seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
4034762044
""" Utilities for point clouds. Code modified from Jiayuan Gu. """ import numpy as np def pad_or_clip(array: np.array, n: int, fill_value=0): """Pad or clip an array with constant values. It is usually used for sampling a fixed number of points. """ if array.shape[0] >= n: return array[:n] else: pad = np.full((n - array.shape[0],) + array.shape[1:], fill_value, dtype=array.dtype) return np.concatenate([array, pad], axis=0) def pad_or_clip_v2(array: np.array, n: int): """Pad or clip an array with the first item. It is usually used for sampling a fixed number of points (PointNet and variants). """ if array.shape[0] >= n: return array[:n] else: pad = np.repeat(array[0:1], n - array.shape[0], axis=0) return np.concatenate([array, pad], axis=0) def pad(array: np.array, n: int, fill_value=None): """Pad an array with a constant or the first item.""" assert array.shape[0] <= n if fill_value is None: pad = np.repeat(array[0:1], n - array.shape[0], axis=0) else: pad = np.full((n - array.shape[0],) + array.shape[1:], fill_value, dtype=array.dtype) return np.concatenate([array, pad], axis=0) # ---------------------------------------------------------------------------- # # Unit test # ---------------------------------------------------------------------------- # def test_pad_or_clip(): test_cases = [(np.array([1, 2, 1]), 5), (np.array([0.5, -0.1, 1.0]), 2), (np.array([0, 1, 1], bool), 4)] expected_list = [np.array([1, 2, 1, 0, 0]), np.array([0.5, -0.1]), np.array([0, 1, 1, 0], bool)] test_cases += [(np.empty([0, 3]), 5)] expected_list += [np.zeros([5, 3])] for test_case, expected in zip(test_cases, expected_list): actual = pad_or_clip(*test_case) np.testing.assert_almost_equal(actual, expected)
hansongfang/CompNet
common_3d/utils/pc_utils.py
pc_utils.py
py
1,881
python
en
code
33
github-code
6
25050908902
import threading from threading import* import time #dictionary for storing key value data dict={} def create(key,value,timeout=0): if key in dict: print("error: this key already exists") else: if(key.isalpha()): #checking the size of file and JSON object if len(dict)<(1024*1020*1024) and value<=(16*1024*1024): if timeout==0: l=[value,timeout] else: l=[value,time.time()+timeout] if len(key)<=32: dict[key]=l else: print("error: Memory limit exceeded!! ")#error message2 else: print("error: Invalind key_name!! key_name must contain only alphabets and no special characters or numbers") def read(key): if key not in dict: print("error: given key does not exist in database") else: b=dict[key] if b[1]!=0: if time.time()<b[1]: stri=str(key)+":"+str(b[0]) return stri else: print("error: time_to_live",key,"has expired") else: stri=str(key)+":"+str(b[0]) return stri def delete(key): if key not in dict: print("error: given key does not exist in database. Please enter a valid key") #error message4 else: b=dict[key] if b[1]!=0: if time.time()<b[1]: #comparing the current time with expiry time del dict[key] print("key is successfully deleted") else: print("error: time-to-live of",key,"has expired") #error message5 else: del dict[key] print("key is successfully deleted") def modify(key,value): b=dict[key] if b[1]!=0: if time.time()<b[1]: if key not in dict: print("error: given key does not exist in database. Please enter a valid key") #error message6 else: l=[] l.append(value) l.append(b[1]) dict[key]=l else: print("error: time-to-live of",key,"has expired") #error message5 else: if key not in dict: print("error: given key does not exist in database. Please enter a valid key") #error message6 else: l=[] l.append(value) l.append(b[1]) dict[key]=l create("chennai",24) read("chennai")
Akhileshpm/file-based-key-value-store
main.py
main.py
py
2,618
python
en
code
2
github-code
6
10423084443
from __future__ import annotations import dataclasses from typing import TYPE_CHECKING from unittest.mock import MagicMock, PropertyMock import pytest from randovania.exporter import pickup_exporter from randovania.game_description import default_database from randovania.game_description.assignment import PickupTarget from randovania.game_description.resources.pickup_index import PickupIndex from randovania.games.dread.exporter.patch_data_factory import ( DreadAcquiredMemo, DreadPatchDataFactory, get_resources_for_details, ) from randovania.games.dread.layout.dread_cosmetic_patches import DreadCosmeticPatches, DreadMissileCosmeticType from randovania.games.game import RandovaniaGame from randovania.generator.pickup_pool import pickup_creator from randovania.interface_common.players_configuration import PlayersConfiguration from randovania.layout.base.ammo_pickup_state import AmmoPickupState from randovania.layout.base.pickup_model import PickupModelStyle from randovania.layout.base.standard_pickup_state import StandardPickupState from randovania.layout.layout_description import LayoutDescription from randovania.lib import json_lib if TYPE_CHECKING: from randovania.layout.preset import Preset @pytest.mark.parametrize( ("rdvgame_filename", "expected_results_filename", "num_of_players"), [ ("starter_preset.rdvgame", "starter_preset.json", 1), # starter preset ("crazy_settings.rdvgame", "crazy_settings.json", 1), # crazy settings ("dread_dread_multiworld.rdvgame", "dread_dread_multiworld_expected.json", 2), # dread-dread multi ("dread_prime1_multiworld.rdvgame", "dread_prime1_multiworld_expected.json", 2), # dread-prime1 multi ("elevator_rando.rdvgame", "elevator_rando.json", 1), # elevator_rando multi ], ) def test_create_patch_data(test_files_dir, rdvgame_filename, expected_results_filename, num_of_players, mocker): # Setup rdvgame = test_files_dir.joinpath("log_files", "dread", rdvgame_filename) players_config = PlayersConfiguration(0, {i: f"Player {i + 1}" for i in range(num_of_players)}) description = LayoutDescription.from_file(rdvgame) cosmetic_patches = DreadCosmeticPatches() mocker.patch( "randovania.layout.layout_description.LayoutDescription.shareable_word_hash", new_callable=PropertyMock, return_value="Words Hash", ) mocker.patch( "randovania.layout.layout_description.LayoutDescription.shareable_hash", new_callable=PropertyMock, return_value="$$$$$", ) # Run data = DreadPatchDataFactory(description, players_config, cosmetic_patches).create_data() # Expected Result expected_results_path = test_files_dir.joinpath("patcher_data", "dread", expected_results_filename) expected_data = json_lib.read_path(expected_results_path) # Uncomment to easily view diff of failed test # json_lib.write_path(expected_results_path, data); assert False assert data == expected_data def _preset_with_locked_pb(preset: Preset, locked: bool): pickup_database = default_database.pickup_database_for_game(RandovaniaGame.METROID_DREAD) preset = dataclasses.replace( preset, configuration=dataclasses.replace( preset.configuration, ammo_configuration=preset.configuration.ammo_pickup_configuration.replace_state_for_ammo( pickup_database.ammo_pickups["Power Bomb Tank"], AmmoPickupState(requires_main_item=locked), ), ), ) return preset @pytest.mark.parametrize("locked", [False, True]) def test_pickup_data_for_pb_expansion(locked, dread_game_description, preset_manager): pickup_database = default_database.pickup_database_for_game(RandovaniaGame.METROID_DREAD) resource_db = dread_game_description.resource_database # Setup pickup = pickup_creator.create_ammo_pickup( pickup_database.ammo_pickups["Power Bomb Tank"], [2], locked, resource_db, ) creator = pickup_exporter.PickupExporterSolo(DreadAcquiredMemo.with_expansion_text(), RandovaniaGame.METROID_DREAD) # Run details = creator.export(PickupIndex(0), PickupTarget(pickup, 0), pickup, PickupModelStyle.ALL_VISIBLE) result = get_resources_for_details(details.original_pickup, details.conditional_resources, details.other_player) # Assert assert result == [ [ {"item_id": "ITEM_WEAPON_POWER_BOMB_MAX", "quantity": 2}, ] if locked else [ {"item_id": "ITEM_WEAPON_POWER_BOMB_MAX", "quantity": 2}, {"item_id": "ITEM_WEAPON_POWER_BOMB", "quantity": 1}, ] ] @pytest.mark.parametrize("locked", [False, True]) def test_pickup_data_for_main_pb(locked, dread_game_description, preset_manager): pickup_database = default_database.pickup_database_for_game(RandovaniaGame.METROID_DREAD) resource_db = dread_game_description.resource_database # Setup pickup = pickup_creator.create_standard_pickup( pickup_database.standard_pickups["Power Bomb"], StandardPickupState(included_ammo=(3,)), resource_database=resource_db, ammo=pickup_database.ammo_pickups["Power Bomb Tank"], ammo_requires_main_item=locked, ) creator = pickup_exporter.PickupExporterSolo(DreadAcquiredMemo.with_expansion_text(), RandovaniaGame.METROID_DREAD) # Run details = creator.export(PickupIndex(0), PickupTarget(pickup, 0), pickup, PickupModelStyle.ALL_VISIBLE) result = get_resources_for_details(details.original_pickup, details.conditional_resources, details.other_player) # Assert assert result == [ [ {"item_id": "ITEM_WEAPON_POWER_BOMB", "quantity": 1}, {"item_id": "ITEM_WEAPON_POWER_BOMB_MAX", "quantity": 3}, ] ] def test_pickup_data_for_recolored_missiles(dread_game_description, preset_manager): pickup_database = default_database.pickup_database_for_game(RandovaniaGame.METROID_DREAD) resource_db = dread_game_description.resource_database preset = preset_manager.default_preset_for_game(RandovaniaGame.METROID_DREAD).get_preset() description = MagicMock(spec=LayoutDescription) description.all_patches = {0: MagicMock()} description.get_preset.return_value = preset description.get_seed_for_player.return_value = 1000 cosmetics = DreadCosmeticPatches(missile_cosmetic=DreadMissileCosmeticType.PRIDE) # Setup pickup = pickup_creator.create_ammo_pickup( pickup_database.ammo_pickups["Missile Tank"], (2,), False, resource_database=resource_db ) factory = DreadPatchDataFactory(description, PlayersConfiguration(0, {0: "Dread"}), cosmetics) creator = pickup_exporter.PickupExporterSolo(DreadAcquiredMemo.with_expansion_text(), RandovaniaGame.METROID_DREAD) # Run details = creator.export(PickupIndex(0), PickupTarget(pickup, 0), pickup, PickupModelStyle.ALL_VISIBLE) result = factory._pickup_detail_for_target(details) # Assert assert result == { "pickup_type": "actor", "caption": "Missile Tank acquired.\nMissile capacity increased by 2.", "resources": [[{"item_id": "ITEM_WEAPON_MISSILE_MAX", "quantity": 2}]], "pickup_actor": {"scenario": "s010_cave", "layer": "default", "actor": "ItemSphere_ChargeBeam"}, "model": ["item_missiletank_green"], "map_icon": { "icon_id": "item_missiletank", "original_actor": {"actor": "powerup_chargebeam", "layer": "default", "scenario": "s010_cave"}, }, } def test_pickup_data_for_a_major(dread_game_description, preset_manager): pickup_database = default_database.pickup_database_for_game(RandovaniaGame.METROID_DREAD) resource_db = dread_game_description.resource_database preset = preset_manager.default_preset_for_game(RandovaniaGame.METROID_DREAD).get_preset() description = MagicMock(spec=LayoutDescription) description.all_patches = {0: MagicMock()} description.get_preset.return_value = preset description.get_seed_for_player.return_value = 1000 # Setup pickup = pickup_creator.create_standard_pickup( pickup_database.standard_pickups["Speed Booster"], StandardPickupState(), resource_database=resource_db, ammo=None, ammo_requires_main_item=False, ) factory = DreadPatchDataFactory(description, PlayersConfiguration(0, {0: "Dread"}), MagicMock()) creator = pickup_exporter.PickupExporterSolo(DreadAcquiredMemo.with_expansion_text(), RandovaniaGame.METROID_DREAD) # Run details = creator.export(PickupIndex(0), PickupTarget(pickup, 0), pickup, PickupModelStyle.ALL_VISIBLE) result = factory._pickup_detail_for_target(details) # Assert assert result == { "pickup_type": "actor", "caption": "Speed Booster acquired.", "resources": [[{"item_id": "ITEM_SPEED_BOOSTER", "quantity": 1}]], "pickup_actor": {"scenario": "s010_cave", "layer": "default", "actor": "ItemSphere_ChargeBeam"}, "model": ["powerup_speedbooster"], "map_icon": { "icon_id": "powerup_speedbooster", "original_actor": {"actor": "powerup_chargebeam", "layer": "default", "scenario": "s010_cave"}, }, } @pytest.fixture() def _setup_and_teardown_for_wrong_custom_spawn(): # modify the default start to have no collision_camera (asset_id) and no vanilla # actor name for a start point game_desc = default_database.game_description_for(RandovaniaGame.METROID_DREAD) region = game_desc.region_list.region_with_name("Artaria") area = region.area_by_name("Intro Room") node = area.node_with_name("Start Point") modified_node = dataclasses.replace(node, extra={}) area.nodes.remove(node) area.nodes.append(modified_node) asset_id = area.extra["asset_id"] del area.extra["asset_id"] yield area.nodes.remove(modified_node) area.nodes.append(node) area.extra["asset_id"] = asset_id @pytest.mark.usefixtures("_setup_and_teardown_for_wrong_custom_spawn") def test_create_patch_with_wrong_custom_spawn(test_files_dir, mocker): # test for a not createable spawn point file = test_files_dir.joinpath("log_files", "dread", "starter_preset.rdvgame") description = LayoutDescription.from_file(file) players_config = PlayersConfiguration(0, {0: "Dread"}) cosmetic_patches = DreadCosmeticPatches() mocker.patch( "randovania.layout.layout_description.LayoutDescription.shareable_word_hash", new_callable=PropertyMock, return_value="Words Hash", ) mocker.patch( "randovania.layout.layout_description.LayoutDescription.shareable_hash", new_callable=PropertyMock, return_value="$$$$$", ) patcher = DreadPatchDataFactory(description, players_config, cosmetic_patches) with pytest.raises( KeyError, match="Artaria/Intro Room/Start Point has neither a start_point_actor_name nor the " "area has a collision_camera_name for a custom start point", ): patcher.create_data() @pytest.fixture() def _setup_and_teardown_for_custom_spawn(): # modify a node to be a valid start point without a vanilla spawn game_desc = default_database.game_description_for(RandovaniaGame.METROID_DREAD) region = game_desc.region_list.region_with_name("Artaria") area = region.area_by_name("Charge Tutorial") node = area.node_with_name("Start Point") modified_node = dataclasses.replace(node, valid_starting_location=True) area.nodes.remove(node) area.nodes.append(modified_node) yield area.nodes.remove(modified_node) area.nodes.append(node) @pytest.mark.usefixtures("_setup_and_teardown_for_custom_spawn") def test_create_patch_with_custom_spawn(test_files_dir, mocker): # test for custom spawn point referenced by starting location and teleporters file = test_files_dir.joinpath("log_files", "dread", "custom_start.rdvgame") description = LayoutDescription.from_file(file) players_config = PlayersConfiguration(0, {0: "Dread"}) cosmetic_patches = DreadCosmeticPatches() mocker.patch( "randovania.layout.layout_description.LayoutDescription.shareable_word_hash", new_callable=PropertyMock, return_value="Words Hash", ) mocker.patch( "randovania.layout.layout_description.LayoutDescription.shareable_hash", new_callable=PropertyMock, return_value="$$$$$", ) data = DreadPatchDataFactory(description, players_config, cosmetic_patches).create_data() # Expected Result expected_data = test_files_dir.read_json("patcher_data", "dread", "custom_start.json") # Update the file # json_lib.write_path(test_files_dir.joinpath("patcher_data", "dread", "custom_start.json"), data); assert False assert data == expected_data
randovania/randovania
test/games/dread/exporter/test_dread_patch_data_factory.py
test_dread_patch_data_factory.py
py
12,949
python
en
code
165
github-code
6
11816055102
import os import sys from threading import Thread case = [] for item in os.listdir(sys.argv[1]): if os.path.isdir(sys.argv[1] + '//' + item) and item != "banira_files": case.append(item) num = 0 if len(case) > 3: if len(case) % 3 == 0: num = len(case) // 3 else: num = len(case) // 3 + 1 for i in range(len(case)//num): group = case[i*num:i*num+num] group = str(group) t = Thread(target=lambda: os.system(f"python .\\data_fitting\\interpolation.py {sys.argv[1]} {group}")) t.start() if len(case) % 3 != 0: group = case[len(case)//num*num:] group = str(group) t = Thread(target=lambda: os.system(f"python .\\data_fitting\\interpolation.py {sys.argv[1]} {group}")) t.start() else: for item in case: group = str([item]) t = Thread(target=lambda: os.system(f"python .\\data_fitting\\interpolation.py {sys.argv[1]} {group}")) t.start() cases = 0 for item in os.listdir(sys.argv[1]): if os.path.isdir(sys.argv[1] + '//' + item) and item != "banira_files": cases += 1 while True: try: with open(f"{sys.argv[1]}/banira_files/finished.txt", "r") as f: for step, row in enumerate(f): assert step != cases-1 f.close() except FileNotFoundError: pass except AssertionError: with open(f"{sys.argv[1]}/banira_files/log.txt", "a") as log: log.write(f"All finished\n") log.close() with open(f"{sys.argv[1]}/banira_files/finished.txt", "a") as log: log.write(f"All finished\n{sys.argv[2]}\n") log.close() break
cchenyixuan/Banira
utils/interpolation_runner.pyw
interpolation_runner.pyw
pyw
1,685
python
en
code
0
github-code
6
37616517604
from time import sleep from signal import pause from gpiozero import LED from gpiozero import Button from pygame import mixer mixer.init() placeholder = mixer.Sound('placeholder.wav') ph_len = placeholder.get_length() led = LED(25) btn = Button(4) while True: btn.wait_for_press() print("Initialized") btn.wait_for_release() print("Starting Sequence") # Light and Sound Sequence placeholder.play() led.blink(.5, .5, round(ph_len)) sleep(ph_len) print("Sequence Complete")
Aahil52/animatronics2022
testscripts/soundandlightstest.py
soundandlightstest.py
py
516
python
en
code
0
github-code
6
30023024204
import os import glob import numpy as np from scipy.stats import norm import json class WarpedSpace: # takes a prior as a dict and returns a scipy normal distribution @staticmethod def create_distribution(prior): means = [] stds = [] ranges = [] for key in sorted(prior.keys()): mean = np.inf while mean > prior[key]['range'][1] or mean < prior[key]['range'][0]: mean = prior[key]['params']['mean'] + norm.rvs(0, prior[key].get('noise', 0)) means.append(mean) stds.append(prior[key]['params']['std'][0]) ranges.append(prior[key]['range']) return norm(np.array(means).reshape(1, -1), np.array(stds).reshape(1, -1)) # class that computes the warped space, and through the call funtion extrapolates up # from warped space to function space - wraps around the original function def __init__(self, dist, ranges, objective): # ranges in numpy matrix, one row per dimension # dist needs to implement elements of a scipy distribution, i.e. pdf, cdf, ppf etc. self.dist = dist self.param_ranges = np.zeros((len(ranges), 2)) for i, range_ in enumerate(ranges): self.param_ranges[i, 0] = range_[0] self.param_ranges[i, 1] = range_[1] self.get_warped_ranges() self.objective = objective def get_warped_ranges(self): # gives the coordinates in warped (0, 1)-space where the boundaries of the original space lie # we want this boundary to be represented as such in the warped space too - thus, we warp the # space again by minmax-scaling the warped space with these boundary values. Consequently, # we get a limit on the warped space that (at largest) has the same boundaries as the original # space, and otherwise further enlarges the original search space. This makes is a truncated # gaussian even if the prior is set at the very edge # in the case where the entire prior fits within the search space, we need boundaries for where # numerical issues occur - i.e. not letting the algorithm go more than 8:ish standard deviations # away for any dimension self.boundaries = np.zeros(self.param_ranges.shape) for i, range_ in enumerate(self.param_ranges.T): self.boundaries[:, i] = self.dist.cdf(np.array(range_)) #increment boundaries with smallest possible value to avoid inverting bach to infinity self.boundaries[:, 0] = self.boundaries[:, 0] + 2e-16 self.boundaries[:, 1] = self.boundaries[:, 1] - 2e-16 def get_original_range(self, X): # input - an X in range 0, 1 irregardless of problem # this needs to be shrinked linearly to the range which is allowed to still be in range # Thus, we get inverse cdf (floor + X * (floor of w.s. - ceiling w.s.) ) X_scaled = np.zeros(X.shape) for dim in range(X.shape[1]): X_scaled[:, dim] = self.boundaries[dim, 0] + X[:, dim] * (self.boundaries[dim, 1] - self.boundaries[dim, 0]) # this probably won't work in higher dimensions X_unwarped = self.dist.ppf(X_scaled) for dim in range(X.shape[1]): assert np.all(X_unwarped[:, dim] >= self.param_ranges[dim, 0]) assert np.all(X_unwarped[:, dim] <= self.param_ranges[dim, 1]) return X_unwarped def __call__(self, X): X_original = self.get_original_range(X) return self.objective(X_original)
piboauthors/PiBO-Spearmint
spearmint/warping.py
warping.py
py
3,633
python
en
code
0
github-code
6
50818241
# # @lc app=leetcode.cn id=754 lang=python3 # # [754] 到达终点数字 # # @lc code=start class Solution: def reachNumber(self, target: int) -> int: # due to symmetry target = abs(target) x = count = 0 def dfs(x, target, count): # base case if x > target: return float("inf") if x == target: return count count1 = dfs(x+1, target, count+2) count2 = dfs(x+count+1, target, count+1) return min(count1, count2) count = dfs(x, target, count) return count
code-cp/leetcode
solutions/754/754.到达终点数字.py
754.到达终点数字.py
py
623
python
en
code
0
github-code
6
13160016876
from django.shortcuts import render from subscribers.models import subscriberForm from subscribe.settings import EMAIL_HOST_USER from django.core.mail import send_mail,BadHeaderError # Create your views here. def index(request): form=subscriberForm() return render(request,"index.html",{"form":form}) def subscribe(request): if request.method=="GET": form=subscriberForm(request.GET) if form.is_valid(): """ saving data in our database """ form.save() """ using this cleaned data must, to get value of email""" senderEmail=form.cleaned_data['Email'] subject="Welcome to "+senderEmail """here your message will be, also you send templates etc""" message="Thanking you for subscribing me, you get every updates within a seconds..." """ receiver email address""" recipient=str(senderEmail) if subject and message and recipient : try: """ send email is function in django to use this to send mail""" """ if you want send bulk email add more email in [recipients]""" send_mail(subject,message,EMAIL_HOST_USER,[recipient],fail_silently=False) except BadHeaderError : """ bad header error means prevent from header injection apply by hackers""" return render(request,"subscribe.html",{'message':'Invalid header found.','class':'text-danger'}) return render(request,"subscribe.html",{'message':'Thanking you For Subscribing..','class':'text-success'}) return render(request,"subscribe.html",{"message":"Make sure all fields are entered and valid.",'class':'text-info'})
pawankushwah850/Emailsubscriber
subscribers/views.py
views.py
py
1,862
python
en
code
1
github-code
6
40369313075
while True: try: # 1. Преобразование введённой последовательности в список spisok = [int(c) for c in input('Введите последовательность чисел через пробел: ').split()] except ValueError: print("Это неправильный ввод! Введите данные согласно условий ввода!") else: break while True: try: num = int(input('Введите число: ')) except ValueError: print("Это неправильный ввод! Введите данные согласно условий ввода!") else: break # 2.Сортировка списка по возрастанию элементов в нем (для реализации сортировки определите функцию) def quick_merge(list1): s = [] for i in list1: s.append(i) s.sort() return s print('Сортированный список:', *quick_merge(spisok)) # 3.Устанавливается номер позиции элемента, который меньше введенного пользователем числа, а следующий за ним больше или равен этому числу. if min(spisok) <= num <= max(spisok): spisok.append(num) spisok.sort() def binary_search(array, element, left, right): if element > max(array): return print('Нет числа, которое больше введенного') elif element < min(array): return print('Нет числа, которое меньше введенного') if left > right: return False middle = (right + left) // 2 if array[middle] == element: return middle - 1 elif element < array[middle]: return binary_search(array, element, left, middle - 1) else: return binary_search(array, element, middle + 1, right) print('Номер позиции элемента:', binary_search(quick_merge(spisok), num, 0, len(spisok) - 1))
sigmaclap/PythonTasks
17.9.1/17.9.py
17.9.py
py
2,120
python
ru
code
0
github-code
6
13750197452
from abc import ABC, abstractmethod class Notification(ABC): def __init__(self, msg) -> None: self.msg = msg @abstractmethod def send(self) -> bool: ... class EmailNotification(Notification): def send(self) -> bool: print(f'Enviando e-mail de notificação... {self.msg}') return True class SmsNotification(Notification): def send(self) -> bool: print(f'Enviando SMS de notificação... {self.msg}') return False def notificate(notification: Notification): notification_sent = notification.send() if notification_sent: print('Notificação enviada com sucesso!') else: print('Não foi possível enviar a notificação.') notif_1 = EmailNotification('testando e-mail') notif_2 = SmsNotification('testando SMS') notificate(notif_1) print() notificate(notif_2)
daugbit/Cursos
Python_3_Udemy/ex029_polimorfismo.py
ex029_polimorfismo.py
py
859
python
pt
code
0
github-code
6
23156107935
from flask import Flask from main import main from mypage import mypage from challengedetail import challengedetail from flask import Flask, render_template, jsonify, request, session, redirect, url_for from db import db app = Flask(__name__) # JWT 토큰을 만들 때 필요한 비밀문자열입니다. 아무거나 입력해도 괜찮습니다. # 이 문자열은 서버만 알고있기 때문에, 내 서버에서만 토큰을 인코딩(=만들기)/디코딩(=풀기) 할 수 있습니다. SECRET_KEY = 'SPARTA' # JWT 패키지를 사용합니다. (설치해야할 패키지 이름: PyJWT) import jwt # 토큰에 만료시간을 줘야하기 때문에, datetime 모듈도 사용합니다. import datetime # 회원가입 시엔, 비밀번호를 암호화하여 DB에 저장해두는 게 좋습니다. # 그렇지 않으면, 개발자(=나)가 회원들의 비밀번호를 볼 수 있으니까요.^^; import hashlib app.register_blueprint(main) app.register_blueprint(mypage) app.register_blueprint(challengedetail) ################################# ## HTML을 주는 부분 ## ################################# @app.route('/') def main(): token_receive = request.cookies.get('mytoken') try: payload = jwt.decode(token_receive, SECRET_KEY, algorithms=['HS256']) user_info = db.user.find_one({"user_id": payload['id']}) return render_template('main.html', nickname=user_info["nick"]) except jwt.ExpiredSignatureError: return redirect(url_for("login", msg="로그인 시간이 만료되었습니다.")) except jwt.exceptions.DecodeError: return redirect(url_for("login", msg="로그인 정보가 존재하지 않습니다.")) @app.route('/mypage/') def mypage(): token_receive = request.cookies.get('mytoken') try: payload = jwt.decode(token_receive, SECRET_KEY, algorithms=['HS256']) user_info = db.user.find_one({"user_id": payload['id']}) return render_template('mypage.html', nickname=user_info["nick"]) except jwt.ExpiredSignatureError: return redirect(url_for("login", msg="로그인 시간이 만료되었습니다.")) except jwt.exceptions.DecodeError: return redirect(url_for("login", msg="로그인 정보가 존재하지 않습니다.")) @app.route('/challengedetail/') def challengedetail(): token_receive = request.cookies.get('mytoken') try: payload = jwt.decode(token_receive, SECRET_KEY, algorithms=['HS256']) user_info = db.user.find_one({"user_id": payload['id']}) return render_template('challengedetail.html', nickname=user_info["nick"]) except jwt.ExpiredSignatureError: return redirect(url_for("login", msg="로그인 시간이 만료되었습니다.")) except jwt.exceptions.DecodeError: return redirect(url_for("login", msg="로그인 정보가 존재하지 않습니다.")) @app.route('/login') def login(): msg = request.args.get("msg") return render_template('login.html', msg=msg) @app.route('/signup') def register(): return render_template('signup.html') ################################# ## 로그인을 위한 API ## ################################# # [회원가입 API] # id, pw, nickname을 받아서, mongoDB에 저장합니다. # 저장하기 전에, pw를 sha256 방법(=단방향 암호화. 풀어볼 수 없음)으로 암호화해서 저장합니다. @app.route('/api/register', methods=['POST']) def api_register(): id_receive = request.form['id_give'] pw_receive = request.form['pw_give'] nickname_receive = request.form['nickname_give'] pw_hash = hashlib.sha256(pw_receive.encode('utf-8')).hexdigest() db.user.insert_one({'user_id': id_receive, 'password': pw_hash, 'nick': nickname_receive}) return jsonify({'result': 'success'}) # [로그인 API] # id, pw를 받아서 맞춰보고, 토큰을 만들어 발급합니다. @app.route('/api/login', methods=['POST']) def api_login(): id_receive = request.form['id_give'] pw_receive = request.form['pw_give'] print(id_receive) print(pw_receive) # 회원가입 때와 같은 방법으로 pw를 암호화합니다. pw_hash = hashlib.sha256(pw_receive.encode('utf-8')).hexdigest() # id, 암호화된pw을 가지고 해당 유저를 찾습니다. result = db.user.find_one({'user_id': id_receive, 'password': pw_hash}) print(result) # 찾으면 JWT 토큰을 만들어 발급합니다. if result is not None: # JWT 토큰에는, payload와 시크릿키가 필요합니다. # 시크릿키가 있어야 토큰을 디코딩(=풀기) 해서 payload 값을 볼 수 있습니다. # 아래에선 id와 exp를 담았습니다. 즉, JWT 토큰을 풀면 유저ID 값을 알 수 있습니다. # exp에는 만료시간을 넣어줍니다. 만료시간이 지나면, 시크릿키로 토큰을 풀 때 만료되었다고 에러가 납니다. payload = { 'id': id_receive, 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=78) } token = jwt.encode(payload, SECRET_KEY, algorithm='HS256') # token을 줍니다. return jsonify({'result': 'success', 'token': token}) # 찾지 못하면 else: return jsonify({'result': 'fail', 'msg': '아이디/비밀번호가 일치하지 않습니다.'}) # [유저 정보 확인 API] # 로그인된 유저만 call 할 수 있는 API입니다. # 유효한 토큰을 줘야 올바른 결과를 얻어갈 수 있습니다. # (그렇지 않으면 남의 장바구니라든가, 정보를 누구나 볼 수 있겠죠?) @app.route('/api/nick', methods=['GET']) def api_valid(): token_receive = request.cookies.get('mytoken') print("받은 토큰 값") print(token_receive) # try / catch 문? # try 아래를 실행했다가, 에러가 있으면 except 구분으로 가란 얘기입니다. try: # token을 시크릿키로 디코딩합니다. # 보실 수 있도록 payload를 print 해두었습니다. 우리가 로그인 시 넣은 그 payload와 같은 것이 나옵니다. payload = jwt.decode(token_receive, SECRET_KEY, algorithms=['HS256']) print(payload) # payload 안에 id가 들어있습니다. 이 id로 유저정보를 찾습니다. # 여기에선 그 예로 닉네임을 보내주겠습니다. userinfo = db.user.find_one({'user_id': payload['id']}, {'_id': 0}) return jsonify({'result': 'success', 'nickname': userinfo['nick']}) except jwt.ExpiredSignatureError: # 위를 실행했는데 만료시간이 지났으면 에러가 납니다. return jsonify({'result': 'fail', 'msg': '로그인 시간이 만료되었습니다.'}) except jwt.exceptions.DecodeError: return jsonify({'result': 'fail', 'msg': '로그인 정보가 존재하지 않습니다.'}) if __name__ == '__main__': app.run('0.0.0.0', port=5000, debug=True)
cchloe0927/Mallenge
app.py
app.py
py
6,984
python
ko
code
2
github-code
6
25969778046
import requests from bs4 import BeautifulSoup import pandas as pd #程式欢迎语 print("**欢迎来到UCAR爬虫程式**") print("\n") #将资料存入建立好的list titles = [] date = [] url_list = [] clicks =[] replys = [] #自定义查询关键字及日期区间 x = str(input("请输入想爬取的关键字:")) print("日期格式输入范例(YYYYMMDD):20200715") print("\n") start_date = int(input("请输入想爬取的起始日期:")) #格式YYYYMMDD:20180101 end_date = int(input("请输入想爬取的结束日期:")) #格式YYYYMMDD:20191231 fake_request_url= "https://forum.u-car.com.tw/forum/list?keywords=" + x print("\n") print("爬取中...请稍后") #抓使用者输入之关键字所有网页 z = 0 while(True): z += 1 real_request_url = fake_request_url + "&page=" + str(z) #print(real_request_url) response = requests.get(real_request_url) response_text = response.text soup = BeautifulSoup(response_text, "html.parser") #print(soup) #判断这一页目录有没有文章(有就接下一步,没有就break) #值得注意的是,这里判断每个目录页是否有文章存在的标签是选择.writer而不是用.title的原因为:在该目录页没有文章时还是有其他的.title标签,若选择.title做判断会导致无穷循环程式无法结束,所以选择.writer为判断依据 #当然也可以选择其他判断标签,这里就以.writer为例 if soup.select(".writer"): pass else: break #将所有div class="cell_topic"的内容爬下来储存到变数soup.find1(是个list) soup_find1 = soup.find_all('div', 'cell_topic') #抓发文日期 #循环soup_find1这个list for i in range(len(soup_find1)): #第一页且list前两项0,1是置顶广告,所以continue if (z == 1 and i <= 1): continue b = soup_find1[i].find('div', 'postby margin-right-10').find('p').text #print(b) re_b = b[:10] #print(re_b) re_b_b = int(re_b.replace('/', '')) #print(re_b_b) #print(re_b) #判断发文日期是否符合使用者需求并丢到list if (start_date <= re_b_b and re_b_b <= end_date): pass else: continue date.append(re_b) #print(re_b) #抓网址 url = soup_find1[i].find('div', 'title').find('a') #print(url) a = 'https://forum.u-car.com.tw' if url is not None: url_list.append(a + url.get('href')) else: url_list.append("(本文已被删除)") #print(a + url.get('href')) #抓标题 c = soup_find1[i].find('div', 'title').find('a') #print(c) if c is not None: titles.append(c.text) else: titles.append('(本文已被删除)') print(c.text) #抓点阅数 click_count = soup_find1[i].find('div', 'cell_topic_view').find('p') if click_count is not None: clicks.append(click_count.text) else: clicks.append("0") #print(click_count.text) #抓回复数 replys_count = soup_find1[i].find('div', 'cell_topic_chats').find('p') if click_count is not None: replys.append(replys_count.text) else: replys.append("0") #print(replys_count.text) #print('46行循环结束') print("\n") print("转档中...请稍后") #转为DataFrame df = pd.DataFrame( { '标题' : titles, '点阅数' : clicks, '回复数' : replys, '发文日期' : date, '文章连结' : url_list } ) #另存为csv df.to_csv( "UCAR_" + x +"回传结果.csv", index = False, encoding = "utf_8_sig") #程式结束 len_titles = len(titles) print("本次共爬出 {} 篇文章".format(len_titles)) print("\n") end = input("请输入任意键结束程式:")
weiweibro87777/UCAR_web-crawler
ucar.py
ucar.py
py
3,533
python
zh
code
1
github-code
6
9002196810
from ast import parse import pathlib import configparser import shutil import enum from sre_constants import CATEGORY output = pathlib.Path("./.out") shutil.rmtree(output, ignore_errors=True) output.mkdir(exist_ok=True) book_counter = 0 cfg = configparser.ConfigParser() cfg.read(".input.ini", encoding="utf-8") with open(f".out/books.lua", encoding="utf-8", mode="w") as definition: with open(f".out/books.txt", encoding="utf-8", mode="w") as text: definition.write( """ -- -- Please, do not delete this comment. -- This file is generated with ZoMeGen by DiRaven -- https://github.com/diraven/zomegen -- """.strip() + "\n\n" ) titles = cfg["books"]["titles"] print(titles) for title in titles.strip().splitlines(): book_counter += 1 definition.write( f""" -- {title} item book_ukrlit_{book_counter} {{ DisplayCategory = Literature, DisplayName = book_ukrlit_{book_counter}, Type = Literature, Icon = Book, Weight = 0.5, UnhappyChange = -40, StressChange = -40, BoredomChange = -50, FatigueChange = +5, StaticModel = Book, WorldStaticModel = BookClosedGround, }} """.strip() + "\n\n" ) # Write text. text.write( f""" DisplayName_book_ukrlit_{book_counter} = "{title}", """.strip() + "\n" )
diraven/zomegen
books/__main__.py
__main__.py
py
1,440
python
en
code
0
github-code
6
9658653690
import matplotlib.pyplot as plt import scipy.signal as ss import numpy as np import math window_size = 55 '------------------------------------------------------------------------------' # opis: oblicza i zwraca pochodna sygnalu. # nazwa funkcji: FUNC_diff # parametry: # ecg_filtered - numpy 1D array # zwraca: # diff - numpy 1D array def FUNC_diff(ecg_filtered): N = len(ecg_filtered) '''POCHODNA---------------------------------------------------------------''' #diff = np.diff(ecg_filtered) diff = (2*ecg_filtered[5:N]+ecg_filtered[4:N-1]-ecg_filtered[2:N-3]-2*ecg_filtered[1:N-4])/8; '''Wektor wynikowy krotszy o 5 elementow''' return diff # opis: oblicza i zwraca potege sygnalu. # nazwa funkcji: FUNC_sqr # parametry: # diff - numpy 1D array # zwraca: # sqr - numpy 1D array def FUNC_sqr(diff): '''POTEGA-----------------------------------------------------------------''' sqr = diff**2 return sqr # opis: calkuje sygnal w ruchomym oknie i zwraca go. # nazwa funkcji: FUNC_signal_integration # parametry: # sqr - numpy 1D array # fs - integer # zwraca: # ecgmf - numpy 1D array def FUNC_signal_integration(sqr, fs): dt = 1/float(fs) '''CALKOWANIE W RUCHOMYM OKNIE--------------------------------------------''' '''Utworzenie okna''' window = np.ones(window_size) '''Calkowanie''' temp = ss.lfilter(window,1,sqr) ecgmf = ss.medfilt(temp,9) ecgmf = ecgmf*dt '''Usuniecie opoznienia filtru''' delay = math.ceil(len(window) / 2) ecgmf = ecgmf[delay:len(ecgmf)] return ecgmf # opis: wyszukuje i zwraca przyblizone granice QRS # potrzebne do wyszukania zalamka R (oraz zalamka S). # nazwa funkcji: FUNC_prepare_for_maxima_search # parametry: # ecgmf - numpy 1D array # zwraca: # left_T - numpy 1D array # right_T - numpy 1D array def FUNC_prepare_for_maxima_search(ecgmf): '''Wyszukanie najwyzszej amplitudy''' max_A = max(ecgmf) '''Budowa tablicy do przeszukiwania''' threshold = 0.2 region_poz = ecgmf>(threshold*max_A) region_poz = region_poz*1 region_poz = np.array([region_poz]) '''Uzupelnienie zerem''' region_poz_LR = np.insert(region_poz, 0, 0) region_poz_RL = np.append(region_poz, 0) '''SZUKANE MAKSIMOW-------------------------------------------------------''' deltaLR = np.diff(region_poz_LR) deltaRL = np.diff(region_poz_RL) '''Wyznaczenie granic segmentow''' left = np.where(deltaLR==1); right = np.where(deltaRL==-1); left_T = np.transpose(left) right_T = np.transpose(right) return left_T, right_T # opis: znajduje i zwraca wartosci QRS na podstawie przyblizonych granic QRS. # nazwa funkcji: FUNC_find_qrs_values # parametry: # left_T - numpy 1D array # right_T - numpy 1D array # ecg_filtered - numpy 1D array # ecgmf - numpy 1D array # zwraca: # qrs_left_values - numpy 1D array # qrs_right_values - numpy 1D array # qrs_left_values_ecgmf - numpy 1D array # qrs_right_values_ecgmf - numpy 1D array def FUNC_find_qrs_values(left_T, right_T, ecg_filtered, ecgmf): qrs_left_values = np.empty(len(left_T)) qrs_right_values = np.empty(len(left_T)) qrs_left_values_ecgmf = np.empty(len(left_T)) qrs_right_values_ecgmf = np.empty(len(left_T)) ecg_filtered[12:len(ecg_filtered)] for i in range(0,len(left_T)): qrs_left_values[i] = ecg_filtered[left_T[i]] qrs_right_values[i] = ecg_filtered[right_T[i]] qrs_left_values_ecgmf[i] = ecgmf[left_T[i]] qrs_right_values_ecgmf[i] = ecgmf[right_T[i]] return qrs_left_values, qrs_right_values, qrs_left_values_ecgmf, qrs_right_values_ecgmf # opis: znajduje lokalne maksima w przyblizonych granicach QRS. # Zwraca wartosci i indeksy wyszukanych maksimow. # nazwa funkcji: FUNC_find_max # parametry: # left_T - numpy 1D array # right_T - numpy 1D array # ecg_filtered - numpy 1D array # zwraca: # max_value - numpy 1D array # max_index - numpy 1D array def FUNC_find_max(left_T, right_T, ecg_filtered): max_index = np.empty(len(left_T)) max_value = np.empty(len(left_T)) #obciecie poczatku sygnalu oryginlanego w celu dopasownania indeksow po calkowaniu i pochodnej wzgledem oryginalnego #ecg_filtered = ecg_filtered[18:len(ecg_filtered)] #sygnal w trakcie calkownia jest scinany na koncu for i in range(0,len(left_T)): start = int(left_T[i]) end = int(right_T[i]) max_value[i] = ecg_filtered[start] max_index[i] = start for j in range(start,end): if ecg_filtered[j] > max_value[i]: max_value[i] = ecg_filtered[j] max_index[i] = j #max_index[i] = np.argmax(ecg_filtered[left_T[i]:right_T[i]]) #max_index[i] = max_index[i]+left_T[i] #max_value[i] = ecg_filtered[max_index[i]] '''for i in range(0,len(left_T)): max_index[i] = np.argmax(ecg_filtered[left_T[i]:right_T[i]]) max_index[i] = max_index[i]+left_T[i] max_value[i] = ecg_filtered[max_index[i]]''' return max_value, max_index # opis: znajduje lokalne minima w przyblizonych granicach QRS. # Zwraca wartosci i indeksy wyszukanych minimow. # nazwa funkcji: FUNC_find_min # parametry: # left_T - numpy 1D array # right_T - numpy 1D array # ecg_filtered - numpy 1D array # zwraca: # min_value - numpy 1D array # min_index - numpy 1D array def FUNC_find_min(left_T, right_T, ecg_filtered): min_index = np.empty(len(left_T)) min_value = np.empty(len(left_T)) for i in range(0,len(left_T)): start = int(left_T[i]) end = int(right_T[i]) min_value[i] = ecg_filtered[start] min_index[i] = start for j in range(start,end): if ecg_filtered[j] < min_value[i]: min_value[i] = ecg_filtered[j] min_index[i] = j ''' for i in range(0,len(left_T)): min_index[i] = np.argmin(ecg_filtered[left_T[i]:right_T[i]]) min_index[i] = min_index[i]+left_T[i] min_value[i] = ecg_filtered[min_index[i]]''' return min_value, min_index # opis: detekcja zalamka R. Zwraca wartosci i indeksy wyszukanych zalamkow R. # nazwa funkcji: FUNC_r_detection # parametry: # ecg_filtered - numpy 1D array # fs - integer # zwraca: # r_value - numpy 1D array # r_index - numpy 1D array def FUNC_r_detection(ecg_filtered, fs): stateDict = {'Done': 1, 'Signal too short': -2, 'Incorrect input': -3} try: if not len(ecg_filtered): stateFlag = stateDict['Incorrect input'] return stateFlag, [[], []] dt = 1/float(fs) diff = FUNC_diff(ecg_filtered) sqr = FUNC_sqr(diff) ecgmf = FUNC_signal_integration(sqr, dt) left_T, right_T = FUNC_prepare_for_maxima_search(ecgmf) r_value, r_index = FUNC_find_max(left_T, right_T, ecg_filtered) stateFlag = stateDict['Done'] return stateFlag, [r_value, r_index] except Exception as e: print(f'Module R_PEAKS failed: {e}') stateFlag = stateDict['Error'] return stateFlag, [[], []] # opis: detekcja zalamka S przy zalozeniu, ze osiaga minimum. # Zwraca wartosci i indeksy wyszukanych zalamkow S. # nazwa funkcji: FUNC_s_detection # parametry: # ecg_filtered - numpy 1D array # fs - integer # zwraca: # s_value - numpy 1D array # s_index - numpy 1D array def FUNC_s_detection(ecg_filtered, fs): dt = 1/float(fs) diff = FUNC_diff(ecg_filtered) sqr = FUNC_sqr(diff) ecgmf = FUNC_signal_integration(sqr, dt) left_T, right_T = FUNC_prepare_for_maxima_search(ecgmf) s_value, s_index = FUNC_find_min(left_T, right_T, ecg_filtered) return s_value, s_index # opis: Rysuje wykresy poszczegolnych sygnalow z naniesionymi na nie punktami # nazwa funkcji: PRINT_all # parametry: # ecg_filtered - numpy 1D array # fs - integer def PRINT_all(ecg_filtered, fs): diff = FUNC_diff(ecg_filtered) sqr = FUNC_sqr(diff) ecgmf = FUNC_signal_integration(sqr, fs) left_T, right_T = FUNC_prepare_for_maxima_search(ecgmf) r_value, r_index = FUNC_find_max(left_T, right_T, ecg_filtered) s_value, s_index = FUNC_find_min(left_T, right_T, ecg_filtered) qrs_left_values, qrs_right_values, qrs_left_values_ekgmf, qrs_right_values_ekgmf = FUNC_find_qrs_values(left_T, right_T, ecg_filtered, ecgmf) plt.figure(1) 'Zaznaczono przyblizone granice QRS na przefiltrowanym sygnale' plt.subplot(411) plt.plot(ecg_filtered) plt.plot(left_T,qrs_left_values, marker='o', color='g', ls='') plt.plot(right_T,qrs_right_values, marker='o', color='y', ls='') plt.ylabel('ekg_filtered') plt.subplot(412) plt.plot(diff) plt.ylabel('diff') plt.subplot(413) plt.plot(sqr) plt.ylabel('sqr') 'Zaznaczono przyblizone granice QRS na scalkowanym sygnale' plt.subplot(414) plt.plot(ecgmf) plt.plot(left_T,qrs_left_values_ekgmf, marker='o', color='g', ls='') plt.plot(right_T,qrs_right_values_ekgmf, marker='o', color='y', ls='') plt.ylabel('ecgmf') plt.figure(2) plt.plot(ecg_filtered) plt.plot(r_index,r_value, marker='x', color='r', ls='') plt.plot(s_index,s_value, marker='x', color='b', ls='') plt.plot(left_T,qrs_left_values, marker='o', color='g', ls='') plt.plot(right_T,qrs_right_values, marker='o', color='y', ls='') plt.xlabel('zalamki R, S oraz przyblizone granice QRS') plt.figure(3) plt.plot(ecg_filtered) plt.plot(r_index,r_value, marker='x', color='r', ls='') plt.xlabel('zalamki R') plt.show() # opis: Zaznacza wykryte zalamki R na sygnale EKG # nazwa funkcji: PRINT_r # parametry: # ecg_filtered - numpy 1D array # r_index - numpy 1D array # r_value - numpy 1D array def PRINT_r(ecg_filtered, r_index, r_value): plt.figure(4) plt.plot(ecg_filtered) plt.plot(r_index,r_value, marker='x', color='r', ls='') plt.xlabel('zalamki R') plt.show()
sebastianczuma/r_peaks
R_PEAKS_old.py
R_PEAKS_old.py
py
9,657
python
en
code
1
github-code
6
71082529147
from classes.rayon import * from processing.analysis import intersect def rayon_direct(start_point,end_point, murs): #renvoie le rayon direct (dans une liste) list_rayon = [] nouveau_rayon = Rayon(start_point) nouveau_rayon.add_point_principal(end_point) nouveau_rayon.find_all_intersections(murs) #determination des points de transmission list_rayon.append(nouveau_rayon) return list_rayon
bjoukovs/PHYSRayTracing2017
processing/direct.py
direct.py
py
445
python
en
code
0
github-code
6
13415300522
# -*- coding: utf-8 -*- """ @author: Taoting 将用coco格式的json转化成labeime标注格式的json """ import json import cv2 import numpy as np import os #用一个labelme格式的json作为参考,因为很多信息都是相同的,不需要修改。 def reference_labelme_json(): ref_json_path = './bin/25.json' data=json.load(open(ref_json_path)) return data def labelme_shapes(data,data_ref,id): shapes = [] label_num = {'box':0}#根据你的数据来修改 for ann in data['annotations']: if id == ann['image_id']: shape = {} class_name = [i['name'] for i in data['categories'] if i['id'] == ann['category_id']] #label要对应每一类从_1开始编号 label_num[class_name[0]] += 1 shape['label'] = class_name[0] shape['points'] = [] # ~ print(ann['segmentation']) if not type(ann['segmentation']) == list: continue else: x = ann['segmentation'][0][::2]#奇数个是x的坐标 y = ann['segmentation'][0][1::2]#偶数个是y的坐标 for j in range(len(x)): shape['points'].append([x[j], y[j]]) shape['shape_type'] = data_ref['shapes'][0]['shape_type'] shape['flags'] = data_ref['shapes'][0]['flags'] shapes.append(shape) return shapes def Coco2labelme(json_path,data_ref): with open(json_path,'r') as fp: data = json.load(fp) # 加载json文件 for img in data['images']: id = img['id'] data_labelme={} data_labelme['version'] = data_ref['version'] data_labelme['flags'] = data_ref['flags'] data_labelme['shapes'] = labelme_shapes(data,data_ref,id) data_labelme['imagePath'] = img['file_name'] data_labelme['imageData'] = None # ~ data_labelme['imageData'] = data_ref['imageData'] data_labelme['imageHeight'] = img['height'] data_labelme['imageWidth'] = img['width'] file_name = data_labelme['imagePath'] # 保存json文件 json.dump(data_labelme,open('./%s.json' % file_name.split('.')[0],'w'),indent=4) return data_labelme if __name__ == '__main__': root_dir = '/home/eason/PackSeg/' json_list = os.listdir(root_dir) #参考的json data_ref = reference_labelme_json() for json_path in json_list: if json_path.split('.')[-1] == 'json': print('当前文件: ', json_path) data_labelme= Coco2labelme(os.path.join(root_dir,json_path), data_ref) #file_name = data_labelme['imagePath'] # 保存json文件 #json.dump(data_labelme,open('./%s.json' % file_name.split('.')[0],'w'),indent=4)
Tommy-Bie/Logistics-Package-Separation-Software
DatasetUtils/coco2labelme.py
coco2labelme.py
py
2,887
python
en
code
1
github-code
6
5782054342
from django.contrib import admin from .models import Listing # change Register your models data's list views attribite. class ListingAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'is_published', 'price', 'list_date', 'realtor') # display items list_display_links = ('id', 'title', 'realtor') #clickable display items list_filter = ('realtor',) # filter display items list_editable = ('is_published', 'price') # editable list item search_fields = ('title', 'address', 'city', 'description', 'state', 'zipcode') # search panels filter items list_per_page = 3 # display list per page admin.site.register(Listing, ListingAdmin)
MonadWizard/django_HouseSellRealEstate_project
listings/admin.py
admin.py
py
671
python
en
code
3
github-code
6
5073225844
