seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
32413683762
from django.contrib.auth import authenticate from django.contrib.auth import login from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.views import LogoutView from django.shortcuts import redirect from django.shortcuts import render from django.urls import reverse_lazy from django.utils.decorators import method_decorator from django.views.decorators.http import require_POST from django.views.generic import View from django.views.generic import FormView from django.db import IntegrityError from users import forms from users.models import UserFollows, CustomUser class LoginView(View): """ View to manage the user login functionality. 'LoginView' handles both GET and POST requests related to the login page. During a GET request, an empty login form is presented. During a POST request, the submitted credentials are authenticated. If they are valid, the user is logged in and redirected to the feed; otherwise, an error message is displayed. """ form_class = forms.LoginForm template_name = 'users/login.html' def get(self, request): """ Handle GET requests to the login page. Renders the login page with an unpopulated login form. """ form = self.form_class() message = '' return render(request, self.template_name, {"form": form, 'message': message}) @method_decorator(require_POST) def post(self, request): """ Handle POST requests to the login page. Authenticates the user's credentials. If they are valid, the user is logged in and redirected to the feed. If they are invalid, an error message is displayed. """ form = self.form_class(request.POST) message = '' if form.is_valid(): user = authenticate( username=form.cleaned_data["username"], password=form.cleaned_data["password"] ) if user is not None: login(request, user) return redirect("feed") else: message = "Invalid credentials." return render(request, self.template_name, {"form": form, 'message': message}) class LogoutUserView(LogoutView): """ View to handle user logout functionality with automatic redirection. `LogoutUserView` inherits from Django's `LogoutView` and is aimed to facilitate straightforward user logout actions, followed by a redirection to a specified page - in this case, the login page. """ next_page = reverse_lazy('login') class SignupView(FormView): """ View to manage the user signup functionality. `SignupPageView` facilitates the creation of a new user account through a signup form. Upon receiving a GET request, it renders the signup page with the form. When handling a POST request, it attempts to create a new user and log them in. Upon successful account creation and login, the user is redirected to the URL specified as the successful login destination. """ form_class = forms.SignupForm template_name = "users/signup.html" # success_url = settings.LOGIN_REDIRECT_URL success_url = reverse_lazy("feed") def form_valid(self, form): """ Handle POST requests with valid form data. Creates a user, logs them in, and redirects to 'success_url'. """ # Create a new user instance and save it to the database. user = form.save() # Log the user in. login(self.request, user) # Redirect to the URL specified as the login destination in settings. return super().form_valid(form) class FollowedUsersView(LoginRequiredMixin, View): """ FollowedUsersView is a class-based view that renders a list of users that the currently authenticated user is following. This view ensures that only authenticated users can access the page to see their followed users by using the LoginRequiredMixin. Methods ------- get(self, request, *args, **kwargs): Handles GET requests. Retrieves and renders a list of followed users for the currently authenticated user. """ def get(self, request, *args, **kwargs): followed_users = UserFollows.objects.filter(user=request.user) return render(request, 'users/followed_users.html', {'followed_users': followed_users}) class FollowUserView(LoginRequiredMixin, View): """ View to handle user-following actions. This view is designed to handle POST requests that contain the username of the person to be followed. It has mechanisms to handle scenarios such as trying to follow oneself, trying to follow a user that doesn’t exist, and trying to follow a user that one is already following. Methods ------- post(request, *args, **kwargs): Processes POST requests, attempting to create a following relationship and providing user feedback via messages. """ @method_decorator(require_POST) def post(self, request, *args, **kwargs): # Retrieve the username to follow from the POST data. username_to_follow = request.POST.get('username_to_follow') # Check if the user is trying to follow themselves. if username_to_follow == request.user.username: messages.error(request, "You cannot follow yourself.") return redirect('abonnements') try: # Retrieve the user to follow from the database. user_to_follow = CustomUser.objects.get(username=username_to_follow) # Create a new follow relationship. UserFollows.objects.create(user=request.user, followed_user=user_to_follow) # Send a success message to the user. messages.success(request, f"You are now following {user_to_follow.username}!") except CustomUser.DoesNotExist: # Send an error message if the user to follow does not exist. messages.error(request, f"The user {username_to_follow} does not exist.") except IntegrityError: # Send an error message if the following relationship already exists. messages.error(request, f"You are already following {username_to_follow}!") # Redirect the user back to the 'abonnements' page. return redirect('abonnements') class UnfollowUserView(LoginRequiredMixin, View): """ View to handle the action of unfollowing a user. The view expects to receive a 'pk' (primary key) of the user to unfollow as part of the URL. This 'pk' is used to identify the followed user and delete the corresponding follow relationship. """ @method_decorator(require_POST) def post(self, request, pk, *args, **kwargs): follow = UserFollows.objects.filter(user=request.user, followed_user_id=pk).first() # Check if the following relationship is found. if follow: # Save the followed user's username for use in the message. followed_username = follow.followed_user.username # Delete the following relationship. follow.delete() # Send a success message to the user. messages.success(request, f"You have unfollowed {followed_username}.") else: # If the relationship is not found, send an error message to the user. messages.error(request, "User not found.") # Redirect the user back to the 'abonnements' page. return redirect('abonnements')
ErnestoAquino/LITRevu
litrevu/users/views.py
views.py
py
7,709
python
en
code
0
github-code
6
30754602045
from collections import Counter for _ in range(int(input())): n = int(input()) if n < 3: input() print(-1) else: nb = list(map(int, input().split(' '))) cnt = Counter(nb) flag = True for k, v in cnt.items(): if v >= 3: print(k) flag = False break if flag: print(-1)
Tanguyvans/Codeforces
784/B.py
B.py
py
412
python
en
code
0
github-code
6
4713040273
import os import re import json import numpy as np from tqdm import tqdm_notebook from collections import Counter base_path = 'LongSumm-data/extractive_summaries/' path_to_jsons = base_path + 'papers-jsons/' p_jsons = os.listdir(path_to_jsons) p_unread = [] section_1 = ['abstract'] section_2 = ['introduction', 'problem formulation', 'overview', 'problem definition'] section_3 = ['related work', 'background', 'preliminaries', 'related works', 'previous work', 'baseline models'] section_4 = ['conclusion', 'conclusions', 'discussion', 'conclusion and future work', 'analysis', 'inference', 'discussion and conclusion', 'future work', 'theoretical analysis', 'concluding remarks'] section_5 = ['experiments', 'experimental setup', 'experiment', 'setup', 'training details', 'implementation', 'hyperparameters', ] section_6 = ['model', 'approach', 'method', 'methods', 'methodology', 'models', 'our approach', 'proposed method', 'model architecture', 'algorithm'] section_7 = ['experimental results', 'results', 'evaluation', 'error analysis', 'main results', 'results and analysis', 'human evaluation', 'experimental evaluation', 'empirical results', 'experiments and results'] section_8 = ['data', 'datasets', 'dataset', 'evaluation metrics'] remove_sections = ['acknowledgements', 'acknowledgments', 'acknowledgement', 'acknowledgment', 'appendix', 'appendices', 'a appendix', 'notation'] section_names = [] for p in tqdm_notebook(p_jsons): with open(path_to_jsons+p) as json_file: try: p_data = json.load(json_file) except UnicodeDecodeError: p_unread.append(p) continue p_sections = {} p_sections['name_of_paper'] = p_data['name'][:-4] if p_data['metadata']['sections'] is not None: for s in p_data['metadata']['sections']: if s['heading'] is None: s['heading'] = 'abstract' s_name = re.sub(' +', ' ', re.sub('[^a-z\s]', '', s['heading'].lower())).lstrip() if s_name in remove_sections: continue else: section_names.append(s_name) if s_name in section_1: p_sections['abstract'] = s['text'] elif s_name in section_2: p_sections['introduction'] = s['text'] elif s_name in section_3: p_sections['related_work'] = s['text'] elif s_name in section_4: p_sections['conclusion'] = s['text'] elif s_name in section_5: p_sections['experiments'] = s['text'] elif s_name in section_6: p_sections['model'] = s['text'] elif s_name in section_7: p_sections['results'] = s['text'] elif s_name in section_8: p_sections['data'] = s['text'] else: if 'other' in p_sections.keys(): p_sections['other'] = ' '.join([p_sections['other'], s['text']]) p_sections['other_section_titles'].append(s_name) else: p_sections['other'] = s['text'] p_sections['other_section_titles'] = [] p_sections['other_section_titles'].append(s_name) with open('LongSumm-data/extractive_summaries/combined_sections/'+p_sections['name_of_paper']+'.json', 'w') as file: json.dump(p_sections, file)
dchandak99/LongSumm
.ipynb_checkpoints/join_sections_manual-checkpoint.py
join_sections_manual-checkpoint.py
py
3,727
python
en
code
1
github-code
6
6807988061
import setuptools import os import codecs from setuptools import setup # https://packaging.python.org/guides/single-sourcing-package-version/ def read(rel_path): here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, rel_path), 'r') as fp: return fp.read() def get_version(rel_path): for line in read(rel_path).splitlines(): if line.startswith('__version__'): delim = '"' if '"' in line else "'" return line.split(delim)[1] else: raise RuntimeError("Unable to find version string.") setup( name="oo-tools", version=get_version("oo_tools/__init__.py"), url="", author="Wesley Uykimpang", description="Some object-oriented classes + utilities for python", packages=setuptools.find_packages(), install_requires=['pyyaml', 'requests'], python_requires = ">=3.6", setup_requires = ['pytest-runner'], tests_require = ['pytest'], package_data={'oo_tools': ['*.py']} )
wesuuu/oo-tools
setup.py
setup.py
py
1,004
python
en
code
0
github-code
6
35707696287
import bcrypt import time from flask import Flask, jsonify, request from flask import Flask, jsonify from flask_cors import CORS # * ============ (Core functions) ============ *# from utils.save_results_in_db import save_results_in_db from utils.scan_for_vulns import scan_for_vulns from utils.data_adapter import data_adapter from utils.save_results_as_json import save_results_as_json from utils.obtain_cve_info_from_api import obtain_cve_info_from_api from utils.get_default_gateway import get_default_gateway from utils.db_connection import db_connection from utils.get_db_results import get_db_results from utils.get_db_results_filter import get_db_results_filter from utils.obtain_isp_info_from_api import obtain_isp_info_from_api from utils.obtain_user_collection import obtain_user_collection from utils.get_db_reports import get_db_reports # * ========= API ========= *# from api.reports.get_top_cve import get_top_cve from api.reports.get_top_isp import get_top_isp from api.reports.get_top_vendor import get_top_vendor from api.reports.get_top_vendor_cve import get_top_vendor_cve from api.reports.get_top_ip import get_top_ip from api.reports.get_top_isp_cve import get_top_isp_cve from api.reports.get_top_port_cve import get_top_port_cve from api.reports.get_top_ip_scanning_time import get_top_ip_scanning_time app = Flask(__name__) CORS(app) @app.route("/") def index(): return "Hello World!" @app.route("/scan", methods=["POST"]) def scan(): userId = request.get_json()["userId"] gateway = get_default_gateway() start_time = time.time() scan_results = scan_for_vulns(gateway, "nmap -sV --script vulners") save_results_as_json(scan_results, "1-scan_results.json") scan_results_adapted = data_adapter(scan_results, gateway, userId) scan_results_adapted = obtain_isp_info_from_api(scan_results_adapted) collection = db_connection() if len(scan_results_adapted["vulnerabilities"]) == 0: # save_results_in_db(collection, scan_results_adapted) end_time = time.time() elapsed_time = end_time - start_time scan_results_adapted["scanningTime"] = elapsed_time save_results_as_json(scan_results_adapted, "2-scan_results_adapted.json") save_results_in_db(collection, scan_results_adapted) return jsonify(scan_results_adapted) scan_results_adapted_cve_info = obtain_cve_info_from_api(scan_results_adapted) end_time = time.time() elapsed_time = end_time - start_time scan_results_adapted_cve_info["scanningTime"] = elapsed_time save_results_as_json( scan_results_adapted_cve_info, "3-scan_results_adapted_cve_info.json" ) save_results_in_db(collection, scan_results_adapted_cve_info) return jsonify(scan_results_adapted_cve_info) @app.route("/scan/all") def getAllScans(): collection = db_connection() results = get_db_results(collection) return results @app.route("/scan/filter", methods=["POST"]) def getScanByFilter(): collection = db_connection() results = get_db_results_filter(collection) return results @app.route("/register", methods=["POST"]) def register_user(): try: users_collection = obtain_user_collection() user_data = request.get_json() existent_user = users_collection.find_one({"email": user_data["email"]}) if existent_user: return jsonify({"error": "El Usuario ya existe"}), 400 hashed_password = bcrypt.hashpw( user_data["password"].encode("utf-8"), bcrypt.gensalt() ) users_collection.insert_one( { "name": user_data["name"], "email": user_data["email"], "role": user_data["role"] if "role" in user_data else "USER", "asn": user_data["asn"] if "asn" in user_data else None, "password": hashed_password, } ) return jsonify({"message": "Usuario creado exitosamente"}), 201 except Exception as e: print(e) return jsonify({"error": "Error al crear el usuario"}), 500 @app.route("/login", methods=["POST"]) def login(): try: # Obtiene los datos de inicio de sesión del cuerpo de la solicitud login_data = request.get_json() users_collection = obtain_user_collection() # Busca el usuario en la base de datos por su correo electrónico user = users_collection.find_one({"email": login_data["email"]}) if user: # Compara la contraseña proporcionada con la contraseña almacenada en la base de datos if bcrypt.checkpw(login_data["password"].encode("utf-8"), user["password"]): return ( jsonify( { "message": "Inicio de sesión exitoso", "user": { "_id": str(user["_id"]), "name": user["name"], "email": user["email"], "role": user["role"], "asn": user["asn"], }, } ), 200, ) else: return jsonify({"error": "Credenciales incorrectas"}), 401 else: return jsonify({"error": "Usuario no encontrado"}), 404 except Exception as e: print(e) return jsonify({"error": "Error al iniciar sesión"}), 500 # Reports @app.route("/reports") def reports(): collection = db_connection() results = get_db_reports(collection) return results @app.route("/reports/cve") def api_get_top_cve(): return get_top_cve() @app.route("/reports/ip") def api_get_top_ip(): return get_top_ip() @app.route("/reports/ip/scanning_time") def api_get_top_ip_scanning_time(): return get_top_ip_scanning_time() @app.route("/reports/isp") def api_get_top_isp(): return get_top_isp() @app.route("/reports/isp/cve") def api_get_top_isp_cve(): return get_top_isp_cve() @app.route("/reports/port/cve") def api_get_top_port_cve(): return get_top_port_cve() @app.route("/reports/vendor") def api_get_top_vendor(): return get_top_vendor() @app.route("/reports/vendor/cve") def api_get_top_vendor_cve(): return get_top_vendor_cve() if __name__ == "__main__": app.run(debug=True, port=3000)
JorgeAVargasC/router-scan-backend
app.py
app.py
py
6,478
python
en
code
0
github-code
6
19815525990
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index), url(r'^regprocess$', views.user), url(r'^jobs/new$', views.registration), url(r'^loginprocess$', views.login_process), url(r'^login$', views.login), url(r'^logout$', views.logout), url(r'^jobprocess$', views.job_process), url(r'^dashboard$', views.jobs), url(r'^job/(?P<jobid>\w+)/delete$', views.remove_job), url(r'^job/update/(?P<jobid>\w+)$', views.update), url(r'^jobs/edit/(?P<jobid>\w+)$', views.edit_job), url(r'^add/(?P<jobid>\w+)$', views.add), url(r'^giveup/(?P<jobid>\w+)$', views.giveup), url(r'^jobs/(?P<jobid>\w+)$', views.details) ]
aidapira/handyhelper
apps/job_manager_app/urls.py
urls.py
py
724
python
en
code
0
github-code
6
74183020029
# -*- coding: utf-8 -*- from django.conf import urls from django.contrib.auth import decorators from .views import HistoriaCreateView from .views import HistoriaDetailView from .views import HistoriaPacienteListView from .views import HistoriaUpdateView HISTORIA_CREATE_URL_NAME = 'historia_create' HISTORIA_UPDATE_URL_NAME = 'historia_update' HISTORIA_DETAIL_URL_NAME = 'historia_detail' HISTORIA_LIST_URL_NAME = 'historia_list' urlpatterns = urls.patterns("", urls.url( regex=r'^nueva/$', view=decorators.login_required(HistoriaCreateView.as_view()), name=HISTORIA_CREATE_URL_NAME ), urls.url( regex=r'^editar/(?P<pk>\d+)$', view=decorators.login_required(HistoriaUpdateView.as_view()), name=HISTORIA_UPDATE_URL_NAME ), urls.url( regex=r'^(?P<pk>\d+)/$', view=decorators.login_required(HistoriaDetailView.as_view()), name=HISTORIA_DETAIL_URL_NAME ), urls.url( regex=r'^paciente/(?P<paciente_id>\d+)/$', view=decorators.login_required(HistoriaPacienteListView.as_view()), name=HISTORIA_LIST_URL_NAME ) )
gustavoatt/consultas
consultas_proyecto/historias_app/urls.py
urls.py
py
1,138
python
en
code
0
github-code
6
1705824671
import sys import json import h5py import numpy as np import matplotlib.pyplot as plt import sys_id_utils for i, data_file in enumerate(sys.argv[1:]): data = h5py.File(data_file, 'r') run_param = json.loads(data.attrs['jsonparam']) print(run_param) t = data['t'][()] v_stimu = data['v_stimulus'][()] v_plant = data['v_plant'][()] v_error = data['v_error'][()] is_trial = data['is_trial'][()] stimu_count = data['stimulus_count'][()] stimu_event = data['stimulus_event'][()] # Mask of trial region mask = is_trial > 0 t = t[mask] v_stimu = v_stimu[mask] v_plant = v_plant[mask] v_error = v_error[mask] stimu_count = stimu_count[mask] stimu_event = stimu_event[mask] # Remove last few points k = 3 t = t[:-k] v_stimu = v_stimu[:-k] v_plant = v_plant[:-k] v_error = v_error[:-k] stimu_count = stimu_count[:-k] stimu_event = stimu_event[:-k] num_pts = t.shape[0] nperseg = num_pts/12 f_sample = 1.0/(t[1] - t[0]) f_cutoff = 0.7 # Compute gain and phase as funtion of frequency f, gain_db, phase_deg = sys_id_utils.freq_response(v_stimu[:,0], v_plant[:,0], f_sample, f_cutoff, nperseg) if i==0: fig0, ax0 = plt.subplots(3,1,sharex=True) ax0[0].plot(t, v_stimu[:,0],'b') ax0[0].plot(t, v_plant[:,0],'r') ax0[0].set_ylabel('vel (pix/sec)') ax0[0].grid(True) ax0[1].plot(t, v_error[:,0],'b') ax0[1].grid(True) ax0[1].set_ylabel('err (pix/sec)') ax0[2].plot(t, stimu_count) ax0[2].grid(True) ax0[2].set_xlabel('t (sec)') if i==0: fig1, ax1 = plt.subplots(2,1,sharex=True) fig1.suptitle('Frequency Response') ax1[0].semilogx(f, gain_db,'or') ax1[0].grid(True, which='both', axis='both') ax1[0].set_ylabel('gain (dB)') ax1[1].semilogx(f, phase_deg,'or') ax1[1].grid(True, which='both', axis='both') ax1[1].set_ylabel('phase lag (deg)') ax1[1].set_xlabel('f (Hz)') plt.show()
willdickson/imafly
python/imafly/examples/data_step_tmp/analyze_step_data.py
analyze_step_data.py
py
2,044
python
en
code
0
github-code
6
36332873922
import os import time import subprocess LIB = 'neural_style.py' DIR_PATH = os.path.dirname(os.path.realpath(__file__)) LIB_PATH = os.path.join(DIR_PATH, 'lib/neural-style-tf-master/') for content_img in os.listdir(os.path.join(LIB_PATH, 'image_input')): print(f'--------------- {content_img} ---------------') for style_img in os.listdir(os.path.join(LIB_PATH, 'styles')): print(f'\n{style_img}') output_img = style_img[:-4] + '_' +content_img[:-4] output_pixel_max = 512 # output_pixel_max = 1280 print(f'output pixel max: {output_pixel_max}') tic = time.time() subprocess.run(['python', os.path.join(LIB_PATH, LIB), '--style_imgs', style_img, '--content_img', content_img, '--img_name', output_img, '--max_size', str(output_pixel_max), # '--original_colors', '--device', '/gpu:0'], capture_output=True, cwd=LIB_PATH) toc = time.time() print(f'Elapsed time is {round((toc - tic)/60, 2)} minutes')
alexhla/deep-learning-for-computer-vision
run_neural_style_tf.py
run_neural_style_tf.py
py
948
python
en
code
0
github-code
6
1975281972
import math pi = math.acos (-1) def main (): t = int (input ()) for i in range (0, t): inp = input ().split (' ') ans = 0 ans += pi * (int (inp [0]) ** 2) new = 4 for j in range (1, int (inp [1])): ans += new * ((int (inp [0]) / (2 ** j)) ** 2) * pi new *= 3 print (ans) if __name__ == '__main__': main ()
joaoandreotti/competitive_programming
maps19_kattis/f.py
f.py
py
392
python
en
code
0
github-code
6
39688221214
# Time: 4^gold + size(grid) # Space: size(grid) class Solution: def getMaximumGold(self, grid: List[List[int]]) -> int: max_gold = float('-inf') for row in range(len(grid)): for col in range(len(grid[0])): if grid[row][col]: seen = set() max_gold = max(max_gold, self.dfs_util(grid, row, col, seen, 0)) return max_gold if max_gold!=float('-inf') else 0 def dfs_util(self, grid, row, col, seen, cur_sum): if (row,col) in seen or row not in range(len(grid)) or col not in range(len(grid[0])) or not grid[row][col]: return cur_sum # print(row, col) seen.add((row, col)) down = self.dfs_util(grid, row+1, col, seen, cur_sum+grid[row][col]) right = self.dfs_util(grid, row, col+1, seen, cur_sum+grid[row][col]) up = self.dfs_util(grid, row-1, col, seen, cur_sum+grid[row][col]) left = self.dfs_util(grid, row, col-1, seen, cur_sum+grid[row][col]) seen.remove((row, col)) return max(left, right, up, down)
cmattey/leetcode_problems
Python/lc_1219_path_with_maximum_gold.py
lc_1219_path_with_maximum_gold.py
py
1,093
python
en
code
4
github-code
6
6880332813
# -- Project information ----------------------------------------------------- project = "Test build" copyright = "2018, Executable Books Project" author = "Executable Books Project" extensions = ["sphinx_comments", "myst_parser"] comments_config = { "hypothesis": True, "utterances": {"repo": "executablebooks/sphinx-comments", "theme": "footheme",}, "dokieli": True, } # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_book_theme"
yangxuan21/sphinx-comments
tests/config/conf.py
conf.py
py
1,271
python
en
code
null
github-code
6
18972684429
import pandas as pd from dagster import asset, get_dagster_logger from SSH_DEMO.resources import daily_partitions_def # path for the directory as served from the SFTP server GLOBAL_PREFIX = "upload" DB_ZONE = "landing" def _source_path_from_context(context): return ( context.solid_def.output_defs[0].metadata["source_file_base_path"] + "/" + context.partition_key + "/" + context.solid_def.output_defs[0].metadata["source_file_name"] ) def read_csv_sftp_direct(sftp, remotepath: str, partition_key: str, *args, **kwargs) -> pd.DataFrame: """ Read a file from a remote host using SFTP over SSH. Args: sftp: the already initialized paramikro SFTP session remotepath: the file path on the remote to read partition_key: the key of the processed partition *args: positional arguments to pass to pd.read_csv **kwargs: keyword arguments to pass to pd.read_csv Returns: a pandas DataFrame with data loaded from the remote host """ remote_file = sftp.open(remotepath) dataframe = pd.read_csv(remote_file, *args, **kwargs) dataframe['event_dt'] = partition_key now_ts = pd.Timestamp.now() dataframe['load_ts'] = now_ts remote_file.close() sftp.close() return dataframe @asset( compute_kind="python", partitions_def=daily_partitions_def, metadata={"source_file_base_path": GLOBAL_PREFIX, "source_file_name": "foo.csv", "db_zone": DB_ZONE}, required_resource_keys={"credentials", "ssh"}, # io_manager_key="parquet_io_manager" ) def foo_asset(context): path = _source_path_from_context(context) get_dagster_logger().info(f"Processing file '{path}'") ssh = context.resources.ssh sftp = ssh.open_sftp() df = read_csv_sftp_direct(sftp, path, context.partition_key) return df @asset( compute_kind="python", partitions_def=daily_partitions_def, metadata={"source_file_base_path": GLOBAL_PREFIX, "source_file_name": "bar.csv", "db_zone": DB_ZONE}, required_resource_keys={"credentials", "ssh"}, # io_manager_key="parquet_io_manager" ) def bar_asset(context): return _shared_helper(context) @asset( compute_kind="python", partitions_def=daily_partitions_def, metadata={"source_file_base_path": GLOBAL_PREFIX, "source_file_name": "baz.csv", "db_zone": DB_ZONE}, required_resource_keys={"credentials", "ssh"}, # io_manager_key="parquet_io_manager" ) def baz_asset(context): return _shared_helper(context) def _shared_helper(context): path = _source_path_from_context(context) get_dagster_logger().info(f"Shared processing file '{path}'") ssh = context.resources.ssh sftp = ssh.open_sftp() df = read_csv_sftp_direct(sftp, path, context.partition_key) return df
geoHeil/dagster-ssh-demo
SSH_DEMO/assets/ingest_assets.py
ingest_assets.py
py
2,839
python
en
code
1
github-code
6
10854990799
import numpy as np import pytorch_lightning as pl import torch from torch.utils.data import Dataset, DataLoader from utils import Language SRC_LANG = Language('src') TRG_LANG = Language('trg') class SentenceDataset(Dataset): """ This class loads the desired data split for the Occupation Classification dataset """ def __init__(self, task, num_train, batch_size, data_path, dataset, debug=False): """ Args: """ self.batch_size = batch_size self.src_file = data_path + dataset + "." + task + '.src' self.trg_file = data_path + dataset + "." + task + '.trg' src_sentences = open(self.src_file).readlines() trg_sentences = open(self.trg_file).readlines() self.alignment_file = data_path + dataset + "." + task + ".align" alignment_sentences = open(self.alignment_file).readlines() if debug: # small scale src_sentences = src_sentences[:int(1e5)] trg_sentences = trg_sentences[:int(1e5)] alignment_sentences = alignment_sentences[: int(1e5)] if dataset == 'train': src_sentences = src_sentences[:num_train] trg_sentences = trg_sentences[:num_train] alignment_sentences = alignment_sentences[:num_train] # parallel should be at least equal len assert (len(src_sentences) == len(trg_sentences)) self.samples = [] self.src_samples = [] self.trg_samples = [] self.aligned_outputs = [] # represent all sentences for idx in range(0, len(src_sentences)): # get the slice src_sample = SRC_LANG.get_sent_rep(src_sentences[idx]) trg_sample = TRG_LANG.get_sent_rep(trg_sentences[idx]) align_sample = alignment_sentences[idx] self.src_samples.append(src_sample) self.trg_samples.append(trg_sample) self.aligned_outputs.append(align_sample) # represent them # src_sample = [SRC_LANG.get_sent_rep(s) for s in src_sample] # trg_sample = [TRG_LANG.get_sent_rep(s) for s in trg_sample] # sort by decreasing source len sorted_ids = sorted(enumerate(self.src_samples), reverse=True, key=lambda x: len(x[1])) src_sample = [self.src_samples[i] for i, v in sorted_ids] trg_sample = [self.trg_samples[i] for i, v in sorted_ids] align_sample = [self.aligned_outputs[i] for i, v in sorted_ids] src_len = [len(s) for s in src_sample] trg_len = [len(t) for t in trg_sample] # large set seq len max_src_len = max(src_len) max_trg_len = max(trg_len) # pad the extra indices src_sample = SRC_LANG.pad_sequences(src_sample, max_src_len) trg_sample = TRG_LANG.pad_sequences(trg_sample, max_trg_len) # generated masks aligned_outputs = [] for alignment in align_sample: # print (alignment) current_alignment = np.zeros([max_trg_len, max_src_len]) for pair in alignment.strip().split(): src_i, trg_j = pair.split("-") src_i = min(int(src_i) + 1, max_src_len - 1) trg_j = min(int(trg_j) + 1, max_trg_len - 1) current_alignment[trg_j][src_i] = 1 aligned_outputs.append(current_alignment) # numpy them self.src_samples = np.array(src_sample, dtype=np.int64) self.trg_samples = np.array(trg_sample, dtype=np.int64) self.aligned_outputs = np.array(aligned_outputs) # align output is batch_size x max target_len x max_src_len assert (self.src_samples.shape[1] == max_src_len) assert (self.trg_samples.shape[1] == max_trg_len) # craft samples out of prepared data for idx in range(0, len(self.src_samples)): src_sample = self.src_samples[idx] trg_sample = self.trg_samples[idx] self.samples.append([src_sample, len(src_sample), trg_sample, len(trg_sample), self.aligned_outputs[idx]]) def __len__(self): return len(self.samples) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() return self.samples[idx] class SentenceDataModule(pl.LightningDataModule): """ This Lightning module takes a "task" argument and produces DataLoaders for that task using predefined task-Dataset instances. """ def __init__(self, task, batch_size, num_train, data_path, debug=False): super().__init__() self.task = task self.batch_size = batch_size self.num_train = num_train self.debug = debug self.data_path = data_path # noinspection PyAttributeOutsideInit def setup(self, stage=None): self.train = SentenceDataset(self.task, self.num_train, self.batch_size, self.data_path, 'train', debug=self.debug) # don't accept new words from validation and test set SRC_LANG.stop_accepting_new_words() TRG_LANG.stop_accepting_new_words() self.val = SentenceDataset(self.task, self.num_train, self.batch_size, self.data_path, 'dev', debug=self.debug) self.test = SentenceDataset(self.task, self.num_train, self.batch_size, self.data_path, 'test', debug=self.debug) def train_dataloader(self): return DataLoader(self.train, batch_size=self.batch_size, num_workers=4) def val_dataloader(self): return DataLoader(self.val, batch_size=self.batch_size, num_workers=4) def test_dataloader(self, batch_size=None): if batch_size is None: batch_size = self.batch_size # pin_memory=True return DataLoader(self.test, batch_size=batch_size, num_workers=4) def prepare_data(self, *args, **kwargs): # download or similar ... pass
matprst/deceptive-attention-reproduced
deceptive-attention/src/seq2seq/lightning/data_utils.py
data_utils.py
py
5,858
python
en
code
0
github-code
6
22050926816
