobaoTryTask.taobaoTryTaskLockFile)): if (taskTypeFor == taobaoTryTask.taskType.JingXuan): logUtils.info("精选类型文件已存在,即将退出") else: logUtils.info("所有类型文件已存在,即将退出") os._exit(0) else: # os.mknod('.lock') if (taskTypeFor == taobaoTryTask.taskType.JingXuan): logUtils.info("精选类型创建文件") else: logUtils.info("所有类型创建文件") open(taobaoTryTask.taobaoTryTaskLockFile, "w") if(taskTypeFor==taobaoTryTask.taskType.JingXuan): self.actionJingXuanTask() else: self.actionAllTask() def __del__(self): if (os.path.exists(taobaoTryTask.taobaoTryTaskLockFile)): os.remove(taobaoTryTask.taobaoTryTaskLockFile) if (taobaoTryTask.mTaskTypeFor == taobaoTryTask.taskType.JingXuan): logUtils.info("精选类型退出程序") else: logUtils.info("所有类型退出程序") def actionAllTask(self): logUtils.info("actionAllTask所有") taobaoTry.taobaoTryUtils.taobaoTryUtils().handlePcTryList(None, 0, 1) # 第一个参数传入负数是精选,传0是所有的都采集 def actionJingXuanTask(self): logUtils.info("actionAllTask精选") taobaoTry.taobaoTryUtils.taobaoTryUtils().handlePcTryList(None, -1, 1) # 第一个参数传入负数是精选,传0是所有的都采集 # taobaoTryTask(taobaoTryTask.taskType.JingXuan).actionJingXuanTask() taobaoTryTask(taobaoTryTask.taskType.JingXuan)
tudousiji/pachong
taobaoTry/taobaoTryTask.py
taobaoTryTask.py
py
2,503
python
en
code
3
github-code
6
19521127011
from panda3d.core import CollisionNode, CollisionTube, CollisionBox, AmbientLight, Vec4, DirectionalLight from FreedomCampaignGame.comm_with_server import ClientLogObject client_logger = ClientLogObject().client_logger class GameMap(): def __init__(self, render, load_model_fun): self.render = render # 加载环境模型。将加载models文件夹中的environment.egg文件,返回该模型的指针 self.load_model = load_model_fun self.scene = self.load_model("Models/Environment/environment") # 重新绘制要 渲染的模型。 self.scene.reparent_to(self.render) client_logger.info("开始生成地图障碍物...") self.set_map_solid() client_logger.info("加载环境光、定向灯光..") self.load_light_all() def load_light_all(self): # 添加环境光, AmbientLight对象是一个节点 self.ambient_light = AmbientLight("ambient light") self.ambient_light.set_color(Vec4(0.2, 0.2, 0.2, 1)) self.ambient_light_node_path = self.render.attach_new_node(self.ambient_light) # 环境灯光默认自动影响指示节点下方的所有节点,希望灯光影响所有节点场景,则需要在render(渲染)上指定灯光 self.render.set_light(self.ambient_light_node_path) # 添加定向光,可指定方向 self.directional_light = DirectionalLight("directional light") self.directional_light_node_path = self.render.attach_new_node(self.directional_light) # 一个正面对着你的人,H相当于它左转,P相当于它向左倒也就是顺时针转,R是往前向你这边扑倒旋转,光照射出的位置变动 self.directional_light_node_path.setHpr(45, -45, 0) self.render.set_light(self.directional_light_node_path) # 应用着色器生成器,希望它影响的NodePath上调用“ setShaderAuto”即可。这里是将着色器生成器应用于“渲染” self.render.setShaderAuto() def set_box_solid(self, size=(0, 1, 1, 1), show=True): # size, 第一个0暂时不知道干嘛,官网文档也没说明,后面3分别是长宽高 box_solid = CollisionBox(size[0], size[1], size[2], size[3]) box_node = CollisionNode("box") box_node.add_solid(box_solid) box = self.render.attach_new_node(box_node) if show: box.show() return box def set_tube_solid(self, size=(0, 0, 0, 0, 0, 0, 0.4), show=True): # 管由其起点、终点和半径定义。这里定义的一个管子物体从(-8,0,0)到为(8,0,0),半径为0.4的圆形管道 set_tube_solid = CollisionTube(size[0], size[1], size[2], size[3], size[4], size[5], size[6]) wall_node = CollisionNode("wall") wall_node.add_solid(set_tube_solid) wall = self.render.attach_new_node(wall_node) if show: wall.show() return wall def set_map_solid(self): # 放一个大的管子 # wall = self.set_tube_solid(size=(-2.0, 0, 0, 2.0, 0, 0, 0.2)) # wall.setY(-3) # 用box设置楼梯 box = self.set_box_solid(size=(0, 1, 1.5, 0.2)) box.setX(-2) box.setZ(0.2) box = self.set_box_solid(size=(0, 1, 1.5, 0.4)) box.setX(-3) box.setZ(0.4) box = self.set_box_solid(size=(0, 1, 1.5, 0.6)) box.setX(-4) box.setZ(0.6) # 用box设置墙,这里是弄门这里的两面墙 box = self.set_box_solid(size=(0, 3.65, 0.1, 1.5)) box.setY(8.1) box.setX(-4.3) box.setZ(1.5) box = self.set_box_solid(size=(0, 3.65, 0.1, 1.5)) box.setY(8.1) box.setX(4.3) box.setZ(1.5) # 弄门,门栏 box = self.set_box_solid(size=(0, 0.65, 0.1, 0.25)) box.setY(8.2) box.setZ(0.25) # 门顶部 box = self.set_box_solid(size=(0, 0.65, 0.1, 0.2)) box.setY(8.1) box.setZ(2.04) box = self.set_box_solid(size=(0, 8, 0.1, 1.5)) box.setY(-8.1) box.setZ(1.5) box = self.set_box_solid(size=(0, 0.1, 8, 1.5)) box.setX(8.1) box.setZ(1.5) box = self.set_box_solid(size=(0, 0.1, 8, 1.5)) box.setX(-8.1) box.setZ(1.5)
optimjiang/my_3d_game
game_map.py
game_map.py
py
4,327
python
zh
code
0
github-code
6
29432219565
''' 투포인터로 접근했다가 실패함 ''' class Solution: def maxSubArray(self, nums: List[int]) -> int: sum_num = 0 answer = -999999999999999 for i in range(len(nums)): sum_num += nums[i] answer = max(answer, sum_num) if sum_num < 0: sum_num = 0 return answer
mintaewon/coding_leetcode
0921/P21_taewon.py
P21_taewon.py
py
379
python
en
code
0
github-code
6
41708064158
import glob import math import os import sys import random import numpy as np import pandas as pd import tensorflow as tf from tqdm import tqdm from model.siamese.config import cfg tqdm.pandas() """ Files have to be stored in a structure: main_folder/ 1/ 0030.jpg 1080.jpg ... 2/ 2400.jpg ... 14/ 8800.jpg ... This structure is going to extract images for 3 classes [1,2,14]. """ AUTOTUNE = tf.data.experimental.AUTOTUNE class DataGenerator(tf.keras.utils.Sequence): def __init__( self, folder_path=cfg.TRAIN.DATA_PATH, file_ext="jpg", debug=False, training=True, exclude_aug=False, step_size=1 ): """ Args: folder_path: string ## Path to folder with video frames file_ext: string | List[str] (optional) looking for files with this extension debug: boolean (optional) should generator display any warnings? """ self.images = None self.debug = debug self.data_path = folder_path self.batch_size = cfg.TRAIN.BATCH_SIZE self.shuffle = True self.training = training self.step_size = step_size if not os.path.isdir(folder_path): print( "Images folder path {} does not exist. Exiting...".format(folder_path) ) sys.exit() images = [] for class_dir in os.scandir(folder_path): if type(file_ext) is str: file_ext = [file_ext] files = [] for ext in file_ext: pattern = '*' if exclude_aug: pattern = '*_*' files.extend(glob.glob(f"{class_dir.path}/{pattern}.{ext}")) for i, file in enumerate(sorted(files)): images.append((file, class_dir.name)) self.org_images = images[::self.step_size] batched = self.batch_images() self.images = pd.DataFrame(batched, columns=["path", "label"]) print( f'Found {len(self.images)} files for {len(self.images["label"].unique())} unique classes' ) def __len__(self): return math.ceil(len(self.images) / cfg.TRAIN.BATCH_SIZE) def add_dataset(self, dataset): """ Args: dataset: List[path, label] Returns: """ self.org_images = self.org_images + dataset batched = self.batch_images() self.images = pd.DataFrame(batched, columns=["path", "label"]) print( f'Found {len(self.images)} files for {len(self.images["label"].unique())} unique classes' ) def batch_images(self): images = self.org_images.copy() random.shuffle(images) images = pd.DataFrame(images, columns=["path", "label"]) low_class_count = min(images["label"].value_counts()) unique_classes = images["label"].unique() class_dfs = {} for class_id in unique_classes: class_dfs[str(class_id)] = ( images[images["label"] == class_id] .sample(frac=1) .reset_index(drop=True) ) batched = [] for i in range(0, low_class_count - 1, 2): for class_id in unique_classes: rows = class_dfs[str(class_id)].loc[[i, i + 1], :] batched.append(rows.to_numpy()) batched = np.array(batched) batched = batched.reshape( (batched.shape[0] * batched.shape[1], batched.shape[2]) ) return batched @staticmethod def process_image(image_path, to_input=False): """ Args: image_path: string to_input: boolean - should image be wrapped into input shape (1, 224, 224, 3) Returns: ((cfg.NN.INPUT_SIZE, cfg.NN.INPUT_SIZE, 3), class) """ image = tf.keras.preprocessing.image.load_img( image_path, target_size=(cfg.NN.INPUT_SIZE, cfg.NN.INPUT_SIZE) ) image = tf.keras.preprocessing.image.img_to_array(image) image = np.expand_dims(image, axis=0) image - tf.keras.applications.mobilenet_v2.preprocess_input(image) if to_input: return image return image[0] @staticmethod def process_label(label): """ Args: label: string Returns: int """ return int(label) def get_dataset(self): """ Returns: tf.Dataset """ target = ( self.images.pop("label") .progress_map(DataGenerator.process_label) .to_numpy() ) images = ( self.images.pop("path").progress_map(DataGenerator.process_image).to_numpy() ) reshaped_images = np.concatenate(images).reshape( ( images.shape[0], images[1].shape[0], images[1].shape[1], images[1].shape[2], ) ) ds = tf.data.Dataset.from_tensor_slices((reshaped_images, target)) ds = ds.cache() ds = ds.batch(cfg.TRAIN.BATCH_SIZE) ds = ds.prefetch(buffer_size=cfg.TRAIN.BATCH_SIZE) return ds def on_epoch_end(self): if self.training: batched = self.batch_images() self.images = pd.DataFrame(batched, columns=["path", "label"]) def __getitem__(self, item): images = self.images.loc[ item * cfg.TRAIN.BATCH_SIZE : (item + 1) * cfg.TRAIN.BATCH_SIZE ] target = images.pop("label").map(DataGenerator.process_label).to_numpy() images = images.pop("path").map(DataGenerator.process_image).to_numpy() reshaped_images = np.concatenate(images).reshape( ( images.shape[0], images[1].shape[0], images[1].shape[1], images[1].shape[2], ) ) return reshaped_images, target