import urllib, urllib.request from datetime import datetime def get_data(province_id): # Отримання тестових даних із WEB-сторінки url = 'https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/get_TS_admin.php?country=UKR&provinceID={}&year1=1981&year2=2020&type=Mean'.format(province_id) # Відкриття WEB-сторінки можна зробити наступним чином: webpage = urllib.request.urlopen(url) text = webpage.read() # Отримати поточну дату і час now = datetime.now() # Згенерувати строку з поточою датою і часом та необхідним форматуванням можна за допомогою методу strftime date_and_time_time = now.strftime("%d.%m.%Y_%H^%M^%S") # Створити новий файл за допомоги функції open out = open('D:\\AD\\' + 'NOAA_ID' + str(province_id) + '-' + date_and_time_time + '.csv', 'wb') # Після відкриття у змінній text міститься текст із WEB-сторінки, який тепер можна записати у файл out.write(text) out.close() import pandas as pd def make_header(filepath): headers = ['Year', 'Week', 'SMN', 'SMT', 'VCI', 'TCI', 'VHI', 'empty'] dataframe = pd.read_csv(filepath, header=1, names=headers) dataframe.drop(dataframe.loc[dataframe['VHI'] == -1].index) return dataframe
DJeik7/lab2
Ad1.py
Ad1.py
py
1,504
python
uk
code
0
github-code
6
70879486268
from enum import Enum class Color(Enum): WHITE = True BLACK = False class Direction(Enum): EAST = "e" SOUTH_EAST = "se" SOUTH_WEST = "sw" WEST = "w" NORTH_WEST = "nw" NORTH_EAST = "ne" class Coordinate: # Using axial coordinates # https://www.redblobgames.com/grids/hexagons/ def __init__(self, q, r): self._q = q self._r = r def _as_tuple(self): return (self._q, self._r) def __repr__(self): return f"(q:{self._q}, r:{self._r})" def __hash__(self): return hash(self._as_tuple()) def __eq__(self, other): assert isinstance(other, Coordinate) return self._as_tuple() == other._as_tuple() def __add__(self, other): assert isinstance(other, Coordinate) return Coordinate(self._q + other._q, self._r + other._r) def adj(self): return {d: self + Coordinate.ADJ[d] for d in Direction} Coordinate.ADJ = { Direction.EAST: Coordinate(+1, 0), Direction.SOUTH_EAST: Coordinate(0, +1), Direction.SOUTH_WEST: Coordinate(-1, +1), Direction.WEST: Coordinate(-1, 0), Direction.NORTH_WEST: Coordinate(0, -1), Direction.NORTH_EAST: Coordinate(+1, -1), } class HexTile: _n = 0 def __init__(self): self._color = Color.WHITE self.n = HexTile._n HexTile._n += 1 def __repr__(self): return f"T{self.n}({self._color})" def toggle_color(self): self._color = Color(not self._color.value) def get_color(self): return self._color class HexGrid: ORIGIN = Coordinate(0, 0) def __init__(self): self._tiles = {} self._create_tile_at(HexGrid.ORIGIN) def flip_tile(self, directions): pos = HexGrid.ORIGIN for d in directions: pos = pos + Coordinate.ADJ[d] if pos not in self._tiles: self._create_tile_at(pos) self._tiles[pos].toggle_color() def count_black_tiles(self): return sum(t.get_color() == Color.BLACK for t in self._tiles.values()) def simulate_day(self): # add white tiles next to all all black tiles for pos, tile in list(self._tiles.items()): if tile.get_color() == Color.BLACK: for adj_pos in pos.adj().values(): if adj_pos not in self._tiles: self._create_tile_at(adj_pos) # determine which tiles need to be flipped to_flip = {tile for pos, tile in self._tiles.items() if self._should_flip(tile, pos)} # flip tiles for tile in to_flip: tile.toggle_color() def _should_flip(self, tile, pos): count = self._count_adj_black_tiles(pos) if tile.get_color() == Color.BLACK and (count == 0 or count > 2): return True elif tile.get_color() == Color.WHITE and count == 2: return True return False def _count_adj_black_tiles(self, pos): count = 0 for adj_pos in pos.adj().values(): adj_tile = self._tiles.get(adj_pos) if adj_tile is not None and adj_tile.get_color() == Color.BLACK: count += 1 return count def _create_tile_at(self, pos): assert pos not in self._tiles self._tiles[pos] = HexTile() def parse(line): directions = [] i = 0 while i < len(line): c = line[i] if c in "ew": directions.append(Direction(c)) i += 1 elif c in "ns": directions.append(Direction(line[i : i + 2])) i += 2 else: raise Exception("invalid input") return directions def get_grid(txt): grid = HexGrid() for line in txt.splitlines(): directions = parse(line) grid.flip_tile(directions) return grid def parta(txt): grid = get_grid(txt) return grid.count_black_tiles() def partb(txt): grid = get_grid(txt) for day in range(100): grid.simulate_day() # if day < 10 or (day + 1) % 10 == 0: # print(f"Day {day + 1}: {grid.count_black_tiles()}") return grid.count_black_tiles() if __name__ == "__main__": from aocd import data print(f"parta: {parta(data)}") print(f"partb: {partb(data)}")
cj81499/advent-of-code
src/aoc_cj/aoc2020/day24.py
day24.py
py
4,291
python
en
code
2
github-code
6
20651798683
import math import random import numpy as np from itertools import combinations from copy import deepcopy class Node: def __init__(self): self.parent = None self.state = [] self.children = [] self.fully_expanded = False self.Q = 0 self.N = 0 def __str__(self): return f"node state: {self.state}, Q: {self.Q}, N: {self.N}, fully expanded: {self.fully_expanded}" def ripple(v_sum, f_sum, f_leaves): return f_leaves - (f_sum - v_sum) * (f_leaves / f_sum) if f_sum != 0 else 0 def distance(v1, v2): return np.sqrt(np.sum(np.power(v1 - v2, 2))) def ps(df, v, f, selections): a = np.copy(f) for selection in selections: v_sum = df.loc[selection, 'real'].sum() f_sum = df.loc[selection, 'predict'].sum() a[selection] = ripple(v_sum, f_sum, df.loc[selection, 'predict']) score = max(1 - distance(v, a) / distance(v, f), 0) return score def gps(v, f, selections): a, b = [], [] for selection in selections: selection_v = v[selection] selection_f = f[selection] with np.errstate(divide='ignore', invalid='ignore'): selection_a = f[selection] * (selection_v.sum() / selection_f.sum()) selection_a = np.nan_to_num(selection_a) a.extend(np.abs(selection_v - selection_a)) b.extend(np.abs(selection_v - selection_f)) selection = np.logical_or.reduce(selections) non_selection_v = v[~selection] non_selection_f = f[~selection] a = np.mean(a) b = np.mean(b) c = np.nan_to_num(np.mean(np.abs(non_selection_v - non_selection_f))) score = 1 - ((a + c) / (b + c)) return score def get_unqiue_elements(df, cuboid): return {tuple(row) for row in df[cuboid].values} def get_element_mask(df, cuboid, combination): return [np.logical_and.reduce([df[d] == e for d, e in zip(cuboid, c)]) for c in combination] def ucb(node, C=math.sqrt(2.0)): best_child = None max_score = -1 for child in node.children: if child.N > 0 and not child.fully_expanded: left = child.Q right = C * math.sqrt(math.log(node.N) / child.N) score = left + right if score > max_score: best_child = child max_score = score return best_child def init_children(node, elements): children = [e for e in elements if e not in set(node.state)] for c in children: child = Node() child.state = node.state + [c] child.parent = node node.children.append(child) def get_initial_scores(df, elements, cuboid, v, f, scoring): element_scores = dict() for leaf in elements: selections = get_element_mask(df, cuboid, [leaf]) if scoring == 'ps': element_scores[leaf] = ps(df.copy(), v, f, selections) else: element_scores[leaf] = gps(v, f, selections) return element_scores def sublist(lst1, lst2): return set(lst1) <= set(lst2) def selection(node, elements): while len(node.state) < len(elements): if len(node.children) == 0: # First time to search this node. init_children(node, elements) return node q_max = 0 all_visit = True for child in node.children: q_max = max(q_max, child.Q) if child.N == 0: # Not all children have been visited. all_visit = False if not all_visit and random.random() > q_max: return node # Expand current node child_node = ucb(node) # Select the best path got go deeper into the tree. if child_node is None: # If all children are already fully expanded. if all_visit: node.fully_expanded = True if node.parent is None: return node # The tree is fully exanded. node = node.parent # Continue again with parent node. else: return node # Expand current node. else: node = child_node node.fully_expanded = True return node def expand(node, element_scores): best_child = None max_score = -1 for child in node.children: if child.N == 0: score = element_scores[child.state[-1]] if score > max_score: max_score = score best_child = child return best_child def evaluate(df, selected_node, cuboid, v, f, scoring): selections = get_element_mask(df, cuboid, selected_node.state) if scoring == 'ps': score = ps(df.copy(), v, f, selections) else: score = gps(v, f, selections) return score def backup(node, new_q): while node is not None: node.N += 1 node.Q = max(node.Q, new_q) node = node.parent def MCTS(df, elements, cuboid, v, f, pt, m, scoring): root = Node() max_q = -1 best_selection = Node() element_scores = get_initial_scores(df, elements, cuboid, v, f, scoring) for i in range(m): node = selection(root, elements) if not node.fully_expanded: node = expand(node, element_scores) if root.fully_expanded: break new_q = evaluate(df, node, cuboid, v, f, scoring) backup(node, new_q) if new_q > max_q: max_q = root.Q best_selection = deepcopy(node) elif (new_q == max_q) and not sublist(node.state, best_selection.state) and len(node.state) < len( best_selection.state): max_q = root.Q best_selection = deepcopy(node) if max_q >= pt: break return best_selection.state, max_q def hierarchical_pruning(elements, layer, cuboid, candidate_set): previous_layer_candidates = [candidate for candidate in candidate_set if candidate['layer'] == layer - 1] parent_selections = [cand['elements'] for cand in previous_layer_candidates if set(cand['cuboid']) < set(cuboid)] for parent_selection in parent_selections: elements = [e for e in elements if np.any([set(pe) < set(e) for pe in parent_selection])] return elements def get_best_candidate(candidate_set): # Sort by score, layer, number of elements sorted_cands = sorted(candidate_set, key=lambda c: (c['score'], -c['layer'], -len(c['elements'])), reverse=True) return sorted_cands[0] def hotspot(df, dimensions, pt=0.67, m=200, scoring='gps', debug=False): assert scoring in ['ps', 'gps'], "Supported scoring is 'ps' and 'gps'." # Hierarcical pruning does not seem to work well when using gps scoring use_pruning = scoring != 'gps' v = df['real'].values f = df['predict'].values candidate_set = [] for layer in range(1, len(dimensions) + 1): if debug: print('Layer:', layer) cuboids = [list(c) for c in combinations(dimensions, layer)] for cuboid in cuboids: if debug: print('Cuboid:', cuboid) elements = get_unqiue_elements(df, cuboid) # if debug: print('Elements:', elements) if use_pruning and layer > 1: elements = hierarchical_pruning(elements, layer, cuboid, candidate_set) # if debug: print('Filtered elements:', elements) selected_set, score = MCTS(df, elements, cuboid, v, f, pt, m, scoring) if debug: print('Best subset:', selected_set, 'score', score) candidate = { 'layer': layer, 'cuboid': cuboid, 'score': score, 'elements': np.array(selected_set) } if candidate['score'] >= pt: return candidate candidate_set.append(candidate) return get_best_candidate(candidate_set)
shaido987/riskloc
algorithms/hotspot.py
hotspot.py
py
8,100
python
en
code
93
github-code
6
37175527133
from jd.api.base import RestApi class ComJdStockShopGlobalWebOpenWarehouseFacadeAddStoreRequest(RestApi): def __init__(self,domain,port=80): """ """ RestApi.__init__(self,domain, port) self.storeName = None self.remark = None self.venderId = None self.storeId = None def getapiname(self): return 'jingdong.com.jd.stock.shop.global.web.open.WarehouseFacade.addStore'
PsKs/jd-sdk
jd/api/rest/ComJdStockShopGlobalWebOpenWarehouseFacadeAddStoreRequest.py
ComJdStockShopGlobalWebOpenWarehouseFacadeAddStoreRequest.py
py
405
python
en
code
1
github-code
6
22093759735
import pandas as pd from sklearn import svm import statistics data = pd.read_csv('cleaned_LaptopDataset.csv') t = statistics.median(data['latest_price']) h = [] from sklearn import preprocessing le = preprocessing.LabelEncoder() for x in data.latest_price: if (x >= t): h.append(1) else: h.append(0) data['latest_price'] = h for col in data: data[col] = le.fit_transform(data[col]) ########Train-test Dataset####### x = data.drop('latest_price', axis=1) y = data['latest_price'] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3) ######## SVM Using Linear Kernel ####### classifiere = svm.SVC(kernel="linear", C=1, gamma=1) classifiere.fit(x_train, y_train) predictions = classifiere.predict(x_test) ########SVM Accuracy####### from sklearn.metrics import accuracy_score acc = accuracy_score(y_test, predictions) print("accuracy of SVM " , acc*100,"%")
mohamedezzeldeenhassanmohamed/Data-Mining-Project
svm.py
svm.py
py
1,007
python
en
code
0
github-code
6
720316267
# BFD - Bidirectional Forwarding Detection - RFC 5880, 5881 # scapy.contrib.description = BFD # scapy.contrib.status = loads from scapy.packet import * from scapy.fields import * from scapy.all import * # Otherwise failing at the UDP reference below class BFD(Packet): name = "BFD" fields_desc = [ BitField("version" , 1 , 3), BitField("diag" , 0 , 5), BitField("sta" , 3 , 2), FlagsField("flags", 0x00, 6, ['P', 'F', 'C', 'A', 'D', 'M']), XByteField("detect_mult", 0x03), XByteField("len", 24), BitField("my_discriminator" , 0x11111111 , 32), BitField("your_discriminator" , 0x22222222 , 32), BitField("min_tx_interval" , 1000000000, 32), BitField("min_rx_interval" , 1000000000, 32), BitField("echo_rx_interval" , 1000000000, 32) ] def mysummary(self): return self.sprintf("BFD (my_disc=%BFD.my_discriminator%, your_disc=%BFD.my_discriminator%)") bind_layers(UDP, BFD, dport=3784)
p4lang/scapy-vxlan
scapy/contrib/bfd.py
bfd.py
py
1,129
python
en
code
33
github-code
6
31472363916
# Code adapted from https://www.codeproject.com/Articles/5297227/Deep-Learning-for-Fashion-Classification # import tensorflow.keras as keras import os import matplotlib.pyplot as plt import matplotlib.image as img import tensorflow as tf import keras import numpy as np from keras.preprocessing.image import ImageDataGenerator from keras.preprocessing.image import ImageDataGenerator config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config)) data = '/home/lunet/conce/Downloads/Codeproject/DeepFashion Custom/DeepFashion/Train' os.chdir(data) batch_size = 3 def DataLoad(shape, preprocessing): """Create the training and validation datasets for a given image shape.""" img_data = ImageDataGenerator( preprocessing_function=preprocessing, horizontal_flip=True, validation_split=0.1, ) height, width = shape train_dataset = img_data.flow_from_directory( os.getcwd(), target_size=(height, width), classes=['Blazer', 'Blouse', 'Cardigan', 'Dress', 'Jacket', 'Jeans', 'Jumpsuit', 'Romper', 'Shorts', 'Skirts', 'Sweater', 'Sweatpants' , 'Tank', 'Tee', 'Top'], batch_size=batch_size, subset='training', ) val_dataset = img_data.flow_from_directory( os.getcwd(), target_size=(height, width), classes=['Blazer', 'Blouse', 'Cardigan', 'Dress', 'Jacket', 'Jeans', 'Jumpsuit', 'Romper', 'Shorts', 'Skirts', 'Sweater', 'Sweatpants', 'Tank', 'Tee', 'Top'], batch_size=batch_size, subset='validation' ) return train_dataset, val_dataset vgg16 = keras.applications.vgg16 conv_model = vgg16.VGG16(weights='imagenet', include_top=False) conv_model.summary() train_dataset, val_dataset = DataLoad((224, 224), preprocessing=vgg16.preprocess_input) # Function for plots images with labels within jupyter notebook X_train, y_train = next(train_dataset) # Load ImageNet weights of this network, to be used during the transfer learning conv_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) # flatten the output of the convolutional part: x = keras.layers.Flatten()(conv_model.output) # three hidden layers x = keras.layers.Dense(100, activation='relu')(x) x = keras.layers.Dense(100, activation='relu')(x) x = keras.layers.Dense(100, activation='relu')(x) # final softmax layer with 15 categories predictions = keras.layers.Dense(15, activation='softmax')(x) # creating the full model: full_model = keras.models.Model(inputs=conv_model.input, outputs=predictions) full_model.summary() for layer in conv_model.layers: layer.trainable = False full_model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adamax(lr=0.001), metrics=['acc']) history = full_model.fit_generator( train_dataset, validation_data=val_dataset, workers=0, epochs=7, ) def plot_history(history, yrange): """Plot loss and accuracy as a function of the epoch, for the training and validation datasets. """ acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] # Get number of epochs epochs = range(len(acc)) # Plot training and validation accuracy per epoch plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.title('Training and validation accuracy') plt.ylim(yrange) # Plot training and validation loss per epoch plt.figure() plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.title('Training and validation loss') plt.show() plot_history(history, yrange=(0.9, 1)) test_data = '/home/lunet/conce/Downloads/Codeproject/DeepFashion Custom/DeepFashion/Train' test_datagen = ImageDataGenerator() test_generator = test_datagen.flow_from_directory(test_data, target_size=(224, 224), batch_size=3, class_mode='categorical') # X_test, y_test = next(test_generator) test_results = full_model.evaluate(test_generator) print("test loss, test acc:", test_results)
nnanna217/msc-image-search
func/my_samples/cp_fashion-classifier.py
cp_fashion-classifier.py
py
4,162
python
en
code
0
github-code
6
10713768489
from scipy import stats, signal from collections import defaultdict import numpy as np from tqdm.notebook import tqdm import pandas as pd from src import config from src.FFT import FFTAnalysis as FFT def _extractTimeDomainFeatures(sig): ''' Extracts time domain features from one vibration signal''' # Get time features features = dict() if sig is not None: rmsVal = np.sqrt(np.square(sig).mean()) sigMax = sig.max() absSig = np.abs(sig) absMean = absSig.mean() features = { 'mean': sig.mean(), 'min': sig.min(), 'max': sigMax, 'std': np.std(sig), 'skew': stats.skew(sig), 'kurt': stats.kurtosis(sig), 'rms': rmsVal, 'p2p': sigMax - sig.min(), 'crestF': sigMax / rmsVal, 'impulseF': absSig.max() / absMean, 'shapeF': rmsVal / absMean } return features def _getSubBand(FFTfreqs, FFTlevels, band): ''''Extract portion of the FFT corresponding to the given frequency band ''' idxKeep = (FFTfreqs >= band[0]) & (FFTfreqs < band[1]) freqs = FFTfreqs[idxKeep] levels = FFTlevels[idxKeep] return freqs, levels def _extractPeaks(freqs, levels, distance): ''' Extracts peaks from an FFT ''' peakIdx, _ = signal.find_peaks(levels, distance = distance) peakLevels = levels[peakIdx] peakFreqs = freqs[peakIdx] return peakFreqs, peakLevels def _getTopPeaks(levels, freqs, noPeaks): ''' Extract top <n> peaks from an FFT ''' # Sort peak indices from highest to lowest level sortIdx = np.argsort(levels) sortIdx = np.flip(sortIdx) # Grab top <n> peaks levels = levels[sortIdx[0:noPeaks]] freqs = freqs[sortIdx[0:noPeaks]] return freqs, levels def _extractFrequencyDomainFeatures(sig, FFTsettings, noPeaks = config.FBAND_PEAKS, peakDist = config.PEAK_DIST, fs = config.Fs, fBands = config.FBANDS): ''' Extracts frequency domain features from one vibration signal''' FFTfreqs, FFTlevels = None, None features = defaultdict() if sig is not None: FFTfreqs, FFTlevels = FFT(sig, config.Fs, FFTsettings) # Split in bands for bandNo, band in enumerate(fBands): freqs, levels = _getSubBand(FFTfreqs, FFTlevels, band) freqs, levels = _extractPeaks(freqs, levels, peakDist) freqs, levels = _getTopPeaks(levels, freqs, noPeaks) # Add peaks from current band to the dictionary with the features for peakNo in range(noPeaks): featName = f'band_{bandNo + 1}_peak_{peakNo+1}_level' features[featName] = levels[peakNo] featName = f'band_{bandNo + 1}_peak_{peakNo+1}_freq' features[featName] = freqs[peakNo] return features def _extractFeatures(sig, FFTsettings): ''''Extracts time- and frequency-domain features from one vibration signal''' feats = _extractTimeDomainFeatures(sig) freqFeats = _extractFrequencyDomainFeatures(sig, FFTsettings) feats.update(freqFeats) return feats def extractDatasetFeatures(df, FFTsettings = config.FFT_SETTINGS): ''' Extracts features from the entire dataset ''' # Extract features from every experiment driveFeats, fanFeats = [], [] for idx, record in tqdm(df.iterrows(), total = df.shape[0]): FFTsettings['HPCutoffFrequency'] = 20 * record['MotorSpeed_rpm'] / 60 FFTsettings['LPCutoffFrequency'] = 10 * record['MotorSpeed_rpm'] / 60 driveFeats.append(_extractFeatures(record['DriveVibs'], FFTsettings)) fanFeats.append(_extractFeatures(record['FanVibs'], FFTsettings)) # Make dataframes with the extracted features dfDrive = pd.DataFrame(driveFeats) dfFan = pd.DataFrame(fanFeats) # Add corresponding labels dfDrive['label'] = df['DriveLabel'] dfFan['label'] = df['FanLabel'] # Remove rows with missing records for fan-end bearing dfFan.dropna(axis = 0, how = 'any', inplace = True) return dfDrive, dfFan
Miltos-90/Bearing_Fault_Classification
src/feature_extraction.py
feature_extraction.py
py
4,432
python
en
code
0
github-code
6
34668621923
from django.urls import path from django.conf.urls import url from . import views app_name = 'choistick' urlpatterns = [ path('', views.index, name='index'), path('map/', views.map, name='map'), path('join/', views.signup, name='join'), path('pick/', views.pick, name='pick'), path('warn/', views.warn, name='warn'), # url(r'^login/$', views.signin, name='login'), url(r'^login/$', views.signin, name='login'), ]
jaemin8852/Search_Location
choistick/urls.py
urls.py
py
421
python
en
code
0
github-code
6
13300386404
#!/usr/bin/python3 import _thread import re, time, cv2, serial ''' ServoController interfaces with the arduino board to control the servo motor over USB serial coms ''' class ServoController: def __init__(self): self.ser = serial.Serial('com3', 9600, timeout=0.5) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.ser.close() def servo_read_position(self): self.ser.write(b'r') pos = str(self.ser.readline()) # First read is always empty, sometimes the first seversl, # so recusively call until numbers come back from arduino while pos == "b''": pos = self.servo_read_position() print("pos_remote_read: " + str(pos)) m = re.search('\d+', str(pos)) pos = int(m.group(0)) return pos def servo_set_position(self, pos): print("ad pos: " +str(pos)) self.ser.write(bytes(str(pos), 'utf8')) self.ser.write(b'\n') print("pos_remote: " + str(self.ser.readline())) ''' SerialServo controls camera rotation and motion detection Currently written to sweep the camera, wait and detect motion, only continue sweeping once no motion detected ''' class CameraController: def camera_frame_grab(self): ret, frame = self.cap.read() cv2.imshow(self.frameName, frame) cv2.waitKey(1) def camera_rotate(self, start, stop, step_delay=0.2): # If the stop angle bigger than start, increment, else decrement # If the stop angle is smaller, it cannot be negative, if it's bigger, # then it can't be bigger than 180 if start <= stop: if stop < 25: stop = 25 direction = 1 else: if stop > 165: stop = 165 direction = -1 for pos in range(start, stop, direction): self.camera_frame_grab() self.sc.servo_set_position(pos) time.sleep(step_delay) def camera_sweep(self): self.camera_rotate(45, 180) self.camera_rotate(180, 45) def camera_left(self, degrees): pos = self.sc.servo_read_position() if pos <= 180: self.camera_rotate(pos, pos + degrees) def camera_right(self, degrees): pos = self.sc.servo_read_position() if pos > 0: self.camera_rotate(pos, pos - degrees) def detect_motion(self, duration): start_time = time.time() while (True): ret, frame = self.cap.read() if self.motionSense: end_time = time.time() # Wait detecting motion for duration, stop detecting once time has passed and no motion detected if(end_time - start_time) > duration and count == 1: print("Finished recording " + str(duration)) break fgmask = self.fgbg.apply(frame) # Generate and prepare the threshold image, and find contours with it. ret, thresh = cv2.threshold(fgmask, 127, 255, 0) thresh = cv2.dilate(thresh, None, iterations=2) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Count contours with large areas, use them for movement simple detection count = 1 for c in contours: if cv2.contourArea(c) < 500: continue count += count # optionally draw bounding boxes around the detected contours if self.drawRect: (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow(self.frameName, frame) k = cv2.waitKey(60) & 0xff if k == 27: break def __init__(self, camera, servo=0, drawRect=0, motionSense=1): if servo: self.sc = ServoController() self.drawRect = drawRect self.motionSense = motionSense self.frameName = "Camera " + str(camera) self.cap = cv2.VideoCapture(camera) self.fgbg = cv2.createBackgroundSubtractorMOG2() ret, frame = self.cap.read() cv2.imshow(self.frameName, frame) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): # When everything done, release the capture and serial port self.cap.release() cv2.destroyAllWindows() def dynamic_camera(cam): with CameraController(cam, 1) as cc: while(True): cc.camera_right(25) cc.detect_motion(20) cc.camera_right(25) cc.detect_motion(20) cc.camera_right(25) cc.detect_motion(20) cc.camera_right(25) cc.detect_motion(20) cc.camera_right(25) cc.detect_motion(20) cc.camera_right(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) cc.camera_left(25) cc.detect_motion(20) def static_camera(cam): print("Static Cam - no motion detection") with CameraController(cam, drawRect=1, motionSense=0) as cc: while (True): cc.detect_motion(20) if __name__ == "__main__": try: _thread.start_new_thread(dynamic_camera, (1, )) _thread.start_new_thread(static_camera, (0, )) except: print("Error: unable to start thread") while 1: pass
bradys/cat-cam
Cat_Cam.py
Cat_Cam.py
py
6,213
python
en
code
0
github-code
6
21806540252
from jetracer.nvidia_racecar import NvidiaRacecar import time import sys from multiprocessing import Process, Value import zmq import Jetson.GPIO as GPIO pinrun = 'DAP4_SCLK' #12 pinbouton = 'SPI2_SCK' #13 pinau = 'SPI2_CS1' #16 autrepin = 'SPI2_CS0' #18 GPIO.setmode(GPIO.TEGRA_SOC) GPIO.setup(pinrun, GPIO.OUT) GPIO.output(pinrun, 0) GPIO.setup(pinau, GPIO.OUT) GPIO.output(pinau, 0) GPIO.setup(pinbouton, GPIO.IN) context = zmq.Context() socket = context.socket(zmq.REP) socket.bind("tcp://*:5555") currentlyRunning = Value('b', False) def RunScript(script, data): #print("running " + script) GPIO.output('DAP4_SCLK', 1) data.value = True exec(script) print(f"currentlyRunning from process {currentlyRunning.value}") print("Script terminé avec succès") data.value = False print(f"currentlyRunning from process {currentlyRunning.value}") GPIO.output('DAP4_SCLK', 0) def BumperChock(data): print("Detection pare-chocs") if currentlyRunning.value: runThread.terminate() # sends a SIGTERM currentlyRunning.value = False; car.throttle = 0.001 car.throttle = 0 GPIO.output(pinrun, 0) GPIO.output(pinau, 1) data.value = False car = NvidiaRacecar() car.steering_gain = -0.65 car.steering_offset = -0.25 if car.steering_offset != -0.25 : exit() print("Car ready") GPIO.add_event_detect(pinbouton, GPIO.FALLING, callback=lambda x: BumperChock(currentlyRunning), bouncetime=10) while True: try: print("en attente recv...") message = socket.recv() GPIO.output(pinau, 0) socket.send(b"OK") message = message.decode("utf-8") #print("Received request: %s" % message) f = open("/KDesir_Tests/logging.txt", "a") t = time.strftime('%d/%m/%Y-%H:%M:%S', time.localtime()) + "," log = message.replace("\n", "\n" + t) f.write(t + log + "\n") f.close() #print(message) if "ArretUrgence" in message: runThread.terminate() # sends a SIGTERM #socket.send(b"AU_Done") print("Arrêt d'urgence déclenché") currentlyRunning.value = False; raise else: print(f"currentlyRunning from main script {currentlyRunning.value}") if not currentlyRunning.value: print(f"currentlyRunning {currentlyRunning.value}") runThread=Process(target=RunScript,args=(message, currentlyRunning)) runThread.start() else: print("Impossible d'exécuter le script car un autre est déjà en cours") except Exception as e: print(e) car.throttle = 0.001 car.throttle = 0 GPIO.output(pinrun, 0) GPIO.output(pinau, 1) #finally: # GPIO.cleanup() sys.exit("Fin du programme")
SpaceLabsfr/BlockApp
serveur-blockapp.py
serveur-blockapp.py
py
2,553
python
en
code
0
github-code
6
40678810913
import argparse import json import os import platform import subprocess from typing import List HOST_MAGMA_ROOT = '../../../.' def main() -> None: """ Run main""" args = _parse_args() if args.mount: _run(['up', '-d', 'test']) _run(['exec', 'test', 'bash']) _down(args) elif args.lint: _run(['up', '-d', 'test']) _run(['exec', 'test', 'make', 'lint']) _down(args) elif args.precommit: _run(['up', '-d', 'test']) _run(['exec', 'test', 'make', 'precommit']) _down(args) elif args.coverage: _run(['up', '-d', 'test']) _run(['exec', 'test', 'make', 'cover']) _down(args) elif args.tests: _run(['up', '-d', 'test']) _run(['exec', 'test', 'make', 'test']) _down(args) elif args.health: # _set_mac_env_vars is needed to override LOG_DRIVER for mac _set_mac_env_vars() _run(['-f', 'docker-compose.yml', '-f', 'docker-compose.override.yml', '-f', 'docker-compose.health.override.yml', 'up', '-d']) _run_health() _down(args) elif args.git: print(json.dumps(_run_get_git_vars(), indent=4, sort_keys=True)) else: _run(['build'] + _get_default_build_args(args)) _down(args) def _run(cmd: List[str]) -> None: """ Run the required docker compose command """ cmd = ['docker', 'compose', '--compatibility'] + cmd print("Running '%s'..." % ' '.join(cmd)) try: subprocess.run(cmd, check=True) # noqa: S603 except subprocess.CalledProcessError as err: exit(err.returncode) def _down(args: argparse.Namespace) -> None: if args.down: _run(['down']) def _get_default_build_args(args: argparse.Namespace) -> List[str]: ret = [] git_info = _run_get_git_vars() for arg, val in git_info.items(): ret.append("--build-arg") ret.append("{0}={1}".format(arg, val)) if args.nocache: ret.append('--no-cache') return ret def _run_get_git_vars(): try: cmd = "tools/get_version_info.sh" cmd_res = \ subprocess.run(cmd, check=True, capture_output=True) # noqa: S603 except subprocess.CalledProcessError as err: print("Error _run_get_git_vars") exit(err.returncode) return json.loads(cmd_res.stdout) def _run_health(): try: cmd = "tools/docker_ps_healthcheck.sh" subprocess.run(cmd, check=True) # noqa: S603 except subprocess.CalledProcessError as err: print("Error _run_health") exit(err.returncode) def _set_mac_env_vars(): if (platform.system().lower() == "darwin"): os.environ['LOG_DRIVER'] = "json-file" def _parse_args() -> argparse.Namespace: """ Parse the command line args """ # There are multiple ways to invoke finer-grained control over which # images are built. # # (1) How many images to build # # all: all images # default: images required for minimum functionality # - excluding metrics images # - including postgres, proxy, etc # # (2) Of the core orc8r images, which modules to build # # Defaults to all modules, but can be further specified by targeting a # deployment type. parser = argparse.ArgumentParser(description='Orc8r build tool') # Run something parser.add_argument( '--tests', '-t', action='store_true', help='Run unit tests', ) parser.add_argument( '--mount', '-m', action='store_true', help='Mount the source code and create a bash shell', ) parser.add_argument( '--precommit', '-c', action='store_true', help='Mount the source code and run pre-commit checks', ) parser.add_argument( '--coverage', '-o', action='store_true', help='Generate test coverage statistics', ) parser.add_argument( '--lint', '-l', action='store_true', help='Run lint test', ) parser.add_argument( '--health', '-e', action='store_true', help='Run health test', ) # Run something parser.add_argument( '--git', '-g', action='store_true', help='Get git info', ) # How to do it parser.add_argument( '--nocache', '-n', action='store_true', help='Build the images with no Docker layer caching', ) parser.add_argument( '--down', '-down', action='store_true', default=False, help='Leave containers up after running tests', ) return parser.parse_args() if __name__ == '__main__': main()
magma/magma
feg/gateway/docker/build.py
build.py
py
4,696
python
en
code
1,605
github-code
6
27213803395
def solution(n, words): word_set = {words[0]} n_cnt = [0] * (n + 1) n_cnt[1] += 1 for i in range(1, len(words)): num = i % n + 1 if words[i][0] != words[i - 1][-1] or words[i] in word_set: return [num, n_cnt[num] + 1] else: word_set.add(words[i]) n_cnt[num] += 1 return [0, 0]
hammii/Algorithm
Programmers_python/영어_끝말잇기.py
영어_끝말잇기.py
py
360
python
en
code
2
github-code
6
34861772057
from statuspage.forms import StatusPageModelForm from utilities.forms import StaticSelect from ..models import UptimeRobotMonitor __all__ = ( 'UptimeRobotMonitorForm', ) class UptimeRobotMonitorForm(StatusPageModelForm): fieldsets = ( ('UptimeRobot Monitor', ( 'component', 'metric', 'paused', )), ) class Meta: model = UptimeRobotMonitor fields = ( 'component', 'metric', 'paused', ) widgets = { 'component': StaticSelect(), 'metric': StaticSelect(), }
Status-Page/Status-Page
statuspage/sp_uptimerobot/forms/models.py
models.py
py
578
python
en
code
45
github-code
6
5308571260
n, c = map(int, input().split()) location = [] for _ in range(n): location.append(int(input())) location.sort() # gap 최소값 start = location[1]-location[0] # gap 최대값 end = location[-1] - location[0] result = 0 while (start <= end): # gap의 중간 값 mid = (start + end) // 2 value = location[0] cnt = 1 # mid 값을 이용해 공유기 설치 for i in range(1, n): # 현재위치+gap이 다음집보다 작은 경우. 새로 설치해야함 if location[i] >= value + mid: # 현재위치 갱신 value = location[i] cnt += 1 # 설치한 공유기가 사용가능 공유기 보다 크거나 같은 경우 if cnt >= c: start = mid + 1 result = mid else: end = mid - 1 print(result)
louisuss/Algorithms-Code-Upload
Python/DongbinBook/binary_search/find_router.py
find_router.py
py
810
python
ko
code
0
github-code
6
36076011155
# -*- coding: utf-8 -*- from flask import Flask, render_template, request,jsonify, redirect,url_for from json import dumps import celery , sys from celeryconfig import appcelery from Buscador import tasks import time, json app = Flask(__name__) @app.route('/datos', methods=['GET', 'POST']) def recibirInformacion(): resultados=[] expedientes=[] expedientes=convertirAstring(request.args.get('expedientes')) informacion = tratamientosDatos(expedientes,request.args.get('array')) resultados=informacion.unirVectores() return jsonify(resultados) def convertirAstring(argumentos): argumentos=argumentos.replace(' ','') argumentos=argumentos.replace('"','') argumentos=argumentos.replace(']','') argumentos=argumentos.replace('[','') argumentos=argumentos.split(',',argumentos.count(',')) return argumentos class tratamientosDatos(): def __init__(self, resultados_ncbi, resultados_array): self.datos_ncbi=resultados_ncbi[:] self.resultados_array=resultados_array def almacenar_datos_visualizacion_array(self): visualizacion_array=[] for i in appcelery.AsyncResult(self.resultados_array).get()['experiments']['experiment']: visualizacion_array.append({'id': i['id'], 'accession': i['accession'], 'name': i['name'], 'releasedate': i['releasedate'], 'description': i['description'][0]['text'],'bd': 'arrayexpress', 'descarga': "null" }) return visualizacion_array def almacenar_datos_visualizacion_ncbi(self): tam_list=len(self.datos_ncbi) visualizacion_ncbi=[] for j in range(tam_list): i=appcelery.AsyncResult(self.datos_ncbi[j]) identificador=i.get()['result']['uids'][0] visualizacion_ncbi.append({'id': identificador, 'accession':i.get()['result'][identificador]['accession'], 'name': i.get()['result'][identificador]['title'], 'releasedate': i.get()['result'][identificador]['pdat'], 'description': i.get()['result'][identificador]['summary'], 'bd': 'ncbi_gds', 'descarga': i.get()['result'][identificador]['ftplink'] }) return visualizacion_ncbi def unirVectores(self): vector_ncbi=[] vector_array=[] vector_ncbi=self.almacenar_datos_visualizacion_ncbi() vector_array=self.almacenar_datos_visualizacion_array() for i in vector_array: vector_ncbi.append(i) return vector_ncbi if __name__ == '__main__': app.run(host='0.0.0.0', port=80, debug=True)
AntonioAlcM/tfg_ugr
backend/tratamientoDatos.py
tratamientoDatos.py
py
2,620
python
pt
code
1
github-code
6
44633342253
from typing import List from torch import optim from torch.optim.optimizer import Optimizer from torch_geometric.data.data import Data from src.dataset import citeSeer from src.model import GAT import torch import torch.nn.functional as F from torch_geometric.data import Dataset EPOCH = 200 # --- dataloader ''' 전체 graph를 사용하기 때문에 dataloader 불필요. ''' citeSeer_ds = citeSeer('data') citeseer = citeSeer_ds[0] # --- Model gat_model = GAT(citeSeer_ds.num_features, num_layers = 2, hidden_dim = [64], num_heads = [8], output_dim = citeSeer_ds.num_classes) # --- Setting device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') gat_model.to(device) citeseer = citeseer.to(device) optimizer = torch.optim.Adam(gat_model.parameters(), lr = 0.005, weight_decay = 5e-4) criterion = F.nll_loss # --- training def train(data : Dataset) -> None: gat_model.train() optimizer.zero_grad() out = gat_model(data.x, data.edge_index) loss = criterion(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() @torch.no_grad() def test(data : Dataset) -> dict: gat_model.eval() out= gat_model(data.x, data.edge_index) acc_dic = {} for name, mask in data('train_mask', 'test_mask', 'val_mask'): acc = float((out[mask].argmax(-1) == data.y[mask]).sum() / mask.sum()) acc_dic[name[:-5]] = acc return acc_dic for epoch in range(EPOCH): train(citeseer) acc_dic = test(citeseer) print(f"Epoch : {epoch+1:03d}, Train : {acc_dic['train']:.4f}, Test : {acc_dic['test']:.4f}")
February24-Lee/gnn_research
test_gat_exmaple.py
test_gat_exmaple.py
py
1,645
python
en
code
0
github-code
6
18732949012
import json import numpy as np import util class AudfprintAligner: matches = {} def __init__(self, matchfile): with open(matchfile) as f: for x, ys in json.load(f).iteritems(): for y, m in ys.iteritems(): m = m[0] if "Matched" in m: d = float(self.between(m, "Matched ", " s ")) t1 = float(self.between(m, " at ", " s ")) f1 = self.between(m, " in ", " to ") t2 = float(self.between(m, " time ", " s ")) f2 = self.between(m, " in ", " with ", 1) if f1 not in self.matches: self.matches[f1] = {} self.matches[f1][f2] = [t1, t2, d] def between(self, string, s1, s2, index=0): string = string.split(s1)[index+1] return string[:string.find(s2)] def get_alignment_points(self, file, reffile): if file in self.matches: if reffile in self.matches[file]: t1, t2, d = self.matches[file][reffile] filedur = util.get_duration(file) refdur = util.get_duration(reffile) delta_start = t2-t1 delta_end = delta_start+filedur #assume slope 1 return [delta_start, delta_end], 1 return None, 0
grateful-dead-live/meta-alignment
audfprint_aligner.py
audfprint_aligner.py
py
1,407
python
en
code
0
github-code
6
24150609056
import requests import random from utils.others import get_atitle, get_genre, get_t_from_u, get_urls from utils.anilist import Anilist from utils.techzapi import TechZApi def get_genre_html(li): x = """<a>{}</a>""" html = "" for i in li: html += x.format(i.strip()) return html def get_eps_html(data=None, api: TechZApi = None, anime=None): if not data: anime = api.gogo_search(anime)[0].get("id").strip() data = api.gogo_anime(anime).get("episodes") x = """<a class="ep-btn" href="{}">{}</a>""" html = "" pos = 1 for i in data: i = i.replace("-episode-", "/") html += x.format(f"/episode/{i}", str(pos)) pos += 1 if api: return html, anime return html def get_eps_html2(data): x = """<a class="ep-btn" href="{}">{}</a>""" html = "" pos = 1 for i in data: i = i.replace("-episode-", "/") html += x.format(f"/episode/{i}", str(pos)) pos += 1 return html ANIME_POS = """<a href="{}"><div class="poster la-anime"> <div id="shadow1" class="shadow"> <div class="dubb">{}</div><div class="dubb dubb2">{}</div></div><div id="shadow2" class="shadow"> <img class="lzy_img" src="https://cdn.jsdelivr.net/gh/TechShreyash/AnimeDex@main/static/img/loading.gif" data-src="{}"> </div><div class="la-details"> <h3>{}</h3> <div id="extra"> <span>{}</span> <span class="dot"></span> <span>{}</span> </div></div></div></a>""" ANIME_POS2 = """<a href="{}"><div class="poster la-anime"> <div id="shadow1" class="shadow"> <div class="dubb">{}</div></div><div id="shadow2" class="shadow"> <img class="lzy_img" src="https://cdn.jsdelivr.net/gh/TechShreyash/AnimeDex@main/static/img/loading.gif" data-src="{}"> </div><div class="la-details"> <h3>{}</h3> <div id="extra"> <span>{}</span> </div></div></div></a>""" def animeRecHtml(data): if not data: return "Not Available" if len(data) == 0: return "Not Available" html = "" for i in data.get("recommendations").get("edges"): i = i.get("node").get("mediaRecommendation") img = i.get("coverImage") if img: img = img.get("medium").replace("small", "medium") else: img = i.get("bannerImage") title = get_atitle(i.get("title")) url = get_urls(title) x = ANIME_POS.format( url, str(i.get("meanScore")).strip() + " / 100", "Ep " + str(i.get("episodes")).strip(), img, title, i.get("format"), i.get("status"), ) if x not in html: html += x return html def animeRecHtml2(data): if not data: return "Not Available" if len(data) == 0: return "Not Available" html = "" for i in data: i = i.get("node").get("mediaRecommendation") img = i.get("coverImage") if img: img = img.get("medium").replace("small", "medium") else: img = i.get("bannerImage") title = get_atitle(i.get("title")) url = get_urls(title) x = ANIME_POS.format( url, str(i.get("meanScore")).strip() + " / 100", "Ep " + str(i.get("episodes")).strip(), img, title, i.get("format"), i.get("status"), ) if x not in html: html += x return html def get_trending_html(data): html = "" for id, i in data: try: img = i[5] title = i[0] url = get_urls(id) x = ANIME_POS.format(url, i[1], "Ep " + str(i[2]), img, title, i[3], i[4]) html += x except: pass return html def get_search_html(data): html = "" for i in data: if "dub" in i.get("id").lower(): d = "DUB" else: d = "SUB" x = ANIME_POS2.format( "/anime/" + i.get("id"), d, i.get("img"), i.get("title"), "Released: " + i.get("year"), ) html += x return html def get_recent_html(data): html = "" for i in data: url = i.get("id").split("-episode-")[0] x = ANIME_POS.format( f"/anime/{url}", i.get("lang"), "Ep " + str(i.get("episode")), i.get("img"), i.get("title"), f"Latest {i.get('lang')}", "HD", ) html += x return html def get_selector_btns(url, current, episodes): if episodes < 2: return "" selector = "" if current == 1: x = """<a class="btns" href="usrl"><button class="sbtn inline-flex text-white bg-indigo-500 border-0 py-2 px-6 focus:outline-none hover:bg-indigo-600 rounded text-lg ">Episode NEXT<i style="margin-left:10px; margin-right: auto;" class="fa fa-arrow-circle-right"></i></button></a>""" selector += x.replace("usrl", url + str(current + 1)).replace( "NEXT", str(current + 1) ) elif current == episodes: x = """<a class="btns" href="usrl"><button class="sbtn inline-flex text-white bg-indigo-500 border-0 py-2 px-6 focus:outline-none hover:bg-indigo-600 rounded text-lg "><i class="fa fa-arrow-circle-left"></i>Episode PREV</button></a>""" selector += x.replace("usrl", url + str(current - 1)).replace( "PREV", str(current - 1) ) else: x = """<a class="btns" href="usrl"><button class="sbtn inline-flex text-white bg-indigo-500 border-0 py-2 px-6 focus:outline-none hover:bg-indigo-600 rounded text-lg "><i class="fa fa-arrow-circle-left"></i>Episode PREV</button></a>""" selector += x.replace("usrl", url + str(current - 1)).replace( "PREV", str(current - 1) ) x = """<a class="btns" href="usrl"><button class="sbtn inline-flex text-white bg-indigo-500 border-0 py-2 px-6 focus:outline-none hover:bg-indigo-600 rounded text-lg ">Episode NEXT<i style="margin-left:10px; margin-right: auto;" class="fa fa-arrow-circle-right"></i></button></a>""" selector += x.replace("usrl", url + str(current + 1)).replace( "NEXT", str(current + 1) ) return selector SLIDER_HTML = """<div class="mySlides fade"> <div class="data-slider"> <p class="spotlight">{}</p><h1>{}</h1> <div class="extra1"> <span class="year"><i class="fa fa-play-circle"></i>{}</span> <span class="year year2"><i class="fa fa-calendar"></i>{}</span> <span class="cbox cbox1">{}</span> <span class="cbox cbox2">HD</span> </div><p class="small-synop">{}</p><div id="watchh"> <a href="{}" class="watch-btn"> <i class="fa fa-play-circle"></i> Watch Now </a> <a href="{}" class="watch-btn watch-btn2"> <i class="fa fa-info-circle"></i> Details<i class="fa fa-angle-right"></i> </a> </div></div><div class="shado"> <a href="{}"></a> </div><img src="{}"> </div>""" def slider_gen(): data = Anilist().trending() random.shuffle(data) html = "" pos = 1 for i in data: img = i.get("bannerImage") if not img: img = ( i.get("coverImage") .get("medium") .replace("small", "large") .replace("medium", "large") ) title = get_atitle(i.get("title")) url = get_urls(title) temp = SLIDER_HTML.format( f"#{pos} Spotlight", title, i.get("type"), i.get("status"), get_genre(i.get("genres")), i.get("description"), url.replace("/anime/", "/episode/") + "/1", url, url, img, ) html += temp pos += 1 return html def episodeHtml(episode, title, dl=True): isSub = episode.get("SUB") isDub = episode.get("DUB") DL = episode.get("DL") sub = dub = dlsub = dldub = "" defa = 0 s, d = 1, 1 if isSub: for i in isSub: if defa == 0: defa = f"/embed?url={i}&title={title}" sub += f"""<div class="sitem"> <a class="sobtn sactive" onclick="selectServer(this)" data-value="/embed?url={i}&title={title}">Server{s}</a> </div>""" else: sub += f"""<div class="sitem"> <a class="sobtn" onclick="selectServer(this)" data-value="/embed?url={i}&title={title}">Server{s}</a> </div>""" s += 1 if isDub: for i in isDub: if defa == 0: defa = f"/embed?url={i}&title={title}" dub += f"""<div class="sitem"> <a class="sobtn sactive" onclick="selectServer(this)" data-value="/embed?url={i}&title={title}">Server{d}</a> </div>""" else: dub += f"""<div class="sitem"> <a class="sobtn" onclick="selectServer(this)" data-value="/embed?url={i}&title={title}">Server{d}</a> </div>""" d += 1 if DL: link = DL.get("SUB") if link: for n, l in link.items(): dlsub += f"""<div class="sitem"> <a class="sobtn download" target="_blank" href="{l}"><i class="fa fa-download"></i>{n}</a> </div>""" link = DL.get("DUB") if link: for n, l in link.items(): dldub += f"""<div class="sitem"> <a class="sobtn download" target="_blank" href="{l}"><i class="fa fa-download"></i>{n}</a> </div>""" if sub != "": t4 = f"""<div class="server"> <div class="stitle"> <i class="fa fa-closed-captioning"></i>SUB: </div><div class="slist">{sub}</div></div>""" else: t4 = "" if dub != "": t5 = f""" <div class="server sd"> <div class="stitle"> <i class="fa fa-microphone-alt"></i>DUB: </div><div class="slist">{dub}</div></div>""" else: t5 = "" if dlsub != "": t6 = f""" <div class="server"> <div class="stitle"> <i class="fa fa-closed-captioning"></i>SUB: </div><div class="slist">{dlsub}</div></div>""" else: t6 = "" if dldub != "": t7 = f""" <div class="server sd"> <div class="stitle"> <i class="fa fa-microphone-alt"></i>DUB: </div><div class="slist">{dldub}</div></div>""" else: t7 = "" t8 = f"""<a id="showdl" onclick="showDownload()"><i class="fa fa-download"></i>Download</a><div id="dldiv" class="dldiv"><h4 id="download">Download Links:</h4>{t6}{t7}</div>""" html = t4 + t5 if dl: html += t8 return html, defa