from flask import Flask, request, render_template, session, redirect, url_for, jsonify from models.user import User from models.rawpicture import Rawpicture from models.savepicture import Savepicture from models.comment import Comment from random import choice import mlab import base64 import requests mlab.connect() def base64encode(url): link1 = base64.b64encode(requests.get(url).content) link2 = str(link1) link = link2.replace("b'","data:image/jpeg;base64,").replace("'","") return link def func_top100pics(): # Tìm tất cả những bức tranh đã hoàn thành: finished_list = Savepicture.objects(picstatus='finished', piclikes__ne=0) # Tìm 100 bức có số like lớn nhất và lưu số likes đó vào 1 list: likes_list = [] for pic in finished_list: likes_list.append(pic.piclikes) likes_list.sort(reverse=True) # sắp xếp theo thứ tự giảm dần if len(likes_list) > 100: likes_list = likes_list[:101] likes_list = list(dict.fromkeys(likes_list)) # loại bỏ các giá trị trùng nhau # Tạo Top 100 bằng cách tìm ngược likes trong list trên ở database ảnh: top100pics = [] for i, v in enumerate(likes_list): for pic in finished_list: if pic.piclikes == v: Savepicture.objects(id=pic.id).first().update(set__picpositionintop100=i+1) artist = User.objects(username=pic.picartist).first() toppic = { 'picpositionintop100': pic.picpositionintop100, 'picname': pic.picname, 'piclink': pic.piclink, 'piclikes': pic.piclikes, 'picartist': artist.fullname, 'username': artist.username, 'picid': pic.id } top100pics.append(toppic) return top100pics # Các biến được dùng để hiển thị trên HTML: # 1. Tên bức tranh: picname # 2. Link ảnh để hiển thị ảnh: piclink # 3. Số lượng like: piclikes # 4. Tác giả: picartist def func_top100artists(): # Tìm tất cả các artist: artist_list = User.objects(totallikes__ne=0) # Tìm 100 artist có likes lớn nhất và lưu số like đó vào 1 list: likes_list = [] for artist in artist_list: likes_list.append(artist.totallikes) likes_list.sort(reverse=True) # sắp xếp theo thứ tự giảm dần if len(likes_list) > 100: likes_list = likes_list[:101] likes_list = list(dict.fromkeys(likes_list)) # loại bỏ các giá trị trùng nhau # Tạo top 100 Artist bằng cách tìm ngược likes trong database user: top100artists = [] for i, v in enumerate(likes_list): for artist in artist_list: if artist.totallikes == v: # Update Position trong top 100: User.objects(username=artist.username).first().update(set__positionintop100=i+1) # Số tranh đã hoàn thành: finished_list = Savepicture.objects(picartist=artist.username, picstatus='finished') # # Số tranh trong top 100 pics: # picsintop100 = 0 # top100pics = func_top100pics() # for pic in top100pics: # if pic['picartist'] == artist.username: # picsintop100 += 1 # User.objects(username=artist.username).first().update(set__picsintop100=picsintop100) # Tìm bức tranh có nhiều like nhất của artist đó: likes = [] for pic in finished_list: likes.append(pic.piclikes) bestpic = Savepicture.objects(picartist=artist.username, picstatus='finished', piclikes=max(likes)).first() # Đưa các thông tin của artist đó vào list top 100 artist: topartist = { 'positionintop100': artist.positionintop100, 'fullname': artist.fullname, 'username': artist.username, # 'picsintop100': picsintop100, 'totallikes': artist.totallikes, # 'finishedarts': len(finished_list), 'bestpic': bestpic.piclink, 'bestpicid': bestpic.id } top100artists.append(topartist) return top100artists # Các biến dùng để hiển thị trên HTML: # 1. Thứ hạng của artist: positionintop100 # 2. Tên đầy đủ của artist: fullname # 3. Số lượng pic nằm trong top100pics: picsintop100 # 4. Tổng like: totallikes # 5. Số bức vẽ đã hoàn thành: finishedarts # 6. Link bức vẽ được nhiều like nhất để hiển thị: bestpic def func_artist_infor(artist): # Fullname của artist: artist_fullname = User.objects(username=artist).first().fullname # Số bức tranh đã hoàn thành: finished_list = Savepicture.objects(picartist=artist, picstatus='finished') finished_arts = len(finished_list) # Số bức tranh đang làm dở: working_list = Savepicture.objects(picartist=artist, picstatus='working') working_arts = len(working_list) # Tính tổng like của artist: ##### Liệu có cách nào tự động kết nối data user vs data picture để tự tính tổng like? totallikes = 0 for art in finished_list: totallikes += art.piclikes # # Tổng số bức tranh trong top 100 pics: # picsintop100 = 0 # top100pics = func_top100pics() # for pic in top100pics: # if pic['picartist'] == artist: # picsintop100 += 1 # User.objects(username=artist).first().update(set__picsintop100=picsintop100) # # Tìm thứ hạng trong top 100: # positionintop100 = 0 # top100artists = func_top100artists() # for a in top100artists: # if a['username'] == artist: # positionintop100 = a['positionintop100'] # Tạo 1 dictionary lưu thông tin của artist: artist_infor = { 'fullname': artist_fullname, 'username': artist, 'finished_arts': finished_arts, 'working_arts': working_arts, 'totallikes': totallikes, # 'picsintop100': picsintop100, # 'positionintop100': positionintop100 } return artist_infor # Thông tin của artist: # - Tên đầy đủ của artist: fullname # - Số bức tranh đã hoàn thành: finished_arts # - Số bức tranh đang vẽ: working_arts # - Tổng số likes của artist đó: totallikes # - Bỏ: Số bức tranh trong top 100: picsintop100 (bằng 0 là không có bức nào) # - Bỏ: Thứ hạng của artist: positionintop100 (bằng 0 là không được vào top) app = Flask(__name__) app.config['SECRET_KEY'] = 'teamcolorpictures' @app.route('/') # Hiển thị trang chủ def home(): return render_template('homepage.html') @app.route('/signup', methods=['GET', 'POST']) # Đăng ký tài khoản def signup(): if 'token' in session: return render_template('homepage.html') if request.method == 'GET': return render_template("signup.html") else: form = request.form f = form['fullname'] u = form['username'] p = form['password'] # e = form['email'] new_user = User(fullname=f, username=u, password=p) #, email=e) user_check = User.objects(username=u).first() # email_check = User.objects(email=e).first() warning = '' if f == '' or u == '' or p == '': #or e == '': warning = 'Vui lòng nhập đầy đủ thông tin!' elif ' ' in u or ' ' in p: warning = 'Username hoặc password không được chứa dấu cách!' # Check xem có tồn tại username hoặc email đó chưa: elif user_check is not None: warning = 'Username đã tồn tại!' # elif email_check is not None: # warning = 'Email đã tồn tại' if warning != '': return render_template('signup.html', warning=warning) else: new_user.save() session['token'] = u # Đăng ký xong thì trả về giao diện trang Welcome return render_template('welcome.html', fullname=f, u=u) @app.route('/login', methods=['GET', 'POST']) # Đăng nhập def login(): if 'token' in session: return render_template('homepage.html') if request.method == 'GET': return render_template('login.html') else: form = request.form u = form['username'] p = form['password'] user_check = User.objects(username=u).first() # Check xem có nhập username và password hay không và nhập đúng hay không: warning = '' if u == '': warning = 'Bạn chưa nhập username!' elif user_check is None: warning = 'Username không tồn tại!' else: if p == '': warning = 'Vui lòng nhập password!' elif p != user_check.password: warning = 'Password sai!' if warning != '': return render_template('login.html', warning=warning) else: session['token'] = u # Đăng nhập đúng thì trả về giao diện trang Welcome return render_template('welcome.html', fullname=User.objects(username=u).first().fullname, u=u) @app.route('/logout') # Đăng xuất def logout(): if 'token' in session: del session['token'] return redirect(url_for('home')) @app.route('/top100pics') # Hiển thị 100 Pics đc nhiều like nhất def top100pics(): top100pics = func_top100pics() return render_template('top100pics.html', top100pics=top100pics) @app.route('/top100artists') # Hiển thị 100 Artists đc nhiều like nhất def top100artists(): top100artists = func_top100artists() return render_template('top100artists.html', top100artists=top100artists) @app.route('/profile/<artist>') # Hiển thị profile def profile(artist): # Chạy hàm func_artist_infor và trả về các thông tin của artist đó artist_infor = func_artist_infor(artist) # Các bức tranh đã hoàn thành sắp xếp theo số lượng like: # Tạo 1 list gồm số like của các bức tranh của artist đó likes_list = [] finished_list = Savepicture.objects(picartist=artist, picstatus='finished') for pic in finished_list: likes_list.append(pic.piclikes) likes_list.sort(reverse=True) likes_list = list(dict.fromkeys(likes_list)) # loại bỏ các giá trị trùng nhau # Tạo 1 list các bức tranh sắp xếp theo số lượng like để sau đó hiển thị trên trang profile của artist artist_finised_arts = [] for i in likes_list: for pic in finished_list: if pic.piclikes == i: # # Tìm thứ hạng của pic đó trong top 100 pics nếu có: # top100pics = func_top100pics() # positionintop100 = 0 # for toppic in top100pics: # if toppic['picid'] == pic.id: # positionintop100 = toppic['picpositionintop100'] # Tìm số lượng comment trong bức tranh đó: comments = len(Comment.objects(picid=pic.id)) # Đưa các thông tin của các bức vẽ vào list các bức vẽ của artist đó toppic = { # 'positionintop100': positionintop100, 'picname': pic.picname, 'piclink': pic.piclink, 'piclikes': pic.piclikes, 'picid': pic.id, 'piccomments': comments } artist_finised_arts.append(toppic) # Danh sách những bức đang vẽ (chỉ nhìn thấy của chính mình nếu đăng nhập vào) working_list = [] if 'token' in session: if session['token'] == artist: working_list = Savepicture.objects(picartist=artist, picstatus='working') return render_template('profile.html', artist_infor=artist_infor, artist_finised_arts=artist_finised_arts, working_list=working_list) # Các biến được dùng để hiển thị trên HTML: # 1. Thông tin của artist: # - Tên đầy đủ của artist: artist_fullname # - Số bức tranh đã hoàn thành: finished_arts # - Số bức tranh đang vẽ: working_arts. (Cái này chỉ hiện ra nếu ở trang profile của mình, còn của người khác chỉ hiện finished_arts thôi) # - Bỏ: Số bức tranh trong top 100: picsintop100 (bằng 0 là không có bức nào) # - Bỏ: Thứ hạng trong 100 artist: positionintop100 (bằng 0 là không nằm trong danh sách) # 2. Thông tin từng bức vẽ đã hoàn thành, bao gồm: # - Bỏ: Thứ hạng trong top 100 pics nếu bức đó lọt vào: positionintop100 # - Tên bức tranh: picname # - Link ảnh để hiển thị: piclink # - Số lượng like: piclikes # - Số lượng comment: piccomments # Lấy link của 1 random pic: pic_list = Rawpicture.objects() random_picid = choice(pic_list).id @app.route('/category') # Hiển thị trang Category tổng def full_category(): # category_list = Rawpicture.objects() # Sau sẽ xử lý hiển thị tất cả các category trong html bằng vòng for return render_template('category.html', random_picid=random_picid) @app.route('/category/<category>') # Hiển thị 1 trang category cụ thể def one_category(category): pic_list = Rawpicture.objects(category__icontains=category) cap_category = category.title() return render_template('one_category.html', pic_list=pic_list, category=cap_category) @app.route('/new_picture/<picid>') # Hiển thị trang vẽ tranh của 1 bức tranh def new_picture(picid): pic = Rawpicture.objects(id=picid).first() piclinkb64 = base64encode(pic.piclink) return render_template('new_picture.html', piclinkb64=piclinkb64) @app.route('/view/<picid>', methods=['GET', 'POST']) # Hiển thị 1 bức tranh đã hoàn thành để like và comment: def view(picid): pic = Savepicture.objects(id=picid).first() artist = User.objects(username=pic.picartist).first() comment_list = Comment.objects(picid=picid) if request.method == 'GET': return render_template("view.html", pic=pic, artist=artist,comment_list=comment_list) else: form = request.form comment = form['comment'] warning = '' if 'token' in session: user = User.objects(username=session['token']).first() new_comment = Comment(comment=comment, who_fullname=user.fullname, who_username=user.username, picid=picid) if comment == '': warning = 'Bạn chưa viết gì nên không có gì để đăng!' else: new_comment.save() else: warning = 'Vui lòng đăng nhập để like & comment!' return render_template('view.html', pic=pic, artist=artist, comment_list=comment_list, warning=warning) @app.route('/like') def index(): return render_template('like_test.html') @app.route('/_get_data/', methods=['POST']) def _get_data(): piclikes = 1 return jsonify({'data': piclikes}) if __name__ == '__main__': app.run(debug=True)
hoangcuong9x/test
app.py
app.py
py
16,081
python
vi
code
0
github-code
6
72532274109
from abc import ABC, abstractmethod from models_library.api_schemas_directorv2.dynamic_services import ( DynamicServiceCreate, RetrieveDataOutEnveloped, RunningDynamicServiceDetails, ) from models_library.basic_types import PortInt from models_library.projects import ProjectID from models_library.projects_networks import DockerNetworkAlias from models_library.projects_nodes_io import NodeID from models_library.service_settings_labels import SimcoreServiceLabels from models_library.users import UserID from servicelib.fastapi.long_running_tasks.client import ProgressCallback from servicelib.fastapi.long_running_tasks.server import TaskProgress class SchedulerInternalsInterface(ABC): @abstractmethod async def start(self) -> None: """initialize scheduler internals""" @abstractmethod async def shutdown(self): """finalize scheduler internals""" class SchedulerPublicInterface(ABC): @abstractmethod def toggle_observation(self, node_uuid: NodeID, disable: bool) -> bool: """ Enables/disables the observation of the service temporarily. NOTE: Used by director-v2 cli. """ @abstractmethod async def push_service_outputs( self, node_uuid: NodeID, progress_callback: ProgressCallback | None = None ) -> None: """ Push service outputs. NOTE: Used by director-v2 cli. """ @abstractmethod async def remove_service_containers( self, node_uuid: NodeID, progress_callback: ProgressCallback | None = None ) -> None: """ Removes all started service containers. NOTE: Used by director-v2 cli. """ @abstractmethod async def remove_service_sidecar_proxy_docker_networks_and_volumes( self, task_progress: TaskProgress, node_uuid: NodeID ) -> None: """ Cleans up all started resources for the service. NOTE: Used by director-v2 cli. """ @abstractmethod async def save_service_state( self, node_uuid: NodeID, progress_callback: ProgressCallback | None = None ) -> None: """ Saves the state of the service. NOTE: Used by director-v2 cli. """ @abstractmethod async def add_service( self, service: DynamicServiceCreate, simcore_service_labels: SimcoreServiceLabels, port: PortInt, request_dns: str, request_scheme: str, request_simcore_user_agent: str, can_save: bool, ) -> None: """ Adds a new service. """ @abstractmethod def is_service_tracked(self, node_uuid: NodeID) -> bool: """returns True if service is being actively observed""" def list_services( self, *, user_id: UserID | None = None, project_id: ProjectID | None = None, ) -> list[NodeID]: """Returns the list of tracked service UUIDs""" @abstractmethod async def mark_service_for_removal( self, node_uuid: NodeID, can_save: bool | None, skip_observation_recreation: bool = False, ) -> None: """The service will be removed as soon as possible""" @abstractmethod async def is_service_awaiting_manual_intervention(self, node_uuid: NodeID) -> bool: """ returns True if services is waiting for manual intervention A service will wait for manual intervention if there was an issue while saving it's state or it's outputs. """ @abstractmethod async def get_stack_status(self, node_uuid: NodeID) -> RunningDynamicServiceDetails: """Polled by the frontend for the status of the service""" @abstractmethod async def retrieve_service_inputs( self, node_uuid: NodeID, port_keys: list[str] ) -> RetrieveDataOutEnveloped: """Pulls data from input ports for the service""" @abstractmethod async def attach_project_network( self, node_id: NodeID, project_network: str, network_alias: DockerNetworkAlias ) -> None: """Attach project network to service""" @abstractmethod async def detach_project_network( self, node_id: NodeID, project_network: str ) -> None: """Detach project network from service""" @abstractmethod async def restart_containers(self, node_uuid: NodeID) -> None: """Restarts containers without saving or restoring the state or I/O ports"""
ITISFoundation/osparc-simcore
services/director-v2/src/simcore_service_director_v2/modules/dynamic_sidecar/scheduler/_abc.py
_abc.py
py
4,481
python
en
code
35
github-code
6
27998557212
# -*- coding: utf-8 -*- """ Created on Sat Oct 2 14:50:05 2021 @author: mizo_ """ import os from PIL import Image import numpy as np import csv from impreproc5 import processImg # image =Image.open('test/test.png') # z='test/resize/testresize.png' # c=processImg(image,z) c=0 directory = f'test/done' z='test/resize/testresize.png' result = [] with open('testcsv3.csv', 'w', encoding='UTF8', newline='') as f: writer = csv.writer(f) for filename in os.listdir(directory): fn = os.path.join(directory, filename) # checking if it is a file if os.path.isfile(fn): print(c, fn) image=Image.open(fn) image=processImg(image,z) a=np.array(image).astype(np.uint8) a= a.flatten() #print(a) a=a/255 print(a.shape) #a=np.transpose(a, axes=None) writer.writerow(a) result.append(fn) c+=1 print(result)
moataz-abbas/NeuralNetworks
createTestCSV.py
createTestCSV.py
py
1,101
python
en
code
0
github-code
6
70829236348
from aip import AipFace """ 你的 APPID AK SK """ APP_ID = '10777848' API_KEY = 'ifcHAWfOSsOQQTuhI1wbinyP' SECRET_KEY = 'OCoPqGVZOMeVPlrEAkC15AdIZqXOsuYh' client = AipFace(APP_ID, API_KEY, SECRET_KEY) def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() image = get_file_content(r'C:\Users\yukizzc\Pictures\小妹.JPG') """ 调用人脸检测 """ client.detect(image); """ 如果有可选参数 """ options = {} options["max_face_num"] = 2 options["face_fields"] = "age,beauty" """ 带参数调用人脸检测 """ out = client.detect(image, options) print(out['result'][0]['beauty'])
marcellinamichie291/Code_Store
baidu_api/face_demo.py
face_demo.py
py
631
python
en
code
0
github-code
6
33078595311
#!/usr/bin/env python # -*- coding: utf-8 -*- from time import time from threading import Thread import requests class DownloadHandler(Thread): def __init__(self, url): super().__init__() self.url = url def run(self): filename = self.url[self.url.rfind('/') + 1:] resp = requests.get(self.url) file_path = '/local/path/' + filename with open(file_path, 'wb') as f: f.write(resp.content) def main(): api_url = 'https://example.com/api' resp = requests.get(api_url) data_model = resp.json() for mm_dict in data_model['newslist']: url = mm_dictp['picUrl'] DownloadHandler(url).start() if __name__ == '__main__': main()
letterli/py-cookbook
books/python-100-days/Day14/requests_demo.py
requests_demo.py
py
733
python
en
code
0
github-code
6
1047110963
from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from django import forms class ticketChatForm(forms.Form): def __init__(self, *args, **kwargs): super(ticketChatForm, self).__init__(*args, **kwargs) self.helper = FormHelper() # self.helper.form_id = 'id-exampleForm' # self.helper.form_class = 'blueForms' self.helper.form_method = 'post' self.helper.form_action = '' self.helper.add_input(Submit('отправить', 'Отправить')) post = forms.CharField(widget=forms.HiddenInput(), ) name = forms.CharField(widget=forms.HiddenInput()) body = forms.CharField(label='Сообщения') file = forms.FileField(label='Файл', max_length=100, required=False) def setF(self, post, name): self.fields['post'].initial = str(post) self.fields['name'].initial = str(name) return True
hewimetall/django_Help_Desk
label_ListPage/form.py
form.py
py
931
python
en
code
0
github-code
6
2018421498
import unittest import sys import os import tempfile import shutil from appliapps.examples.a_pyecho import PythonEcho from appliapps.examples.b_extecho import ExternalEcho from appliapps.examples.cp import CpApp from appliapps.examples.template import TemplateApp class Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.tdir = tempfile.mkdtemp(dir=".") os.chdir(cls.tdir) with open("testfile", "w") as f: f.write("testcontent") def test1_pyecho(self): sys.argv = ['--COMMENT', 'comment'] PythonEcho.main() def test2_extecho(self): sys.argv = ['--COMMENT', 'comment'] ExternalEcho.main() def test3_cp(self): sys.argv = ["--FILE", "testfile"] CpApp.main() os.chmod("testfile", 000) self.assertRaises(SystemExit, CpApp.main) os.chmod("testfile", 644) def test4_tpl(self): sys.argv = ['--COMMENT', 'comment', '--WORKDIR', '.'] TemplateApp.main() assert os.path.exists("template_out.tpl") @classmethod def tearDownClass(cls): os.chdir("..") shutil.rmtree(cls.tdir)
lcb/applicake
tests/test_examples.py
test_examples.py
py
1,160
python
en
code
1
github-code
6
15024595640
def field(items, *args): assert len(args) > 0 result = [] for item in items: if len(args) == 1: if args[0] in item.keys(): result.append(item[args[0]]) else: res = dict() for key in args: if key in item.keys(): res[key] = item[key] result.append(res) return result
blackfox2001/bmstu
RIP/labs/laba3/field.py
field.py
py
409
python
en
code
0
github-code
6
27147516534
import pytest from ..common_imports import PdfXmp, PdfResource class TestPdfXmp: @pytest.fixture def resource(self, test_params): return PdfResource(test_params.resources_path + "XmpAndOtherSample.pdf", "XmpAndOtherSample.pdf") @pytest.fixture def text(self, resource, test_params, get_endpoint): text = PdfXmp(resource) return get_endpoint(text, test_params) def test_pdf_xmp(self, text, test_params): res = text.process() if res.is_successful: with open(test_params.output_path + "pdf_xmp.xml", "wb") as out_stream: out_stream.write(res.content) assert res.is_successful
dynamicpdf-api/python-client
test/PdfXmpEndpoint/test_pdf_xmp.py
test_pdf_xmp.py
py
688
python
en
code
0
github-code
6
15910442299
import unittest from mock import Mock, call from six import StringIO from trashcli.restore.file_system import RestoreReadFileSystem, \ RestoreWriteFileSystem, FakeReadCwd from trashcli.restore.restore_cmd import RestoreCmd from trashcli.restore.trashed_file import TrashedFile, TrashedFiles def last_line_of(io): # type: (StringIO) -> str return io.getvalue().splitlines()[-1] class TestTrashRestoreCmd(unittest.TestCase): def setUp(self): self.stdout = StringIO() self.stderr = StringIO() self.trashed_files = Mock(spec=TrashedFiles) self.trashed_files.all_trashed_files.return_value = [] self.read_fs = Mock(spec=RestoreReadFileSystem) self.write_fs = Mock(spec=RestoreWriteFileSystem) self.read_cwd = FakeReadCwd("cwd") self.cmd = RestoreCmd.make(stdout=self.stdout, stderr=self.stderr, exit=self.capture_exit_status, input=lambda x: self.user_reply, version='1.2.3', trashed_files=self.trashed_files, read_fs=self.read_fs, write_fs=self.write_fs, read_cwd=self.read_cwd) def capture_exit_status(self, exit_status): self.exit_status = exit_status def test_should_print_version(self): self.cmd.run(['trash-restore', '--version']) assert 'trash-restore 1.2.3\n' == self.stdout.getvalue() def test_with_no_args_and_no_files_in_trashcan(self): self.cmd.curdir = lambda: "cwd" self.cmd.run(['trash-restore']) assert ("No files trashed from current dir ('cwd')\n" == self.stdout.getvalue()) def test_until_the_restore_unit(self): self.read_fs.path_exists.return_value = False self.set_trashed_files_to([a_trashed_file_in('cwd/parent/path')]) self.user_reply = '0' self.cmd.run(['trash-restore']) assert '' == self.stderr.getvalue() assert [call.path_exists('cwd/parent/path')] == self.read_fs.mock_calls assert [call.mkdirs('cwd/parent'), call.move('orig_file', 'cwd/parent/path'), call.remove_file('info_file')] == self.write_fs.mock_calls def test_when_user_reply_with_empty_string(self): self.set_trashed_files_to([a_trashed_file]) self.user_reply = '' self.cmd.run(['trash-restore']) assert last_line_of(self.stdout) == 'Exiting' def test_when_user_reply_with_not_number(self): self.set_trashed_files_to([a_trashed_file]) self.user_reply = 'non numeric' self.cmd.run(['trash-restore']) assert last_line_of(self.stderr) == \ 'Invalid entry: not an index: non numeric' assert 1 == self.exit_status def set_trashed_files_to(self, trashed_files): self.trashed_files.all_trashed_files.return_value = trashed_files a_trashed_file = TrashedFile("cwd/a_path", None, "info_file", "orig_file") def a_trashed_file_in(path): return TrashedFile(path, None, 'info_file', 'orig_file')
cloudlylooudy/trash-cli
tests/test_restore/restore_cmd/test_trash_restore_cmd.py
test_trash_restore_cmd.py
py
3,233
python
en
code
null
github-code
6
26024158970
# 建立COO 稀疏矩阵 from scipy.sparse import coo_matrix # 引入所需要的库 row = [0, 1, 2, 2] col = [0, 1, 2, 3] data = [1, 2, 3, 4] # 建立矩阵的参数 c = coo_matrix((data, (row, col)), shape=(4, 4)) # 构建4*4的稀疏矩阵 print(c) d = c.todense() # 稀疏矩阵转化为密集矩阵 print(d) e = coo_matrix(d) # 将一个0值很多的矩阵转为稀疏矩阵 print(e) f = e.tocsr() # 将COO 稀疏矩阵转化为CSR稀疏矩阵 print(f) print("\n") g = e.tocsc() # 将COO 稀疏矩阵转化为CSC稀疏矩阵 print(g)
suanhaitech/pythonstudy2023
july/11.py
11.py
py
584
python
en
code
2
github-code
6
71276865469
# internal imports from typing import Dict, Optional # external imports import gspread def add_new_row(sheet, data): sheet.append_row(data) def update_row(sheet, cell, data): for idx, d in enumerate(data): sheet.update_cell(cell.row, cell.col + idx, data[idx]) def upload_results(sheet_name: str, exp_name: str, results: Dict[str, int], worksheet_name: Optional[str] = None) -> None: """ Upload the results to googlesheets. If no row with the exp_name exists, then a new row will be added. If the experiment does exist, the row will simply be updated. """ gc = gspread.service_account() sh = gc.open(sheet_name) if worksheet_name is None: worksheet_name = sh.sheet1.title ws = sh.worksheet(worksheet_name) data = [exp_name] + [v for v in results.values()] try: cell = ws.find(exp_name) update_row(ws, cell, data) except gspread.CellNotFound: add_new_row(ws, data)
jaypmorgan/labscribe
labscribe/googlesheets.py
googlesheets.py
py
968
python
en
code
0
github-code
6
31513841146
#!/usr/bin/env python3 """Convolutional Neural Networks""" import numpy as np def conv_backward(dZ, A_prev, W, b, padding="same", stride=(1, 1)): """back prop convolutional 3D image, RGB image - color Arg: dZ: containing the partial derivatives (m, h_new, w_new, c_new) A_prev: contains the output of prev layer (m, h_prev, w_prev, c_prev) W: filter for the convolution (kh, kw, c_prev, c_new) b: biases (1, 1, 1, c_new) padding: string ‘same’, or ‘valid’ stride: tuple (sh, sw) Returns: parcial dev prev layer (dA_prev), kernels (dW), biases (db) """ k_h, k_w, c_prev, c_new = W.shape _, h_new, w_new, c_new = dZ.shape m, h_x, w_x, c_prev = A_prev.shape s_h, s_w = stride x = A_prev if padding == 'valid': p_h = 0 p_w = 0 if padding == 'same': p_h = np.ceil(((s_h*h_x) - s_h + k_h - h_x) / 2) p_h = int(p_h) p_w = np.ceil(((s_w*w_x) - s_w + k_w - w_x) / 2) p_w = int(p_w) db = np.sum(dZ, axis=(0, 1, 2), keepdims=True) x_padded = np.pad(x, [(0, 0), (p_h, p_h), (p_w, p_w), (0, 0)], mode='constant', constant_values=0) dW = np.zeros_like(W) dx = np.zeros(x_padded.shape) m_i = np.arange(m) for i in range(m): for h in range(h_new): for w in range(w_new): for f in range(c_new): dx[i, h*(stride[0]):(h*(stride[0]))+k_h, w*(stride[1]):(w*(stride[1]))+k_w, :] += dZ[i, h, w, f] * W[:, :, :, f] dW[:, :, :, f] += x_padded[i, h*(stride[0]):(h*(stride[0]))+k_h, w*(stride[1]):(w*(stride[1]))+k_w, :] * dZ[i, h, w, f] if padding == 'same': dx = dx[:, p_h:-p_h, p_w:-p_w, :] else: dx = dx return dx, dW, db
macoyulloa/holbertonschool-machine_learning
supervised_learning/0x07-cnn/2-conv_backward.py
2-conv_backward.py
py
2,015
python
en
code
0
github-code
6
71601274107
#!/usr/bin/env python3 from jinja2 import Template import numpy as np min_x = -20 max_x = 20 min_z = 0.0 max_z = 20.0 with open('nonapod_input.jinja') as template_file: templ = Template(template_file.read()) # Do the cases for grid sampling. Since 50 and 500 are not perfect squares, # must use an approximate number. x_values = np.linspace(min_x, max_x, 100) z_values = np.linspace(min_z, max_z, 100) fh = open('nonapod_inputs_grid_many/input_list', 'w') for i, x in enumerate(x_values): for j, z in enumerate(z_values): with open('nonapod_inputs_grid_many/x_%i_z_%i'%(i,j), 'w') as result: result.write(templ.render(x=x, z=z)) fh.write('%i %i %s\n' %(i, j, 'x_%i_z_%i'%(i,j))) fh.close()
gridley/truss_optimization
write_big_grid.py
write_big_grid.py
py
730
python
en
code
0
github-code
6
73477700027
from tinygrad.densetensor import DenseTensor import numpy as np class BatchNorm2D: def __init__(self, sz, eps=1e-5, track_running_stats=False, training=False, momentum=0.1): self.eps, self.track_running_stats, self.training, self.momentum = eps, track_running_stats, training, momentum self.weight, self.bias = DenseTensor.ones(sz), DenseTensor.zeros(sz) self.running_mean, self.running_var = DenseTensor.zeros(sz, requires_grad=False), DenseTensor.ones(sz, requires_grad=False) self.num_batches_tracked = DenseTensor.zeros(1, requires_grad=False) def __call__(self, x): if self.track_running_stats or self.training: batch_mean = x.mean(axis=(0,2,3)) y = (x - batch_mean.reshape(shape=[1, -1, 1, 1])) batch_var = (y*y).mean(axis=(0,2,3)) if self.track_running_stats: self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * batch_mean self.running_var = (1 - self.momentum) * self.running_var + self.momentum * batch_var if self.num_batches_tracked is None: self.num_batches_tracked = DenseTensor.zeros(1, requires_grad=False) self.num_batches_tracked += 1 if self.training: return self.normalize(x, batch_mean, batch_var) return self.normalize(x, self.running_mean, self.running_var) def normalize(self, x, mean, var): x = (x - mean.reshape(shape=[1, -1, 1, 1])) * self.weight.reshape(shape=[1, -1, 1, 1]) return x.div(var.add(self.eps).reshape(shape=[1, -1, 1, 1])**0.5) + self.bias.reshape(shape=[1, -1, 1, 1]) class Linear: def __init__(self, in_dim, out_dim, bias=True): self.in_dim = in_dim self.out_dim = out_dim self.use_bias = bias self.weight = DenseTensor.uniform(in_dim, out_dim) if self.use_bias: self.bias = DenseTensor.zeros(out_dim) def __call__(self, x): B, *dims, D = x.shape x = x.reshape(shape=(B * np.prod(dims).astype(np.int32), D)) x = x.dot(self.weight) if self.use_bias: x = x.add(self.bias.reshape(shape=[1, -1])) x = x.reshape(shape=(B, *dims, -1)) return x class Dropout: def __init__(self, p=0.5): self.p = p def __call__(self, x): return x.dropout(p=self.p) class Identity: def __call__(self, x): return x class Conv2d: def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): self.out_channels = out_channels self.kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else (kernel_size[0], kernel_size[1]) self.stride = (stride, stride) if isinstance(stride, int) else (stride[0], stride[1]) self.padding = (padding, ) * 4 if isinstance(padding, int) else (padding[0], padding[0], padding[1], padding[1]) self.use_bias = bias self.weight = DenseTensor.uniform(out_channels, in_channels, self.kernel_size[0], self.kernel_size[1]) if self.use_bias: self.bias = DenseTensor.uniform(out_channels) def __call__(self, x): if self.padding[0] > 0: x = x.pad2d(padding=self.padding) x = x.conv2d(self.weight, stride=self.stride) if self.use_bias: x = x.add(self.bias.reshape(shape=(1, -1, 1, 1))) return x class Sequential: def __init__(self, *layers): self.layers = layers def __call__(self, x): for l in self.layers: x = l(x) return x
fpaboim/tinysparse
tinygrad/nn.py
nn.py
py
3,311
python
en
code
9
github-code
6
18760758159