burnpiro/farm-animal-tracking
data/data_generator.py
data_generator.py
py
6,118
python
en
code
24
github-code
6
29522073566
import os import random import sys import yaml import numpy as np with open("config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile, Loader=yaml.FullLoader) ymlfile.close() if not cfg['use_gpu']: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' seed = cfg['seed'] os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) import tensorflow as tf from tensorflow.keras.datasets.fashion_mnist import load_data from tensorflow.keras.utils import to_categorical tf.compat.v1.set_random_seed(seed) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) tf.compat.v1.disable_eager_execution() # To solve the speed problem of TF2 # Deprecated in tf2 config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.intra_op_parallelism_threads = 4 config.inter_op_parallelism_threads = 4 tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=config)) from utils.deepnetwork import DeepNetwork from utils.tracker import Tracker def fashion_mnist(params): tracker = Tracker(seed, 'fashion_mnist.h5') # Load dataset (x_train, y_train), (x_test, y_test) = load_data() # Preprocessing # Reshape data as dataset is grayscaled x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1) x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1) # Convert labels into categorial n_classes = params['n_classes'] y_train = to_categorical(y_train, n_classes) y_test = to_categorical(y_test, n_classes) # Normalize images values x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # Create model model = DeepNetwork.build((28, 28, 1), params) # Train model model.fit(x_train, y_train, batch_size=params['batch_size'], epochs=params['n_epochs'], validation_data=(x_test, y_test), shuffle=True) # Evaluate performance scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # Save model tracker.save_model(model) if __name__ == "__main__": fashion_mnist(cfg['train'])
emarche/Fashion-MNIST
main.py
main.py
py
2,261
python
en
code
0
github-code
6
44717248733
# Quick and dirty utility to get coordinates for transforming view into # a bird's eye view. Useful in OCRs were the camera is in a fixed positioning # viewing a straight plane. import cv2 import numpy as np def onTrackbarChange(trackbarValue): pass def order_points(pts): # initialize a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype = "float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def expandPerspective(rect , width, height): '''Expand the perspective out to the image limits by finding intersection using point-slope form''' # Constants x = 0 y = 1 # Convert coordinate system rect[:,1] *= -1 (tl, tr, br, bl) = rect # Find the slope of each of the 4 lines slopeTop = (tr[y]-tl[y]) / (tr[x]-tl[x]) slopeBottom = (br[y]-bl[y]) / (br[x]-bl[x]) slopeLeft = (tl[y]-bl[y]) / (tl[x]-bl[x]) slopeRight = (tr[y]-br[y]) / (tr[x]-br[x]) # Assign new points based on image size pointRight = width,0 pointTop = 0,0 pointBottom = width, height * -1.0 pointLeft = 0, height* -1.0 # Find where the new expanded lines intersect using point slope form def intersectoin (m1,m2,x1,x2,y1,y2,orig): x = ((m2*x2-m1*x1)-(y2-y1))/(m2-m1) #y = ((-1.0*m1*y2 + m1*m2*x2 + y1*m2 )-(m1*m2*x1))/(m2-m1) y = m1*(x - x1) + y1 try: x = round(x) y = round(y) except: return orig return x, y new_tr = intersectoin (slopeTop,slopeRight,pointTop[x],pointRight[x],pointTop[y],pointRight[y],tr) new_tl = intersectoin (slopeTop,slopeLeft,pointTop[x],pointLeft[x],pointTop[y],pointLeft[y],tl) new_br = intersectoin (slopeBottom,slopeRight,pointBottom[x],pointRight[x],pointBottom[y],pointRight[y],br) new_bl = intersectoin (slopeBottom,slopeLeft,pointBottom[x],pointLeft[x],pointBottom[y],pointLeft[y],bl) # Convert coordinate system back new_rect = rect = np.array([new_tl, new_tr, new_br, new_bl], dtype = "float32") new_rect[:,1] *= -1 return new_rect # Derived from https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example def four_point_transform(image, pts): # Unpack points rect = pts (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordinates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], #tl [maxWidth - 1, 0], #tr [maxWidth - 1, maxHeight - 1], #br [0, maxHeight - 1]], #bl dtype = "float32") # Move image to positive coordinates min_x = round(abs(np.min(rect[:,0]))) min_y = round(abs(np.min(rect[:,1]))) T = np.matrix( [[ 1 , 0 , min_x], # Get min x [ 0 , 1 , min_y ], # Get min y [ 0 , 0 , 1 ]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, T * M , (maxWidth + min_x , maxHeight + min_y), borderMode=cv2.BORDER_TRANSPARENT) # return the warped image return warped # Open Image img = cv2.imread('img\\example1.jpeg') # Open windows for control, original image, and result cv2.namedWindow('Control', cv2.WINDOW_AUTOSIZE) cv2.namedWindow('Main', cv2.WINDOW_AUTOSIZE) cv2.namedWindow('Birds Eye', cv2.WINDOW_AUTOSIZE) # Track bars for coordinates cv2.createTrackbar( 'X L Bot', 'Control', 0, img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y L Bot', 'Control', img.shape[0], img.shape[0], onTrackbarChange ) cv2.createTrackbar( 'X L Top', 'Control', 0, img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y L Top', 'Control', 0, img.shape[0], onTrackbarChange ) cv2.createTrackbar( 'X R Top', 'Control', img.shape[1], img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y R Top', 'Control', 0, img.shape[0], onTrackbarChange ) cv2.createTrackbar( 'X R Bot', 'Control', img.shape[1], img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y R Bot', 'Control', img.shape[0], img.shape[0], onTrackbarChange ) # Loop while(1): # Get Track Bar positions pts = np.array(eval('[(' + str(cv2.getTrackbarPos('X L Bot','Control')) + ',' + str(cv2.getTrackbarPos('Y L Bot','Control')) + '),' + '(' + str(cv2.getTrackbarPos('X L Top','Control')) + ',' + str(cv2.getTrackbarPos('Y L Top','Control'))+ '),' + '(' + str(cv2.getTrackbarPos('X R Top','Control')) + ',' + str(cv2.getTrackbarPos('Y R Top','Control'))+ '),' + '(' + str(cv2.getTrackbarPos('X R Bot','Control')) + ',' + str(cv2.getTrackbarPos('Y R Bot','Control'))+ ')]' ), dtype = "int32") # Draw the perspective imgConnectedPoints = cv2.polylines(img.copy(), [pts], isClosed = True, color = (0,255,0), thickness = 3) cv2.imshow('Main',imgConnectedPoints) # Draw the transformed bird's eye view warped = four_point_transform(img, expandPerspective(order_points(pts), img.shape[1], img.shape[0])) cv2.imshow('Birds Eye',warped) # Exit if cv2.waitKey(1)==27: exit(0) cv.detroyAllWindows()
hellkrusher/BirdsEyePerspectiveTransformationUtility
BirdsEyePerspectiveTransformationUtility.py
BirdsEyePerspectiveTransformationUtility.py
py
6,413
python
en
code
5
github-code
6
74142812668
import sys from execute_query import * if __name__ == "__main__": q_values = [1] if len(sys.argv) != 4: print("3 arguments expected : input_file_rep input_file_model output_file") else: db_rep = '../generated_dbs/' + sys.argv[1] db_model = sys.argv[2] output_file = sys.argv[3] result = '' result += 'FO : ' + db_rep + '/X' + db_model + '\n' for i in q_values: n = str(i+1) db_file = db_rep + '/' + n + db_model fo_script = 'q' + n + 'fo.lp' # result += str(run_fo_query(db_file, fo_script)[0]) + ', ' print("DONE FO : ", i) result += '\n' result += 'GT : ' + db_rep + '/X' + db_model + '\n' for i in q_values: n = str(i+1) db_file = db_rep + '/' + n + db_model module_name = 'gtq' + n module = __import__(module_name) result += str(execute_gt_query(db_file, module.get_script, module.query, module.tmp_file)[0]) + ', ' print("DONE GT : ", i) result += '\n' result += '--------------------------------------- \n' f = open(output_file, 'a') f.write(result) f.close()
YacineSahli/KRR
queries/run_queries.py
run_queries.py