TechShreyash/AnimeDex
utils/html_gen.py
html_gen.py
py
10,463
python
en
code
186
github-code
6
5991002670
from collections import OrderedDict from itertools import chain from .types import Vsn, MatrixID, PacketClass from .patches import patch from .cache import from_page, get_page from .sources import version_urls from .parsers import pre_versions, pre_packets, rel_version, rel_packets from .parsers import first_heading __all__ = ('version_packet_ids',) # Returns matrix with matrix[version][packet_class] = matrix_id @from_page(dep=(first_heading,pre_versions,pre_packets,rel_version,rel_packets), rdoc='Recalculate the packet ID matrix. Give if the version_urls dict\n' 'or the code of version_packet_ids() have been changed.', doc_order=-2) def version_packet_ids(): """Return a dict mapping `Vsn' instances to dicts mapping `PacketClass' instances to `MatrixID' instances, giving the matrix of packet IDs as they vary across packets and across protocol versions.""" used_patches = set() packet_classes = {} matrix = OrderedDict() prev_v = None for v, url in reversed(version_urls.items()): with get_page(url) as page: heading = first_heading(page) if heading == 'Pre-release protocol': vdiff = pre_versions(page, v) if (v, vdiff) in patch: used_patches.add((v, vdiff)) vdiff = patch[v, vdiff] from_v, to_v = vdiff assert v == to_v, '%r != %r' % (v, to_v) matrix[v] = {} matrix.move_to_end(v, last=False) seen_names = {} all_pre_packets = pre_packets(page, v) if (v, None) in patch: all_pre_packets = chain(all_pre_packets, patch[(v, None)]) used_patches.add((v, None)) for packet in all_pre_packets: if (v, packet) in patch: used_patches.add((v, packet)) packet = packet.patch(patch[v, packet]) if packet is None: continue assert packet.name not in seen_names, \ '[%s] Duplicate packet name:\n%s\n%s' % \ (v.name, seen_names[packet.name], packet) seen_names[packet.name] = packet packet_class = PacketClass( name=packet.name, state=packet.state, bound=packet.bound) if packet.name not in packet_classes: packet_classes[packet.name] = packet_class assert packet_class == packet_classes[packet.name], \ '[%s] %r != %r' % (v.name, packet_class, packet_classes[packet.name]) if packet.old_id is None: assert packet_class not in matrix[from_v], \ '[%s] %r in matrix[%r]' % (v.name, packet_class, from_v) else: if packet_class not in matrix[from_v]: msg = '[%s] [0x%02X] %r not in matrix[%r]' % ( v.name, packet.old_id, packet_class, from_v) for from_pcls, from_mid in matrix[from_v].items(): if (from_pcls.state, from_pcls.bound, from_mid.id) \ == (packet_class.state, packet_class.bound, packet.old_id): msg += '\n(however, matrix[%r][%r].id == 0x%02X)' % ( from_v, from_pcls, packet.old_id) break raise AssertionError(msg) assert packet.old_id == matrix[from_v][packet_class].id, \ '[%s] 0x%02X != matrix[%r][%r].id == 0x%02X' % ( v.name, packet.old_id, from_v, packet_class, matrix[from_v][packet_class].id) if packet.url is not None: url = packet.url elif not packet.changed and from_v and packet_class in matrix[from_v]: url = matrix[from_v][packet_class].url else: url = None if packet.new_id is not None: matrix[v][packet_class] = MatrixID( id=packet.new_id, base_ver=from_v, changed=packet.changed, html=packet.html, url=url) for packet_class, id in matrix[from_v].items(): if packet_class.name in seen_names: continue matrix[v][packet_class] = id._replace( base_ver=from_v, changed=False) elif heading == 'Protocol': rel_v = rel_version(page) if rel_v.name is None: rel_v = Vsn(v.name, rel_v.protocol) assert v == rel_v, '%r != %r' % (v, rel_v) matrix[v] = {} seen_names = {} all_rel_packets = rel_packets(page, v) if (v, None) in patch: all_rel_packets = chain(all_rel_packets, patch[(v, None)]) used_patches.add((v, None)) for packet in all_rel_packets: if (v, packet) in patch: used_patches.add((v, packet)) packet = packet.patch(patch[v, packet]) if packet is None: continue assert packet.name not in seen_names, \ '[%s] Duplicate packet name:\n%s\n%s.' \ % (v.name, seen_names[packet.name], packet) seen_names[packet.name] = packet packet_class = PacketClass( name=packet.name, state=packet.state, bound=packet.bound) if packet.name not in packet_classes: packet_classes[packet.name] = packet_class assert packet_classes[packet.name] == packet_class, \ '[%s] %r != %r' % (v.name, packet_classes[packet.name], packet_class) matrix[v][packet_class] = MatrixID( id=packet.id, base_ver=v, changed=False, url=packet.url, html=packet.html) else: raise AssertionError('Unrecognised article title: %r' % heading) state_bound_ids = {} for packet_class, matrix_id in matrix[v].items(): key = (packet_class.state, packet_class.bound, matrix_id.id) assert key not in state_bound_ids, '[%s] Duplicate packet ID: ' \ '%s is used by packets %r and %r.' % (v.name, '(%s, %s, 0x%02X)' % key, state_bound_ids[key], packet_class.name) state_bound_ids[key] = packet_class.name unused_patches = set(k for k in patch.keys() if k[0] == v and k not in used_patches) if unused_patches: raise AssertionError('Unused patches:\n' + '\n'.join('%r -> %r' % (p, patch[p]) for p in unused_patches)) prev_v = v unused_patches = set(k for k in patch.keys() if k not in used_patches) if unused_patches: raise AssertionError('Unused patches:\n' + '\n'.join('%s -> %s' % (p, patch[p]) for p in unused_patches)) return matrix
joodicator/mc-dev-data
mcdevdata/matrix.py
matrix.py
py
7,498
python
en
code
1
github-code
6
34161150799
from ninjaopenfoam import Case, Gnuplot, GmtPlot, GmtPlotCopyCase, PDFLaTeXFigure import os class SchaerWaves: def __init__(self): self.linearUpwindW() self.cubicFitW() self.charneyPhillipsW() def linearUpwindW(self): self.btf300dzLinearUpwind = GmtPlotCopyCase( 'schaerWaves-btf-300dz-linearUpwind', source='$atmostests_builddir', target='$builddir', plots=['src/thesis/cp/schaerWaves/w.gmtdict'], files=['18000/Uf']) btf300dzLinearUpwindCase = Case('schaerWaves-btf-300dz-linearUpwind') self.btf300dzLinearUpwindW = GmtPlot( 'schaerWaves-btf-300dz-linearUpwind-w', plot='w', case=btf300dzLinearUpwindCase, time=18000, data=['18000/Uf']) self.btf300dzLinearUpwindWFigure = PDFLaTeXFigure( 'schaerWaves-btf-300dz-linearUpwind-w-figure', output=os.path.join('thesis/cp/schaerWaves/fig-btf-300dz-linearUpwind-w'), figure=os.path.join('src/thesis/cp/schaerWaves/fig-btf-300dz-linearUpwind-w'), components=self.btf300dzLinearUpwindW.outputs() ) def cubicFitW(self): self.btf300dzCubicFit = GmtPlotCopyCase( 'schaerWaves-btf-300dz-cubicFit', source='$atmostests_builddir', target='$builddir', plots=['src/thesis/cp/schaerWaves/wS.gmtdict'], files=['18000/Uf']) btf300dzCubicFitCase = Case('schaerWaves-btf-300dz-cubicFit') self.btf300dzCubicFitW = GmtPlot( 'schaerWaves-btf-300dz-cubicFit-w', plot='wS', case=btf300dzCubicFitCase, time=18000, data=['18000/Uf']) self.btf300dzCubicFitWFigure = PDFLaTeXFigure( 'schaerWaves-btf-300dz-cubicFit-w-figure', output=os.path.join('thesis/cp/schaerWaves/fig-btf-300dz-cubicFit-w'), figure=os.path.join('src/thesis/cp/schaerWaves/fig-btf-300dz-cubicFit-w'), components=self.btf300dzCubicFitW.outputs() ) def charneyPhillipsW(self): self.btf300dzCharneyPhillips = GmtPlotCopyCase( 'schaerWavesCP-btf-300dz', source='$atmostests_builddir', target='$builddir', plots=['src/thesis/cp/schaerWaves/w.gmtdict'], files=['18000/Uf']) btf300dzCharneyPhillipsCase = Case('schaerWavesCP-btf-300dz') self.btf300dzCharneyPhillipsW = GmtPlot( 'schaerWavesCP-btf-300dz-w', plot='w', case=btf300dzCharneyPhillipsCase, time=18000, data=['18000/Uf']) self.btf300dzCharneyPhillipsWFigure = PDFLaTeXFigure( 'schaerWaves-btf-300dz-cp-w-figure', output=os.path.join('thesis/cp/schaerWaves/fig-btf-300dz-cp-w'), figure=os.path.join('src/thesis/cp/schaerWaves/fig-btf-300dz-cp-w'), components=self.btf300dzCharneyPhillipsW.outputs() ) def outputs(self): return ['src/thesis/cp/schaerWaves/melvin2010-w-mass-conserving-sisl.png'] \ + self.btf300dzLinearUpwindWFigure.outputs() \ + self.btf300dzCubicFitWFigure.outputs() \ + self.btf300dzCharneyPhillipsWFigure.outputs() def addTo(self, build): build.add(self.btf300dzLinearUpwind) build.add(self.btf300dzCubicFit) build.add(self.btf300dzCharneyPhillips) build.add(self.btf300dzLinearUpwindW) build.add(self.btf300dzLinearUpwindWFigure) build.add(self.btf300dzCubicFitW) build.add(self.btf300dzCubicFitWFigure) build.add(self.btf300dzCharneyPhillipsW) build.add(self.btf300dzCharneyPhillipsWFigure)
hertzsprung/thesis
generators/schaerWaves.py
schaerWaves.py
py
3,873
python
en
code
0
github-code
6
73526486907
import os.path import pandas as pd def loadEgPed(): '''Load example pedigree data. ''' basepath = os.path.abspath(__file__) folder = os.path.dirname(basepath) data_path = os.path.join(folder, 'data/ped.txt') text = pd.read_table(data_path,header=0) return text def loadEgGeno(): '''Load example genotype data. ''' basepath = os.path.abspath(__file__) folder = os.path.dirname(basepath) data_path = os.path.join(folder, 'data/geno.traw') return data_path
zhaow-01/PyAGH
PyAGH/loaddata.py
loaddata.py
py
512
python
en
code
4
github-code
6
74281107067
from typing import Any, List from fastapi import APIRouter, HTTPException, Depends from apps.auth.model import User from apps.bank.cruds import invoice from apps.bank.schemas.invoice import InvoiceUpdate, InvoiceView, InvoiceCreate, InvoiceViewFull from core.security import current_user_is_banker, get_current_user router = APIRouter(prefix='/invoices', tags=['Invoices']) @router.get('/', response_model=List[InvoiceViewFull], dependencies=[Depends(current_user_is_banker)]) async def list_invoices(skip: int = 0, limit: int = 100) -> Any: results = await invoice.get_list(skip=skip, limit=limit) return results @router.get('/my', response_model=List[InvoiceViewFull]) async def list_my_invoices(user: User = Depends(get_current_user), skip: int = 0, limit: int = 100) -> Any: results = await invoice.get_list(user=user, skip=skip, limit=limit) return results @router.get('/{obj_id}', response_model=InvoiceViewFull) async def get_invoice(obj_id: int, user: User = Depends(get_current_user)) -> Any: result = await invoice.get(id=obj_id, user=user) if not result: raise HTTPException(status_code=404, detail='Invoice not found!') return result @router.post('/create', response_model=InvoiceView, status_code=201) async def create_invoice(item: InvoiceCreate, user: User = Depends(get_current_user)) -> Any: result = await invoice.create_invoice(obj_in=item, user=user) return result @router.put('/{obj_id}', response_model=InvoiceView) async def update_invoice(obj_id: int, item: InvoiceUpdate, user: User = Depends(get_current_user)) -> Any: obj_db = await invoice.get(id=obj_id, user=user) if not obj_db: raise HTTPException(status_code=404, detail='Invoice not found!') result = await invoice.update_invoice(obj_db=obj_db, obj_in=item, user=user) return result @router.delete('/{obj_id}') async def delete_invoice(obj_id: int, user: User = Depends(get_current_user)) -> Any: result = await invoice.remove(id=obj_id, user=user) return result
MojsaKirill/CRUD
app/api/api_v1/endpoints/invoices.py
invoices.py
py
2,101
python
en
code
0
github-code
6
73084758907
import pandas as pd # import requests import sys import collections # import urllib.request import json # url = 'http://loterias.caixa.gov.br/wps/portal/loterias/landing/lotofacil/!ut/p/a1/04_Sj9CPykssy0xPLMnMz0vMAfGjzOLNDH0MPAzcDbz8vTxNDRy9_Y2NQ13CDA0sTIEKIoEKnN0dPUzMfQwMDEwsjAw8XZw8XMwtfQ0MPM2I02-AAzgaENIfrh-FqsQ9wBmoxN_FydLAGAgNTKEK8DkRrACPGwpyQyMMMj0VAcySpRM!/dl5/d5/L2dBISEvZ0FBIS9nQSEh/pw/Z7_HGK818G0K85260Q5OIRSC42046/res/id=historicoHTML/c=cacheLevelPage/=/' # url = 'https://servicebus2.caixa.gov.br/portaldeloterias/api/resultados?modalidade=Lotofácil' # url = sys.argv[1] file = sys.argv[1] #'resultados.json' # r = requests.get(url) # r.text # r.text = r.text r = open(file, encoding="utf8") data = json.load(r) # data = json.load(urllib.request.urlopen(url)) r_text = data['html'].replace('\\r\\n', '') r_text = r_text.replace('"\r\n}','') r_text = r_text.replace('{\r\n "html:','') r_text df = pd.read_html(r_text) type(df) type(df[0]) df1 = df df = df[0].copy() df = df[df['Bola1'] == df['Bola1']] df.head() nr_pop = list(range(1,26)) nr_par = [] nr_impar = [] nr_primo = [] for n in nr_pop: if n % 2 == 0: nr_par.append(n) elif n % 2 == 1: nr_impar.append(n) for i in range(2,n): if n % i == 0: break elif n not in nr_primo: nr_primo.append(n) comb = [] v_cont = [] for n in nr_pop: v_cont.append([n, 0]) '''v01 = 0 v02 = 0 v03 = 0 v04 = 0 v05 = 0 v06 = 0 v07 = 0 v08 = 0 v09 = 0 v10 = 0 v11 = 0 v12 = 0 v13 = 0 v14 = 0 v15 = 0 v16 = 0 v17 = 0 v18 = 0 v19 = 0 v20 = 0 v21 = 0 v22 = 0 v23 = 0 v24 = 0 v25 = 0''' cols = ['Bola1', 'Bola2', 'Bola3', 'Bola4', 'Bola5', 'Bola6', 'Bola7', 'Bola8', 'Bola9', 'Bola10', 'Bola11', 'Bola12', 'Bola13', 'Bola14', 'Bola15'] for idx, row in df.iterrows(): v_par = 0 v_impar = 0 v_primo = 0 for c in cols: if row[c] in nr_par: v_par += 1 elif row[c] in nr_impar: v_impar += 1 if row[c] in nr_primo: v_primo += 1 for n in nr_pop: if row[c] == n: v_cont[n-1][1] += 1 '''if row[c] == 1: v01 += 1 elif row[c] == 2: v02 += 1 elif row[c] == 3: v03 += 1 elif row[c] == 4: v04 += 1 elif row[c] == 5: v05 += 1 elif row[c] == 6: v06 += 1 elif row[c] == 7: v07 += 1 elif row[c] == 8: v08 += 1 elif row[c] == 9: v09 += 1 elif row[c] == 10: v10 += 1 elif row[c] == 11: v11 += 1 elif row[c] == 12: v12 += 1 elif row[c] == 13: v13 += 1 elif row[c] == 14: v14 += 1 elif row[c] == 15: v15 += 1 elif row[c] == 16: v16 += 1 elif row[c] == 17: v17 += 1 elif row[c] == 18: v18 += 1 elif row[c] == 19: v19 += 1 elif row[c] == 20: v20 += 1 elif row[c] == 21: v21 += 1 elif row[c] == 22: v22 += 1 elif row[c] == 23: v23 += 1 elif row[c] == 24: v24 += 1 elif row[c] == 25: v25 += 1''' comb.append(str(v_par) + 'p-' + str(v_impar) + 'i-' + str(v_primo) + 'np') freq_nr = v_cont freq_nr.sort(key=lambda tup: tup[1]) counter_comb = collections.Counter(comb) resultado = pd.DataFrame(counter_comb.items(), columns=['combination','frequency']) resultado['p_freq'] = resultado.frequency / resultado.frequency.sum() resultado.sort_values('p_freq', inplace=True) print(''' O número mais frequente é: {} O número menos frequente é: {} A combinação mais frequente é {}, com a frequência de {}%. '''.format(freq_nr[-1][0], freq_nr[0][0], resultado['combination'].values[-1], int(resultado['p_freq'].values[-1]*100*100)/100) )
daklima/bootcamp-engdados-oct22
A001/main.py
main.py
py
3,954
python
en
code
0
github-code
6
26596833071
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ # Import libraries import matplotlib.pyplot as plt import matplotlib.animation as animate import matplotlib.lines as mlines import agentframework import csv # Request input from user for number of heroes and enemies print("Welcome to the hero agent game. \nPlease set the number of hero and agents by inputting into the console below...") num_heroes = int(input("Set the number of heroes: ")) num_enemies = int(input("Set the number of enemies: ")) # Declare variables heroes = [] enemies =[] winners = [] environment = [] rowlist = [] # Declare figure for plot fig = plt.figure(num= 1, figsize=(7, 5)) carry_on = True # DECLARE FUNCTIONS # Keeps animation running as long as carry_on = true def gen_function(): global carry_on a = 0 while carry_on: yield a a = a + 1 # Writes end environment to file end_environment.txt def end_game(): print('End game function called') with open('end_environment.txt', 'w') as e: e.write("END ENVIRONMENT: \n") for row in environment: e.write(" ".join(str(value) for value in row) +"\n") e.write("DOCUMENT END \n") e.close() with open('stores_record.txt', 'a') as s: s.write("GAME STARTS with {} heroes and {} enemies: \n".format(num_heroes, num_enemies)) for hero in heroes: s.write("Hero {} finishes with a total store of {}. \n".format(hero.identity, hero.store)) s.write("GAME ENDS \n") s.close() # Sets updates to figure per iteration def update(frame_number): # Creates figures and axes: fig.clear() # Clears figure so that updated markers and environment can be applied at each iteration axes = plt.gca() # Points to axis # Sets ranges of axes: axes.set_xlim([0,300]) axes.set_ylim([0,300]) # Adds environment and colour scale key: plt.imshow(environment) plt.colorbar(ax = axes, orientation= 'horizontal', extend = 'min', spacing = 'proportional', shrink = 0.5).set_label('Environment density') # Plots and actions for heroes: for hero in heroes: # Loops through heroes print(hero) # Heroes prints location and store to console global carry_on # Access to stopping condition variable # Plots heroes according to status: if hero.store >= 3000: # First hero to reach store of 3000 wins and is plotted as winner winners.append(hero) plt.scatter(winners[0].x, winners[0].y, marker="D", c= "Orange") plt.text((winners[0].x + 25), (winners[0].y - 1), "{} is the winner!".format(winners[0].identity), fontsize=8, color='White', backgroundcolor='Black') print("We have a winner! Hero {} wins with a store of {}".format(winners[0].identity, winners[0].store) + "\n Remaining heroes:" ) carry_on = False end_game() elif hero.store >= 2500: # Fast heroes plotted plt.scatter(hero.x, hero.y, c= 'Purple', label='Fast') plt.text((hero.x + 8), (hero.y - 1), str(hero.identity), fontsize=8, color='White') elif hero.store >= 1000: # Medium heroes plotted plt.scatter(hero.x, hero.y, c= 'Pink', label= 'Average') plt.text((hero.x + 8), (hero.y - 1), str(hero.identity), fontsize=8, color='White') elif hero.store < 1000: # Fast heroes plotted plt.scatter(hero.x, hero.y, c= 'Grey', label= 'Slow') plt.text((hero.x + 8), (hero.y - 1), str(hero.identity), fontsize=8, color='White') # Actions for heroes (movement and sharing and eating of environment) hero.move() hero.eat() hero.share_with_neighbours() # Creates key for hero markers enemy = mlines.Line2D([], [], color='Black', marker='x', linestyle='None', label='Enemy') key_slow = mlines.Line2D([], [], color='Grey', marker='o', linestyle='None', label='Slow hero') key_medium = mlines.Line2D([], [], color='Pink', marker='o', linestyle='None', label='Average hero') key_fast = mlines.Line2D([], [], color='Purple', marker='o', linestyle='None', label='Fast hero') plt.legend(handles=[key_slow, key_medium, key_fast, enemy], bbox_to_anchor=(1,1), bbox_transform=plt.gcf().transFigure, title='Agent key') # Plots and actions for enemies for enemy in enemies: enemy.move() enemy.eat() plt.scatter(enemy.x, enemy.y, marker="x", c= 'Black') for hero in heroes: enemy.eat_neighbours(hero) # enemy eats neighbouring hereos' stores # Creates environment array from data file f = open('environment.txt', newline='') reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) for row in reader: for value in row: rowlist.append(int(value)) environment.append(rowlist) rowlist = [] f.close() # Creates heroes (as many as inputted into console by user) and adds them to hereos list for identity in range(num_heroes): heroes.append(agentframework.Agent(environment, heroes, (identity + 1), enemies)) # Creates enemies (as many as inputted into console by user) and adds them to enemies list for identity in range(num_enemies): enemies.append(agentframework.Agent(environment, heroes, (identity + 1), enemies)) # Animates plot animation = animate.FuncAnimation(fig, update, interval=1, frames=gen_function, repeat=False,)
emilyjcoups/Agent_Based_Model
model.py
model.py
py
5,535
python
en
code
0
github-code
6
16986332004
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator from numpy.lib.shape_base import split import math import cmath def get_MSI (matrix, f, tau, iterCnt): #method of simple iterations n = np.size(f) B = np.diagflat([1] * n) - tau * matrix f = tau * f x = f for i in range (iterCnt): x = B.dot(x) + f return x def get_MJ (matrix, f, iterCnt): # method of Jacobi u = f n = np.size(f) for cnt in range(iterCnt): uNext = np.zeros(n) for i in range (n): uNext[i] = (f[i] - matrix[i].dot(u)) / matrix[i][i] u = uNext return u def get_MZ (matrix, f, iterCnt): u = f n = np.size(f) answ = np.zeros((n, iterCnt)) for cnt in range(iterCnt): uNext = np.zeros(n) for i in range (n): uNext[i] = (f[i] - matrix[i][:i - 1].dot(uNext[:i - 1]) - matrix[i][i + 1:].dot(u[i + 1:])) / matrix[i][i] u = uNext answ[:, cnt] = uNext return answ[:, -1] eigenValuesFilename = "eigenValues15.dat" #Вход задачи N = 15 # число точек h = 1 / (N - 1) matrix = np.zeros (((N - 2) * (N - 2), N * N)) #построение матрицы def elem (i, j): return N * j + i for j in range (1, N - 1): for i in range (1, N - 1): eqID = (j - 1) * (N - 2) + i - 1 #equationID - индекс строчки if (i > 1): matrix[eqID][elem(i - 1, j)] = -1 if (j > 1): matrix[eqID][elem(i, j - 1)] = -1 if (i < N - 2): matrix[eqID][elem(i + 1, j)] = -1 if (j < N - 2): matrix[eqID][elem(i, j + 1)] = -1 matrix[eqID][elem(i, j)] = 4 print ("half") #Удаление пустых столбцов zeroColumns = [] for i in range (N * N - 1, -1, -1): if i % N == 0 or \ i < N or \ i >= N * (N - 1) or \ (i + 1) % N == 0: zeroColumns.append (i) otherColumns = [x for x in range (N * N - 1) if x not in zeroColumns] matrix = matrix[:, otherColumns] print ("matrix is done") # plt.spy(matrix) # plt.show() # поиск собственных чисел # eigenValues = np.linalg.eigvals(matrix) # print ("eighenvalues are computed") # with open (eigenValuesFilename, "w") as file: # for val in eigenValues: # file.write(str(val) + "\n") minVal = 1e9 maxVal = -1e9 with open(eigenValuesFilename, 'r') as file: for line in file: val = cmath.polar(complex(line))[0] if (val > maxVal): maxVal = val elif val < minVal: minVal = val # Формирование вектора правой части v = np.zeros((N - 2) * (N - 2)) v[(N // 2) * (N - 2) + N // 2 - 1] = h**2 # v[N * N // 3 : N * N // 2] += h ** 2 #Решаем систему разными методами # u = get_MSI(matrix, v, 2 / (maxVal + minVal), 100) # u = get_MSI(matrix, v, 1, 100) # print (matrix) # u = get_MJ(matrix, v, 0) u = get_MZ(matrix, v, 10) # u = np.linalg.solve(matrix, v) # Заполняем Матрицу Z для отображения Z = np.zeros((N, N)) for (uVal, oldID) in zip(u, otherColumns): Z[oldID % N][oldID // N] = uVal fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) w = v = np.linspace(0, 1, N) X, Y = np.meshgrid(w, v) surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.zaxis.set_major_locator(LinearLocator(10)) # A StrMethodFormatter is used automatically # ax.zaxis.set_major_formatter('{x:.02f}') # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.savefig("pic.png") # plt.show()
Nevtod/Labs
ComputingMath/lab1/Computing_math.py
Computing_math.py
py
3,874
python
en
code
0
github-code
6
650459657
#! /bin/python import os import sys import json import luigi import nifty.tools as nt import elf.skeleton.io as skelio from elf.skeleton import skeletonize as skel_impl, get_method_names import cluster_tools.utils.volume_utils as vu import cluster_tools.utils.function_utils as fu from cluster_tools.cluster_tasks import SlurmTask, LocalTask, LSFTask from cluster_tools.utils.task_utils import DummyTask # # skeletonize tasks # class SkeletonizeBase(luigi.Task): """ Skeletonize base class """ task_name = 'skeletonize' src_file = os.path.abspath(__file__) allow_retry = False # input and output volumes input_path = luigi.Parameter() input_key = luigi.Parameter() morphology_path = luigi.Parameter() morphology_key = luigi.Parameter() output_path = luigi.Parameter() output_key = luigi.Parameter() number_of_labels = luigi.IntParameter() resolution = luigi.ListParameter() size_threshold = luigi.IntParameter(default=None) method = luigi.Parameter(default='thinning') dependency = luigi.TaskParameter(default=DummyTask()) methods = get_method_names() # expose skeletonization parameter if we support more parameter @staticmethod def default_task_config(): # we use this to get also get the common default config config = LocalTask.default_task_config() config.update({'chunk_len': 1000, 'method_kwargs': {}}) return config def requires(self): return self.dependency def _prepare_output(self, config): # make the blocking block_len = min(self.number_of_labels, config.get('chunk_len', 1000)) block_list = vu.blocks_in_volume((self.number_of_labels,), (block_len,)) n_jobs = min(len(block_list), self.max_jobs) # require output dataset with vu.file_reader(self.output_path) as f: f.require_dataset(self.output_key, shape=(self.number_of_labels,), chunks=(1,), compression='gzip', dtype='uint64') # update the config config.update({'number_of_labels': self.number_of_labels, 'block_len': block_len}) return config, n_jobs, block_list def run_impl(self): assert self.method in self.methods,\ "Method %s is not supported, must be one of %s" % (self.method, str(self.methods)) # TODO support roi # get the global config and init configs shebang, block_shape, _, _ = self.global_config_values() self.init(shebang) # load the skeletonize config # update the config with input and output paths and keys config = self.get_task_config() config.update({'input_path': self.input_path, 'input_key': self.input_key, 'morphology_path': self.morphology_path, 'morphology_key': self.morphology_key, 'output_path': self.output_path, 'output_key': self.output_key, 'resolution': self.resolution, 'size_threshold': self.size_threshold, 'method': self.method}) config, n_jobs, block_list = self._prepare_output(config) # prime and run the jobs self.prepare_jobs(n_jobs, block_list, config) self.submit_jobs(n_jobs) # wait till jobs finish and check for job success self.wait_for_jobs() self.check_jobs(n_jobs) class SkeletonizeLocal(SkeletonizeBase, LocalTask): """ skeletonize on local machine """ pass class SkeletonizeSlurm(SkeletonizeBase, SlurmTask): """ skeletonize on slurm cluster """ pass class SkeletonizeLSF(SkeletonizeBase, LSFTask): """ skeletonize on lsf cluster """ pass # # Implementation # # not parallelized for now def _skeletonize_id_block(blocking, block_id, ds_in, ds_out, sizes, bb_min, bb_max, resolution, size_threshold, method): fu.log("start processing block %i" % block_id) block = blocking.getBlock(block_id) id_begin, id_end = block.begin[0], block.end[0] # we don't compute the skeleton for id 0, which is reserved for the ignore label id_begin = 1 if id_begin == 0 else id_begin # we increase the bounding box with a small halo, otherwise there # semms to be boundary inconsistencies halo = (2, 2, 2) shape = ds_in.shape # skeletonize ids in range and serialize skeletons for seg_id in range(id_begin, id_end): if size_threshold is not None: if sizes[seg_id] < size_threshold: continue bb = tuple(slice(max(int(mi - ha), 0), min(int(ma + ha), sh)) for mi, ma, sh, ha in zip(bb_min[seg_id], bb_max[seg_id], shape, halo)) fu.log("skeletonize id %i from bb %s" % (seg_id, str(bb))) obj = ds_in[bb] == seg_id # try to skeletonize the object, skip if any exception is thrown try: nodes, edges = skel_impl(obj, resolution=resolution, method=method) except Exception: continue offsets = [b.start * res for b, res in zip(bb, resolution)] skelio.write_n5(ds_out, seg_id, nodes, edges, offsets) fu.log_block_success(block_id) def skeletonize(job_id, config_path): fu.log("start processing job %i" % job_id) fu.log("reading config from %s" % config_path) with open(config_path, 'r') as f: config = json.load(f) # read the input cofig input_path = config['input_path'] input_key = config['input_key'] morphology_path = config['morphology_path'] morphology_key = config['morphology_key'] output_path = config['output_path'] output_key = config['output_key'] size_threshold = config['size_threshold'] resolution = config['resolution'] method = config['method'] # morphology feature-columns # 0 = label-id # 1 = pixel size # 2:5 = center of mass # 5:8 = min coordinate # 8:11 = max coordinate with vu.file_reader(morphology_path) as f: morpho = f[morphology_key][:] sizes = morpho[:, 1].astype('uint64') bb_min = morpho[:, 5:8].astype('uint64') bb_max = morpho[:, 8:11].astype('uint64') + 1 block_list = config['block_list'] block_len = config['block_len'] n_labels = config['number_of_labels'] blocking = nt.blocking([0], [n_labels], [block_len]) # skeletonize this id block with vu.file_reader(input_path, 'r') as f_in, vu.file_reader(output_path) as f_out: ds_in = f_in[input_key] ds_out = f_out[output_key] for block_id in block_list: _skeletonize_id_block(blocking, block_id, ds_in, ds_out, sizes, bb_min, bb_max, resolution, size_threshold, method) # log success fu.log_job_success(job_id) if __name__ == '__main__': path = sys.argv[1] assert os.path.exists(path), path job_id = int(os.path.split(path)[1].split('.')[0].split('_')[-1]) skeletonize(job_id, path)
constantinpape/cluster_tools
cluster_tools/skeletons/skeletonize.py
skeletonize.py
py
7,301
python
en
code
32
github-code
6
35632930544
""" ID: detrime1 LANG: PYTHON3 TASK: friday """ import sys,os.path from collections import * if os.path.exists('friday.in'): sys.stdin = open('friday.in', 'r') sys.stdout = open('friday.out', 'w') def detri(): n = int(input()) weekDays = [0]*7 monthDays = [31,28,31,30,31,30,31,31,30,31,30,31] day = 2 for year in range(1900, 1900+n): if str(year)[2:]=="00": if not year%400: monthDays[1] = 29 elif not year%4: monthDays[1] = 29 else: monthDays[1] = 28 for monthDay in monthDays: day += 12 day %= 7 weekDays[day] += 1 day += monthDay-12 print(*weekDays) # WORKING GARBAGE WACK BRUTE FORCE """days = ["SAT","SUN","MON","TUE","WED","THU","FRI"] months = { "JAN":31, "FEB":(28,29), "MAR":31, "APR":30, "MAY":31, "JUN":30, "JUL":31, "AUG":31, "SEP":30, "OCT":31, "NOV":30, "DEC":31, } ans = {day:0 for day in days} n = int(input()) day = 0 for year in range(1900, 1900+n): leap = False if str(year)[2:]=="00": if not year%400: leap = True else: if not year%4: leap = True months["FEB"] = 29 if leap else 28 for month in months: for i in range(1,months[month]+1): day = (day+1)%7 if i==13: ans[days[day]] += 1 check = [] for val in ans.values(): check.append(val) check[:] = check[6:]+check[:6] print(*check)""" if __name__ == "__main__": detri()
llxSKyWALKeRxll/USACO_Training
Chapter 1/Friday The Thirteenth/friday.py
friday.py
py
1,458
python
en
code
0
github-code
6
37169471952
from flask import request from flask_restx import Resource from ..service.auth_service import Auth from ..util.decorator import admin_token_required from ..service.user_service import save_new_user, get_a_user from ..util.dto import AuthDto api = AuthDto.api user_auth = AuthDto.user_auth user_token = AuthDto.user_token @api.route('/register') class UserRegister(Resource): """ User Register Resource """ @api.doc('user register') @api.expect(user_auth, validate=True) def post(self): # get the post data data = request.json return save_new_user(data=data) @api.route('/login') class UserLogin(Resource): """ User Login Resource """ @api.doc('user login') @api.expect(user_auth, validate=True) def post(self): # get the post data post_data = request.json return Auth.login_user(data=post_data) @api.route('/logout') class LogoutAPI(Resource): """ Logout Resource """ @api.doc('logout a user') @api.doc(params={'Authorization': {'in': 'header', 'description': 'An authorization token'}}) def post(self): """ logout user """ # get auth token auth_header = request.headers.get('Authorization') return Auth.logout_user(data=auth_header) @api.route('/force-logout/<id>') class ForceLogoutAPI(Resource): """ Force Logout Resource """ @api.doc('force logout a user') @api.doc(params={'Authorization': {'in': 'header', 'description': 'An authorization token'}}) @api.response(404, 'User not found.') @admin_token_required def post(self, id): """ force logout a user and blacklist all the tokens """ user = user = get_a_user(id) if not user: api.abort(404) return Auth.force_logout_user(user) @api.route('/expire-token') class ExpireTokenAPI(Resource): """ Expire Token Resource """ @api.doc('expire a user token') @api.doc(params={'Authorization': {'in': 'header', 'description': 'An authorization token'}}) @api.expect(user_token, validate=True) @admin_token_required def post(self): """ expire a token passed in post body, admin only authorized """ token = request.json['token'] return Auth.expire_token(token)
miteshnath/flask-admin-jwt
app/main/controller/auth_controller.py
auth_controller.py
py
2,367
python
en
code
1
github-code
6
70835853948
import csv import argparse import os import sys import numpy as np import torch import torch.cuda from PIL import Image from torch.autograd import Variable from torchvision.transforms import transforms from my.yolov3.easy.net.load_net import load_net from PIL import Image image_size = (96, 96) test_transformations = transforms.Compose([ transforms.ToTensor() ]) def load_trained_net(model_path): print("Begin to load pre-trained net ... ", end="") net = load_net("resnet152") checkpoint = torch.load(model_path) net.load_state_dict(checkpoint['state_dict']) net.eval() print("Finished.") return net def predict(net, ims: list): # Define transformations for the image transformation = test_transformations images_tensor_list = [] for im in ims: w = max(im.size) # 正方形的宽度 im = im.crop((0, 0, w, w)).resize(image_size) # 补成正方形再压缩 image = np.asarray(im) image_tensor = transformation(image) images_tensor_list.append(image_tensor) images_tensor = torch.stack(images_tensor_list) if torch.cuda.is_available(): images_tensor.cuda() # 将输入变为变量 input = Variable(images_tensor) # 预测图像的类 output = net(input) index = output.data.numpy().argmax(axis=1) return index + 1 # [0, C-1] -> [1, C] if __name__ == '__main__': net = load_trained_net("model/model-87-8.477896466274615e-05.pth") image_paths = ["../data/images/0a0bf7bc-e0d7-4f20-abec-039136663d85.jpg", "../data/images/0a0c27d7-2e2a-4817-a715-8182cf07ec9b.jpg", "../data/images/0a00c2a3-a498-452a-ba88-6b9ef514e201.jpg", "../data/images/0a1a5d35-1b30-43ff-87bc-9acdab1567c1.jpg"] ims = [] for image_path in image_paths: im = Image.open(image_path) ims.append(im) results = predict(net, ims) print(results)
NJUCoders/commodity-classification-hard
easy/predict.py
predict.py
py
1,931
python
en
code
0
github-code
6
20044628025
houses = [[3,7],[1,9],[2,0],[5,15],[4,30]] # houses = [[1,2],[2,3],[3,1],[4,20]] d = {} for i in houses: d[i[0]] = i[1] SortedDict = {k: v for k, v in sorted(d.items(), key=lambda item: item[1])} print(SortedDict) fList = [] finalList = [] for j in SortedDict: fList.append(j) print(fList) finalList = fList[-2:] finalList.sort() print(finalList) # d = {1:'a',3:'b',2:'c',5:'u'} # print(d) # print(d.items())
Elevenv/Placement-Stuff
house.py
house.py
py
418
python
en
code
1
github-code
6
811036516
'''Process Restricted Friend Requests https://leetcode.com/problems/process-restricted-friend-requests/ You are given an integer n indicating the number of people in a network. Each person is labeled from 0 to n - 1. You are also given a 0-indexed 2D integer array restrictions, where restrictions[i] = [xi, yi] means that person xi and person yi cannot become friends, either directly or indirectly through other people. Initially, no one is friends with each other. You are given a list of friend requests as a 0-indexed 2D integer array requests, where requests[j] = [uj, vj] is a friend request between person uj and person vj. A friend request is successful if uj and vj can be friends. Each friend request is processed in the given order (i.e., requests[j] occurs before requests[j + 1]), and upon a successful request, uj and vj become direct friends for all future friend requests. Return a boolean array result, where each result[j] is true if the jth friend request is successful or false if it is not. Note: If uj and vj are already direct friends, the request is still successful. Example 1: Input: n = 3, restrictions = [[0,1]], requests = [[0,2],[2,1]] Output: [true,false] Explanation: Request 0: Person 0 and person 2 can be friends, so they become direct friends. Request 1: Person 2 and person 1 cannot be friends since person 0 and person 1 would be indirect friends (1--2--0). ''' from collections import defaultdict, deque class Solution: def friendRequests(self, n: int, restrictions: List[List[int]], requests: List[List[int]]) -> List[bool]: def bfs(node): q = deque([node]) visited = set() visited.add(node) relations = set() while q: node = q.popleft() relations.add(node) for neighbor in friend_mapping[node]: if neighbor not in visited: visited.add(neighbor) q.append(neighbor) return relations banned_mapping = defaultdict(set) for u, v in restrictions: banned_mapping[u].add(v) banned_mapping[v].add(u) result = [False] * len(requests) friend_mapping = defaultdict(set) for index, req in enumerate(requests): u, v = req[0], req[1] if v in banned_mapping[u]: result[index] = False else: set1 = bfs(u) set2 = bfs(v) banned = False for key in set1: for bannedId in banned_mapping[key]: if bannedId in set2: result[index] = False banned = True if not banned: result[index] = True friend_mapping[u].add(v) friend_mapping[v].add(u) return result
Saima-Chaity/Leetcode
Graph/Process Restricted Friend Requests.py
Process Restricted Friend Requests.py
py
2,945
python
en
code
0
github-code
6
36255805376
import boto3 import json import os dynamodb = boto3.resource('dynamodb') client = boto3.client('dynamodb') USERS_TABLE = dynamodb.Table(os.environ['USERS_TABLE']) def delete_user_service(event, context): try: response = USERS_TABLE.update_item( Key={ 'userId': event['pathParameters']['id'] }, ConditionExpression='attribute_exists(userId)', UpdateExpression='SET active = :active', ExpressionAttributeValues={':active': False} ) print('[GET RESPONSE]:', response) return { 'statusCode': 200, 'body': json.dumps('user deleted.') } except Exception as e: print("Error deleting user:") print(e) return { 'statusCode': 400, 'body': json.dumps('Error deleting the user') }
Glendid/glendid-app-users
src/services/DeleteUser.py
DeleteUser.py
py
875
python
en
code
0
github-code
6
4388139380
# -*- coding: utf-8 -*- #------------------------------------------------------------ # pelisalacarta - XBMC Plugin # Conector para blip.tv # http://blog.tvalacarta.info/plugin-xbmc/pelisalacarta/ #------------------------------------------------------------ import re import urllib try: from core import scrapertools from core import logger except: from Code.core import scrapertools from Code.core import logger # Resuelve los videos de blip.tv que se usan en el embed # def geturl(bliptv_url,recurse=True): logger.info("[bliptv.py] bliptv_url="+bliptv_url) devuelve = "" if bliptv_url.startswith("http://blip.tv/play"): redirect = scrapertools.getLocationHeaderFromResponse(bliptv_url) logger.info("[bliptv.py] redirect="+redirect) patron='file\=(.*?)$' matches = re.compile(patron).findall(redirect) logger.info("[bliptv.py] matches1=%d" % len(matches)) if len(matches)==0: patron='file\=([^\&]+)\&' matches = re.compile(patron).findall(redirect) logger.info("[bliptv.py] matches2=%d" % len(matches)) if len(matches)>0: url = matches[0] logger.info("[bliptv.py] url="+url) url = urllib.unquote(url) logger.info("[bliptv.py] url="+url) data = scrapertools.cache_page(url) logger.info(data) patron = '<media\:content url\="([^"]+)" blip\:role="([^"]+)".*?type="([^"]+)"[^>]+>' matches = re.compile(patron).findall(data) scrapertools.printMatches(matches) for match in matches: logger.info("url="+str(match[0])) devuelve = match[0] return devuelve
TuxRneR/pelisalacarta-personal-fork
tags/xbmc-addons/plugin.video.pelisalacarta/servers/bliptv.py
bliptv.py
py
1,763
python
en
code
0
github-code
6
17007776735
import requests import bs4 import urllib def spider(max_pages): for page in range(1, max_pages + 1): query = urllib.parse.urlencode({'query':u'대선후보'}) url = 'http://news.naver.com/main/search/search.nhn?query=' + '%B4%EB%BC%B1%C8%C4%BA%B8' source_code = requests.get(url) plain_text = source_code.text soup = bs4.BeautifulSoup(plain_text, 'html.parser') content = soup.find(id='search_div') for result in content.select('ul > li > div'): print('############# Title') print(result.a.text) print('############# Content') print(result.p.text) spider(1)
masonHong/INU-Study
C Team(Hong, Heo)/Crowaling/Practice 1.py
Practice 1.py
py
668
python
en
code
0
github-code
6
72112922749
import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F # import snntorch import pandas as pd import tqdm import argparse from . import p_snu_layer class SNN_Net(torch.nn.Module): def __init__(self, inputs_num = 4, hidden_num = 4, outputs_num = 3 ,l_tau = 0.8,num_time = 100, batch_size = 80 ,soft = False, rec = False, power = False, gpu = True): super().__init__() self.num_time = num_time self.batch_size = batch_size self.rec = rec self.power = power #parametr # self.neuron_0 = 4 # self.neuron_1 = 24 # self.neuron_2 = 24 # self.neuron_3 = 4 #my #hidden num = 24 # self.l1 = p_snu_layer.P_SNU(inputs_num, hidden_num, l_tau = l_tau, soft = soft, gpu = gpu) # self.l2 = p_snu_layer.P_SNU(hidden_num, hidden_num, l_tau = l_tau, soft = soft, gpu = gpu) # self.l3 = p_snu_layer.P_SNU(hidden_num, hidden_num, l_tau = l_tau, soft = soft, gpu = gpu) # self.l4 = p_snu_layer.P_SNU(hidden_num, outputs_num, l_tau = l_tau, soft = soft, gpu = gpu) #my2 hidden num = 4 self.l1 = p_snu_layer.P_SNU(inputs_num, hidden_num, l_tau = l_tau, soft = soft, gpu = gpu) self.l2 = p_snu_layer.P_SNU(hidden_num, hidden_num, l_tau = l_tau, soft = soft, gpu = gpu) self.l3 = p_snu_layer.P_SNU(hidden_num, outputs_num, l_tau = l_tau, soft = soft, gpu = gpu) # for 1 layer test # self.l4 = p_snu_layer.P_SNU(inputs_num, outputs_num, l_tau = l_tau, soft = soft, gpu = gpu) def reset_state(self): self.l1.reset_state() self.l2.reset_state() self.l3.reset_state() # self.l4.reset_state() def forward(self,x,y): # y = torch.tensor(y) losse = None accuracy = None sum_out = None #タイムステップ毎のスパイク数の累積をとる out_list = [] #各データ(120×4)のタイムステップ(100ms)における出力スパイクを時系列で挿入 out_total_list = [] membrane_out = torch.empty(100,3) mem1_out = torch.empty(100,4) mem2_out = torch.empty(100,4) spikes_ = torch.empty(100,4) self.reset_state() for time in range(self.num_time): #num_timeはデフォルトで100になる。 # spike_encoded_neuron = x[time] # target_ = torch.reshape(y[time],(1,3)) # spike_encoded_neuron = torch.reshape(x[time],(4,1)) #4→4→3(network) spike_encoded_neuron = x[time] h1,mem1,u1 = self.l1(spike_encoded_neuron) h2,mem2,u2 = self.l2(h1) # out,mem = self.l3(h2) # 1 layer test 4→3(network) #膜電位と入出力スパイクの確認 # out,thresh,spike = self.l4(spike_encoded_neuron) #normal # out = self.l4(spike_encoded_neuron) # sum_out = out if sum_out is None else sum_out + out mem1_out[time] = mem1 mem2_out[time] = mem2 # membrane_out[time] = out spikes_[time] = h1 #出力を確認する # return sum_out,y #バッチ学習の場合 # criterion = nn.CrossEntropyLoss() # losse = criterion(sum_out,y) #正解率 # predicted_label = torch.argmax(sum_out) # accuracy = 1 if predicted_label == y else 0 return spikes_,mem1_out,mem2_out return mem_out return sum_out,losse,accuracy
GTAKAGI/PSNN
snn_model/network.py
network.py
py
3,693
python
en
code
0
github-code
6
71271557629
class Solution: def findMaxForm(self, strs: List[str], m: int, n: int) -> int: dp = [[0] * (n+1) for _ in range(m+1)] counter=[[s.count("0"), s.count("1")] for s in strs] for zeroes, ones in counter: for i in range(m, zeroes-1, -1): for j in range(n, ones-1, -1): dp[i][j] = max(dp[i][j], 1+dp[i-zeroes][j-ones]) return dp[-1][-1]
anubhavsrivastava10/Leetcode-HackerEarth-Solution
Leetcode/May 2022/23)474. Ones and Zeroes.py
23)474. Ones and Zeroes.py
py
451
python
en
code
9
github-code
6
27390116761
# 2SUM # http://rosalind.info/problems/2sum/ from utilities import get_file, get_answer_file def two_sum(num_array): minus_set = set(-i for i in num_array) for i, value in enumerate(num_array): if value in minus_set: try: j = num_array.index(-value, i+1) except ValueError: continue return (i+1, j+1) return (-1, -1) with get_file() as file: k, n = map(int, file.readline().split()) num_arrays = [list(map(int, line.split())) for line in file.readlines()] with get_answer_file() as file: for num_array in num_arrays: p, q = two_sum(num_array) if p == -1: print(-1, file=file) else: print(p, q, file=file)
Delta-Life/Bioinformatics
Rosalind/Algorithmic Heights/code/2SUM.py
2SUM.py
py
761
python
en
code
0
github-code
6
11547913275
# This file is part of RADAR. # Copyright (C) 2019 Cole Daubenspeck # # RADAR is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RADAR is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with RADAR. If not, see <https://www.gnu.org/licenses/>. import re from typing import Tuple # used if anything wants to sort/use numeric values instead of strings VALUE_STANDARD_CONVERSIONS = { "unknown": 0, "low": 1, "medium": 2, "high": 3, "very-high": 4 } # format # device_type_string # - list of services (if it might not appear in consistent ports) (THESE ARE REGULAR EXPRESSIONS!) # - list of ports that correspond to hosts of that type (prefered unless service tends to run on different ports) HOST_TYPE = { "webserver": { "value": "high", "service_names": [ "werkzeug", "httpd", "nginx", "apache" ], "ports": [ 80, 443, 3000, # node webserver 8000, 8443 ] }, "database": { "value": "very-high", "service_names": [ ], "ports": [ 1433, # mssql 3306, # mysql 6379, # redis 27017, # mongo ] }, "fileserver": { "value": "high", "service_names": [ ], "ports": [ 21, 990 ] }, "mailserver": { "value": "medium", "service_names": [ ], "ports": [ 25, # smtp ports 468, 587, 2525, 110, # pop3 ports 993, 143, # imap ports 995 ] }, "ics": { # industrial control system "value": "very-high", "service_names": [ "modbus" ], "ports": [ 502 ] }, "domain_controller": { "value": "very-high", "service_names": [ ], "ports": [ 88 # kerberos ] } } def get_info(target: dict) -> Tuple[str, str]: """ For a given target, returns information about the priority and best-guess type of host arguments: target: a dictionary that conforms to RADAR target specifications returns: a tuple of strings (priority, type). First string is the value of the device (e.g. "high"), second is the type of device (e.g. "webserver"). Multiple device types will be seperated with a semicolon (e.g. 'webserver;database'). """ services = target.get("services") if not services: # no running services, we don't care return "unknown", "generic" device_value = "unknown" device_type = "" global HOST_TYPE global VALUE_STANDARD_CONVERSIONS # for every service on the target for service in services: port = int(service.get("port")) name = service.get("service") # check if any of the host types matches the target... for host_type, details in HOST_TYPE.items(): # skip checking the type if it's already flagged (e.g. it has multiple services related to being a webserver) if host_type in device_type: continue type_value = details.get("value") # by seeing if the port is in one of the lists if port in details.get("ports"): device_value = device_value if VALUE_STANDARD_CONVERSIONS[type_value] < VALUE_STANDARD_CONVERSIONS[device_value] else type_value device_type += f";{host_type}" # or by seeing if any of the patterns matches else: for check_names in details.get("service_names", []): if re.search(check_names, name): device_value = device_value if VALUE_STANDARD_CONVERSIONS[type_value] < VALUE_STANDARD_CONVERSIONS[device_value] else type_value device_type += f";{host_type}" break return device_value, device_type[1:] or "unknown"
Sevaarcen/RADAR