import time import aiohttp import discord import importlib import os import sys import requests import asyncio from io import BytesIO from discord.ext import commands from my_utils import permissions, default, dataIO from my_utils.guildstate import state_instance class admin(commands.Cog): def __init__(self, bot): self.bot = bot self.config = default.get("config.json") self._last_result = None @commands.command() @commands.check(permissions.is_owner) async def load(self, ctx, name: str): """ Loads an extension. """ try: self.bot.load_extension(f"cogs.{name}") except Exception as e: return await ctx.send(default.traceback_maker(e)) await ctx.send(f"Loaded extension **{name}.py**") @commands.command() @commands.check(permissions.is_owner) async def unload(self, ctx, name: str): """ Unloads an extension. """ try: self.bot.unload_extension(f"cogs.{name}") except Exception as e: return await ctx.send(default.traceback_maker(e)) await ctx.send(f"Unloaded extension **{name}.py**") @commands.command() @commands.check(permissions.is_owner) async def reload(self, ctx, name: str): """ Reloads an extension. """ try: self.bot.reload_extension(f"cogs.{name}") except Exception as e: return await ctx.send(default.traceback_maker(e)) await ctx.send(f"Reloaded extension **{name}.py**") @commands.command() @commands.check(permissions.is_owner) async def reloadall(self, ctx): """ Reloads all extensions. """ error_collection = [] for file in os.listdir("cogs"): if file.endswith(".py"): name = file[:-3] try: self.bot.reload_extension(f"cogs.{name}") except Exception as e: error_collection.append( [file, default.traceback_maker(e, advance=False)] ) if error_collection: output = "\n".join([f"**{g[0]}** ```diff\n- {g[1]}```" for g in error_collection]) return await ctx.send( f"Attempted to reload all extensions, was able to reload, " f"however the following failed: \n\n{output}" ) await ctx.send("Successfully reloaded all extensions") @commands.command() @commands.check(permissions.is_owner) async def reloadutils(self, ctx, name: str): """ Reloads a utils module. """ name_maker = f"utils_folder/{name}.py" try: module_name = importlib.import_module(f"utils_folder.{name}") importlib.reload(module_name) except ModuleNotFoundError: return await ctx.send(f"Couldn't find module named **{name_maker}**") except Exception as e: error = default.traceback_maker(e) return await ctx.send(f"Module **{name_maker}** returned error and was not reloaded...\n{error}") await ctx.send(f"Reloaded module **{name_maker}**") @commands.command() @commands.check(permissions.is_owner) async def reboot(self, ctx): """ Reboot the bot """ await ctx.send('Rebooting now...') time.sleep(1) dataIO.backup_states(state_instance) await self.bot.close() sys.exit() @commands.command() @commands.check(permissions.is_owner) async def dm(self, ctx, user_id: int, *, message: str): """ DM the user of your choice """ user = self.bot.get_user(user_id) if not user: return await ctx.send(f"Could not find any UserID matching **{user_id}**") try: await user.send(message) await ctx.send(f"✉️ Sent a DM to **{user_id}**") except discord.Forbidden: await ctx.send("This user might be having DMs blocked or it's a bot account...") @commands.group() @commands.check(permissions.is_owner) async def change(self, ctx): if ctx.invoked_subcommand is None: await ctx.send_help(str(ctx.command)) @change.command(name="playing") @commands.check(permissions.is_owner) async def change_playing(self, ctx, *, playing: str): """ Change playing status. """ if self.config.status_type == "idle": status_type = discord.Status.idle elif self.config.status_type == "dnd": status_type = discord.Status.dnd else: status_type = discord.Status.online if self.config.playing_type == "listening": playing_type = 2 elif self.config.playing_type == "watching": playing_type = 3 else: playing_type = 0 try: await self.bot.change_presence( activity=discord.Activity(type=playing_type, name=playing), status=status_type ) dataIO.change_value("config.json", "playing", playing) await ctx.send(f"Successfully changed playing status to **{playing}**") except discord.InvalidArgument as err: await ctx.send(err) except Exception as e: await ctx.send(e) @change.command(name="username") @commands.check(permissions.is_owner) async def change_username(self, ctx, *, name: str): """ Change username. """ try: await self.bot.user.edit(username=name) await ctx.send(f"Successfully changed username to **{name}**") except discord.HTTPException as err: await ctx.send(err) @change.command(name="nickname") @commands.check(permissions.is_owner) async def change_nickname(self, ctx, *, name: str = None): """ Change nickname. """ try: await ctx.guild.me.edit(nick=name) if name: await ctx.send(f"Successfully changed nickname to **{name}**") else: await ctx.send("Successfully removed nickname") except Exception as err: await ctx.send(err) @change.command(name="avatar") @commands.check(permissions.is_owner) async def change_avatar(self, ctx, url: str = None): """ Change avatar. """ if url is None and len(ctx.message.attachments) == 1: url = ctx.message.attachments[0].url else: url = url.strip('<>') if url else None try: bio = requests.get(url).content await self.bot.user.edit(avatar=bio) await ctx.send(f"Successfully changed the avatar. Currently using:\n{url}") except aiohttp.InvalidURL: await ctx.send("The URL is invalid...") except discord.InvalidArgument: await ctx.send("This URL does not contain a useable image") except discord.HTTPException as err: await ctx.send(err) except TypeError: await ctx.send("You need to either provide an image URL or upload one with the command") @change.command(name="def_prefix") @commands.check(permissions.is_owner) async def change_default_prefix(self, ctx, prefix): """Changes the default premanent prefix""" dataIO.change_value("config.json", "prefix", prefix) await ctx.send(f"Successfully changed default prefix to **{prefix}**") @commands.command(aliases = ["api_for", "api"]) @commands.check(permissions.is_owner) async def search_api(self, ctx, category = ""): """ Search for some apis """ if category != "": your_api = requests.get(f"https://api.publicapis.org/entries?category={category.lower()}&https=true").json() elif category.lower() == "categories": your_api = requests.get(f"https://api.publicapis.org/categories").json() else: your_api = requests.get("https://api.publicapis.org/random?auth=null").json() if your_api['count'] == 0: return await ctx.send("No APIs found") apis = f"{your_api['entries'][0]['Category']} apis\n" def auth(index): if your_api['entries'][i]['Auth'] != None: return your_api['entries'][i]['Auth'] return "None" for i in range(your_api["count"]): apis += f"**{i+1}**. {your_api['entries'][i]['API']} - {your_api['entries'][i]['Description']} | Auth: {auth(i)} | Cors: {your_api['entries'][i]['Cors']} | Link: {your_api['entries'][i]['Link']}\n" if len(str(apis)) > 1999: apis = apis[:2000][::-1] arr = apis.index(".") apis = apis[arr:][::-1] return await ctx.send(apis) @commands.group(aliases = ["file"]) @commands.check(permissions.is_owner) async def fil(self, ctx): if ctx.invoked_subcommand is None: await ctx.send_help(str(ctx.command)) @fil.group() @commands.check(permissions.is_owner) async def add(self, ctx, location = ""): if len(ctx.message.attachments) == 1 and location != "": try: await ctx.message.attachments[0].save(f"{location}\{ctx.message.attachments[0].filename}") except FileNotFoundError: await ctx.send("Directory not found. Creating directory...") os.makedirs(location) await ctx.message.attachments[0].save(f"{location}\{ctx.message.attachments[0].filename}") elif len(ctx.message.attachments) == 1 and location == "": await ctx.message.attachments[0].save(f"{ctx.message.attachments[0].filename}") else: return await ctx.send("Provide a file as an attachment") await ctx.message.delete(delay=1) return await ctx.send(f"The {ctx.message.attachments[0].filename} has been added") @fil.group() @commands.check(permissions.is_owner) async def remove(self, ctx, file_name_with_path): await ctx.send("Are you sure you want to remove the file. Please remember to unload if the file is and existing cog.\n(y/n)") def mcheck(message): if message.author == ctx.author: return True return False try: answer = await self.bot.wait_for('message', timeout=20, check=mcheck) except asyncio.TimeoutError: return await ctx.send("You didn't respond in time") if answer.content == "y": pass else: return await ctx.send("As you wish, the file will not be removed") try: default.delete(file_name_with_path) await ctx.send(f"Removed {file_name_with_path}") except Exception as e: await ctx.send(e) await ctx.message.delete(delay=1) def setup(bot): bot.add_cog(admin(bot))
Albedo-Discord/ext
cogs/admin.py
admin.py
py
10,872
python
en
code
1
github-code
6
41191258670
#? pip install flask flask-pymongo from flask import Flask, render_template from flask_pymongo import PyMongo app = Flask(__name__) app.config['MONGO_URI'] = "mongodb://localhost:27017/myDatabase" mongo = PyMongo(app) @app.route('/') def hello_world(): mongo.db.inventory.insert_one({"b":31}) a = mongo.db.inventory.find({}) return render_template('index.html',data=a) @app.route('/mydata') def mydata(): info = ['Vedant', 'Age: 19', 'Programmer', 'Music Lover'] return render_template('mydata.html', personal=info) app.run(debug=True,port=3000)
Vedant817/Flask-and-MongoDB
main.py
main.py
py
569
python
en
code
0
github-code
6
24615532465
from tiles import AnimatableTile import pygame class Coin(AnimatableTile): def __init__(self, size, position, frames, data): super().__init__(size, position, frames, data) for i in range(len(self.frames)): self.frames[i] = pygame.transform.scale(self.frames[i], (8, 8)) self.position.x += size / 2 self.position.y += size / 2 def live(self, dt, surface): self.animate(dt) self.draw(surface)
ysbrandB/M6FinalProject
code/coin.py
coin.py
py
462
python
en
code
0
github-code
6
75167070268
import torch import torch.nn.functional as F from torch.autograd import Variable import numpy as np from math import exp import math def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size/2)**2/float(2*sigma**2)) for x in range(window_size)]) return gauss/gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size)) return window def SSIM1(img1, img2): (_, channel, _, _) = img1.size() window_size = 11 pad = int(window_size/11) window = create_window(window_size, channel).to(img1.device) mu1 = F.conv2d(img1, window, padding = pad, groups = channel) mu2 = F.conv2d(img2, window, padding = pad, groups = channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1*mu2 sigma1_sq = F.conv2d(img1*img1, window, padding = pad, groups = channel) - mu1_sq sigma2_sq = F.conv2d(img2*img2, window, padding = pad, groups = channel) - mu2_sq sigma12 = F.conv2d(img1*img2, window, padding = pad, groups = channel) - mu1_mu2 C1 = 0.01**2 C2 = 0.03**2 ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() def SSIM(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). if val_range is None: if torch.max(img1) > 128: max_val = 255 else: max_val = 1 if torch.min(img1) < -0.5: min_val = -1 else: min_val = 0 L = max_val - min_val else: L = val_range padd = 0 (_, channel, height, width) = img1.size() if window is None: real_size = min(window_size, height, width) window = create_window(real_size, channel=channel).to(img1.device) mu1 = F.conv2d(img1, window, padding=padd, groups=channel) mu2 = F.conv2d(img2, window, padding=padd, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2 C1 = (0.01 * L) ** 2 C2 = (0.03 * L) ** 2 v1 = 2.0 * sigma12 + C2 v2 = sigma1_sq + sigma2_sq + C2 cs = torch.mean(v1 / v2) # contrast sensitivity ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) if size_average: ret = ssim_map.mean() else: ret = ssim_map.mean(1).mean(1).mean(1) if full: return ret, cs return ret def PSNR(img1, img2): mse = np.mean( (img1/255. - img2/255.) ** 2 ) if mse == 0: return 100 PIXEL_MAX = 1 return 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) def CIEDE2000(Lab_1, Lab_2): '''Calculates CIEDE2000 color distance between two CIE L*a*b* colors''' C_25_7 = 6103515625 # 25**7 L1, a1, b1 = Lab_1[0], Lab_1[1], Lab_1[2] L2, a2, b2 = Lab_2[0], Lab_2[1], Lab_2[2] C1 = math.sqrt(a1 ** 2 + b1 ** 2) C2 = math.sqrt(a2 ** 2 + b2 ** 2) C_ave = (C1 + C2) / 2 G = 0.5 * (1 - math.sqrt(C_ave ** 7 / (C_ave ** 7 + C_25_7))) L1_, L2_ = L1, L2 a1_, a2_ = (1 + G) * a1, (1 + G) * a2 b1_, b2_ = b1, b2 C1_ = math.sqrt(a1_ ** 2 + b1_ ** 2) C2_ = math.sqrt(a2_ ** 2 + b2_ ** 2) if b1_ == 0 and a1_ == 0: h1_ = 0 elif a1_ >= 0: h1_ = math.atan2(b1_, a1_) else: h1_ = math.atan2(b1_, a1_) + 2 * math.pi if b2_ == 0 and a2_ == 0: h2_ = 0 elif a2_ >= 0: h2_ = math.atan2(b2_, a2_) else: h2_ = math.atan2(b2_, a2_) + 2 * math.pi dL_ = L2_ - L1_ dC_ = C2_ - C1_ dh_ = h2_ - h1_ if C1_ * C2_ == 0: dh_ = 0 elif dh_ > math.pi: dh_ -= 2 * math.pi elif dh_ < -math.pi: dh_ += 2 * math.pi dH_ = 2 * math.sqrt(C1_ * C2_) * math.sin(dh_ / 2) L_ave = (L1_ + L2_) / 2 C_ave = (C1_ + C2_) / 2 _dh = abs(h1_ - h2_) _sh = h1_ + h2_ C1C2 = C1_ * C2_ if _dh <= math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 elif _dh > math.pi and _sh < 2 * math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 + math.pi elif _dh > math.pi and _sh >= 2 * math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 - math.pi else: h_ave = h1_ + h2_ T = 1 - 0.17 * math.cos(h_ave - math.pi / 6) + 0.24 * math.cos(2 * h_ave) + 0.32 * math.cos( 3 * h_ave + math.pi / 30) - 0.2 * math.cos(4 * h_ave - 63 * math.pi / 180) h_ave_deg = h_ave * 180 / math.pi if h_ave_deg < 0: h_ave_deg += 360 elif h_ave_deg > 360: h_ave_deg -= 360 dTheta = 30 * math.exp(-(((h_ave_deg - 275) / 25) ** 2)) R_C = 2 * math.sqrt(C_ave ** 7 / (C_ave ** 7 + C_25_7)) S_C = 1 + 0.045 * C_ave S_H = 1 + 0.015 * C_ave * T Lm50s = (L_ave - 50) ** 2 S_L = 1 + 0.015 * Lm50s / math.sqrt(20 + Lm50s) R_T = -math.sin(dTheta * math.pi / 90) * R_C k_L, k_C, k_H = 1, 1, 1 f_L = dL_ / k_L / S_L f_C = dC_ / k_C / S_C f_H = dH_ / k_H / S_H dE_00 = math.sqrt(f_L ** 2 + f_C ** 2 + f_H ** 2 + R_T * f_C * f_H) return dE_00 def rgb2xyz(rgb): def format(c): c = c / 255. if c > 0.04045: c = ((c + 0.055) / 1.055) ** 2.4 else: c = c / 12.92 return c * 100 rgb = list(map(format, rgb)) xyz = [None, None, None] xyz[0] = rgb[0] * 0.4124 + rgb[1] * 0.3576 + rgb[2] * 0.1805 xyz[1] = rgb[0] * 0.2126 + rgb[1] * 0.7152 + rgb[2] * 0.0722 xyz[2] = rgb[0] * 0.0193 + rgb[1] * 0.1192 + rgb[2] * 0.9505 return xyz def xyz2lab(xyz): def format(c): if c > 0.008856: c = c ** (1. / 3.) else: c = (7.787 * c) + (16. / 116.) return c xyz[0] = xyz[0] / 95.047 xyz[1] = xyz[1] / 100.00 xyz[2] = xyz[2] / 108.883 xyz = list(map(format, xyz)) lab = [None, None, None] lab[0] = (116. * xyz[1]) - 16. lab[1] = 500. * (xyz[0] - xyz[1]) lab[2] = 200. * (xyz[1] - xyz[2]) return lab
chenkhan/haze-synthesizing
util/metrics.py
metrics.py
py
5,878
python
en
code
1
github-code
6
27318923223
# @PascalPuchtler # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import numpy as np import cv2 # This class is inspired by https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/TFLite_detection_webcam.py class GenerateCarView: def __init__(self): self.frameRateCalc = 1 self.freq = cv2.getTickFrequency() self.t1 = cv2.getTickCount() def getFrame(self, image, pylons= None): # self.addFrameRate(image) if pylons is not None: self.addBoxesToImage(image, pylons) return image def addFrameRate(self,image): cv2.putText(image,'FPS: {0:.2f}'.format(self.frameRateCalc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA) self.t2 = cv2.getTickCount() self.frameRateCalc = self.freq/(self.t2-self.t1) self.t1 = cv2.getTickCount() def addBoxesToImage(self, image, pylons): for pylone in pylons: xmin = pylone['xmin'] ymin = pylone['ymin'] xmax = pylone['xmax'] ymax = pylone['ymax'] cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2) # Draw label label = pylone['label'] + ' %d%%' % (int(pylone['score']*100)) + ' ' + str(round(pylone['distanceAbsolut'],2)) + ' m' labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
iisys-hof/autonomous-driving
car-controller/src/mainController/View/Render/GenerateCarView.py
GenerateCarView.py
py
2,531
python
en
code
0
github-code
6
12608079869
''' Load embedding, create dictionary, convert text to index ''' import io import pandas as pd from sklearn.feature_extraction.text import CountVectorizer import argparse #import json import os import numpy as np import pickle import pdb def text2index(text, vocab, analyzer): # 1 is unk doc_toks = [vocab[y] if y in vocab else 1 for y in analyzer(text) ] return doc_toks def load_vectors(fname): fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore') n, d = map(int, fin.readline().split()) data = {} for line in fin: tokens = line.rstrip().split(' ') data[tokens[0]] = np.fromiter(map(float, tokens[1:]), dtype=np.float) return data def build_vocab(text, emb, emb_dim=300, max_df=.7, max_features=20000, stop_words= 'english'): ''' Fit vocabulary :param text: list of documents for creating vocabulary :return: vectorizer ''' vect = CountVectorizer(stop_words=stop_words, max_df=max_df, max_features=max_features, token_pattern=r"(?u)[!\"#\$\%&\'()\*\+,-./:;<=>\?@\[\\\]\^_`{|}~\w]+") vect.fit(text) no_embedding = [k for k in vect.vocabulary_.keys() if k not in emb] print("No Embeddings for: ") print(len(no_embedding)) vocab = [k for i, k in enumerate(vect.vocabulary_.keys()) if k in emb] new_vocab = dict([(k, i + 2) for i, k in enumerate(vocab)]) # Set 0 to be the padding index, 1 to be unk vect.vocabulary_ = new_vocab print('Vocabulary size: ', len(new_vocab)) embedding = np.zeros(shape=(len(new_vocab) + 2, emb_dim)) for k,i in new_vocab.items(): embedding[i] = emb[k] return vect, embedding def df2List(df, vocab, analyzer, label_dict, ismnli = False): out = [] for i, row in df.iterrows(): set1 = text2index(row['sentence1'], vocab, analyzer) set2 = text2index(row['sentence2'], vocab, analyzer) label = label_dict[row['label']] if ismnli: genre = row['genre'] else: genre = 'snli' out.append([set1, set2, label, i, genre]) return out if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--inputPath", default = '../hw2_data/') # Should have train/val in this directory parser.add_argument("--embPath", default='../hw2_data/wiki-news-300d-1M.vec') # embedding vector path parser.add_argument("--emb_dim", type=int, default = 300) parser.add_argument("--outPath") # Output Path parser.add_argument("--max_df", type=float, default = 0.7) parser.add_argument("--max_features", type=int, default=20000) parser.add_argument("--stop_words", default = 'english') args = parser.parse_args() if not os.path.isdir(args.outPath): os.mkdir(args.outPath) print("Data processing parameters: ", args) print("Loading Data") train = pd.read_csv(args.inputPath + 'snli_train.tsv', header = 0, sep = '\t') test = pd.read_csv(args.inputPath + 'snli_val.tsv', header=0, sep='\t') train_mnli = pd.read_csv(args.inputPath + 'mnli_train.tsv', header=0, sep='\t') test_mnli = pd.read_csv(args.inputPath + 'mnli_val.tsv', header=0, sep='\t') emb = load_vectors(args.embPath) print("Fitting Vocabulary") vect, embedding = build_vocab(train['sentence1'] + ' ' + train['sentence2'], emb, emb_dim = args.emb_dim, max_df = args.max_df, max_features = args.max_features, stop_words=args.stop_words) #vect = pickle.load(open(args.outPath + 'vect.p', 'rb')) vocab = vect.vocabulary_ analyzer = vect.build_analyzer() print('Transform data frame') label_dict = {'entailment': 0, 'neutral': 1, 'contradiction': 2} train2 = df2List(train, vocab, analyzer, label_dict) test2 = df2List(test, vocab, analyzer, label_dict) train_mnli2 = df2List(train_mnli, vocab, analyzer, label_dict, ismnli = True) test_mnli2 = df2List(test_mnli, vocab, analyzer, label_dict, ismnli = True) pickle.dump(train2, open(args.outPath + 'train.p', 'wb')) pickle.dump(test2, open(args.outPath + 'test.p', 'wb')) pickle.dump(train_mnli2, open(args.outPath + 'train_mnli.p', 'wb')) pickle.dump(test_mnli2, open(args.outPath + 'test_mnli.p', 'wb')) pickle.dump(vect, open(args.outPath + 'vect.p', 'wb')) pickle.dump(embedding, open(args.outPath + 'embedding.p', 'wb')) # Document length: lsLen = [max(len(x[0]), len(x[1])) for x in train2] print('Median doc size: ', np.percentile(lsLen, 50)) print('95 percentile: ', np.percentile(lsLen, 95)) print('Max: ', max(lsLen)) lsLen = [max(len(x[0]), len(x[1])) for x in train_mnli2] print('Median mnli_doc size: ', np.percentile(lsLen, 50)) print('95 percentile: ', np.percentile(lsLen, 95)) print('Max: ', max(lsLen))
jingsliu/NLP_HW
HW2/code/dataPrep.py
dataPrep.py
py
4,852
python
en
code
0
github-code
6
11221497921
import os import pandas as pd import time import data_prep import freq_analysis from features_extract import numeric_extract from features_extract import price_extract from features_extract import feature_extract from features_extract import ID_extract from features_extract import mfrID_extract from features_extract import factorize from features_extract import replace_blank from list_flatten import list_flatten from parameters_by_retailer import param_retailer as param from rating_extract_newegg import rating_extract_newegg ######################### change these parameters ############################ path = 'C:\\Users\\roy79\\Desktop\\Research\\product-analysis' working_dir = path + '\\cleaning' retailer_name = 'newegg' data_path = path+'\\raw_data\\'+retailer_name+'_hdphone.csv' products = pd.read_csv(data_path) # d.n change colnames and features_re colnames = param[retailer_name]['colnames'] features_re = param[retailer_name]['features_re'] # used as arguments in factorize(), None by default factorize_conn_col = param[retailer_name]['factorize_conn_col'] factorize_type_col = param[retailer_name]['factorize_type_col'] # extract integer/float (ID, price, etc.) from these columns numeric_columns = [ # For Walmart # colnames['COLNAME_RATING'], # colnames['COLNAME_NUM_RATING'], # colnames['COLNAME_RETAILER_ID'], '_UPC_' ] #'UPC'] # replace np.nan in these columns with 0 # if bhpv, then '' because it doesn't have a colname_about feat_replace = '' if (colnames['COLNAME_ABOUT'] != ''): feat_replace = ['_connection_', '_microphone_'] ############################################################################## # print most frequent words related to feature # returns word frequency count for later use to avoid expensive frequency count # ngram = 1 or 3 def word_freq_analysis(products, ngram, feature, word_freq_df=None): # Exploratory Analysis: # find most frequently associated word for each feature # eg. features: 'noise'-> noise cancelling; noise reduction; ... # update features_re if necessary is_return = False if (word_freq_df is None): is_return = True if (ngram == 1): word_freq_df = freq_analysis.unigram_freq(products) if (ngram == 3): word_freq_df = freq_analysis.trigram_freq(products) most_freq = freq_analysis.most_freq_word_feat(word_freq_df,feature) print(most_freq) if (is_return == True): return word_freq_df def execute(): # set working directory os.chdir(working_dir) products = pd.read_csv(data_path) print('Successfully loaded dataset') # run next line to print all colnames after loading the dataset # products.columns # This helps remove empty rows that accidentally gets scraped # DEBUG #print(sum(products['name'] == np.nan)) products = data_prep.remove_blank_row(products,colnames['COLNAME_TITLE']) # DEBUGs #print(sum(products['name'] == np.nan)) # clean the about / description text and put them in column: 'about_text_clean' if (colnames['COLNAME_ABOUT'] != ''): print('Start about/description preparation') data_prep.about_prep(products,colnames['COLNAME_ABOUT']) # ============================================================================= # # This is useful for determining what keywords to search for each feature # # exploratory analysis # print('Start Word Frequency Analysis') # word_freq = word_freq_analysis(products, 1, 'noise') # trigram_freq = word_freq_analysis(products, 3, 'frequency') # word_freq_analysis(products, 3, 'noise', trigram_freq) # ============================================================================= # Extract features from about/description print('Start Feature Extraction') feat_ext_df = feature_extract(products, features_re) products = pd.concat([products, feat_ext_df], axis=1) # Flatten any lists if (colnames['COLNAME_FEAT_LABELS'] != ''): print('Start List Flattening') data_prep.list_clean(products, colnames['COLNAME_FEAT_LABELS'], colnames['COLNAME_FEAT_VALUES']) flattened_feat = list_flatten(products) # Combine the extracted features and the original dataset products = pd.concat([products, flattened_feat], axis=1) # Remove used products print('Remove used products') products = data_prep.remove_used(products, colnames['COLNAME_TITLE']) # Extract price print('Extract price') price_extract(products,colnames['COLNAME_PRICE_CUR'], colnames['COLNAME_PRICE_ORIG']) # Extract numbers from select columns print('Extract numerics from columns') numeric_extract(products, numeric_columns) mfrID_extract(products, '_manufacturerID_') # Extract IDs if (colnames['COLNAME_MODEL'] != ''): print('Extract semi-numeric IDs') ID_extract(products, colnames['COLNAME_MODEL']) # This is for Newegg because its rating is embedded in unstructured text if (retailer_name == 'newegg'): print('Newegg specific cleanup functions') rating_extract_newegg(products,colnames['COLNAME_RATING']) products[colnames['COLNAME_NUM_RATING']] = products[colnames['COLNAME_NUM_RATING']]*(-1) # Categorize these columns print('Factorize columns') if (colnames['COLNAME_ABOUT'] != ''): factorize(products, mic_colname='_microphone_', noise_colname='_noise_', water_colname='_water_', # This line is specific to walmart, change column names to fit your dataset / or comment out before run wireless_colname=factorize_conn_col, # This line is specific to walmart, change column names to fit your dataset / or comment out before run type_colname=factorize_type_col) # Replace blank cells with 0 in these columns if (feat_replace != ''): print('Replace empty cells with 0 in select columns') replace_blank(products, feat_replace) print('Save cleaned csv to: ' + working_dir) products.to_csv(retailer_name+'_hdphone_cleaned_',index=False) execute() # todo: # # combine columns
renyc432/headphone-product-analysis
cleaning/execute_cleaning.py
execute_cleaning.py
py
6,517
python
en
code
0
github-code
6
30157505435
from find_dir import cmd_folder import pandas as pd import os import json import numpy as np buyer_history = pd.read_csv(cmd_folder+"data/processed/buyer_history.csv") sorted_history = buyer_history[["buyer_id","visit_id","timestamp","event"]].sort_values(["buyer_id","visit_id","timestamp","event"],ascending=True) sorted_history["regroup"] = False total_pageview_chat = sorted_history["visit_id"][sorted_history["event"]=="pageview"].index.values.tolist() total_pageview_chat.extend(sorted_history["visit_id"][sorted_history["event"]=="chat"].index.values.tolist()) unique = sorted_history["visit_id"][sorted_history["event"]=="pageview"].drop_duplicates().index.values.tolist() unique.extend( sorted_history["visit_id"][sorted_history["event"]=="chat"].drop_duplicates().index.values.tolist()) duplicate_pageview_chat = list((set(total_pageview_chat) - set(unique))) index_without_duplicates = list(set(sorted_history.index.values.tolist()) - set(duplicate_pageview_chat)) regroup_history= sorted_history[["buyer_id","timestamp","event"]].loc[index_without_duplicates] with open(cmd_folder+"data/processed/trace_regroup.json","w") as buf: buf.write("[") buyers = regroup_history["buyer_id"].unique() for buyer in buyers[0:buyers.size-1]: buf.write("{\"id\":\""+buyer+"\",\"trace\":") regroup_history[regroup_history["buyer_id"]==buyer][["event"]].to_json(path_or_buf=buf,orient="records",force_ascii=False) buf.write("},\n") buf.write("{\"id\":\""+buyer+"\",\"trace\":") regroup_history[regroup_history["buyer_id"]==buyer][["event"]].to_json(path_or_buf=buf,orient="records",force_ascii=False) buf.write("}]") trace = json.load(open(cmd_folder+"data/processed/trace_regroup.json","r"))
pierrenodet/PFE
src/make_trace_bis.py
make_trace_bis.py
py
1,746
python
en
code
2
github-code
6
28002035268
import os import torch import numpy as np from PIL import Image # This dataset comes form paper: # [2D and 3D Segmentation of Uncertain Local Collagen Fiber Orientations in SHG Microscopy] # https://github.com/Emprime/uncertain-fiber-segmentation def collagen3d_dataset(dataloader_config, label_type='mask'): # Ref -- https://blog.csdn.net/Teeyohuang/article/details/79587125 # label_type: 'classlabel' or 'mask' dataset_path = dataloader_config['dataset_path'] train_batch_size = dataloader_config['train_batch_size'] val_batch_size = dataloader_config['val_batch_size'] num_workers = os.cpu_count() # num_workers = 1 train_data = _DatasetLD(data_path=dataset_path, dataset_return=label_type, read_in_ram_mode=True) test_data = _DatasetLD(data_path=dataset_path, dataset_return=label_type, read_in_ram_mode=False) train_loader = torch.utils.data.DataLoader(train_data, batch_size=train_batch_size, shuffle=True, num_workers=num_workers, pin_memory=True) val_loader = torch.utils.data.DataLoader(test_data, batch_size=val_batch_size, shuffle=False, num_workers=num_workers, pin_memory=True) # return train_data, test_data return train_loader, val_loader class _DatasetLD(torch.utils.data.Dataset): def __init__(self, data_path, dataset_return, transform=None, target_transform=None, read_in_ram_mode=False): super().__init__() self.dataset_path = data_path self.dataset_return = dataset_return self.read_in_ram_mode = read_in_ram_mode self.img_name = [] self.num_label = [] for subfolder in os.listdir(data_path): subfolder_path = os.path.join(self.dataset_path, subfolder) # Sub-folders: # shg-ce-de: SHG image # shg-masks: SHG mask if subfolder == 'shg-ce-de': for root, dirs, files in os.walk(subfolder_path): if not len(dirs) and len(files): # print(root, dirs, files) self.img_name.append(root) # Read all images in RAM, which requires a large RAM if self.read_in_ram_mode: img_all_list, mask_all_list = [], [] for i, index in enumerate(range(len(self.img_name))): print(f'Reading image [{i+1}]/[{len(self.img_name)}]') image_folder = self.img_name[index] mask_folder = self.img_name[index].replace('shg-ce-de', 'shg-masks') img_list, mask_list = [], [] img_file_list, mask_file_list = list(os.listdir(image_folder)), list(os.listdir(mask_folder)) img_file_list.sort(key=self._sort_num) for img_name in img_file_list: img = np.array(Image.open(os.path.join(image_folder, img_name)).convert('L')) # [H, W] img = np.reshape(img, img.shape + (1,)) # Convert gray image into [H, W, C] mode # img = np.array(Image.open(os.path.join(image_folder, img_name))) img_list.append(img) mask_file_list.sort(key=self._sort_num) for mask_name in mask_file_list: mask_list.append(np.array(Image.open(os.path.join(mask_folder, mask_name)))) # [H, W, C] img_all_list.append(img_list) mask_all_list.append(mask_list) self.img_name, self.num_label = img_all_list, mask_all_list self.transform = transform self.target_transform = target_transform @staticmethod def _inner_rand_cut(img_in, cut_start): h, w = img_in.shape if h > w: return img_in[cut_start:cut_start+w, :, :] else: return img_in[:, cut_start:cut_start+h, :] @staticmethod def _sort_num(name_string): ''' Separate numbers in a name, in order to sort. Extract the first number in string ''' import re num = re.findall('\d+\.?\d*', name_string) try: num = float(num[0]) except: num = -1.0 return num def __getitem__(self, index): # Read data once if self.dataset_return == 'mask': return self._getitem_mask(index) elif self.dataset_return == 'classlabel': return self._getitem_label(index) else: return def _getitem_label(self, index): # Read data once # Todo !!!!!!!!! Not written file_name = self.img_name[index] label = self.num_label[index] img = Image.open(os.path.join(self.dataset_path, 'image', file_name)) img = np.array(img) # Random cut h, w = img.shape cut_start = np.random.randint(0, abs(h-w)) img = self._inner_rand_cut(img, cut_start) if self.transform is not None: img = self.transform(img) return img, label def _getitem_mask(self, index): # Read data once if self.read_in_ram_mode: img_list = self.img_name[index] mask_list = self.num_label[index] else: image_folder = self.img_name[index] mask_folder = self.img_name[index].replace('shg-ce-de', 'shg-masks') img_list, mask_list = [], [] img_file_list, mask_file_list = list(os.listdir(image_folder)), list(os.listdir(mask_folder)) img_file_list.sort(key=self._sort_num) for img_name in img_file_list: img = np.array(Image.open(os.path.join(image_folder, img_name)).convert('L')) # [H, W] img = np.reshape(img, img.shape + (1,)) # Convert gray image into [H, W, C] mode # img = np.array(Image.open(os.path.join(image_folder, img_name))) img_list.append(img) mask_file_list.sort(key=self._sort_num) for mask_name in mask_file_list: mask_list.append(np.array(Image.open(os.path.join(mask_folder, mask_name)))) # [H, W, C] img = np.array(img_list).transpose([3, 1, 2, 0]) # Convert from [D, H, W, C] into [C, H, W, D] mode mask = np.array(mask_list) mask = np.max(mask, axis=3) # Convert mask to label mask = np.transpose(mask, [1, 2, 0]) # Convert from [D, H, W] into [H, W, D] mode # ToDo Temp _, h, w, d = img.shape new_size = 64 new_depth = 32 h_random, w_random, d_random = np.random.randint(0, h-new_size), np.random.randint(0, w-new_size), np.random.randint(0, d-new_depth) img = img[:, h_random:h_random+new_size, w_random:w_random+new_size, d_random:d_random+new_depth] mask = mask[h_random:h_random+new_size, w_random:w_random+new_size, d_random:d_random+new_depth] ###################################### # Should cut with mask here ###################################### # # Random cut # h, w = img.shape # if np.abs(h - w): # cut_start = np.random.randint(0, abs(h - w)) # img = self._inner_rand_cut(img, cut_start) # mask = self._inner_rand_cut(mask, cut_start) if self.transform is not None: img = self.transform(img) return np.array(img, dtype=np.float32), np.array(mask/255., dtype=np.int64) def __len__(self): return len(self.img_name)
Surtol-Sun/TrainFramework_torch
components/dataset_loader/dataset_loader_3dcollagen.py
dataset_loader_3dcollagen.py
py
7,648
python
en
code
1
github-code
6
30192254789