py
1,295
python
en
code
0
github-code
6
73832000827
import numpy as np import pandas as pd import scipy.ndimage as nd from skimage import io as skio import sys import getopt def usage(): print(""" Usage : python3 gen_stacked_tif.py < -i mask.lst> < -a anno.txt> < -o output prefix> [ -b binsize default 20] """) def main(argv): ######################## # no args equal to -h if len(argv) == 0 : usage() sys.exit(0) ######################## # default values mask_lst = '' annof = '' binsize = 20 prefix = '' ######################## # parse args try: opts, args = getopt.getopt(argv,"hi:o:a:b:",["help"]) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): usage() sys.exit(0) elif opt in ("-i" ): mask_lst = arg elif opt in ("-o" ): prefix = arg elif opt in ("-a" ): annof = arg elif opt in ("-b" ): binsize = int(arg) infos = pd.read_csv(mask_lst,sep=' ',header=None) infos.columns = ['filename','zvalue'] infos['zvalue'] = infos['zvalue'].astype(int) infos['zvalue'] = infos['zvalue'] - 1 # start from 0 slices = {} annos = pd.read_csv(annof,sep=',',header=0) for i , row in infos.iterrows(): cellmask = np.loadtxt(row['filename'],dtype=int) y, x = np.nonzero(cellmask) tmp_draw = pd.DataFrame() tmp_draw['x'] = x tmp_draw['y'] = y tmp_draw['cell'] = cellmask[y,x] cellmask[y,x] = 0 tmp_draw= tmp_draw.set_index('cell') slice_anno = annos[ annos['slice_id'] == int(row['zvalue']+1) ].copy() slice_anno = slice_anno.set_index('cell_id') tmp_draw['anno'] = slice_anno['anno_id'] tmp_draw = tmp_draw[tmp_draw['anno']!='NA'].copy() cellmask[tmp_draw['y'],tmp_draw['x']] = 100 #pharynx = tmp_draw[tmp_draw['anno']=='c21'] #gut = tmp_draw[tmp_draw['anno']=='c1'] #neural = tmp_draw[tmp_draw['anno']=='c33'] #cellmask[pharynx['y'],pharynx['x']] = 150 #cellmask[gut['y'],gut['x']] = 200 #cellmask[neural['y'],neural['x']] = 250 h,w = cellmask.shape affine = np.matrix(np.array([[1.0/binsize,0,0],[0,1.0/binsize,0],[0,0,1]])) binimage = nd.affine_transform(cellmask.T,affine.I,output_shape=(int(w/binsize),int(h/binsize)),order=0) slices[row['zvalue']] = binimage.T H = int(h/binsize) W = int(w/binsize) zmax = infos['zvalue'].max() image_buff = np.zeros((zmax+1,H,W),dtype='uint8') for x in slices: image_buff[x,:,:] = slices[x] skio.imsave(f'{prefix}.tif',image_buff) if __name__ == "__main__": main(sys.argv[1:])
BGI-Qingdao/4D-BioReconX
Preprocess/meshgen/gen_stacked_tif.py
gen_stacked_tif.py
py
2,922
python
en
code
4
github-code
6
11119557677
#!/bin/python3 import math import os import random import re import sys # Complete the timeInWords function below. def timeInWords(h, m): time = '' words = ['','one','two','three','four','five','six','seven','eight','nine','ten','eleven','twelve', 'thirteen','fourteen','fifteen','sixteen','seventeen','eighteen','nineteen','twenty'] if m == 1: time = words[m] + ' minute past ' + words[h] elif m == 0: time = words[h] + " o' clock" elif m == 15: time = "quarter past " + words[h] elif m == 30: time = "half past " + words[h] elif m == 45: time = "quarter to " + words[h + 1] elif m < 20: time = words[m] + ' minutes past ' + words[h] elif m < 30: time = words[-1] + ' ' + words[int(m % 10)] + ' minutes past ' + words[h] elif m > 45: time = words[60 - m] + ' minutes to ' + words[h + 1] else: time = words[-1] + ' ' + words[int(m%10)] + ' minutes to ' + words[h + 1] return time if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') h = int(input()) m = int(input()) result = timeInWords(h, m) fptr.write(result + '\n') fptr.close()
lamanhasanli/challengers-club-adventure
MS-WarmUp/The_Time_in_Words.py
The_Time_in_Words.py
py
1,213
python
en
code
0
github-code
6
14837094680
import frappe import json #从前台传入items,客户料号→料号 @frappe.whitelist() def so_refcode_to_itemcode(): #提取js传入参数 ao_items = json.loads(frappe.form_dict.get("items")) customer_name = frappe.form_dict.get("customer") #获取js传入的全部客户料号(非重复) s_ref_code = {r.get("customer_item_code") for r in ao_items} #从xx表获取所有客户料号对应的【料号】 item_code_map = dict( frappe.get_all("Item Customer Detail", filters = {"customer_name":customer_name, "ref_code":("in", s_ref_code) }, fields = ["ref_code", "parent"], as_list = 1 )) # frappe.msgprint(customer_name+"--"+str(s_ref_code)+"--"+str(items)) #返回行id:料号键值对(字典) result = {r.get("name"):item_code_map.get(r.get("customer_item_code")) for r in ao_items} frappe.response["message"] = result
cwlong1987/yhen
yhen/api/sales_order.py
sales_order.py
py
866
python
en
code
0
github-code
6
42909743578
# Jin Yang 260724904 import dicts_utils as utilsd import board_utils as utilsb import random # takes as input a dictionary representing the rack of a player; Displays one line containing # the letter that're on the rack using upper case. def display_rack(r): """ (dict) -> NoneType Displays one line containing the letter(s) that are in the dictionary using upper case. >>> display_rack({'a':2, 'f':1, 'g':2, 'o':1, 'z':1}) A A F G G O Z >>> display_rack({'h': 1, 'e': 1, 'l': 2, 'o': 1}) H E L L O >>> display_rack({'h': 1}) H """ r_list = utilsd.flatten_dict(r) r_str = '' for w in r_list: r_str += w + ' ' print(r_str.upper()) # takes as input a dictionary representing the rack of a player, and a string; Returns True if all # characters in the input string are available on the rack, and if so, removes those letters from # the rack; Otherwise, return False and doesn't modify the rack. def has_letters(rack, word): """ (dict, str) -> bool Returns true if all characters in the input string are available in the dictionary rack, and if so, removes those letters from the rack. Otherwise, returns false and doesn't modify the rack. >>> r = {'a':2, 'c':1, 't':1, 'i':2, 'r':1} >>> has_letters(r, 'cat') True >>> r == {'a':1, 'i':2, 'r':1} True >>> r == {'a':2, 'f':1, 'g':2, 'o':1, 'z':1} >>> has_letters(r, 'goof' False >>> r == {'a':2, 'f':1, 'g':2, 'o':1, 'z':1} True >>> has_letters(r, 'fog') True >>> r == {'a': 2, 'g': 1, 'z': 1} True """ d_occur = utilsd.count_occurrences(word) if utilsd.subtract_dicts(rack, d_occur) == True: return True else: return False def get_num_rack(rack): """ (dict) -> int Returns the number of characters in the dictionary (which maps single str characters to an int representing its count) >>> b = {'a':1, 'e':2, 'h':1, 'l':2, 'n':1, 'p':2, 's':3, 't':2, 'z':1} >>> get_num_rack(b) 15 >>> b = {'a':2, 'f':1, 'g':2, 'o':1, 'z':1} >>> get_num_rack(b) 7 >>> b = {'a': 2, 'g': 1, 'z': 1} >>> get_num_rack(b) 4 """ num = 0 for key in rack: num += rack[key] return num # takes as input 2 dictionaries (one representing player's rack, the other the pool of letters, # respectively), and a positive integer n; function draws letters at random from the pool and adds them # to the rack until there are either n letters on the rack or no more letters in the pool; Doesn't return # anything, May modify both input dictionaries def refill_rack(rack, pool, n): """(dict, dict, int) -> None >>> random.seed(5) >>> r1 = {'a':2, 'k':1} >>> b = {'a':1, 'e':2, 'h':1, 'l':2, 'n':1, 'p':2, 's':3, 't':2, 'z':1} >>> refill_rack(r1, b, 7) >>> r1 {'a': 2, 'k': 1, 's': 1, 'l': 1, 't': 1, 'n': 1} >>> refill_rack(r1, b, 16) >>> r1 {'a': 3, 'k': 1, 's': 3, 'l': 2, 't': 2, 'n': 1, 'z': 1, 'e': 2, 'h': 1} >>> r1 = {'a': 2, 'g': 1, 'z': 1} >>> b = {'a':2, 'f':1, 'g':2, 'o':1, 'z':1} >>> refill_rack(r1, b, 4) {'a': 2, 'g': 1, 'z': 1} """ # get list of characters in pool #p_list = utilsd.flatten_dict(pool) # choose random character from pool #rand_char = random.choice(p_list) # modify p_list to not pick rand_char again #p_list.remove(rand_char) # get total number of rand_char that's in the rack #rand_char_in_rack = utilsd.get_word_score(rand_char, rack) # get total number of letters in rack and pool num_pool = get_num_rack(pool) num_rack = get_num_rack(rack) count = n - num_rack while count > 0 and num_pool != 0: p_list = utilsd.flatten_dict(pool) rand_char = random.choice(p_list) p_list.remove(rand_char) rand_char_in_rack = utilsd.get_word_score(rand_char, rack) if rand_char_in_rack == 0: rack[rand_char] = 1 else: rack[rand_char] += 1 pool[rand_char] -= 1 if pool[rand_char] == 0: pool.pop(rand_char) count -= 1 num_pool -= 1 num_rack += 1 # takes as input a list of strings, a dictionary mapping letters to integers representing # the number of points each letter's worth, and a dictionary representing valid words # (same format as the one returned by dicts_utils.create_scrabble_dict); # Returns the score obtained by summing together the score of each word from the input list # if any of the words in the list