cyber_radar/helpers/target_prioritizer.py
target_prioritizer.py
py
4,715
python
en
code
2
github-code
6
23468677797
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('tapp', '0005_comment_end_i'), ] operations = [ migrations.AlterModelOptions( name='essay', options={'permissions': (('view_essay', 'View essay'),)}, ), ]
rihakd/textAnalyticsDjango
TA/tapp/migrations/0006_auto_20151119_1941.py
0006_auto_20151119_1941.py
py
386
python
en
code
0
github-code
6
26225231093
s = open('Day14.txt').read() def twist(a, n): return a[:n][::-1] + a[n:] def skip(a, k): return a[k:] + a[:k] def knot(a, x): p = k = 0 for i in x: a = skip(twist(skip(a, p), i), -p) p = (p + i + k) % len(a) k += 1 return a def densehash(a): return list(map( lambda x: reduce(int.__xor__, x), zip(*(a[i::16] for i in range(16))) )) def knothash(x): a = list(range(256)) suffix = [17, 31, 73, 47, 23] y = list(map(ord, x)) + suffix dh = densehash(knot(a, y * 64)) return ''.join('{:02x}'.format(n) for n in dh) def kh(x): i = lambda h: int(h, 16) b = '{:04b}'.format f = lambda h: b(i(h)) return ''.join(map(f, knothash(x))) def view(x): return kh(x)[:8].replace('1', '#').replace('0', '.') arr = np.array(list(map(int, ''.join(map(kh, (s + '-' + i for i in map(str, range(128)))))))) print(arr.sum()) a = arr.reshape(128, -1) seen = set() available = set((i, j) for i in range(128) for j in range(128)) groups = defaultdict(set) def path(i, j, g): if (i >= 0) and (j >= 0): seen.add((i, j)) available.difference_update([(i, j)]) if a[i, j] == 1: groups[g].add((i, j)) moves = set([ (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1) ]) for i, j in (moves & available): path(i, j, g) g = 0 while available: i, j = next(iter(available)) path(i, j, g) g += 1 print(len(groups.keys())) print( '\n'.join(map(view, (t + '-{}'.format(i) for i in range(8)))) )
pirsquared/Advent-of-Code
2017/Day14.py
Day14.py
py
1,621
python
en
code
1
github-code
6
73549612348
import pandas as pd import numpy as np import io import requests from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn import metrics from beta_encoder import BetaEncoder import category_encoders as ce from utils import * import csv import xgboost as xgb def run_ls_experiments(): print("Loading Data") df = load_data() continuous = ['company_size', 'interested_desks'] categorical = ['industry','location', 'lead_source'] #columns: print("continuous columns: ",continuous) print("categorical columns: ",categorical) # plot increasing dimensionality va computation time sample_sizes = [2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 22000, 24000, 26000, 28000, 30000, 32000, 34000, 36000, 38000, 40000, 42000, 44000, 46000, 48000, 50000] sample_sizes = [42000, 44000, 46000, 48000, 50000] results = [['model','Encoder','Accuracy','STD','Training Time','Sparsity','Dimensions','sample_size']] for sample_size in sample_sizes: print("") print("----------------------") print("Sample Size: ",sample_size) print("----------------------") if not sample_size < len(df): sample_size = len(df) sample = df.sample(sample_size) X = sample[continuous+categorical] y = sample[['converted']] successes = y.sum()[0] alpha_prior = float(successes / len(y)) model = xgb.XGBClassifier(n_jobs=4) #[GradientBoostingClassifier(max_depth=8, n_estimators=64)] #BetaEncoder (mean) print("Beta Encoder (mean) Results:") acc, std, time, sparsity, dimensions = cv_lead_scoring_classification(model, X, y, continuous, categorical, encoder=BetaEncoder(alpha=alpha_prior, beta=1-alpha_prior)) results.append([type(model), 'BetaEncoder (m)', acc, std, time, sparsity, dimensions,sample_size]) #OneHotEncoder print("OneHotEncoder Results:") acc, std, time, sparsity, dimensions = cv_lead_scoring_classification(model, X, y, continuous, categorical, encoder=OneHotEncoder(handle_unknown='ignore', sparse=False)) results.append([type(model), 'OneHotEncoder', acc, std, time, sparsity, dimensions,sample_size]) file = 'lead_scoring_experiments_comp_time_2.csv' with open(file, "w") as output: writer = csv.writer(output, lineterminator='\n') writer.writerows(results) try: upload_file(file) except: print("File Not Uploaded") def load_data(): df = pd.read_csv('lead_scoring_1mil.csv') df = df.fillna('null') industries = df.industry.str.split(',', n=-1, expand=True) df['industry'] = industries[0] #training_df['sector'] = industries[1] return df if __name__ == '__main__': run_ls_experiments()
aslakey/CBM_Encoding
lead_scoring_computation_time.py
lead_scoring_computation_time.py
py
3,159
python
en
code
18
github-code
6
75132007548
from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split # model_selection模型选择过程中各种数据分割的类与函数 from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression, SGDRegressor, LogisticRegression # 线性回归 # externals是外部的、外部扩展的意思 from sklearn.externals import joblib # 模型的保存和提取 ==》 https://blog.csdn.net/YZXnuaa/article/details/80694372 from sklearn.metrics import mean_squared_error, classification_report # 均方误差的评估 import pandas as pd import numpy as np # 通过线性回归预测房价 # (数据量小的时候,可以用linearRegression,也就是最小二乘法之正规方程,可以直接求得误差最小点,但是计算量特别大,数据多时不推荐使用) # 这个也就是高中学的线性方程的求解k和b的值类似的方法 def mylinear(): # 获取数据 lb = load_boston() # 特征数值化 # 分割数据集 x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25) # 归一化处理 """因为特征值和目标值对应的数组维度不一样, 所以无法用同一个转换器进行归一化,而是分别创造一个转换器""" std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 对于目标的 std_y = StandardScaler() y_train = std_y.fit_transform(y_train.reshape(-1, 1)) y_test = std_y.transform(y_test.reshape(-1, 1)) # 建立模型 lr = LinearRegression() lr.fit(x_train, y_train) print(lr.coef_) # 模型保存,可以在别的地方直接加载出来这次保存好的模型用来继续学习或者预测使用 joblib.dump(lr, './通过joblib保存线性回归模型.pkl') # 预测结果评估 y_predict = lr.predict(x_test) # 线性回归模型的好坏通过均方误差来评测 print("产生的均方误差为:", mean_squared_error(y_test, y_predict)) # 将数据变回归一化之前的大小 y_predict_orign = std_y.inverse_transform(y_predict) print(y_predict, "==================", y_predict_orign) # ==》产生的均方误差为: 0.42782165417388635 # 用梯度下降来预测房价,在数据量大的时候推荐使用这个 def sgd_regression(): # 下面这些是直接从上面的函数中copy下来的 # 获取数据 lb = load_boston() # 特征数值化 # 分割数据集 x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25) # 归一化处理 """因为特征值和目标值对应的数组维度不一样, 所以无法用同一个转换器进行归一化,而是分别创造一个转换器""" std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 对于目标的 std_y = StandardScaler() y_train = std_y.fit_transform(y_train.reshape(-1, 1)) y_test = std_y.transform(y_test.reshape(-1, 1)) # 建立模型(基于随机梯度下降法估计参数的SGDRegressor) sgd = SGDRegressor() # 预测并评估 sgd.fit(x_train, y_train) y_predict = sgd.predict(x_test) print(mean_squared_error(y_test, y_predict)) # ==》产生的均方误差为: 0.21901470588593194 # 岭回归:也就是逻辑回归 # 只能用于解决二分类问题,属于判别模型(与前面所学的生成模型相区别,生成模型是需要从历史中总结出某些概率) # 但我感觉对于判别模型和生成模型还是不太对 # 岭回归解觉二分类问题的思路 ==》 https://blog.csdn.net/weixin_39445556/article/details/83930186 # 先生成回归曲线,再从y轴找一个合理的值设置为阈值(临界值),求解的y值大于这个阈值的为一个结果,y小于这个阈值是另一个结果 # 阈值的选择可以根据二分类中的一类占总数量的比例 def LingHuiGui(): # 对于癌症的预测 # 读取数据 column = ['Sample code number','Clump Thickness', 'Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class'] data = pd.read_csv(r"E:\chrome下载的东西\breast-cancer-wisconsin.data", names=column) # 这个指定标签名的方式一定要学一学 print(data) # 缺失值处理 data = data.replace("?", np.nan) data = data.dropna() # 数据分离 # data中的column是前面第89行的那个标签名列表 x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25) # 数据标准化(归一化) std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 这里用的逻辑回归是个二分类方法,是解决二分类问题的 # std_y = StandardScaler() # y_train = std_y.fit_transform(y_train) # y_test = std_y.transform(y_test) # 建立模型 lg = LogisticRegression(C=1.0) # c为正则化参数(正则化用于解决过拟合问题,可以减少模型的复杂度) lg.fit(x_train, y_train) y_predict = lg.predict(x_test) # 误差评估 print("精确率:", lg.score(x_test, y_test)) # 将结果为2、4两个数值换为名字良性和恶性 print("召回率", classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"])) print("加油!") # mylinear() # sgd_regression() LingHuiGui()
hahahei957/NewProject_Opencv2
机器学习/19_线性回归.py
19_线性回归.py
py
5,679
python
zh
code
0
github-code
6
8694936867
from django.urls import path from . import views urlpatterns = [ path("", views.index, name="index"), path("login", views.login_view, name="login"), path("logout", views.logout_view, name="logout"), path("register", views.register, name="register"), path("newListing", views.newForm, name="new"), path("createListing", views.createNewListing, name="create"), path("<str:title>Listing", views.listing_view, name="listing"), path("Watchlist", views.watchlist, name="watchlist"), path("AddToWatchlist/<str:title>", views.add_to_watchlist, name="add"), path("RemoveFromWatchlist/<str:title>", views.remove_from_watchlist, name="remove"), path("placeBid/<str:title>", views.place_bid, name="bid"), path("closeListing/<str:title>", views.close_listing, name="close"), path("postComment/<str:title>", views.post_comment, name="postComment"), path("categories", views.categories_view, name="categories"), path("showCategory/<str:category>", views.single_category_view, name="showCategory") ]
SHorne41/Project-2-Commerce
auctions/urls.py
urls.py
py
1,046
python
en
code
0
github-code
6
35379120975
import math import boto3 from aws_cdk import ( core, aws_ec2 as ec2, aws_ecs as ecs, aws_cloudwatch as cw ) from cdklocust.locust_container import locustContainer class CdklocustStack(core.Stack): def __init__(self, scope: core.Construct, id: str, vpc, **kwargs) -> None: super().__init__(scope, id, **kwargs) self.get_cdk_context() self.vpc=vpc #ECS cluster for the loadgen self.loadgen_cluster = ecs.Cluster( self, "Loadgen-Cluster", vpc=self.vpc ) #Just using base ENI count, not caring about having ENI trunking turned on client = boto3.client('ec2') response = client.describe_instance_types(InstanceTypes=[self.ecs_instance_type]) eni_per_instance = response['InstanceTypes'][0]['NetworkInfo']['MaximumNetworkInterfaces'] number_of_instances = math.ceil((self.number_of_workers + 1) / (eni_per_instance-1)) self.loadgen_cluster.add_capacity("AsgSpot", max_capacity=number_of_instances * 2, min_capacity=number_of_instances, instance_type=ec2.InstanceType(self.ecs_instance_type), spot_price="0.07", spot_instance_draining=True ) #cloudmap for service discovery so workers can lookup mast via dns self.loadgen_cluster.add_default_cloud_map_namespace(name = self.cloudmap_namespace) #Create a graph widget to track reservation metrics for our cluster ecs_widget = cw.GraphWidget( left=[self.loadgen_cluster.metric_cpu_reservation()], right=[self.loadgen_cluster.metric_memory_reservation()], title="ECS - CPU and Memory Reservation", ) #CloudWatch dashboard to monitor our stuff self.dashboard = cw.Dashboard(self, "Locustdashboard") self.dashboard.add_widgets(ecs_widget) if not self.distributed_locust: role = "standalone" locustContainer(self, "locust" + role, self.vpc, self.loadgen_cluster, role, self.target_url) else: role = "master" master_construct = locustContainer(self, "locust" + role, self.vpc, self.loadgen_cluster, role, self.target_url) lb_widget = cw.GraphWidget( left=[master_construct.lb.metric_active_connection_count(), master_construct.lb.metric_target_response_time()], right=[master_construct.lb.metric_request_count()], title="Load Balancer") self.dashboard.add_widgets(lb_widget) role = "worker" worker_construct = locustContainer(self, "locust" + role, self.vpc, self.loadgen_cluster, role, self.target_url, self.number_of_workers) worker_construct.node.add_dependency(master_construct) def get_cdk_context(self): # grab stuff from context self.number_of_workers = int(self.node.try_get_context("number_of_workers")) self.ecs_instance_type = self.node.try_get_context("ecs_instance_type") self.vpc_cidr = self.node.try_get_context("vpc_cidr") self.distributed_locust = self.node.try_get_context("distributed_locust") self.cloudmap_namespace = self.node.try_get_context("cloudmap_namespace") self.target_url = self.node.try_get_context("target_url")
tynooo/cdklocust
cdklocust/cdklocust_stack.py
cdklocust_stack.py
py
3,687
python
en
code
3
github-code
6
26345256198
n = map(float, input().split(' ')) counts = {} for x in n: if x in counts: counts[x] += 1 else: counts[x] = 1 for x in sorted(counts): print("{} -> {} times".format(x, counts[x]))
YovchoGandjurov/Python-Fundamentals
02. Lists and Dictionaries/Dictionaries/02.Count_Real_Numbers.py
02.Count_Real_Numbers.py
py
211
python
en
code
1
github-code
6
9487674486
# -*- coding: utf-8 -*- import nengo import numpy as np from nengo_ssp.vector_generation import HexagonalBasis, GridCellEncoders #from nengo_ssp.utils import ssp_vectorized class PathIntegrator(nengo.Network): def __init__(self, n_neurons, n_gridcells, scale_fac=1.0, basis=None,xy_rad=10, **kwargs): kwargs.setdefault("label", "PathIntegrator") super().__init__(**kwargs) if basis is None: X, Y, myK = HexagonalBasis(5,5) d = X.v.shape[0] else: X = basis[0] Y = basis[1] d = X.v.shape[0] myK = np.vstack([np.angle(np.fft.fftshift(np.fft.fft(X.v)))[0:d//2], np.angle(np.fft.fftshift(np.fft.fft(Y.v)))[0:d//2]]).T n_oscs = d//2 real_ids = np.arange(1,n_oscs*3,3) imag_ids = np.arange(2,n_oscs*3,3) S_ids = np.zeros(n_oscs*2 + 1, dtype=int) S_ids[0:d//2] = real_ids S_ids[d//2:(n_oscs*2)] = imag_ids S_ids[-1] = n_oscs*3 i_S_ids = np.argsort(S_ids) G_encoders,G_sorts = GridCellEncoders(n_gridcells, X,Y, xy_rad) taus = 0.1*np.ones(n_oscs) with self: to_SSP = self.get_to_SSP_mat(d) i_to_SSP = self.get_from_SSP_mat(d) self.input_vel = nengo.Node(size_in=2, label="input_vel") self.input_SSP = nengo.Node(size_in=d, label="input_initial_SSP") #self.input_FSSP = nengo.Node(size_in=d-1, label="input_initial_FSSP") #nengo.Node(self.input_SSP, self.input_FSSP, ) self.output = nengo.Node(size_in=d, label="output") self.velocity = nengo.Ensemble(n_neurons, dimensions=2,label='velocity') zero_freq_term = nengo.Node([1,0,0]) self.osc = nengo.networks.EnsembleArray(n_neurons, n_oscs + 1, ens_dimensions = 3,radius=np.sqrt(3), label="osc") self.osc.output.output = lambda t, x: x self.grid_cells = nengo.Ensemble(n_gridcells, dimensions=d, encoders = G_encoders, radius=np.sqrt(2), label="grid_cells") def feedback(x, tau): w = x[0]/scale_fac r = np.maximum(np.sqrt(x[1]**2 + x[2]**2), 1e-5) dx1 = x[1]*(1-r**2)/r - x[2]*w dx2 = x[2]*(1-r**2)/r + x[1]*w return 0, tau*dx1 + x[1], tau*dx2 + x[2] nengo.Connection(self.input_vel, self.velocity, transform = scale_fac) for i in np.arange(n_oscs): nengo.Connection(self.velocity, self.osc.ea_ensembles[i][0], transform = myK[i,:].reshape(1,-1), synapse=taus[i]) S_back_mat = i_to_SSP[i_S_ids[2*i:(2*i+2)],:] nengo.Connection(self.input_SSP, self.osc.ea_ensembles[i][1:], transform=S_back_mat) #initialize nengo.Connection(self.osc.ea_ensembles[i], self.osc.ea_ensembles[i], function= lambda x: feedback(x, taus[i]), synapse=taus[i]) #nengo.Connection(self.grid_cells, self.osc.ea_ensembles[i][1:], transform=S_back_mat, synapse=taus[i]) nengo.Connection(zero_freq_term, self.osc.ea_ensembles[-1]) nengo.Connection(self.osc.output[S_ids], self.grid_cells, transform = to_SSP, synapse=taus[0]) #nengo.Connection(self.input_initial_SSP, self.grid_cells) nengo.Connection(self.grid_cells, self.output) def get_to_SSP_mat(self,D): W = np.fft.ifft(np.eye(D)) W1 = W.real @ np.fft.ifftshift(np.eye(D),axes=0) W2 = W.imag @ np.fft.ifftshift(np.eye(D),axes=0) shiftmat1 = np.vstack([np.eye(D//2), np.zeros((1,D//2)), np.flip(np.eye(D//2), axis=0)]) shiftmat2 = np.vstack([np.eye(D//2), np.zeros((1,D//2)), -np.flip(np.eye(D//2), axis=0)]) shiftmat = np.vstack([ np.hstack([shiftmat1, np.zeros(shiftmat2.shape)]), np.hstack([np.zeros(shiftmat2.shape), shiftmat2])]) shiftmat = np.hstack([shiftmat, np.zeros((shiftmat.shape[0],1))]) shiftmat[D//2,-1] = 1 tr = np.hstack([W1, -W2]) @ shiftmat return tr def get_from_SSP_mat(self,D): W = np.fft.fft(np.eye(D)) W1 = np.fft.fftshift(np.eye(D),axes=0) @ W.real W2 = np.fft.fftshift(np.eye(D),axes=0) @ W.imag shiftmat1 = np.hstack([np.eye(D//2), np.zeros((D//2, 2*(D//2) + D//2 + 2))]) shiftmat2 = np.hstack([np.zeros((D//2, 2*(D//2) + 1)), np.eye(D//2), np.zeros((D//2, D//2 + 1))]) shiftmat = np.vstack([ shiftmat1,shiftmat2]) tr = shiftmat @ np.vstack([W1, W2]) return tr
nsdumont/nengo_ssp
nengo_ssp/networks.py
networks.py
py
5,032
python
en
code
0
github-code
6
10422637903
from __future__ import annotations import dataclasses from typing import TYPE_CHECKING from randovania.bitpacking import bitpacking from randovania.bitpacking.bitpacking import BitPackDecoder, BitPackValue from randovania.game_description import default_database if TYPE_CHECKING: from collections.abc import Iterator from randovania.game_description.pickup.ammo_pickup import AmmoPickupDefinition @dataclasses.dataclass(frozen=True) class AmmoPickupState(BitPackValue): ammo_count: tuple[int, ...] = (0,) pickup_count: int = 0 requires_main_item: bool = True def check_consistency(self, ammo: AmmoPickupDefinition): db = default_database.resource_database_for(ammo.game) if len(self.ammo_count) != len(ammo.items): raise ValueError(f"Ammo state has {len(self.ammo_count)} ammo counts, expected {len(ammo.items)}") for count, ammo_name in zip(self.ammo_count, ammo.items): ammo_item = db.get_item(ammo_name) minimum_count = -ammo_item.max_capacity if ammo.allows_negative else 0 if not (minimum_count <= count <= ammo_item.max_capacity): raise ValueError( f"Ammo count for item {ammo_name} of value {count} is not " f"in range [{minimum_count}, {ammo_item.max_capacity}]." ) if self.pickup_count < 0: raise ValueError(f"Pickup count must be at least 0, got {self.pickup_count}") def bit_pack_encode(self, metadata) -> Iterator[tuple[int, int]]: ammo: AmmoPickupDefinition = metadata["ammo"] db = default_database.resource_database_for(ammo.game) for count, ammo_name in zip(self.ammo_count, ammo.items): ammo_item = db.get_item(ammo_name) yield from bitpacking.encode_int_with_limits( abs(count), (ammo_item.max_capacity // 2, ammo_item.max_capacity + 1), ) if ammo.allows_negative: yield from bitpacking.encode_bool(count < 0) # Negative? yield from bitpacking.encode_big_int(self.pickup_count) if ammo.unlocked_by is not None: yield from bitpacking.encode_bool(self.requires_main_item) @classmethod def bit_pack_unpack(cls, decoder: BitPackDecoder, metadata) -> AmmoPickupState: ammo: AmmoPickupDefinition = metadata["ammo"] db = default_database.resource_database_for(ammo.game) # Ammo Count ammo_count = [] for ammo_name in ammo.items: ammo_item = db.get_item(ammo_name) count = bitpacking.decode_int_with_limits( decoder, (ammo_item.max_capacity // 2, ammo_item.max_capacity + 1), ) if ammo.allows_negative and bitpacking.decode_bool(decoder): # Negative? count *= -1 ammo_count.append(count) # Pickup Count pickup_count = bitpacking.decode_big_int(decoder) # Require Main Item requires_main_item = True if ammo.unlocked_by is not None: requires_main_item = bitpacking.decode_bool(decoder) return cls( ammo_count=tuple(ammo_count), pickup_count=pickup_count, requires_main_item=requires_main_item, ) @property def as_json(self) -> dict: result: dict = {} for field in dataclasses.fields(self): value = getattr(self, field.name) result[field.name] = value result["ammo_count"] = list(result["ammo_count"]) return result @classmethod def from_json(cls, value: dict) -> AmmoPickupState: kwargs = {} for field in dataclasses.fields(cls): if field.name in value: kwargs[field.name] = value[field.name] if "ammo_count" in kwargs: kwargs["ammo_count"] = tuple(kwargs["ammo_count"]) return cls(**kwargs)
randovania/randovania
randovania/layout/base/ammo_pickup_state.py
ammo_pickup_state.py
py
3,973
python
en
code
165
github-code
6
10294402912
#-*-python-*- from warn import * from Rnaseq import * from Rnaseq.command import * from sqlalchemy import * from sqlalchemy.orm import mapper, sessionmaker # usage: provenance load <readset pipeline> # This is sort of a test command, probably won't be used in production class Load(Command): def description(self): return "load a pipeline and quit (debugging tool)" def usage(self): return "usage: load -p <pipeline> -r <readset>" def run(self, *argv, **args): try: config=args['config'] readset_file=config['readset_file'] pipeline_name=config['pipeline_name'] except KeyError as e: raise MissingArgError(str(e)) # have to create session before creating any objects that session adds, etc: readset=Readset(name=readset_file).load() pipeline=Pipeline(name=pipeline_name, readset=readset) pipeline.update(RnaseqGlobals.config) pipeline.description='desc for juan' session=RnaseqGlobals.get_session() session.add(pipeline) session.commit() #print __file__, "checking in"
phonybone/Rnaseq
lib/Rnaseq/cmds/rnaseq/load.py
load.py
py
1,138
python
en
code
3
github-code
6
8352755533
from __future__ import absolute_import, unicode_literals import base64 import json import random import warnings import websocket from c8 import constants from c8.api import APIWrapper from c8.apikeys import APIKeys from c8.c8ql import C8QL from c8.collection import StandardCollection from c8.exceptions import ( CollectionCreateError, CollectionDeleteError, CollectionFindError, CollectionListError, CollectionPropertiesError, EventCreateError, EventGetError, FabricCreateError, FabricDeleteError, FabricGetMetadataError, FabricListError, FabricPropertiesError, FabricSetMetadataError, FabricUpdateMetadataError, GetAPIKeys, GetDcDetailError, GetDcListError, GetLocalDcError, GraphCreateError, GraphDeleteError, GraphListError, RestqlCreateError, RestqlCursorError, RestqlDeleteError, RestqlExecuteError, RestqlImportError, RestqlListError, RestqlUpdateError, RestqlValidationError, ServerConnectionError, ServerVersionError, SpotRegionAssignError, SpotRegionUpdateError, StreamAppGetSampleError, StreamCommunicationError, StreamConnectionError, StreamCreateError, StreamDeleteError, StreamListError, StreamPermissionError, ) from c8.executor import AsyncExecutor, BatchExecutor, DefaultExecutor from c8.graph import Graph from c8.keyvalue import KV from c8.request import Request from c8.search import Search from c8.stream_apps import StreamApps from c8.stream_collection import StreamCollection __all__ = [ "StandardFabric", "AsyncFabric", "BatchFabric", ] ENDPOINT = "/streams" def raise_timeout(signum, frame): raise TimeoutError class Fabric(APIWrapper): """Base class for Fabric API wrappers. :param connection: HTTP connection. :type connection: c8.connection.Connection :param executor: API executor. :type executor: c8.executor.Executor """ def enum(**enums): return type("Enum", (), enums) SPOT_CREATION_TYPES = enum( AUTOMATIC="automatic", NONE="none", SPOT_REGION="spot_region" ) def __init__(self, connection, executor): self.url = connection.url self.header = connection.headers self.stream_port = constants.STREAM_PORT super(Fabric, self).__init__(connection, executor) def __getitem__(self, name): """Return the collection API wrapper. :param name: Collection name. :type name: str | unicode :returns: Collection API wrapper. :rtype: c8.collection.StandardCollection """ return self.collection(name) @property def name(self): """Return fabric name. :returns: Fabric name. :rtype: str | unicode """ return self.fabric_name @property def c8ql(self): """Return C8QL (C8Db Query Language) API wrapper. :returns: C8QL API wrapper. :rtype: c8.c8ql.C8QL """ return C8QL(self._conn, self._executor) @property def key_value(self): """Return KV (Key Value) API wrapper. :returns: KV API wrapper. :rtype: c8.keyvalue.KV """ return KV(self._conn, self._executor) def on_change(self, collection, callback, timeout=60): """Execute given input function on receiving a change. :param collection: Collection name(s) regex to listen for :type collection: str :param timeout: timeout value :type timeout: int :param callback: Function to execute on a change :type callback: function """ if not callback: raise ValueError("You must specify a callback function") if not collection: raise ValueError( "You must specify a collection on which realtime " "data is to be watched!" ) namespace = constants.STREAM_LOCAL_NS_PREFIX + self.fabric_name subscription_name = "%s-%s-subscription-%s" % ( self.tenant_name, self.fabric_name, str(random.randint(1, 1000)), ) url = self.url.split("//")[1].split(":")[0] topic = "wss://{}/_ws/ws/v2/consumer/persistent/{}/{}/{}/{}".format( url, self.tenant_name, namespace, collection, subscription_name ) ws = websocket.create_connection(topic, header=self.header, timeout=timeout) try: # "pyC8 Realtime: Begin monitoring realtime updates for " + topic while True: msg = json.loads(ws.recv()) data = base64.b64decode(msg["payload"]) ws.send(json.dumps({"messageId": msg["messageId"]})) callback(data) except websocket.WebSocketTimeoutException: pass except Exception as e: raise Exception(e) finally: ws.close() def properties(self): """Return fabric properties. :returns: Fabric properties. :rtype: dict :raise c8.exceptions.FabricPropertiesError: If retrieval fails. """ request = Request( method="get", endpoint="/database/current", ) def response_handler(resp): if not resp.is_success: raise FabricPropertiesError(resp, request) result = resp.body["result"] result["system"] = result.pop("isSystem") return result return self._execute(request, response_handler) def update_spot_region(self, tenant, fabric, new_dc): """Updates spot primary region for the geo-fabric :param tenant: tenant name :type tenant: str :param fabric: fabric name :type fabric: str :param new_dc: New spot region :type new_dc: str :returns: True if request successful,false otherwise :rtype: bool :raise c8.exceptions.SpotRegionUpdateError: If updation fails. """ request = Request( method="put", endpoint="/_fabric/{}/database/{}".format(fabric, new_dc) ) def response_handler(resp): if not resp.is_success: raise SpotRegionUpdateError(resp, request) return True return self._execute(request, response_handler) def fabrics_detail(self): request = Request(method="get", endpoint="/database/user") def response_handler(resp): if not resp.is_success: raise FabricListError(resp, request) return [ {"name": col["name"], "options": col["options"]} for col in map(dict, resp.body["result"]) ] return self._execute(request, response_handler) def version(self): """Return C8Db server version. :returns: Server version. :rtype: str | unicode :raise c8.exceptions.ServerVersionError: If retrieval fails. """ request = Request(method="get", endpoint="/version", params={"details": False}) def response_handler(resp): if not resp.is_success: raise ServerVersionError(resp, request) return resp.body["version"] return self._execute(request, response_handler) def ping(self): """Ping the C8Db server by sending a test request. :returns: Response code from server. :rtype: int :raise c8.exceptions.ServerConnectionError: If ping fails. """ request = Request( method="get", endpoint="/collection", ) def response_handler(resp): code = resp.status_code if code in {401, 403}: raise ServerConnectionError("bad username and/or password") if not resp.is_success: raise ServerConnectionError(resp.error_message or "bad server response") return code return self._execute(request, response_handler) ######################### # Datacenter Management # ######################### def dclist(self, detail=False): """Return the list of names of Datacenters :param detail: detail list of DCs if set to true else only DC names :type: boolean :returns: DC List. :rtype: [str | unicode ] :raise c8.exceptions.GetDcListError: If retrieval fails. """ properties = self.properties() if not detail: return properties["options"]["dcList"].split(",") tenant_name = properties["options"]["tenant"] request = Request( method="get", endpoint="/datacenter/_tenant/{}".format(tenant_name) ) def response_handler(resp): if not resp.is_success: raise GetDcListError(resp, request) dc_list = resp.body[0]["dcInfo"] for dc in dc_list: if dc["name"] not in properties["options"]["dcList"]: dc_list.remove(dc) return dc_list return self._execute(request, response_handler, custom_prefix="") def localdc(self, detail=True): """Fetch data for a local/regional the data center :param detail: Details of local DC if set to true else only DC name. :type: boolean :returns: Local DC details. :rtype: str | dict :raise c8.exceptions.GetLocalDcError: If retrieval fails. """ request = Request(method="get", endpoint="/datacenter/local") def response_handler(resp): if not resp.is_success: raise GetLocalDcError(resp, request) if detail: return resp.body return resp.body["name"] return self._execute(request, response_handler, custom_prefix="") def get_dc_detail(self, dc): """Fetch data for data center, identified by dc-name :param dc: DC name :type: str :returns: DC details. :rtype: dict :raise c8.exceptions.GetDcDetailError: If retrieval fails. """ request = Request(method="get", endpoint="/datacenter/{}".format(dc)) def response_handler(resp): if not resp.is_success: raise GetDcDetailError(resp, request) return resp.body return self._execute(request, response_handler, custom_prefix="") def dclist_all(self): """Fetch data about all the data centers :returns: DC List. :rtype: [str | unicode ] :raise c8.exceptions.GetDcListError: If retrieval fails. """ request = Request(method="get", endpoint="/datacenter/all") def response_handler(resp): if not resp.is_success: raise GetDcListError(resp, request) return resp.body return self._execute(request, response_handler, custom_prefix="") def assign_dc_spot(self, dc, spot_region=False): """Assigns spot region of a fed :param dc: dc name :type dc: str :param spot_region: If True, makes the region a spot region :type spot_region: bool :returns: True if request successful, False otherwise :rtype: bool :raise c8.exceptions.SpotRegionAssignError: If assignment fails. """ data = json.dumps(spot_region) request = Request(method="put", endpoint="/datacenter/{}/{}".format(dc, data)) def response_handler(resp): if not resp.is_success: raise SpotRegionAssignError(resp, request) return True return self._execute(request, response_handler, custom_prefix="") ####################### # Fabric Management # ####################### def fabrics(self): """Return the names all fabrics. :returns: Fabric names. :rtype: [str | unicode] :raise c8.exceptions.FabricListError: If retrieval fails. """ request = Request(method="get", endpoint="/database") def response_handler(resp): if not resp.is_success: raise FabricListError(resp, request) return resp.body["result"] return self._execute(request, response_handler) def has_fabric(self, name): """Check if a fabric exists. :param name: Fabric name. :type name: str | unicode :returns: True if fabric exists, False otherwise. :rtype: bool """ return name in self.fabrics() def create_fabric( self, name, spot_dc=None, users=None, dclist=None, spot_creation_type=SPOT_CREATION_TYPES.AUTOMATIC, ): """Create a new fabric. :param name: Fabric name. :type name: str | unicode :param spot_creation_type: Specifying the mode of creating geo-fabric. If you use AUTOMATIC, a random spot region will be assigned by the system. If you specify NONE, a geo-fabric is created without the spot properties. If you specify SPOT_REGION,pass the corresponding spot region in the spot_dc parameter. :type name: Enum containing spot region creation types :param name: Spot Region name, if spot_creation_type is set to SPOT_REGION :type name: str :param users: List of users with access to the new fabric :type users: [str | unicode] :param dclist: list of strings of datacenters :type dclist: [str | unicode] :returns: True if fabric was created successfully. :rtype: bool :raise c8.exceptions.FabricCreateError: If create fails. """ data = {"name": name} if users is not None: data["users"] = users options = {} dcl = "" if dclist: # Process dclist param (type list) to build up comma-separated # string of DCs for dc in dclist: if len(dcl) > 0: dcl += "," dcl += dc options["dcList"] = dcl if spot_creation_type == self.SPOT_CREATION_TYPES.NONE: options["spotDc"] = "" elif spot_creation_type == self.SPOT_CREATION_TYPES.SPOT_REGION and spot_dc: options["spotDc"] = spot_dc data["options"] = options request = Request(method="post", endpoint="/database", data=data) def response_handler(resp): if not resp.is_success: raise FabricCreateError(resp, request) return True return self._execute(request, response_handler) def get_fabric_metadata(self): """Fetch information about a GeoFabric. :returns: Fabric information. :rtype: dict :raise c8.exceptions.FabricGetMetadataError: If retrieval fails. """ request = Request(method="get", endpoint="/database/metadata") def response_handler(resp): if not resp.is_success: raise FabricGetMetadataError(resp, request) return resp.body["result"] return self._execute(request, response_handler) def set_fabric_metadata(self, metadata): """Set the GeoFabric Metadata. :param metadata: Fabric metadata. :type metadata: dict :returns: True if metadata was set successfully. :rtype: bool :raise c8.exceptions.FabricSetMetadataError: If set fails. """ data = {"metadata": metadata} request = Request(method="put", endpoint="/database/metadata", data=data) def response_handler(resp): if not resp.is_success: raise FabricSetMetadataError(resp, request) return resp.body["result"] return self._execute(request, response_handler) def update_fabric_metadata(self, metadata): """Modfiy the GeoFabric metadata. :param metadata: Fabric metadata. :type metadata: dict :returns: True if metadata was set successfully. :rtype: bool :raise c8.exceptions.FabricUpdateMetadataError: If update fails. """ data = {"metadata": metadata} request = Request(method="patch", endpoint="/database/metadata", data=data) def response_handler(resp): if not resp.is_success: raise FabricUpdateMetadataError(resp, request) return resp.body["result"] return self._execute(request, response_handler) def delete_fabric(self, name, ignore_missing=False): """Delete the fabric. :param name: Fabric name. :type name: str | unicode :param ignore_missing: Do not raise an exception on missing fabric. :type ignore_missing: bool :returns: True if fabric was deleted successfully, False if fabric was not found and **ignore_missing** was set to True. :rtype: bool :raise c8.exceptions.FabricDeleteError: If delete fails. """ request = Request(method="delete", endpoint="/database/{}".format(name)) def response_handler(resp): if resp.error_code == 1228 and ignore_missing: return False if not resp.is_success: raise FabricDeleteError(resp, request) return resp.body["result"] return self._execute(request, response_handler) ######################### # Collection Management # ######################### def collection(self, name): """Return the standard collection API wrapper. :param name: Collection name. :type name: str | unicode :returns: Standard collection API wrapper. :rtype: c8.collection.StandardCollection """ if self.has_collection(name): return StandardCollection(self._conn, self._executor, name) else: raise CollectionFindError("Collection not found") def has_collection(self, name): """Check if collection exists in the fabric. :param name: Collection name. :type name: str | unicode :returns: True if collection exists, False otherwise. :rtype: bool """ return any(col["name"] == name for col in self.collections()) def collections(self, collectionModel=None): """Return the collections in the fabric. :returns: Collections in the fabric and their details. :rtype: [dict] :raise c8.exceptions.CollectionListError: If retrieval fails. """ request = Request(method="get", endpoint="/collection") def response_handler(resp): if not resp.is_success: raise CollectionListError(resp, request) if collectionModel is not None: docs = [ col for col in map(dict, resp.body["result"]) if col["collectionModel"] == collectionModel ] else: docs = [col for col in map(dict, resp.body["result"])] collections = [] for col in docs: c = { "id": col["id"], "name": col["name"], "system": col["isSystem"], "type": StandardCollection.types[col["type"]], "status": StandardCollection.statuses[col["status"]], "collectionModel": col["collectionModel"], } if "isSpot" in col.keys(): c["isSpot"] = col["isSpot"] else: c["strongConsistency"] = col.get("strongConsistency", False) collections.append(c) return collections return self._execute(request, response_handler) def create_collection( self, name, sync=False, edge=False, user_keys=True, key_increment=None, key_offset=None, key_generator="traditional", shard_fields=None, index_bucket_count=None, sync_replication=None, enforce_replication_factor=None, strong_consistency=None, local_collection=False, is_system=False, stream=False, *, spot_collection=None, ): """Create a new collection. :param name: Collection name. :type name: str | unicode :param sync: If set to True, document operations via the collection will block until synchronized to disk by default. :type sync: bool :param edge: If set to True, an edge collection is created. :type edge: bool :param key_generator: Used for generating document keys. Allowed values are "traditional" or "autoincrement". :type key_generator: str | unicode :param user_keys: If set to True, users are allowed to supply document keys. If set to False, the key generator is solely responsible for supplying the key values. :type user_keys: bool :param key_increment: Key increment value. Applies only when value of **key_generator** is set to "autoincrement". :type key_increment: int :param key_offset: Key offset value. Applies only when value of **key_generator** is set to "autoincrement". :type key_offset: int :param shard_fields: Field(s) used to determine the target shard. :type shard_fields: [str | unicode] :param index_bucket_count: Number of buckets into which indexes using hash tables are split. The default is 16, and this number has to be a power of 2 and less than or equal to 1024. For large collections, one should increase this to avoid long pauses when the hash table has to be initially built or re-sized, since buckets are re-sized individually and can be initially built in parallel. For instance, 64 may be a sensible value for 100 million documents. :type index_bucket_count: int :param sync_replication: If set to True, server reports success only when collection is created in all replicas. You can set this to False for faster server response, and if full replication is not a concern. :type sync_replication: bool :param enforce_replication_factor: Check if there are enough replicas available at creation time, or halt the operation. :type enforce_replication_factor: bool :param strong_consistency: If True, strong consistency is enabled :type strong_consistency: bool :param is_system: If True, able to create system collections :type is_system: bool :param stream: If True, create a local stream for collection. :type stream: bool :param spot_collection: If True, it is a spot collection. Deprecated. Use If strong_consistency instead. :type spot_collection: bool :returns: Standard collection API wrapper. :rtype: c8.collection.StandardCollection :raise c8.exceptions.CollectionCreateError: If create fails. """ # Newer versions of GDN has renamed the isSpot property to strongConsistency. # We are using a keyword only argument to keep the backward compatibility of the SDK if spot_collection is not None and strong_consistency is not None: raise TypeError("create_collection recieved both spot_collection and strong_consistency") elif spot_collection is not None: warnings.simplefilter("once", DeprecationWarning) warnings.warn("spot_collection is deprecated. Use strong_consistency instead.", DeprecationWarning, 2) warnings.simplefilter("default", DeprecationWarning) isSpot = spot_collection elif strong_consistency is not None: isSpot = strong_consistency else: isSpot = False key_options = {"type": key_generator, "allowUserKeys": user_keys} if key_increment is not None: key_options["increment"] = key_increment if key_offset is not None: key_options["offset"] = key_offset if spot_collection and local_collection: return "Collection can either be spot or local" else: # Both strong_consistency and isSpot is added to the request body. # Correct value will be picked by the GDN depending on the supported property. data = { "name": name, "waitForSync": sync, "keyOptions": key_options, "type": 3 if edge else 2, "isSpot": isSpot, "strongConsistency": isSpot, "isLocal": local_collection, "isSystem": is_system, "stream": stream, } if shard_fields is not None: data["shardKeys"] = shard_fields if index_bucket_count is not None: data["indexBuckets"] = index_bucket_count params = {} if sync_replication is not None: params["waitForSyncReplication"] = sync_replication if enforce_replication_factor is not None: params["enforceReplicationFactor"] = enforce_replication_factor request = Request( method="post", endpoint="/collection", params=params, data=data ) def response_handler(resp): if resp.is_success: return self.collection(name) raise CollectionCreateError(resp, request) return self._execute(request, response_handler) def update_collection_properties( self, collection_name, has_stream=None, wait_for_sync=None ): """Changes the properties of a collection. Note: except for waitForSync and hasStream, collection properties cannot be changed once a collection is created. :param collection_name: Collection name. :type collection_name: str | unicode :param has_stream: True if creating a live collection stream. :type has_stream: bool :param wait_for_sync: True if all data must be synced to storage before operation returns. :type wait_for_sync: bool """ data = {} if has_stream is not None: data["hasStream"] = has_stream if wait_for_sync is not None: data["waitForSync"] = wait_for_sync request = Request( method="put", endpoint="/collection/{}/properties".format(collection_name), data=data, ) def response_handler(resp): if resp.is_success: return resp.body raise CollectionPropertiesError(resp, request) return self._execute(request, response_handler) def delete_collection(self, name, ignore_missing=False, system=None): """Delete the collection. :param name: Collection name. :type name: str | unicode :param ignore_missing: Do not raise an exception on missing collection. :type ignore_missing: bool :param system: Whether the collection is a system collection. :type system: bool :returns: True if collection was deleted successfully, False if collection was not found and **ignore_missing** was set to True. :rtype: bool :raise c8.exceptions.CollectionDeleteError: If delete fails. """ params = {} if system is not None: params["isSystem"] = system request = Request( method="delete", endpoint="/collection/{}".format(name), params=params ) def response_handler(resp): if resp.error_code == 1203 and ignore_missing: return False if not resp.is_success: raise CollectionDeleteError(resp, request) return True return self._execute(request, response_handler) #################### # Graph Management # #################### def graph(self, name): """Return the graph API wrapper. :param name: Graph name. :type name: str | unicode :returns: Graph API wrapper. :rtype: c8.graph.Graph """ return Graph(self._conn, self._executor, name) def has_graph(self, name): """Check if a graph exists in the fabric. :param name: Graph name. :type name: str | unicode :returns: True if graph exists, False otherwise. :rtype: bool """ for graph in self.graphs(): if graph["name"] == name: return True return False def graphs(self): """List all graphs in the fabric. :returns: Graphs in the fabric. :rtype: [dict] :raise c8.exceptions.GraphListError: If retrieval fails. """ request = Request(method="get", endpoint="/graph") def response_handler(resp): if not resp.is_success: raise GraphListError(resp, request) return [ { "id": body["_id"], "name": body["_key"], "revision": body["_rev"], "orphan_collections": body["orphanCollections"], "edge_definitions": [ { "edge_collection": definition["collection"], "from_vertex_collections": definition["from"], "to_vertex_collections": definition["to"], } for definition in body["edgeDefinitions"] ], "shard_count": body.get("numberOfShards"), "replication_factor": body.get("replicationFactor"), } for body in resp.body["graphs"] ] return self._execute(request, response_handler) def create_graph( self, name, edge_definitions=None, orphan_collections=None, shard_count=None ): """Create a new graph. :param name: Graph name. :type name: str | unicode :param edge_definitions: List of edge definitions, where each edge definition entry is a dictionary with fields "edge_collection", "from_vertex_collections" and "to_vertex_collections" (see below for example). :type edge_definitions: [dict] :param orphan_collections: Names of additional vertex collections that are not in edge definitions. :type orphan_collections: [str | unicode] :param shard_count: Number of shards used for every collection in the graph. To use this, parameter **smart** must be set to True and every vertex in the graph must have the smart field. This number cannot be modified later once set. Applies only to enterprise version of C8Db. :type shard_count: int :returns: Graph API wrapper. :rtype: c8.graph.Graph :raise c8.exceptions.GraphCreateError: If create fails. Here is an example entry for parameter **edge_definitions**: .. code-block:: python { 'edge_collection': 'teach', 'from_vertex_collections': ['teachers'], 'to_vertex_collections': ['lectures'] } """ data = {"name": name} if edge_definitions is not None: data["edgeDefinitions"] = [ { "collection": definition["edge_collection"], "from": definition["from_vertex_collections"], "to": definition["to_vertex_collections"], } for definition in edge_definitions ] if orphan_collections is not None: data["orphanCollections"] = orphan_collections if shard_count is not None: # pragma: no cover data["numberOfShards"] = shard_count request = Request(method="post", endpoint="/graph", data=data) def response_handler(resp): if resp.is_success: return Graph(self._conn, self._executor, name) raise GraphCreateError(resp, request) return self._execute(request, response_handler) def delete_graph(self, name, ignore_missing=False, drop_collections=None): """Drop the graph of the given name from the fabric. :param name: Graph name. :type name: str | unicode :param ignore_missing: Do not raise an exception on missing graph. :type ignore_missing: bool :param drop_collections: Drop the collections of the graph also. This is only if they are not in use by other graphs. :type drop_collections: bool :returns: True if graph was deleted successfully, False if graph was not found and **ignore_missing** was set to True. :rtype: bool :raise c8.exceptions.GraphDeleteError: If delete fails. """ params = {} if drop_collections is not None: params["dropCollections"] = drop_collections request = Request( method="delete", endpoint="/graph/{}".format(name), params=params ) def response_handler(resp): if resp.error_code == 1924 and ignore_missing: return False if not resp.is_success: raise GraphDeleteError(resp, request) return True return self._execute(request, response_handler) ######################## # Async Job Management # ######################## # Pratik: APIs not supported in documentation. Waiting for verification # def async_jobs(self, status, count=None): # """Return IDs of async jobs with given status. # # :param status: Job status (e.g. "pending", "done"). # :type status: str | unicode # :param count: Max number of job IDs to return. # :type count: int # :returns: List of job IDs. # :rtype: [str | unicode] # :raise c8.exceptions.AsyncJobListError: If retrieval fails. # """ # params = {} # if count is not None: # params['count'] = count # # request = Request( # method='get', # endpoint='/job/{}'.format(status), # params=params # ) # # def response_handler(resp): # if resp.is_success: # return resp.body # raise AsyncJobListError(resp, request) # # return self._execute(request, response_handler) # # def clear_async_jobs(self, threshold=None): # """Clear async job results from the server. # # Async jobs that are still queued or running are not stopped. # # :param threshold: If specified, only the job results created prior to # the threshold (a unix timestamp) are deleted. Otherwise, all job # results are deleted. # :type threshold: int # :returns: True if job results were cleared successfully. # :rtype: bool # :raise c8.exceptions.AsyncJobClearError: If operation fails. # """ # if threshold is None: # url = '/job/all' # params = None # else: # url = '/job/expired' # params = {'stamp': threshold} # # request = Request( # method='delete', # endpoint=url, # params=params # ) # # def response_handler(resp): # if resp.is_success: # return True # raise AsyncJobClearError(resp, request) # # return self._execute(request, response_handler) ######################## # Streams Management # ######################## def stream(self, operation_timeout_seconds=30): """Return the stream collection API wrapper. :returns: stream collection API wrapper. :rtype: c8.stream_collection.StreamCollection """ return StreamCollection( self, self._conn, self._executor, self.url, self.stream_port, operation_timeout_seconds, ) def streams(self, local=None): """Get list of all streams under given fabric :returns: List of streams under given fabric. :rtype: json :raise c8.exceptions.StreamListError: If retrieving streams fails. """ if local is False: url_endpoint = "/streams?global=true" elif local is True: url_endpoint = "/streams?global=false" elif local is None: url_endpoint = "/streams" request = Request(method="get", endpoint=url_endpoint) def response_handler(resp): code = resp.status_code if resp.is_success: return [ { "name": col["topic"], "topic": col["topic"], "local": col["local"], "db": col["db"], "tenant": col["tenant"], "type": StreamCollection.types[col["type"]], "status": "terminated" if "terminated" in col else "active", # noqa } for col in map(dict, resp.body["result"]) ] elif code == 403: raise StreamPermissionError(resp, request) raise StreamListError(resp, request) return self._execute(request, response_handler) def has_stream(self, stream, isCollectionStream=False, local=False): """Check if the list of streams has a stream with the given name. :param stream: The name of the stream for which to check in the list of all streams. :type stream: str | unicode :returns: True=stream found; False=stream not found. :rtype: bool """ if isCollectionStream is False: if local is False and "c8globals" not in stream: stream = "c8globals." + stream elif local is True and "c8locals" not in stream: stream = "c8locals." + stream return any(mystream["name"] == stream for mystream in self.streams(local=local)) def create_stream(self, stream, local=False): """ Create the stream under the given fabric :param stream: name of stream :param local: Operate on a local stream instead of a global one. :returns: 200, OK if operation successful :raise: c8.exceptions.StreamCreateError: If creating streams fails. """ if local is True: endpoint = "{}/{}?global=False".format(ENDPOINT, stream) elif local is False: endpoint = "{}/{}?global=True".format(ENDPOINT, stream) request = Request(method="post", endpoint=endpoint) def response_handler(resp): code = resp.status_code if resp.is_success: return resp.body["result"] elif code == 502: raise StreamCommunicationError(resp, request) raise StreamCreateError(resp, request) return self._execute(request, response_handler) def delete_stream(self, stream, force=False): """ Delete the streams under the given fabric :param stream: name of stream :param force: :returns: 200, OK if operation successful :raise: c8.exceptions.StreamDeleteError: If deleting streams fails. """ endpoint = f"{ENDPOINT}/{stream}" if force: endpoint = endpoint + "?force=true" request = Request(method="delete", endpoint=endpoint) def response_handler(resp): code = resp.status_code if resp.is_success: return True elif code == 403: raise StreamPermissionError(resp, request) elif code == 412: raise StreamDeleteError(resp, request) raise StreamConnectionError(resp, request) return self._execute(request, response_handler) ##################### # Restql Management # ##################### def save_restql(self, data): """Save restql by name. :param data: data to be used for restql POST API :type data: dict :returns: Results of restql API :rtype: dict :raise c8.exceptions.RestqlCreateError: if restql operation failed """ query_name = data["query"]["name"] if " " in query_name: raise RestqlValidationError("White Spaces not allowed in Query " "Name") request = Request(method="post", endpoint="/restql", data=data) def response_handler(resp): if not resp.is_success: raise RestqlCreateError(resp, request) return resp.body["result"] return self._execute(request, response_handler) def import_restql(self, queries, details=False): """Import custom queries. :param queries: queries to be imported :type queries: [dict] :param details: Whether to include details :type details: bool :returns: Results of importing restql :rtype: dict :raise c8.exceptions.RestqlImportError: if restql operation failed """ data = {"queries": queries, "details": details} request = Request(method="post", endpoint="/restql/import", data=data) def response_handler(resp): if not resp.is_success: raise RestqlImportError(resp, request) return resp.body["result"] return self._execute(request, response_handler) def execute_restql(self, name, data=None): """Execute restql by name. :param name: restql name :type name: str | unicode :param data: restql data (optional) :type data: dict :returns: Results of execute restql :rtype: dict :raise c8.exceptions.RestqlExecuteError: if restql execution failed """ if data is None or not ("bindVars" in data or "batchSize" in data): data = {} request = Request( method="post", data=data, endpoint="/restql/execute/{}".format(name) ) def response_handler(resp): if not resp.is_success: raise RestqlExecuteError(resp, request) return resp.body return self._execute(request, response_handler) def read_next_batch_restql(self, id): """Read next batch from query worker cursor. :param id: the cursor-identifier :type id: int :returns: Results of execute restql :rtype: dict :raise c8.exceptions.RestqlCursorError: if fetch next batch failed """ request = Request(method="put", endpoint="/restql/fetch/{}".format(id)) def response_handler(resp): if not resp.is_success: raise RestqlCursorError(resp, request) return resp.body return self._execute(request, response_handler) def get_all_restql(self): """Get all restql associated for user. :returns: Details of all restql :rtype: list :raise c8.exceptions.RestqlListError: if getting restql failed """ request = Request(method="get", endpoint="/restql/user") def response_handler(resp): if not resp.is_success: raise RestqlListError(resp, request) return resp.body["result"] return self._execute(request, response_handler) def update_restql(self, name, data): """Update restql by name. :param name: name of restql :type name: str | unicode :param data: restql data :type data: dict :returns: True if restql is updated :rtype: bool :raise c8.exceptions.RestqlUpdateError: if query update failed """ request = Request(method="put", data=data, endpoint="/restql/" + name) def response_handler(resp): if not resp.is_success: raise RestqlUpdateError(resp, request) return True return self._execute(request, response_handler) def delete_restql(self, name): """Delete restql by name. :param name: restql name :type name: str | unicode :returns: True if restql is deleted :rtype: bool :raise c8.exceptions.RestqlDeleteError: if restql deletion failed """ request = Request(method="delete", endpoint="/restql/" + name) def response_handler(resp): if not resp.is_success: raise RestqlDeleteError(resp, request) return True return self._execute(request, response_handler) ######################## # Events # ######################## def create_event(self, payload): """Create an event. :param payload: Payload to create event :type payload: dict :returns: Dictionary containing the event id :rtype: dict :raise c8.exceptions.EventCreateError: if event creation failed Here is an example entry for parameter **payload**: .. code-block:: python { "action": "string", "attributes": {}, "description": "string", "details": "string", "entityName": "string", "entityType": "string", "status": "string" } """ request = Request(method="post", endpoint="/events", data=payload) def response_handler(resp): if not resp.is_success: raise EventCreateError(resp, request) return resp.body return self._execute(request, response_handler) def delete_event(self, eventIds): """Delete an event/s. :param eventIds: The event id for which you want to fetch the event details :type eventId: list of strings(event Ids) :returns: List containig all the information of existing events :rtype: list :raise c8.exceptions.EventDeleteError: if event creation failed """ data = json.dumps((eventIds)) request = Request(method="delete", endpoint="/events", data=data) def response_handler(resp): if not resp.is_success: raise EventGetError(resp, request) return True return self._execute(request, response_handler) def get_all_events(self): """Create an event. :returns: List containig all the information of existing events :rtype: list :raise c8.exceptions.EventGetError: if event creation failed """ request = Request(method="get", endpoint="/events/tenant") def response_handler(resp): if not resp.is_success: raise EventGetError(resp, request) return resp.body return self._execute(request, response_handler) def get_event_by_Id(self, eventId): """Create an event. :param eventId: The event id for which you want to fetch the event details :returns: List containig all the information of existing events :rtype: list :raise c8.exceptions.EventGetError: if event creation failed """ request = Request(method="get", endpoint="/events/" + str(eventId)) def response_handler(resp): if not resp.is_success: raise EventGetError(resp, request) return resp.body return self._execute(request, response_handler) ######################## # Stream Apps # ######################## def stream_app(self, name): return StreamApps(self._conn, self._executor, name) def validate_stream_app(self, data): """validates a stream app by given data :param data: stream app defination string """ body = {"definition": data} req = Request( method="post", endpoint="/streamapps/validate", data=json.dumps(body) ) def response_handler(resp): if resp.is_success is True: return True return False return self._execute(req, response_handler) def retrieve_stream_app(self): """retrieves all the stream apps of a fabric""" req = Request( method="get", endpoint="/streamapps", ) def response_handler(resp): if resp.is_success is True: return resp.body return False return self._execute(req, response_handler) def get_samples_stream_app(self): """gets samples for stream apps""" req = Request( method="get", endpoint="/streamapps/samples", ) def response_handler(resp): if resp.is_success is not True: raise StreamAppGetSampleError(resp, req) return resp.body["streamAppSample"] return self._execute(req, response_handler) def create_stream_app(self, data, dclist=[]): """Creates a stream application by given data :param data: stream app definition :param dclist: regions where stream app has to be deployed """ # create request body req_body = {"definition": data, "regions": dclist} # create request req = Request(method="post", endpoint="/streamapps", data=json.dumps(req_body)) # create response handler def response_handler(resp): if resp.is_success is True: return True return False # call api return self._execute(req, response_handler) ######################## # APIKeys # ######################## def api_keys(self, keyid): """Return the API keys API wrapper. :param keyid: API Key id :type kaeyid: string | unicode :returns: API keys API wrapper. :rtype: c8.stream_collection.StreamCollection """ return APIKeys(self._conn, self._executor, keyid) def list_all_api_keys(self): """List the API keys. :returns:list. :raise c8.exceptions.GetAPIKeys: If request fails """ request = Request( method="get", endpoint="/key", ) # create response handler def response_handler(resp): if not resp.is_success: raise GetAPIKeys(resp, request) else: return resp.body["result"] return self._execute(request, response_handler, custom_prefix="/_api") ############################## # Search, View and Analyzers # ############################## def search(self): """Returns the Search APIWrapper :returns: Search API Wrapper :rtype: c8.search.Search """ return Search(self._conn, self._executor) class StandardFabric(Fabric): """Standard fabric API wrapper. :param connection: HTTP connection. :type connection: c8.connection.Connection """ def __init__(self, connection): super(StandardFabric, self).__init__( connection=connection, executor=DefaultExecutor(connection) ) def __repr__(self): return "<StandardFabric {}>".format(self.name) def begin_async_execution(self, return_result=True): """Begin async execution. :param return_result: If set to True, API executions return instances of :class:`c8.job.AsyncJob`, which you can use to retrieve results from server once available. If set to False, API executions return None and no results are stored on server. :type return_result: bool :returns: Fabric API wrapper built specifically for async execution. :rtype: c8.fabric.AsyncFabric """ return AsyncFabric(self._conn, return_result) def begin_batch_execution(self, return_result=True): """Begin batch execution. :param return_result: If set to True, API executions return instances of :class:`c8.job.BatchJob` that are populated with results on commit. If set to False, API executions return None and no results are tracked client-side. :type return_result: bool :returns: Fabric API wrapper built specifically for batch execution. :rtype: c8.fabric.BatchFabric """ return BatchFabric(self._conn, return_result) class AsyncFabric(Fabric): """Fabric API wrapper tailored specifically for async execution. See :func:`c8.fabric.StandardFabric.begin_async_execution`. :param connection: HTTP connection. :type connection: c8.connection.Connection :param return_result: If set to True, API executions return instances of :class:`c8.job.AsyncJob`, which you can use to retrieve results from server once available. If set to False, API executions return None and no results are stored on server. :type return_result: bool """ def __init__(self, connection, return_result): super(AsyncFabric, self).__init__( connection=connection, executor=AsyncExecutor(connection, return_result) ) def __repr__(self): return "<AsyncFabric {}>".format(self.name) class BatchFabric(Fabric): """Fabric API wrapper tailored specifically for batch execution. See :func:`c8.fabric.StandardFabric.begin_batch_execution`. :param connection: HTTP connection. :type connection: c8.connection.Connection :param return_result: If set to True, API executions return instances of :class:`c8.job.BatchJob` that are populated with results on commit. If set to False, API executions return None and no results are tracked client-side. :type return_result: bool """ def __init__(self, connection, return_result): super(BatchFabric, self).__init__( connection=connection, executor=BatchExecutor(connection, return_result) ) def __repr__(self): return "<BatchFabric {}>".format(self.name) def __enter__(self): return self def __exit__(self, exception, *_): if exception is None: self._executor.commit() def queued_jobs(self): """Return the queued batch jobs. :returns: Queued batch jobs or None if **return_result** parameter was set to False during initialization. :rtype: [c8.job.BatchJob] | None """ return self._executor.jobs def commit(self): """Execute the queued requests in a single batch API request. If **return_result** parameter was set to True during initialization, :class:`c8.job.BatchJob` instances are populated with results. :returns: Batch jobs, or None if **return_result** parameter was set to False during initialization. :rtype: [c8.job.BatchJob] | None :raise c8.exceptions.BatchStateError: If batch state is invalid (e.g. batch was already committed or the response size did not match expected). :raise c8.exceptions.BatchExecuteError: If commit fails. """ return self._executor.commit()
Macrometacorp/pyC8
c8/fabric.py
fabric.py
py
56,104
python
en
code
6
github-code
6
33215300998
# # @lc app=leetcode.cn id=15 lang=python3 # # [15] 三数之和 # # @lc code=start class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: result = [] n = len(nums) nums.sort() for i, first in enumerate(nums): if i > 0 and first == nums[i - 1]: continue k = n - 1 for j, second in enumerate(nums[i+1:], i + 1): if j > i + 1 and second == nums[j - 1]: continue while second + nums[k] > -first and j < k: k -= 1 if j == k: break if second + nums[k] == -first: result.append((first, second, nums[k])) return result # @lc code=end
P4Peemo/Leetcode
15.三数之和.py
15.三数之和.py
py
807
python
en
code
0
github-code
6
8600407692
from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from .routers import post, user, auth, vote ############################################ #models.Base.metadata.create_all(bind=engine) app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(post.router) app.include_router(user.router) app.include_router(auth.router) app.include_router(vote.router) @app.get("/") def root(): return {"message": "Hello World"} """ my_posts = [{"title": "title of post 1", "content": "content of post 1", "id":1}, {"title": "favorite foods", "content": "I like pizza", "id":2}] def find_post(id): for p in my_posts: if p["id"] == id: return p def find_index_post(id): for i, p in enumerate(my_posts): if p['id'] == id: return i """ """ #Path Operations @app.get("/") #IT IS THE DECORATOR: IT CREATES THE ENDPOINT OF THE FUNCTION. It is called on the already created FastAPI INSTANCE (app) #Within the brackets we have the PATH, the path that we must access from the URL #the get method: is one of the possible HTTP methods def root(): 1): Async it is optional (so we can delete it) 2): the name of the fun should be as much descriptive as possible 3)RETURN: is the message that is returned back to the user return {"message": "Hello World"} """
Mattia921/example-fastapi
app/main.py
main.py
py
1,524
python
en
code
0
github-code
6
18849850963
import os import random import math import seaborn import matplotlib.pyplot as plt num_train_samples = 1 threshold = 0.25 dtw_window = 50 # thresholds: 0.15, 0.2, ... def read_gesture(path): with open(path, "r") as file: lines = [line.rstrip() for line in file] gesture = [[float(value) for value in data.split(',')] for data in lines] return gesture labels = ['circle_ccw', 'circle_cw', 'heart_cw', 'square_ccw', 'triangle_cw', 'junk'] paths = os.listdir('gestures') circle_ccw = [('circle_ccw', read_gesture('gestures/' + path)) for path in paths if path.startswith('circle_ccw')] circle_cw = [('circle_cw', read_gesture('gestures/' + path)) for path in paths if path.startswith('circle_cw')] heart_cw = [('heart_cw', read_gesture('gestures/' + path)) for path in paths if path.startswith('heart_cw')] square_ccw = [('square_ccw', read_gesture('gestures/' + path)) for path in paths if path.startswith('square_ccw')] triangle_cw = [('triangle_cw', read_gesture('gestures/' + path)) for path in paths if path.startswith('triangle_cw')] junk = [('junk', read_gesture('gestures/' + path)) for path in paths if path.startswith('junk')] def fir_lowpass_first(a): q = 0.95 b = [a[0]] for i in range(1, len(a)): x = (1.0 - q) * a[i - 1][0] + q * a[i][0] y = (1.0 - q) * a[i - 1][1] + q * a[i][1] z = (1.0 - q) * a[i - 1][2] + q * a[i][2] b.append([x, y, z]) return b def calc_distance(a, b) -> float: ax = a[0] ay = a[1] az = a[2] bx = b[0] by = b[1] bz = b[2] dir = (ax * bx + ay * by + az * bz) / (normalize(ax, ay, az) * normalize(bx, by, bz) + 0.0000001) return (1.0 - 0.5 * dir) * normalize(ax - bx, ay - by, az - bz) def normalize(x, y, z) -> float: return math.sqrt(x * x + y * y + z * z) def calc_dtw(a, b) -> float: a = fir_lowpass_first(a) b = fir_lowpass_first(b) dtw = [[0.0 for _ in range(50)] for _ in range(50)] dtw[0][0] = calc_distance(a[0], b[0]) for i in range(1, 50): dtw[i][0] = calc_distance(a[i], b[0]) + dtw[i - 1][0] dtw[0][i] = calc_distance(a[0], b[i]) + dtw[0][i - 1] for i in range(1, 50): for j in range(1, 50): dtw[i][j] = calc_distance(a[i], b[j]) + min(dtw[i - 1][j], dtw[i][j - 1], dtw[i - 1][j - 1]) i = 49 j = 49 distance = [0.0 for _ in range(100)] length = 0 while i > 0 and j > 0: if dtw[i - 1][j] <= dtw[i][j - 1] and dtw[i - 1][j] <= dtw[i - 1][j - 1] and (j - i) <= dtw_window: distance[length] = dtw[i][j] - dtw[i - 1][j] i -= 1 elif dtw[i][j - 1] < dtw[i - 1][j - 1] and (i - j) <= dtw_window: distance[length] = dtw[i][j] - dtw[i][j - 1] j -= 1 else: distance[length] = dtw[i][j] - dtw[i - 1][j - 1] i -= 1 j -= 1 length += 1 while i > 0: distance[length] = dtw[i][0] - dtw[i - 1][0] i -= 1 length += 1 while j > 0: distance[length] = dtw[0][j] - dtw[0][j - 1] j -= 1 length += 1 distance[length] = dtw[0][0] length += 1 mean = 0.0 for i in range(length): mean += distance[i] mean = mean / float(length) return mean confusion_matrix = {} num_trails = {} for true_label in labels: confusion_matrix[true_label] = {} num_trails[true_label] = 0.0 for predicted_label in labels: confusion_matrix[true_label][predicted_label] = 0.0 for _ in range(25): random.shuffle(circle_ccw) random.shuffle(circle_cw) random.shuffle(heart_cw) random.shuffle(square_ccw) random.shuffle(triangle_cw) circle_ccw_train = circle_ccw[:num_train_samples] circle_ccw_test = circle_ccw[num_train_samples:] circle_cw_train = circle_cw[:num_train_samples] circle_cw_test = circle_cw[num_train_samples:] heart_cw_train = heart_cw[:num_train_samples] heart_cw_test = heart_cw[num_train_samples:] square_ccw_train = square_ccw[:num_train_samples] square_ccw_test = square_ccw[num_train_samples:] triangle_cw_train = triangle_cw[:num_train_samples] triangle_cw_test = triangle_cw[num_train_samples:] train = circle_ccw_train + circle_cw_train + heart_cw_train + square_ccw_train + triangle_cw_train test = circle_ccw_test + circle_cw_test + heart_cw_test + square_ccw_test + triangle_cw_test + junk for (predicted_label, gesture) in test: means = [(a, calc_dtw(gesture, tr)) for (a, tr) in train] means.sort(key=lambda x:x[1]) true_label = means[0][0] mean = means[0][1] if mean > threshold: true_label = 'junk' confusion_matrix[true_label][predicted_label] += 1.0 num_trails[predicted_label] += 1.0 cf_plot = [[0 for _ in labels] for _ in labels] for (i, true_label) in enumerate(['circle_ccw', 'circle_cw', 'heart_cw', 'square_ccw', 'triangle_cw', 'junk']): for (j, predicted_label) in enumerate(['circle_ccw', 'circle_cw', 'heart_cw', 'square_ccw', 'triangle_cw', 'junk']): cf_plot[j][i] = confusion_matrix[true_label][predicted_label] / num_trails[predicted_label] plt.tick_params(labeltop=True, labelbottom=False) seaborn.heatmap(cf_plot, cmap='rocket_r', annot=True, vmin=0.0, vmax=1.0, xticklabels=labels, yticklabels=labels, cbar=False) plt.show()
xrgman/ColorMatchingBracelet
arduino/GestureRecorder/evaluate.py
evaluate.py
py
5,392
python
en
code
2
github-code
6
2055718392
# USAGE # python knn.py --dataset ../../SolutionDL4CV/SB_code/datasets/animals from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from pyimagesearch.preprocessing import SimplePreprocessor from pyimagesearch.datasets import SimpleDatasetLoader from imutils import paths import argparse ap = argparse.ArgumentParser() ap.add_argument('-d', '--dataset', required=True, help='path to input dataset') ap.add_argument('-k', '--neighbors', type=int, default=1, help='# of nearest neighbors for classification') ap.add_argument('-j', '--jobs', type=int, default=-1, help='# of jobs for k-NN distance (-1 uses all available cores)') args = vars(ap.parse_args()) print('[INFO] loading images...') img_paths = list(paths.list_images(args['dataset'])) sp = SimplePreprocessor(32, 32) sdl = SimpleDatasetLoader(preprocessors=[sp]) data, labels = sdl.load(img_paths, verbose=500) data = data.reshape((len(data), -1)) print(f'[INFO] feature matrix: {data.nbytes/(1024*1000.0):.1f}MB') # Encode the labels as integer le = LabelEncoder() labels = le.fit_transform(labels) # Split to train and test set X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.25, random_state=42) print("[INFO] evaluating k-NN classifier...") model = KNeighborsClassifier(n_neighbors=args['neighbors'], n_jobs=args['jobs']) model.fit(X_train, y_train) print(classification_report(y_test, model.predict(X_test), target_names=le.classes_))
lykhahaha/Mine
StarterBundle/chapter07-first_image_classifier/knn.py
knn.py
py
1,583
python
en
code
0
github-code
6
4709876834
import numpy as np import matplotlib.pyplot as plt import activation_functions as acfunc inp_a = np.arange(-1.0, 1.0, 0.2) inp_b = np.arange(-1.0, 1.0, 0.2) outputs = np.zeros((10, 10)) weight_a = 2.5 weight_b = 3 bias = 0.1 for i in range(10): for j in range(10): u_single = inp_a[i] * weight_a + inp_b[j] * weight_b + bias outputs[i][j] = acfunc.sigmoid_func(u_single) plt.imshow(outputs, "gray", vmin=0.0, vmax=1.0) plt.colorbar() plt.show()
tsubamon55/pyailesson
single_neuron.py
single_neuron.py
py
471
python
en
code
0
github-code
6
14478011852
''' Loss functions. ''' import copy import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import utils class NLLLoss(nn.Module): """Self-Defined NLLLoss Function Args: weight: Tensor (num_class, ) """ def __init__(self, weight): super(NLLLoss, self).__init__() self.weight = weight def forward(self, prob, target): """ Args: prob: (N, C) target : (N, ) """ N = target.size(0) C = prob.size(1) weight = Variable(self.weight).view((1, -1)) weight = weight.expand(N, C) # (N, C) if prob.is_cuda: weight = weight.cuda() prob = weight * prob one_hot = torch.zeros((N, C)) if prob.is_cuda: one_hot = one_hot.cuda() one_hot.scatter_(1, target.data.view((-1,1)), 1) one_hot = one_hot.type(torch.ByteTensor) one_hot = Variable(one_hot) if prob.is_cuda: one_hot = one_hot.cuda() loss = torch.masked_select(prob, one_hot) return -torch.sum(loss) class GANLoss(nn.Module): """Reward-Refined NLLLoss Function for adversial training of Generator""" def __init__(self): super(GANLoss, self).__init__() def forward_reinforce(self, prob, target, reward, cuda=False): """ Forward function used in the SeqGAN implementation. Args: prob: (N, C), torch Variable target : (N, ), torch Variable reward : (N, ), torch Variable """ N = target.size(0) C = prob.size(1) one_hot = torch.zeros((N, C)) if cuda: one_hot = one_hot.cuda() one_hot.scatter_(1, target.data.view((-1,1)), 1) one_hot = one_hot.type(torch.ByteTensor) one_hot = Variable(one_hot) if cuda: one_hot = one_hot.cuda() loss = torch.masked_select(prob, one_hot) loss = loss * reward loss = -torch.sum(loss) return loss def forward_reward(self, i, samples, prob, rewards, BATCH_SIZE, g_sequence_len, VOCAB_SIZE, cuda=False): """ Returns what is used to get the gradient contribution of the i-th term of the batch. """ conditional_proba = Variable(torch.zeros(BATCH_SIZE, VOCAB_SIZE)) if cuda: conditional_proba = conditional_proba.cuda() for j in range(BATCH_SIZE): conditional_proba[j, int(samples[j, i])] = 1 conditional_proba[j, :] = - (rewards[j]/BATCH_SIZE * conditional_proba[j, :]) return conditional_proba def forward_reward_grads(self, samples, prob, rewards, g, BATCH_SIZE, g_sequence_len, VOCAB_SIZE, cuda=False): """ Returns a list of gradient contribution of every term in the batch """ conditional_proba = Variable(torch.zeros(BATCH_SIZE, g_sequence_len, VOCAB_SIZE)) batch_grads = [] if cuda: conditional_proba = conditional_proba.cuda() for j in range(BATCH_SIZE): for i in range(g_sequence_len): conditional_proba[j, i, int(samples[j, i])] = 1 conditional_proba[j, :, :] = - (rewards[j] * conditional_proba[j, :, :]) for j in range(BATCH_SIZE): j_grads = [] # since we want to isolate each contribution, we have to zero the generator's gradients here. g.zero_grad() prob[j, :, :].backward(conditional_proba[j, :, :], retain_graph=True) for p in g.parameters(): j_grads.append(p.grad.clone()) batch_grads.append(j_grads) return batch_grads class VarianceLoss(nn.Module): """Loss for the control variate annex network""" def __init__(self): super(VarianceLoss, self).__init__() def forward(self, grad, cuda = False): """ Used to get the gradient of the variance. """ bs = len(grad) ref = 0 for j in range(bs): for i in range(len(grad[j])): ref += torch.sum(grad[j][i]**2).item() total_loss = np.array([ref/bs]) total_loss = Variable(torch.Tensor(total_loss), requires_grad=True) if cuda: total_loss = total_loss.cuda() return total_loss def forward_variance(self, grad, cuda=False): """ Used to get the variance of one single parameter. In this case, we take look at the last layer, then take the variance of the first parameter of this last layer in main.py """ bs = len(grad) n_layers = len(grad[0]) square_term = torch.zeros((grad[0][n_layers-1].size())) normal_term = torch.zeros((grad[0][n_layers-1].size())) if cuda: square_term = square_term.cuda() normal_term = normal_term.cuda() for j in range(bs): square_term = torch.add(square_term, grad[j][n_layers-1]**2) normal_term = torch.add(normal_term, grad[j][n_layers-1]) square_term /= bs normal_term /= bs normal_term = normal_term ** 2 return square_term - normal_term
TalkToTheGAN/REGAN
loss.py
loss.py
py
5,235
python
en
code
42
github-code
6
8310998664
def makeForms(verb): character = ('o', 'ch', 's', 'sh', 'x', 'z') if verb.endswith("y"): new = verb[:-1] + "ies" elif verb.endswith(character): new = verb + "es" else: new = verb + "s" return new def main(): verb = input("Enter your word: ") print("The third person singular form is", makeForms(verb)) main()
angelinekaren/Programming-Exercises
Exercise 4/answer12/main.py
main.py
py
378
python
en
code
0
github-code
6
71994815868
"""Control implementation for assignment 1. The controller used the simulation in file `aer1216_fall2020_hw1_sim.py`. Example ------- To run the simulation, type in a terminal: $ python aer1216_fall2020_hw1_sim.py Notes ----- Tune the PD coefficients in `HW1Control.__init__()`. """ import numpy as np from gym_pybullet_drones.envs.BaseAviary import BaseAviary class HW1Control(): """Control class for assignment 1.""" ################################################################################ def __init__(self, env: BaseAviary ): """ Initialization of class HW1Control. Parameters ---------- env : BaseAviary The PyBullet-based simulation environment. """ self.g = env.G """float: Gravity acceleration, in meters per second squared.""" self.mass = env.M """float: The mass of quad from environment.""" self.timestep = env.TIMESTEP """float: Simulation and control timestep.""" self.kf_coeff = env.KF """float: RPMs to force coefficient.""" self.km_coeff = env.KM """float: RPMs to torque coefficient.""" ############################################################ ############################################################ #### HOMEWORK CODE (START) ################################# ############################################################ ############################################################ self.p_coeff_position = 0.7 * 0.7 """float: Proportional coefficient for position control.""" self.d_coeff_position = 2 * 0.7 * 0.7 """float: Derivative coefficient for position control.""" ############################################################ ############################################################ #### HOMEWORK CODE (END) ################################### ############################################################ ############################################################ self.reset() ################################################################################ def reset(self): """ Resets the controller counter.""" self.control_counter = 0 ################################################################################ def compute_control(self, current_position, current_velocity, target_position, target_velocity=np.zeros(3), target_acceleration=np.zeros(3), ): """Compute the propellers' RPMs for the target state, given the current state. Parameters ---------- current_position : ndarray (3,)-shaped array of floats containing global x, y, z, in meters. current_velocity : ndarray (3,)-shaped array of floats containing global vx, vy, vz, in m/s. target_position : ndarray (3,)-shaped array of float containing global x, y, z, in meters. target_velocity : ndarray, optional (3,)-shaped array of floats containing global, in m/s. target_acceleration : ndarray, optional (3,)-shaped array of floats containing global, in m/s^2. Returns ------- ndarray (4,)-shaped array of ints containing the desired RPMs of each propeller. """ self.control_counter += 1 ############################################################ ############################################################ #### HOMEWORK CODE (START) ################################# ############################################################ ############################################################ ##### Calculate position and velocity errors ############### current_pos_error = target_position[2] - current_position[2] current_vel_error = target_velocity[2] - current_velocity[2] #### Calculate input with a PD controller ################## # u = desired_acceleration + Kv * velocity_error + Kp * position_error u = target_acceleration[2] \ + self.d_coeff_position * current_vel_error \ + self.p_coeff_position * current_pos_error ##### Calculate propeller turn rates given the PD input #### # turn_rate = sqrt( (m*u + m*g) / (4*Kf) ) propellers_rpm = np.sqrt((u*self.mass + self.g*self.mass) / (4 * self.kf_coeff)) # For up-down motion, assign the same turn rates to all motors propellers_0_and_3_rpm, propellers_1_and_2_rpm = propellers_rpm, propellers_rpm ############################################################ ############################################################ #### HOMEWORK CODE (END) ################################### ############################################################ ############################################################ #### Print relevant output ################################# if self.control_counter%(1/self.timestep) == 0: print("current_position", current_position) print("current_velocity", current_velocity) print("target_position", target_position) print("target_velocity", target_velocity) print("target_acceleration", target_acceleration) return np.array([propellers_0_and_3_rpm, propellers_1_and_2_rpm, propellers_1_and_2_rpm, propellers_0_and_3_rpm])
kaustubhsridhar/Constrained_Models
Drones/gym-pybullet-drones/assignments/aer1216_fall2020_hw1_ctrl.py
aer1216_fall2020_hw1_ctrl.py
py
5,709
python
de
code
15
github-code
6
71570292029
from django import forms from django.core.exceptions import ValidationError from semester.models import Semester, CourseOffered, CourseDistribution, DistributedSectionDetail from tempus_dominus.widgets import TimePicker, DatePicker from django.contrib import messages from django.shortcuts import redirect class SemesterForm(forms.ModelForm): start_effect_date = forms.DateField( widget=DatePicker( options={ 'collapse': False, 'format': 'L', }, attrs={ 'append': 'fa fa-calendar', 'icon_toggle': True, 'input_toggle': True, 'placeholder': 'Start Effect Date', 'required': 'true', 'autocomplete': 'off', }, ) ) end_effect_date = forms.DateField( widget=DatePicker( options={ 'collapse': False, 'format': 'L', }, attrs={ 'append': 'fa fa-calendar', 'icon_toggle': True, 'input_toggle': True, 'placeholder': 'End Effect Date', 'required': 'true', 'autocomplete': 'off', }, ) ) class Meta: model = Semester fields = ('name', 'year', 'start_effect_date', 'end_effect_date') class CourseOfferingForm(forms.ModelForm): class Meta: model = CourseOffered fields = '__all__' class CourseDistributionForm(forms.ModelForm): starting_id = forms.CharField() ending_id = forms.CharField() class Meta: model = CourseDistribution fields = ('offered', 'section', 'teacher', 'parent_dist', 'starting_id', 'ending_id') def clean(self): cd = self.cleaned_data qs = CourseDistribution.objects.filter(offered=cd.get('offered'), section=cd.get('section')) if qs: for obj in qs: try: ms = DistributedSectionDetail.objects.get(distribution=obj) if ms.starting_id == "*" or cd.get('starting_id') == "*": raise ValidationError("Course already distributed to Section.") else: if not (cd.get('ending_id') < ms.starting_id or cd.get('starting_id') > ms.ending_id): raise ValidationError("Course already distributed to Section.") # raise ValidationError("Course already distributed to Section.") except: return redirect("/distribution/create/") parent = cd.get('parent_dist') if parent: while parent.parent_dist != parent: cd['parent_dist'] = parent.parent_dist parent = cd.get('parent_dist') if parent and cd.get('teacher') != parent.teacher: raise ValidationError("Merged sections has different teacher") return cd def save(self, commit=True): cd = self.cleaned_data instance = super(CourseDistributionForm, self).save(commit=True) if not instance.parent_dist: instance.parent_dist = instance instance.save() DistributedSectionDetail.objects.update( distribution=instance, starting_id=cd.get('starting_id'), ending_id=cd.get('ending_id') ) return instance class CourseDistributionUpdateForm(forms.ModelForm): class Meta: model = CourseDistribution fields = ('offered', 'section', 'teacher', 'parent_dist') def clean(self): cd = self.cleaned_data parent = cd.get('parent_dist') if parent: while parent.parent_dist != parent: cd['parent_dist'] = parent.parent_dist parent = cd.get('parent_dist') if parent and cd.get('teacher') != parent.teacher: raise ValidationError("Merged sections has different teacher") return cd
Emad-ahmed/luRoutine
semester/forms.py
forms.py
py
4,085
python
en
code
0
github-code
6
40182196672
from anomaly_detection import Amean from multiprocessing import Process, Queue from database import DataBase from datetime import datetime, timedelta import time import traceback class AnomalyDomain (Process): # initilize data def __init__(self, name, host) : super(AnomalyDomain, self).__init__() self.name = name self.db = DataBase(host=host, database="anomaly", collection="data") self.last_update = "" self.last_value = 0 self.timeline = [] for i in range(24) : hour_detection = Amean() self.timeline.append(hour_detection) self.timeline_weekend = [] for i in range(24) : hour_detection = Amean() self.timeline_weekend.append(hour_detection) return def __predict (self, hour=0, current=0, angle=0, date="") : """predict and return value for new data point""" date = datetime.strptime(date, "%Y-%m-%d") code = self.timeline[hour].predict(current=current, angle=angle) if code == '' : return 10 else : return code def __log (self, msg) : with open("log.txt","a") as f : f.write(msg + '\n') return def __check_new_data (self, name) : """check if there is new data in repo if yes, return all new data""" # check if repo is null (start-date = null) if self.last_update == "" : start_date = self.db.get_start_date(name=name) if start_date != '' : self.last_update = start_date # check last update # go to database and get last_update, then update data in anomaly class (this class) db_last_update = self.db.get_last_update(name=name) print("db_last_update: ",db_last_update) if db_last_update == '' or not db_last_update: return [] else : db_last_update = datetime.strptime(db_last_update, "%Y-%m-%d %H") last_update = datetime.strptime(self.last_update, "%Y-%m-%d %H") result = [] while last_update < db_last_update : print("db_last_update: ", name," ", db_last_update) last_update += timedelta(seconds=3600) print("check last update :", last_update) date = last_update.strftime("%Y-%m-%d") hour = last_update.hour data_value = self.db.get_data_by_hour(name=name, date=date, hour=hour) self.__log(date + ' ' + str(hour) + ' ' + str(data_value)) data = {'angle':float(data_value)-float(self.last_value), 'current':data_value, 'date':date, 'hour':hour} result.append(data) self.last_value = data_value self.last_update = datetime.strftime(last_update, '%Y-%m-%d %H') return result def __save_result (self, name, date, result) : self.db.insert_result(name=name, date=date, value=result) return #========================= RUN ============================== # Run process method # start per process by calling run() def run(self) : name = self.name try : while True : time.sleep(10) data = self.__check_new_data (name) # data : # [] : no new data # [ {date:, hour:, current:, angle:)] print("--------------AnomalyDomain is running1--------------") if data != [] : print("--------------AnomalyDomain is running2--------------") # predict new data for hour_data in data : result_prediction = self.__predict(hour=hour_data['hour'], current=hour_data['current'], angle=hour_data['angle'], date=hour_data["date"]) # save result to db self.__save_result(name=name, date=hour_data['date']+' '+str(hour_data['hour']), result=result_prediction) #continue waiting except Exception as e: with open("log.txt","a") as f : f.write(str(e) + '\n') traceback.print_exc()
DUCQUAN7850/warning_service_master
warning_service-master/anomaly_domain.py
anomaly_domain.py
py
4,642
python
en
code
0
github-code
6
42174278814
# import transformers # import datasets # from pprint import pprint # # with pipeline # model = transformers.AutoModelForSequenceClassification.from_pretrained("") # load model from local directory # tokenizer = transformers.AutoTokenizer.from_pretrained("TurkuNLP/bert-base-finnish-cased-v1") # test_pipe = transformers.pipeline(task="text-classification", model=model, tokenizer=tokenizer, function_to_apply="sigmoid", top_k=None) # return_all_scores=True is deprecated # test = [""] # add examples to test # results = test_pipe(test) # for zipped in zip(test, results): # pprint(zipped) import transformers import torch import numpy as np import argparse from pprint import PrettyPrinter import json import datasets import pandas as pd import csv """ This script is meant for looking at multi-label predictions for raw text data and saving the probabilities with id. """ # parse arguments parser = argparse.ArgumentParser() parser.add_argument('--model', required=True, help="the model name") parser.add_argument('--data', required=True, help="the file name of the raw text to use for predictions") parser.add_argument('--tokenizer', required=True, help="the tokenizer to use for tokenizing new text") parser.add_argument('--filename', required=True, help="the file name to give file resulting from the predictions") args = parser.parse_args() print(args) pprint = PrettyPrinter(compact=True).pprint # read the data in data = args.data if ".json" in data: with open(data, 'r') as json_file: json_list = list(json_file) lines = [json.loads(jline) for jline in json_list] # use pandas to look at each column df=pd.DataFrame(lines) # # TODO might have to change this depending on the data type # elif ".tsv" in data: # with open(data, "rt", encoding="utf-8") as f: # lines = f.readlines() # lines = lines[1:] # for i in range(len(lines)): # lines[i] = lines[i].replace("\n", "") # lines[i] = lines[i].split("\t") # assert len(lines[i]) == 3 # df=pd.DataFrame(lines, columns = ['id', 'label', 'text']) elif ".tsv" in data: with open(data, "rt", encoding="utf-8") as f: lines = f.readlines() lines = lines[1:] for i in range(len(lines)): lines[i] = lines[i].replace("\n", "") lines[i] = lines[i].split("\t") assert len(lines[i]) == 2 df=pd.DataFrame(lines, columns = ['label', 'text']) # instantiate model, this is pretty simple model=transformers.AutoModelForSequenceClassification.from_pretrained(args.model) trainer = transformers.Trainer( model=model ) tokenizer = transformers.AutoTokenizer.from_pretrained(args.tokenizer) def tokenize(example): return tokenizer( example["text"], padding='max_length', # this got it to work, data_collator could have helped as well? max_length=512, truncation=True, ) dataset = datasets.Dataset.from_pandas(df) #map all the examples dataset = dataset.map(tokenize) labels = dataset["label"] # oh right I would have to change the labels for the test set to match the upper ones if I wanted easily readable results dataset = dataset.remove_columns("label") texts = dataset["text"] #ids = dataset["id"] # see how the labels are predicted test_pred = trainer.predict(dataset) predictions = test_pred.predictions # these are the logits sigmoid = torch.nn.Sigmoid() probs = sigmoid(torch.Tensor(predictions)) probs = probs.numpy() unique_labels = ["IN", "NA", "HI", "LY", "IP", "SP", "ID", "OP", "QA_NEW"] # upper labels plus qa_new with open(args.filename, 'w') as outfile: header = ["text", "gold_labels", *unique_labels] #maybe I should put the text last writer = csv.writer(outfile, delimiter="\t") writer.writerow(header) for i in range(len(texts)): text = texts[i] gold = labels[i] line = [text, gold] pred_list = [str(val) for val in probs[i]] line = [*line, *pred_list] writer.writerow(line)
TurkuNLP/register-qa
predict.py
predict.py
py
4,037
python
en
code
0
github-code
6
36920706174