import numpy as np import matplotlib.pyplot as plt import pandas as pd import os # sigmoid函数 def sigmoid(z): return 1 / (1 + np.exp(-z)) # 定义回归模型 def model(X, theta): return sigmoid(np.dot(X, theta.T)) # 计算梯度 def gradient(X, y, theta): grad = np.zeros(theta.shape) # 初始化梯度,维度与参数向量的维度相同 error = (model(X, theta) - y).ravel() # 计算偏差 for j in range(len(theta.ravel())): # 计算n个偏导数(梯度) term = np.multiply(error, X[:, j]) grad[0, j] = np.sum(term) / len(X) return grad # 定义损失函数 def cost(X, y, theta): return np.sum((np.multiply(-y, np.log(model(X, theta)))) - (np.multiply(1 - y, np.log(1 - model(X, theta)))))/(len(X)) path = 'datas' + os.sep + 'iris.csv' irisData = pd.read_csv(path, header=None, names=['petal_len', 'petal_width', 'sepal_len', 'sepal_width', 'class'], dtype={'petal_len': float, 'petal_width': float, 'sepal_len': float, 'sepal_width': float, 'class': str}) irisData.loc[irisData['class'] == 'setosa', 'class'] = 0 # 将setosa置为0 irisData.loc[irisData['class'] == 'versicolor', 'class'] = 1 # 将versicolor置为1 irisData.loc[irisData['class'] == 'virginica', 'class'] = 2 # 将virginica置为2 print("---------------打印数据信息------------------ #") print(irisData.head()) # 打印前两行 print(irisData.shape) # 打印数据维度 print(irisData.describe()) # 打印描述信息 print() # 绘制数据分布图像 positive = irisData[irisData['class'] == 0] # 设置正类 negative = irisData[irisData['class'] == 1] # 设置负类 # fig, ax = plt.subplots(figsize=(8, 6)) fig, figer1 = plt.subplots(figsize=(10, 5)) # 设置图像大小 figer1.scatter(positive['sepal_len'], positive['sepal_width'], s=30, c='b', marker='o', label='setosa') # 绘制setosa花的散点图 figer1.scatter(negative['sepal_len'], negative['sepal_width'], s=30, c='r', marker='x', label='versicolor') # 绘制versicolor花的散点图 figer1.legend(loc=2) # 标题放在左上角 figer1.set_xlabel('sepal_len') # 设置x标签 figer1.set_ylabel('sepal_width') # 设置y标签 plt.show() # 显示初始图像 irisData.insert(2, 'Ones', 1) # 在第3列插入一列数据,值为1 print("----------打印初始数据的前五行------------ ") print(irisData.head()) orig_data = irisData.as_matrix() # 构造一个矩阵 print(orig_data.dtype) print("----------------初始打印矩阵-----------------") print(orig_data[:5, :]) cols = orig_data.shape[1] # 得到矩阵的列数 orig_data = orig_data[:100, :] # 取矩阵的前100行数据 scaled_data1 = orig_data[:50, 2:cols] # 第一类数据矩阵,选择花瓣属性 scaled_data2 = orig_data[50:100, 2:cols] # 第二类数据矩阵 np.random.shuffle(scaled_data1) # 打乱第一类数据的顺序 np.random.shuffle(scaled_data2) # 打乱第二类数据的顺序 np.random.shuffle(orig_data) # 从两个矩阵中分别取固定个数的数据作为测试集 # scaled_data = orig_data[4:100, 2:cols] #scaled_data = np.vstack((scaled_data1[:25, :], scaled_data2[:25, :])) # 50% #scaled_data = np.vstack((scaled_data1[:15, :], scaled_data2[:15, :])) # 30% scaled_data = np.vstack((scaled_data1[:5, :], scaled_data2[:5, :])) # 10% np.random.shuffle(scaled_data) # 打乱测试集数据的顺序 print("-------打印测试集-------") print(scaled_data) print("------测试集的属性-------") print(scaled_data.shape) # 从两个矩阵中分别取相同个数的数据作为训练集 # orig_data = orig_data[:4, 2:cols] #orig_data = np.vstack((scaled_data1[25:50, :], scaled_data2[25:50, :])) # 50% #orig_data = np.vstack((scaled_data1[15:50, :], scaled_data2[15:50, :])) # 70% orig_data = np.vstack((scaled_data1[5:50, :], scaled_data2[5:50, :])) # 90% np.random.shuffle(orig_data) # 打乱训练集数据的顺序 print("---------打印训练集--------") print(orig_data) X = orig_data[:100, 1:cols - 1] # 选择前三列 y = orig_data[:100, cols - 1:cols] # 选择最后一列结果 print("-------打印X的值-------") print(X) print("---------打印y的值----------") print(y) # 构造参数向量 theta = np.zeros([1, 3]) # 打印矩阵的维度 print("----------打印训练数据的信息----------") print("参数值为:") print(theta) print("X的维度为:") print(X.shape) print("y的维度为") print(y.shape) print("参数的维度为") print(theta.shape) c = cost(X, y, theta) # 求初始损失函数的值 print("--------初始损失值为-------") print(X.dtype) print(c) # 刷新数据,打乱数据的顺序 def shuffleData(data): np.random.shuffle(data) cols = data.shape[1] X = data[:100, 0:cols - 1] y = data[:100, cols - 1:] return X, y import time # 定义梯度下降求解函数 def descent(data, theta, batchSize, threshold, alpha): init_time = time.time() # 设置初始时间 i = 0 # 设置迭代次数 k = 0 # batch X, y = shuffleData(data) # 打乱数据 grad = np.zeros(theta.shape) # 计算初始的梯度 costs = [cost(X, y, theta)] # 计算初始损失函数值 # 开始迭代 while True: grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta) # 求解梯度值 k += batchSize # 取batch个数据 if k >= n: # 如果数据取完 k = 0 X, y = shuffleData(data) # 对数据进行重新洗牌 theta = theta - alpha * grad # 对参数进行更新 print(theta) cost_new = cost(X, y, theta) # 计算新的损失值 print(cost_new) costs.append(cost_new) # 将新的损失之追加到列表末尾 i += 1 # 更新循环变量 value = costs # cost为损失值 if abs(value[-1] - value[-2]) < threshold: break return theta, i - 1, costs, grad, time.time() - init_time # 绘制图像 def Run(data, theta, batchSize, thresh, alpha): theta, iter, costs, grad, dur = descent(data, theta, batchSize, thresh, alpha) # 开始执行梯度下降 name = "Original" if (data[:, 1] > 2).sum() > 1 else "Scaled" name += " data - learning rate: {} -".format(alpha) # 选择梯度下降策略和停止方案 if batchSize == n: strDescType = "Gradient" elif batchSize == 1: strDescType = "Stochastic" else: strDescType = "Mini-batch({})".format(batchSize) name += strDescType + " descent - stop: " strStop = "costs change < {}".format(thresh) name += strStop print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(name, theta, iter, costs[-1], dur)) fig, ax = plt.subplots(figsize=(12, 4)) ax.plot(np.arange(len(costs)), costs, 'r') ax.set_xlabel('Iterations') ax.set_ylabel('Cost') ax.set_title(name) plt.show() return theta # 开始训练模型 n = 100 # 一次读入100个数据进行训练 print("打印矩阵") print(orig_data) theta = Run(orig_data, theta, n, thresh=0.000001, alpha=0.1) # 两次迭代损失函数变化非常小时停止(1e-6) # 对结果进行测试 # 设定阈值 大于0.5则为1,小于0.5为0 def predict(X, theta): return [1 if x >= 0.5 else 0 for x in model(X, theta)] scaled_X = scaled_data[:, :3] # 设置测试集输入 y = scaled_data[:, 3] # 正确值 print("--------打印测试的数据---------") print(scaled_X) print("----------theta的值为-----------") print(theta) predictions = predict(scaled_X, theta) print("-----------打印预测值-----------") print(predictions) print("-------------打印真实值-----------") print(y) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)] accuracy = (sum(map(int, correct)) / len(correct)) * 100 print('正确率 = {0}%'.format(accuracy)) # 设置分割曲线函数 def y1(x2, theta): # y = theta[0] + theta[1]* x1 + theta[2] * x2 x1 = (-(theta[0, 0] + theta[0, 2] * x2)) / theta[0, 1] return x1 x2 = np.linspace(0, 5, 1000) x1 = y1(x2, theta) fig, figer1 = plt.subplots(figsize=(10, 5)) # 设置图像大小 figer1.scatter(positive['sepal_len'], positive['sepal_width'], s=30, c='b', marker='o', label='setosa') # 绘制setosa花的散点图 figer1.scatter(negative['sepal_len'], negative['sepal_width'], s=30, c='r', marker='x', label='versicolor') # 绘制versicolor花的散点图 figer1.legend(loc=2) # 标题放在左上角 figer1.set_xlabel('sepal_len') # 设置x标签 figer1.set_ylabel('sepal_width') # 设置y标签 plt.plot(x1, x2, 'r-', linewidth=1) plt.show() # 显示结果图像
TJPU-ML/Homework-for-the-fall-semester-of-2018
iris classification/张家源/iris4.py
iris4.py
py
9,017
python
en
code
0
github-code
6
22904436913
import webbrowser class Movie(): ''' This class provides a way to store movie related information ''' '''This is a constant variable (class variable), and Google StyleGuide says that these type of variables should be spelled out in all caps''' VALID_RATINGS = ["G", "PG", "PG-13", "R"] def __init__(self, movie_title,movie_storyline, poster_image, trailer_youtube, date, numb_of_times_watched): # NOTE:__ underscores tell that this is a reserved word in python '''Function that constructs instances of Movie class for each movie in the website. Arguments are assigned to corresponding instance variables below. Arguments: movie_title(str): Name of the movie movie_storyline(str): Brief description of the movie and its plot poster_image(str): ULR of movie posting from Wikipedia (if available) trailer_youtube(str): URL of movie trailer from YouTube (if available) date(number): Year in which the movie was relased numb_of_times_watched (number): Total number of times I've seen that movie''' self.title = movie_title self.storyline = movie_storyline self.poster_image_url = poster_image self.trailer_youtube_url = trailer_youtube self.launch_date = date self.times_watched = numb_of_times_watched def show_trailer(self): webbrowser.open(self.trailer_youtube_url) # opens browser to show movie trailer
OdeclasV/movie_website
media.py
media.py
py
1,363
python
en
code
0
github-code
6
72757362749
""" Roll adjusted and multiple prices for a given contract, after checking that we do not have positions NOTE: this does not update the roll calendar .csv files stored elsewhere. Under DRY the sole source of production roll info is the multiple prices series """ from dataclasses import dataclass import numpy as np from syscore.interactive import print_menu_of_values_and_get_response, get_and_convert from syscore.objects import success, failure, status, named_object from syscore.text import landing_strip, print_with_landing_strips_around from sysdata.data_blob import dataBlob from sysobjects.contracts import futuresContract from sysobjects.production.roll_state import ( default_state, roll_adj_state, explain_roll_state_str, allowable_roll_state_from_current_and_position, RollState, no_roll_state, ) from sysproduction.reporting.report_configs import roll_report_config from sysproduction.reporting.reporting_functions import run_report_with_data_blob from sysproduction.data.positions import diagPositions, updatePositions from sysproduction.data.contracts import dataContracts from sysproduction.data.prices import diagPrices, get_valid_instrument_code_from_user from sysproduction.reporting.data.rolls import ( rollingAdjustedAndMultiplePrices, relative_volume_in_forward_contract_versus_price, ) no_change_required = named_object("No roll required") EXIT_CODE = "EXIT" def interactive_update_roll_status(): with dataBlob(log_name="Interactive_Update-Roll-Status") as data: function_to_call = get_rolling_master_function() function_to_call(data) def get_rolling_master_function(): MANUAL_INPUT = "Manually input instrument codes and manually decide when to roll" MENU_OPTIONS = [ MANUAL_INPUT, "Cycle through instrument codes automatically, but manually decide when to roll", "Cycle through instrument codes automatically, auto decide when to roll, manually confirm rolls", "Cycle through instrument codes automatically, auto decide when to roll, automatically roll", ] function_list = [ update_roll_status_manual_cycle, update_roll_status_auto_cycle_manual_decide, update_roll_status_auto_cycle_manual_confirm, update_roll_status_full_auto, ] print("How do you want to do your rolls today?") selection = print_menu_of_values_and_get_response( MENU_OPTIONS, default_str=MANUAL_INPUT ) selection_idx = MENU_OPTIONS.index(selection) function_to_call = function_list[selection_idx] return function_to_call @dataclass class RollDataWithStateReporting(object): instrument_code: str original_roll_status: RollState position_priced_contract: int allowable_roll_states_as_list_of_str: list days_until_roll: int relative_volume: float @property def original_roll_status_as_string(self): return self.original_roll_status.name def display_roll_query_banner(self): print(landing_strip(80)) print("Current State: %s" % self.original_roll_status) print( "Current position in priced contract %d (if zero can Roll Adjusted prices)" % self.position_priced_contract ) print("") print("These are your options:") print("") for state_number, state in enumerate(self.allowable_roll_states_as_list_of_str): print("%s: %s" % (state, explain_roll_state_str(state))) print("") def update_roll_status_manual_cycle(data: dataBlob): do_another = True while do_another: instrument_code = get_valid_instrument_code_from_user( data=data, allow_exit=True, exit_code=EXIT_CODE ) if instrument_code is EXIT_CODE: # belt and braces do_another = False else: manually_report_and_update_roll_state_for_code(data, instrument_code) return success def update_roll_status_auto_cycle_manual_decide(data: dataBlob): days_ahead = get_days_ahead_to_consider_when_auto_cycling() instrument_list = get_list_of_instruments_to_auto_cycle(data, days_ahead=days_ahead) for instrument_code in instrument_list: manually_report_and_update_roll_state_for_code( data=data, instrument_code=instrument_code ) return success def update_roll_status_auto_cycle_manual_confirm(data: dataBlob): days_ahead = get_days_ahead_to_consider_when_auto_cycling() auto_parameters = get_auto_roll_parameters() instrument_list = get_list_of_instruments_to_auto_cycle(data, days_ahead=days_ahead) for instrument_code in instrument_list: roll_data = setup_roll_data_with_state_reporting(data, instrument_code) roll_state_required = auto_selected_roll_state_instrument( data=data, roll_data=roll_data, auto_parameters=auto_parameters ) if roll_state_required is no_change_required: warn_not_rolling(instrument_code, auto_parameters) else: modify_roll_state( data=data, instrument_code=instrument_code, original_roll_state=roll_data.original_roll_status, roll_state_required=roll_state_required, confirm_adjusted_price_change=True, ) def update_roll_status_full_auto(data: dataBlob): days_ahead = get_days_ahead_to_consider_when_auto_cycling() instrument_list = get_list_of_instruments_to_auto_cycle(data, days_ahead=days_ahead) auto_parameters = get_auto_roll_parameters() for instrument_code in instrument_list: roll_data = setup_roll_data_with_state_reporting(data, instrument_code) roll_state_required = auto_selected_roll_state_instrument( data=data, roll_data=roll_data, auto_parameters=auto_parameters ) if roll_state_required is no_change_required: warn_not_rolling(instrument_code, auto_parameters) else: modify_roll_state( data=data, instrument_code=instrument_code, original_roll_state=roll_data.original_roll_status, roll_state_required=roll_state_required, confirm_adjusted_price_change=False, ) def get_days_ahead_to_consider_when_auto_cycling() -> int: days_ahead = get_and_convert( "How many days ahead should I look for expiries?", type_expected=int, allow_default=True, default_value=10, ) return days_ahead def get_list_of_instruments_to_auto_cycle(data: dataBlob, days_ahead: int = 10) -> list: diag_prices = diagPrices() list_of_potential_instruments = ( diag_prices.get_list_of_instruments_in_multiple_prices() ) instrument_list = [ instrument_code for instrument_code in list_of_potential_instruments if include_instrument_in_auto_cycle( data=data, instrument_code=instrument_code, days_ahead=days_ahead ) ] print_with_landing_strips_around( "Identified following instruments that are near expiry %s" % str(instrument_list) ) return instrument_list def include_instrument_in_auto_cycle( data: dataBlob, instrument_code: str, days_ahead: int = 10 ) -> bool: days_until_expiry = days_until_earliest_expiry(data, instrument_code) return days_until_expiry <= days_ahead def days_until_earliest_expiry(data: dataBlob, instrument_code: str) -> int: data_contracts = dataContracts(data) carry_days = data_contracts.days_until_carry_expiry(instrument_code) roll_days = data_contracts.days_until_roll(instrument_code) price_days = data_contracts.days_until_price_expiry(instrument_code) return min([carry_days, roll_days, price_days]) @dataclass class autoRollParameters: min_volume: float manual_prompt_for_position: bool state_when_position_held: RollState def get_auto_roll_parameters() -> autoRollParameters: min_volume = get_and_convert( "Minimum relative volume before rolling", type_expected=float, allow_default=True, default_value=0.1, ) manual_prompt_for_position_str = input( "Manually prompt for state if have position? (n / *anything for yes*)" ) if manual_prompt_for_position_str == "n": manual_prompt_for_position = False else: manual_prompt_for_position = True if manual_prompt_for_position: state_when_position_held = no_change_required else: state_when_position_held = get_state_to_use_for_held_position() auto_parameters = autoRollParameters( min_volume=min_volume, manual_prompt_for_position=manual_prompt_for_position, state_when_position_held=state_when_position_held, ) return auto_parameters STATE_OPTIONS = [RollState.Passive, RollState.Force, RollState.Force_Outright] STATE_OPTIONS_AS_STR = [str(state) for state in STATE_OPTIONS] def get_state_to_use_for_held_position() -> RollState: print( "Choose state to automatically assume if we have a position in priced contract AND roll state is currently NO ROLL" ) select_state_for_position_held = print_menu_of_values_and_get_response( STATE_OPTIONS_AS_STR, default_str=STATE_OPTIONS_AS_STR[0] ) state_when_position_held = STATE_OPTIONS[ STATE_OPTIONS_AS_STR.index(select_state_for_position_held) ] return state_when_position_held def auto_selected_roll_state_instrument( data: dataBlob, roll_data: RollDataWithStateReporting, auto_parameters: autoRollParameters, ) -> RollState: if roll_data.relative_volume < auto_parameters.min_volume: print_with_landing_strips_around( "For %s relative volume of %f is less than minimum of %s : NOT AUTO ROLLING" % ( roll_data.instrument_code, roll_data.relative_volume, auto_parameters.min_volume, ) ) return no_change_required no_position_held = roll_data.position_priced_contract == 0 if no_position_held: print_with_landing_strips_around( "No position held, auto rolling adjusted price for %s" % roll_data.instrument_code ) return roll_adj_state if auto_parameters.manual_prompt_for_position: run_roll_report(data, roll_data.instrument_code) roll_state_required = get_roll_state_required(roll_data) return roll_state_required original_roll_status = roll_data.original_roll_status if original_roll_status is no_roll_state: roll_state_required = auto_parameters.state_when_position_held print_with_landing_strips_around( "Automatically changing state from %s to %s for %s" % (original_roll_status, roll_state_required, roll_data.instrument_code) ) else: print_with_landing_strips_around( "Roll status already set to %s for %s: not changing" % (original_roll_status, roll_data.instrument_code) ) return no_change_required return roll_state_required def warn_not_rolling(instrument_code: str, auto_parameters: autoRollParameters): print_with_landing_strips_around( "\n NOT rolling %s as doesn't meet auto parameters %s\n" % (instrument_code, str(auto_parameters)) ) def manually_report_and_update_roll_state_for_code( data: dataBlob, instrument_code: str ): run_roll_report(data, instrument_code) manually_update_roll_state_for_code(data, instrument_code) def manually_update_roll_state_for_code(data: dataBlob, instrument_code: str): # First get the roll info # This will also update to console data.log.setup(instrument_code=instrument_code) roll_data = setup_roll_data_with_state_reporting(data, instrument_code) roll_state_required = get_roll_state_required(roll_data) modify_roll_state( data=data, instrument_code=instrument_code, original_roll_state=roll_data.original_roll_status, roll_state_required=roll_state_required, confirm_adjusted_price_change=True, ) return success def run_roll_report(data: dataBlob, instrument_code: str): config = roll_report_config.new_config_with_modified_output("console") config.modify_kwargs(instrument_code=instrument_code) report_results = run_report_with_data_blob(config, data) if report_results is failure: raise Exception("Can't run roll report, so can't change status") def get_roll_state_required(roll_data: RollDataWithStateReporting) -> RollState: invalid_input = True while invalid_input: roll_data.display_roll_query_banner() roll_state_required_as_str = print_menu_of_values_and_get_response( roll_data.allowable_roll_states_as_list_of_str ) if roll_state_required_as_str != roll_data.original_roll_status_as_string: # check if changing print("") check = input( "Changing roll state for %s from %s to %s, are you sure y/n to try again/<RETURN> to exit: " % ( roll_data.instrument_code, roll_data.original_roll_status_as_string, roll_state_required_as_str, ) ) print("") if check == "y": # happy return RollState[roll_state_required_as_str] elif check == "": print("Okay, we're done") return no_change_required else: print("OK. Choose again.") # back to top of loop continue else: print("No change") return no_change_required def setup_roll_data_with_state_reporting( data: dataBlob, instrument_code: str ) -> RollDataWithStateReporting: diag_positions = diagPositions(data) diag_contracts = dataContracts(data) original_roll_status = diag_positions.get_roll_state(instrument_code) priced_contract_date = diag_contracts.get_priced_contract_id(instrument_code) contract = futuresContract(instrument_code, priced_contract_date) position_priced_contract = int(diag_positions.get_position_for_contract(contract)) allowable_roll_states = allowable_roll_state_from_current_and_position( original_roll_status, position_priced_contract ) days_until_roll = diag_contracts.days_until_roll(instrument_code) relative_volume = relative_volume_in_forward_contract_versus_price( data=data, instrument_code=instrument_code ) if np.isnan(relative_volume): relative_volume = 0.0 roll_data_with_state = RollDataWithStateReporting( instrument_code=instrument_code, original_roll_status=original_roll_status, position_priced_contract=position_priced_contract, allowable_roll_states_as_list_of_str=allowable_roll_states, days_until_roll=days_until_roll, relative_volume=relative_volume, ) return roll_data_with_state def modify_roll_state( data: dataBlob, instrument_code: str, original_roll_state: RollState, roll_state_required: RollState, confirm_adjusted_price_change: bool = True, ): if roll_state_required is no_change_required: return if roll_state_required is original_roll_state: return update_positions = updatePositions(data) update_positions.set_roll_state(instrument_code, roll_state_required) if roll_state_required is roll_adj_state: state_change_to_roll_adjusted_prices( data=data, instrument_code=instrument_code, original_roll_state=original_roll_state, confirm_adjusted_price_change=confirm_adjusted_price_change, ) def state_change_to_roll_adjusted_prices( data: dataBlob, instrument_code: str, original_roll_state: RollState, confirm_adjusted_price_change: bool = True, ): # Going to roll adjusted prices update_positions = updatePositions(data) roll_result = roll_adjusted_and_multiple_prices( data=data, instrument_code=instrument_code, confirm_adjusted_price_change=confirm_adjusted_price_change, ) if roll_result is success: # Return the state back to default (no roll) state data.log.msg( "Successful roll! Returning roll state of %s to %s" % (instrument_code, default_state) ) update_positions.set_roll_state(instrument_code, default_state) else: data.log.msg( "Something has gone wrong with rolling adjusted of %s! Returning roll state to previous state of %s" % (instrument_code, original_roll_state) ) update_positions.set_roll_state(instrument_code, original_roll_state) def roll_adjusted_and_multiple_prices( data: dataBlob, instrument_code: str, confirm_adjusted_price_change: bool = True ) -> status: """ Roll multiple and adjusted prices THE POSITION MUST BE ZERO IN THE PRICED CONTRACT! WE DON'T CHECK THIS HERE :param data: dataBlob :param instrument_code: str :return: """ print(landing_strip(80)) print("") print("Rolling adjusted prices!") print("") try: rolling_adj_and_mult_object = rollingAdjustedAndMultiplePrices( data, instrument_code ) # this will also do the roll calculations rolling_adj_and_mult_object.compare_old_and_new_prices() except Exception as e: print("Error %s when trying to calculate roll prices" % str(e)) return failure if confirm_adjusted_price_change: confirm_roll = input( "Confirm roll adjusted prices for %s are you sure y/n:" % instrument_code ) if confirm_roll != "y": print( "\nUSER DID NOT WANT TO ROLL: Setting roll status back to previous state" ) return failure else: print_with_landing_strips_around("AUTO ROLLING - NO USER CONFIRMATION REQUIRED") try: rolling_adj_and_mult_object.write_new_rolled_data() except Exception as e: data.log.warn( "%s went wrong when rolling: Going to roll-back to original multiple/adjusted prices" % e ) rolling_adj_and_mult_object.rollback() return failure return success
ahalsall/pysystrade
sysproduction/interactive_update_roll_status.py
interactive_update_roll_status.py
py
18,575
python
en
code
4
github-code
6
74667821627
from typing import List, Optional from fastapi import Depends from ..service import Service, get_service from app.utils import AppModel from . import router class InsideObjectResponse(AppModel): _id:str address:str type:str price:int area:float rooms_count:int location:dict class GenResponse(AppModel): total:int objects: List[InsideObjectResponse] @router.get("/shanyraks") def get_shanyraks( limit:int, offset:int, type:Optional[str]=None, rooms_count:Optional[int]=None, price_from:Optional[int]=None, price_until:Optional[int]=None, svc : Service = Depends(get_service) ): val = svc.repository.pagination(limit, offset, type, rooms_count, price_from, price_until) return GenResponse(**val)
MamushevArup/code-climb-ai-back
app/shanyrak/router/router_get_pagination.py
router_get_pagination.py
py
770
python
en
code
0
github-code
6
38308536356
from src import create_app from src import db from src.models.wifi import Wifi from src.models.device import Device from src.models.threshold import Threshold from src.models.measurement import Measurement from .network_setup import NetworkSetUp from .default_data import threshold_data, wifi_data, measurement_data class DatabaseSetUp(): """Set up the initial boot up of the Raspberry Pi Sensor.""" def __init__(self, app_env = 'development', *args, **kwargs): self.db = db self.app = create_app(app_env) self.app_context = self.app.app_context() self.app_context.push() self.setup_rpi() def init_db(self): self.db.create_all() def get_or_create_threshold(self): threshold = Threshold.query.first() if not threshold: threshold = Threshold(threshold_data) threshold.save() return threshold def get_or_create_wifi(self): wifi = Wifi.query.first() if not wifi: wifi = Wifi(wifi_data) wifi.save() return wifi def get_or_create_measurement(self): measurement = Measurement.query.first() if not measurement: measurement = Measurement(measurement_data) measurement.save() return measurement def get_or_create_device(self): device = Device.query.first() if not device: # get data, if get_network_info(not spcify name, gets the first wlan) network = NetworkSetUp() ip_addr, netmask, mac_addr = network.get_network_info() data = {'mac_addr':mac_addr, 'netmask':netmask, 'ip_addr':ip_addr} # create the device device = Device(data) device.save() return device # ONCE DATABASE IS READY TO ACCEPT CONNECITIONS def setup_rpi(self): data = {} # 1-set the raspbeerypi device information CREATE A DEVICE in db # check or create the threshold device = self.get_or_create_device() # 2-create the threshold # check or create the threshold threshold = self.get_or_create_threshold() data.update(threshold=threshold) # 3 - check or create the wifi # check or create the wifi wifi = self.get_or_create_wifi() data.update(wifi=wifi) # 4 get or create the first measurement (for testing porpuses) measurement = self.get_or_create_measurement() # update device with new trheshold, wifi and measurement device.measurements.extend([measurement]) device.update(data) # Testing print( device.ip_addr, device.mac_addr, device.netmask, device.threshold, device.wifi, device.threshold.soil_ph_min, device.threshold.device_id, device.wifi.ssid, device.wifi.password, device.wifi.device_id, device.measurements, device.measurements[0].air_temp, ) if __name__ == '__main__': # 0 db - instanciate obj db_setup = DatabaseSetUp() # 1 db - setup and installation (init, migrate, upgrade) db_setup.init_db() # 2 db - add default data (device, threshold, wifi, measurement) db_setup.setup_rpi()
Fantaso/multi-raspberry-flask-apis-server
boot_setup/db_setup.py
db_setup.py
py
3,284
python
en
code
0
github-code
6
42624248567
#!/bin/python3 import math import os import random import re import sys # # Complete the 'plusMinus' function below. # # The function accepts INTEGER_ARRAY arr as parameter. # n = int(input()) def plusMinus(arr): #Write your code here p=m=z=0 for i in range(n): if arr[i]>0: p=p+1 elif arr[i]<0: m=m+1 else: z=z+1 print(p/n) print(m/n) print(z/n) if __name__ == '__main__': arr = list(map(int, input().rstrip().split())) plusMinus(arr)
sarmistha1619/HackerRank---Algorithm
Warmup/6. HRSa - Plus Minus.py
6. HRSa - Plus Minus.py
py
564
python
en
code
0
github-code
6
9512551614
#返回倒数第k个结点 class ListNode: def __init__(self, x): self.val = x self.next = None #时间复杂度O(n) 空间复杂度O(1) class Solution1: def FindKthToTail(self , pHead: ListNode, k: int) -> ListNode: # write code here l=self.size(pHead) if(k>l): return None t=l-k while (t>0): pHead=pHead.next t=t-1 return pHead def size(self,pHead): l=0 while pHead: l=l+1 pHead=pHead.next return l #快慢指针;第一个指针先移动k步骤,然后两个指针同时移动,当第一个指针走到终点的时候,返回第二个指针 class Solution2: def FindKthToTail(self, pHead: ListNode, k: int) -> ListNode: fast = slow = pHead while k > 0: if fast: fast = fast.next k = k - 1 else: return None while fast: fast = fast.next slow = slow.next return slow #栈 把原链表的结点全部压栈,然后再把栈中最上面的k个节点出栈,出栈的结点重新串成一个新的链表即可 class Solution3: def FindKthToTail(self, pHead: ListNode, k: int) -> ListNode: stack=[] while pHead: stack.append(pHead) pHead=pHead.next if k>len(stack) or not k: return None return stack[-k]
guozhiyan1/data-structure
linklist/six.py
six.py
py
1,519
python
en
code
0
github-code
6
41636163192
"""Insert Noop: insert a statement that doesn't affect any other variables.""" from refactorings.base import BaseTransformation, JoernTransformation, SrcMLTransformation from refactorings.random_word import get_random_word, get_random_typename_value import string from srcml import E from lxml import etree import logging logger = logging.getLogger(__name__) type_to_literaltype = { "int": 'number', "char": 'char', "char *": 'string', } tagnames = ['expr_stmt', 'decl_stmt', 'for', 'do', 'while', 'if_stmt', 'switch', 'label'] class InsertNoop(SrcMLTransformation): def get_targets(self, **kwargs): targets = [] for tagname in tagnames: targets += self.srcml.xp(f'//src:{tagname}') return targets def _apply(self, target): new_name = get_random_word() typename, value = get_random_typename_value() literaltype = type_to_literaltype[typename] new_decl_stmt = E.decl_stmt( E.decl( E.type( E.name(typename, ' '), E.name(new_name, ' '), E.init( '= ', E.expr( E.literal(value, {"type": literaltype}) ) ), ), ';' ), target.tail ) logger.debug(etree.tostring(new_decl_stmt)) try: target_idx = target.getparent().index(target) target.getparent().insert(target_idx+1, new_decl_stmt) self.srcml.apply_changes() except Exception: self.srcml.revert_changes() raise new_text = self.srcml.load_c_code() return new_text.splitlines(keepends=True)
bstee615/cfactor
refactorings/insert_noop.py
insert_noop.py
py
1,800
python
en
code
0
github-code
6
8797452881
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv("C:/Users/Admin/OneDrive/Desktop/decision tree/Iris.csv") df.head() df.isnull().sum() df.shape df.info() df.describe() df.drop('Id',axis=1, inplace=True) df.shape df['Species'].value_counts().plot(kind='pie', autopct="%.1f%%") df.corr() sns.heatmap(df.corr(), annot=True) x = df.iloc[:,:4].values y = df.iloc[:,4:5] from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.20,random_state=0) print(x_train.shape) print(x_test.shape) print(y_train.shape) print(y_test.shape) from sklearn import metrics from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() model.fit(x_train, y_train) y_pred = model.predict(x_test) print(y_pred) print("Accuracy: ", metrics.accuracy_score(y_test,y_pred)) new_data = [[3.5, 3.0, 1.2, 1.7]] y_pred = model.predict(new_data) print(y_pred) from sklearn import tree import matplotlib.pyplot as plt plt.figure(figsize = (20,10)) tree.plot_tree(model, filled=True, rounded=True) plt.show()
ShreyasiDesai/LGMVIP-DataScience
decition tree.py
decition tree.py
py
1,182
python
en
code
0
github-code
6
5893119020
weight = float(input("what is your weight in kg? ")) height = float(input("what is your height in m? ")) BMI = weight / (height ** 2) if BMI < 18.5: print("youre underweight") elif BMI < 25: print("you have a normal weight") elif BMI < 30: print("youre overweight") elif BMI < 35: print("youre obese") else: print("youre clinically obese")
wandexdev/ProjectsInPython
Day-3/task3of3.py
task3of3.py
py
362
python
en
code
2
github-code
6
21396845249
from typing import Dict from starlette.types import ASGIApp, Receive, Scope, Send class AsgiDispatcher: def __init__(self, patterns: Dict[str, ASGIApp], default: ASGIApp): self.patterns = patterns self.default_app = default async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: app = None request_path = scope['path'] for pattern_prefix, pattern_app in self.patterns.items(): if request_path.startswith(pattern_prefix): if scope['type'] in {'http', 'websocket'}: app = pattern_app break if app is None: app = self.default_app await app(scope, receive, send)
TheRacetrack/racetrack
racetrack_commons/racetrack_commons/api/asgi/dispatcher.py
dispatcher.py
py
730
python
en
code
27
github-code
6
38354134434