isn't valid, TOTAL score should be 0 def compute_score(list_words, dict_points, dict_valid): """(list, dict, dict) -> int Returns the score obtained by summing together the score of each word from the input list (score is obtained from the values of the dictionary dict_points). If any of the words in the list isn't valid (decided by dict_valid), total score should be 0. >>> v = {'a':1, 'p':3, 'h':2} >>> w = ['aa', 'qi', 'za', 'cat', 'can', 'cow', 'dog', 'dad', 'hippo', 'umami', 'uncle'] >>> d = utilsd.create_scrabble_dict(w) >>> compute_score(['hippo', 'aa'], v, d) 10 >>> v = {'c':3, 'f':1, 'j':6, 'd':2} >>> w = ['aa', 'qi', 'za', 'cat', 'can', 'cow', 'dog', 'dad', 'hippo', 'umami', 'uncle'] >>> d = utilsd.create_scrabble_dict(w) >>> compute_score(['cow', 'hello']) 0 >>> compute_score(['dog', 'uncle', 'can']) 8 >>> compute_score(['here', 'now', 'rat']) 0 """ is_valid = utilsd.is_valid_word_list(list_words, dict_valid) score = 0 if is_valid == True: for word in list_words: for char in word: if char in dict_points: score += dict_points[char] else: return 0 return score # takes as input a two-dimensional list representing the board, a string representing # the letters the player wants to add to the board, 2 integers representing the row and col # number (respectively) of the starting square, and a string indicating the direction to # take when placing the letters on the board (either 'down' or 'right'); # 1) adds the letters received as input to the board given a starting position, and a direction; # 2) returns a list of words created by adding those letters to the board; # the list will contain the main word as well as any hook word generated; order of the elements # doesn't matter; Note: input list should be modified, unless the direction provided is not equal # to neither 'down' nor 'right'; # in such case, returns an empty list; ASSUME the starting square is empty and the provided letters # will fit the board def place_tiles(board, letters, row, col, direction): """ (list of list, str, int, int, str) -> list Adds the letters received as input to the board given a starting position at row/col number, and a direction ('down' or 'right'). Returns a list of words created by adding those letters to the board. The list will contain the main word, as well as any hook word generated; order of the elements doesn't matter. The input list is modified unless the direction provided isn't 'down' nor 'right'; in such a case, returns an empty list. Assume the starting square is empty and the provided letters will fit the board. >>> b = [['c','a','t',' '], [' ',' ',' ',' '], [' ',' ',' ',' '], [' ',' ',' ',' '], [' ',' ',' ',' ']] >>> place_tiles(b, 'rain', 1, 2, 'down') ['train'] >>> words = place_tiles(b, 'mt', 2, 1, 'right') >>> words ['mat'] >>> words2 = place_tiles(b, 'sa', 0, 3, 'down') >>> words2.sort() >>> words2 ['cats', 'ra', 'sat'] """ # deep copy of the original (input) board copy_ori_board = [] for ele in board: ori_board = [] for n in ele: ori_board.append(n) copy_ori_board.append(ori_board) board_speci = [] if direction not in ['down', 'right']: return board_speci row_speci = row if direction == 'down': while row_speci < len(board): board_speci += board[row_speci][col] row_speci += 1 row_speci = row if utilsb.fit_on_board(board_speci, letters, 0) == True: for char in range(len(letters)): if board[row_speci][col] == ' ': board[row_speci][col] = letters[char] row_speci += 1 else: board[row_sepcial + 1][col] = letters[char] row_speci += 1 col_speci = col if direction == 'right': while col_speci < len(board[0]): board_speci += board[row][col_speci] col_speci += 1 col_speci = col if utilsb.fit_on_board(board_speci, letters, 0) == True: for char in range(len(letters)): if board[row][col_speci] == ' ': board[row][col_speci] = letters[char] col_speci += 1 else: board[row][col_speci + 1] = letters[char] col_speci += 1 # get a list of str from column col ori_col_word = utilsb.get_vertical_axis(copy_ori_board, col) new_col_word = utilsb.get_vertical_axis(board, col) # compare words in the list of list of str in each row and col, add word to an empty str # if word isn't in the original board (before adding letters), and add the str to a new list; # return the list new_board_list = [] new_str = '' if new_col_word != ori_col_word: for c in range(len(ori_col_word)): if utilsb.find_word(new_col_word, c) != utilsb.find_word(ori_col_word, c): if utilsb.find_word(new_col_word, c) not in new_str: if len(utilsb.find_word(new_col_word, c)) > 1: new_str += utilsb.find_word(new_col_word, c) new_board_list.append(new_str) for w in range(len(board)): if board[w] == copy_ori_board[w]: continue else: for el in range(len(board[w])): if len(utilsb.find_word(board[w], el)) > 1: if utilsb.find_word(board[w], el) != utilsb.find_word(copy_ori_board[w], el): if utilsb.find_word(board[w], el) not in new_board_list: new_board_list.append(utilsb.find_word(board[w], el)) return new_board_list # takes as input a list representing the board, a dictionary representing the player's rack, # a string representing the letters the player wants to place, two integers representing the row and column # number (respectively) of the starting square on the board, and a string representing the direction (either # 'down' or 'right'; if direction isn't 'down' or 'right', return an empty string (terminate right away). # Othwerise, checks if this is a valid move: # Is there enough space on the board to place those letters? Does the player actually have those letters on the # rack? If so, then the letters are placed on the board, and a list of words created by performing the move # is returned; Otherwise, if letters don't fit on the board, function raises an IndexError # If they fit but player doesn't have those letters on their rack, function raises a ValueError; # if an Error is raised, neither the board nor rack is modified; Otherwise, letters are removed from the rack # and placed on the board. def make_a_move(board, rack, letters, row, col, direction): """ (list, dict, str, int, int, str) -> list If the string indictating direction isn't 'down' or 'right', returns an empty string. If there's enough space on the board to place the letters, and player actually has those letters on the rack, then letters are placed on the board and a list of words created by performing the move is returned. Otherwise, if letters if letters don't fit on the board, function raises an IndexError. If they fit but player doesn't have those letters on their rack, function raises a ValueError; if an Error is raised, neither the board nor rack is modified; Otherwise, letters are removed from the rack and placed on the board. >>> b = [['c','a','t',' '], [' ',' ',' ',' '], [' ',' ',' ',' '], [' ',' ',' ',' '], [' ',' ',' ',' ']] >>> r = {'a':3, 't':2, 'c':1, 'r':1, 'i':1, 'n':1} >>> make_a_move(b, r, 'rain', 1, 2, 'down') ['train'] >>> r == {'a':2, 't':2, 'c':1} True >>> words = make_a_move(b, r, 'mt', 2, 1, 'right') Traceback (most recent call last): You do not have those letters on your rack! >>> r == {'a':2, 't':2, 'c':1} True >>> make_a_move(b, r, 'cat', 3, 1, 'down') Traceback (most recent call last): IndexError: There is not enough space to place the specified letters on the board. >>> r == {'a':2, 't':2, 'c':1} True >>> make_a_move(b, r, 'cat', 2, 1, 'down') ['cat', 'ca', 'ai', 'tn'] >>> r == {'a':1, 't':1} True """ board_speci = [] dict_letters_occur = utilsd.count_occurrences(letters) if direction not in ['down', 'right']: return board_speci row_speci = row if direction == 'down': while row_speci < len(board): board_speci += board[row_speci][col] row_speci += 1 if utilsb.fit_on_board(board_speci, letters, 0) == True: if utilsd.subtract_dicts(rack, dict_letters_occur) == True: made_move = place_tiles(board, letters, row, col, direction) return made_move else: raise ValueError('You do not have those letters on your rack!') else: raise IndexError('There is not enough space to place the specified letters on the board.') col_speci = col if direction == 'right': while col_speci < len(board[0]): board_speci += board[row][col_speci] col_speci += 1 if utilsb.fit_on_board(board_speci, letters, 0) == True: if utilsd.subtract_dicts(rack, dict_letters_occur) == True: made_move = place_tiles(board, letters, row, col, direction) return made_move else: raise ValueError('You do not have those letters on your rack!') else: raise IndexError('There is not enough space to place the specified letters on the board.')