#------------------------------------------------------------------------- # Script en python que se encarga de conectarse a un recurso Event Hub de # Microsoft Azure y leer todos los mensajes disponibles, al mismo tiempo # que deja un checkpoint de lo que ha leído para no repetir mensajes # la siguiente vez que arranque el programa. # # Instrucciones para utilizarla. # 1-. Tener Python 3.4 o mayor. # 2-. Tener el instalador de paquetes "pip". # 3-. Ingresar el comando "pip install azure-eventhub" # # Autor: Noé Amador Campos Castillo. # E-mail: [email protected] #-------------------------------------------------------------------------- import os import sys import json import signal import logging import asyncio import functools from azure.eventprocessorhost import ( AbstractEventProcessor, AzureStorageCheckpointLeaseManager, EventHubConfig, EventProcessorHost, EPHOptions) class EventProcessor(AbstractEventProcessor): # Constructor de un Event Processor def __init__(self, params=None): super().__init__(params) self._msg_counter = 0 # Función que se puede hacer override # Es para inicializar un Procesador de Eventos async def open_async(self, context): print("Connection established {}".format(context.partition_id)) # Función que se puede hacer override # Sirve para detener el Procesador de Eventos. async def close_async(self, context, reason): print("Connection closed (reason {}, id {}, offset {}, sq_number {})".format( reason, context.partition_id, context.offset, context.sequence_number)) # Función que se puede hacer override """ Se llama cuando el EPH recibe un nuevo batch de eventos. Es donde se programa las acciones a realizar. Parametros: context = Información sobre la partición messages = El batch de eventos a procesar """ async def process_events_async(self, context, messages): # Por cada evento... for Event in messages: # Se imprime el número de secuencia print("Mensaje: {}".format(Event.sequence_number)) # Se parsea el json recibido en el mensaje del evento parsedMessage = json.loads(Event.body_as_str()) # Se imprime de manera más estetica print(json.dumps(parsedMessage, indent=2, sort_keys=True)) # Deja un checkpoint del evento recibido await context.checkpoint_async() # Función que se puede hacer override """ Se llama cada que el cliente experimenta algún error al recibir eventos. El Event Proccessor Host se recupera recibiendo desde donde se quedo. ( A menos de que se haya matado el programa ) Parametros: context = Información sobre la partición messages = El batch de eventos a procesar """ async def process_error_async(self, context, error): print("Event Processor Error {!r}".format(error)) # Recibir eventos por dos minutos y luego apagarlo async def wait_and_close(host): await asyncio.sleep(60) await host.close_async() # Se conecta y recibe mensajes try: # Regresa un loop asincrono ephLoop = asyncio.get_event_loop() # Nombre del Storage Account stgName = "-" # Key del storage stgKey = "-" # Nombre del Blob blobName = "-" # Nombre del namespace de Event Hubs ehNamespace = "-" # Nombre del Event Hub ehName = "-" # Nombre del SAS Policy del Event Hub SASUser = "-" # Llave del SAS Policy del Event Hub SASKey = "-" """ Configuración del Event Hub Párametros: sb_name = Nombre del namespace de Event Hubs eh_name = Nombre del Event Hub policy = Nombre del SAS Policy key = Llave de la SAS Policy """ ehConfig = EventHubConfig(ehNamespace, ehName, SASUser, SASKey) # Opciones por default ehOptions = EPHOptions() # Set algunas opciones ehOptions.release_pump_on_timeout = True ehOptions.debug_trace = False """ Configuración del Storage Párametros: storage_account_name = Nombre del storage storage_account_key = Llave del storage lease_container_name = Nombre del contenedor """ stgManager = AzureStorageCheckpointLeaseManager( stgName, stgKey, blobName) # Host del Event Hub Processor ehHost = EventProcessorHost( EventProcessor, ehConfig, stgManager, ep_params = ["param1", "param2"], eph_options = ehOptions, loop = ephLoop) # Prepara los procedimientos a ejecutar en loop ephTasks = asyncio.gather( ehHost.open_async(), wait_and_close(ehHost)) # Corre el loop ephLoop.run_until_complete(ephTasks) # En caso de ocurrri excepciones de teclado except KeyboardInterrupt: # Cancela las tareas y el loop for task in asyncio.Task.all_tasks(): task.cancel() ephLoop.run_forever() ephTasks.exception() # Cierra el loop finally: ephLoop.stop()
NoeCampos22/Ejercicio_Azure_Databricks
Mini-Ejercicios/1_Enviar_Recibir_Eventos_EventHub/EPH.py
EPH.py
py
5,351
python
es
code
0
github-code
6
2500816506
from bokeh.layouts import column from bokeh.models.widgets import RadioButtonGroup,Select, Div, Button,PreText from bokeh.models import TextInput, RadioGroup from bokeh.plotting import curdoc button_group = RadioButtonGroup(labels=["Physical parameters", "Geometric parameters", "Initial conditions"], active=1) ## Add the elements inside each radio button slope = TextInput(value='25', title="slope:") ###### Drop down menus Coefficient = Select(title="Coefficient:", value="chezy", options=["Manning", "chezy"]) Coefficient_value1 = TextInput(value=" ", title="chezy:" ) Coefficient_value2 = TextInput(value=" ", title="Manning:" ) #### Add geometric parameters length = TextInput(value=" ", title="Length:") width = TextInput(value=" ", title="Width:") #LABELS = ["km", "m"] #radio_group = RadioGroup(labels=LABELS, active=0) #### Add ginitial conditiions depth = TextInput(value=" ", title="Depth(m):") Q = TextInput(value=" ", title="Discharge(m3/sec):") texto = PreText(text="""Please click here""",width=500, height=100) layout = () def button_group_change(active): ch = active if ch == 0: slope.visible=True Coefficient.visible=True Coefficient_value1.visible=True Coefficient_value2.visible=True length.visible=False width.visible=False depth.visible=False Q.visible=False # layout= column(slope, Coefficient,Coefficient_value1, Coefficient_value2) elif ch == 1: length.visible=True width.visible=True slope.visible=False Coefficient.visible=False Coefficient_value1.visible=False Coefficient_value2.visible=False depth.visible=False Q.visible=False # layout= column(length, width) elif ch == 2: depth.visible=True Q.visible=True slope.visible=False Coefficient.visible=False Coefficient_value1.visible=False Coefficient_value2.visible=False length.visible=False width.visible=False # layout= column(length, width ) texto.text ='text' #str(layout) #curdoc().add_root(column(button_group,slope, Coefficient)) #curdoc().add_root(row(button_group,length)) layout= column(slope, Coefficient,Coefficient_value1, Coefficient_value2,length, width,length) button_group.on_click(button_group_change) ###show curdoc().add_root(column(texto,button_group,layout)) #bokeh serve --show BWC.py
sduarte09/Module5
Exercise/Group5/BWC.py
BWC.py
py
2,455
python
en
code
0
github-code
6
39688374544
# Time: O(n) # Space: O(1) class Solution: def rob(self, nums: List[int]) -> int: """ """ if not nums: return 0 if len(nums)==1: return nums[0] return max(self.util(nums[:-1]), self.util(nums[1:])) def util(self, nums): # Linear Space # max_arr = [0]*len(nums) # max_arr[0] = nums[0] # Constant Space prev_max = nums[0] pp_max = 0 for i in range(1, len(nums)): cur_max = max(nums[i] + pp_max, prev_max) pp_max = prev_max prev_max = cur_max max_arr[i] = max(nums[i] + max_arr[i-2], max_arr[i-1]) return prev_max
cmattey/leetcode_problems
Python/lc_213_house_robber_ii.py
lc_213_house_robber_ii.py
py
704
python
en
code
4
github-code
6
38453788242
import sys input = sys.stdin.readline T = int(input()) for tc in range(1,T+1): L = list(map(int,input().split())) L.sort() a,b,c = L ans = "NO" if a**2 + b**2 == c**2: ans = "YES" print(f"Case #{tc}: {ans}")
LightPotato99/baekjoon
math/geometry/triangle/pythagoras/rightTri.py
rightTri.py
py
240
python
en
code
0
github-code
6
17137130653
import requests import re from bs4 import BeautifulSoup from openpyxl import load_workbook DIRECTORY_URL = "https://directory.tufts.edu/searchresults.cgi" WORKBOOK_NAME = "DirectoryResults_2017-2018.xlsx" NAME_SHEET = "DirectoryResults" # This script works on Excel Sheets with a single column in the A column of # a unique listing of names. It searches for every name in the tufts directory, # then strips out a department if it is found and places it in the B column next # to the search query. def getDirectoryPage(name): rawPage = requests.post(DIRECTORY_URL, data={"type": "Faculty", "search": name}) soup = BeautifulSoup(rawPage.text, "html.parser") for child in soup.find_all(href=re.compile("department.cgi")): return child.contents[0].strip() dataBook = load_workbook(WORKBOOK_NAME) nameSheet = dataBook[NAME_SHEET] for index in range(2, nameSheet.max_row + 1): currentName = nameSheet["A{0}".format(index)].value affiliation = getDirectoryPage(currentName) nameSheet["B{0}".format(index)] = affiliation # Rudimentary backup every 100 entries if index % 100 == 0: print("Progress: {:.2%}".format(index / (nameSheet.max_row + 1))) dataBook.save(WORKBOOK_NAME) dataBook.save(WORKBOOK_NAME)
jGowgiel/fec-donation-aggregator
scripts/DirectoryScrape.py
DirectoryScrape.py
py
1,261
python
en
code
0
github-code
6
24502646621
from utils import * from fastapi import FastAPI, Query, Path, Body, Cookie, Header from pydantic import BaseModel, Required, Field, HttpUrl app = FastAPI() @app.get('/') def read_root(): return {'Hello': 'World'} # Examplos com path params class ModelName(str, Enum): name1 = 'Phelipe' name2 = 'Marcos' name3 = 'Fran' @app.get('/items/{item_id}') def read_item(item_id: int, q: Union[str, None] = None): return {'item_id': item_id, 'q': q} @app.get('/names/{name}') def get_name(name: ModelName): response = {'model_name': name} if name.value == 'Phelipe': response.update({'message': 'Bad name.'}) else: response.update({'Message': 'Cool name.'}) return response # Exemplo com query params fake_items_db = [{'item_name': 'Foo'}, {'item_name': 'Bar'}, {'item_name': 'Baz'}] _lmt = len(fake_items_db) - 1 @app.get('/items/') async def read_item(skip: int = 0, limit: int = _lmt): return fake_items_db[skip : skip + limit] # Exemplo com query param opcional @app.get('/cats/') async def get_cat(name: str = None): cats = [ 'zoe', 'zulke', 'zara', 'miuda', 'frajola', 'cruel', 'mafalda', 'jade', 'maria', ] if name: if name in cats: return {'Valor aleatorio': False, 'Nome do gato': name} return {'Valor aleatorio': True, 'Nome do gato': cats[random.randint(0, len(cats))]} # Exemplo com Pydantic model class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None @app.post('/items_s/') async def create_item(item: Item): if item.tax: price = item.price + item.price * item.tax item.price = price return item """ Examplo usando Query como valor padrão, validadores e sobrescrita de documentação Old way - async def create_dog(name: str, age: int, description: Union[None, str] = None): """ class Dog(BaseModel): level: int name: str @app.post('/dogs/') async def create_dog( brothers: Union[List[Dog], None], age: int, name: str = Query( default=..., title='Nome', description='Esse é um nome', regex='^love' ), description: Union[None, str] = Query( default=None, title='Descrição', description='Essa é uma descrição', min_length=5, max_length=10, deprecated=True, ), hidden_query: Union[str, None] = Query(default=None, include_in_schema=False), ): dog = {'name': name, 'age': age, 'brothers': {}} if description: dog.update({'description': description}) if brothers: list(map(lambda d: dog['brothers'].update({d.name: d.level}), brothers)) return dog """ Exemplo usando Path pydantic """ @app.get('/memories/{person_id}') def create_memories( *, person_id: int = Path(..., title='Uma pessoa existente.', gt=0, le=1000) ): people = {1: {'name': 'amourir'}, 2: {'name': 'joão'}} if person_id in people.keys(): return people.get(person_id) return {} """ Exemplo usando Body e multiplos parâmetros """ class City(BaseModel): name: str country: int @app.post('/cities/{country_id}') def create_cities( *, country_id: int = Path(..., title='Id de um país existente.', gt=1, le=5), city: City = Body(..., embed=False), person_name: str = Body(..., regex='^mar', embed=False) ): countries = {1: 'Brazil', 2: 'Russia', 3: 'Senegal', 4: 'Marrocos', 5: 'Irã'} city_item = {'name': city.name} country_name = countries.get(country_id) city_item.update({'country': country_name}) return city_item """ Exemplo usando Body Field """ class PersonalComputer(BaseModel): name: str = Field( regex='^pc', default=None, description='Nome do pc', max_length=10 ) serie: int = Field(gt=1, description='Passe uma série válida') @app.put('/pcs/{pc_id}') async def update_pc( *, pc_id: int = Path(..., description='Passe um válido.'), pc: PersonalComputer = Body(..., embed=True, description='Uma maquina') ): if pc_id // 2 == 0: return {'message': 'Inválido'} return pc """ Exemplo com subtipos como BaseModel """ class Image(BaseModel): url: HttpUrl size: int class Product(BaseModel): name: str = Field(..., example='Produto base') price: float images: list[Union[Image, None]] = None class Store(BaseModel): products: Union[list[Product], None] name: str = Field(..., description='Nome da loja') class Config: schema_extra = { 'example': { 'products': [ { 'name': 'Computador', 'price': 12.4, 'images': [{'url': 'http://test.com', 'size': 1}], } ], 'name': 'Loja dos fundos', } } @app.post('/products/') def create_products(store: Store = Body(..., embed=True)): return store @app.get('/products/{product_id}') def retrive_products(*, product_id: UUID = Path(..., description='Produto existente')): return {} """ Exemplo com Cookie e Header """ @app.get('/params/') def request_params( user_agent: str = Header(default=None), ads_id: Union[str, None] = Cookie(default=None), ): return {'cookie': ads_id, 'user_agent': user_agent}
williamelias/Fast-Api-Quiz
code/app/main.py
main.py
py
5,446
python
pt
code
0
github-code
6
27456097150
from pathlib import Path from sphinx.directives import SphinxDirective from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.logging import getLogger import yaml import json logger = getLogger(__name__) class PyConfig(SphinxDirective): has_content = True def run(self): if self.content: data = "\n".join(self.content) data = json.dumps(yaml.safe_load(data), indent=2) return [nodes.raw("", f'<py-config type="json">\n{data}\n</py-config>\n', format="html")] class PyRepl(SphinxDirective): has_content = True option_spec = { "auto-generate": directives.unchanged, "output": directives.unchanged, "src": directives.path, } def run(self): attrs: str = "" code: str = "" for key, value in self.options.items(): attrs += f' {key}="{value}"' if self.content: code = "\n".join(self.content) py_repl = f''' <py-repl {attrs}> {code} </py-repl> ''' return [nodes.raw("", py_repl, format="html")] class PyScript(SphinxDirective): has_content = True option_spec = { "file": directives.path, "output": directives.unchanged } def run(self): if "file" in self.options: path = self.env.relfn2path(self.options['file'])[1] try: with open(path, 'r') as f: code = f.read() self.env.note_dependency(path) except (FileNotFoundError, Exception) as err: logger.warn('reading error: %s, %s', path, err) return [] elif self.content: code = "\n".join(self.content) else: raise logger.error("Must provide either content or the 'file' option") return [nodes.raw("", f"<py-script>\n{code}\n</py-script>\n", format="html")] class PyTerminal(SphinxDirective): option_spec = { "auto": directives.flag, "false": directives.flag } def run(self): attrs: str = "" for key, _ in self.options.items(): attrs += f' {key}' py_terminal = f''' <py-terminal {attrs}></py-terminal> ''' return [nodes.raw("", py_terminal, format="html")]
yoblee/docs
sphext/sphinx_pyscript/pys_directives/__init__.py
__init__.py
py
2,360
python
en
code
0
github-code
6
41774127803
import hearts.model.game as m from hearts.game_master import GameMaster import logging class GameBackend(object): def __init__(self, player_svc): self._next_game_id = 1 self._game_masters = {} self._players = {} self._player_mapping = {} self._player_svc = player_svc self.logger = logging.getLogger(__name__) def create_game(self, players): game_id = self._next_game_id self._next_game_id += 1 model = m.HeartsGame() model.start() master = GameMaster(model, game_id) self._game_masters[game_id] = master master.add_observer(self) self._players[game_id] = list(players) for idx, player_id in enumerate(players): self._player_mapping[player_id] = (game_id, idx) return game_id def get_game_master(self, game_id): return self._game_masters[game_id] def try_get_player_game(self, player_id): data = self._player_mapping.get(player_id) if data is None: return None return data[0] def try_get_game_info(self, player_id): data = self._player_mapping.get(player_id) if data is None: return None return data def is_in_game(self, player_id): return player_id in self._player_mapping def on_game_finished(self, game_id): self.logger.info("Game %d has finished.", game_id) self._destruct_game(game_id) def on_game_abandoned(self, game_id): self.logger.info("Game %d has been abandoned.", game_id) self._destruct_game(game_id) def _destruct_game(self, game_id): for player in self._players[game_id]: del self._player_mapping[player] self._player_svc.remove_player(player) del self._players[game_id] del self._game_masters[game_id]
MHeasell/hearts-server
hearts/game_backend.py
game_backend.py
py
1,880
python
en
code
0
github-code
6
31329871933
#%% import pandas as pd import numpy as np import datetime as dt import xarray as xr import cftime import dask from glob import glob #%% '''SUBSET RH DATA''' data = pd.read_csv("preprocessing/inputdata/AMF_US-MBP_BASE_HH_2-5.csv", skiprows = 2, na_values = -9999) data['TIMESTAMP_START'] = pd.to_datetime(data.TIMESTAMP_START, format = '%Y%m%d%H%M') data['TIMESTAMP_END'] = pd.to_datetime(data.TIMESTAMP_END, format = '%Y%m%d%H%M') data = data.rename(columns = {'TIMESTAMP_START':'TIMESTAMP'}) ''' #TRY EDI Data data = pd.read_csv('preprocessing/inputdata/BogLake_Met_data_30min.csv', skiprows = 1, sep = ",", names=["TIMESTAMP", "Air_TempC_Avg", "RH", "Soil_TempC_5cm", "Soil_TempC_10cm", "Soil_TempC_20cm", "Soil_TempC_30cm", "Soil_TempC_40cm", "Soil_TempC_50cm", "Soil_TempC_100cm", "Soil_TempC_200cm", "WS_Tot", "WindDir_D", "WindDir_SD", "PAR_Den_Avg"], parse_dates = ['TIMESTAMP'], na_values = {'RH':['NA',]}) ''' # Subset to the right variables RH = data[['TIMESTAMP', 'RH']] # Sort into Year-Month combos RH['Year'] = RH.TIMESTAMP.dt.year RH['Month'] = RH.TIMESTAMP.dt.month RH['Year-Month'] = RH.TIMESTAMP.dt.strftime('%Y') + '-' + RH.TIMESTAMP.dt.strftime('%m') #Subset to proper years RH = RH[(RH.Year > 2010) & (RH.Year < 2018)] #Patch long NA period in August 2017 with data from the NADP site in the EDI data patch_data = pd.read_csv('preprocessing/inputdata/NADP_Met_data_30min.csv', skiprows = 1, sep = ",", names=["TIMESTAMP", "Air_TempC_Avg", "RH", "Soil_TempC_Avg", "WS_Tot", "WindDir_D", "WindDir_SD", "PAR_Den_Avg", "Soil_VWC_Avg"], parse_dates = ['TIMESTAMP'], na_values = {'RH':['NA',]}) RH_patch = patch_data[['TIMESTAMP', 'RH']] RH_patch = RH_patch[(RH_patch.TIMESTAMP.dt.year == 2017) & (RH_patch.TIMESTAMP.dt.month == 8)] # %% '''OPEN ALL NCDF DATA''' vals = set(RH['Year-Month']) for val in vals: #Open sample data set test = xr.open_mfdataset(val + '.nc', decode_times = False) #Select RH data: if val == '2017-08': test_RH = RH_patch else: test_RH = RH[RH['Year-Month'] == val] #Subset netdcf spatially test2 = test.drop_sel(lon = 1) #If leap Feb and leap year remove Feb29 data r = test_RH['RH'] if (val.endswith('02')) & (len(r) > len(test2.time)): #remove feb 9 r = r[:len(test2.time)] #print(val + ": " + str(min(r))) #print("NEW" + val + ": " + str(min(r))) # Interpolate r3 = pd.Series(r).interpolate(method = "linear") print("NAN" + val + ": " + str(any(np.isnan(r3)))) #Reshape r4 = np.reshape(list(r3),(-1,1,1)) #Add RH Data test2['RH'] = xr.DataArray(r4, dims = ['time', 'lat', 'lon'], attrs = {'FillValue': np.NaN, 'long_name': 'relative humidity at the lowest atm level (RH)', 'units': '%' }) #Write sample test2.to_netcdf('preprocessin/forcings-modified' + val + '.nc') # %% '''CHECK''' #Open file to check dat = xr.open_mfdataset('preprocessing/forcings-modified/2017-08.nc') # %%
mwdjones/clm_frost
preprocessing/forcings/Add_RH_to_Forcings.py
Add_RH_to_Forcings.py
py
3,217
python
en
code
0
github-code
6
8898957294
import telebot import config from ibm_watson import LanguageTranslatorV3 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator import json from telebot import types import pyowm owm = pyowm.OWM('c8548689b28b1916f78403fb9c92e4f3', language='ru') bot = telebot.TeleBot(config.TOKEN) authenticator = IAMAuthenticator('9n-ZTrznhrAKV0YAJIWIM-fwico0pbNeHp9Wek67nt6V') language_translator = LanguageTranslatorV3( version='2018-05-01', authenticator=authenticator ) language_translator.set_service_url('https://api.eu-gb.language-translator.watson.cloud.ibm.com/instances' '/1bec2e12-6251-4b94-8d80-fcead8ec6d68') languages = language_translator.list_languages().get_result() user_dict = {} # Формируем класс, для сохранения в него переменных (то что вводит кандидат)! class User: def __init__(self, name): self.name = name self.application = None self.writer_lang = None self.phrases = None self.place = None # Обработать / start и / help @bot.message_handler(commands=['start', 'help']) def command_start(message): chat_id = message.chat.id text = message.text msg = bot.send_message(chat_id, "Здравствуйте, я полезный бот! Мое предназначение помогать в тех функциях которые в меня " "встроенные! " "В них входит перевод текста на необходимый Вам язык! Подскажите как я могу к Вам обращатся?") bot.register_next_step_handler(msg, process_name_step) # Бот предлагает свои услуги\возможности! @bot.message_handler(content_types=['text']) def process_name_step(message): chat_id = message.chat.id name = message.text user = User(name) user_dict[chat_id] = user markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('Переводчик', 'Погода', 'Список покупок') msg = bot.send_message(chat_id, 'Приятно познакомится ' + user.name + '! Выберите приложение, которым хотите ' 'воспользоваться!', reply_markup=markup) bot.register_next_step_handler(msg, how_can_i_help) # Действие выполняется при выборе приложения! @bot.message_handler(content_types=['text']) def how_can_i_help(message): chat_id = message.chat.id application = message.text if application == '/start' or application == '/help': return command_start if application == u'Переводчик': user = user_dict[chat_id] user.application = application markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('английский', 'русский', 'испанский', 'немецкий', 'итальянский', 'французский', 'китайский', 'Погода') msg = bot.send_message(chat_id, "Укажите на каком языке будете писать (если такого языка нет в выпадающем " "списке, напишите этот язык в сообщении!): ", reply_markup=markup) bot.register_next_step_handler(msg, translater_func1) elif application == u'Погода': user = user_dict[chat_id] user.application = application markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('Переводчик', 'Погода') msg = bot.send_message(chat_id, "Введите в каком городе/стране?: ", reply_markup=markup) bot.register_next_step_handler(msg, weather_bot) elif application == u'Список покупок': pass # Тут запускается приложение для перевода текста! @bot.message_handler(content_types=['text']) def translater_func1(message): global lang1 # Создаем переменную lang1 (язык ввода текста) try: # Создаем исключение для того чтобы различать кнопки и команду /start chat_id = message.chat.id writer_lang = message.text if writer_lang == u'Погода': # Создаем условие нажатия на кнопку: если это погода выполняем код - ниже! user = user_dict[chat_id] user.writer_lang = writer_lang markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('Переводчик') msg = bot.send_message(chat_id, "Введите в каком городе/стране?: ", reply_markup=markup) # Спрашиваем в # каком городе проверить и при этом крепим кнопку переводчика! bot.register_next_step_handler(msg, weather_bot) # Дальше условия касаются выбора языка с помощью кнопок! Если выбрали одну из кнопок ниже : if writer_lang == u'английский': lang1 = 'en' elif writer_lang == u'русский': lang1 = 'ru' elif writer_lang == u'украинский': lang1 = 'uk' elif writer_lang == u'испанский': lang1 = 'es' elif writer_lang == u'немецкий': lang1 = 'de' elif writer_lang == u'итальянский': lang1 = 'it' elif writer_lang == u'французский': lang1 = 'fr' elif writer_lang == u'китайский': lang1 = 'zh' user = user_dict[chat_id] user.writer_lang = writer_lang markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('английский', 'русский', 'испанский', 'немецкий', 'итальянский', 'французский', 'китайский') # При этом спрашиваем на какой язык переводить и крепим кнопки с соответствующими языками msg = bot.send_message(chat_id, "На какой язык переводить (если такого языка нет в выпадающем " "списке, напишите этот язык в сообщении!): ", reply_markup=markup) bot.register_next_step_handler(msg, translater_func2) except: if writer_lang == '/start' or writer_lang == '/help': # Если написали команду старт, то возвращаемся в начало кода! msg = bot.send_message(chat_id, "Здравствуйте, я полезный бот! Мое предназначение помогать в тех функциях которые " "в меня " "встроенные! " "В них входит перевод текста на необходимый Вам язык! Подскажите как я могу к Вам " "обращатся?") bot.register_next_step_handler(msg, command_start) else: msg = bot.send_message(chat_id, "Oooops!") bot.register_next_step_handler(msg, translater_func1) def translater_func2(message): global lang # Создаем глобальную переменную для языка на который будет осуществлятся перевод! try: chat_id = message.chat.id translation_lang = message.text if translation_lang == u'Погода': # Создаем условие нажатия на кнопку: если это погода выполняем код - ниже! user = user_dict[chat_id] user.translation_lang = translation_lang markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('Переводчик') msg = bot.send_message(chat_id, "Введите в каком городе/стране?: ", reply_markup=markup) # Спрашиваем в # каком городе проверить и при этом крепим кнопку переводчика! bot.register_next_step_handler(msg, weather_bot) # Условия для выбора языка на который будет перевод! if translation_lang == u'английский': lang = 'en' elif translation_lang == u'русский': lang = 'ru' elif translation_lang == u'украинский': lang = 'uk' elif translation_lang == u'испанский': lang = 'es' elif translation_lang == u'немецкий': lang = 'de' elif translation_lang == u'итальянский': lang = 'it' elif translation_lang == u'французский': lang = 'fr' elif translation_lang == u'китайский': lang = 'zh' user = user_dict[chat_id] user.translation_lang = translation_lang markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('Смена языков для перевода', 'Смена языка для перевода', 'Погода') msg = bot.send_message(chat_id, "Введите фразу для перевода : ", reply_markup=markup) # После определения # языков просим ввести текст для перевода. А так же крепим кнопки! bot.register_next_step_handler(msg, translate_phrases) except: if translation_lang == '/start' or translation_lang == '/help': # Если написали команду старт, то возвращаемся в начало кода! msg = bot.send_message(chat_id, "Здравствуйте, я полезный бот! Мое предназначение помогать в тех функциях которые " "в меня " "встроенные! " "В них входит перевод текста на необходимый Вам язык! Подскажите как я могу к Вам " "обращатся?") bot.register_next_step_handler(msg, command_start) else: msg = bot.send_message(chat_id, 'Oooops') bot.register_next_step_handler(msg, translater_func2) def translate_phrases(message): #global translation chat_id = message.chat.id phrases = message.text # Устанавливаем цикл: если нажаты кнопки текст не переводится, а выполняется переход по приложениям или смена языков! while phrases == u'Погода' or phrases == u'Смена языков для перевода' or phrases == u'Смена языка для перевода': # Тут как раз условия которые работают если нажали на одну из кнопок! if phrases == u'Погода': user = user_dict[chat_id] user.phrases = phrases markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('Переводчик') msg = bot.send_message(chat_id, "Введите в каком городе/стране?: ", reply_markup=markup) bot.register_next_step_handler(msg, weather_bot) elif phrases == u'Смена языков для перевода': user = user_dict[chat_id] user.phrases = phrases markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('английский', 'русский', 'испанский', 'немецкий', 'итальянский', 'французский', 'китайский', 'Погода') msg = bot.send_message(chat_id, "Укажите на каком языке будете писать (если такого языка нет в выпадающем " "списке, напишите этот язык в сообщении!): ", reply_markup=markup) bot.register_next_step_handler(msg, translater_func1) elif phrases == u'Смена языка для перевода': user = user_dict[chat_id] user.phrases = phrases markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('английский', 'русский', 'испанский', 'немецкий', 'итальянский', 'французский', 'китайский', 'Погода') msg = bot.send_message(chat_id, "На какой язык переводить (если такого языка нет в выпадающем " "списке, напишите этот язык в сообщении!): ", reply_markup=markup) bot.register_next_step_handler(msg, translater_func2) break else: translation = language_translator.translate( phrases, source=lang1, target=lang).get_result() msg = bot.send_message(chat_id, json.dumps(translation, indent=2, ensure_ascii=False)) bot.register_next_step_handler(msg, translate_phrases) # Здесь запускается приложение погода! @bot.message_handler(content_types=['text']) def weather_bot(message): global place try: chat_id = message.chat.id place = message.text user = user_dict[chat_id] user.place = place observation = owm.weather_at_place(place) w = observation.get_weather() markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('Переводчик') temp = w.get_temperature('celsius')["temp"] temp = round(temp) msg = bot.send_message(chat_id, 'В городе ' + place + ' сейчас ' + w.get_detailed_status() + ' Температура в этом ' 'городе: ' + str( temp), reply_markup=markup) if temp < 10 and temp >= 0: msg = bot.send_message(chat_id, 'Сейчас пипец как холодно, одевайся как танк!') elif temp >= 10 and temp < 20: msg = bot.send_message(chat_id, 'Тепло конечно, но загорать еще рано!') elif temp >= 20 and temp < 25: msg = bot.send_message(chat_id, 'Ну еще чуть чуть и загорать можно идти!') elif temp > 25: msg = bot.send_message(chat_id, 'Можно смело загорать!') else: msg = bot.send_message(chat_id, 'Снеговики наступааааают!!!') bot.register_next_step_handler(msg, weather_bot) except: if place == u'Переводчик': user = user_dict[chat_id] user.place = place markup = types.ReplyKeyboardMarkup(one_time_keyboard=True) markup.add('английский', 'русский', 'испанский', 'немецкий', 'итальянский', 'французский', 'китайский', 'Погода') msg = bot.send_message(chat_id, 'Да, давайте переводить. Укажите на каком языке будете писать!', reply_markup=markup) bot.register_next_step_handler(msg, translater_func1) elif place == '/start' or place == '/help': msg = bot.send_message(chat_id, "Здравствуйте, я полезный бот! Мое предназначение помогать в тех функциях которые в меня " "встроенные! " "В них входит перевод текста на необходимый Вам язык! Подскажите как я могу к Вам обращатся?") bot.register_next_step_handler(msg, command_start) else: msg = bot.send_message(chat_id, 'Такого города нет... Уточните пожалуйста название!') bot.register_next_step_handler(msg, weather_bot) bot.polling() while True: pass
IgorSopronyuk/translate_IBM_bot
translater_IBM_bot.py
translater_IBM_bot.py
py
17,771
python
ru
code
0
github-code
6
21682006700
from tkinter import * from sudoku_api import get_grid,solve from sudoku_solver import solver,if_poss import tkinter.messagebox root=Tk() entries=user_inps=[[0 for i in range(9)] for j in range(9)] canvas=Canvas(root,height=500,width=450) canvas.pack() board=[[0 for i in range(9)] for j in range(9)] def get(event): return (event.widget.get()) #Create GUI def create_board(grid): global canvas global root global board board=grid global entries canvas.delete("all") for i in range(9): canvas.create_line(0,i*50,450,i*50) canvas.create_line(i*50,0,i*50,450) for i in range(9): for j in range(9): if grid[i][j]==0: entry=Entry(root) entries[i][j]=entry canvas.create_window(((25+50*j),(25+50*i)),height=50,width=50,window=entry) else: canvas.create_text(((25+50*j),(25+50*i)),text=str(grid[i][j])) check_button=Button(canvas,text="CHECK!!!",font="Times 20 bold") solve_button=Button(canvas,text="SOLVE!!!",font="Times 20 bold") canvas.create_window((122,475),height=50,width=225,window=solve_button) canvas.create_window((347,475),height=50,width=225,window=check_button) solve_button.bind("<Button-1>",get_solved) check_button.bind("<Button-1>",check_correct) def check_correct(event): global board global entries global canvas for i in range(9): for j in range(9): if board[i][j]==0: if entries[i][j].get(): board[i][j]=int(entries[i][j].get()) else: board[i][j]=0 if is_correct(board): tkinter.messagebox.showinfo("Congratulations!!!!","You have completed the sudoku!!!") canvas.delete("all") for i in range(9): canvas.create_line(0,i*50,450,i*50) canvas.create_line(i*50,0,i*50,450) for i in range(9): for j in range(9): canvas.create_text(((25+50*j),(25+50*i)),text=str(board[i][j])) check_button=Button(canvas,text="CHECK!!!",font="Times 20 bold") solve_button=Button(canvas,text="SOLVE!!!",font="Times 20 bold") canvas.create_window((122,475),height=50,width=225,window=solve_button) canvas.create_window((347,475),height=50,width=225,window=check_button) else: tkinter.messagebox.showinfo("SORRY!!!!","That is not correct!!!") def is_correct(grid): for i in range(9): for j in range(9): if grid[i][j]==0: return False if not if_poss(grid,i,j,grid[i][j]): return False return True def get_solved(event): global board global canvas solver(board) canvas.delete("all") for i in range(9): canvas.create_line(0,i*50,450,i*50) canvas.create_line(i*50,0,i*50,450) for i in range(9): for j in range(9): canvas.create_text(((25+50*j),(25+50*i)),text=str(board[i][j])) def easy(event): grid=get_grid(1) create_board(grid) def medium(event): grid=get_grid(2) create_board(grid) def hard(event): grid=get_grid(3) create_board(grid) #Select Difficult canvas.create_text((220,75),text="Select Difficulty",font="Times 20 bold") easy_button=Button(canvas,text="Easy",font="Times 20 bold") med_button=Button(canvas,text="Medium",font="Times 20 bold") hard_button=Button(canvas,text="Hard",font="Times 20 bold") canvas.create_window((220,125),height=40,width=200,window=easy_button) canvas.create_window((220,205),height=40,width=200,window=med_button) canvas.create_window((220,285),height=40,width=200,window=hard_button) easy_button.bind("<Button-1>",easy) med_button.bind("<Button-1>",medium) hard_button.bind("<Button-1>",hard) root.mainloop()
m-mukund/Sudoko_Solver
sudoku_inter.py
sudoku_inter.py
py
3,397
python
en
code
0
github-code
6
69869460347
def Mark( x=None, text='', color='', bold=True, underline=False): """ This function prints an object x and adds a description text. It is useful for for debugging. """ start = '' end = '' if color != '' or bold or underline: end='\033[0m' colorDict = { '': '', None: '', 'purple' : '\033[95m', 'cyan' : '\033[96m', 'darkcyan' : '\033[36m', 'blue' : '\033[94m', 'green' : '\033[92m', 'yellow' : '\033[93m', 'red' : '\033[91m', 'bold' : '\033[1m', 'underline' : '\033[4m', 'end' : '\033[0m'} if bold: start = start + colorDict['bold'] if underline: start = start + colorDict['underline'] start = start + colorDict[color] print("*** " + start + text + end) if x is not None: print(x) ''' ## examples Mark(2*10, 'xxx', bold=False, underline=True) Mark(2*10, 'xxx', bold=False, underline=True, color='red') Mark(x='', text='xxx', bold=True, underline=True, color='green') ''' ## These are the default functions to communicate with OS # re-write them if needed FileExists = os.path.exists OpenFile = open ListDir = os.listdir def CustomMarkFcn(fn=None, logTime=True, color=''): """ This functions returns a custom function which prints x, with description text. It also saves x in a file if fn is not None. """ fileExists = False if fn != None: fileExists = FileExists(fn) if fileExists: appendWrite = 'a' # append if already exists else: appendWrite = 'w' # make a new file if not # define the Marking Fcn here def F(x=None, text='', color=color, bold=True, underline=False): timeStr = str(datetime.datetime.now())[:19] if fn is not None: orig_stdout = sys.stdout f = OpenFile(fn, appendWrite) sys.stdout = f if logTime: Mark(text='This was run at this time:' + timeStr, bold=False, underline=False, color='') Mark(x=x, text=text, color='', bold=False, underline=False) f.close() sys.stdout = orig_stdout if logTime: Mark(text='This was run at this time:' + timeStr) Mark(x=x, text=text, color=color, bold=bold, underline=underline) return F ''' fn = 'log.txt' CustomMark = CustomMarkFcn(fn=fn) CustomMark(x=2, text='NO') ''' # to print a function definition PrintFcnContent = inspect.getsourcelines ## mapping a dictionary via map #def MapDict(f, dic): # return dict(map(lambda (k,v): (k, f(v)), dic.iteritems())) def BitOr(x): """bitwise OR: same as BIT_OR in SQL.""" return functools.reduce(lambda a,b: (a|b), x) def Signif(n): """ Builds a function for rounding up to n number of significant digits.""" def F(x): if math.isnan(x): return x if x == 0: return 0 out = round(np.absolute(x), -int(math.floor(math.log10(np.absolute(x))) + (-n+1))) if x < 0: out = -out return out return F ### Reading / Writing Data ## read csv def ReadCsv( fn, sep=',', nrows=None, typeDict={}, header='infer', engine='c', error_bad_lines=False, printLog=False): with OpenFile(fn, 'r') as f: df = pd.read_csv( f, sep=sep, nrows=nrows, dtype=typeDict, header=header, engine=engine, error_bad_lines=error_bad_lines) if printLog: print(fn + ' was read.') return df ## write csv (or tsv) def WriteCsv( fn, df, sep=',', append=False, index=False, printLog=False): wa = 'w' header = list(df.columns) if append: wa = 'a' header = False with OpenFile(fn, wa) as f: df.to_csv(f, sep=sep, index=index, mode=wa, header=header) if printLog: print(fn + ' was written.') return None ## reads multiple data files according to a pattern given. ## Filters them and then row binds them. ## the pattern is given in three lists: prefix, middle, suffix def ReadMultipleDf( prefix, middle, suffix, ReadF=ReadCsv, DfFilterF=None): n = max([len(prefix), len(middle), len(suffix)]) def FillList(x): if len(x) < n: x = x*n x = x[:n] return x prefix = FillList(prefix) suffix = FillList(suffix) middle = FillList(middle) df = pd.DataFrame({'prefix': prefix, 'middle': middle, 'suffix': suffix}) fileList = (df['prefix'] + df['middle'] + df['suffix']).values #dfList = list() for i in range(len(fileList)): f = fileList[i] df = ReadF(f) if DfFilterF != None: df = DfFilterF(df) if i == 0: dfAll = df else: dfAll = dfAll.append(df, ignore_index=True) return dfAll ## Read all files in a dir with same columns # and concatenating them def ReadDirData( path, ListDirF=ListDir, ReadF=ReadCsv, WriteF=WriteCsv, writeFn=None, DfFilterF=None): print(path) fileList = ListDirF(path) print(fileList) #dfList = list() outDf = None for i in range(len(fileList)): f = path + fileList[i] print("*** opening: " + f) df = ReadF(f) print("data shape for this partition:") print(df.shape) if DfFilterF != None: df = DfFilterF(df) print("data shape for this partition after filtering:") print(df.shape) ## we either row bind data or we write data if writeFn is not None if writeFn == None: if i == 0: outDf = df else: outDf = outDf.append(df, ignore_index=True) else: if i == 0: WriteF(fn=writeFn, df=df, sep=',', append=False) else: WriteF(fn=writeFn, df=df, sep=',', append=True) print("First rows of data:") print(df.iloc[:5]) return outDf ## Read all files in a dir with same columns # and concatenating them def ReadDirData_parallel( path, ListDirF=ListDir, ReadF=ReadCsv, WriteF=WriteCsv, writeFn=None, DfFilterF=None, returnDfDict=False, limitFileNum=None): print(path) fileList = ListDirF(path) print(fileList) if limitFileNum is not None: k = min(limitFileNum, len(fileList)) fileList = fileList[:k] outDf = None dfDict = {} def F(i): f = path + fileList[i] Mark(text="opening: partition " + str(i) + '; ' + f) df = ReadF(f) Mark(df.shape, text="data shape for partition " + str(i)) if DfFilterF != None: df = DfFilterF(df) Mark( df.shape, text="data shape for partition " + str(i) + " after filtering:") dfDict[i] = df return None [F(x) for x in range(len(fileList))] if returnDfDict: return dfDict ## we either row bind data or we write data if writeFn is not None if writeFn is None: ''' for i in range(len(fileList)): if i == 0: outDf = dfDict[i] else: outDf = outDf.append(dfDict[i], ignore_index=True) ''' outDf = pd.concat(dfDict.values()) else: for i in range(len(fileList)): if i == 0: WriteF(fn=writeFn, df=dfDict[i], sep=',', append=False) else: WriteF(fn=writeFn, df=dfDict[i], sep=',', append=True) Mark(outDf.iloc[:10], text="First rows of data:") return outDf def Write_shardedData_parallel( df, fnPrefix, path, fnExten=".csv", partitionCol=None, shardNum=100, WriteF=WriteCsv, limitFileNum=None): """ write sharded data wrt a partition column the data is written in parallel for speed purposes also at read time we can read data faster""" if partitionCol is None: partitionCol = "dummy_col" df["dummy_col"] = range(len(df)) def Bucket(s): return int(hashlib.sha1(str(s)).hexdigest(), 16) % (shardNum) df["shard"] = df[partitionCol].map(Bucket) if partitionCol is None: del df["dummy_col"] def Write(bucket): df0 = df[df["shard"] == bucket] fn = path + fnPrefix + "_" + str(bucket) + ".csv" WriteF(fn=fn, df=df0, sep=',', append=False) print(fn + " was written") buckets = list(set(df["shard"].values)) if limitFileNum is not None: k = min(limitFileNum, len(buckets)) buckets = buckets[:k] [Write(bucket) for bucket in buckets] return None """ df = GenUsageDf_forTesting() path = "" Write_shardedData_parallel( df=df, fnPrefix="test", path=path, fnExten=".csv", partitionCol="user_id", WriteF=WriteCsv) """ ############### Part 1: Data frame and data wrangling functions ## generate a data frame manually for testing data frame functions # and usage metrics def GenUsageDf_forTesting(): df = pd.DataFrame(columns=[ 'country', 'user_id', 'expt', 'date', 'time', 'end_time', 'prod', 'form_factor']) df.loc[len(df)] = ['US', '0', 'base', '2017-04-12', '2017-04-12 00:03:00', '2017-04-12 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['US', '0', 'base', '2017-04-12', '2017-04-12 00:04:01', '2017-04-12 00:05:03', 'photoFeat', 'COMP'] df.loc[len(df)] = ['US', '0', 'base', '2017-04-12', '2017-04-12 00:05:05', '2017-04-12 00:06:04', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '0', 'base', '2017-04-12', '2017-04-12 00:06:05', '2017-04-12 00:06:08', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '0', 'base', '2017-04-12', '2017-04-12 00:06:30', '2017-04-12 00:06:45', 'exploreFeat', 'COMP'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:07:00', '2017-04-12 00:07:50', 'editingFeat', 'PHN'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:14:00', '2017-04-12 00:14:10', 'photoFeat', 'COMP'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:16:00', '2017-04-12 00:17:09', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:18:00', '2017-04-12 00:18:30', 'browsingFeat', 'COMP'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:20:00', '2017-04-12 00:21:00', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:22:00', '2017-04-12 00:22:00', 'browsingFeat', 'PHN'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:03:00', '2017-04-12 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:04:01', '2017-04-12 00:05:03', 'photoFeat', 'COMP'] df.loc[len(df)] = ['JP', '1', 'base', '2017-04-12', '2017-04-12 00:05:05', '2017-04-12 00:06:04', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '2', 'base', '2017-04-12', '2017-04-12 00:06:05', '2017-04-12 00:06:08', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '2', 'base', '2017-04-12', '2017-04-12 00:06:30', '2017-04-12 00:06:45', 'exploreFeat', 'COMP'] df.loc[len(df)] = ['US', '2', 'base', '2017-04-12', '2017-04-12 00:07:00', '2017-04-12 00:07:50', 'editingFeat', 'PHN'] df.loc[len(df)] = ['JP', '3', 'test', '2017-04-12', '2017-04-12 00:14:00', '2017-04-12 00:14:10', 'photoFeat', 'COMP'] df.loc[len(df)] = ['JP', '3', 'test', '2017-04-12', '2017-04-12 00:14:20', '2017-04-12 00:18:59', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '3', 'test', '2017-04-12', '2017-04-12 00:19:00', '2017-04-12 00:20:00', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '3', 'test', '2017-04-12', '2017-04-12 00:20:20', '2017-04-12 00:22:00', 'browsingFeat', 'PHN'] df.loc[len(df)] = ['US', '4', 'test', '2017-04-14', '2017-04-14 00:03:10', '2017-04-14 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['US', '4', 'test', '2017-04-14', '2017-04-14 00:04:10', '2017-04-14 00:05:03', 'photoFeat', 'COMP'] df.loc[len(df)] = ['US', '4', 'test', '2017-04-14', '2017-04-14 00:05:15', '2017-04-14 00:06:04', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '4', 'test', '2017-04-14', '2017-04-14 00:06:01', '2017-04-14 00:06:08', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '4', 'test', '2017-04-14', '2017-04-14 00:06:35', '2017-04-14 00:06:45', 'PresFeat', 'COMP'] df.loc[len(df)] = ['US', '5', 'test', '2017-04-14', '2017-04-14 00:03:07', '2017-04-14 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['US', '5', 'test', '2017-04-14', '2017-04-14 00:04:04', '2017-04-14 00:05:03', 'photoFeat', 'COMP'] df.loc[len(df)] = ['US', '5', 'test', '2017-04-14', '2017-04-14 00:05:04', '2017-04-14 00:06:04', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '5', 'test', '2017-04-14', '2017-04-14 00:06:03', '2017-04-14 00:06:08', 'PresFeat', 'PHN'] df.loc[len(df)] = ['US', '5', 'test', '2017-04-14', '2017-04-14 00:06:28', '2017-04-14 00:06:45', 'PresFeat', 'COMP'] df.loc[len(df)] = ['JP', '6', 'test', '2017-04-14', '2017-04-14 00:14:01', '2017-04-14 00:14:10', 'photoFeat', 'COMP'] df.loc[len(df)] = ['JP', '6', 'test', '2017-04-14', '2017-04-14 00:14:19', '2017-04-14 00:18:59', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '6', 'test', '2017-04-14', '2017-04-14 00:19:10', '2017-04-14 00:20:00', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '6', 'test', '2017-04-14', '2017-04-14 00:20:11', '2017-04-14 00:22:00', 'browsingFeat', 'PHN'] df.loc[len(df)] = ['JP', '7', 'base', '2017-04-15', '2017-04-15 00:14:11', '2017-04-15 00:14:10', 'photoFeat', 'COMP'] df.loc[len(df)] = ['JP', '7', 'base', '2017-04-15', '2017-04-15 00:14:22', '2017-04-15 00:18:59', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '7', 'base', '2017-04-15', '2017-04-15 00:19:57', '2017-04-15 00:20:00', 'locFeat', 'COMP'] df.loc[len(df)] = ['JP', '7', 'base', '2017-04-15', '2017-04-15 00:21:56', '2017-04-15 00:22:00', 'browsingFeat', 'PHN'] df.loc[len(df)] = ['FR', '8', 'base', '2017-04-12', '2017-04-12 00:03:00', '2017-04-12 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['FR', '8', 'base', '2017-04-12', '2017-04-12 00:04:01', '2017-04-12 00:05:03', 'photoFeat', 'COMP'] df.loc[len(df)] = ['FR', '8', 'base', '2017-04-12', '2017-04-12 00:05:05', '2017-04-12 00:06:04', 'PresFeat', 'PHN'] df.loc[len(df)] = ['FR', '8', 'base', '2017-04-12', '2017-04-12 00:06:05', '2017-04-12 00:06:08', 'PresFeat', 'PHN'] df.loc[len(df)] = ['FR', '8', 'base', '2017-04-12', '2017-04-12 00:06:30', '2017-04-12 00:06:45', 'exploreFeat', 'COMP'] df.loc[len(df)] = ['FR', '9', 'test', '2017-04-15', '2017-04-15 00:14:11', '2017-04-15 00:14:10', 'photoFeat', 'COMP'] df.loc[len(df)] = ['FR', '9', 'test', '2017-04-15', '2017-04-15 00:14:22', '2017-04-15 00:18:59', 'locFeat', 'COMP'] df.loc[len(df)] = ['FR', '9', 'test', '2017-04-15', '2017-04-15 00:19:57', '2017-04-15 00:20:00', 'locFeat', 'COMP'] df.loc[len(df)] = ['FR', '9', 'test', '2017-04-15', '2017-04-15 00:21:56', '2017-04-15 00:22:00', 'browsingFeat', 'PHN'] df.loc[len(df)] = ['NG', '10', 'test', '2017-04-16', '2017-04-15 00:21:56', '2017-04-15 00:22:00', 'StorageFeat', 'PHN'] df.loc[len(df)] = ['IR', '11', 'test', '2017-04-12', '2017-04-15 00:21:56', '2017-04-15 00:22:00', 'browsingFeat', 'PHN'] df.loc[len(df)] = ['IR', '12', 'base', '2017-04-16', '2017-04-15 00:21:56', '2017-04-15 00:22:00', 'watchFeat', 'PHN'] df.loc[len(df)] = ['IR', '13', 'base', '2017-04-12', '2017-04-12 00:03:00', '2017-04-12 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['RU', '14', 'base', '2017-04-12', '2017-04-12 00:03:00', '2017-04-12 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['RU', '15', 'base', '2017-04-13', '2017-04-13 00:03:00', '2017-04-13 00:04:00', 'PresFeat', 'COMP'] df.loc[len(df)] = ['RU', '16', 'base', '2017-04-14', '2017-04-14 00:03:00', '2017-04-14 00:04:00', 'PresFeat', 'COMP'] df['user_id'] = 'id' + df['user_id'] def F(x): return(datetime.datetime.strptime(x[:19], "%Y-%m-%d %H:%M:%S")) for col in ['time', 'end_time']: df[col] = df[col].map(F) df['duration'] = (df['end_time'] - df['time']) / np.timedelta64(1, 's') df['value'] = np.random.uniform(low=1.0, high=5.0, size=df.shape[0]) return df def BuildCondInd(df, condDict): """ subsets a df according to values given in the dict: condDict the data columns are given in the dictionary keys the possible values (a list of values) for each column are given in the dict values """ cols = condDict.keys() n = df.shape[0] ind = pd.Series([True] * n) for i in range(len(cols)): col = cols[i] valueList = condDict[col] if valueList != None and valueList != []: ind0 = (df[col].isin(valueList)) ind = ind * ind0 return ind ''' df = pd.DataFrame({ 'a':[2, 1, 3, 2, 2, 2], 'b':['A', 'A', 'B', 'C', 'C', 'C'], 'c':['11','22','22','22', '22', '22']}) ind = BuildCondInd(df=df, condDict={'a':[1, 2], 'b':['A', 'B']}) df[ind] ind = BuildCondInd(df=df, condDict={'a':[1, 2], 'b':None}) df[ind] ''' ## get the sub df immediately def SubDf_withCond(df, condDict, resetIndex=True): if (condDict is None) or (len(condDict) == 0): return df df = df.reset_index(drop=True) ind = BuildCondInd(df=df, condDict=condDict) df2 = df[ind].copy() if resetIndex: df2 = df2.reset_index(drop=True) return df2 ## subset df based on regex filters on string columns # every column is given in a key and the value is a regex def BuildRegexInd(df, regDict): cols = regDict.keys() n = df.shape[0] ind = pd.Series([True]*n) for i in range(len(cols)): col = cols[i] valueList = regDict[col] if valueList != None and valueList != []: ind0 = pd.Series([False] * n) for value in valueList: ind0 = ind0 + df[col].map(str).str.contains(value) ind = ind * ind0 return ind ''' df = pd.DataFrame( {'a':[24, 12, 63, 2, 3312, 2], 'b':['A', 'A', 'BBAA', 'CD', 'CE', 'CF'], 'c':['11','22','22','23', '22', '22']}) ind = BuildRegexInd(df=df, regDict={'a':['1', '2'], 'b':['A', 'B']}) Mark(df[ind]) ind = BuildRegexInd(df=df, regDict={'a':['1', '3'], 'b':None}) Mark(df[ind]) ind = BuildRegexInd(df=df, regDict={'b':['B', 'C'], 'b':['^(?:(?!CE).)