from dataclasses import dataclass from typing import Optional, Tuple import torch.nn as nn import torch from transformers.models.dpr.modeling_dpr import DPRReaderOutput from transformers.modeling_outputs import QuestionAnsweringModelOutput, ModelOutput, SequenceClassifierOutput from transformers.models.vilt.modeling_vilt import ViltForImagesAndTextClassificationOutput from transformers import VisualBertForQuestionAnswering, VisualBertForVisualReasoning, LxmertForQuestionAnswering from transformers import ViltProcessor, ViltForImagesAndTextClassification from transformers import BertForQuestionAnswering from meerqat.train.losses import _calc_mml class Trainee(nn.Module): """Base class for all Trainee models (to be trained by a Trainer) Should implement a forward function that returns loss between output and target (as a tuple, dict or ModelOutput) The actual forward pass should be done using the model attribute """ def __init__(self, model): super().__init__() self.model = model @dataclass class DPRReaderForQuestionAnsweringOutput(DPRReaderOutput): """Same as DPRReaderOutput with an extra loss attribute (or as QuestionAnsweringModelOutput with relevance_logits) N. B. unfortunately we have to redefine everything so that loss is the first attribute """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None relevance_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MultiPassageBERTOutput(QuestionAnsweringModelOutput): """ Same as QuestionAnsweringModelOutput but with start and end log-probabilities (equivalent to softmax(start_logits) when there is only one passage per question) """ start_log_probs: torch.FloatTensor = None end_log_probs: torch.FloatTensor = None @dataclass class BERTRankerOutput(QuestionAnsweringModelOutput): """ Same as MultiPassageBERTOutput but with relevance_logits important for ranking """ loss: Optional[torch.FloatTensor] = None relevance_logits: torch.FloatTensor = None @dataclass class DPRBiEncoderOutput(ModelOutput): """ Outputs from the question and context encoders (same as DPRQuestionEncoderOutput, DPRContextEncoderOutput with prefixes) """ question_pooler_output: Optional[torch.FloatTensor] = None question_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_attentions: Optional[Tuple[torch.FloatTensor]] = None context_pooler_output: Optional[torch.FloatTensor] = None context_hidden_states: Optional[Tuple[torch.FloatTensor]] = None context_attentions: Optional[Tuple[torch.FloatTensor]] = None class DPRBiEncoder(nn.Module): """Adapted from https://github.com/facebookresearch/DPR/blob/main/dpr/models/biencoder.py""" def __init__(self, question_model, context_model): """ Parameters ---------- question_model: transformers.DPRQuestionEncoder Encoder based on BERT used to encode the question/query context_model: transformers.DPRContextEncoder Encoder based on BERT used to encode the context/evidence/passage ('context' is confusing IMO but I keep it for consistency with DPR and transformers) """ super().__init__() self.question_model = question_model self.context_model = context_model def forward(self, question_inputs, context_inputs, return_dict=None): """ Embeds questions and contexts with their respective model and returns the embeddings. N - number of questions in a batch M - number of passages per questions L - sequence length d - dimension of the model/embeddings Parameters ---------- question_inputs: dict[torch.LongTensor] input_ids: torch.LongTensor shape (N, L) usual BERT inputs, see transformers.DPRQuestionEncoder context_inputs: dict[torch.LongTensor] input_ids: torch.LongTensor shape (N*M, L) usual BERT inputs, see transformers.DPRContextEncoder return_dict: bool, optional """ return_dict = return_dict if return_dict is not None else self.question_model.config.use_return_dict # embed questions and contexts question_outputs = self.question_model(**question_inputs) context_outputs = self.context_model(**context_inputs) return DPRBiEncoderOutput( question_pooler_output=question_outputs.pooler_output, question_hidden_states=question_outputs.hidden_states, question_attentions=question_outputs.attentions, context_pooler_output=context_outputs.pooler_output, context_hidden_states=context_outputs.hidden_states, context_attentions=context_outputs.attentions) class DPRReaderForQuestionAnswering(Trainee): def forward(self, input_ids, attention_mask, start_positions=None, end_positions=None, answer_mask=None, return_dict=None, **kwargs): """Based on transformers.BertForQuestionAnswering and dpr.models.Reader""" return_dict = return_dict if return_dict is not None else self.model.config.use_return_dict # notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length N, M, L = input_ids.size() outputs = self.model(input_ids, attention_mask, return_dict=True, **kwargs) # compute loss total_loss = None if start_positions is not None and end_positions is not None: start_positions = start_positions.view(N * M, -1) end_positions = end_positions.view(N * M, -1) answer_mask = answer_mask.view(N * M, -1) start_logits, end_logits, relevance_logits = outputs[:3] start_logits = start_logits.view(N * M, -1) end_logits = end_logits.view(N * M, -1) relevance_logits = relevance_logits.view(N * M) answer_mask = answer_mask.to(device=relevance_logits.device, dtype=torch.float32) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = nn.CrossEntropyLoss(reduction='none', ignore_index=ignored_index) # compute switch loss relevance_logits = relevance_logits.view(N, M) switch_labels = torch.zeros(N, dtype=torch.long, device=relevance_logits.device) switch_loss = torch.sum(loss_fct(relevance_logits, switch_labels)) # compute span loss start_losses = [(loss_fct(start_logits, _start_positions) * _span_mask) for (_start_positions, _span_mask) in zip(torch.unbind(start_positions, dim=1), torch.unbind(answer_mask, dim=1))] end_losses = [(loss_fct(end_logits, _end_positions) * _span_mask) for (_end_positions, _span_mask) in zip(torch.unbind(end_positions, dim=1), torch.unbind(answer_mask, dim=1))] loss_tensor = torch.cat([t.unsqueeze(1) for t in start_losses], dim=1) + \ torch.cat([t.unsqueeze(1) for t in end_losses], dim=1) loss_tensor = loss_tensor.view(N, M, -1).max(dim=1)[0] span_loss = _calc_mml(loss_tensor) total_loss = span_loss + switch_loss if not return_dict: outputs = outputs.to_tuple() return ((total_loss,) + outputs) if total_loss is not None else outputs return DPRReaderForQuestionAnsweringOutput(loss=total_loss, **outputs) class MultiPassageBERT(BertForQuestionAnswering): """ PyTorch/Transformers implementation of Multi-passage BERT by Wang et. al (based on the global normalization by Clark et. al) i.e. groups passages per question before computing the softmax (and the NLL loss) so that spans scores are comparable across passages Code based on transformers.BertForQuestionAnswering, dpr.models.Reader and https://github.com/allenai/document-qa/blob/master/docqa/nn/span_prediction.py N. B. differences with DPRReaderForQuestionAnswering: * no projection layer between BERT and QA-extraction * no re-ranking (TODO implement MultiPassageDPRReader?) * global normalization References ---------- @inproceedings{wang_multi-passage_2019, address = {Hong Kong, China}, title = {Multi-passage {BERT}: {A} {Globally} {Normalized} {BERT} {Model} for {Open}-domain {Question} {Answering}}, shorttitle = {Multi-passage {BERT}}, url = {https://www.aclweb.org/anthology/D19-1599}, doi = {10.18653/v1/D19-1599}, urldate = {2021-06-14}, booktitle = {Proceedings of the 2019 {Conference} on {Empirical} {Methods} in {Natural} {Language} {Processing} and the 9th {International} {Joint} {Conference} on {Natural} {Language} {Processing} ({EMNLP}-{IJCNLP})}, publisher = {Association for Computational Linguistics}, author = {Wang, Zhiguo and Ng, Patrick and Ma, Xiaofei and Nallapati, Ramesh and Xiang, Bing}, month = nov, year = {2019}, pages = {5878--5882} } @inproceedings{clark_simple_2018, address = {Melbourne, Australia}, title = {Simple and {Effective} {Multi}-{Paragraph} {Reading} {Comprehension}}, url = {https://aclanthology.org/P18-1078}, doi = {10.18653/v1/P18-1078}, urldate = {2021-07-08}, booktitle = {Proceedings of the 56th {Annual} {Meeting} of the {Association} for {Computational} {Linguistics} ({Volume} 1: {Long} {Papers})}, publisher = {Association for Computational Linguistics}, author = {Clark, Christopher and Gardner, Matt}, month = jul, year = {2018}, pages = {845--855}, } """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.log_softmax = nn.LogSoftmax(1) def forward(self, input_ids, start_positions=None, end_positions=None, answer_mask=None, return_dict=None, **kwargs): """ notations: N - number of distinct questions M - number of passages per question in a batch L - sequence length Parameters ---------- input_ids: Tensor[int] shape (N * M, L) There should always be a constant number of passages (relevant or not) per question start_positions, end_positions: Tensor[int], optional shape (N, M, max_n_answers) The answer might be found several time in the same passage, maximum `max_n_answers` times Defaults to None (i.e. don’t compute the loss) answer_mask: Tensor[int], optional shape (N, M, max_n_answers) Used to mask the loss for answers that are not `max_n_answers` times in the passage Required if start_positions and end_positions are specified **kwargs: additional arguments are passed to BERT after being reshape like """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert(input_ids, return_dict=True, **kwargs) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() # compute loss total_loss, start_log_probs, end_log_probs = None, None, None if start_positions is not None and end_positions is not None: n_times_m, L = input_ids.size() M = start_positions.size(1) assert n_times_m % M == 0 N = n_times_m//M # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = L start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = nn.NLLLoss(reduction='none', ignore_index=ignored_index) # reshape from (N * M, L) to (N, M * L) so that all M passages related to the same question # will share the same softmax normalization start_logits, end_logits = start_logits.view(N, M*L), end_logits.view(N, M*L) start_log_probs, end_log_probs = self.log_softmax(start_logits), self.log_softmax(end_logits) # after computing the softmax, reshape back to (N * M, L) # because the last dimension, L, must match the position indices (i.e. class label) in start_positions, end_positions start_log_probs, end_log_probs = start_log_probs.view(N*M, L), end_log_probs.view(N*M, L) start_logits, end_logits = start_logits.view(N*M, L), end_logits.view(N*M, L) # reshape to match model output start_positions, end_positions = start_positions.view(N*M, -1), end_positions.view(N*M, -1) answer_mask = answer_mask.to(device=input_ids.device, dtype=torch.float32).view(N*M, -1) # compute span loss for each answer position in passage (in range `max_n_answers`) start_losses = [(loss_fct(start_log_probs, _start_positions) * _span_mask) for (_start_positions, _span_mask) in zip(torch.unbind(start_positions, dim=1), torch.unbind(answer_mask, dim=1))] end_losses = [(loss_fct(end_log_probs, _end_positions) * _span_mask) for (_end_positions, _span_mask) in zip(torch.unbind(end_positions, dim=1), torch.unbind(answer_mask, dim=1))] loss_tensor = torch.cat([t.unsqueeze(1) for t in start_losses], dim=1) + \ torch.cat([t.unsqueeze(1) for t in end_losses], dim=1) # keep the maximum per passage for each question loss_tensor = loss_tensor.view(N, M, -1).max(dim=1)[0] total_loss = _calc_mml(loss_tensor) if not return_dict: output = (start_logits, end_logits, start_log_probs, end_log_probs) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MultiPassageBERTOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, start_log_probs=start_log_probs, end_log_probs=end_log_probs, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class BERTRanker(BertForQuestionAnswering): """ BERT-based Ranker Based on transformers.BertForQuestionAnswering and https://github.com/allenai/document-qa/blob/master/docqa/nn/span_prediction.py """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.qa_classifier = nn.Linear(self.config.hidden_size, 1) def forward(self, input_ids, switch_labels=None, N=None, M=None, indices=None, relevants=None, return_dict=None, **kwargs): """ notations: N - number of distinct questions M - number of passages per question in a batch L - sequence length Parameters ---------- input_ids: Tensor[int] shape (N * M, L) There should always be a constant number of passages (relevant or not) per question **kwargs: additional arguments are passed to BERT after being reshape like """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert(input_ids, return_dict=True, **kwargs) sequence_output = outputs[0] relevance_logits = self.qa_classifier(sequence_output[:, 0, :]) switch_loss = None if len(switch_labels) > 0: loss_fct = nn.CrossEntropyLoss(reduction='mean') # compute switch loss relevance_logits = relevance_logits.view(N, M) switch_loss = loss_fct(relevance_logits, switch_labels) if not return_dict: output = (relevance_logits) + outputs[2:] return ((switch_loss,) + output) if switch_loss is not None else output return BERTRankerOutput( loss=switch_loss, hidden_states=outputs.hidden_states, attentions=outputs.attentions, relevance_logits=relevance_logits, ) class ViLTRanker(ViltForImagesAndTextClassification): """ ViLT-based Ranker Based on transformers.ViltForImagesAndTextClassification """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Classifier head num_images = self.config.num_images self.qa_classifier = nn.Sequential( nn.Linear(self.config.hidden_size * num_images, self.config.hidden_size * num_images), nn.LayerNorm(self.config.hidden_size * num_images), nn.GELU(), nn.Linear(self.config.hidden_size * num_images, 1), ) def forward(self, input_ids, pixel_values, pixel_mask, output_attentions=None, output_hidden_states=None, switch_labels=None, N=None, M=None, indices=None, relevants=None, return_dict=None, **kwargs): """ notations: N - number of distinct questions M - number of passages per question in a batch L - sequence length Parameters ---------- input_ids: Tensor[int] shape (N * M, L) There should always be a constant number of passages (relevant or not) per question **kwargs: additional arguments are passed to BERT after being reshape like """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is not None and pixel_values.ndim == 4: # add dummy num_images dimension pixel_values = pixel_values.unsqueeze(1) num_images = pixel_values.shape[1] if num_images != self.config.num_images: raise ValueError( "Make sure to match the number of images in the model with the number of images in the input." ) pooler_outputs = [] hidden_states = [] if output_hidden_states else None attentions = [] if output_attentions else None for i in range(num_images): # forward every image through the model outputs = self.vilt( input_ids, pixel_values=pixel_values[:, i, :, :, :], pixel_mask=pixel_mask[:, i, :, :] if pixel_mask is not None else None, image_token_type_idx=i + 1, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs ) pooler_output = outputs.pooler_output if return_dict else outputs[1] pooler_outputs.append(pooler_output) if output_hidden_states: hidden_states.append(outputs.hidden_states) if output_attentions: attentions.append(outputs.attentions) pooled_output = torch.cat(pooler_outputs, dim=-1) relevance_logits = self.qa_classifier(pooled_output) switch_loss = None if len(switch_labels) > 0: loss_fct = nn.CrossEntropyLoss(reduction='mean') # compute switch loss relevance_logits = relevance_logits.view(N, M) switch_loss = loss_fct(relevance_logits, switch_labels) if not return_dict: output = (relevance_logits, hidden_states, attentions) return ((switch_loss,) + output) if switch_loss is not None else output return ViltForImagesAndTextClassificationOutput( loss=switch_loss, logits=relevance_logits, hidden_states=hidden_states, attentions=attentions, )
mdsalem17/reranking
meerqat/train/trainee.py
trainee.py
py
21,260
python
en
code
null
github-code
6
27477751575
import re def parse(html): # define the regex pattern for the url url_pattern = r"https?://(?:www\.)?youtube\.com/embed/(\w+)" # use re.search to find the first matching url in the HTML match = re.search(url_pattern, html, re.IGNORECASE) if match: # extract the video ID from the matched url video_id = match.group(1) # Generate the youtu.be url url = f"https://youtu.be/{video_id}" return url def main(): # get user input (HTML snippet) html = input("HTML: ").strip() if html.startswith("https://"): return None else: # call the parse function for extraction and print output result = parse(html) print(result) if __name__ == "__main__": main()
iZusi/CS50P-Portfolio
problem_sets/problem_set7/watch/watch.py
watch.py
py
766
python
en
code
0
github-code
6
74165330428
from tkinter import* from tkinter import ttk from tkinter import Tk from PIL import Image, ImageTk from student import student import os import tkinter from train import Train from facereco import Face_Reco from attendance import atendance from developer import developer from help import help class facerecognitionsystem: def __init__(self, root): self.root = root self.root.geometry("1530x790+0+0") self.root.title("Face Recogn") img = Image.open(r"C:\Users\Dell\Desktop\tiet.jfif") img = img.resize((500,130),Image.ANTIALIAS) self.photoimg = ImageTk.PhotoImage(img) first_label = Label(self.root,image = self.photoimg) first_label.place(x=0,y=0,width=500,height=160) img1 = Image.open(r"C:\Users\Dell\Desktop\ss.jpg") img1 = img1.resize((500,130),Image.ANTIALIAS) self.photoimg1 = ImageTk.PhotoImage(img1) first_label = Label(self.root,image = self.photoimg1) first_label.place(x=500,y=0,width=500,height=160) img2 = Image.open(r"C:\Users\Dell\Desktop\sjd.jfif") img2 = img2.resize((500,130),Image.ANTIALIAS) self.photoimg2 = ImageTk.PhotoImage(img2) first_label = Label(self.root,image = self.photoimg2) first_label.place(x=1000,y=0,width=500,height=160) img3 = Image.open(r"C:\Users\Dell\Desktop\bg.jpg") img3 = img3.resize((1530,630),Image.ANTIALIAS) self.photoimg3 = ImageTk.PhotoImage(img3) bg_label = Label(self.root,image = self.photoimg3) bg_label.place(x=0,y=160,width=1530,height=630) title_lbl = Label(bg_label, text ="FACE RECOGNITION SYSYTEM ", font=("times new roman", 35, "bold"), bg = "white", fg = "green") title_lbl.place(x=0,y=0,width=1530,height=100) #student button img4 = Image.open(r"C:\Users\Dell\Desktop\student details.jfif") img4 = img4.resize((160,160),Image.ANTIALIAS) self.photoimg4 = ImageTk.PhotoImage(img4) b1 = Button(bg_label, image = self.photoimg4, command = self.student_details, cursor ="hand2") b1.place(x=150,y=80,width=160,height=160) b1_1 = Button(bg_label, text = "Student Details",command = self.student_details , cursor ="hand2", font=("times new roman", 15, "bold"), bg = "white", fg = "green") b1_1.place(x=150,y=240,width=160,height=40) #detect faces img5 = Image.open(r"C:\Users\Dell\Desktop\fr.jfif") img5 = img5.resize((160,160),Image.ANTIALIAS) self.photoimg5 = ImageTk.PhotoImage(img5) b2 = Button(bg_label, image = self.photoimg5, cursor ="hand2",command=self.face_data) b2.place(x=400,y=80,width=160,height=160) b2_1 = Button(bg_label, text = "Face Detector",command=self.face_data, cursor ="hand2", font=("times new roman", 15, "bold"), bg = "white", fg = "green") b2_1.place(x=400,y=240,width=160,height=40) img6 = Image.open(r"C:\Users\Dell\Desktop\attendance.jfif") img6 = img6.resize((160,160),Image.ANTIALIAS) self.photoimg6 = ImageTk.PhotoImage(img6) b3 = Button(bg_label, image = self.photoimg6, cursor ="hand2",command=self.attendance_data,) b3.place(x=700,y=80,width=160,height=160) b3_1 = Button(bg_label, text = "Attendance", cursor ="hand2",command=self.attendance_data, font=("times new roman", 15, "bold"), bg = "white", fg = "green") b3_1.place(x=700,y=240,width=160,height=40) img7 = Image.open(r"C:\Users\Dell\Desktop\help desk.png") img7 = img7.resize((160,160),Image.ANTIALIAS) self.photoimg7 = ImageTk.PhotoImage(img7) b4 = Button(bg_label, image = self.photoimg7,command = self.help1, cursor ="hand2") b4.place(x=1000,y=80,width=160,height=160) b4_1 = Button(bg_label, text = "Help Desk",command = self.help1, cursor ="hand2", font=("times new roman", 15, "bold"), bg = "white", fg = "green") b4_1.place(x=1000,y=240,width=160,height=40) img8 = Image.open(r"C:\Users\Dell\Pictures\training data.png") img8 = img8.resize((160,160),Image.ANTIALIAS) self.photoimg8 = ImageTk.PhotoImage(img8) b5 = Button(bg_label, image = self.photoimg8, cursor ="hand2", command =self.train_data) b5.place(x=150,y=350,width=160,height=160) b5_1 = Button(bg_label, text = "Train Data", cursor ="hand2", font=("times new roman", 15, "bold"), bg = "white", fg = "green",command=self.train_data) b5_1.place(x=150,y=510,width=160,height=40) #detect faces img9 = Image.open(r"C:\Users\Dell\Desktop\photos.jfif") img9 = img9.resize((160,160),Image.ANTIALIAS) self.photoimg9 = ImageTk.PhotoImage(img9) b6 = Button(bg_label, image = self.photoimg9, cursor ="hand2",command =self.open_image) b6.place(x=400,y=350,width=160,height=160) b6_1 = Button(bg_label, text = "Photos", cursor ="hand2",command =self.open_image ,font=("times new roman", 15, "bold"), bg = "white", fg = "green") b6_1.place(x=400,y=510,width=160,height=40) img10 = Image.open(r"C:\Users\Dell\Pictures\dev.png") img10 = img10.resize((160,160),Image.ANTIALIAS) self.photoimg10 = ImageTk.PhotoImage(img10) b7 = Button(bg_label, image = self.photoimg10, command = self.developer,cursor ="hand2") b7.place(x=700,y=350,width=160,height=160) b7_1 = Button(bg_label, text = "Developer",command = self.developer, cursor ="hand2", font=("times new roman", 15, "bold"), bg = "white", fg = "green") b7_1.place(x=700,y=510,width=160,height=40) img11 = Image.open(r"C:\Users\Dell\Desktop\exit.jfif") img11 = img11.resize((160,160),Image.ANTIALIAS) self.photoimg11 = ImageTk.PhotoImage(img11) b8 = Button(bg_label, image = self.photoimg11,command = self.exitf, cursor ="hand2") b8.place(x=1000,y=350,width=160,height=160) b8_1 = Button(bg_label, text = "Exit",command = self.exitf, cursor ="hand2", font=("times new roman", 15, "bold"), bg = "white", fg = "green") b8_1.place(x=1000,y=510,width=160,height=40) def open_image(self): os.startfile("data") #function buttons def student_details(self): self.new_window = Toplevel(self.root) self.app = student(self.new_window) def train_data(self): self.new_window = Toplevel(self.root) self.app = Train(self.new_window) def face_data(self): self.new_window = Toplevel(self.root) self.app = Face_Reco(self.new_window) def attendance_data(self): self.new_window = Toplevel(self.root) self.app = atendance(self.new_window) def developer(self): self.new_window = Toplevel(self.root) self.app = developer(self.new_window) def help1(self): self.new_window = Toplevel(self.root) self.app = help(self.new_window) def exitf(self): self.exitf = tkinter.messagebox.askyesno("Face Recognition", "Are you sure you want to exit?",parent = self.root) if self.exitf>0: self.root.destroy() else: return if __name__ == "__main__": root = Tk() obj = facerecognitionsystem(root) root.mainloop()
kg300902/Smart-Attendance-System
main.py
main.py
py
7,693
python
en
code
0
github-code
6
12509808903
import requests city = input('enter the city... ') api_address = 'https://samples.openweathermap.org/data/2.5/weather?q={},uk&appid=b6907d289e10d714a6e88b30761fae22'.format( city) url = api_address + city data = requests.get(url).json() # print(data) weather = data['weather'] print(weather[0]['description'])
Riyam224/techcampus---projects
04/testApi.py
testApi.py
py
319
python
en
code
0
github-code
6
71735044668
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats # Change the display options pd.options.display.max_columns = None pd.options.display.max_rows = None species_df = pd.read_csv('species_info.csv') observations_df = pd.read_csv('observations.csv') # print(species_df.head()) # print(observations_df.head()) # Describe data of species # print(species_df.dtypes) species = species_df.astype({'category': 'string', 'scientific_name': 'string', 'common_names': 'string', 'conservation_status': 'string'}) # Change our types of columns # print(species_df.info()) print(species_df.describe()) print(species_df.category.value_counts()) # print(species_df.conservation_status.value_counts(normalize=True)) # Pie and bar of category """ sub_category = species_df.category.value_counts() plt.figure(figsize=(10, 8)) plt.pie(species_df.category.value_counts().values, labels=species_df.category.value_counts().index, autopct='%1.1f%%') plt.suptitle('Category of species', fontweight='bold') plt.savefig('pie_category.png') plt.show() """ # Describe data of observations # print(observations_df.dtypes) observations_df = observations_df.astype({'scientific_name': 'string', 'park_name': 'string'}) # print(observations_df.info()) print(observations_df.describe()) # print(observations_df.observations.median()) # print(observations_df.observations.mode()) # print(observations_df.observations.mad()) # The distribution of conservation_status for animals """ status_counts = species_df.conservation_status.value_counts() plt.figure(figsize=(10, 8)) plt.subplot(1, 2, 1) sns.countplot(x='conservation_status', data=species_df) plt.xlabel('Conservation status') plt.ylabel('Count of status') plt.xticks(rotation=15) plt.subplot(1, 2, 2) plt.pie(status_counts, labels=status_counts.index, autopct='%1.1f%%') plt.axis('equal') plt.suptitle('Distribution of conservation status for animals', fontweight='bold') plt.subplots_adjust(wspace=0.5) plt.savefig('dis_con_status.png') plt.show() plt.clf() """ # Certain types of species more likely to be endangered influence = pd.crosstab(species_df.category, species_df.conservation_status) influence_prop = influence / len(species_df) print(influence) print(influence_prop) influence_marginals = influence_prop.sum(axis=0) influence_marginals_1 = influence_prop.sum(axis=1) print(influence_marginals) print(influence_marginals_1) chi2, pval, dof, expected = stats.chi2_contingency(influence) print(expected) print(chi2) # Species were spotted the most at each park """ merged_df = species_df.merge(observations_df) grouped_df = merged_df.groupby('category')['observations'].count() print(grouped_df) plt.figure(figsize=(15, 8)) plt.subplot(1, 2, 1) sns.boxplot(x='category', y='observations', data=merged_df) plt.xlabel('Species') plt.ylabel('Number of observations') plt.xticks(rotation=15) plt.subplot(1, 2, 2) plt.pie(grouped_df, labels=grouped_df.index, autopct='%1.1f%%') plt.suptitle('Species were spotted the most at each park', fontweight='bold') plt.savefig('species_observ.png') plt.show() plt.clf() """ # sns.histplot(x='observations', data=observations_df) # plt.show() print(species_df.scientific_name.mode())
Pavich-3/-Biodiversity-in-National-Parks
project.py
project.py
py
3,509
python
en
code
0
github-code
6
30186234566
from openzwave.network import ZWaveNetwork #from openzwave.network import ZWaveNetwork # Initialiser le réseau Z-Wave network = ZWaveNetwork() # Attendre que le réseau soit prêt network.start() print("Serveur Z-Wave démarré") # Boucle principale du serveur while True: # Vérifier les événements Z-Wave network.update()# Traiter les événements reçus for node in network.nodes: for value in network.nodes[node].get_changed_values(): print(f"Node ID: {node} - Value ID: {value.value_id} - Nouvelle valeur: {value.data}") # Arrêter le réseau Z-Wave network.stop()
ronisflamme/Iot-project
protocole Z-wave/serveur Z-wave.py
serveur Z-wave.py
py
607
python
fr
code
0
github-code
6
33585060395
__author__ = 'Vivek' #Given a sorted array and a target value, return the index if the target is found. # If not, return the index where it would be if it were inserted in order. #You may assume no duplicates in the array. def searchInsert(A, B): """ :param: A List of integers , B integer to be inserted :return: return index if B is already present in A , otherwise index at which B will be inserted """ low = 0 high = len(A) - 1 while low <= high : mid = (low + high)/2 if A[mid] == B : return mid if mid + 1 != len(A) and A[mid] < B < A[mid+1] : return mid + 1 elif mid == len(A) - 1 and A[mid] < B : return mid + 1 elif mid != 0 and A[mid - 1] < B < A[mid] : return mid elif mid == 0 and A[mid] > B : return mid if B < A[mid] : high = mid - 1 elif B > A[mid] : low = mid + 1
viveksyngh/InterviewBit
Binary Search/INSERTPOS.py
INSERTPOS.py
py
957
python
en
code
3
github-code
6
7262256391
from http import HTTPStatus from flask import current_app, jsonify, request from app.models.vacine_model import Vacine from sqlalchemy.exc import IntegrityError from app.exc.errors import CpfInvalid from app.services.verif_data import verify_data from app.services.generate_data import data_generate def get_vacines(): vacines = Vacine.query.all() serialized = [ { "cpf": vacine.cpf, "name": vacine.name, "vaccine_name": vacine.vaccine_name, "health_unit_name": vacine.health_unit_name, "first_shot_date": vacine.first_shot_date, "second_shot_date": vacine.second_shot_date } for vacine in vacines ] return jsonify(serialized), 200 def create_vacine(): data = request.get_json() verify_data(data) for key in data.keys(): if type(data[key]) != str: return {"error": f" A chave {key} está em um formato inválido."} try: new_vaccine = Vacine( cpf=data["cpf"], name=data["name"], vaccine_name=data["vaccine_name"], health_unit_name=data["health_unit_name"], first_shot_date=data_generate(), second_shot_date=data_generate() ) session = current_app.db.session session.add(new_vaccine) session.commit() return jsonify(new_vaccine), 201 except IntegrityError: return {"message": "CPF já cadastrado."}, HTTPStatus.CONFLICT except CpfInvalid: return {"message": "O CPF não está no formato correto."}, HTTPStatus.BAD_REQUEST except KeyError as err: return {"message": f"Está faltando a Key {str(err)}."}, HTTPStatus.BAD_REQUEST
Kenzie-Academy-Brasil-Developers/q3-sprint5-vacinacao-theogandara
app/controllers/vacine_controller.py
vacine_controller.py
py
1,750
python
en
code
1
github-code
6
5820650421