jinyang10/Scrabble
scrabble_utils.py
scrabble_utils.py
py
15,287
python
en
code
0
github-code
6
2108921101
import sys from requests import get from io import BytesIO import sqlite3 from PIL import Image from data.PYTHON_files.main import Ui_MainWindow from data.PYTHON_files.load_image import Ui_Form from data.PYTHON_files.description import Ui_Form_Desk from data.PYTHON_files.effects import * from PyQt5.QtCore import Qt from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5.QtWidgets import QFileDialog WINDOW_SIZE = (1238, 859) IMAGE_FRAME_SIZE = (895, 775) class LoadImage(QMainWindow, Ui_Form): def __init__(self, parent): super(LoadImage, self).__init__(parent) self.setupUi(self) self.initUI() def initUI(self): WINDOW_SIZE = (601, 323) self.setFixedSize(*WINDOW_SIZE) class ShowDescription(QMainWindow, Ui_Form_Desk): def __init__(self, parent): super(ShowDescription, self).__init__(parent) self.setupUi(self) self.initUI() def initUI(self): WINDOW_SIZE = (770, 640) self.setFixedSize(*WINDOW_SIZE) self.text = "" con = sqlite3.connect("data/DB_files/filters_db.sqlite") cur = con.cursor() result = cur.execute("SELECT * FROM filters").fetchall() for elem in result: self.text += "{} - {}\n\n".format(*elem) con.close() def show(self, text=None): self.textBrowser.clear() if not text: text = self.text self.textBrowser.append(text) super().show() class MainWindow(QMainWindow, Ui_MainWindow): def __init__(self): super().__init__() self.setupUi(self) self.initUI() def initUI(self): self.open_url_form = LoadImage(self) self.show_description = ShowDescription(self) self.setFixedSize(*WINDOW_SIZE) self.history = [] self.filters_history = [] self.sliders_history = [] self.image_index = 0 self.image_PIL = None self.scaled_size = [None, None] # open description form self.actionfilters_information.triggered.connect( lambda: self.show_description.show() ) # open filters history form self.actionfilters_history.triggered.connect(self.show_filters_history) # open appliacation info form self.actionapplication_info.triggered.connect(self.show_application_info) # file open/save self.actionopen.triggered.connect(self.load_image) self.actionsave.triggered.connect(self.save_image) self.actionopen_from_URL.triggered.connect(self.load_from_url_form) self.open_url_form.load_url_btn.clicked.connect(self.load_from_url) # theme self.action_darktheme.triggered.connect(self.set_dark_theme) self.action_lighttheme.triggered.connect(self.set_light_theme) # connecting preset buttons self.btns_preset = [ self.btn_preset_1, self.btn_preset_2, self.btn_preset_3, self.btn_preset_4, self.btn_preset_5, self.btn_preset_6, self.btn_preset_7, self.btn_preset_8, self.btn_preset_9, self.btn_preset_10, ] for btn in self.btns_preset: btn.clicked.connect(self.set_presets) # connecting special effects buttons self.btn_box_blur.clicked.connect(self.set_box_blur) self.gaussian_blur.clicked.connect(self.set_gaussian_blur) self.btn_unsharp_mask.clicked.connect(self.set_unsharp_mask) self.btn_stereo.clicked.connect(self.set_stereo) self.btn_square_effect.clicked.connect(self.set_square_effect) self.btn_black_and_white.clicked.connect(self.set_black_and_white) self.btn_negative.clicked.connect(self.set_negative) # connecting back/reset buttons self.btn_reset.clicked.connect(self.recet_image) self.btn_back.clicked.connect(self.previous_image) # connecting sliders self.red_slider.valueChanged.connect( self.change_channels(self.red_slider, (1, 0, 0)) ) self.green_slider.valueChanged.connect( self.change_channels(self.green_slider, (0, 1, 0)) ) self.blue_slider.valueChanged.connect( self.change_channels(self.blue_slider, (0, 0, 1)) ) self.red_slider.sliderReleased.connect( self.apply_channel_changes(self.red_slider, (1, 0, 0)) ) self.green_slider.sliderReleased.connect( self.apply_channel_changes(self.green_slider, (0, 1, 0)) ) self.blue_slider.sliderReleased.connect( self.apply_channel_changes(self.blue_slider, (0, 0, 1)) ) self.rgb_sliders = [self.red_slider, self.green_slider, self.blue_slider] self.alpha_slider.valueChanged.connect(self.change_transparency) self.statusbar = self.statusBar() # load theme from .txt file theme = self.load_theme() if theme == "dark": self.set_dark_theme() else: self.set_light_theme() def show_application_info(self): with open("data/TXT_files/info.txt", "r", encoding="utf-8") as file1: data = file1.read().strip() self.show_description.textBrowser.clear() self.show_description.show(data) def set_filter_history(self): con = sqlite3.connect("data/DB_files/history_db.sqlite") cur = con.cursor() text = " ".join(self.filters_history) text_length = len( " ".join([i[0] for i in cur.execute("SELECT * FROM history").fetchall()]) + text ) if text: cur.execute( """ INSERT INTO history(effects) VALUES(?) """, (text,), ).fetchall() if text_length > 600: result = cur.execute( """ SELECT effects FROM history """ ).fetchone()[0] cur.execute( """ DELETE FROM history WHERE effects = ? """, (result,), ).fetchall() con.commit() con.close() def show_filters_history(self): con = sqlite3.connect("data/DB_files/history_db.sqlite") cur = con.cursor() result = cur.execute("SELECT * FROM history").fetchall() text = "" self.show_description.textBrowser.clear() for i, line in enumerate(result, start=1): text += f"{i}) {line[0]}\n\n" self.show_description.show(text) con.close() def keyPressEvent(self, event): mod = int(event.modifiers()) key = event.key() if mod == Qt.ControlModifier: if key == Qt.Key_O: self.load_image() if key == Qt.Key_S: self.save_image() def change_transparency(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = transparensy(self.image_PIL, self.sender().value()) self.update_image() def change_channels(self, slider, chan): def inner(): if self.check_if_image_opened(): # check for image opened return val = slider.value() rgb = tuple(map(lambda n: val if n == 1 else 50, chan)) self.image.setPixmap( convert_to_qt(channels(self.image_PIL.resize(self.scaled_size), rgb)) ) return inner def apply_channel_changes(self, slider, chan): def inner(): if self.check_if_image_opened(): # check for image opened return val = slider.value() rgb = tuple(map(lambda n: val if n == 1 else 50, chan)) self.image_PIL = channels(self.image_PIL, rgb) self.update_image() self.alpha_slider.setValue( 255 ) # we cannot change RGB-channel with changed alpha channel return inner def set_box_blur(self): if self.check_if_image_opened(): # check for image opened return raduis = self.spin_box_blur_raduis.value() self.image_PIL = box_blur(self.image_PIL, raduis) self.update_image() self.filters_history.append("Box Blur") def set_gaussian_blur(self): if self.check_if_image_opened(): # check for image opened return raduis = self.spin_gaussian_blur_raduis.value() self.image_PIL = gaussian_blur(self.image_PIL, raduis) self.update_image() self.filters_history.append("Gaussian Blur") def set_unsharp_mask(self): if self.check_if_image_opened(): # check for image opened return raduis = self.unsharp_mask_raduis_spin.value() percent = self.unsharp_mask_percent_spin.value() threshold = self.unsharp_mask_threshold_spin.value() self.image_PIL = unsharp_mask(self.image_PIL, raduis, percent, threshold) self.update_image() self.filters_history.append("Unsharp Mask") def set_stereo(self): if self.check_if_image_opened(): # check for image opened return delta = self.stereo_delta_spin.value() self.image_PIL = stereo_effect(self.image_PIL, delta) self.update_image() self.filters_history.append("Stereo") def set_square_effect(self): if self.check_if_image_opened(): # check for image opened return self.alpha_slider.setValue(255) area = self.square_effect_area_spin.value() self.image_PIL = lightest_pixel_effect(self.image_PIL, area) self.update_image() self.filters_history.append("Square Effect") def set_black_and_white(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = black_and_white_effect(self.image_PIL) self.update_image() self.filters_history.append("Black And White") def set_negative(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = negative_effect(self.image_PIL) self.update_image() self.filters_history.append("Negative") def set_presets(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = preset_filters(self.image_PIL, filters[self.sender().text()]) self.update_image() self.filters_history.append(self.sender().text()) def convert_image(self, image): self.filters_history = [] self.history = [] self.sliders_history = [] # делаем изображение меньше, если оно не влезает в рамки width, height = image.size scale1 = scale2 = 1 if width > IMAGE_FRAME_SIZE[0]: scale1 = IMAGE_FRAME_SIZE[0] / width if height > IMAGE_FRAME_SIZE[1]: scale2 = IMAGE_FRAME_SIZE[1] / height scale = scale1 if scale1 < scale2 else scale2 self.scaled_size = (int(width * scale), int(height * scale)) # self.image_PIL = self.image_PIL.resize(self.scaled_size) self.origin_image = self.image_PIL.copy() self.history.append(self.origin_image) # ________________________________________ self.image.move(0, 0) self.image.setAlignment(QtCore.Qt.AlignCenter) self.update_image() self.recet_image() def load_image(self): filename = QFileDialog.getOpenFileName( self, "Choose photo", "", "Pictures (*.png *.jpg);; Pictures (*.png);; Pictures (*.jpg)", )[0].strip() if not filename: return # filename = "/home/anchous/Pictures/waves.png" self.image_PIL = Image.open(filename) self.convert_image(self.image_PIL) def save_image(self): filename = QFileDialog.getSaveFileName( self, "Save photo", "", "Pictures (*.png);; Pictures (*.jpg)" )[0].strip() if not filename: self.statusbar.showMessage("Error: No filename", 5000) return if not self.image_PIL: self.statusbar.showMessage("Error: No image", 5000) return # if the filename is incorrect, request it again try: self.image_PIL.save(filename) except Exception: self.statusbar.showMessage("Error: Incorrect filename", 5000) filename = QFileDialog.getSaveFileName( self, "Save photo", f"{filename.split('.')[0]}.png", "Pictures (*.png);; Pictures (*.jpg)", )[0].strip() self.image_PIL.save(filename) self.set_filter_history() def load_from_url_form(self): self.open_url_form.show() def load_from_url(self): try: url = self.open_url_form.url_text.toPlainText() response = get(url) self.image_PIL = Image.open(BytesIO(response.content)) self.convert_image(self.image_PIL) self.open_url_form.url_text.setPlainText("") self.open_url_form.close() except Exception: self.statusbar.showMessage("Error: Incorrect url", 5000) return def update_image(self): self.history.append(self.image_PIL) self.sliders_history.append( ( self.alpha_slider.value(), self.red_slider.value(), self.green_slider.value(), self.blue_slider.value(), ) ) self.image_index += 1 self.image.setPixmap(convert_to_qt(self.image_PIL.resize(self.scaled_size))) def previous_image(self): if self.image_index > 0: del self.history[self.image_index :] del self.sliders_history[self.image_index :] self.image_index -= 1 self.image_PIL = self.history[self.image_index] self.alpha_slider.setValue(self.sliders_history[-1][0]) self.red_slider.setValue(self.sliders_history[-1][1]) self.green_slider.setValue(self.sliders_history[-1][2]) self.blue_slider.setValue(self.sliders_history[-1][3]) # updating image without history logging self.image.setPixmap(convert_to_qt(self.image_PIL.resize(self.scaled_size))) def recet_image(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = self.origin_image.copy() for sl in self.rgb_sliders: sl.setValue(50) self.alpha_slider.setValue(255) self.update_image() self.image_index = 0 self.history = [self.image_PIL] self.sliders_history = [(255, 50, 50, 50)] def set_dark_theme(self): self.setStyleSheet("background-color: #353535;\ncolor: #dddddd;") self.frame.setStyleSheet("background-color: #282828;") self.set_theme("dark") def set_light_theme(self): self.setStyleSheet("background-color: #dddddd;\ncolor: #202020;") self.frame.setStyleSheet("background-color: #cccccc;") self.set_theme("light") def check_if_image_opened(self): try: return bool(self.image_PIL) is False # check if image opened except AttributeError: return True def set_theme(self, theme): with open("data/TXT_files/theme.txt", "w", encoding="UTF-*") as file1: file1.write(theme) def load_theme(self): with open("data/TXT_files/theme.txt", "r", encoding="UTF-8") as file1: theme = file1.read().strip() return theme def except_hook(cls, exception, traceback): sys.__excepthook__(cls, exception, traceback) if __name__ == "__main__": app = QApplication(sys.argv) ex = MainWindow() ex.show() sys.excepthook = except_hook sys.exit(app.exec_())
Programmer-Anchous/Effects-program
run.py
run.py
py
16,243
python
en
code
0
github-code
6
32124422720
from pages.courses.register_courses_page import RegisterCoursesPage from utilities.teststatus import TestStatus import unittest import pytest import time @pytest.mark.usefixtures("oneTimeSetUp", "setUp") class RegisterCoursesTests(unittest.TestCase): @pytest.fixture(autouse=True) def classSetup(self, oneTimeSetUp): self.courses = RegisterCoursesPage(self.driver) self.ts = TestStatus(self.driver) @pytest.mark.run(order=1) def test_invalidEnrollment(self): """ 1. Call required methods from the page class to perform the test 2. Enter course name 3. Select course 4. Enroll in course 5. Verify error message 6. Test Status.markFinal() """ self.courses.enterCourseName("JavaScript") self.courses.selectCourseToEnroll("JavaScript for beginners") self.courses.enrollCourse("5241810401821657", "1123", "123") time.sleep(5) result2 = self.courses.verifyEnrollFailed() self.ts.markFinal("test_verifyEnrollment", result2, "Enrollment failed...!")