*$']}) Mark(df[ind]) ## column b does not include CE but it includes A or B. ind = BuildRegexInd(df=df, regDict={'b':['^(?!.*CE).*B.*$', '^(?!.*CE).*A.*$']}) Mark(df[ind]) ''' ## check for two strings regex def Regex_includesBothStr(s1, s2): out = '^(?=.*' + s1 + ')(?=.*' + s2 + ').*$' return out ''' reg = Regex_includesBothStr(' cat ', ' dog ') print(reg) print(pd.Series(['cat-dog', ' cat hates dog ', 'tiger']).str.contains(reg)) ''' ## rehashing a column (col) # the input is a dictionary of data frames with that column # we make sure the rehashing is fixed across data frames def RehashCol_dfDict(dfDict, col, newCol=None, omitCol=False): if newCol == None: newCol = col + '_hashed' dfNames = dfDict.keys() values = [] for key in dfNames: df0 = dfDict[key] values0 = df0[col].values values = list(set(values + list(values0))) dfHash = pd.DataFrame({col: values, 'tempCol': range(len(values))}) newDfDict = {} for key in dfNames: df0 = dfDict[key] dfNew = pd.merge(df0, dfHash, on=[col], how='left') dfNew[newCol] = dfNew['tempCol'] del dfNew['tempCol'] if omitCol: del dfNew[col] newDfDict[key] = dfNew return newDfDict # it converts a float or string date to datetime def FloatOrStr_toDate(x, format="%Y%m%d"): if (x == None) or (x == 'nan') or (x == np.nan): return pd.NaT if (type(x).__name__ == 'float') and math.isnan(x): return pd.NaT s = str(x) if s == 'nan': return pd.NaT import re s = re.sub('_', '', s) s = re.sub('-', '', s) s = re.sub(':', '', s) s = s[:8] return datetime.datetime.strptime(s, format) ## convert to datetime def ConvertToDateTime(x, dateTimeFormat="%Y-%m-%d %H:%M:%S", strLen=19): if (x == None) or (x == 'nan') or (x == np.nan): return pd.NaT if (type(x).__name__ == 'float') and math.isnan(x): return pd.NaT s = str(x) if s == 'nan': return pd.NaT return datetime.datetime.strptime(x[:strLen], dateTimeFormat) ## also lets define a function generator version for easy mapping def ConvertToDateTimeFcn(dateTimeFormat="%Y-%m-%d %H:%M:%S", strLen=19): def F(x): return ConvertToDateTime(x, dateTimeFormat=dateTimeFormat, strLen=strLen) return F ## convert weekday returned by isoweekday() to string def WeekDayToStr(x): d = {1:'Mon', 2:'Tue', 3:'Wed', 4:'Thu', 5:'Fri', 6:'Sat', 7:'Sun'} if x in d.keys(): return d[x] return 'nan' ''' x = datetime.datetime(2017, 01, 01) u = x.isoweekday() WeekDayToStr(u) ''' ## assigns object types to string # and assign "nan" to missing def PrepareDf(df): # colTypes = [str(df[col].dtype) for col in df.columns] for col in df.columns: if str(df[col].dtype) == "object": df[col].fillna("nan", inplace=True) df[col] = df[col].astype(str) return df # variable type def Type(x): return type(x).__name__ ## short hashing def ShortHash(s, length=8): s = str(s).encode('utf-8') hasher = hashlib.sha1(s) return base64.urlsafe_b64encode(hasher.digest()[:length]) """ ShortHash("asas") """ ## integrates columns (integCols) out from a data frame. # It uses integFcn for integration # it only keeps valueCols for integration def IntegOutDf(df, integFcn, integOutCols, valueCols=None): cols = list(df.columns) if valueCols == None: valueCols = list(filter(lambda x: x not in integOutCols, cols)) gCols = list(filter(lambda x: x not in (integOutCols + valueCols), cols)) if len(gCols) > 0: cols = gCols + valueCols df = df[cols] if len(gCols) == 0: gCols = ['tempCol'] df['tempCol'] = 1 g = df.groupby(by=gCols) dfAgg = g.aggregate(integFcn) dfAgg = dfAgg.reset_index() if 'tempCol' in dfAgg.columns: del dfAgg['tempCol'] return dfAgg ''' size = 10 df = pd.DataFrame({ 'categ1':np.random.choice( a=['a', 'b', 'c', 'd', 'e'], size=size, replace=True), 'categ2':np.random.choice(a=['A', 'B'], size=size, replace=True), 'col1':np.random.uniform(low=0.0, high=100.0, size=size), 'col2':np.random.uniform(low=0.0, high=100.0, size=size) }) print(df) IntegOutDf(df, integFcn=sum, integOutCols=['categ1'], valueCols=['col1', 'col2']) ''' ## aggregates df with different agg fcns for multiple columns # gCols is not needed since it will be assume to be # (all columns - the columns being aggregated) def AggWithDict(df, aggDict, gCols=None): cols = list(df.columns) valueCols = aggDict.keys() if gCols == None: gCols = list(filter(lambda x: x not in (valueCols), cols)) g = df.groupby(gCols) dfAgg = g.aggregate(aggDict) dfAgg = dfAgg.reset_index() return dfAgg ''' size = 10 df = pd.DataFrame({ 'categ1':np.random.choice( a=['a', 'b', 'c', 'd', 'e'], size=size, replace=True), 'categ2':np.random.choice(a=['A', 'B'], size=size, replace=True), 'col1':np.random.uniform(low=0.0, high=100.0, size=size), 'col2':np.random.uniform(low=0.0, high=100.0, size=size) }) df = df.sort_values(['categ2', 'categ1', 'col1', 'col2']) print(df) aggDf0 = AggWithDict(df=df, aggDict={'col1':sum, 'col2':min}) aggDf1 = AggWithDict(df=df, aggDict={'col1':sum, 'col2':min}, gCols=['categ2']) print(aggDf0) print(aggDf1) ''' ## find rows which have repeated values on some cols def FindRepRows(df, cols): return pd.concat(g for _, g in df.groupby(cols) if len(g) > 1) ## slice df by sliceCol and with given values in sliceValues def DfSliceDict(df, sliceCol, sliceValues=None): if sliceValues == None: sliceValues = list(set(df[sliceCol].values)) dfDict = {} for i in range(len(sliceValues)): v = sliceValues[i] dfDict[v] = df[df[sliceCol] == v] return dfDict ## merge dfDict def MergeDfDict(dfDict, onCols, how='outer', naFill=None): keys = dfDict.keys() for i in range(len(keys)): key = keys[i] df0 = dfDict[key] cols = list(df0.columns) valueCols = list(filter(lambda x: x not in (onCols), cols)) df0 = df0[onCols + valueCols] df0.columns = onCols + [(s + '_' + key) for s in valueCols] if i == 0: outDf = df0 else: outDf = pd.merge(outDf, df0, how=how, on=onCols) if naFill != None: outDf = outDf.fillna(naFill) return outDf ''' def GenDf(size): df = pd.DataFrame({ 'categ1':np.random.choice( a=['a', 'b', 'c', 'd', 'e'], size=size, replace=True), 'categ2':np.random.choice(a=['A', 'B'], size=size, replace=True), 'col1':np.random.uniform(low=0.0, high=100.0, size=size), 'col2':np.random.uniform(low=0.0, high=100.0, size=size) }) df = df.sort_values(['categ2', 'categ1', 'col1', 'col2']) return(df) size = 5 dfDict = {'US':GenDf(size), 'IN':GenDf(size), 'GER':GenDf(size)} MergeDfDict(dfDict=dfDict, onCols=['categ1', 'categ2'], how='outer', naFill=0) ''' ## split data based on values of a column: col def SplitDfByCol(df, col): #create unique list of device names uniqueNames = df[col].unique() #create a data frame dictionary to store your data frames dfDict = {elem : pd.DataFrame for elem in uniqueNames} for key in dfDict.keys(): dfDict[key] = df[df[col] == key] return dfDict ## calculates value_counts() aka freq for combination of cols def CombinFreqDf( df, cols=None, countColName='cnt', propColName='prop (%)'): if Type(df) == "Series": df = pd.DataFrame(df) if cols == None: cols = list(df.columns) if len(cols) < 2: cols.append('dummy') df['dummy'] = 'NA' outDf = df[cols].groupby(cols).agg(len).reset_index() outDf.columns = list(outDf.columns[:len(outDf.columns)-1]) + [countColName] outDf[propColName] = 100.0 * outDf[countColName] / outDf[countColName].sum() outDf = outDf.sort_values([countColName], ascending=[0]) if 'dummy' in cols: del outDf['dummy'] outDf = outDf.reset_index(drop=True) return outDf ''' df0 = pd.DataFrame({ 'app':['fb', 'fb', 'mailingFeat', 'mailingFeat'], 'party':['1P', '1P', '3P', '3P']}) CombinFreqDf(df=df0, cols=['app', 'party']) ''' ## maps a categorical variable with too many labels to less labels. def Remap_lowFreqCategs( df, cols, newLabels="nan", otherLabelsToReMap=None, freqThresh=5, propThresh=0.1, labelsNumMax=None): df2 = df.copy() k = len(cols) if Type(freqThresh) == 'int': freqThresh = [freqThresh] * k if Type(propThresh) in ['int', 'float']: propThresh = [propThresh] * k if Type(newLabels) == 'str': newLabels = [newLabels] * k if (labelsNumMax is not None) and Type(labelsNumMax) == 'int': labelsNumMax = [labelsNumMax] * k def GetFreqLabels(i): col = cols[i] freqDf = CombinFreqDf(df[col]) ind = (freqDf["cnt"] > freqThresh[i]) & (freqDf["prop (%)"] > propThresh[i]) freqLabels = list(freqDf.loc[ind][col].values) if labelsNumMax is not None: maxNum = min(len(freqLabels), labelsNumMax[i]) freqLabels = freqLabels[0:(maxNum)] if otherLabelsToReMap is not None: freqLabels = list(set(freqLabels) - set(otherLabelsToReMap)) return freqLabels freqLabelsList = [GetFreqLabels(x) for x in range(k)] freqLabelsDict = dict(zip(cols, freqLabelsList)) def F(df): for i in range(len(cols)): col = cols[i] newLabel = newLabels[i] ind = [x not in freqLabelsDict[col] for x in df[col]] if max(ind): df.loc[ind, col] = newLabel return df return {"df":F(df2), "F":F, "freqLabelsDict":freqLabelsDict} ## this function works on a data frame with two categorical columns ## one is the category column ## one is the label column ## for each category it creates a distribution for the labels def CalcFreqTablePerCateg(df, categCol, valueCol): def AggFcnBuild(categValue): def F(x): return sum(x == categValue)/(1.0) return F df = df.fillna('NA') labels = list(set(df[valueCol])) def G(value): AggFcn = AggFcnBuild(value) dfAgg = df.groupby([categCol])[[valueCol]].agg(lambda x: AggFcn(x)) dfAgg = dfAgg.reset_index() return dfAgg value = labels[0] dfAgg = G(value) for i in range(1, len(labels)): value = labels[i] dfAgg1 = G(value) dfAgg = pd.merge(dfAgg, dfAgg1, how='left', on=[categCol]) dfAgg.columns = [categCol] + labels return {'df': dfAgg, 'labels': labels} ''' size = 20 df0 = pd.DataFrame({ 'categ':np.random.choice(a=['a', 'b', 'c'], size=size, replace=True), 'value':np.random.choice(a=['AA', 'BB', 'CC'], size=size, replace=True), 'col2':np.random.uniform(low=0.0, high=100.0, size=size), 'col3':np.random.uniform(low=0.0, high=100.0, size=size), 'col4':np.random.uniform(low=0.0, high=100.0, size=size)}) CalcFreqTablePerCateg(df=df0, categCol='categ', valueCol='value')['df'] ''' ## merges a dict of tables def MergeTablesDict(tabDict): keys = tabDict.keys() #print(keys) n = len(keys) for i in range(n): key = keys[i] tab = tabDict[key] df = PropDfTab(tab) df = df[['categ', 'freq', 'prop']] df.columns = ['categ', 'freq_' + key, 'prop_' + key] if i == 0: outDf = df else: outDf = pd.merge(outDf, df, on=['categ'], how='outer') outDf = outDf.reset_index(drop=True) outDf = outDf.fillna(value=0) return outDf ## creating a single string column using multiple columns (cols) # and adding that to the data frame def Concat_stringColsDf(df, cols, colName=None, sepStr='-'): x = '' if colName == None: colName = sepStr.join(cols) for i in range(len(cols)): col = cols[i] x = (x + df[col].map(str)) if (i < len(cols)-1): x = x +'-' df[colName] = x return df ''' df = pd.DataFrame({'a':range(3), 'b':['rr', 'gg', 'gg'], 'c':range(3)}) Concat_stringColsDf(df=df, cols=['a', 'b', 'c'], colName=None, sepStr='-') ''' ## flatten a column (listCol) of df with multiple values def Flatten_RepField(df, listCol, sep=None): if sep != None: df = df.assign(**{listCol: df[listCol].str.split(',')}) outDf = pd.DataFrame({ col: np.repeat(df[col].values, df[listCol].str.len()) for col in df.columns.difference([listCol]) }).assign( **{listCol: np.concatenate(df[listCol].values)})[df.columns.tolist()] return outDf ''' df = pd.DataFrame({'var1': ['a,b,c', 'd,e,f'], 'var2': [1, 2], 'var3':[5, 6]}) print(df) Flatten_RepField(df, listCol='var1', sep=',') ''' ### tables p-value ## for a given table of frequencies and for each category calculates ## the total count of other categs (complement) def TabCategCompl(tab, categCol, freqCol, complementCol=None): categs = tab[categCol].values s = tab[freqCol].sum() complement = list() for i in range(tab.shape[0]): categ = categs[i] tab0 = tab[(tab[categCol] == categ)] x = tab0[freqCol].values[0] c = s - x complement.append(c) if complementCol == None: complementCol = freqCol + '_compl' tab[complementCol] = complement return tab ## does above for multiple columns def TabCategComplMulti(tab, categCol, freqCols): complementCols = [] for i in range(len(freqCols)): freqCol = freqCols[i] tab = TabCategCompl(tab=tab, categCol=categCol, freqCol=freqCol, complementCol=None) complementCol = freqCol + '_compl' complementCols.append(complementCol) cols = freqCols + complementCols tab = tab[[categCol] + cols] return tab ## adds a p-value per categ for comparing two frequencies def TabComplPvalue(tab, categCol, freqCols): tab = TabCategComplMulti(tab, categCol, freqCols) n = tab.shape[0] pvalueList = [] for i in range(n): r = tab.iloc[i] d = pd.DataFrame({'col1': [r[1], r[2]], 'col2': [r[3],r[4]]}) pvalue = scipy.stats.fisher_exact(table=d, alternative='two-sided')[1] pvalueList.append(Signif(3)(pvalue)) tab['p-value'] = pvalueList return tab #### Useful functions for mapping a string column to another string column ## using a pattern string ## function for classification mapping ## it uses patterns to map to categories (general purpose) def LabelByPattern( x, patternDf, patternCol='pattern', categCol='category', exactMatch=False): # x a series # patternDict has patterns and labels # remove duplicate rows import re patternDf = patternDf.drop_duplicates(keep='first') patterns = patternDf[patternCol] categs = patternDf[categCol] y = ['']*len(x) outDf = pd.DataFrame({'x':x, 'y':y}) for i in range(len(patterns)): pattern = patterns[i] categ = categs[i] hasCateg = x.str.contains(pattern) if exactMatch: hascateg = (x.str == pattern) ind = np.where(hasCateg > 0)[0].tolist() for j in ind: if not bool(re.search(categ, y[j])): y[j] = y[j] + categ outDf['y'] = y outDf.columns = ['signal', categCol] return outDf ## label a data frame based on patternDf # which includes pattern column and category column def LabelByPatternDf( df, signalCol, patternDf, patternCol, categCol, newColName='mapped_category'): patternDf = patternDf[[patternCol, categCol]] patternDf = patternDf.drop_duplicates(keep='first') patternDf = patternDf.reset_index(drop=True) x = df[signalCol] df2 = LabelByPattern(x=x, patternDf=patternDf, patternCol=patternCol, categCol=categCol) df[newColName] = df2[categCol] return df ######################### Graphical/Plotting Functions ###################### ## bar charts for multiple columns (yCols), with different colors ## x axis labels come from the xCol def BarPlotMultiple(df, xCol, yCols, rotation=45, pltTitle=''): x = range(len(df[xCol])) colorList = ['r', 'm', 'g', 'y', 'c'] x = 8*np.array(x) for i in range(len(yCols)): col = yCols[i] x1 = x + 1*i plt.bar(x1, df[col], color=colorList[i], alpha=0.6, label=col) locs, labels = plt.xticks() plt.xticks(x1, df[xCol], rotation=rotation) plt.setp(labels, rotation=rotation, fontsize=10) plt.title(pltTitle + ': ' + xCol) plt.legend() import matplotlib.scale as mscale import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms import matplotlib.ticker as ticker import numpy as np class SquareRootScale(mscale.ScaleBase): """ ScaleBase class for generating square root scale. """ name = 'squareroot' def __init__(self, axis, **kwargs): mscale.ScaleBase.__init__(self) def set_default_locators_and_formatters(self, axis): axis.set_major_locator(ticker.AutoLocator()) axis.set_major_formatter(ticker.ScalarFormatter()) axis.set_minor_locator(ticker.NullLocator()) axis.set_minor_formatter(ticker.NullFormatter()) def limit_range_for_scale(self, vmin, vmax, minpos): return max(0., vmin), vmax class SquareRootTransform(mtransforms.Transform): input_dims = 1 output_dims = 1 is_separable = True def transform_non_affine(self, a): return np.array(a)**0.5 def inverted(self): return SquareRootScale.InvertedSquareRootTransform() class InvertedSquareRootTransform(mtransforms.Transform): input_dims = 1 output_dims = 1 is_separable = True def transform(self, a): return np.array(a)**2 def inverted(self): return SquareRootScale.SquareRootTransform() def get_transform(self): return self.SquareRootTransform() mscale.register_scale(SquareRootScale) ## compares the freq of usages given in labelCol # and creates a joint distribution of labelCol given in x-axis # and compareCol given with colors # it either shows the joint probability (prop (%)) on y-axis # or it will show the freq divided by denomConstant if prop == False # labelCol: categorical var denoted in x-axis # compareCol: categorical var denoted by colors # countDistinctCols: what should be counted once, e.g. unit_id will count # each item with given unit_id once # prop = True, will calculates proportions, otherwise we divide counts by # denomConstant, # and if denomCountCols is given, we use it to count number of items # and divide by (denomConstant * itemCount) def PltCompare_bivarCategFreq( df, labelCol, compareCol=None, countDistinctCols=None, rotation=90, pltTitle='', compareOrder=None, limitNum=None, prop=True, denomConstant=1.0, denomCountCols=None, newColName="value", yScale=None): if countDistinctCols is not None: keepCols = [labelCol] + countDistinctCols if compareCol is not None: keepCols = keepCols + [compareCol] if denomCountCols is not None: keepCols = keepCols + denomCountCols df = df[keepCols].drop_duplicates().reset_index() if compareCol is None: combinDf = CombinFreqDf(df[labelCol]) else: combinDf = CombinFreqDf(df[[labelCol, compareCol]]) hue = compareCol if limitNum is not None: combinDf = combinDf[:limitNum] if compareOrder is not None: hue_order = compareOrder respCol = "prop (%)" #Mark(denomConstant, "denomConstant") if denomCountCols is not None: itemCount = len(df[denomCountCols].drop_duplicates().reset_index()) denomConstant = 1.0 * denomConstant * itemCount #Mark(denomConstant, "denomConstant") if prop is False: combinDf[newColName] = combinDf["cnt"] / denomConstant respCol = newColName if compareCol is None: sns.barplot(data=combinDf, x=labelCol, y=respCol) else: sns.barplot(data=combinDf, x=labelCol, hue=hue, y=respCol) locs, labels = plt.xticks() out = plt.setp(labels, rotation=rotation, fontsize=10) plt.legend(loc='upper right') if yScale is not None: plt.yscale(yScale) return combinDf """ df = pd.DataFrame({ "label":["cat", "dog", "cat", "dog", "dog", "cat", "cat", "dog"], "gender":["M", "F", "M", "F", "F", "F", "F", "M"]}) PltCompare_bivarCategFreq( df=df, labelCol="label", compareCol="gender") PltCompare_bivarCategFreq( df=df, labelCol="label", compareCol="gender", prop=False, denomConstant=1.0, newColName="cnt per day") """ ## make a boxplot for multiple columns Side by Side (Sbs, include mean with a star def BoxPlt_dfColsSbS( df, cols=None, pltTitle='', xlab='', ylab='value', boxColors=['darkkhaki', 'royalblue', 'r', 'g', 'y', 'o', 'b'], ylim=None): from matplotlib.patches import Polygon data = [] if cols is None: cols = df.columns for i in range(len(cols)): col = cols[i] data.append(df[col]) fig, ax1 = plt.subplots(figsize=(10, 6)) fig.canvas.set_window_title('') plt.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25) bp = plt.boxplot(data, notch=0, sym='+', vert=1, whis=1.5) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') # Add a horizontal grid to the plot, but make it very light in color # so we can use it for reading data values but not be distracting ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) # Hide these grid behind plot objects ax1.set_axisbelow(True) ax1.set_title(pltTitle, fontsize=20) ax1.set_xlabel(xlab) ax1.set_ylabel(ylab) # Now fill the boxes with desired colors numBoxes = len(data) medians = list(range(numBoxes)) for i in range(numBoxes): box = bp['boxes'][i] boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) boxCoords = list(zip(boxX, boxY)) boxPolygon = Polygon(boxCoords, facecolor=boxColors[i], label=cols[i]) ax1.add_patch(boxPolygon) # Now draw the median lines back over what we just filled in med = bp['medians'][i] medianX = [] medianY = [] for j in range(2): medianX.append(med.get_xdata()[j]) medianY.append(med.get_ydata()[j]) plt.plot(medianX, medianY, 'k') medians[i] = medianY[0] # Finally, overplot the sample averages, with horizontal alignment # in the center of each box plt.plot([np.average(med.get_xdata())], [np.average(data[i])], color='w', marker='*', markeredgecolor='k') if ylim is not None: ax1.set_ylim(ylim) plt.legend() def CustomSortDf(df, col, orderedValues): values = set(df[col].values) remainingValues = list(set(df[col].values) - set(orderedValues)) orderedValues = orderedValues + remainingValues df2 = pd.DataFrame( {col:orderedValues, "dummy_order":range(len(orderedValues))}) df3 = pd.merge(df, df2, how="left", on=[col]) df3 = df3.sort_values(["dummy_order"]) df3 = df3.reset_index(drop=True) del df3["dummy_order"] return df3 """ n = 10 df = pd.DataFrame({ 'categ':np.random.choice(a=['a', 'b', 'c', 'd'], size=n, replace=True), 'col1':np.random.uniform(low=0.0, high=100.0, size=n), 'col2':np.random.uniform(low=0.0, high=100.0, size=n), 'col3':np.random.uniform(low=0.0, high=100.0, size=n), 'col4':np.random.uniform(low=0.0, high=100.0, size=n)}) col = "categ" orderedValues = ["c", "a", "b"] CustomSortDf(df=df, col=col, orderedValues=orderedValues) """ ## it plots all columns wrt index # it uses colors to compare them side by side. def PltCols_wrtIndex( df, cols=None, categCol=None, pltTitle='', ymin=None, ymax=None, yLabel='', xLabel='', colorList=None, orderedValues=None, alphaList=None, sciNotation=False, ExtraFcn=None, orient='v', sizeAlpha=0.75, legendColAlpha=2): df2 = df.copy() if cols is None: cols = list(df2.columns) if categCol is not None: df2.index = df2[categCol] if (categCol in cols): cols = list(set(cols) - set([categCol])) # cols = cols.remove(categCol) # print(cols) # Mark(categs) if orderedValues is not None: df2 = CustomSortDf(df=df2, col=categCol, orderedValues=orderedValues) df2.index = df2[categCol] categs = df2.index num = len(categs) x = range(num) if colorList is None: colorList = [ 'r', 'g', 'm', 'y', 'c', 'darkkhaki', 'royalblue', 'darkred', 'crimson', 'darkcyan', 'gold', 'lime', 'black', 'navy', 'deepskyblue', 'k'] if alphaList is None: alphaList = [0.7] * len(cols) stretch = 4 * len(cols) x = stretch * np.array(x) if orient == 'v': fig, ax = plt.subplots(figsize=(15*sizeAlpha, 10*sizeAlpha), dpi=1200, facecolor='w', edgecolor='k') for i in range(len(cols)): col = df2[cols[i]] plt.bar(x + 2*i, col.values, alpha=alphaList[i], label=cols[i], color=colorList[i], width=2, edgecolor='black', linewidth=2.0*sizeAlpha) plt.title(pltTitle, fontsize=20, fontweight='bold') if sciNotation: plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0)) #labels = [item.get_text() for item in ax.get_xticklabels()] labels = categs ax.set_xticklabels(labels) locs, labels = plt.xticks(x, categs) plt.setp(labels, rotation=15, fontsize=17*sizeAlpha, fontweight='bold') locs2, labels2 = plt.yticks() plt.setp(labels2, rotation=0, fontsize=17*sizeAlpha, fontweight='bold') ncol = len(cols) / legendColAlpha plt.legend( loc='best', fontsize=17, prop={'weight': 'semibold', 'size': 17 * sizeAlpha}, ncol=ncol) axes = plt.gca() axes.set_ylim([ymin, ymax]) ax.set_xlabel(xLabel) ax.set_ylabel(yLabel) if ExtraFcn is not None: ExtraFcn(ax) if orient == 'h': fig, ax = plt.subplots(figsize=(10*sizeAlpha, 15*sizeAlpha), dpi=1200, facecolor='black', edgecolor='black') for i in range(len(cols)): col = df2[cols[i]] plt.barh( x + 2 * (i - 1), col.values, alpha=alphaList[i], label=cols[i], color=colorList[i], height=2, edgecolor='black', linewidth=2.0 * sizeAlpha) plt.title(pltTitle, fontsize=20*sizeAlpha, fontweight='bold') if sciNotation: plt.ticklabel_format( style='sci', axis='x', scilimits=(0, 0), prop={'weight': 'bold'}) labels = categs ax.set_yticklabels(labels) locs, labels = plt.yticks(x, categs) plt.setp(labels, rotation=0, fontsize=17*sizeAlpha, fontweight='bold') locs2, labels2 = plt.xticks() plt.setp(labels2, rotation=20, fontsize=17*sizeAlpha, fontweight='bold') ncol = len(cols) / legendColAlpha plt.legend( loc='best', ncol=ncol, prop={'weight': 'semibold', 'size': 17 * sizeAlpha}) axes = plt.gca() axes.set_xlim([ymin, ymax]) ax.set_xlabel(yLabel) ax.set_ylabel(xLabel) if ExtraFcn != None: ExtraFcn(ax) plt.gca().invert_yaxis() return {'fig': fig, 'ax': ax} ''' n = 3 df = pd.DataFrame({ 'categ':np.random.choice( a=['a', 'b', 'c', 'd', 'e', 'f'], size=n, replace=False), 'col1':np.random.uniform(low=0.0, high=100.0, size=n), 'col2':np.random.uniform(low=0.0, high=100.0, size=n), 'col3':np.random.uniform(low=0.0, high=100.0, size=n), 'col4':np.random.uniform(low=0.0, high=100.0, size=n)}) orderedValues = ["c", "a", "b", "d", "f", "e"] PltCols_wrtIndex( df=df, cols=['col1', 'col2', 'col3', 'col4'], categCol='categ', orderedValues=orderedValues, orient='v', sciNotation=True) ''' ## this function creates a plot with each bar representing the distribution # for a category (given in categCol) # each distribution is defined on a set of labels # the distributions are given in each column def Plt_stackedDist_perCateg( df, categCol, cols=None, labels=None, sortCols=None, figsize=(10, 5), mainText=''): import colorsys if cols == None: cols = list(df.columns[1:len(df.columns)]) if labels == None: labels = cols if sortCols == None: sortCols = cols df = df.sort(sortCols, ascending=False) m = len(cols) HSV_tuples = [(x*1.0/m, 0.5, 0.5) for x in range(m)] RGB_tuples = [colorsys.hsv_to_rgb(*x) for x in HSV_tuples] n = df.shape[0] x = pd.Series(n*[0]) bar_locations = np.arange(n) fig, ax = plt.subplots(figsize=figsize) for i in range(len(cols)): col = cols[i] y = df[col].values ax.bar(bar_locations, y, bottom=x, color=RGB_tuples[i], label=labels[i]) x = x + y plt.legend(loc="best") bar_locations2 = np.arange(n) + 0.5 plt.xticks(bar_locations2, df[categCol].values, rotation='vertical') plt.title(mainText) print(bar_locations) print(df.loc[0].values) fig.show() ''' df0 = pd.DataFrame({'country':['JP', 'US', 'FR'], 'col1':np.random.uniform(low=0.0, high=100.0, size=3), 'col2':np.random.uniform(low=0.0, high=100.0, size=3), 'col3':np.random.uniform(low=0.0, high=100.0, size=3), 'col4':np.random.uniform(low=0.0, high=100.0, size=3)}) Plt_stackedDist_perCateg( df=df0, categCol='country', cols=['col1', 'col2', 'col3', 'col4'], labels=None, sortCols=None, figsize=(10, 5), mainText='') ''' ## compares the values (valueCol) for the index (pivotIndCol) # for various classes given in compareCol # first it pivots the data and then plots side by side def PivotPlotWrt( df, pivotIndCol, compareCol, valueCol, cols=None, pltTitle='', sizeAlpha=0.75): dfPivot = df.pivot(index=pivotIndCol, columns=compareCol, values=valueCol) dfPivot = dfPivot.fillna(0) dfPivot[pivotIndCol] = dfPivot.index if cols is None: cols = list(set(df[compareCol].values)) p = PltCols_wrtIndex( df=dfPivot, cols=cols, categCol=pivotIndCol, orient='h', pltTitle=pltTitle, sizeAlpha=sizeAlpha) return {'df':dfPivot, 'plt':p} ## creating quantiles for a continuous variable and removing repetitions def Qbins(x, num=10): qs = list( np.percentile(a=x, q=list(100 * np.linspace( start=0, stop=(1 - 1.0/num), num=num)))) qs = list(set([float("-inf")] + qs + [float("inf")])) qs.sort() return qs # cuts uniformly def Ubins(x, num=10): b = np.linspace(start=min(x), stop=max(x), num=num) b = [Signif(2)(x) for x in b] b = list(set(b)) b = [float("-inf")] + b + [float("inf")] b.sort() return b ## cuts using quantiles def CutQ(x, num=10): qs = Qbins(x, num) discX = pd.cut(x, bins=qs) return(discX) ## make a bar plot def BarPlot(y, yLabels, ylim=None, pltTitle='', figSize=[5, 5]): n = len(y) x = pd.Series(n*[0]) bar_locations = np.arange(n) fig, ax = plt.subplots() fig.set_size_inches(figSize[0], figSize[1]) ax.bar(bar_locations, y, bottom=x, color='r') plt.legend(loc="best") bar_locations2 = np.arange(n) + 0.5 plt.xticks(bar_locations2, yLabels, rotation='vertical') axes = plt.gca() axes.set_ylim(ylim) plt.title(pltTitle) fig.show() ## creates a cut column with NA being an explicit category def ExplicitNa_cutCol(df, col, cuts, newCol=None): if newCol is None: newCol = col + '_range' df[newCol] = pd.cut(df[col], cuts) df[newCol] = df[newCol].cat.add_categories(["NA"]) df[newCol] = df[newCol].fillna("NA") return df ''' z = np.random.normal(loc=50.0, scale=20.0, size=10) z = np.insert(z, 0, float('nan')) df0 = pd.DataFrame({'z':z}) ExplicitNa_cutCol( df=df0, col='z', cuts=[-20, 0, 20, 40, 60, 80, 100, 120, 140, float('inf')], newCol=None) ''' ## order df based on a cut column def OrderDf_cutCol(df, cutCol, orderCol='order'): def F(s): x = re.search(r'.*?\((.*),.*', s) if x is None: return(float('-inf')) return(float(x.group(1))) df['order'] = df[cutCol].map(F) df = df.sort_values('order') return df ''' z = np.random.normal(loc=50.0, scale=20.0, size=10) z = np.insert(z, 0, float('nan')) df0 = pd.DataFrame({'z':z}) u = pd.cut(z, [-20, 0, 20, 40, 60, 80, 100, 120, 140, float('inf')]) df0['col'] = u df0['col'] = df0['col'].cat.add_categories(["NA"]) df0['col'] = df0['col'].fillna("NA") OrderDf_cutCol(df=df0, cutCol="col") ''' ## for a variable generated with pd.cut it make a barplot # it orders the labels based on the their values (rather than freq) def FreqPlot_cutCol(u, pltTitle='', figSize=[5, 5]): tab = u.value_counts() df0 = pd.DataFrame(tab) df0['label'] = list(df0.index) df0 = OrderDf_cutCol(df=df0, cutCol='label') df0.columns = ['value', 'label', 'order'] df0 = df0.sort_values('order') BarPlot( y=df0['value'], yLabels=df0['label'], pltTitle=pltTitle, figSize=figSize) return df0 ''' z = np.random.normal(loc=50.0, scale=20.0, size=1000) u = pd.cut(z, [-20, 0, 20, 40, 60, 80, 100, 120, 140, float('inf')]) FreqPlot_cutCol(u) ''' def PropDfTab(tab, ylim=None, categCol='categ', pltIt=False, pltTitle=''): d = pd.DataFrame(tab) d.columns = ['freq'] e = (100.0 * d.values) / sum(d.values) e = [Signif(5)(x) for x in e] d['prop'] = e d[categCol] = d.index if pltIt: BarPlot(y=e, yLabels=list(d.index), ylim=ylim, pltTitle=pltTitle) return d ## cut continuous var def CutConti(x, num=10, method='quantile'): if method == 'quantile': b = Qbins(x, num=num) elif (method == 'uniform'): b = Ubins(x, num=num) z = pd.cut(x, bins=b) return z ## gets a continuous var x, partitions the real line based on quantiles # or bins of x # then generates a function which assigns levels to any new value/values def CutContiFcn( x, num=10, method='quantile', intervalColName='interval', levelColName='level', levelsType='int', levelPrefix='Lev', rawValueColName='raw'): if method == 'quantile': b = Qbins(x, num=num) print(b) elif (method == 'uniform'): b = Ubins(x, num=num) intervals = sorted(set(pd.cut(x + b[1:], bins=b))) if (): levels = [levelPrefix + str(x) for x in range(len(intervals))] Mark(levels) levDf = pd.DataFrame({intervalColName:intervals, levelColName:levels}) Mark(levDf) def F(u): z = pd.cut(u, bins=b) df0 = pd.DataFrame({rawValueColName:u, intervalColName: z}) outDf = pd.merge(df0, levDf, on=[intervalColName], how='left') return(outDf) return F ''' x = [1, 3, 4, 5, 66, 77, 88] F = CutContiFcn( x, num=10, method='quantile', intervalColName='interval', levelColName='level', levelPrefix='Lev', rawValueColName='raw') F(x) F(x + [5, 1, 3, 100, -1 , 90, 2.2]) ''' ## cuts continuous data and creates a bar plot def CutBarPlot(x, num=10, method='quantile', pltTitle='', figSize=[5, 5]): z = CutConti(x, num=num, method=method) u = z.value_counts() #print(u) d = pd.DataFrame(u) d = 100.0 * (d / d.sum()) d = d.sort_index() BarPlot(y=d.values, yLabels=d.index, ylim=None, pltTitle=pltTitle, figSize=figSize) ## returns a functions which calculates quantiles according to q (which ) def QuantileFcn(q): def F(x): return(np.percentile(a=x, q=q)) return F def Plt_quantilesPerSlice( df, sliceCol, respCol, gridNum=100.0, pltTitle=''): slices = list(set(df[sliceCol].values)) outDict = {} for sl in slices: x = df[df[sliceCol] == sl][respCol].values grid = list( gridNum * np.linspace( start=1.0/float(gridNum), stop=(1 - 1.0/float(gridNum)), num=int(gridNum))) q = QuantileFcn(grid)(x) outDict[sl] = q plt.plot(grid, q, label=sl) plt.legend() plt.title(pltTitle) return pd.DataFrame(outDict) ''' df = pd.DataFrame({ 'value':[1, 1, 1, 2, 3, 4, 2, 2, 2], 'categ':['a', 'a', 'b', 'b', 'b', 'a', 'a', 'b', 'a']}) Plt_quantilesPerSlice(df=df, sliceCol='categ', respCol='value', pltTitle='') ''' ## takes a vector of labels, eg pandas series # it returns a freq table with props in dataframe format def GenFreqTable(x, rounding=None): freqTab = x.value_counts() distbnTab = 100.0 * x.value_counts() / freqTab.sum() labels = freqTab.keys() freqValues = list(freqTab) propValues = list(distbnTab) if rounding is not None: propValues = [Signif(rounding)(x) for x in propValues] outDict = {'label':labels, 'freq':freqValues, 'prop':propValues} outDf = pd.DataFrame(outDict) return outDf[['label', 'freq', 'prop']] ''' x = pd.Series(['a', 'a', 'b', 'b', 'c']) print(GenFreqTable(x)) ''' ## builds a categ distbn for each combination after groupby indCols def CategDistbnDf(df, indCols, categCol, rounding=None): def F1(x): return tuple(GenFreqTable(x)['label'].values) def F2(x): return tuple(GenFreqTable(x)['freq'].values) def F3(x): return tuple(GenFreqTable(x, rounding=4)['prop'].values) df = df[indCols + [categCol]].copy() df[categCol + '_freq'] = df[categCol] df[categCol + '_prop'] = df[categCol] g = df.groupby(indCols) outDf = g.aggregate({categCol:F1 , categCol + '_freq':F2, categCol + '_prop':F3}) outDf = outDf.reset_index() return outDf[BringElemsToFront(outDf.columns, indCols + [categCol])] ''' df = pd.DataFrame({ 'user_id':[1, 1, 1, 2, 2, 2, 2, 2, 1, 1], 'interface':['A', 'A', 'A', 'B', 'B', 'B', 'A', 'A', 'A', 'B'], 'categ':['a', 'a', 'b', 'b', 'a', 'a', 'a', 'a', 'b', 'b']}) dnDf = CategDistbnDf( df=df, indCols=['user_id', 'interface'], categCol='categ', rounding=None) ''' ## compare label distribution across slices def LabelDistbn_acrossSlice( df, sliceCol, labelCol, slices=None, orderedValues=None, pltIt=True, pltTitle='', orderIntervals=False, sortBySlice=False, limitLabelNum=20): def F(group): return CombinFreqDf(group[[sliceCol, labelCol]]) g = df.groupby([sliceCol], as_index=False) outDf = g.apply(F).reset_index(drop=True) if slices is None: slices = list(set(df[sliceCol].values)) horizDf = None for s in slices: s = str(s) subDf = outDf[outDf[sliceCol].map(str) == s][[labelCol, 'cnt', 'prop (%)']] subDf.columns = [labelCol, s + '_cnt', s + '_prop (%)'] #Mark(subDf[:2]) if horizDf is None: horizDf = subDf horizDf['total_cnt'] = subDf[s + '_cnt'] else: horizDf = pd.merge(horizDf, subDf, on=labelCol, how='outer') horizDf['total_cnt'] = horizDf['total_cnt'] + horizDf[s + '_cnt'] #Mark(subDf, 'subDf') #Mark(horizDf, 'horizDf') print(horizDf) horizDf = horizDf.sort_values(['total_cnt'], ascending=[0]) if orderIntervals: horizDf = OrderDf_cutCol(df=horizDf, cutCol=labelCol, orderCol='order') if sortBySlice: horizDf.sort_values([sliceCol]) if limitLabelNum is not None: horizDf = horizDf[:limitLabelNum] p = None if pltIt: p = PltCols_wrtIndex( df=horizDf, cols=[str(x) + '_prop (%)' for x in slices], categCol=labelCol, orderedValues=orderedValues, orient='h', pltTitle=pltTitle) return {'outDf':outDf, 'horizDf':horizDf, 'p':p} ''' df = GenUsageDf_forTesting() Mark(df[:2]) res = LabelDistbn_acrossSlice( df=df, sliceCol='expt', labelCol='prod', pltIt=True) res['p'] res = LabelDistbn_acrossSlice( df=df, sliceCol='expt', labelCol='prod', orderedValues=[], pltIt=True) ''' # make a single label distbn def LabelDistbn( df, labelCol, orderIntervals=False, pltTitle="", CustomOrder=None, figSize=[10, 8]): out = CombinFreqDf(df[[labelCol]]) del out['cnt'] out['prop (%)'] = out['prop (%)'].map(Signif(3)) if orderIntervals: out = OrderDf_cutCol(df=out, cutCol=labelCol, orderCol='order') del out['order'] if CustomOrder is not None: out = CustomOrder(out) fig, ax = plt.subplots(); fig.set_size_inches(figSize[0], figSize[1]) plt.bar(range(len(out)), out['prop (%)']) plt.xticks(np.array(range(len(out))) + 0.5, out[labelCol], rotation=90) plt.grid(False) plt.grid(axis='y', linewidth=1, color='red', alpha=0.5) if pltTitle == "": pltTitle = labelCol + " distbn" plt.title(pltTitle, fontsize=20, fontweight='bold') return out ## def LabelDistbn_perSlice( df, sliceCol, labelCol, pltIt=True, pltTitle='', orderIntervals=False, sortBySlice=False, labels=None, sizeAlpha=0.75): def F(group): return CombinFreqDf(group[[sliceCol, labelCol]]) g = df.groupby([labelCol], as_index=False) outDf = g.apply(F).reset_index(drop=True) if labels is None: labels = list(set(df[labelCol].values)) horizDf = None for l in labels: l = str(l) subDf = outDf[outDf[labelCol].map(str) == l][[sliceCol, 'cnt', 'prop (%)']] subDf.columns = [sliceCol, l + '_cnt', l + '_prop (%)'] if horizDf is None: horizDf = subDf horizDf['total_cnt'] = subDf[l + '_cnt'] else: horizDf = pd.merge(horizDf, subDf, on=sliceCol, how='outer') horizDf = horizDf.fillna(0) horizDf['total_cnt'] = horizDf['total_cnt'] + horizDf[l + '_cnt'] horizDf = horizDf.sort_values(['total_cnt'], ascending=[0]) if orderIntervals: horizDf = OrderDf_cutCol(df=horizDf, cutCol=sliceCol, orderCol='order') if sortBySlice: horizDf = horizDf.sort_values([sliceCol]) horizDf = horizDf[:20] p = None for l in labels: horizDf[l + '_%'] = 100 * (horizDf[l + '_cnt'] / horizDf['total_cnt']) if pltIt: p = PltCols_wrtIndex( df=horizDf, cols=[str(x) + '_%' for x in labels], categCol=sliceCol, orient='h', pltTitle=pltTitle, sizeAlpha=sizeAlpha) return {'outDf':outDf, 'horizDf':horizDf, 'p':p} ## interpolate missing categ values wrt certain columns # condDict will determine which subset of data should be used to make predictions # replacedValues are the values which need replacement/interpolation # dropUnassigned is to determine if we should keep rows which remain unassigned around def InterpCategColWrt( df, yCol, xCols, condDict={}, replacedValues=None, dropUnassigned=True): df2 = df.copy() if len(condDict) > 0: ind = BuildCondInd(df=df2, condDict=condDict) df2 = df2[ind].copy() if replacedValues is not None: df2 = df2[~df2[yCol].isin(replacedValues)].copy() predDf = CategDistbnDf(df=df2, indCols=xCols, categCol=yCol) predDf[yCol + '_pred'] = predDf[yCol].map(lambda x: x[0]) ind = df[yCol].isin(replacedValues) df3 = df[ind].copy() df4 = pd.merge(df3, predDf[xCols + [yCol + '_pred']], on=xCols, how='left') df.loc[ind, yCol] = df4[yCol + '_pred'].values if dropUnassigned: df = df.dropna(subset=[yCol]) return df ''' df = pd.DataFrame({ 'user_id':[1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3], 'os':['and', 'and', 'and', 'randSurface', 'randSurface', 'randSurface', 'randSurface', 'and', 'and', 'and', 'randSurface', 'randSurface', 'randSurface', 'randSurface', 'randSurface'], 'y':[None, 'c', 'b', 'b', 'b', 'b', 'a', 'a', 'a', 'b', 'b', 'nan', 'b', 'b', None], 'country': ['us', 'us', 'us', 'us', 'us', 'jp', 'us', 'jp', 'us', 'us', 'us', 'us', 'jp', 'us', 'us']}) print(df) InterpCategColWrt(df=df, yCol='y', xCols=['user_id', 'os'], condDict={'country':['us']}, replacedValues=['nan', None], dropUnassigned=False) ''' ## for a df with sliceCols, it groups by sliceCols # and for each categCols combination, # it adds a total count column for the valueCol # for example sliceCols: country, categCols=[sequence, event_1st, event_2nd] # and valueCol=sequence_count # we can figure out the total frequency of each sequence in each country # as well as the frequency of the first event for the same country (sliceCols) # we also agg a grand total for the valueCols for each combination of sliceCols def AddTotalsDf( df, categCols, valueCols, sliceCols=[], aggFnDict=sum, integOutOther=False): ## if there are no sliceCols, we generate a tempCol to be sliceCol ## then we delete it at the end l = len(sliceCols) if l == 0: sliceCols = ['tempCol'] df['tempCol'] = 1 ## integrates out wrt sliceCols + categCols first. ## so other columns will be dropped ## and the valueCols will be integrated out across, ## when there are repeated sliceCols + categCol even if there is no extra col if integOutOther: df = df[sliceCols + categCols + valueCols] g = df.groupby(sliceCols + categCols) df = g.agg(aggFnDict) df = df.reset_index() df0 = df[sliceCols + categCols + valueCols] outDf = df.copy() for categCol in categCols: g = df0.groupby(sliceCols + [categCol]) aggDf = g.agg(aggFnDict) aggDf= aggDf.reset_index() aggDf.columns = (sliceCols + [categCol] + [categCol + '_' + x + '_agg' for x in valueCols]) outDf = pd.merge(outDf, aggDf, on=sliceCols + [categCol], how='left') # add slice (sliceCols slice) totals: same as above but we drop the categCol df0 = df[sliceCols + valueCols] g = df0.groupby(sliceCols) aggDf = g.agg(aggFnDict) aggDf= aggDf.reset_index() aggDf.columns = sliceCols + [x + '_slice_total' for x in valueCols] outDf = pd.merge(outDf, aggDf, on=sliceCols, how='left') # reorder the columns cols = (sliceCols + sorted(categCols) + valueCols + list(sorted(set(outDf) - set(sliceCols + categCols + valueCols)))) outDf = outDf[cols] ## remove extra column if it was created if l == 0: del outDf['tempCol'] return outDf ''' df = pd.DataFrame({ 'country':['JP', 'JP', 'JP', 'BR', 'BR', 'BR', 'JP', 'JP', 'JP', 'BR'], 'seq':['a>b', 'a>b', 'b>a', 'b>a', 'a>b', 'a>b', 'a>c', 'a>c', 'b>c', 'c>b'], '1st':['a', 'a', 'b', 'b', 'a', 'a', 'a', 'a', 'b', 'c'], '2nd':['b', 'b', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'b'], 'count':[10, 11, 1, 20, 2, 2, 2, 200, 1, 1], 'utility':[-10, -11, 1, 20, 2, 2, 2, -200, 1, 1],}) sliceCols = ['country'] categCols = ['seq', '1st', '2nd'] valueCols = ['count', 'utility'] aggFnDict = {'count':sum, 'utility':np.mean} AddTotalsDf( df=df, categCols=categCols, valueCols=valueCols, sliceCols=sliceCols, aggFnDict=sum) AddTotalsDf( df=df, categCols=categCols, valueCols=valueCols, sliceCols=sliceCols, aggFnDict=aggFnDict) AddTotalsDf( df=df, categCols=categCols, valueCols=valueCols, sliceCols=sliceCols, aggFnDict=aggFnDict, integOutOther=True) AddTotalsDf( df=df, categCols=categCols, valueCols=valueCols, sliceCols=[], aggFnDict=aggFnDict, integOutOther=True) ''' ## for a data frame with a countCol, we do bootstrap def BsWithCounts(df, countCol=None): if countCol == None: n = df.shape[0] ind = np.random.choice(a=n, size=n, replace=True, p=None) df2 = df.iloc[ind] return(df2) df = df.reset_index(drop=True) rowInd = list(range(len(df))) counts = df[countCol].values longInd = [] for a, b in zip(rowInd, counts): longInd.extend([a] * b) bsLongInd = np.random.choice( a=longInd, size=len(longInd), replace=True, p=None) bsIndDf = pd.DataFrame(pd.Series(bsLongInd).value_counts()) bsRowInd = list(bsIndDf.index) bsCounts = bsIndDf[0].values df2 = df.iloc[bsRowInd] df2[countCol] = bsCounts df2 = df2.reset_index(drop=True) return df2 ''' df = pd.DataFrame({ 'a':['cats', 'horses', 'dogs', 'wolves'], 'count':[2, 10, 4, 1]}) Mark(df, 'original df') countCol = 'count' Mark(BsWithCounts(df, countCol), ' using counts') Mark(BsWithCounts(df, countCol=None), ' not using counts') ''' ## get a sublist with unique elements # while preserving order def UniqueList(l): seen = set() seen_add = seen.add return [x for x in l if not (x in seen or seen_add(x))] ''' x = [1, 2, 1, 1, 2, 3] + range(100000) + [1, 2, 1, 1, 2, 3] tic = time.clock() UniqueList(x) toc = time.clock() Mark((toc-tic)*100) tic = time.clock() set(x) toc = time.clock() Mark((toc-tic)*100) ''' ## bring certain elements (x) of a list (l) to front # without re-ordering others def BringElemsToFront(l, subList): front = [] for k in range(len(subList)): front = front + [j for i,j in enumerate(l) if j == subList[k]] end = [j for i,j in enumerate(l) if not (j in subList)] return front + end ''' BringElemsToFront(l=[1, 2, 3, 1], subList=[1]) BringElemsToFront(l=[1, 2, 3, 1, 4, 5,], subList=[1, 4, 5]) ''' ## get a fcn which returns a color grid of size n def GetColorGridFcn(n): '''Returns a function that maps each index in 0, 1, ... N-1 to a distinct RGB color.''' color_norm = matplotlib.colors.Normalize(vmin=0, vmax=n-1) scalar_map = matplotlib.cm.ScalarMappable(norm=color_norm, cmap='hsv') def map_index_to_rgb_color(index): return scalar_map.to_rgba(index) return map_index_to_rgb_color ''' def main(): n = 5 fig=plt.figure() ax=fig.add_subplot(111) plt.axis('scaled') ax.set_xlim([ 0, n]) ax.set_ylim([-0.5, 0.5]) cmap = GetColorGridFcn(n) for i in range(n): col = cmap(i) rect = plt.Rectangle((i, -0.5), 1, 1, facecolor=col) ax.add_artist(rect) ax.set_yticks([]) plt.show() if __name__=='__main__': main() ''' ## takes a dictionary of lists to one string def DictOfLists_toString( d, dictElemSepr='__', listElemSepr='_', keyValueSepr=':', noneString=''): if d == None or d == {}: return(noneString) keys = d.keys() keys = map(str, keys) keys.sort() out = '' for key in keys: if (d[key] != None): l = [str(x) for x in d[key]] value = str(listElemSepr.join(l)) if out != '': out = out + dictElemSepr out = out + key + keyValueSepr + value return out ''' d = {'z':[2], 'd':[1], 'e':[2]} DictOfLists_toString(d) d = {'z':[2], 'd':[1], 'e':None} DictOfLists_toString(d) condDict = {'form_factor':['PHN']} condDict = {'form_factor':None} condDict = {'form_factor':['PHN'], 'country':['JP']} condDict = None condStr = DictOfLists_toString(condDict, dictElemSepr='__', listElemSepr='_') ''' ## plotting confidence intervals given in each row # will label the rows in labelCol is given def PlotCI(df, colUpper, colLower, y=None, col=None, ciHeight=0.5, color='grey', labelCol=None, pltLabel=''): if y is None: y = range(len(df)) minCiWidth = (df[colUpper] - df[colLower]).min() if col is not None: ## following was troubling in log scale, # the width of the lines were changing in visualization (not desired) ''' p = plt.barh( bottom=y, width=np.array([minCiWidth]*len(y)), left=df[col], height = ciHeight, color='green', alpha=1, label=None) ''' for i in range(len(y)): plt.plot( [df[col].values[i], df[col].values[i]], [y[i], y[i] + ciHeight], color=color, linestyle='-', alpha=0.7, linewidth=4) plt.plot( [df[col].values[i], df[col].values[i]], [y[i], y[i] + ciHeight], color="black", linestyle='-', alpha=0.5, linewidth=2, dashes=[6, 2]) if int(matplotlib.