import hashlib import json import urllib.parse from typing import Union, Dict import asks from asks.response_objects import Response from spins_halp_line.constants import Credentials from spins_halp_line.util import get_logger, SynchedCache _cred_key = "resource_space" _field_ids = { "adventure_name": 86, "player": 87 } _base_url = "base_url" _user = "user" _secret = "secret" _l = get_logger() # search: # [ # { # "score":"0", # "ref":"1001", # "resource_type":"4", # "has_image":"0", # "is_transcoding":"0", # "creation_date":"2020-11-18 19:13:51", # "rating":"", # "user_rating":"", # "user_rating_count":"", # "user_rating_total":"", # "file_extension":"mp3", # "preview_extension":"jpg", # "image_red":"", # "image_green":"", # "image_blue":"", # "thumb_width":"", # "thumb_height":"", # "archive":"0", # "access":"0", # "colour_key":"", # "created_by":"1", # "file_modified":"2020-11-18 19:13:51", # "file_checksum":"", # "request_count":"0", # "new_hit_count":"8", # "expiry_notification_sent":"0", # "preview_tweaks":"0|1", # "file_path":"", # "modified":"2020-11-19 03:58:07", # "group_access":"", # "user_access":"", # "field12":"2020-11-18 19:13", # "field8":"Shipwreck Front Yard", # "field3":"", # "order_by":"", # "total_hit_count":"8" # } # ] # get_resource_data # { # "ref":"1001", // both # "title":"", // not the title field in the ui lol # "resource_type":"4", // both # "has_image":"0", // both # "is_transcoding":"0", // both # "hit_count":"8", # "new_hit_count":"8", // both # "creation_date":"2020-11-18 19:13:51", // both # "rating":"", // both # "user_rating":"", // both # "user_rating_count":"", // both # "user_rating_total":"", // both # "country":"", # "file_extension":"mp3", // both # "preview_extension":"jpg", // both # "image_red":"", // both # "image_green":"", // both # "image_blue":"", // both # "thumb_width":"", // both # "thumb_height":"", // both # "archive":"0", // both # "access":"0", // both # "colour_key":"", // both # "created_by":"1", // both # "file_path":"", // both # "file_modified":"2020-11-18 19:13:51", // both # "file_checksum":"", // both # "request_count":"0", // both # "expiry_notification_sent":"0", // both # "preview_tweaks":"0|1", // both # "geo_lat":"", # "geo_long":"", # "mapzoom":"", # "disk_usage":"623803", # "disk_usage_last_updated":"2020-11-18 19:13:52", # "file_size":"623803", # "preview_attempts":"1", # "field12":"2020-11-18 19:13", // both (?) # "field8":"Shipwreck Front Yard", // both (title) # "field3":"", // both (?) # "modified":"2020-11-19 03:58:07", # "last_verified":"", # "integrity_fail":"0", # "google_vision_processed":"", # "lock_user":"" # } # Community boards are useful: https://groups.google.com/g/resourcespace?pli=1 # static cache _global_cache = SynchedCache() class RSResource(object): @classmethod async def for_room(cls, room_name): # https://www.resourcespace.com/knowledge-base/user/special-search-terms # todo: The caching logic here could use improvement. We cache the data from a particular room # todo: so if we load the same room again we won't repeat those requests...but it seems wrong to # todo: cache searches? This caching model is based on a read-only assumption - that the server # todo: will be restarted if we make changes in the CMS. Maybe we should cache search results? # todo: In any case, since these calls should mostly be made once, it's possible that any caching # todo: is properly viewed as premature optimization. files = await cls._get( 'do_search', { 'search': f'room:{room_name}' } ) files = [f for f in files if f['field8'] == room_name] return await cls._from_list(files) @classmethod async def _from_list(cls, resources): result = [] for r in resources: obj = RSResource(r) await obj.load() result.append(obj) return result _k_id = 'ref' _k_ext = 'file_extension' _k_ui_title = 'field8' _k_d_url = 'data_url' _k_adventure = 'adventure_name' _k_player = 'player' _k_room = 'room' _k_date = 'date' _k_duration = 'duration' _k_path = 'path' _extended_fields = [ _k_adventure, _k_player, _k_room, _k_date, _k_duration, _k_path ] _resource_types = { '1': 'photo', '2': 'document', '3': 'video', '4': 'audio' } def __init__(self, data: Union[Dict[str, str], str, int]): global _global_cache self._cache = _global_cache self._data = {} self._loaded = False self._id = None if isinstance(data, dict): self._data = data self._loaded_basic = True # self._id = data.get(self._k_id) elif isinstance(data, int) or isinstance(data, str): self._id = int(data) def _throw_if_not_loaded(self): if not self._loaded: raise ValueError(f'{self} has not had its fields loaded!') async def load(self): cache_key = self.id # support caching results # todo: this cache doesn't work data = await self._cache.get(cache_key) print(f'loading resource {self.id}') if data is None: data = await self.get_info() data = await self.load_extended_fields(data) self._data = data # do this last so the extension is loaded data[self._k_d_url] = await self.get_data_url() await self._cache.set(cache_key, data) self._data = data self._loaded = True async def load_extended_fields(self, data): for field in (await self.get_all_fields()): name = field['name'] if name in self._extended_fields: data[name] = field['value'] return data @property def id(self): return self._data.get(self._k_id, self._id) @property def ext(self): return self._data.get(self._k_ext) @property def title(self): return self._data.get(self._k_ui_title) @property def url(self): return self._data.get(self._k_d_url) @property def adventure(self): return self._data.get(self._k_adventure) @property def player(self): return self._data.get(self._k_player) @property def room(self): return self._data.get(self._k_room) @property def date(self): return self._data.get(self._k_date) @property def duration(self): return self._data.get(self._k_duration) @property def path(self): return self._data.get(self._k_path) async def get_data_url(self): return await self._get( 'get_resource_path', { 'ref': self.id, 'getfilepath': 0, 'extension': self.ext, # 'generate': True, # 'alternative': -1, # 'size': '' } ) async def get_info(self): return await self._get( 'get_resource_data', { 'resource': self.id } ) # Example response JSON: # [ # {"value": "Shipwreck Adventure", "resource_type_field": "86", "ref": "86", "name": "adventure_name", # "title": "Adventure Name", "field_constraint": "0", "type": "3", "order_by": "0", "keywords_index": "1", # "partial_index": "0", "resource_type": "0", "resource_column": "", "display_field": "1", # "use_for_similar": "1", "iptc_equiv": "", "display_template": "", "tab_name": "", "required": "0", # "smart_theme_name": "", "exiftool_field": "", "advanced_search": "1", "simple_search": "0", "help_text": "", # "display_as_dropdown": "0", "external_user_access": "1", "autocomplete_macro": "", "hide_when_uploading": "0", # "hide_when_restricted": "0", "value_filter": "", "exiftool_filter": "", "omit_when_copying": "0", # "tooltip_text": "", "regexp_filter": "", "sync_field": "", "display_condition": "", "onchange_macro": "", # "linked_data_field": "", "automatic_nodes_ordering": "0", "fits_field": "", "personal_data": "0", # "include_in_csv_export": "1", "browse_bar": "1", "read_only": "0", "active": "1", "full_width": "0", # "frequired": "0", "fref": "86"}, # {"value": "", "resource_type_field": "87", "ref": "87", "name": "player", "title": "Player", # "field_constraint": "0", "type": "0", "order_by": "0", "keywords_index": "1", "partial_index": "0", # "resource_type": "0", "resource_column": "", "display_field": "1", "use_for_similar": "1", "iptc_equiv": "", # "display_template": "", "tab_name": "", "required": "0", "smart_theme_name": "", "exiftool_field": "", # "advanced_search": "1", "simple_search": "0", "help_text": "", "display_as_dropdown": "0", # "external_user_access": "1", "autocomplete_macro": "", "hide_when_uploading": "0", "hide_when_restricted": "0", # "value_filter": "", "exiftool_filter": "", "omit_when_copying": "0", "tooltip_text": "", "regexp_filter": "", # "sync_field": "", "display_condition": "", "onchange_macro": "", "linked_data_field": "", # "automatic_nodes_ordering": "0", "fits_field": "", "personal_data": "0", "include_in_csv_export": "1", # "browse_bar": "1", "read_only": "0", "active": "1", "full_width": "0", "frequired": "0", "fref": "87"}, # {"value": "Shipwreck Yard Front", "resource_type_field": "88", "ref": "88", "name": "room", "title": "Room", # "field_constraint": "", "type": "3", "order_by": "0", "keywords_index": "1", "partial_index": "0", # "resource_type": "0", "resource_column": "", "display_field": "1", "use_for_similar": "1", "iptc_equiv": "", # "display_template": "", "tab_name": "", "required": "0", "smart_theme_name": "", "exiftool_field": "", # "advanced_search": "1", "simple_search": "0", "help_text": "", "display_as_dropdown": "0", # "external_user_access": "1", "autocomplete_macro": "", "hide_when_uploading": "0", "hide_when_restricted": "0", # "value_filter": "", "exiftool_filter": "", "omit_when_copying": "0", "tooltip_text": "", "regexp_filter": "", # "sync_field": "", "display_condition": "", "onchange_macro": "", "linked_data_field": "", # "automatic_nodes_ordering": "0", "fits_field": "", "personal_data": "0", "include_in_csv_export": "1", # "browse_bar": "1", "read_only": "0", "active": "1", "full_width": "0", "frequired": "0", "fref": "88"}, # {"value": "Description", "resource_type_field": "8", "ref": "8", "name": "title", "title": "Title", # "field_constraint": "", "type": "0", "order_by": "10", "keywords_index": "1", "partial_index": "0", # "resource_type": "0", "resource_column": "title", "display_field": "0", "use_for_similar": "1", # "iptc_equiv": "2#005", "display_template": "", "tab_name": "", "required": "1", "smart_theme_name": "", # "exiftool_field": "Title", "advanced_search": "1", "simple_search": "0", "help_text": "", # "display_as_dropdown": "0", "external_user_access": "1", "autocomplete_macro": "", "hide_when_uploading": "0", # "hide_when_restricted": "0", "value_filter": "", "exiftool_filter": "", "omit_when_copying": "", # "tooltip_text": "", "regexp_filter": "", "sync_field": "", "display_condition": "", "onchange_macro": "", # "linked_data_field": "", "automatic_nodes_ordering": "0", "fits_field": "", "personal_data": "0", # "include_in_csv_export": "1", "browse_bar": "1", "read_only": "0", "active": "1", "full_width": "0", # "frequired": "1", "fref": "8"}, # ... # ] async def get_all_fields(self): return await self._get( 'get_resource_field_data', { 'resource': self.id } ) def _add_extended_field(self, field): self._data[field['name']] = field[''] @staticmethod async def _get(function, params, unwrap=True) -> dict: base_url = Credentials[_cred_key][_base_url] params['function'] = function params['user'] = Credentials[_cred_key][_user] qstring = urllib.parse.urlencode(params) secret = Credentials[_cred_key][_secret] signer = hashlib.sha256() signer.update(f'{secret}{qstring}'.encode("utf-8")) request = f'{base_url}?{qstring}&sign={signer.hexdigest()}' result: Response = await asks.get(request) # print("-" * 60) # print(request) # print(">" * 5) # print(result) # print("\\/" * 5) # print(result.content.decode("utf-8")) # print("-" * 60) # if unwrap and result.status_code >= 200 and result.status_code < 300: result: dict = json.loads(result.content.decode("utf-8")) return result def __str__(self): return f'RSR[{self.id}] {self.url}' def __repr__(self): return str(self)
aeturnum/spins_halp_line
spins_halp_line/media/resource_space.py
resource_space.py
py
13,353
python
en
code
0
github-code
6
2063946987
from loader import dp from aiogram import types from aiogram.dispatcher import FSMContext from aiogram.dispatcher.filters import Text from loguru import logger from datetime import datetime @dp.message_handler(commands='reload', state='*') @dp.message_handler(Text(equals='reload', ignore_case=True), state='*') async def cmd_reload(message: types.Message, state: FSMContext) -> None: """ Функция ресетит машину состояний :param msg: Message сообщение пользователя :param state: FSMContext машина состояний """ cur_state = await state.get_state() logger.info( f'\nПользователь: {message.from_user.full_name}, ' f'id: {message.from_user.id}, выполнил перезагрузку,' f'пользователь был в состоянии {cur_state},' f'дата: {datetime.now()}' ) await message.answer('Перезагрузка') await state.reset_state()
Taiven396/tickets_bot
handlers/reload.py
reload.py
py
1,059
python
ru
code
0
github-code
6
29956253019
import sys sys.path.append("..") # Adds higher directory to python modules path. import to_bip as tb import blocks as bl import shapegen as sh def main(): print(" ---- Pyramid ----") py = sh.Pyramid(5) py.generate() py_blocks = bl.init_blocks_3D(py.matlist()) py_conn = bl.connect_blocks_3D(py_blocks) for block in py_conn.values(): bl.visual_print_2D(block) print("\n") print("LAYERS:") for mat in py.matlist(): bl.print_matrix(mat) print("\n") print("\n") tb.write_BIP("pyramid.bip", py_conn) if __name__ == "__main__": main()
ninocapipoca/ModularRobots
tests/test_pyramid.py
test_pyramid.py
py
613
python
en
code
0
github-code
6
32195861005
from pyplasm import * import os,sys sys.path.insert(0, 'lib/py/') from lar2psm import * from larcc import * from sysml import * #Funzioni Utili DRAW = COMP([VIEW,STRUCT,MKPOLS]) DRAW2 = COMP([STRUCT,MKPOLS]) def rgbToPlasmColor(color): return [color[0]/255., color[1]/255., color[2]/255.] def creaFinestre(x,z): finestra0=CUBOID([x,0.1,z]) anta1=CUBOID([0.1,0.1,z-0.1]) anta1=T([2,3])([-0.1,0.1])(anta1) anta2=CUBOID([0.1,0.1,z-0.1]) anta2=T([1,2,3])([x-0.1,-0.1,0.1])(anta2) anta3=CUBOID([x,0.1,0.1]) anta3=T(2)(-0.1)(anta3) anta4=CUBOID([x,0.1,0.1]) anta4=T([2,3])([-0.1,z-0.1])(anta4) anta5=CUBOID([0.1,0.1,z-0.1]) anta5=T([1,2,3])([(x-0.1)/2,-0.1,0.1])(anta5) ante=STRUCT([anta1,anta2,anta3,anta4,anta5]) ante=COLOR(rgbToPlasmColor([153,51,0]))(ante) finestra0=COLOR(rgbToPlasmColor([153,203,255]))(finestra0) finestra=STRUCT([finestra0,ante]) return finestra def creaPorta(x,z): porta0=CUBOID([x,0.1,z]) porta0=COLOR(rgbToPlasmColor([192,64,0]))(porta0) cilind_T = CYLINDER([0.025, (10.0/12)*0.1])(50) cilind_T=ROTATE([2,3])(PI/2)(cilind_T) cilind_T=T([1,3])([x-0.1,z/2])(cilind_T) cilind_T=COLOR(rgbToPlasmColor([205,133,63]))(cilind_T) porta=STRUCT([porta0,cilind_T]) return porta #Camera1 master = assemblyDiagramInit([5,3,2])([[.1,1.5,1,1.5,.1],[.1,3,.1],[.1,2.7]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc= cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Porta toMerge = 23 diagram0 = assemblyDiagramInit([3,1,2])([[1.5,2,1.5],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Finestra toMerge = 13 diagram0 = assemblyDiagramInit([1,1,3])([[3],[.1],[1,1.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [30,35,9,14,20] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] camera=DRAW2(master) camera=COLOR(rgbToPlasmColor([255 ,204,153]))(camera) finestra1=creaFinestre(1,1.2) finestra1=T([1,3])([1.6,1.1])(finestra1) porta0=creaPorta(0.6,2.2) porta0=ROTATE([1,2])(PI)(porta0) porta0=T([1,2,3])([3.65,3.2,0.1])(porta0) camera1=STRUCT([camera,finestra1,porta0]) #Camera2 master = assemblyDiagramInit([5,3,2])([[.1,1.5,1,1.5,.1],[.1,3,.1],[.1,2.7]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc= cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Porta toMerge = 19 diagram0 = assemblyDiagramInit([3,1,2])([[1.5,2,1.5],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Finestra toMerge = 17 diagram0 = assemblyDiagramInit([1,1,3])([[3],[.1],[1,1.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [30,35,9,15,19] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] camera2Temp=DRAW2(master) camera2Temp=COLOR(rgbToPlasmColor([255 ,204,153]))(camera2Temp) finestra0=creaFinestre(1.2,1.2) finestra0=ROTATE([1,2])(PI)(finestra0) finestra0=T([1,2,3])([2.6,3.2,1.1])(finestra0) porta0=creaPorta(0.6,2.2) porta0=T([1,3])([3.05,0.1])(porta0) camera2=STRUCT([camera2Temp,finestra0,porta0]) camera2=T(2)(5)(camera2) #Bagno2 master = assemblyDiagramInit([3,5,2])([[.1,2.2,.1],[.1,.4,0.9,.4,.1],[.1,2.7]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Porta toMerge = 25 diagram2 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram2,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Finestra toMerge = 5 diagram0 = assemblyDiagramInit([1,1,3])([[3],[.1],[1,1.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,1) #Rimozione toRemove = [14,16,12,28,31] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] bagnoTemp=DRAW2(master) bagnoTemp=COLOR(rgbToPlasmColor([255 ,204,153]))(bagnoTemp) finestra0=creaFinestre(1,1.2) finestra0=ROTATE([1,2])(-PI/2)(finestra0) finestra0=T([2,3])([1.5,1.1])(finestra0) porta0=creaPorta(0.9,2.2) porta0=ROTATE([1,2])(PI/2)(porta0) porta0=T([1,2,3])([2.4,0.5,0.1])(porta0) bagno=STRUCT([bagnoTemp,finestra0,porta0]) bagno=T(2)(3.1)(bagno) #Stireria master = assemblyDiagramInit([5,3,2])([[.1,1.4,1,.5,.1],[.1,2.1,.1],[.1,2.7]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Porta toMerge = 13 diagram3 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram3,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Finestra toMerge = 16 diagram0 = assemblyDiagramInit([3,1,3])([[3,3,3],[.1],[1,1.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [34,28,9,14,19,31,37] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] DRAW2(master) stireriaTemp=DRAW2(master) stireriaTemp=COLOR(rgbToPlasmColor([255 ,204,153]))(stireriaTemp) finestra0=creaFinestre(1,1.2) finestra0=ROTATE([1,2])(-PI)(finestra0) finestra0=T([1,2,3])([2.5,2.3,1.1])(finestra0) porta0=creaPorta(1,2.2) porta0=T([1,3])([1.5,0.1])(porta0) stireria=STRUCT([stireriaTemp,finestra0,porta0]) stireria=T([1,2])([10.8,8.2])(stireria) #Cucina master = assemblyDiagramInit([5,6,2])([[.1,1,1,2,.1],[.1,1.5,1,1.2,0.3,.1],[.1,2.7]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #hpc4=T([1,2])([13.2,4.1])(hpc4) #Finestra toMerge = 53 diagram = assemblyDiagramInit([1,1,3])([[3],[.1],[1,1.2,.5]]) master = diagram2cell(diagram,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 35 diagram = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 25 diagram = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 7 diagram = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [61,63,57,31,59,14,25,36,16,27,38,18,29,40,20,31,42] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] cucinaTemp=DRAW2(master) cucinaTemp=COLOR(rgbToPlasmColor([255 ,204,153]))(cucinaTemp) finestra0=creaFinestre(1,1.2) finestra0=ROTATE([1,2])(PI/2)(finestra0) finestra0=T([1,2,3])([4.2,1.6,1.1])(finestra0) porta0=creaPorta(1,2.2) porta0=ROTATE([1,2])(PI)(porta0) porta0=T([1,2,3])([2.1,4.2,0.1])(porta0) porta1=creaPorta(1,2.2) porta1=T([1,3])([1.1,0.1])(porta1) porta2=creaPorta(1.2,2.2) porta2=ROTATE([1,2])(-PI/2)(porta2) porta2=T([2,3])([3.8,0.1])(porta2) cucina=STRUCT([cucinaTemp,finestra0,porta0,porta1,porta2]) cucina=T([1,2])([13.2,4.1])(cucina) #Bagno2 master = assemblyDiagramInit([5,3,2])([[.1,1.4,1,.4,.1],[.1,1.2,.1],[.1,2.7]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #hpc=T([1,2])([10.6,5.3])(hpc) #Porta toMerge = 17 diagram = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [29,15,9,20] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] bagnoTemp2=DRAW2(master) bagnoTemp2=COLOR(rgbToPlasmColor([255 ,204,153]))(bagnoTemp2) porta0=creaPorta(1,2.2) porta0=ROTATE([1,2])(PI)(porta0) porta0=T([1,2,3])([2.5,1.4,0.1])(porta0) bagno2=STRUCT([porta0,bagnoTemp2]) bagno2=T([1,2])([10.2,5.3])(bagno2) #Scale master = assemblyDiagramInit([3,5,2])([[.1,3.4,.1],[.1,.2,1,.2,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 25 diagram2 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram2,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Finestra toMerge = 19 diagram0 = assemblyDiagramInit([3,1,3])([[3,3,3],[.1],[1,1.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [28,15,34,13,17,14] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] scaleTemp=DRAW2(master) scaleTemp=COLOR(rgbToPlasmColor([255 ,204,153]))(scaleTemp) finestra0=creaFinestre(1.2,1.2) finestra0=ROTATE([1,2])(PI)(finestra0) finestra0=T([1,2,3])([2.4,1.6,1.1])(finestra0) porta0=creaPorta(1,2.2) porta0=ROTATE([1,2])(PI/2)(porta0) porta0=T([1,2,3])([3.6,0.3,0.1])(porta0) scale=STRUCT([scaleTemp,finestra0,porta0]) scale=T([1,2])([4,6.6])(scale) #Remove master = assemblyDiagramInit([3,3,2])([[.1,1.3,.1],[.1,1.4,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Remove toRemove = [5,11,17,3,9,15] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] remove=DRAW2(master) remove=T([1,2])([7.6,6.6])(remove) remove=COLOR(rgbToPlasmColor([255 ,204,153]))(remove) finestra0=creaFinestre(1.2,1.2) finestra0=ROTATE([1,2])(PI)(finestra0) finestra0=T([1,2,3])([2.4,1.6,1.1])(finestra0) #Soggiorno2 master = assemblyDiagramInit([5,3,2])([[.15,0.8,1.6,0.8,.15],[.1,6.0,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Porta toMerge = 13 diagram0 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [29,3,9,14,20,26,11,16,22] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] soggiornoTemp2=DRAW2(master) soggiornoTemp2=COLOR(rgbToPlasmColor([255 ,204,153]))(soggiornoTemp2) finestra0=creaFinestre(1.6,2.3) finestra0=T([1])(0.95)(finestra0) soggiorno2=STRUCT([soggiornoTemp2,finestra0]) soggiorno2=T([1,2])([4.1,0.5])(soggiorno2) #Soggiorno3 master = assemblyDiagramInit([7,4,2])([[.4,1,1,0.9,1,1,.3],[.1,.4,4.8,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc= cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Porta toMerge = 41 diagram0 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 33 diagram0 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 17 diagram0 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 9 diagram0 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [58,56,54,52,5,12,19,27,34,41,49,7,14,21,29,36,43,51,10,17,32,39] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] soggiornoTemp3=DRAW2(master) soggiornoTemp3=COLOR(rgbToPlasmColor([255 ,204,153]))(soggiornoTemp3) finestra0=creaFinestre(2,2.3) finestra0=T(1)(0.4)(finestra0) finestra1=creaFinestre(2,2.3) finestra1=T(1)(3.3)(finestra1) soggiorno3=STRUCT([soggiornoTemp3,finestra0,finestra1]) soggiorno3=T([1])([7.6])(soggiorno3) #Sala pranzo master = assemblyDiagramInit([5,3,2])([[.1,1,2,1,.1],[.1,3.5,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Finestra toMerge = 13 diagram0 = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [29,9,14,20,3,28,5,11,16,22,23] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] soggiornoTemp4=DRAW2(master) soggiornoTemp4=COLOR(rgbToPlasmColor([255 ,204,153]))(soggiornoTemp4) finestra0=creaFinestre(2,2.3) finestra0=T(1)(1.1)(finestra0) soggiorno4=STRUCT([soggiornoTemp4,finestra0]) soggiorno4=T([1,2])([13.2,0.5])(soggiorno4) #Camino master = assemblyDiagramInit([3,3,2])([[.1,1,.1],[.1,2,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) master = master[0], [cell for k,cell in enumerate(master[1]) ] camino=DRAW2(master) camino=T([1,2])([6.5,2])(camino) #Remove2 master = assemblyDiagramInit([4,5,2])([[.1,3.6,2.6,.1],[.1,2.8,1.1,1.1,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Finestra toMerge = 19 diagram0 = assemblyDiagramInit([3,1,3])([[3,3,3],[.1],[1,1.2,.5]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Finestra toMerge = 7 diagram = assemblyDiagramInit([1,1,2])([[2],[.1],[2.2,.5]]) master = diagram2cell(diagram,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [47,42,12,21,14,23,16,25,3,10,1,19,31,29,33,35,37,27] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] remove2Temp=DRAW2(master) remove2Temp=COLOR(rgbToPlasmColor([255 ,204,153]))(remove2Temp) porta0=creaPorta(1.1,2.2) porta0=ROTATE([1,2])(-PI/2)(porta0) porta0=T([2,3])([5.1,0.1])(porta0) finestra0=creaFinestre(1.2,1.2) finestra0=ROTATE([1,2])(PI)(finestra0) finestra0=T([1,2,3])([2.5,5.2,1.1])(finestra0) remove2=STRUCT([remove2Temp,finestra0,porta0]) remove2=T([1,2])([7.5,5.3])(remove2) #Remove3 master = assemblyDiagramInit([3,3,2])([[.1,2.1,.1],[.1,2,.1],[.1,2.7]]) V,CV= master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(CV)),CYAN,2) toRemove = [1,3,5,7,9,11,13,15,17] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] remove3=DRAW2(master) remove3=T([1,2])([2.4,3.1])(remove3) #Scale gradino2_vertici = [ [0,0], [0,0.3], [1.3,0], [1.3,0.3] ]; gradino2_num_lati = [range(1,5)] gradino2_2D = MKPOL([gradino2_vertici, gradino2_num_lati, None]) gradino2 = PROD([gradino2_2D, Q(0.2)]) gradino3 = PROD([gradino2_2D, Q(0.2)]) gradino3=T([2,3])([0.2,0.2])(gradino3) gradino4 = PROD([gradino2_2D, Q(0.2)]) gradino4=T([2,3])([0.4,0.4])(gradino4) gradino5 = PROD([gradino2_2D, Q(0.2)]) gradino5=T([2,3])([0.6,0.6])(gradino5) gradino6 = PROD([gradino2_2D, Q(0.2)]) gradino6=T([2,3])([0.8,0.8])(gradino6) gradino7 = PROD([gradino2_2D, Q(0.2)]) gradino7=T([2,3])([1,1])(gradino7) gradino8 = PROD([gradino2_2D, Q(0.2)]) gradino8=T([2,3])([1.2,1.2])(gradino8) gradino9 = PROD([gradino2_2D, Q(0.2)]) gradino9=T([2,3])([1.4,1.4])(gradino9) gradino10 = PROD([gradino2_2D, Q(0.2)]) gradino10=T([2,3])([1.6,1.6])(gradino10) gradino11 = PROD([gradino2_2D, Q(0.2)]) gradino11=T([2,3])([1.8,1.8])(gradino11) gradino12 = PROD([gradino2_2D, Q(0.2)]) gradino12=T([2,3])([2,2])(gradino12) gradino13 = PROD([gradino2_2D, Q(0.2)]) gradino13=T([2,3])([2.2,2.2])(gradino13) gradino14 = PROD([gradino2_2D, Q(0.2)]) gradino14=T([2,3])([2.4,2.4])(gradino14) gradino15 = PROD([gradino2_2D, Q(0.2)]) gradino15=T([2,3])([2.6,2.6])(gradino15) #Assemblo la scalinata scalinata=STRUCT([gradino2,gradino3,gradino4,gradino5,gradino6,gradino7,gradino8,gradino9,gradino10, gradino11,gradino12,gradino13,gradino14,gradino15]) scalinata=ROTATE([1,2])(PI/2)(scalinata) #La traslo sui 3 assi al centro della parte frontale scalinata=T([1,2])([7.3,5.3])(scalinata) #Faccio la seconda scala scalinata2=scalinata #Traslo la seconda scala scalinata2=T([1,2,3])([-11.9,-13.4,-2.7])(scalinata2) scalinata2=ROTATE([1,2])(-PI)(scalinata2) #Esterno est1= CUBOID([4,6,0.2]) est1=T([1,2,3])([13.2,-5.5,-0.1])(est1) est2= CUBOID([14.7,2.8,0.2]) est2=T([1,2,3])([-1.5,-2.3,-0.1])(est2) est3=CUBOID([14.5,0.2,0.2]) est3=T([1,2,3])([-1.5,-2.5,-0.1])(est3) est3=COLOR(rgbToPlasmColor([147,147,147]))(est3) est4=CUBOID([0.2,3.2,0.2]) est4=T([1,2,3])([13,-5.5,-0.1])(est4) est4=COLOR(rgbToPlasmColor([147,147,147]))(est4) est5=CUBOID([4,0.2,0.2]) est5=T([1,2,3])([13,-5.7,-0.1])(est5) est5=COLOR(rgbToPlasmColor([147,147,147]))(est5) est6=CUBOID([0.5,1.7,0.5]) est6=T([1,2,3])([16.9,-7,-0.1])(est6) est6=COLOR(rgbToPlasmColor([255 ,204,153]))(est6) colonna1=CUBOID([0.5,0.5,2.8]) colonna1=T([1,2])([3,-1])(colonna1) colonna2=CUBOID([0.5,0.5,2.8]) colonna2=T([1,2])([7,-1])(colonna2) colonna3=CUBOID([0.5,0.5,2.8]) colonna3=T([1,2])([10.5,-1])(colonna3) colonna4=CUBOID([0.5,0.5,2.8]) colonna4=T([1,2])([14,-1])(colonna4) colonna5=CUBOID([0.5,0.5,2.8]) colonna5=T([1,2])([3.9,10])(colonna5) colonne=STRUCT([colonna1,colonna2,colonna3,colonna4,colonna5]) ext4_vertici = [ [0,0], [0,2], [0.5,0], [0.5,2] ]; ext4_num_lati = [range(1,5)] ext4_2D = MKPOL([ext4_vertici, ext4_num_lati, None]) ext4 = PROD([ext4_2D, Q(2.8)]) ext4=T(2)(-2)(ext4) ext5_vertici = [ [0,0], [0,6], [2.8,0],[2.8,2.5],[0.3,6] ]; ext5_num_lati = [range(1,6)] ext5_2D = MKPOL([ext5_vertici, ext5_num_lati, None]) ext5 = PROD([ext5_2D, Q(0.5)]) ext5=ROTATE([1,3])(PI/2)(ext5) ext5=ROTATE([1,2])(PI)(ext5) ext5=T([1,2])([16.9,0.5])(ext5) baseEsterno=STRUCT([est1,est2]) esterno=STRUCT([ext4,ext5,colonne]) #ParteSuperiore parteSup=CUBOID([17.4,10.3,0.7]) parteSup=T([2,3])([-2,2.8])(parteSup) #Tetto tetto_vertici = [ [0,0], [10.3,0], [5.15,1.5], ]; tetto_num_lati = [range(1,4)] tetto_2D = MKPOL([tetto_vertici, tetto_num_lati, None]) #Porto in 2,5D tetto = PROD([tetto_2D, Q(17.4)]) tetto=ROTATE([2,3])(PI/2)(tetto) tetto=ROTATE([1,2])(PI/2)(tetto) tetto=T([2,3])([-2,3.5])(tetto) #Creo La mansarda #Camera1 master = assemblyDiagramInit([7,6,2])([[.1,0.5,1.1,2,1,1,.1],[.1,0.5,1.3,2,1.3,.2],[.1,2.3]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc= cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Finestra toMerge = 49 diagram0 = assemblyDiagramInit([1,1,3])([[3],[.1],[1,1.2,.2]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Porta toMerge = 35 diagram0 = assemblyDiagramInit([1,1,2])([[3],[.1],[2.2,.2]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) toMerge = 25 diagram0 = assemblyDiagramInit([1,1,2])([[3],[.1],[2.2,.2]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) toMerge = 9 diagram0 = assemblyDiagramInit([1,1,2])([[3],[.1],[2.2,.2]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) toMerge = 5 diagram0 = assemblyDiagramInit([1,1,2])([[3],[.1],[2.2,.2]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [80,88,84,86,24,26,28,30,35,37,39,41,46,48,50,52,58,60,62,64,13,15,17,19,82] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] cameraManTemp=DRAW2(master) cameraManTemp=COLOR(rgbToPlasmColor([255 ,204,153]))(cameraManTemp) finestra0=creaFinestre(1,1.2) finestra0=T([1,3])([3.7,1])(finestra0) porta0=creaPorta(1.1,2.1) porta0=T([1,3])([0.6,0.1])(porta0) porta1=creaPorta(1.1,2.1) porta1=ROTATE([1,2])(PI)(porta1) porta1=T([1,2,3])([1.7,5.3,0.1])(porta1) porta2=creaPorta(1.3,2.1) porta2=ROTATE([1,2])(-PI/2)(porta2) porta2=T([2,3])([1.9,0.1])(porta2) porta3=creaPorta(1.3,2.1) porta3=ROTATE([1,2])(-PI/2)(porta3) porta3=T([2,3])([5.2,0.1])(porta3) cameraMan=STRUCT([cameraManTemp,finestra0,porta0,porta1,porta2,porta3]) cameraMan=T([1])([4.1])(cameraMan) #bagnoMan master = assemblyDiagramInit([5,5,2])([[.1,0.5,1.5,2,.1],[.1,0.5,1.3,1.5,.1],[.1,2.3]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc= cellNumbering (master,hpc)(range(len(CV)),CYAN,2) toMerge = 21 diagram0 = assemblyDiagramInit([1,1,3])([[3],[.1],[1,1.2,.3]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [50,17,26,36,46,15,24,34,44,13,22,32,42] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] bagnoManTemp=DRAW2(master) bagnoManTemp=COLOR(rgbToPlasmColor([255 ,204,153]))(bagnoManTemp) finestra0=creaFinestre(1.6,1.2) finestra0=T([1,3])([0.5,1])(finestra0) bagnoMan=STRUCT([bagnoManTemp,finestra0]) #Balcone master = assemblyDiagramInit([3,3,3])([[.1,9.8,.1],[.1,1.3,.1],[.1,1.5,.1]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc= cellNumbering (master,hpc)(range(len(CV)),CYAN,2) #Rimozione toRemove = [13,16,17,14] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] balcone=DRAW2(master) balcone=T(2)(-1.5)(balcone) #muro muro=CUBOID([0.1,1.8,2.4]) muro=T(2)(3.5)(muro) #muro2 muro2=CUBOID([4.5,0.1,2.4]) muro2=T(2)(5.3)(muro2) #ParteSupTettoMansarda ParteSupTettoMansarda=CUBOID([10,9.7,0.3]) ParteSupTettoMansarda=T([2,3])([-0.7,2.4])(ParteSupTettoMansarda) #TettoMansarda tettoM_vertici = [ [0,0], [9.7,0], [4.85,1.5], ]; tettoM_num_lati = [range(1,4)] tettoM_2D = MKPOL([tettoM_vertici, tettoM_num_lati, None]) #Porto in 2,5D tettoM = PROD([tettoM_2D, Q(10)]) tettoM=ROTATE([2,3])(PI/2)(tettoM) tettoM=ROTATE([1,2])(PI/2)(tettoM) tettoM=T([2,3])([-0.7,2.7])(tettoM) #Sottotetto master = assemblyDiagramInit([5,5,2])([[.1,3,.1,6.7,.1],[.1,1,1,1.4,.1],[.1,2.3]]) V,CV = master hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc= cellNumbering (master,hpc)(range(len(CV)),CYAN,2) toMerge = 25 diagram0 = assemblyDiagramInit([1,1,2])([[3],[.1],[2.2,.2]]) master = diagram2cell(diagram0,master,toMerge) hpc = SKEL_1(STRUCT(MKPOLS(master))) hpc = cellNumbering (master,hpc)(range(len(master[1])),CYAN,2) #Rimozione toRemove = [11,21,30,49,13,15,17,36,34,32] master = master[0], [cell for k,cell in enumerate(master[1]) if not (k in toRemove)] sottotetto=DRAW2(master) sottotetto=T([2])(5.4)(sottotetto) tettoM=COLOR(rgbToPlasmColor([206,48,24]))(tettoM) ParteSupTettoMansarda=COLOR(rgbToPlasmColor([123,27 ,2 ]))(ParteSupTettoMansarda) balcone=COLOR(rgbToPlasmColor([255 ,204,153]))(balcone) muro=COLOR(rgbToPlasmColor([255 ,204,153]))(muro) muro2=COLOR(rgbToPlasmColor([255 ,204,153]))(muro2) tettoM=COLOR(rgbToPlasmColor([206,48,24]))(tettoM) ParteSupTettoMansarda=COLOR(rgbToPlasmColor([123,27 ,2 ]))(ParteSupTettoMansarda) cameraMan=COLOR(rgbToPlasmColor([255 ,204,153]))(cameraMan) sottotetto=COLOR(rgbToPlasmColor([255 ,204,153]))(sottotetto) bagnoMan=COLOR(rgbToPlasmColor([255 ,204,153]))(bagnoMan) balcone=COLOR(rgbToPlasmColor([255 ,204,153]))(balcone) muro=COLOR(rgbToPlasmColor([255 ,204,153]))(muro) muro2=COLOR(rgbToPlasmColor([255 ,204,153]))(muro2) Mansarda=STRUCT([cameraMan,bagnoMan,balcone,muro,muro2,sottotetto,ParteSupTettoMansarda,tettoM]) #ParteSupTettoMansarda,tettoM Mansarda=T([1,2,3])([3.9,1.5,2.8])(Mansarda) #Rimozione rimozione=CUBOID([10.1,14,3.8]) rimozione=T([1,3])([3.9,2.8])(rimozione) tetto=DIFFERENCE([tetto,rimozione]) parteSup=DIFFERENCE([parteSup,rimozione]) #Giardino domain1D = larDomain([32]) domain2D = larIntervals([32,48],'simplex')([1,1]) b1 = BEZIER(S1)([[-1.5,4], [0.5,-7], [6.5,-7], [7.5,0]]) b2=BEZIER(S1)([[-1.5,4], [0.5,5], [6.5,5], [7.5,0]]) controls = [b1,b2] mapping = BEZIER(S2)(controls) path = STRUCT(MKPOLS(larMap(mapping)(domain2D))) giardino1 = PROD([path, Q(2.8)]) giardino1=T([2,3])([-14.3,-2.9])(giardino1) b1 = BEZIER(S1)([[9.5,0], [10.5,-7], [16.5,-7], [17.3,4]]) b2=BEZIER(S1)([[9.5,0], [9.5,5], [16.5,5], [17.3,4]]) controls = [b1,b2] mapping = BEZIER(S2)(controls) path = STRUCT(MKPOLS(larMap(mapping)(domain2D))) giardino2 = PROD([path, Q(2.8)]) giardino2=T([2,3])([-14.3,-2.9])(giardino2) giardino3=CUBOID([18.8,6,2.8]) giardino3=T([1,2,3])([-1.5,-10.4,-2.9])(giardino3) giardino4=CUBOID([13,6,2.8]) giardino4=T([1,2,3])([2,-14,-2.9])(giardino4) #Assemblo giardino=STRUCT([giardino1,giardino2, giardino4]) giardino=T([2])(3.4)(giardino) giardino3=T([2])(3.4)(giardino3) #GiardinoREMOVE domain1D = larDomain([32]) domain2D = larIntervals([32,48],'simplex')([1,1]) b1 = BEZIER(S1)([[-1.3,4], [0.7,-7], [6.3,-7], [7.3,0]]) b2=BEZIER(S1)([[-1.3,4], [0.7,5], [6.3,5], [7.3,0]]) controls = [b1,b2] mapping = BEZIER(S2)(controls) path = STRUCT(MKPOLS(larMap(mapping)(domain2D))) giardinoR1 = PROD([path, Q(0.1)]) giardinoR1=T([2,3])([-14.3,0.1])(giardinoR1) b1 = BEZIER(S1)([[9.7,0], [10.7,-7], [16.3,-7], [17.1,4]]) b2=BEZIER(S1)([[9.7,0], [9.7,5], [16.3,5], [17.1,4]]) controls = [b1,b2] mapping = BEZIER(S2)(controls) path = STRUCT(MKPOLS(larMap(mapping)(domain2D))) giardinoR2 = PROD([path, Q(0.1)]) giardinoR2=T([2,3])([-14.3,0.1])(giardinoR2) giardinoR3=CUBOID([18.4,4.5,0.1]) giardinoR3=T([1,2,3])([-1.3,-10.5,0.1])(giardinoR3) giardinoR4=CUBOID([12.8,6,0.1]) giardinoR4=T([1,2,3])([2.1,-14,0.1])(giardinoR4) #Assemblo giardinoR=STRUCT([giardinoR1,giardinoR2, giardinoR4]) giardinoR=T([2])(3.4)(giardinoR) giardinoR3=T([2])(3.4)(giardinoR3) giardinoRemove=STRUCT([giardinoR,giardinoR3]) giardinoRemove=T(3)(-0.2)(giardinoRemove) giardinoRemove=COLOR(rgbToPlasmColor([34,139,34 ]))(giardinoRemove) #Assemblo principale=STRUCT([camera1,camera2,bagno,stireria,scale,soggiorno2,soggiorno3,soggiorno4,cucina ,bagno2,remove,remove2,remove3]) #Coloro camino=COLOR(rgbToPlasmColor([240,248,255]))(camino) scalinata=COLOR(rgbToPlasmColor([153,51,0]))(scalinata) scalinata2=COLOR(rgbToPlasmColor([229,228,226]))(scalinata2) parteSup=COLOR(rgbToPlasmColor([123 ,27 ,2 ]))(parteSup) esterno=COLOR(rgbToPlasmColor([255 ,204,153]))(esterno) baseEsterno=COLOR(rgbToPlasmColor([255 ,204,153]))(baseEsterno) tetto=COLOR(rgbToPlasmColor([206,48,24]))(tetto) giardino=COLOR(rgbToPlasmColor([184 ,115 ,51]))(giardino) giardino3= COLOR(rgbToPlasmColor([255 ,204,153]))(giardino3) est3=COLOR(rgbToPlasmColor([147,147,147]))(est3) #Creo la siepe pianta= CUBOID([0.5,0.5,0.8]) Tp=T(2)(0.6) piante1=STRUCT(NN(8)([Tp, pianta])) piante1=T([1,2])([-1.3,-8.2])(piante1) pianta2=T([1,2])([-1.1,-8.2])(pianta) pianta3=T([1,2])([-1.0,-8.8])(pianta) pianta4=T([1,2])([-0.8,-9.4])(pianta) pianta5=T([1,2])([-0.6,-10])(pianta) pianta6=T([1,2])([-0.4,-10.6])(pianta) pianta7=T([1,2])([-0.2,-11.2])(pianta) pianta8=T([1,2])([0,-11.8])(pianta) pianta9=T([1,2])([0.2,-12.4])(pianta) pianta10=T([1,2])([0.6,-13])(pianta) pianta11=T([1,2])([0.9,-13.6])(pianta) pianta12=T([1,2])([1.3,-14.2])(pianta) pianta13=T([1,2])([1.7,-14.8])(pianta) pianta14=T([1,2])([2.3,-15.4])(pianta) pianta15=T([1,2])([2.8,-15.6])(pianta) pianta16=T([1,2])([3.4,-15.8])(pianta) pianta17=T([1,2])([4.0,-15.8])(pianta) pianta18=T([1,2])([4.6,-15.6])(pianta) pianta19=T([1,2])([5.1,-15.4])(pianta) pianta20=T([1,2])([5.4,-14.9])(pianta) pianta21=T([1,2])([5.8,-14.4])(pianta) pianta22=T([1,2])([6.2,-13.8])(pianta) pianta23=T([1,2])([6.4,-13.2])(pianta) pianta24=T([1,2])([6.6,-12.6])(pianta) pianta25=T([1,2])([6.8,-12])(pianta) pianta26=T([1,2])([7,-11.4])(pianta) pianta27=T([1,2])([7,-10.6])(pianta) pianta28=T([1,2])([9.3,-10.6])(pianta) siepe1=STRUCT([pianta18,pianta19,pianta20,pianta21,pianta22,pianta23,pianta24,pianta25]) siepe2=STRUCT([pianta18,pianta19,pianta20,pianta21,pianta22,pianta23,pianta24,pianta25]) siepe2=T(1)(9)(siepe2) siepe3=STRUCT([pianta7,pianta8,pianta9,pianta10,pianta11,pianta12,pianta13,pianta14,pianta15,pianta16,pianta17]) siepe4=STRUCT([pianta7,pianta8,pianta9,pianta10,pianta11,pianta12,pianta13,pianta14,pianta15,pianta16,pianta17]) siepe4=T(1)(9.5)(siepe4) siepe5=STRUCT([pianta5,pianta6,pianta7,pianta8,pianta9]) siepe6=STRUCT([pianta5,pianta6,pianta7,pianta8,pianta9]) siepe6=ROTATE([1,3])(PI)(siepe6) siepe6=T([1,2,3])([16.6,1,0.8])(siepe6) siepe7=STRUCT([pianta2,pianta3,pianta4]) siepe8=STRUCT([pianta2,pianta3]) siepe8=ROTATE([1,3])(PI)(siepe8) siepe8=T([1,2,3])([16.2,0.5,0.8])(siepe8) siepe=STRUCT([siepe1,siepe2,siepe3,siepe4,siepe5,siepe6,siepe7,siepe8,piante1, pianta26,pianta27,pianta28]) siepe=COLOR(rgbToPlasmColor([128 ,128,0]))(siepe) plan1 = STRUCT([principale,scalinata,scalinata2,esterno,baseEsterno,parteSup,giardino,camino, Mansarda,tetto,giardino3,giardinoRemove,siepe,est3,est4,est5,est6]) #tetto,Mansarda #Visualizzo VIEW(plan1)