badekarganesh04/selenium-python-framework
tests/courses/register_courses_tests.py
register_courses_tests.py
py
1,090
python
en
code
0
github-code
6
15387648798
import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_blobs import numpy as np def sigmoid(x): return 1.0 / (1 + np.exp(-x)) def dataset(): (X, y) = make_blobs(n_samples=250, n_features=2, centers=2, cluster_std=1.05, random_state=20) X = np.c_[np.ones((X.shape[0])), X] return X,y def initialize_weights(p): return np.random.uniform(size = p) def make_predictions(X,W,link): return link(X.dot(W)) def cross_entropy(y,preds): y = np.array([y]) return -np.sum(y*np.log(preds)+(1-y)*np.log(1-preds))/y.shape[0] def compute_gradient(preds,X,y,cost=cross_entropy,link = sigmoid): y = np.array([y]) if cost == cross_entropy and link == sigmoid: return X.T.dot(preds-y)/y.shape[0] def sgd(X,y,cost = cross_entropy,link=sigmoid, alpha = 0.01,eps = 0.0001, maxit = 1000): W = initialize_weights(X.shape[1]) n = X.shape[0] ind = np.random.permutation(np.arange(n)) X = X[ind] y = y[ind] i = 0 losses = [] preds = make_predictions(X[i:i+1,:],W,link) losses.append(cost(y[i],preds)) it = 0 while True: it += 1 print("Iteration n.{}".format(it)) gradient = compute_gradient(preds,X[i:i+1,:],y[i],cost,link) W -= alpha*gradient i = i + 1 if i == n: ind = np.random.permutation(np.arange(n)) X = X[ind] y = y[ind] i = 0 preds = make_predictions(X[i:i+1,:],W,link) l_new = cost(y[i],preds) losses.append(l_new) if it == maxit: break """if it > 250 and abs(l_new-losses[it-250])<eps: break""" return W,losses #generate the data X,y = dataset() # plot the points plt.scatter(X[:, 1], X[:, 2], marker="o", c=y) theta,losses = sgd(X,y,cost = cross_entropy,link = sigmoid, alpha = 0.01,eps = 0.0001, maxit = 1000) Y = (-theta[0] - (theta[1] * X)) / theta[2] plt.plot(X, Y, "r-") # construct a figure that plots the loss over time fig = plt.figure() plt.plot(np.arange(0, len(losses)), losses) fig.suptitle("Training Loss") plt.xlabel("Epoch #") plt.ylabel("Loss") plt.show()
nickruggeri/Machine_Learning
AdaGrad, ADAM and AMSGrad/Codes/my_sgd.py
my_sgd.py
py
2,198
python
en
code
2
github-code
6
13485135608
#!/usr/bin/python3 def search_replace(my_list, search, replace): newList = my_list.copy() count = 0 for i in my_list: if i == search: newList[my_list.index(i, count)] = replace count = my_list.index(i) + 1 return newList
phiweCode/alx-higher_level_programming
0x04-python-more_data_structures/1-search_replace.py
1-search_replace.py
py
274
python
en
code
0
github-code
6
72465379387
from django import forms from .models import Meme class MemeForm(forms.ModelForm): class Meta(): model = Meme fields = ('description','category','meme_img') widgets = { 'description': forms.TextInput(attrs={ 'class': 'field', 'placeholder': 'Enter Description' }), 'category': forms.Select(choices=model.CATEGORY_CHOICES, attrs={ 'class': 'choice-control', 'placeholder': 'Choose category', }), 'meme_img': forms.FileInput(attrs={ 'class': 'upload-control', 'placeholder': 'Choose file', }) }
omroczkowski/h8gag
meme/forms.py
forms.py
py
701
python
en
code
0
github-code
6
12657002972
# level: medium # soluton: backtracking class Solution(object): def combinationSum(self, candidates, target): """ :type candidates: List[int] :type target: int :rtype: List[List[int]] """ candidates.sort() # print candidates res = [] self.backtracking(res, target, 0, [], candidates) return res def backtracking(self, res, target, start, combination, candidates): if target < 0: return if target == 0: res.append(combination) return for i in range(start, len(candidates)): # print combination, target-candidate self.backtracking(res, target - candidates[i], i, combination + [candidates[i]], candidates)
PouringRain/leetcode
39.py
39.py
py
764
python
en
code
1
github-code
6
71611302909
import json import open3d as o3d import numpy as np import os import trimesh import zipfile from tqdm import tqdm import matplotlib.pyplot as plt plt.style.use('bmh') default_color = [0,0.5,1] cube = np.array([ [0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,0,1], [1,0,1], [1,1,1], [0,1,1], ]) '''plt figure''' def plt_show_save(data, title, save_path=None, xname='', bins=50): plt.cla() plt.figure(figsize=(12,9)) if type(data) == dict: plt.bar(data.keys(), data.values()) # plt.xticks(rotation=90) else: plt.hist(data, bins=bins) plt.title(title) plt.ylabel('value') plt.xlabel(xname) if save_path is not None: plt.savefig(save_path) else: plt.show() def get_pcd(pc, color=default_color): pc = np.array(pc) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pc) pcd.paint_uniform_color(color) # 默认是彩虹色过渡,这里指定染色 return pcd def get_o3d_FOR(origin=[0, 0, 0],size=0.1): mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=size) mesh_frame.translate(origin) return(mesh_frame) def show_pcds(pcds, wname='Open3D', FOR=0.1): if FOR: pcds.append(get_o3d_FOR(size = FOR)) o3d.visualization.draw_geometries(pcds, width=800, height=800, window_name=wname) def csv2box(csv_path): obb_info = np.loadtxt(open(csv_path, 'r'),delimiter = ",") # (5,4) center = obb_info[0,:3] dirs = 0.5 * (obb_info[2:,:3] * obb_info[2:,-1].reshape(3,1) ) val = cube*2 - 1 vec = np.matmul(val, dirs) # (8,3)@(3,3) corner = center.reshape(1,3) + vec return corner,dirs def add_thickness(pc, direction, scale): direction = direction / np.linalg.norm(direction) noise = np.random.normal(0, scale, (pc.shape[0],1)) return pc + noise * direction.reshape(1,3) def PCA(data, sort=True): average_data = np.mean(data,axis=0) decentration_matrix = data - average_data H = np.dot(decentration_matrix.T,decentration_matrix) eigenvectors,eigenvalues,eigenvectors_T = np.linalg.svd(H) if sort: sort = eigenvalues.argsort()[::-1] eigenvalues = eigenvalues[sort] eigenvectors = eigenvectors[:, sort] return eigenvalues, eigenvectors def box_from_pc(pc, color=default_color, aabb=False, return_corner=True): pcd = get_pcd(pc) box = pcd.get_axis_aligned_bounding_box() if aabb else \ pcd.get_oriented_bounding_box() if return_corner: corner = np.array(box.get_box_points()) return corner else: box.color = color return box def box_from_corner(corner, color=default_color, aabb=False): corner = np.asarray(corner) box = o3d.geometry.AxisAlignedBoundingBox() if aabb else \ o3d.geometry.OrientedBoundingBox() box = box.create_from_points(o3d.utility.Vector3dVector(corner)) box.color = color return box def box2cen_dir(box:np.ndarray): centers = np.zeros((6,3)) sorted_box = sort_pts(box) v1 = sorted_box[1]-sorted_box[0] v2 = sorted_box[3]-sorted_box[0] cos = v1@v2 / (np.linalg.norm(v1) * np.linalg.norm(v2)) if abs(cos) < 0.001: tmp = sorted_box[3].copy() sorted_box[3] =sorted_box[4] sorted_box[4] = tmp # 0246, 0145 centers[0] = sorted_box[:4].mean(axis=0) centers[1] = sorted_box[[0,2,4,6]].mean(axis=0) centers[2] = sorted_box[[0,1,4,5]].mean(axis=0) centers[3:] = 2 * box.mean(0).reshape(1,3) - centers[:3] return centers def box2dir(box:np.ndarray): sorted_box = np.array(sorted(box, key = lambda x:x[0]) ) dirs3 = sorted_box[1:4] - sorted_box[0].reshape(1,-1) cos = cosine(dirs3, dirs3).flatten() idx = np.argmin(cos) if cos[idx]<1e-3: d1 = idx//3 d2 = idx%3 left_dir = np.cross(dirs3[d1], dirs3[d2]) return np.vstack([dirs3[d1], dirs3[d2], left_dir]) else: return None def aabb_dirs(pc): mins = pc.min(0) maxs = pc.max(0) dirs = np.eye(3,3) * (maxs-mins).reshape(1,3) / 2 center = (mins + maxs) / 2 corners = center.reshape(1,3) + (cube*2-1)@dirs return corners, dirs def obb_2dirs(pc, axis, return_corner=True): else_axis = [0,1,2] else_axis.pop(axis) sub_pc = pc[:,else_axis] cov_pts = np.cov(sub_pc, y=None, rowvar=False, bias=True) v, vect = np.linalg.eig(cov_pts) tvect = vect.T rpts = np.dot(sub_pc, np.linalg.inv(tvect)) mina = np.min(rpts, 0) maxa = np.max(rpts, 0) diff = (maxa - mina)*0.5 center = mina + diff corners = center.reshape(-1,2) + np.array([ [-1,-1], [1,-1], [1,1], [-1,1] ]) * diff.reshape(-1,2) corners = np.dot(corners, tvect) # (4,2) axis_pc = pc[:, axis] axis_min,axis_max = axis_pc.min(), axis_pc.max() cor1 = np.insert(corners, axis, axis_min, axis=1) cor2 = np.insert(corners, axis, axis_max, axis=1) corners = np.vstack([cor1,cor2]) center = corners.mean(0) dirs = (corners[[1,3,4]] - corners[0].reshape(1,3))/2 if return_corner: return corners, dirs else: return center, dirs def obb_adjust(pc:np.ndarray, fix_dir:np.array, ori_dir:np.array): '''ori_dir should be [0,0,1] or [0,1,0] or [1,0,0]''' axis = np.argmax(ori_dir) fix_dir = fix_dir / np.linalg.norm(fix_dir) ori_dir = ori_dir / np.linalg.norm(ori_dir) cro = np.cross(ori_dir, fix_dir) cos = ori_dir@fix_dir if abs(cos)>0.99: return obb_2dirs(pc, axis, True) vx = np.array([ [0, -cro[2], cro[1]], [cro[2], 0, -cro[0]], [-cro[1], cro[0], 0 ] ]) rot_w = np.eye(3,3) + vx + np.matmul(vx,vx) / (1+cos) rot_verse = np.linalg.inv(rot_w) rot_pc = np.matmul(pc, rot_verse.T) center, dirs = obb_2dirs(rot_pc, axis, False) # dirs[-1][:2] = 0 # dirs[-1,-1] = rot_pc[:,axis].max() - rot_pc[:,axis].min() cen = center.reshape(-1,3) dirs = np.matmul(dirs, rot_w.T) box = (cube*2 - 1)@dirs + cen@rot_w.T return box, dirs def pts2pts_dis(pts1,pts2): diff = pts1.reshape((-1, 1, 3)) - pts2.reshape((1, -1, 3)) distance = (diff**2).reshape((-1,3)).sum(axis=-1) return distance def sort_pts(box): uniques = [] for i in range(3): uni = np.unique(box[:,i]).shape[0] uniques.append(uni<8) # and uni//2==0 if sum(uniques)==0: uniques[0] = True sorted_box = np.array(sorted(box, key = lambda x:x[uniques].sum())) return sorted_box def pc2mesh(pts): pts = np.asarray(pts) pcd = get_pcd(pts) pcd.estimate_normals() distances = pcd.compute_nearest_neighbor_distance() avg_dist = np.mean(distances) radius = 1.5 * avg_dist mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting( pcd, o3d.utility.DoubleVector([radius, radius * 2]), ) # return np.asarray(mesh.triangles) return mesh def pc_from_mesh(obj_path, npoints): mesh = o3d.io.read_triangle_mesh(obj_path) pts = mesh.sample_points_uniformly(number_of_points=npoints) return np.array(pts.points) def load_mesh(obj_path): return trimesh.load(obj_path, 'obj', force='mesh') def merge_mesh(meshs): merged_mesh = trimesh.util.concatenate(meshs) return merged_mesh def write_mesh(mesh, path, normal=False, color=False): o3d.io.write_triangle_mesh( path, mesh, write_vertex_normals=normal, write_vertex_colors=color ) def gen_meshs(obj_folder, hier_tree, npoints=1024): all_node_mesh = {} for node in hier_tree: id_ = node['id'] if 'children' in node.keys(): sub_mesh = gen_meshs(obj_folder, node['children'], npoints) all_node_mesh = {**all_node_mesh, **sub_mesh} child_mesh = [sub_mesh[me['id']] for me in node['children']] node_mesh = merge_mesh(child_mesh) all_node_mesh[id_] = node_mesh else: meshs = [] for obj_name in node['objs']: obj_path = os.path.join(obj_folder, obj_name+'.obj') mesh = load_mesh(obj_path) meshs.append(mesh) if len(meshs)>1: meshs = merge_mesh(meshs) else: meshs = meshs[0] all_node_mesh[id_] = meshs return all_node_mesh def get_leaves(tree, only=None, flatten=False, pop_child=True): leaf_parts = [] for node in tree: data = node[only] if only is not None else node if 'children' not in node.keys(): leaf_parts.append(data) else: node_list = get_leaves(node['children'], only, flatten) # [{...},] with parent+children idx leaf_parts.extend(node_list) if flatten: if only == None: data = data.copy() if pop_child:data.pop('children') leaf_parts.append(data) return leaf_parts def hier2graphic(hier_tree, parent_id=-1, depth=0): all_nodes = {} for node in hier_tree: renode = { 'name': node['name'], 'objs': node['objs'] if 'objs' in node.keys() else [], 'parent': parent_id, 'depth': depth, 'box': node['box'] if 'box' in node.keys() else [], 'brother':[], 'children_id': [], 'leaves': get_leaves([node], 'id'), } if 'children' in node.keys(): children_nodes = hier2graphic(node['children'], node['id'], depth+1) all_nodes = {**all_nodes, **children_nodes} renode['children_id'] = [i['id'] for i in node['children']] all_nodes[node['id']] = renode for child in renode['children_id']: all_nodes[child]['brother'] = renode['children_id'][:] all_nodes[child]['brother'].remove(child) return all_nodes def update_mopara(hash_hier, ids=[0]): main_child = ids[:] for key in ids: if hash_hier[key]['children_id'] != []: tree, mochild = update_mopara(hash_hier, hash_hier[key]['children_id'] ) hash_hier = {**hash_hier, **tree} mopara = {'jointData':{}, 'joint':'', 'motype':''} node = hash_hier[mochild] if 'ref' in node.keys() and key!=0: mopara['jointData'] = node['jointData'] mopara['joint'] = node['joint'] if 'motype' in node.keys(): mopara['motype'] = node['motype'] refs = node['ref'][:] for idx,ref in enumerate(refs): while(hash_hier[ref]['depth'] > hash_hier[key]['depth']): ref = hash_hier[ref]['parent'] refs[idx] = ref mopara['ref'] = list(set(refs)) for ref in mopara['ref']: if ref in main_child and ref != key: main_child.remove(key) break hash_hier[key] = {**hash_hier[key], **mopara} elif 'ref' in hash_hier[key].keys(): refs = hash_hier[key]['ref'] for idx,ref in enumerate(refs): while(hash_hier[ref]['depth'] > hash_hier[key]['depth']): ref = hash_hier[ref]['parent'] hash_hier[key]['ref'][idx] = ref hash_hier[key]['ref'] = list(set(hash_hier[key]['ref'])) for ref in hash_hier[key]['ref']: if ref in main_child and ref != key: main_child.remove(key) break return hash_hier, main_child[0] def gen_graph(hier_tree, mobi): ''' 将hierarchy tree转化称graph ''' hash_hier = hier2graphic(hier_tree) for idx,node in enumerate(mobi): # mobi[idx]['ids'] = [i['id'] for i in node['parts']] mopara = {'jointData':{}, 'joint':'', 'motype':''} if node['jointData'] != {}: mopara['jointData'] = node['jointData'] mopara['joint'] = node['joint'] if 'motype' in node.keys(): mopara['motype'] = node['motype'] if node['parent'] != -1 and 'parts' in mobi[node['parent']].keys(): ref = [j['id'] for j in mobi[node['parent']]['parts']] mopara['ref'] = ref for sub_node in node['parts']: sub_id = sub_node['id'] hash_hier[sub_id] = {**hash_hier[sub_id], **mopara} graph, _ = update_mopara(hash_hier) statics = {} for key in graph.keys(): if 'ref' in graph[key].keys(): refs = graph[key]['ref'][:] for ref in refs: if graph[key]['parent'] != graph[ref]['parent'] or ref == key: graph[key]['ref'].remove(ref) if graph[key]['ref'] == []: graph[key].pop('ref') for key in graph.keys(): node = graph[key] graph[key]['edges'] = { 'children':{}, 'space':{} } for child in graph[key]['children_id']: graph[key]['edges']['children'][child] = '' brothers = graph[key]['brother'][:] if 'ref' in graph[key].keys(): for bro in brothers: if bro in graph[key]['ref']: graph[key]['edges']['space'][bro] = 'motion' else: graph[key]['edges']['space'][bro] = 'none' graph[key].pop('ref') else: for bro in brothers: graph[key]['edges']['space'][bro] = 'none' if 'ref' in graph[bro].keys() else 'fixed' return graph, statics def ref_count(graph): for key in graph.keys(): edges = graph[key]['edges']['space'] refs = [r for r in edges.keys() if edges[r]=='motion'] graph[key]['refs'] = refs invalids, child_allref, expect = reduce_ref(graph) return invalids, expect def reduce_ref(graph, node_key='0'): ref_child = set() all_invalid = 0 flgs = 0 for child in graph[node_key]['children_id']: child = str(child) if graph[child]['refs'] == []: ref_child.add(int(child)) if graph[child]['children_id'] != []: invalid, flg, expect = reduce_ref(graph, child) all_invalid += invalid if flg else invalid-1 flgs += 1-flg children_allref = False if len(ref_child)==0 and graph[node_key]['brother'] == []: children_allref = True elif len(ref_child) and ref_child == set(graph[node_key]['children_id']) \ and not flgs: children_allref = True all_invalid += len(ref_child) # print('%s invalids:%d'%(node_key, all_invalid)) return all_invalid, children_allref, (flgs if flgs else 1) '''direction, angle, pos, ...''' def cosine(dirs, vec, abs=True): vec = vec.reshape(-1,3) vec = vec / np.linalg.norm(vec, axis=-1).reshape(-1,1) # (1-n, 3) -> (1-n,) or val mul_res = [email protected] cos = mul_res / np.linalg.norm(dirs, axis=-1).reshape(-1,1) if abs: cos = np.abs(cos) return cos def cross(dirs, vec, abs=False): # vec = vec / np.linalg.norm(vec) cro = np.cross(dirs, vec) cro = cro / np.linalg.norm(cro, axis=-1) if abs: cro = np.abs(cro) return cro def motion_pos(direction, gt_pos, pos): direction= direction / np.linalg.norm(direction) cro = np.cross(pos - gt_pos.reshape(1,3), direction) dis = np.abs(np.linalg.norm(cro, axis=-1)) min_idx = np.argmin(dis) return min_idx, dis[min_idx] def read_json(json_path): return json.load(open(json_path, 'r')) def get_boolseg(seg:np.ndarray, mov_idx): mov_idx = np.array(mov_idx).reshape((-1,1)) # (n,1), and seg(1,N) return ( seg.reshape((1,-1)) == mov_idx ).sum(axis=0) == 1. if __name__ == '__main__': pass
GengxinLiu/SWMP
Extern/tools/mobility_tool.py
mobility_tool.py
py
14,370
python
en
code
4
github-code
6