__version__[0]) < 3: p = plt.barh( bottom=y, width=(df[colUpper]-df[colLower]).values, left=df[colLower], color=color, edgecolor='black', height=ciHeight, alpha=0.6, label=pltLabel) else: p = plt.barh( y=y, width=(df[colUpper]-df[colLower]).values, left=df[colLower], align="edge", color=color, edgecolor='black', height=ciHeight, alpha=0.6, label=pltLabel) if labelCol is not None: plt.yticks(y, df[labelCol].values, rotation='vertical'); ''' df0 = pd.DataFrame({'med':[1, 2, 3, 10], 'upper':[2, 5, 6, 12], 'lower':[-1, -2, -3, 4], 'categ':['a', 'b', 'c', 'd']}) PlotCI(df=df0, colUpper='upper', colLower='lower', y=None, col='med', ciHeight=0.5, color='grey', labelCol='categ', pltLabel='') ''' ## compares the CI's for available labels in labeCol # we do that for each slice with different color to compare def PlotCIWrt( df, colUpper, colLower, sliceCols, labelCol, col=None, ciHeight=0.5, rotation = 0, addVerLines=[], logScale=False, lowerLim=None, pltTitle='', figSize=[5, 20]): df2 = Concat_stringColsDf( df=df.copy(), cols=sliceCols, colName='slice_comb', sepStr='-') labelSet = UniqueList(df2[labelCol].values) labelIndDf = pd.DataFrame({labelCol: labelSet}) labelIndDf = labelIndDf.sort_values([labelCol]) labelIndDf['labelInd'] = range(len(labelSet)) n = len(labelIndDf) ## groupby each slice slicesSet = set(df2['slice_comb']) g = df2.groupby(['slice_comb']) sliceNum = len(g) sliceNames = list(g.groups.keys()) sliceNames.sort() ColorFcn = GetColorGridFcn(sliceNum + 2) plt.figure(1); fig, ax = plt.subplots(); fig.set_size_inches(figSize[0], figSize[1]*(n/20.0)) for i in range(sliceNum): sliceName = sliceNames[i] df3 = g.get_group(sliceName) df3 = pd.merge(df3, labelIndDf, on=[labelCol], how='outer') df3 = df3.sort_values([labelCol]) df3 = df3.fillna(0) ciHeight = 1.0 / sliceNum shift = ciHeight * i y = [(float(x) + shift) for x in range(n)] assert (len(df3) == len(y)),("len(y) must be the same as merged df (df3)." + " This might be because of repeated rows in df3") PlotCI( df=df3, colUpper=colUpper, colLower=colLower, y=y, col=col, ciHeight=ciHeight, color=ColorFcn(i + 1), labelCol=labelCol, pltLabel=sliceName) for j in range(n + 1): plt.axhline(y=j, color='grey', alpha=0.95) labels = [item.get_text() for item in ax.get_xticklabels()] labels = list(labelIndDf[labelCol].values) ax.set_yticklabels(labels) locs, labels = plt.yticks([(float(x) + 0.5) for x in range(n)], labels) plt.setp(labels, rotation=rotation, fontweight='bold', fontsize="large") for x in addVerLines: plt.axvline(x=x, color='orange', alpha=0.5) if logScale: plt.xscale('log') if len(addVerLines) > 0: #labels = [item.get_text() for item in ax.get_xticklabels()] #ax.set_xticklabels(map(str, addVerLines)) ax = plt.gca() # grab the current axis ax.set_xticks(addVerLines) # choose which x locations to have ticks ax.set_xticklabels(addVerLines) # set the labels to display at those ticks #plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, # ncol=2, mode="expand", borderaxespad=0.) plt.legend( bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., prop={'weight':'bold', 'size':'large'}) plt.xlim((lowerLim, None)) plt.xlim((lowerLim, None)) plt.title( pltTitle, fontname="Times New Roman",fontweight="bold", fontsize="x-large") return fig #plt.show() ''' ## Example df0 = pd.DataFrame({ 'med':[1, 2, 3, 10, 11, 12, 1, 2], 'upper':[2, 5, 6, 12, 13, 16, 5, 6], 'lower':[-1, -2, -3, 4, 2, 2, 1, 2], 'categ':['a', 'b', 'c', 'd', 'a', 'c', 'd', 'a'], 'country':['JP', 'JP', 'JP', 'US', 'US', 'US', 'BR', 'BR']}) res = PlotCIWrt( df=df0, colUpper='upper', colLower='lower', sliceCols=['country'], labelCol='categ', col='med', ciHeight=0.5, rotation = 0, pltTitle="WTF is going on?", figSize=[10, 30]) ''' ## this function will partition a df using keyCol # for which their row (so maybe involve other columns to check conditions) # satisfy conditions # any combination of keys which passes the condition at least once will be # considered as satisfy def PartDf_byKeyCols_wrtCond( df, keyCols, condDict, passColName='passesCond'): keyDfUnique = df[keyCols].drop_duplicates() ind = BuildCondInd(df=df, condDict=condDict) passDf = df[ind].copy() passKeyDf = passDf[keyCols].drop_duplicates() passKeyDf[passColName] = True keyDfLabeled = pd.merge(keyDfUnique, passKeyDf, on=keyCols, how='left') keyDfLabeled = keyDfLabeled.fillna(False) dfLabeled = pd.merge(df, keyDfLabeled, on=keyCols, how='left') return {'dfLabeled':dfLabeled, 'keyDfLabeled':keyDfLabeled} ''' df = pd.DataFrame({ 'user_id':[1, 1, 2, 2, 3, 3, 4, 4], 'device':['pixel', 'sams', 'lg', 'lg', 'sams', 'pixel', 'nex', 'pixel'], 'country':['us', 'us', 'jp', 'jp', 'kr', 'kr', 'in', 'in']}) outDict = PartDf_byKeyCols_wrtCond( df=df, keyCols=['user_id'], condDict={'device':['pixel'], 'country':['us', 'in']}, passColName='passesCond') Mark(df) Mark(outDict['dfLabeled']) Mark(outDict['keyDfLabeled']) ''' ## create good pandas boxplots def PandasBoxPlt( df, col, by, ylim=None, yscale=None, pltTitle=None, figSize=None): # demonstrate how to customize the display different elements: boxprops = dict(linestyle='-', linewidth=4, color='k') medianprops = dict(linestyle='-', linewidth=4, color='k') bp = df.boxplot( column=col, by=by, showfliers=False, showmeans=True, boxprops=boxprops, medianprops=medianprops) if yscale is not None: plt.yscale(yscale) [ax_tmp.set_xlabel('') for ax_tmp in np.asarray(bp).reshape(-1)] fig = np.asarray(bp).reshape(-1)[0].get_figure() if figSize is not None: fig.set_size_inches(figSize[0], figSize[1]) plt.xticks(rotation=45) axes = plt.gca() if pltTitle is not None: plt.title(pltTitle) if ylim is not None: axes.set_ylim(ylim) return plt.show() def Plt_compareUsageSet( df, unitCol, usageCol, compareCol=None, excludeValues=[], mapToOther=["UNKNOWN", "MOBILE_UNKNOWN"], removeOther=True, setLabelsNumMax=15, bpPltTitle=None): if compareCol is None: compareCol = "..." df[compareCol] = "..." if len(excludeValues) > 0: df = df[~df[usageCol].isin(excludeValues)] df2 = df[[unitCol, compareCol, usageCol]].copy() res = Remap_lowFreqCategs( df=df2, cols=[usageCol], newLabels="OTHER", otherLabelsToReMap=(["", "nan"] + mapToOther), freqThresh=10, labelsNumMax=30) df2 = res["df"] if removeOther: df2 = df2[df2[usageCol] != "OTHER"] g = df2.groupby([unitCol, compareCol], as_index=False) dfSet = g.agg({usageCol:lambda x: tuple(sorted(set(x)))}) res = Remap_lowFreqCategs( df=dfSet, cols=[usageCol], newLabels="OTHER", otherLabelsToReMap=["", "nan"], freqThresh=5, labelsNumMax=setLabelsNumMax) dfSet = res["df"] if removeOther: dfSet = dfSet[dfSet[usageCol] != "OTHER"] pltTitle = usageCol + " set distbn " + " across " + unitCol + "s" res = LabelDistbn_acrossSlice( df=dfSet, sliceCol=compareCol, labelCol=usageCol, pltIt=True, pltTitle=pltTitle) dfCount = g.agg({usageCol:lambda x: len(set(x))}) res["dfCount"] = dfCount if bpPltTitle is None: bpPltTitle = "# of " + usageCol + " across " + unitCol + "s" PandasBoxPlt( df=dfCount, col=usageCol, by=compareCol, ylim=[0, None], pltTitle=bpPltTitle) return res def BirthYear_toAgeCateg(x, currentYear=None): if currentYear is None: currentYear = datetime.datetime.now().year if x is None or x == "" or x == 0 or math.isnan(x): return "other" x = float(x) age = currentYear - x if age <= 17: return "<18" if age <= 25: return "18-25" if age <= 35: return "26-35" if age <= 50: return "36-50" return ">51" def BirthYear_toAge(x, currentYear=None, minBirthYear=1940): if currentYear is None: currentYear = datetime.datetime.now().year if x is None or x == "" or x == 0 or math.isnan(x): return None if x < minBirthYear or x > currentYear: return None x = float(x) return (currentYear - x) """ BirthYear_toAgeCateg(1900) """ def Plt_compareDensity( df, compareCol, valueCol, compareValues=None): if compareValues is None: compareValues = set(df[compareCol].values) # Iterate through the five airlines for value in compareValues: # Subset to the airline subset = df[df[compareCol] == value] # Draw the density plot sns.distplot( subset[valueCol], hist=False, kde=True, kde_kws={'linewidth': 3, "alpha": 0.75}, label=value) # Plot formatting plt.legend(prop={'size': 8}, title=compareCol) plt.title('Compare Density Plot for Multiple ' + compareCol) plt.xlabel(valueCol) plt.ylabel('Density') ## drops (multiple) ending vowels from a string def DropEndingVowels(s, minLength=2): cond = True while cond and len(s) > minLength: if s[len(s)-1].lower() in ["a", "o", "e", "u", "i"]: s = s[0:(len(s)-1)] else: cond = False return s def DropEndingChars(s, chars, minLength=2): cond = True while cond and len(s) > minLength: if s[len(s)-1].lower() in chars: s = s[0:(len(s)-1)] else: cond = False return s ## abbreviates a string. # first we abbreviate each word in a string (phrase) # then we concat them back and abbreviate the whole phrase def AbbrString( s, wordLength=6, replaceList=["/", "&", " and ", "-", ",", ";"], sep="-", totalLength=None, wordNumLimit=None): for char in replaceList: s = s.replace(char, " ") sList = s.split(" ") sList = [s[0:wordLength] for s in sList] sList = [x for x in sList if x not in ["", " ", " ", " "]] sList = [DropEndingVowels(s) for s in sList] sList = list(collections.OrderedDict.fromkeys(sList)) print(sList) if wordNumLimit is not None: sList = sList[:wordNumLimit] s = sep.join(sList) if totalLength is not None: s = s[0:totalLength] s = DropEndingVowels(s) s = DropEndingChars(s=s, chars=["/", "&", " and ", "-", sep, " ", ",", ";"]) return s """ s = "language books/" AbbrString(s, sep="-") """ ## replace in pandas is slow def ReplaceValues_dfCols_viaReplace( df, cols, values, newValues, newCols=None): if newCols is None: newCols = cols mappingDict = dict(zip(values, newValues)) df[newCols] = df[cols].replace(mappingDict) return df def ReplaceValues_dfCols(df, cols, values, newValues, newCols=None): if newCols is None: newCols = cols m = pd.Series(newValues, values) df[newCols] = df[cols].stack().map(m).unstack() return df """ import datetime import pandas as pd import numpy as np import string n = 10000 m = 500 df = pd.DataFrame( pd.DataFrame( np.random.choice(list(string.letters), n * m * 3) \ .reshape(3, -1)).sum().values.reshape(n, -1)) cols = [0, 1] u = np.unique(df[cols]) fromSeries = pd.Series(u) toSeries = fromSeries + "XXX" fromValues = fromSeries.values toValues = toSeries.values a = datetime.datetime.now() df0 = ReplaceValues_dfCols( df=df.copy(), cols=cols, values=fromValues, newValues=toValues) b = datetime.datetime.now() time1 = b-a print(time1) a = datetime.datetime.now() df1 = ReplaceValues_dfCols_viaReplace( df=df.copy(), cols=cols, values=fromValues, newValues=toValues, newCols=None) b = datetime.datetime.now() time2 = b-a print(time2) print(time2.total_seconds() / time1.total_seconds()) """ def AbbrStringCols( df, cols, newCols=None, wordLength=6, replaceList=["/", "&", " and ", "-"], sep="-", totalLength=None, wordNumLimit=None): values = np.unique(df[cols]) def Abbr(s): return AbbrString( s=s, wordLength=wordLength, replaceList=replaceList, sep=sep, totalLength=totalLength, wordNumLimit=wordNumLimit) abbrValues = [Abbr(s) for s in values] mapDf = pd.DataFrame({"value":values, "abbr_values": abbrValues}) df = ReplaceValues_dfCols( df=df, cols=cols, values=values, newValues=abbrValues, newCols=newCols) return {"df":df, "mapDf":mapDf} """ df = pd.DataFrame({ "col":["life is beautiful", "i like mountains", "ok", "cool"]}) #AbbrStringCols(df, cols=["col"]) AbbrStringCols(df=df, cols=["col"], totalLength=10, wordNumLimit=None) """ ## convert data.frame to code def ConvertDf_toCode(df): s = ( "df = pd.DataFrame( %s )" % (str(df.to_dict()).replace(" nan"," float('nan')"))) return s """ df = pd.DataFrame({"a":[1, 2, 3], "b":[1, 2, 3]}) ConvertDf_toCode(df) """
google/expt-analysis
python/data_analysis.py
data_analysis.py
py
82,173
python
en
code
6
github-code
6
1805360050
#! /usr/bin/env python3 count = {} def char_count(str): for char in str: c = count.get(char) if c is None: count[char] = 1 else: count[char] += 1 print(count) if __name__ == '__main__': s = input('Enter a string') char_count(s)
wffh/project
count_str_fast.py
count_str_fast.py
py
297
python
en
code
0
github-code
6
23435779102
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QMessageBox import sys import json import mainwindow, mystock, recepe, compute class MyMainWindow(mainwindow.Ui_MainWindow): def setupUi(self, mw, database): super().setupUi(mw) self.tabWidget = QtWidgets.QTabWidget() mw.setCentralWidget(self.tabWidget) self.ms = QtWidgets.QWidget() self.mystock = mystock.MyStock() self.mystock.setupUi(self.ms, database["bernard"]["stock"]) self.tabWidget.addTab(self.ms, "STOCK") self.mr = QtWidgets.QWidget() self.myRecepe = recepe.Ui_TabRecepe() self.myRecepe.setupUi(self.mr) self.tabWidget.addTab(self.mr, "Recepe") self.mc = QtWidgets.QWidget() self.myCompute = compute.Ui_TabCompute() self.myCompute.setupUi(self.mc) self.tabWidget.addTab(self.mc, "Compute") if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) mw = QtWidgets.QMainWindow() ui = MyMainWindow() ui.setupUi(mw) mw.show() sys.exit(app.exec_())
bernard169/open-breware
mymainwindow.py
mymainwindow.py
py
1,084
python
en
code
0
github-code
6
14872333572
import torch from torch import nn import torch.nn.functional as F from torch import optim from torchvision import datasets, transforms, models from workspace_utils import active_session from collections import OrderedDict import numpy as np from PIL import Image import argparse import json parser = argparse.ArgumentParser(description='Inference for classification') parser.add_argument('-i','--image_path',type=str, metavar='', required=True, help='path to image to predict e.g. flowers/test/class/image') parser.add_argument('-t','--top_k', type=int, metavar='', default=1, help='print out the top K classes along with associated probabilities') parser.add_argument('-c','--category_names', type=str, metavar='', default='cat_to_name.json', help='load a JSON file that maps the class values to other category names') parser.add_argument('-g','--gpu',action="store_true", default=False, help='choose training the model on a GPU') args = parser.parse_args() with open(args.category_names, 'r') as f: cat_to_name = json.load(f) # a function that loads a checkpoint and rebuilds the model def load_checkpoint(filepath): checkpoint = torch.load(filepath) # Load the saved file checkpoint = torch.load("checkpoint.pth") architecture = checkpoint['architecture'] # Download pretrained model model = getattr(models, architecture)(pretrained=True); # Freeze parameters so we don't backprop through them for param in model.parameters(): param.requires_grad = False hidden_units = checkpoint['hidden_units'] model.class_to_idx = checkpoint['class_to_idx'] model.classifier = checkpoint['classifier'] model.load_state_dict(checkpoint['state_dict']) #optimizer = optim.Adam(model.classifier.parameters()) #optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epochs = checkpoint['epochs'] return model model = load_checkpoint('checkpoint.pth') def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' im = Image.open(image) size = 256,256 im.thumbnail(size) #Crop left = (256-224)/2 top = (256-224)/2 right = (left + 224) bottom = (top + 224) im = im.crop((left, top, right, bottom)) np_image = np.array(im) np_image = np_image / 255 mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] np_image = (np_image - mean) / std np_image = np_image.transpose(2, 0, 1) return np_image # Reversing idx to class idx_to_class = {} for key, value in model.class_to_idx.items(): idx_to_class[value] = key def predict(image_path, model, topk): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' # Use GPU if it's available if args.gpu: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # TODO: Implement the code to predict the class from an image file #preprocess image image = process_image(image_path) image = torch.from_numpy(np.array([image])).float() # turn off dropout model.eval() #Load image and the model to cpu or gpu model.to(device) image = image.to(device) logps = model.forward(image) ps = torch.exp(logps) top_p, top_class = ps.topk(topk, dim=1) top_class = np.array(top_class)[0] top_p = np.array(top_p.detach())[0] # Mapping index to class top_classes = [] for i in range(len(top_class)): top_classes.append(idx_to_class[top_class[i]]) # Mapping class to flower name flower_names = [] for i in range(len(top_classes)): flower_names.append(cat_to_name[top_classes[i]]) return top_p, flower_names probs, classes = predict(args.image_path, model, args.top_k) print(f"class Probability: {probs}") print(f"flower name: {classes}")
OmarMohy/Image-Classifier-with-Deep-Learning
predict.py
predict.py
py
3,922
python
en
code
0
github-code
6
33293378254
'''Simple Script to Label Item Description''' #import libraries packages import pandas as pd import numpy as np import matplotlib.pyplot as plt import string import re import json #read from csv data = pd.read_csv('./item.csv') item = data['Item Description'] #data cleaning (lowercase, remove whitespace, remove numbers, remove punctutions) item = item.str.lower() #change to lowercase #keyword for each label medical_surgical_label = ['revision', 'replacement', 'reposition'] obstet_label = ['abortion', 'extraction', 'transplantation'] placement_label = ['removal', 'dressing', 'compression'] admin_label = ['irrigation', 'introduction'] osteo_label = ['osteopathic'] chiro_label = ['chiropractic'] imaging_label = ['fluoroscopy', 'ct scan', 'computerized tomography', 'ultrasonography'] mental_label = ['crisis', 'management', 'psychological'] radiation_label = ['cesium', 'radiation', 'photon', 'radiosurgery'] nuclear_label = ['nuclear'] #check string contains any keyword above and label accordingly for i in item.shape: for row in medical_surgical_label: item[item.str.contains(row)] = 'Medical and Surgical' for row in obstet_label: item[item.str.contains(row)] = 'Obstetrics' for row in placement_label: item[item.str.contains(row)] = 'Placement' for row in admin_label: item[item.str.contains(row)] = 'Administration' for row in osteo_label: item[item.str.contains(row)] = 'Osteopathic' for row in chiro_label: item[item.str.contains(row)] = 'Chiropractic' for row in imaging_label: item[item.str.contains(row)] = 'Imaging' for row in mental_label: item[item.str.contains(row)] = 'Mental Health' for row in radiation_label: item[item.str.contains(row)] = 'Radiation Therapy' for row in nuclear_label: item[item.str.contains(row)] = 'Nuclear Medicine' print(item)
aqillakhamis/Text-Matching-Label
textMatching.py
textMatching.py
py
1,824
python
en
code
1
github-code
6
4729018877
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 13 00:32:57 2018 @author: pablosanchez """ import tensorflow as tf import utils.constants as const from networks.dense_net import DenseNet class DeconvNet(object): def __init__(self, width, height, nchannels, reuse, transfer_fct=tf.nn.relu, act_out=tf.nn.sigmoid, drop_rate=0., kinit=tf.contrib.layers.xavier_initializer(), bias_init=tf.constant_initializer(0.0)): self.width = width self.height = height self.nchannels = nchannels self.transfer_fct = transfer_fct self.act_out = act_out self.reuse = reuse self.drop_rate = drop_rate self.kinit= kinit self.bias_init = bias_init def build(self, input_): raise NotImplementedError def deconv_layer(self, input_, filters, k_size, stride, padding, name, act_func=tf.nn.relu): deconv = tf.layers.conv2d_transpose(input_, filters, k_size, strides=stride, padding=padding, activation=act_func, kernel_initializer=self.kinit, bias_initializer=self.bias_init, name=name, reuse=self.reuse) print('[*] Layer (',deconv.name, ') output shape:', deconv.get_shape().as_list()) return deconv class DeconvNet3(DeconvNet): def __init__(self, input_, width, height, nchannels, reuse, transfer_fct=tf.nn.relu, act_out=tf.nn.sigmoid, drop_rate=0., kinit=tf.contrib.layers.xavier_initializer(), bias_init=tf.constant_initializer(0.0)): super().__init__(width, height, nchannels,reuse, transfer_fct, act_out, drop_rate, kinit, bias_init) self.output = self.build(input_) def build(self, input_): aux_size = self.width//2//2 aux_size_2 = self.height//2//2 initial_n_channels = 64 out_dense_dim = aux_size*aux_size_2*initial_n_channels hidden_dim = input_.get_shape()[-1].value*3 dense = DenseNet(input_=input_, hidden_dim=hidden_dim, output_dim=out_dense_dim, num_layers=2, transfer_fct=self.transfer_fct, act_out=self.transfer_fct, reuse=self.reuse, kinit=self.kinit, bias_init=self.bias_init, drop_rate=self.drop_rate) x = dense.output x = tf.reshape(x, [-1,aux_size,aux_size_2,initial_n_channels]) x = self.deconv_layer(input_=x, filters=64, k_size=4, #[4, 4] stride=2, padding='SAME', name='deconv_1', act_func=self.transfer_fct) x = self.deconv_layer(input_=x, filters=32, k_size=4, #[4, 4] stride=2, padding='SAME', name='deconv_2', act_func=self.transfer_fct) x = self.deconv_layer(input_=x, filters=self.nchannels, k_size=4, #[4, 4] stride=1, padding='SAME', name='deconv_3', act_func=self.act_out) return x
psanch21/VAE-GMVAE
networks/deconv_net.py
deconv_net.py
py
3,987
python
en
code
197
github-code
6
5223556496
import os import time import requests import functools from concurrent.futures import ThreadPoolExecutor import click import yaml def _get_connection_urls(workload_yaml): with open(workload_yaml) as f: workload = yaml.safe_load(f) uris = workload.get("EnvironmentDetails", {}).get("MongosyncConnectionURIs") if not uris: raise Exception( f"This actor requires setting EnvironmentDetails: MongosyncConnectionURIs to use this script" ) return uris def poll(workload_yaml, predicate, key): """ Wait for all mongosyncs to reach a certain state (e.g. predicate returns False) based on a value returned by the /progress endpoint """ connection_urls = _get_connection_urls(workload_yaml) def get_progress(): res = requests.get(f"{url}/api/v1/progress") return res.json()["progress"][key] for url in connection_urls: info = get_progress() while predicate(info): time.sleep(1) print(f"Polling {url} for {key}, current value = {info}", flush=True) info = get_progress() def _change_one_mongosync_state(route, body, url): """ Change state of a given mongosync running at the provided url """ resp = requests.post(f"{url}{route}", json=body) print(resp.json(), flush=True) success = resp.json()["success"] if not success: raise Exception(f"State change failed at route {route}") return success def change_state(workload_yaml, route, body): """ Helper function to change state of mongosync. This must send all requests in parallel, as some commands block until all instances recieve them """ connection_urls = _get_connection_urls(workload_yaml) fn = functools.partial(_change_one_mongosync_state, route, body) with ThreadPoolExecutor() as executor: futures = [] # Using executor.map swallows exceptions from the task, # using .submit and then accessing the future's .result # will cause exceptions to be rethrown for url in connection_urls: futures.append(executor.submit(fn, url)) for f in futures: f.result() @click.group(name="MongosyncActor", context_settings=dict(help_option_names=["-h", "--help"])) def cli(): pass @cli.command( "start", help=("Issue /start to all mongosync processes"), ) @click.argument("workload_yaml", nargs=1) def start(workload_yaml): change_state(workload_yaml, "/api/v1/start", {"Source": "cluster0", "Destination": "cluster1"}) @cli.command( "poll_for_cea", help=("Poll all available instances for the CEA stage"), ) @click.argument("workload_yaml", nargs=1) def poll_for_cea(workload_yaml): poll(workload_yaml, lambda x: x != "change event application", "info") @cli.command( "poll_for_commit_point", help=("Wait till all the instances canCommit = true and lagTimeSeconds < 120"), ) @click.argument("workload_yaml", nargs=1) def poll_for_commit_point(workload_yaml): poll(workload_yaml, lambda x: bool(x) == False, "canCommit") or poll( workload_yaml, lambda x: int(x) > 120, "lagTimeSeconds" ) @cli.command( "drain_writes", help=("Wait till all writes have been drained to the destination cluster"), ) @click.argument("workload_yaml", nargs=1) def drain_writes(workload_yaml): poll(workload_yaml, lambda x: int(x) > 5, "lagTimeSeconds") @cli.command( "commit", help=("Commit the migration"), ) @click.argument("workload_yaml", nargs=1) def commit(workload_yaml): change_state(workload_yaml, "/api/v1/commit", {}) @cli.command( "wait_for_commit", help=("Wait until all mongosyncs are finished commiting the migration"), ) @click.argument("workload_yaml", nargs=1) def wait_for_commit(workload_yaml): poll(workload_yaml, lambda x: x != "COMMITTED", "state") @cli.command( "pause", help=("Pause the migration"), ) @click.argument("workload_yaml", nargs=1) def pause(workload_yaml): change_state(workload_yaml, "/api/v1/pause", {}) @cli.command( "resume", help=("Resume the migration"), ) @click.argument("workload_yaml", nargs=1) def resume(workload_yaml): change_state(workload_yaml, "/api/v1/resume", {}) if __name__ == "__main__": cli()
mongodb/genny
src/cast_python/src/mongosync_actor.py
mongosync_actor.py
py
4,300
python
en
code
42
github-code
6
30367868751
from numpy import linspace, sin from chaco.api import ArrayPlotData, Plot from chaco.tools.api import PanTool, ZoomTool from enable.api import ComponentEditor from traits.api import Enum, HasTraits, Instance from traitsui.api import Item, Group, View class PlotEditor(HasTraits): plot = Instance(Plot) plot_type = Enum("scatter", "line") orientation = Enum("horizontal", "vertical") traits_view = View( Item("orientation", label="Orientation"), Item("plot", editor=ComponentEditor(), show_label=False), width=500, height=500, resizable=True, ) def __init__(self, *args, **kw): HasTraits.__init__(self, *args, **kw) # Create the data and the PlotData object x = linspace(-14, 14, 100) y = sin(x) * x ** 3 plotdata = ArrayPlotData(x=x, y=y) # Create the scatter plot plot = Plot(plotdata) plot.plot(("x", "y"), type=self.plot_type, color="blue") plot.tools.append(PanTool(plot)) plot.tools.append(ZoomTool(plot)) self.plot = plot def _orientation_changed(self): if self.orientation == "vertical": self.plot.orientation = "v" else: self.plot.orientation = "h" self.plot.request_redraw() # =============================================================================== # demo object that is used by the demo.py application. # =============================================================================== class Demo(HasTraits): # Scatter plot. scatter_plot = Instance(PlotEditor) # Line plot. line_plot = Instance(PlotEditor) traits_view = View( Group(Item("@scatter_plot", show_label=False), label="Scatter"), Group(Item("@line_plot", show_label=False), label="Line"), title="Chaco Plot", resizable=True, ) def __init__(self, *args, **kws): super(Demo, self).__init__(*args, **kws) # Hook up the ranges. self.scatter_plot.plot.range2d = self.line_plot.plot.range2d def _scatter_plot_default(self): return PlotEditor(plot_type="scatter") def _line_plot_default(self): return PlotEditor(plot_type="line") demo = Demo() if __name__ == "__main__": demo.configure_traits()
enthought/chaco
examples/tutorials/scipy2008/ploteditor.py
ploteditor.py
py
2,299
python
en
code
286
github-code
6
36584033730
# -*- coding: utf-8 -*- """ Created on Wed Aug 19 14:36:47 2020 @author: allison """ def readATS(filename): infile = open(filename) ats = [] for line in infile: ats.append(line.replace("\n","")) infile.close() return ats def readCouplingMatrix(filename): infile = open(filename) Csca = [] i = 0 for line in infile: Csca.append([]) entries = line.split(",") entries = entries[0:len(entries)-1] for v in entries: Csca[i].append(float(v)) i+=1 return Csca def getPairwiseCouplingValues(Csca, ats): coupling_values = [] for i in range(0, len(ats)): for j in range(i+1, len(ats)): coupling_values.append(Csca[i][j]) coupling_values.sort() return coupling_values def getCouplingInfo(pos1, pos2): ats = readATS("Data/ats.txt") if str(pos1) not in ats: return (None, 1) if str(pos2) not in ats: return (None, 2) Csca = readCouplingMatrix("Data/SCA_matrix.csv") coupling_values = getPairwiseCouplingValues(Csca, ats) index1 = ats.index(str(pos1)) index2 = ats.index(str(pos2)) coupling = Csca[index1][index2] first_index = coupling_values.index(coupling) last_index = len(coupling_values) - 1 - coupling_values[::-1].index(coupling) if first_index == -1: return (coupling, -1) percentile = 100.0*(first_index+last_index)/(2*len(coupling_values)) return (coupling, percentile) #position1 = 4 #position2 = 11 #(coupling, percentile) = getCouplingInfo(position1,position2)
allie-walker/SCA4RNA_results
coupling_matrix_tools.py
coupling_matrix_tools.py
py
1,583
python
en
code
0
github-code
6
20918248522
import pandas as pd import numpy as np from scipy.sparse import csr_matrix from sklearn.neighbors import NearestNeighbors from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity, linear_kernel def GetMoviesByDescription(movieName): movie_list=[] csv_path = "cleaned data/movies.csv" df = pd.read_csv(csv_path) df['description'] = df['description'].fillna('') #create the matrix tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, stop_words='english') tfidf_matrix = tf.fit_transform(df['description']) #calaculate the Cosine Similarity Score cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix) md = df.reset_index() titles = df['title'] indices = pd.Series(df.index, index=df['title']) try: idx = indices[movieName] sim_scores = list(enumerate(cosine_sim[idx])) sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) sim_scores = sim_scores[1:31] movie_indices = [i[0] for i in sim_scores] recdf = titles.iloc[movie_indices] count = 0 for index, value in recdf.items(): count = count + 1 movie_list.append(value) if(count == 8): break except: movie_list.append("No Recommendation available.") return movie_list def GetMoviesByUserRating(movieName): movies = pd.read_csv("raw data/movies.csv") ratings = pd.read_csv("raw data/ratings.csv") movievsuser = ratings.pivot(index='movieId',columns='userId',values='rating') movievsuser.fillna(0, inplace=True) ratingsByMovie = ratings.groupby('movieId')['rating'].agg('count') ratingsByUser = ratings.groupby('userId')['rating'].agg('count') movievsuser = movievsuser.loc[ratingsByMovie[ratingsByMovie > 40].index,:] csr_data = csr_matrix(movievsuser.values) movievsuser.reset_index(inplace=True) # Using KNN algorithm to predict similarity with cosine distance knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=20, n_jobs=-1) knn.fit(csr_data) reccomendCount = 8 listing = [] movieList = movies[movies['title'].str.contains(movieName)] if len(movieList): movie_id= movieList.iloc[0]['movieId'] movie_id = movievsuser[movievsuser['movieId'] == movie_id].index[0] distances , indices = knn.kneighbors(csr_data[movie_id],n_neighbors=reccomendCount+1) recommendedMovies = sorted(list(zip(indices.squeeze().tolist(),distances.squeeze().tolist())),key=lambda x: x[1])[:0:-1] recMoviesList = [] for val in recommendedMovies: movie_id = movievsuser.iloc[val[0]]['movieId'] idx = movies[movies['movieId'] == movie_id].index recMoviesList.append({'Title':movies.iloc[idx]['title'].values[0],'Distance':val[1]}) df = pd.DataFrame(recMoviesList,index=range(1,reccomendCount+1)) df['Distance'] = pd.to_numeric(df['Distance']) df= df.sort_values('Distance') listing = df['Title'] return listing def GetMoviesByGenre(movieName): file_to_load = "raw data/movies.csv" ratings = pd.read_csv("raw data/ratings.csv") data = pd.read_csv(file_to_load) data['genres'] = data['genres'].str.replace(r'|', ' ') genre_data=data[['title','genres']] genre_data=genre_data.set_index('title') #convert genre column to array cv = CountVectorizer() X = cv.fit_transform(genre_data["genres"]).toarray() similarities = cosine_similarity(X) movie_index = data.loc[data['title'].str.contains(movieName)].index[0] similarity_values = pd.Series(similarities[movie_index]) #We converted list into series in order to preserve the actual indexes of dataset even after sorting similarity_values.sort_values(ascending=False) similar_movie_indexes = list(similarity_values.sort_values(ascending=False).index) #Remove the already watched movie from index list similar_movie_indexes.remove(movie_index) movie_list=[] for i in range(8): movie_list.append(genre_data.index[similar_movie_indexes[i]]) return movie_list def GetPredictionsForMovie(moviename): complete_df = pd.read_csv("cleaned data/complete_df_with_predictions.csv") mv = complete_df.loc[complete_df['title'].str.contains(moviename),['title']] movie = mv.head(1) names = movie.to_numpy() name = names[0][0] #based on all the users in the dataframe and their predictions what is the average rating the movie will get movie_rating=round((complete_df.loc[complete_df['title']==name,['predicted rating']].values).mean(),2) #from data already available what is the average of the movie movie_gavg=round((complete_df.loc[complete_df['title']==name,['MAvg']].values).mean(),2) percdiff = round(((movie_rating-movie_gavg)/movie_gavg*100),2) summary = {'Predicted Rating': movie_rating, 'Actual Rating': movie_gavg ,"Percentage Difference%":percdiff} return summary def GetPredictions(moviename, userid): complete_df = pd.read_csv("cleaned data/complete_df_with_predictions.csv") #print(complete_df.head()) userid=int(userid) try: mv = complete_df.loc[complete_df['title'].str.contains(moviename),['title']] movie = mv.head(1) names = movie.to_numpy() name = names[0][0] #print(name) #based on users past ratings what is the prediction for a particular movie pred_rating=round(complete_df.loc[(complete_df['user']==userid) & (complete_df['title']==name),['predicted rating']].values[0][0],2) #from data already available what is the average of the movie user_rating=round(complete_df.loc[(complete_df['user']==userid) & (complete_df['title']==name),['rating']].values[0][0],2) percdiff = round(((pred_rating-user_rating)/user_rating*100),2) summary = {'Predicted Rating': pred_rating, 'Actual Rating': user_rating ,"Percentage Difference%":percdiff} return summary except: pred_rating=0 user_rating=0 percdiff = 0 #based on all the users in the dataframe and their predictions what is the average rating a user gives user_rating=round((complete_df.loc[complete_df['user']==userid,['predicted rating']].values).mean(),2) #from data already available what is the average of the movie user_uavg=round((complete_df.loc[complete_df['user']==userid,['UAvg']].values).mean(),2) percdiff = round(((user_rating-user_uavg)/user_uavg*100),2) print ("this user has not rated this movie") summary = {'Status': "this user has not rated this movie, showing a prediction of what this user is likely to predict",'Predicted Rating': user_rating, 'Actual Rating': user_uavg ,"Percentage Difference%":percdiff} return summary
InsiyaKanjee/Project4
initdb.py
initdb.py
py
7,073
python
en
code
0
github-code
6
18677212205
import argparse import logging import random import sys import time from copy import deepcopy import numpy as np import torch from scipy.stats import kendalltau from datasets.dataloader import get_dataloader from models.cell_operations import NAS_BENCH_201 from models.supernet import Supernet201 from utils import obtain_accuracy, AverageMeter, set_seed, run_func, time_record parser = argparse.ArgumentParser("Train 201 Supernet") # dataset parser.add_argument("--data_root", type=str, default='./dataset/', help="The path to dataset") parser.add_argument("--dataset", type=str, default='cifar10', help="Dataset.") parser.add_argument("--search_space_name", type=str, default='nas-bench-201', help="The search space name.") parser.add_argument("--num_classes", type=int, default=10, help="Dataset Classes") # supernet parser.add_argument("--max_nodes", type=int, default=4, help="The maximum number of nodes.") parser.add_argument("--channel", type=int, default=16, help="The number of channels.") parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.") # training settings parser.add_argument("--exp_name", type=str, default='debug_baseline', help='exp_name for saving results') parser.add_argument("--method", type=str, default='spos', choices=['spos', 'fairnas', 'sumnas']) parser.add_argument("--lr", type=float, default=0.05, help="Learning rate") parser.add_argument("--inner_lr", type=float, default=0.05, help="Learning rate") parser.add_argument("--momentum", type=float, default=0.9, help="Momentum") parser.add_argument("--wd", type=float, default=2.5e-4, help="Weight decay") parser.add_argument("--epochs", type=int, default=250, help="Training epochs") parser.add_argument("--gpu_id", type=int, default=0, help="Training GPU") parser.add_argument("--train_batch_size", type=int, default=256, help="Train batch size") parser.add_argument("--valid_batch_size", type=int, default=512, help="Valid batch size") parser.add_argument("--print_freq", type=int, default=50, help="print frequency when training") parser.add_argument("--rank_print_freq", type=int, default=100, help="print frequency when ranking") parser.add_argument("--seed", type=int, default=0, help="manual seed") parser.add_argument("--debug", default=False, action='store_true', help="for debug") args = parser.parse_args() args.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') args.ckpt_path = 'checkpoints/%s.pt' % args.exp_name args.pred_path = 'results/%s.npy' % args.exp_name if args.debug: args.epochs = 5 # logging config log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') logging.info(args) set_seed(args.seed) def mix_grad(grad_list, weight_list): """ calc weighted average of gradient """ mixed_grad = [] for g_list in zip(*grad_list): g_list = torch.stack([weight_list[i] * g_list[i] for i in range(len(weight_list))]) mixed_grad.append(torch.sum(g_list, dim=0)) return mixed_grad def apply_grad(model, grad): """ assign gradient to model(nn.Module) instance. return the norm of gradient """ for p, g in zip(model.parameters(), grad): if p.grad is None: p.grad = g else: p.grad += g def train(epoch, train_loader, model, criterion, optimizer, inner_optimizer=None): train_loss = AverageMeter() train_top1 = AverageMeter() train_top5 = AverageMeter() model.train() path_list = [] num_candidate_ops = 5 candidate_ops = list(range(5)) candidate_edges = 6 for step, (inputs, targets) in enumerate(train_loader): inputs = inputs.to(args.device) targets = targets.to(args.device) if args.method == 'spos': # randomly sample an arch sampled_arch = [ random.choice(candidate_ops) for _ in range(candidate_edges) ] optimizer.zero_grad() logits = model(inputs, sampled_arch) loss = criterion(logits, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() elif args.method == 'fairnas': # shuffle the ops to get sub-models with strict fairness for _ in range(candidate_edges): random.shuffle(candidate_ops) path_list.append(deepcopy(candidate_ops)) # inner loop optimizer.zero_grad() for _path_id in range(num_candidate_ops): sampled_arch = [_operations[_path_id] for _operations in path_list] logits = model(inputs, sampled_arch) loss = criterion(logits, targets) loss.backward() # record training metrics prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) train_loss.update(loss.item(), inputs.size(0)) train_top1.update(prec1.item(), inputs.size(0)) train_top5.update(prec5.item(), inputs.size(0)) torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() elif args.method == 'sumnas': # record the supernet weights weights_before = deepcopy(model.state_dict()) grad_list = [] # shuffle the ops to get sub-models fairly for _ in range(candidate_edges): random.shuffle(candidate_ops) path_list.append(deepcopy(candidate_ops)) # inner loop for _path_id in range(num_candidate_ops): sampled_arch = [_operations[_path_id] for _operations in path_list] # inner optimization for _step in range(args.adaption_steps): inner_optimizer.zero_grad() logits = model(inputs, sampled_arch) loss = criterion(logits, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) inner_optimizer.step() # record training metrics prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) train_loss.update(loss.item(), inputs.size(0)) train_top1.update(prec1.item(), inputs.size(0)) train_top5.update(prec5.item(), inputs.size(0)) # record reptile gradient outer_grad = [] weights_after = deepcopy(model.state_dict()) for p_0, p_T in zip(weights_before.items(), weights_after.items()): outer_grad.append(-(p_T[1] - p_0[1]).detach()) grad_list.append(outer_grad) model.load_state_dict(weights_before) # outer loop optimizer.zero_grad() weight = torch.ones(len(grad_list)) / len(grad_list) grad = mix_grad(grad_list, weight) apply_grad(model, grad) optimizer.step() else: raise ValueError('Wrong training method for the supernet: %s' % args.method) # record prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) train_loss.update(loss.item(), inputs.size(0)) train_top1.update(prec1.item(), inputs.size(0)) train_top5.update(prec5.item(), inputs.size(0)) if step % args.print_freq == 0 or step + 1 == len(train_loader): logging.info('[Training] Epoch %03d/%03d, step %03d/%03d, loss: %.3f, top1: %.3f, top5: %.3f' % (epoch, args.epochs, step, len(train_loader), train_loss.avg, train_top1.avg, train_top5.avg)) return train_loss.avg, train_top1.avg, train_top5.avg def valid(valid_loader, model, criterion): val_loss, val_top1, val_top5 = AverageMeter(), AverageMeter(), AverageMeter() model.eval() with torch.no_grad(): for step, (val_inputs, val_targets) in enumerate(valid_loader): val_inputs = val_inputs.to(args.device) val_targets = val_targets.to(args.device) # randomly sample an arch candidate_ops = range(5) candidate_edges = 6 sampled_arch = [ random.choice(candidate_ops) for _ in range(candidate_edges) ] # prediction logits = model(val_inputs, sampled_arch) loss = criterion(logits, val_targets) # record prec1, prec5 = obtain_accuracy( logits.data, val_targets.data, topk=(1, 5) ) val_loss.update(loss.item(), val_inputs.size(0)) val_top1.update(prec1.item(), val_inputs.size(0)) val_top5.update(prec5.item(), val_inputs.size(0)) return val_loss.avg, val_top1.avg, val_top5.avg def valid_specific_path(valid_loader, model, sampled_arch, criterion, device): val_loss, val_top1, val_top5 = AverageMeter(), AverageMeter(), AverageMeter() model.eval() with torch.no_grad(): for step, (val_inputs, val_targets) in enumerate(valid_loader): val_inputs = val_inputs.to(device) val_targets = val_targets.to(device) # prediction logits = model(val_inputs, sampled_arch) loss = criterion(logits, val_targets) # record prec1, prec5 = obtain_accuracy( logits.data, val_targets.data, topk=(1, 5) ) val_loss.update(loss.item(), val_inputs.size(0)) val_top1.update(prec1.item(), val_inputs.size(0)) val_top5.update(prec5.item(), val_inputs.size(0)) return val_loss.avg, val_top1.avg, val_top5.avg def rank_supernet(valid_loader, model, criterion): logging.info('---------- Start to rank on NAS-Bench-201 ----------') nasbench201 = np.load('./dataset/nasbench201/nasbench201_dict.npy', allow_pickle=True).item() if args.debug: new_dict = {} for i in range(5): new_dict[str(i)] = deepcopy(nasbench201[str(i)]) nasbench201 = deepcopy(new_dict) nasbench201_len = len(nasbench201) tmp_pred = [] tmp_target = [] prediction = {} for step, item in enumerate(nasbench201): model_id = int(item) operation = nasbench201[item]['operation'] target = nasbench201[item]['cifar10_test'] val_loss, val_top1, val_top5 = valid_specific_path(valid_loader, model, operation, criterion, args.device) tmp_pred.append(val_top1) tmp_target.append(target) prediction[model_id] = {'id': model_id, 'model_gene': operation, 'pred': val_top1, 'target': target} if step % args.rank_print_freq == 0 or (step + 1) == nasbench201_len: logging.info("model_id: %d gene: %s loss: %.3f top1: %.3f target: %.3f" % (model_id, str(operation), val_loss, val_top1, target)) logging.info("Evaluated: %05d\tWaiting: %05d\tCurrent Kendall's Tau: %.5f" % (len(tmp_pred), nasbench201_len-len(tmp_pred), kendalltau(tmp_pred, tmp_target)[0])) # save predictions print('\n') np.save(args.pred_path, prediction) logging.info('Finish ranking and save predictions to : %s' % args.pred_path) final_ranking = kendalltau(tmp_pred, tmp_target)[0] logging.info("Final_pred: %05d\tFinal_target: %05d\tFinal_Kendall's Tau: %.5f" % (len(tmp_pred), len(tmp_target), final_ranking)) return final_ranking def main(): # time record train_start = time.time() # dataloader train_loader, valid_loader = get_dataloader(args, model=None, dataset=args.dataset) # supernet model = Supernet201( C=args.channel, N=args.num_cells, max_nodes=args.max_nodes, num_classes=args.num_classes, search_space=NAS_BENCH_201 ).to(args.device) # training settings optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd) if args.method == 'sumnas': args.adaption_steps = 2 optimizer = torch.optim.SGD(model.parameters(), 1.0, weight_decay=4e-5) inner_optimizer = torch.optim.SGD(model.parameters(), 0.05, momentum=0.9) else: inner_optimizer = None scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs) criterion = torch.nn.CrossEntropyLoss() best_val_top1 = 0.0 logging.info('---------- Start to train supernet ----------') for epoch in range(args.epochs): # train supernet train_loss, train_top1, cnn_top5 = train(epoch, train_loader, model, criterion, optimizer, inner_optimizer) logging.info( "[Epoch: %s/%s] train_loss=%.3f, train_top1=%.3f, train_top5=%.3f" % (epoch, args.epochs, train_loss, train_top1, cnn_top5) ) # valid supernet val_loss, val_top1, val_top5 = valid(valid_loader, model, criterion) logging.info( "[Validation], val_loss=%.3f, val_top1=%.3f, val_top5=%.3f, best_top1=%.3f" % (val_loss, val_top1, val_top5, best_val_top1) ) if best_val_top1 < val_top1: best_val_top1 = val_top1 # save latest checkpoint torch.save(model.state_dict(), args.ckpt_path) logging.info('Save latest checkpoint to %s' % args.ckpt_path) # scheduler step scheduler.step() print('\n') # time record supernet_training_elapse = time_record(train_start, prefix='Supernet training') print('\n') # load best supernet weights latest_pretrained_weights = torch.load(args.ckpt_path) model.load_state_dict(latest_pretrained_weights) model.eval() # ranking supernet final_ranking = rank_supernet(valid_loader, model, criterion) # write results with open('./results/ranking.txt', 'a') as f: f.write("EXP: %s \t Seed: %s \t Kendall' Tau: %.6f \t Training_Elapse: %s \n" % (args.exp_name, args.seed, final_ranking, supernet_training_elapse)) if __name__ == "__main__": run_func(args, main)
ShunLu91/PA-DA
nasbench201/train_baselines_201.py
train_baselines_201.py
py
14,254
python
en
code
29
github-code
6