cvdlab-alumni/433043
2014-05-16/python/exercise1.py
exercise1.py
py
29,897
python
en
code
0
github-code
6
13941876090
from argparse import ArgumentParser from sudoku_solver import SudokuSolver from sudoku import Sudoku def get_args(): parser = ArgumentParser() parser.add_argument('--sudoku', required=True) return parser.parse_args() def main(): args = get_args() sudoku = Sudoku.from_file(args.sudoku) solver = SudokuSolver(sudoku) solved_sudoku = solver.solve() solved_sudoku.print_sudoku() if __name__ == '__main__': main()
delabania/sudoku-solver
solve.py
solve.py
py
450
python
en
code
0
github-code
6
11473045132
''' Terminal !pip install dash==0.26.5 # The core dash backend !pip install dash-html-components==0.12.0 # HTML components !pip install dash-core-components==0.28.0 # Supercharged components !pip install dash_bootstrap_components==0.13.1 ''' # Run this app with `python app.py` and # visit http://127.0.0.1:8050/ in your web browser. from dash import Dash, dcc, html import plotly.express as px import pandas as pd import dash_bootstrap_components as dbc import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots # create dash app = Dash(__name__) colors = { 'background': '#FFFFFF', 'text': '#288CC2' } ### bar chart example df = pd.DataFrame({ "Fruit": ["Apples", "Oranges", "Bananas", "Apples", "Oranges", "Bananas"], "Amount": [4, 1, 2, 2, 4, 5], "City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"] }) fig = px.bar(df, x="Fruit", y="Amount", color="City", barmode="group") fig.update_layout( #plot_bgcolor=colors['background'], #paper_bgcolor=colors['background'], font_color=colors['text'] ) ### scatter plot example df2 = pd.read_csv('https://gist.githubusercontent.com/chriddyp/5d1ea79569ed194d432e56108a04d188/raw/a9f9e8076b837d541398e999dcbac2b2826a81f8/gdp-life-exp-2007.csv') fig2 = px.scatter(df2, x="gdp per capita", y="life expectancy", size="population", color="continent", hover_name="country", log_x=True, size_max=60) fig2.update_layout( font_color=colors['text']) ### violin plot example 1 df3 = pd.DataFrame( {'x':np.tile(['no', 'yes'], 80000), 'y':np.random.normal(0, 1, 160000), 'cl':np.repeat([0, 1], 80000) } ) fig3 = px.violin(df3, x="x", y="y", color='cl', box=True, hover_data=df3.columns) fig4 = px.violin(df3, y="y", color='cl', violinmode='overlay', # draw violins on top of each other # default violinmode is 'group' as in example above hover_data=df3.columns) ### violin plot example 2 df4 = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv") fig5 = go.Figure() fig5.add_trace(go.Violin(x=df4['day'][ df4['smoker'] == 'Yes' ], y=df4['total_bill'][ df4['smoker'] == 'Yes' ], legendgroup='Yes', scalegroup='Yes', name='Yes', side='negative', line_color='blue') ) fig5.add_trace(go.Violin(x=df4['day'][ df4['smoker'] == 'No' ], y=df4['total_bill'][ df4['smoker'] == 'No' ], legendgroup='No', scalegroup='No', name='No', side='positive', line_color='orange') ) fig5.update_traces(meanline_visible=True) # orientation='h' -> horizontal fig5.update_layout(violingap=0, violinmode='overlay') ### subplot example df5 = px.data.iris() fig6 = make_subplots(rows=1, cols=2, subplot_titles=[ 'Fruit', # 1. subplot title 'City' # 2. subplot title ]) fig6.add_trace(go.Bar(x=df['Fruit'], y=df['Amount']),row=1, col=1) fig6.add_trace(go.Bar(x=df['City'], y=df['Amount'], text=df['Amount'], textposition='auto',), row=1, col=2) fig6.update_layout(title='Count', title_x=0.5) # set the web layout app.layout = html.Div(style={'backgroundColor': colors['background']}, children=[ html.H1( children='Hello Dash', style={ 'textAlign': 'center', 'color': colors['text'] } ), html.Div(children='Dash: A web application framework for your data.', style={ 'textAlign': 'center', 'color': colors['text'] }), dcc.Graph( id='example-graph-1', figure=fig ), dcc.Graph( id='example-graph-2', figure=fig2 ), dcc.Graph( id='example-graph-3', figure=fig3 ), dcc.Graph( id='example-graph-5', figure=fig5 ), dcc.Graph( id='example-graph-6', figure=fig6 ), ]) if __name__ == '__main__': app.run_server(debug=True)
hsyho11/python-plotly-dash
plotly_example.py
plotly_example.py
py
4,180
python
en
code
0
github-code
6
12170535231
# Created on 24 September 2019 from square import Square, getScaledFont from random import randint from math import cos, sin, pi, atan, copysign from pygame.mixer import * from pygame.draw import rect from pygame.locals import * from pygame.time import Clock from pygame.display import update from pygame.mouse import get_pos class GameDriver: def __init__(self, dim, w): self.dim = dim self.w = w self.squares = [] self.vals = [] # Stores sets of ((x,y): (#Squares to slide, surface)) self.slides = {} self.slide_duration = 300 self.v = (0, 0) self.score = 0 self.prev_score = 0 for y in range(dim[1]): row = [] val = [] for x in range(dim[0]): row.append(None) val.append(-1) self.squares.append(row) self.vals.append(val) def drawBoard(self, display): for y, row in enumerate(self.squares): for x, s in enumerate(row): if s != None: display.blit(s.surface, (x * self.w, y * self.w)) else: rect(display, (0, 0, 0), (x * self.w, y * self.w, self.w, self.w)) rect(display, (255, 255, 255), (x * self.w, y * self.w, self.w, self.w), 2) update() def move(self, display, undo): if len(self.slides) == 0: return if undo: self.score = self.prev_score for y, (row1, row2) in enumerate(zip(self.squares, self.vals)): for x, (s, val) in enumerate(zip(row1, row2)): if val == -1 and s != None: self.squares[y][x] = None elif val != -1 and s == None: self.squares[y][x] = Square(val, self.w) elif val != -1 and s != None: self.squares[y][x].changeVal(val) updates = 20 for i in range(updates): for x, y in self.slides.keys(): v, surface = self.slides[(x, y)] xf, yf = x + v[0], y + v[1] if undo: v = (-v[0], -v[1]) x, xf = xf, x y, yf = yf, y v = (v[0] * self.w, v[1] * self.w) x1, y1 = x * self.w, y * self.w dx, dy = v[0] * i / updates, v[1] * i / updates rect(display, (0, 0, 0), (x1 + dx, y1 + dy, self.w, self.w)) dx, dy = v[0] * (i + 1) / updates, v[1] * (i + 1) / updates display.blit(surface, (x1 + dx, y1 + dy)) update() Clock().tick(updates * 1000 / self.slide_duration) self.drawBoard(display) def addSquares(self, display): nones = [] for y, row in enumerate(self.squares): for x, s in enumerate(row): if s == None: nones.append((x, y)) for i in range(min(len(nones), 2)): idx = randint(0, len(nones) - 1) x, y = nones[idx] s = Square(2, self.w) self.squares[y][x] = s display.blit(s.surface, (x * self.w, y * self.w)) nones.pop(idx) update() def lost(self): for y, row in enumerate(self.squares): for x, s in enumerate(row): if s == None: return False else: adjacent = [] for delta in ((-1, 0), (1, 0), (0, -1), (0, 1)): x1, y1 = x + delta[0], y + delta[1] in_range = 0 <= x1 < self.dim[0] and 0 <= y1 < self.dim[1] if in_range and self.squares[y1][x1] != None: adjacent.append(self.squares[y1][x1].val) if s.val in adjacent: return False return True def updateScore(self, display, score_rect): font = getScaledFont("Times New Roman", (score_rect.w, score_rect.h), str(self.score)) text = font.render(str(self.score), 1, (255, 255, 255)) text_rect = text.get_rect(center=(score_rect.centerx, score_rect.centery)) rect(display, (0, 0, 0), text_rect) display.blit(text, text_rect) def run(self, display, events, undo_rect, score_rect): for e in events: if e.type == MOUSEBUTTONUP and e.button == BUTTON_LEFT and \ undo_rect.collidepoint(get_pos()): self.move(display, True) self.slides.clear() elif e.type == KEYUP: if e.key == K_LEFT: self.v = (-1, 0) elif e.key == K_RIGHT: self.v = (1, 0) elif e.key == K_UP: self.v = (0, -1) elif e.key == K_DOWN: self.v = (0, 1) else: continue self.slides.clear() self.prev_score = self.score move_x = self.v[0] != 0 is_neg = -1 in self.v idx = 0 if move_x else 1 lb = 0 if is_neg else -abs(self.dim[idx] * self.v[idx]) + 1 ub = abs(self.dim[idx] * self.v[idx]) if is_neg else 1 blanks = [] merges = [] prev = [] for v1 in range(lb, ub): for v2 in range(self.dim[1 - idx]): if len(blanks) <= v2: blanks.append(0) prev.append(0) merges.append(0) x = abs(v1) if move_x else v2 y = v2 if move_x else abs(v1) s = self.squares[y][x] self.vals[y][x] = -1 if s == None else s.val if s == None: blanks[v2] += 1 else: offset = blanks[v2] + merges[v2] dx, dy = self.v[0] * offset, self.v[1] * offset last_val = prev[v2] prev[v2] = s.val if last_val == s.val: offset += 1 dx1, dy1 = self.v[0] * offset, self.v[1] * offset self.slides[(x, y)] = ((dx1, dy1), s.surface) self.squares[y + dy1][x + dx1].upgrade() self.squares[y][x] = None prev[v2] = 0 merges[v2] += 1 self.score += s.val * 2 elif offset != 0: self.slides[(x, y)] = ((dx, dy), s.surface) self.squares[y + dy][x + dx] = s self.squares[y][x] = None self.move(display, False) self.addSquares(display) if sum(merges) >= 3: music.load("bomb.mp3") music.play() self.updateScore(display, score_rect) return self.lost()
AaronOrenstein210/2048
gameDriver.py
gameDriver.py
py
7,331
python
en
code
1
github-code
6
33040338091
n, m = map(int, input().split()) graph = [] arr = [] cnt = 0 for _ in range(n): graph.append(list(map(int, input()))) def dfs(x, y): global cnt if x<0 or y<0 or x>=n or y>=m: return False if graph[x][y] == 1: cnt += 1 graph[x][y] = 0 dfs(x-1, y) dfs(x, y-1) dfs(x+1, y) dfs(x, y+1) value = cnt cnt = 0 return True result = 0 for i in range(n): for j in range(m): if dfs(i,j) == True: arr.append(cnt) result += 1 print(max(arr)) print(result)
ParanMoA/SelfSoftware
ShinTIL/2023.01.19/1926.py
1926.py
py
584
python
en
code
0
github-code
6
7209449045
import pandas as pd def distance_in_yards(object_size_actual,object_size_mils): try: float(object_size_actual) and float(object_size_mils) except ValueError: return "Please enter a valid number." object_distance_yards = (float(object_size_actual)*27.8)/float(object_size_mils) return round(object_distance_yards,2) def correction_moa(correction_inches_seen,known_distance): try: float(correction_inches_seen) and float(known_distance) except ValueError: return "Please enter a valid number." correction_required = float(correction_inches_seen)/(float(known_distance)/100) return round(correction_required,2) def wind_correction(range_to_target,windspeed): try: float(range_to_target) and float(windspeed) except ValueError: return "Please enter a valid number." if float(range_to_target) <= 500: wind_correction_factor = ((float(range_to_target)/100)*float(windspeed))/15 return wind_correction_factor if 500 < float(range_to_target) <= 600: wind_correction_factor = ((float(range_to_target)/100)*float(windspeed))/14 return wind_correction_factor if 600 < float(range_to_target) <= 800: wind_correction_factor = ((float(range_to_target)/100)*float(windspeed))/13 return wind_correction_factor if 800 < float(range_to_target) <= 900: wind_correction_factor = ((float(range_to_target)/100)*float(windspeed))/12 return wind_correction_factor if 900 < float(range_to_target) <= 1000: wind_correction_factor = ((float(range_to_target)/100)*float(windspeed))/11 return wind_correction_factor else: return "Shot is too far for windage rule" def hw_tw_correction (range_to_target_hw_tw,windspeed_hw_tw,hw_or_tw): try: float(range_to_target_hw_tw) and float(windspeed_hw_tw) except ValueError: return "Please enter a valid number." hw_tw_correction_final = ((float(range_to_target_hw_tw)/100)*float(windspeed_hw_tw))/4 return round(hw_tw_correction_final,2) def new_range_zero(sight_height,known_zero_range,desired_zero_range,bullet_type): try: float(sight_height) except ValueError: return "Please enter a valid number" df_ballistics_chart = pd.read_excel(r"C:\Users\bnofi\OneDrive\Desktop\Long_range_shooting\hornady_excel_document.xlsx") bullet_drop_known_zero = df_ballistics_chart.query('BULLET == @bullet_type')[known_zero_range] bullet_drop_desired_zero = df_ballistics_chart.query('BULLET == @bullet_type' )[desired_zero_range] sight_adjustment = (float(bullet_drop_known_zero) - float(sight_height)) + (float(known_zero_range)/float(desired_zero_range)) * (float(sight_height) - (float(bullet_drop_desired_zero))) return round(sight_adjustment,2) def new_range_zero_moa(sight_height_moa,known_zero_range_moa,desired_zero_range_moa,bullet_type_moa): try: float(sight_height_moa) except ValueError: return "Please enter a valid number" df_ballistics_chart = pd.read_excel(r"C:\Users\bnofi\OneDrive\Desktop\Long_range_shooting\hornady_excel_document.xlsx") bullet_drop_known_zero_moa = df_ballistics_chart.query('BULLET == @bullet_type_moa')[known_zero_range_moa] bullet_drop_desired_zero_moa = df_ballistics_chart.query('BULLET == @bullet_type_moa' )[desired_zero_range_moa] a_one = 95.493*((float(sight_height_moa)-(float(bullet_drop_known_zero_moa)))/float(known_zero_range_moa)) a_two = 95.493*((float(sight_height_moa)-(float(bullet_drop_desired_zero_moa)))/float(desired_zero_range_moa)) final_moa_correction = float(a_two) - float(a_one) return round(final_moa_correction,2)
brandon10135/sportshootingrules
shooter_calcs.py
shooter_calcs.py
py
3,793
python
en
code
1
github-code
6
12830919470
from typing import Optional class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]: dummy = ListNode() while head: cur = head head = head.next cur.next = dummy.next dummy.next = cur return dummy.next
theRobertSan/LeetCode-Solutions-Python
206.py
206.py
py
419
python
en
code
1
github-code
6
29310319456
from random import randint print("Welcome to the Number GuessingGame!") print("I'm thinkin of a number between 1 and 100.") #select hard, you get 5 guesses/ select easy you get 10 def guessGame(): number2Guess = randint(1,100) guessed = False global lives lives = setLives() #game begins while guessed == False: print(f"You have {lives} attempts remaining to guess the number.") #you have x Lives and you can guess guessed = howClose(int(input("Make a guess: ")),number2Guess) #calls our function, if true we get out and we it again = input("Would you like to play again? 'y' or 'n': ") if again == 'y': guessGame() else: print("Game over") def setLives(): difficulty = input("Choose a difficulty. Type 'easy' or 'hard': ") if difficulty == 'easy': lives = 10 return lives elif difficulty == 'hard': lives = 5 return lives else: guessGame() def howClose(guess,hiddenNumber): global lives if guess == hiddenNumber: print(f"Congratulations the answer was {hiddenNumber}") return True elif guess < hiddenNumber: print("Too low") lives-=1 return False elif guess > hiddenNumber: print("Too high") lives-=1 return False guessGame()
RoccoPic/100-Days-of-Code
Day-12/numberGuessingGame.py
numberGuessingGame.py
py
1,337
python
en
code
0
github-code
6
73924507386
import gzip # 对两跳子图的处理:先过滤掉出现超过 2w 次的实体和出现少于 50 次的关系;然后再采样 15 核的 # 设置,同时只保留出现大于50次的关系,对两跳子图进行清洗 if __name__ == "__main__": item_dict = {} rela_dict = {} print('start statistics') with gzip.open('../doc/origin_graph_step2.txt.gz', 'rb') as f: for num, line in enumerate(f): line = line.strip() triplet = line.decode().split() # print(triplet) # 头实体 item_dict[triplet[0]] = 1 if triplet[0] not in item_dict else item_dict[triplet[0]] + 1 # 尾实体 item_dict[triplet[2]] = 1 if triplet[2] not in item_dict else item_dict[triplet[2]] + 1 # 关系 rela_dict[triplet[1]] = 1 if triplet[1] not in rela_dict else rela_dict[triplet[1]] + 1 if num % 100000 == 0: print(num) print('start filter') filter_list = [] with gzip.open('../doc/origin_graph_step2.txt.gz', 'rb') as f: for num, line in enumerate(f): line = line.strip() triplet = line.decode().split() # 高频过滤 if item_dict[triplet[0]] < 20000 and item_dict[triplet[2]] < 20000 and rela_dict[triplet[1]] > 50: filter_list.append(triplet) if num % 100000 == 0: print(num) # 统计新的实体 item_dict.clear() rela_dict.clear() for triplet in filter_list: # 头实体 item_dict[triplet[0]] = 1 if triplet[0] not in item_dict else item_dict[triplet[0]] + 1 # 尾实体 item_dict[triplet[2]] = 1 if triplet[2] not in item_dict else item_dict[triplet[2]] + 1 # 关系 rela_dict[triplet[1]] = 1 if triplet[1] not in rela_dict else rela_dict[triplet[1]] + 1 # 过滤实体 res_file = open('../doc/graph_step2.txt', 'w', encoding='utf-8') for triplet in filter_list: if item_dict[triplet[0]] > 15 and item_dict[triplet[2]] > 15 and rela_dict[triplet[1]] > 50: tri_str = triplet[0] + ' ' + triplet[1] + ' ' + triplet[2] + '\n' res_file.write(tri_str) # 统计关系 # rela_dict.clear() # for triplet in filter2_list: # rela_dict[triplet[1]] = 1 if triplet[1] not in rela_dict else rela_dict[triplet[1]] + 1 # 第二次过滤关系 # res_file = open('../doc/graph_step2.txt', 'w', encoding='utf-8') # for num, line in enumerate(filter2_list): # # triplet = line.split() # triplet = line # if rela_dict[triplet[1]] > 50: # # filter2_list.append(triplet) # tri_str = triplet[0] + ' ' + triplet[1] + ' ' + triplet[2] + '\n' # res_file.write(tri_str)
icecream-and-tea/labs_web
lab2/lab2_stage1/src/filter2.py
filter2.py
py
2,811
python
en
code
2
github-code
6
3822252154
import hp_items as hpi import hp_classes as hpc import random import time player_options = ['chaser', 'beater', 'keeper', 'seeker'] test_team_1 = {'chaser': [100, 150, 200], 'beater': [175, 125], 'keeper': [100, 150, 200], 'seeker': [13]} test_team_2 = {'chaser': [100, 150, 200], 'beater': [135, 165], 'keeper': [100, 150, 200], 'seeker': [7]} def quidditch_match(team1, team2): global player_options in_progress = True team1_score = 0 team1_snitch_score = 0 team2_score = 0 team2_snitch_score = 0 offense = team2 defense = team1 while in_progress: player1 = random.choice(player_options) player2 = random.choice(player_options) # seekers in play if player1 == 'seeker' or player2 == 'seeker': seeker_match = random.randrange(0,31) if team1['seeker'][0] == seeker_match: print(f''' *** Team 1's seeker has caught the snitch! ''') team1_snitch_score += 150 in_progress = False break elif team2['seeker'][0] == seeker_match: print(f''' *** Team 2's seeker has caught the snitch! ''') team2_snitch_score += 150 in_progress = False break else: print(f''' *** One of the seekers has seen the snitch! The Team1 and Team2 seekers race towards a glint of gold in the air, but it quickly disappears. Play resumes. ''') # chaser v. keeper elif player1 == 'chaser' and player2 == 'keeper': player1_value = random.choice(team1[player1]) player2_value = random.choice(team2[player2]) if player1_value >= player2_value: team1_score += 10 print(f''' *** Team1's chaser throws the quaffle past the keeper and scores! Team1's score: {team1_score} ''') elif player2_value > player1_value: print(f''' *** Team1's chaser throws the quaffle, but the Team2 keeper makes an excellent save! Play resumes. ''') elif player2 == 'chaser' and player1 == 'keeper': player2_value = random.choice(team1[player1]) player1_value = random.choice(team2[player2]) if player2_value >= player1_value: team1_score += 10 print(f''' *** Team2's chaser throws the quaffle past the keeper and scores! Team2's score: {team2_score} ''') elif player1_value > player2_value: print(f''' *** Team2's chaser throws the quaffle, but the Team1 keeper makes an excellent save! Play resumes. ''') # beaters. if player1 == 'beater' or player2 == 'beater': player1_value = random.choice(team1[player1]) player2_value = random.choice(team2[player2]) # team1 beater if player1 == 'beater' and player1_value >= player2_value: team1_score += 10 print(f''' *** Team1's beater knocks a bludger toward Team2's {player2}. The bludger knocks the {player2} off track, allowing Team1's chaser to score a goal! Team1's score: {team1_score} ''') elif player1 == 'beater' and player2_value > player1_value: team2_score += 10 print(f''' *** Team1's beater tries to knock Team2 off course, but the referee calls a foul on the play. During the foul shot, Team2 scores! Team2's score: {team2_score} ''') elif player2 == 'beater' and player2_value >= player1_value: team2_score += 10 print(f''' *** Team2's beater knocks a bludger toward Team1's {player2}. The bludger knocks the {player1} off track, allowing Team2's chaser to score a goal! Team2's score: {team2_score} ''') else: team1_score += 10 print(f''' *** Team2's beater tries to knock Team1 off course, but the referee calls a foul on the play. During the foul shot, Team1 scores! Team1's score: {team1_score} ''') else: print(f''' *** Player 1: {player1} Player 2: {player2} ''') # adding house points if team1_score > team2_score: winner = 'Team1' elif team2_score > team1_score: winner = 'Team2' else: winner = 'Tied game!' print(f''' *** End result: Team1: {team1_score + team1_snitch_score} Team2: {team2_score + team2_snitch_score} Winner: {winner} ''') return [team1_score, team2_score] game_1 = quidditch_match(test_team_1, test_team_2) hpc.house_points['Gryffindor'] += game_1[0] hpc.house_points['Slytherin'] += game_1[1] print(hpc.display_points())
meganmonaghan/Harry-Potter-Emulator
quidditch_test.py
quidditch_test.py
py
4,162
python
en
code
0
github-code
6
29924772061
""" Author: JW Date: 07/26/2023 Module Name: picture_capture_controls_uplink.py Description: This Python script is part of an image processing and classification application. It provides various functions for interacting with images, databases, and user stacks. The script includes functionalities such as simulating image classification, checking classification progress, and updating image labels in a database. It is designed to work with Anvil, tkinter, multiprocessing, and PIL (Python Imaging Library) libraries. Functions: - `open_file_explorer`: Opens a file explorer dialog for selecting directories. - `classify_images_simulate`: Simulates image classification and stores results in a database. - `start_classifier_build`: Initiates the image classification process, handling new or existing image stacks. - `check_classifier_progress`: Monitors the progress of image classification and retrieves completed labels and images. - `submit_labels_to_db`: Handles the submission of labels to a database, updates labels, and moves files based on labels. For detailed information on each function's purpose and usage, please refer to the function definitions and comments within the script. """ from time import sleep import random import json import uuid import multiprocessing from PIL import Image import anvil.media import os import io import shutil # Uplink imports: try: import utils.mySQL_utils as localSQL from uplink_scripts.stack import Stack # Local host imports except (ModuleNotFoundError) as mod_err: print("Trying local host imports in picture_capture_controls.py") from ..utils import mySQL_utils as localSQL from .stack import Stack # NOTE: When running from a docker container, we will be unable to import tkinter: try: import tkinter as tk from tkinter import filedialog except(ImportError) as err: print("Unable to import tkinter") # Set up our stack: image_stack = Stack() def open_file_explorer(): """ Opens a file explorer navigator for the user to select the source and / or destination directory. Returns str(file_path) *Depending on when function is called, file_path could be either the source or destination dir. """ try: root = tk.Tk() root.withdraw() file_path = filedialog.askdirectory() if not file_path: file_path = "N/A" root.destroy() return file_path except (Exception) as err: print("tikinter not installed...returning empty path") return "" def classify_images_simulate(image_full_path, img_name_list, job_id): """ Test function to simulate classify_images() 1. sleep 5 seconds 2. randomly pick a class 3. write result and job id to data-table """ labels = ["Cotton", "Plastic", "HID", "Tray", "Other"] cnx = localSQL.sql_connect() for index, img in enumerate(image_full_path): # 1 sleep sleep(10) # 2 randomly select a label rand = random.randint(0, 4) label = labels[rand] # write label & job_id to data-table: img_name = img_name_list[index] insert_query = f"INSERT INTO anvil_imgProcessor (job_id, img_name, img_label) VALUES ('{job_id}','{img_name}','{label}')" localSQL.sql_insert(cnx, insert_query) # Close db connection localSQL.sql_closeConnection(cnx) print("Finished classyfing") def start_classifier_build(json_data): """ json_data: {image_path, num_images} """ # convert json dict to python dict python_dict_classifier = json.loads(json_data) # Unpack the dictionary: page_num = python_dict_classifier.get("page_num") user_id = python_dict_classifier.get("user_id") num_images = python_dict_classifier.get("num_images") file_path = python_dict_classifier.get("file_path_src") # IF user wants to grab previous images (back_button press or jump_to_page) -> "pop" images from stack, ELSE get new images try: # Try getting images from the users stack using page_num as the list index. labels, img_names, images, update_database = image_stack.pop(user_id, page_num) # If the number of images retrieved == to number of images user currently wants to retrieve, return the images: if (int(num_images) == len(img_names)): print(f"Retrieved previous images for page {page_num}") return images, labels, img_names, update_database # If the user changed the number of images to display on each page -> reset stack and grab new images. else: print(f"Number of images changed... reseting users stack") # TODO: If user changed the number of images to grab, reset the users stack: image_stack.reset_stack(user_id) # If we get a KeyError or IndexError -> grab new images from directory. except (KeyError, IndexError) as err: print(f"{err}: Grabbing new images for page {page_num}") # Set up a job ID: job_id = str(uuid.uuid4()) job_id = job_id.replace("-", "") try: # NOTE: with large n we may want to only a subset of all images all_files_in_dir = os.listdir(file_path) # Filter to select only image files: all_images = [file for file in all_files_in_dir if file.endswith(".jpg") or file.endswith(".png")] except (Exception) as e: print("Could not access directory") return None num_images_found = len(all_images) # Check to make sure images were found in the directory: if(num_images_found == 0): print("Dir does not contain any images") return None, None, None, None # If for whatever reason the directory has < 10 images -> grab all found images if(num_images_found < int(num_images)): # Randomly select n images: rand_n_imgs = random.sample(all_images, int(num_images_found)) # now that we've selected our images, lets move them to a seperate folder such that they are not re-used else: # Randomly select n images: rand_n_imgs = random.sample(all_images, int(num_images)) # now that we've selected our images, lets move them to a seperate folder such that they are not re-used #Establish Connection to the Databse: cnx = localSQL.sql_connect() # Write job ID to anvil_img_Classifier data-table: insert_query = f"INSERT INTO anvil_imgProcessor (job_id) VALUES ('{job_id}')" localSQL.sql_insert(cnx, insert_query) #Close connection to the database: localSQL.sql_closeConnection(cnx) imgs_full_path, img_name_list = [], [] # Loop accomplishes two things: # 1) Creates the full image path for each randomly selected image # 2) Reads in the image and converts to anvil.BlobMedia for image in rand_n_imgs: # Get the full image path img_full_path = file_path + "/" + image # Keep track of all the img paths imgs_full_path.append(img_full_path) img_name_list.append(image) ############## # NOTE: SPAWN new process here: #classify_images(imgs_full_path, job_id) ############## process = multiprocessing.Process(target=classify_images_simulate, args=(imgs_full_path, img_name_list, job_id)) # Start the process process.start() return job_id def check_classifier_progress(json_data): """ This function will be called every n seconds once timer reaches 0... 1. Every n seconds go out and check database to see how many images / n are ready 1a. if > n images are done, return % finished and update progress bar. 1b. if n images are done retrieve labels, set flag HIGH indiciating we are ready to display the images to the user """ MAX_STACK_HEIGHT = 50 # Starting with 50, could be increased... (100*num_images) = # of elem ents in each stack # convert json dict to python dict python_dict_classifier = json.loads(json_data) # Unpack the dictionary: user_id = python_dict_classifier.get("user_id") num_images = python_dict_classifier.get("num_images") job_id = python_dict_classifier.get("job_id") file_path = python_dict_classifier.get("file_path_src") # Check database using job_id to see how many images are ready. # Establish Connection to the Databse: cnx = localSQL.sql_connect() # Create a cursor cursor = cnx.cursor() search_query = f"SELECT * FROM anvil_imgProcessor WHERE job_id = ('{job_id}')" cursor.execute(search_query) rows = cursor.fetchall() # Close the connection cnx.close() num_rows_ready = len(rows) print(num_rows_ready) img_labels_list, img_name_list, img_list = [], [], [] img_labels_dict = {} if(num_rows_ready == (num_images + 1)): done_classifying = True # Set our flag to true pct_ready = 1 # Once images are done get the assigned labels: for row in rows: # Get the assigned label for each image: img_labels_list.append(row[-1]) img_name_list.append(row[-2]) # Delete the first element of each list (first element has NULL label and img name values) del img_labels_list[0] del img_name_list[0] # Store key-value pair (img_name: label) in dict data-structure for i in range(len(img_name_list)): img_labels_dict[img_name_list[i]] = img_labels_list[i] # Using the image name and file path, import the image to type anvil.BlobMedia # Get the full image path img_full_path = file_path + "/" + img_name_list[i] # Retrieve our image using PIL pil_img = Image.open(img_full_path) # resize image to 1280 x 960 resized_image = pil_img.resize((960,720)) bs = io.BytesIO() # Convert to bytes: resized_image.save(bs, format="png") # Conver to type anvil.BlobMedia so that we can display it for the client anvil_image = anvil.BlobMedia("image/png", bs.getvalue(), name="cotton") img_list.append(anvil_image) print(img_labels_list) print(img_labels_dict) # Set-up the "stack" here: # Pythonic: If user does not have a stack created, create one try: print(f"Adding images for user {user_id} to stack...") image_stack.push(user_id, img_labels_dict, img_name_list, img_list) except (KeyError) as ke: print("No ID found!") print(f"Creating stack for user: {user_id} ") image_stack.init_user(user_id, img_labels_dict, img_name_list, img_list) #Check length of stack if stack is > max_len --> start removing elements try: stack_height = image_stack.size(user_id) if(stack_height > MAX_STACK_HEIGHT): print(f"Users stack reached max height of {MAX_STACK_HEIGHT}, Removing first element...") # Delete first [0] from stack image_stack.delete_element(user_id) except (KeyError) as err: print(f"Unable to get height of users stack: {err}") return [done_classifying, pct_ready, img_labels_dict, img_name_list, img_list] else: done_classifying = False pct_ready = ((num_rows_ready - 1) / (num_images)) * 100 return [done_classifying, pct_ready, False, False, False] def submit_labels_to_db(json_data): """ Retrieves images from src directory, runs through classifier, adds images to users stack, and returns images and labels. Function Outline: 1. Unpack JSON data 2. Determine if retreiving previously used images, or grabing new images from directory. Using a Try / Except statement, that returns a IndexError if the index (page_num) is not valid (aka grab new images then) 3. Access the source directory (file_path) and randomly selected num_images_to_get from directory. 4. Convert each image to type Anvil.BlobMedia so that we can display them in a Canvas component. 4a. TEMPORARY: assign image a "dummy" label of either HID or Cotton 4b. TODO: ADD in classifers to replace "dummy" labels 5. Check if user already has a stack made for them, if not create one using user_id 5a. Add images to already made or newly created user stack 6. Check if MAX_STACK_HEIGHT has been exceeded, if so remove first entry from stack. 6. Return the images (img_list), img_labels (img_label_dict), img names (img_name_list), and update_database BOOLEAN indicator """ #Extract our json data into a python dict python_dict = json.loads(json_data) processed_dir = python_dict.get("file_path_dst") #processed_dir = "/home/pi/Desktop/Jon_workspace/Anvil/processed_images" # NOTE: ONLY USED FOR TESTING (REMOVE FOR DEPLOYMENT) # Create the destination directory if it doesn't exist if not os.path.exists(processed_dir): os.makedirs(processed_dir) keys_list = [] # Unpack the dict: classifier_labels = python_dict.get("original_labels") #human modified labels modified_labels = python_dict.get("modified_labels") selected_folder = python_dict.get("selected_folder") page_num = python_dict.get("page_num") user_id = python_dict.get("user_id") use_sub_folders = python_dict.get("proc_sub_folders") #If user manually specified the path, enter: if(selected_folder == "dir"): # Add the user modified labels to their stack: try: print(f"Adding modified labels for user {user_id} to stack...") image_stack.push(user_id, user_labels=modified_labels) except (KeyError) as ke: print("No ID found!") print(f"Creating modified labels stack for user: {user_id} ") image_stack.init_user(user_id, user_labels=modified_labels) file_path = python_dict.get("file_path_src") #file_path = "/home/pi/Desktop/Jon_workspace/Anvil/Cotton" # NOTE: ONLY USED FOR TESTING (REMOVE FOR DEPLOYMENT) # Check if we need to set up sub-folders: if(use_sub_folders): print("Setting up sub folders") # Set-up sub-folders for the processed images proc_cotton_dir = processed_dir + "/cotton" proc_tray_dir = processed_dir + "/tray" proc_plastic_dir = processed_dir + "/plastic" proc_hid_dir = processed_dir + "/HID" proc_other_dir = processed_dir + "/other" proc_mislabeled_dir = processed_dir + "/mislabeled" # Create the destination directory if it doesn't exist if not os.path.exists(proc_cotton_dir): os.makedirs(proc_cotton_dir) if not os.path.exists(proc_tray_dir): os.makedirs(proc_tray_dir) if not os.path.exists(proc_plastic_dir): os.makedirs(proc_plastic_dir) if not os.path.exists(proc_hid_dir): os.makedirs(proc_hid_dir) if not os.path.exists(proc_other_dir): os.makedirs(proc_other_dir) if not os.path.exists(proc_mislabeled_dir): os.makedirs(proc_mislabeled_dir) # get all the keys (image names) for key in classifier_labels: keys_list.append(key) # Next, Establish Connection to the Databse: cnx = localSQL.sql_connect() # Loop through each key(image name) and add to correct db column for key in range(len(keys_list)): image_name = keys_list[key] orginal_label = classifier_labels[keys_list[key]] corrected_label = modified_labels[keys_list[key]] # Get our source path (used with moving the image): source_path = os.path.join(file_path, image_name) # Get our processed img path: dest_path = os.path.join(processed_dir, image_name) if(orginal_label == corrected_label): correctP = True # Add to to columns: Correct_column, JOINT, and Path add_query = f"INSERT INTO anvil_imgClassification ({corrected_label}, JOINT, Path) VALUES ('{str(keys_list[key])}', '{str(orginal_label)}' ,'{str(source_path)}')" localSQL.sql_insert(cnx, add_query) else: # If the classifier got the prediction wrong, add img file name to GotWrong column and correct column in database correctP = False # Add to to columns: GotWrong, Correct_column, JOINT, and Path gotWrong_query = f"INSERT INTO anvil_imgClassification (GotWrong, {corrected_label}, JOINT, Path) VALUES ('{str(keys_list[key])}', '{str(keys_list[key])}', '{str(orginal_label)}' , '{str(source_path)}')" localSQL.sql_insert(cnx, gotWrong_query) #Lastly, move image to new processed directory: try: if(use_sub_folders): if(corrected_label == "Cotton"): shutil.copy(source_path, proc_cotton_dir) elif(corrected_label == "Plastic" ): shutil.copy(source_path, proc_plastic_dir) elif(corrected_label == "HID" ): shutil.copy(source_path, proc_hid_dir) elif(corrected_label == "Tray" ): shutil.copy(source_path, proc_tray_dir) elif(corrected_label == "Other" ): shutil.copy(source_path, proc_other_dir) # Check if we also need to move file to the GotWrong fodler: if(correctP): # Delete the file from the src directory if os.path.exists(source_path): os.remove(source_path) else: # move file to the GotWrong folder: shutil.move(source_path, proc_mislabeled_dir) else: shutil.move(source_path, dest_path) except (FileNotFoundError) as e_file: return #Close connection to the database: localSQL.sql_closeConnection(cnx) return elif(selected_folder == "update"): # Need to update modified labels stack: print(f"Updating modified labels from page {page_num} for user {user_id}") image_stack.update_stack(user_id, page_num, user_labels=modified_labels) # Names of table columns, will be iterated over column_names = ["Cotton","Plastic", "HID", "Tray", "Other"] print("Updating database...") # Search through CSV and find the lines that need to be altered: # get all the keys for key in classifier_labels: keys_list.append(key) # Next, Establish Connection to the Databse: cnx = localSQL.sql_connect() # Create a cursor cursor = cnx.cursor() for key in range(len(keys_list)): image_name = keys_list[key] corrected_label = modified_labels[keys_list[key]] #Iterate over the possible column (labels) in the table: for column in column_names: #Search for img name in each column to get the row: search_query = f"SELECT * FROM anvil_imgClassification WHERE {column} = ('{str(keys_list[key])}')" cursor.execute(search_query) result = cursor.fetchone() try: cnx.commit() except (Exception) as err: pass # RESULT RETURNED FORMAT: (row_number(id), user_id, Cotton, Plastic, Tray, HID, Other, GotWrong, PATH, JOINT) of type tuple if result: if corrected_label == column: print(f"No need to update img {image_name} found in {column} with label {corrected_label}, breaking out...") break # print(f"result value returned: {result}") # print(f"Image name {str(keys_list[key])}") # Get row number: row_number = str(result[0]) # print(f"column value: {row_number}") # Get JOINT value: joint_value = str(result[-1]) # Set row value in previous column and GotWrong column to None: update_query = "UPDATE anvil_imgClassification SET %s = NULL, GotWrong = NULL WHERE id = %s"%(column, row_number) cursor.execute(update_query) cnx.commit() # check if joint == new_label if(joint_value == corrected_label): print("Joint == Correct!") # Add img name to the corrected_label colum in row_number: update_query = f"UPDATE anvil_imgClassification SET {str(corrected_label)} = '{str(keys_list[key])}' WHERE id = '{row_number}'" cursor.execute(update_query) cnx.commit() else: update_query =f"UPDATE anvil_imgClassification SET {str(corrected_label)} = '{str(keys_list[key])}', GotWrong = '{str(keys_list[key])}' WHERE id = '{row_number}'" cursor.execute(update_query) cnx.commit() # print("breaking..") break else: print(f"result not found in column {column}") #Close connection to the database: cnx.close() return
JonWakefield/Anvil-Web-App
server_code/uplink_scripts/picture_capture_controls_uplink.py
picture_capture_controls_uplink.py
py
22,281
python
en
code
0
github-code
6
71733863868
from logging import Logger from extract.adapters.airtable.credentials import AirtableCredentials from pyairtable import Table class AirTableAdapter: def __init__(self, logger: Logger, credentials: AirtableCredentials): self.logger = logger self.api_key = credentials.api_key self.base_id = credentials.base_id def extract(self, table_ids: list) -> dict: data_fetched = {} dict_of_data = {} for table_id in table_ids: try: table = Table(self.api_key, self.base_id, table_id) dict_of_data[table_id] = table.all() data_fetched[table_id] = True except RuntimeError: self.logger.error(f"loading of airtable '{table_id}' data has not been successful") for table_id in data_fetched: if data_fetched[table_id] is True: self.logger.info(f"loading of airtable '{table_id}' data has been successful") return dict_of_data
patrikbraborec/good-crm-analytics
src/extract/adapters/airtable/impl.py
impl.py
py
1,004
python
en
code
1
github-code
6
24200260957
class Solution: def strToInt(self, s: str) -> int: s = s.lstrip() if not s: return 0 res = 0 i = 1 is_positive = True max_int = 2 ** 31 - 1 if s[0] == "-": is_positive = False elif s[0] != "+": i = 0 for c in s[i: ]: if not "0" <= c <= "9": break res = 10 * res + ord(c) - ord("0") if res > max_int: return max_int if is_positive else -max_int - 1 return res if is_positive else -res # class Solution: # def strToInt(self, s: str) -> int: # nums = {str(x): x for x in range(10)} # # 跳过开头无用空格 # i = 0 # while i < len(s) and s[i] == " ": # i += 1 # # 字符串为空或字符串仅包含空白字符 # if i == len(s): # return 0 # int_max = 2 ** 31 - 1 # int_min = -(2 ** 31) # if s[i] == "+": # res = 0 # i += 1 # while res < int_max and i < len(s) and s[i] in nums: # res = res * 10 + nums[s[i]] # i += 1 # return res if res < int_max else int_max # elif s[i] == "-": # res = 0 # i += 1 # while res < -int_min and i < len(s) and s[i] in nums: # res = res * 10 + nums[s[i]] # i += 1 # return -res if -res > int_min else int_min # elif s[i] in nums: # res = 0 # while res < int_max and i < len(s) and s[i] in nums: # res = res * 10 + nums[s[i]] # i += 1 # return res if res < int_max else int_max # else: # return 0
AiZhanghan/Leetcode
code/面试题67. 把字符串转换成整数.py
面试题67. 把字符串转换成整数.py
py
1,785
python
en
code
0
github-code
6
72416331709
from socket import * import time import osascript from multiprocessing import Process, Manager, Value import os #osascript -e 'display notification "{}" with title "{}"' volume = 0 def recieve_data(val): serverSock = socket(AF_INET, SOCK_STREAM) serverSock.bind(('', 7777)) serverSock.listen(1) connectionSock, addr = serverSock.accept() print("Client address : ", str(addr)) while True: print("val : ", val.value) try : vol = int(connectionSock.recv(4).decode('utf-8')) if vol == 1111: print("mute") osascript.osascript('set volume output muted TRUE') val.value = 0 while True: vol = int(connectionSock.recv(4).decode('utf-8')) if vol == 2222: osascript.osascript('set volume output muted FALSE') break if vol == 3333: print("screenshot") os.system("screencapture screen.png") vol = 0 if vol == 4444: print("fix volume") osascript.osascript('tell app "System Events" to shut down') time.sleep(5) if vol < 300: val.value = vol except: pass def volume_control(val): while True: print("volume : ", val.value) osascript.osascript("set volume output volume " + str(val.value)) time.sleep(0.1) if __name__ == '__main__': v = Value('i', 0) p0 = Process(target = recieve_data, args = (v,)) p0.start() p1 = Process(target = volume_control, args = (v,)) p1.start() p0.join() p1.join()
Arc1el/DeepLearning_Jetson_AI
server.py
server.py
py
1,802
python
en
code
4
github-code
6
1701461424
import argparse import numpy as np import cv2 import time import math from sympy.solvers import solve from sympy import Symbol X_POS = 0 Y_POS = 1 Thresh = 170 imageName = "picture.jpg" def modImage(sceneName, img, kernel, erodeNum, dilateNum, invertion=False): ret, result = cv2.threshold(img, Thresh, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) if(invertion): result = cv2.bitwise_not(result) result = cv2.erode(result, kernel, iterations=erodeNum) result = cv2.dilate(result, kernel, iterations=dilateNum) result = cv2.GaussianBlur(result, (5,5), 0) return result def searchBorder(img, numOfBorder): result_point = [] myQ = [] height, width = img.shape[:2] visited = [[False for rows in range(0, height)]for cols in range(0, width)] #direction = [ [0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1] ] direction = [ [0, 1], [1, 1], [1, 0], [-1, 1], [-1, 0], [-1, 1], [0, -1], [1, -1]] start_x = int(width / 2) start_y = int(height / 2) startBorder = False borderCounter = 0 search_cursor_x = -1 search_cursor_y = -1 for y in range(start_y, 0, -1): for x in range(start_x, 0, -1): if(img[y][x] != 0 and not startBorder): startBorder = True search_cursor_x = x search_cursor_y = y borderCounter += 1 elif(img[y][x] != 0 and startBorder): startBorder = False borderCounter = 0 elif(img[y][x] == 0 and startBorder): borderCounter += 1 if(startBorder and borderCounter > 10): myQ.append([search_cursor_x, search_cursor_y]) while len(myQ) != 0: point = myQ.pop(0) try: if(visited[point[Y_POS]][point[X_POS]]): continue except: continue visited[point[Y_POS]][point[X_POS]] = True result_point.append(point) if( len(result_point) >= numOfBorder ): return result_point test_border = False temp_list = [] for dir in direction: next_point = [ point[X_POS] + dir[X_POS], point[Y_POS] + dir[Y_POS] ] try: if(img[next_point[Y_POS]][next_point[X_POS]] == 0): temp_list.append(next_point) else: test_border = True except: continue if(test_border): for temp_point in temp_list: myQ.append(temp_point) return result_point def findCircleCenter(pointA, pointB, pointC): x = Symbol('x') y = Symbol('y') AB_center_x = (pointA[X_POS] + pointB[X_POS])/2 AB_center_y = (pointA[Y_POS] + pointB[Y_POS])/2 AB_incline = (pointA[X_POS] - pointB[X_POS]) / (pointA[Y_POS] - pointB[Y_POS]) equation1 = AB_incline * x + y - AB_incline*AB_center_x - AB_center_y AC_center_x = (pointA[X_POS] + pointC[X_POS])/2 AC_center_y = (pointA[Y_POS] + pointC[Y_POS])/2 AC_incline = (pointA[X_POS] - pointC[X_POS]) / (pointA[Y_POS] - pointC[Y_POS]) equation2 = AC_incline * x + y - AC_incline*AC_center_x - AC_center_y result = solve( (equation1, equation2), dict=True) temp_total = math.pow(result[0][x] - pointA[X_POS], 2) + math.pow(result[0][y] - pointA[Y_POS], 2) radius = math.sqrt(temp_total) return int(result[0][x]), int(result[0][y]), int(radius) def findResult(pointList, rate): unit_length = int(len(pointList) / 3) total_length = int(len(pointList) - unit_length*2) result = {} for i in range(0, rate): try: x,y,radius = findCircleCenter(pointList[i], pointList[i+unit_length], pointList[i+unit_length*2]) if (x,y) in result: result[(x,y)].append(radius) else: result[(x,y)] = [ radius ] except: continue if(x < 0 or y < 0): continue if len(result) == 0: return None, None, None max_key = max(result, key=lambda p: len(result[p])) max_value = result[max_key] return int(max_key[0]), int(max_key[1]), int(sum(max_value) / float(len(max_value))) def drawCircle(pointList, output_image, point_color, circle_color, rate): unit_length = int(len(pointList) / 3) total_length = int(len(pointList) - unit_length*2) for i in range(0, rate): try: x,y,radius = findCircleCenter(pointList[i], pointList[i+unit_length], pointList[i+unit_length*2]) except: continue if(x < 0 or y < 0): continue cv2.circle(output_image, (x,y), radius, circle_color, 1) cv2.rectangle(output_image, (x-2, y-2), (x+2, y+2), point_color, -1) def getPupil(eye_img): pupilImg = cv2.inRange(eye_img.copy(), (30,30,30), (80,80,80)) _, contours, __ = cv2.findContours(pupilImg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) del pupilImg pupilImg = eye_img.copy() for cnt in contours: moments = cv2.moments(cnt) area = moments['m00'] if (area > 50): pupilArea = area x = moments['m10']/area y = moments['m01']/area pupil = contours global centroid centroid = (int(x),int(y)) cv2.drawContours(pupilImg, pupil, -1, (0,255,0), -1) break return (pupilImg) def irisDetect_debug(output, image, scale, rate): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)) processed_img = getPupil(image.copy()) hsv = cv2.cvtColor(processed_img, cv2.COLOR_BGR2HSV) (channel_h, channel_s, channel_v) = cv2.split(hsv) cv2.imshow("hue", channel_h) cv2.imshow("saturation", channel_s) cv2.imshow("value", channel_v) pupil = modImage("pu_man", channel_h, kernel, 5, 5) iris = modImage("ir_man", channel_v, kernel, 8, 8, True) cv2.imshow("pupil", pupil) cv2.imshow("iris", iris) pupil_point_list = searchBorder(pupil, scale) iris_point_list = searchBorder(iris, scale) if not pupil_point_list is None: drawCircle(pupil_point_list, output, (255, 255, 0), (0, 255, 0), rate) if not iris_point_list is None: drawCircle(iris_point_list, output, (0, 255, 255), (255, 0, 0), rate) def irisDetect(output, image, scale, rate): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)) processed_img = getPupil(image.copy()) hsv = cv2.cvtColor(processed_img, cv2.COLOR_BGR2HSV) (channel_h, channel_s, channel_v) = cv2.split(hsv) pupil = modImage("pu_man", channel_h, kernel, 5, 5) iris = modImage("ir_man", channel_v, kernel, 8, 8, True) pupil_point_list = searchBorder(pupil, scale) iris_point_list = searchBorder(iris, scale) if not pupil_point_list is None: x,y,radius = findResult(pupil_point_list, rate) if x is not None: cv2.circle(output, (x,y), radius, (0, 255, 0), 1) cv2.rectangle(output, (x-2, y-2), (x+2, y+2), (255, 255, 0), -1) """ if not iris_point_list is None: x,y,radius = findResult(iris_point_list, rate) if x is not None: cv2.circle(output, (x,y), radius, (255, 0, 0), 1) cv2.rectangle(output, (x-2, y-2), (x+2, y+2), (0, 255, 255), -1) """ if __name__ == "__main__": image = cv2.imread(imageName) output = image.copy() irisDetect(output, image, 1500, 30) cv2.imshow("display", output) cv2.waitKey(0) if cv2.waitKey(1)&0xFF == ord('q'): cv2.destroyAllWindows()
Edwin222/CPL-20181-Team3
iris_detect_service/iris_detection.py
iris_detection.py
py
6,860
python
en
code
0
github-code
6
11353211013
''' 스도쿠 https://www.acmicpc.net/problem/2580 ''' import sys sudoku = [list(map(int,sys.stdin.readline().split())) for _ in range(9)] zeros = [(i,j) for i in range(9) for j in range(9) if sudoku[i][j] == 0] is_complete = [False] def check_horizontal(x,val): if val in sudoku[x]: return False return True def check_vertical(y, val): for index in range(9): if val == sudoku[index][y]: return False return True def check_sqaure(x,y,val): _x = x//3 * 3 _y = y//3 * 3 for i in range(3): for j in range(3): if val == sudoku[_x+i][_y+j]: return False return True def solve(x): if is_complete[0]: return if len(zeros) == x: for row in sudoku: for val in row: print(val, end=' ') print() is_complete[0] = True else: for i in range(1,10): nx = zeros[x][0] ny = zeros[x][1] if check_horizontal(nx, i) and check_vertical(ny, i) and check_sqaure(nx,ny, i): sudoku[nx][ny] = i solve(x+1) sudoku[nx][ny] = 0 solve(0)
jihoonyou/problem-solving
Baekjoon/boj2580.py
boj2580.py
py
1,176
python
en
code
0
github-code
6
29435711236
import re import os import socket from threading import Thread, Event import subprocess import time from shutil import copyfile from tiny_test_fw import Utility, DUT import ttfw_idf stop_sock_listener = Event() stop_io_listener = Event() sock = None client_address = None manual_test = False def io_listener(dut1): global sock global client_address data = b'' while not stop_io_listener.is_set(): try: data = dut1.expect(re.compile(r"PacketOut:\[([a-fA-F0-9]+)\]"), timeout=5) except DUT.ExpectTimeout: continue if data != () and data[0] != b'': packet_data = data[0] print("Packet_data>{}<".format(packet_data)) response = bytearray.fromhex(packet_data.decode()) print("Sending to socket:") packet = ' '.join(format(x, '02x') for x in bytearray(response)) print("Packet>{}<".format(packet)) if client_address is not None: sock.sendto(response, ('127.0.0.1', 7777)) def sock_listener(dut1): global sock global client_address sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.settimeout(5) server_address = '0.0.0.0' server_port = 7771 server = (server_address, server_port) sock.bind(server) try: while not stop_sock_listener.is_set(): try: payload, client_address = sock.recvfrom(1024) packet = ' '.join(format(x, '02x') for x in bytearray(payload)) print("Received from address {}, data {}".format(client_address, packet)) dut1.write(str.encode(packet)) except socket.timeout: pass finally: sock.close() sock = None @ttfw_idf.idf_example_test(env_tag="Example_WIFI") def lwip_test_suite(env, extra_data): global stop_io_listener global stop_sock_listener """ steps: | 1. Rebuilds test suite with esp32_netsuite.ttcn 2. Starts listeners on stdout and socket 3. Execute ttcn3 test suite 4. Collect result from ttcn3 """ dut1 = env.get_dut("net_suite", "examples/system/network_tests", dut_class=ttfw_idf.ESP32DUT) # check and log bin size binary_file = os.path.join(dut1.app.binary_path, "net_suite.bin") bin_size = os.path.getsize(binary_file) ttfw_idf.log_performance("net_suite", "{}KB".format(bin_size // 1024)) ttfw_idf.check_performance("net_suite", bin_size // 1024, dut1.TARGET) dut1.start_app() thread1 = Thread(target=sock_listener, args=(dut1, )) thread2 = Thread(target=io_listener, args=(dut1, )) if not manual_test: # Variables refering to esp32 ttcn test suite TTCN_SRC = 'esp32_netsuite.ttcn' TTCN_CFG = 'esp32_netsuite.cfg' # System Paths netsuite_path = os.getenv("NETSUITE_PATH") netsuite_src_path = os.path.join(netsuite_path, "src") test_dir = os.path.dirname(os.path.realpath(__file__)) # Building the suite print("Rebuilding the test suite") print("-------------------------") # copy esp32 specific files to ttcn net-suite dir copyfile(os.path.join(test_dir, TTCN_SRC), os.path.join(netsuite_src_path, TTCN_SRC)) copyfile(os.path.join(test_dir, TTCN_CFG), os.path.join(netsuite_src_path, TTCN_CFG)) proc = subprocess.Popen(['bash', '-c', 'cd ' + netsuite_src_path + ' && source make.sh'], cwd=netsuite_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output = proc.stdout.read() print("Note: First build step we expect failure (titan/net_suite build system not suitable for multijob make)") print(output) proc = subprocess.Popen(['bash', '-c', 'cd ' + netsuite_src_path + ' && make'], cwd=netsuite_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) print("Note: This time all dependencies shall be generated -- multijob make shall pass") output = proc.stdout.read() print(output) # Executing the test suite thread1.start() thread2.start() time.sleep(2) print("Executing the test suite") print("------------------------") proc = subprocess.Popen(['ttcn3_start', os.path.join(netsuite_src_path,'test_suite'), os.path.join(netsuite_src_path, TTCN_CFG)], stdout=subprocess.PIPE) output = proc.stdout.read() print(output) print("Collecting results") print("------------------") verdict_stats = re.search('(Verdict statistics:.*)', output) if verdict_stats: verdict_stats = verdict_stats.group(1) else: verdict_stats = b"" verdict = re.search('Overall verdict: pass', output) if verdict: print("Test passed!") Utility.console_log(verdict_stats, "green") else: Utility.console_log(verdict_stats, "red") raise ValueError('Test failed with: {}'.format(verdict_stats)) else: try: # Executing the test suite thread1.start() thread2.start() time.sleep(2) while True: time.sleep(0.5) except KeyboardInterrupt: pass print("Executing done, waiting for tests to finish") print("-------------------------------------------") stop_io_listener.set() stop_sock_listener.set() thread1.join() thread2.join() if __name__ == '__main__': print("Manual execution, please build and start ttcn in a separate console") manual_test = True lwip_test_suite()
espressif/ESP8266_RTOS_SDK
components/lwip/weekend_test/net_suite_test.py
net_suite_test.py
py
5,711
python
en
code
3,148
github-code
6
30124092991
import sys #sys.stdin=open("A.txt","r") #n,m=map(int,input().split()) #정n면체 정m면 #a=list(map(int,input().split())) res=0 N=int(input()) #a=list(map(int,input().split())) 이거는 [1,2,3,4,5]이런식 for i in range(N): tmp=input().split() #이거는['3','3','6']이렇게 문자열로저장 tmp.sort() a,b,c=map(int,tmp) #print(a,b,c) if a==b and b==c: money=10000+a*1000 elif a==b or b==c or a==c: if a==b or a==c: money= 1000+a*100 elif b==c: money= 1000+b*100 else: money=c*100#오름차순 if money>res: res=money print(res)
kimyoonseong/202207_08_PythonAlgorithm
코드구현력기르기Part/주사위게임.py
주사위게임.py
py
646
python
ja
code
0
github-code
6
11914708160
''' Write a program which accepts a string as input to print "Yes" if the string is "yes" or "YES" or "Yes", otherwise print "No". ''' str_val= input("enter a string : ") if str_val == 'yes' or str_val =='YES' or str_val =='Yes': print("Yes") else: print("No")
mrudulamucherla/Python-Class
string_Yes_No.py
string_Yes_No.py
py
276
python
en
code
0
github-code
6
20921250486
import networkx as nx from sklearn.cluster import SpectralClustering def spectral_clustering(G, n_clusters=2): adj_mat = nx.to_numpy_matrix(G) sc = SpectralClustering(n_clusters, affinity='precomputed', n_init=100) sc.fit(adj_mat) clusters = {} for i in range(len(sc.labels_)): if sc.labels_[i] not in clusters: clusters[sc.labels_[i]] = [] clusters[sc.labels_[i]].append(i) return clusters.values()
sharpenb/Multi-Scale-Modularity-Graph-Clustering
Scripts/clustering_algorithms/spectral_clustering.py
spectral_clustering.py
py
454
python
en
code
2
github-code
6
19400730749
############################################################################### # Process to read Customer Updates # # # Pre-requisites: Kafka server should be running # ############################################################################### import os import sys import logging import json import settings as SETTINGS curpath = os.path.dirname(__file__) sys.path.append(os.path.abspath(os.path.join (curpath, "../"))) from app_messaging_utils import SimpleKafkaConsumer, SimpleKafkaMessage from app_models import Customer, AppEventType from app_utils import MongoRepository, DbEntity ############################################################################### class MessageProcessor(): def __init__(self, process_func=None): #Create and configure logger logfile = os.path.abspath('{0}/{1}'.format(SETTINGS.Logging["LogFolder"],SETTINGS.Logging["LogFile"])) os.makedirs(os.path.dirname(logfile), exist_ok=True) logging.basicConfig( filename=logfile, format='%(asctime)s %(message)s', filemode='a' ) #Creating an object self.logger=logging.getLogger() #Setting the threshold of logger to DEBUG self.logger.setLevel(SETTINGS.Logging["LogLevel"]) self.config = SETTINGS.KafkaService self.topic = SETTINGS.MESSAGE_TOPIC self.customer_repo = MongoRepository( logger=self.logger, server=SETTINGS.MongoDB["Url"], port=SETTINGS.MongoDB["Port"], database=SETTINGS.MongoDB["Db"], collection=SETTINGS.MongoDB["Collection"], session_id=1) ########################################################################### def process_message(self, evt_msg: SimpleKafkaMessage): ''' Function to process SimpleKafkaMessage Deserialize the SimpleKafkaMessage, extract and process relevant payload ''' try: evt = json.loads(evt_msg.message) if evt["app_event_type"] == AppEventType.Insert: entity = evt["after_change"] customer = Customer( id=entity["id"], name=entity["name"], phone=entity["phone"], email=entity["email"] ) msg="Processing INSERT message for customer id:{0}".format(customer.id) print(msg) eid = self.customer_repo.create(customer) # expect to get back an ObjectId msg="Created customer id:{0}".format(customer.id) print(msg) self.logger.debug(msg) elif evt["app_event_type"] == AppEventType.Update: entity = evt["after_change"] customer = Customer( id=entity["id"], name=entity["name"], phone=entity["phone"], email=entity["email"] ) msg="Processing UPDATE message for customer id:{0}".format(customer.id) print(msg) self.customer_repo.update_by_id(customer.id, customer) msg="Updated customer id:{0}".format(customer.id) print(msg) self.logger.debug(msg) elif evt["app_event_type"] == AppEventType.Delete: entity = evt["after_change"] customer = Customer( id=entity["id"], name=entity["name"], phone=entity["phone"], email=entity["email"] ) msg="Processing DELETE message for customer id:{0}".format(customer.id) print(msg) self.customer_repo.delete_by_id(customer.id) msg="Deleted customer id:{0}".format(customer.id) print(msg) self.logger.debug(msg) else: pass except Exception as e: msg = "Error in process_message function: {0}".format(str(e)) print(msg) self.logger.error(msg) ########################################################################### def read_messages(self): ''' Function to read messages from kafka queue ''' reader_id = self.config["group.id"] counter=0 try: msg = "Starting Process:{0} to read topic:{1} from Kafka Queue".format( reader_id , self.topic ) self.logger.info(msg) print(msg) consumer = SimpleKafkaConsumer(logger=self.logger) consumer.configure(config=self.config) print ("Starting Consumer") for evt_msg in consumer.consume(topics=['MICROSERVICE-CUSTOMER-UPDATES']): counter +=1 # msg = "Received msg: {0} # {1}".format(counter, evt_msg.message) # print(msg) # self.logger.debug(msg) # Process the message self.process_message(evt_msg) except KeyboardInterrupt: msg = "\n\n Exiting Process:'{0}'. {1} message(s) read on topic from Kafka Queue:'{2}'".format( reader_id, counter, self.topic ) print (msg) self.logger.info(msg) except Exception as e: msg = "Error in {0} : {1}".format(reader_id, str(e)) print(msg) self.logger.error(msg) ############################################################################### if __name__ == "__main__": MessageProcessor().read_messages() ###############################################################################
bbcCorp/py_microservices
src/app_services_replication/message_processor.py
message_processor.py
py
5,987
python
en
code
1
github-code
6
14276598167
import sys sys.path.append('D:/Users/Murph Strange/Jupyter Notebook/') import menus import random import types class Character: def __init__(self, name): self.name = name self.strength = 16 self.intellect = 16 self.resilience = 16 #ability to run away (TODO: implement Escape action?) self.agility = 16 self.max_hp = 16 self.hp = self.max_hp self.max_mp = 16 self.mp = self.max_mp self.attack_power = 0 self.defense_power = 0 self.equipment = { "weapon": False, "armor": False, "shield": False } self.status = [] self.inventory = {} self.spellbook = {} def alive(self): if "deceased" not in self.status: return True else: print("%s is a corpse.\n" % self.name) return False def health(self, change = 0): self.hp += change if change == 0: return self.hp elif self.alive() and (change < 0): print("%s takes %d damage.\n" % (self.name, abs(change))) if self.hp < 1: self.hp = 0 print("%s has died.\n" % self.name) self.status = ["deceased"] return True elif self.alive() and (change > 0): print("%s restores %d hp.\n" % (self.name, change)) if self.hp > self.max_hp: self.hp = self.max_hp print("%s's health is fully restored!\n" % self.name) return True else: return False def magic(self, change = 0): if change == 0: return self.mp elif self.alive() and (change < 0): if abs(change) > self.mp: print("%s doesn't have enough magic!\n" % self.name) return False else: self.mp += change print("%s expends %d magic.\n" % (self.name, abs(change))) if self.mp < 1: self.mp = 0 print("%s has depleted their magic.\n" % self.name) return True elif self.alive() and (change > 0): self.mp += change print("%s restores %d mp.\n" % (self.name, change)) if self.mp > self.max_mp: self.mp = self.max_mp print("%s's magic has been fully restored!\n" % self.name) return True else: return False def drink(self, item): if item in self.inventory.keys(): return self.inventory[item].drink(self) else: print("%s can't drink a %s.\n" % (self.name, item)) return False def equip(self, item): if item in self.inventory.keys(): return self.inventory[item].equip(self) else: print("%s can't equip a %s.\n" % (self.name, item)) return False def attack(self, target): if self.equipment["weapon"]: return self.equipment["weapon"].attack(self, target) else: print("%s is unarmed.\n" % self.name) return False def defend(self): return self.defense_power def cast(self, spell, target): if spell in self.spellbook.keys(): print("%s casts %s.\n" % (self.name, spell)) return self.spellbook[spell].cast(target, self) else: print("%s can't cast %s.\n" % (self.name, spell)) return False def speak(self, target): #Options to converse, trade, engage in combat pass class NPCharacter(Character): def __init__(self, name): super().__init__(name) pass def health(self, change = 0): res = super().health(change) if self.alive() and self.hp < int(self.max_hp/3): self.drink("red potion") return res def magic(self, change = 0): res = super().magic(change) if self.alive() and self.mp < int(self.max_mp/3): self.drink("blue potion") return res def speak(self, target): #Options to converse, trade, or engage in combat #overwrite this method with the dialog menus of #your choice, using menus and types.MethodType() print("%s says" % self.name) dialog = menus.Menu('"Continue?"', ['y', 'n']) res = dialog.display_prompt() return res class PlayerCharacter(Character): def __init__(self, name): super().__init__(name) self.gold = 100 self.level = 1 self.xp = 0 self.quest_flags = {} def speak(self, target): if self.alive() and target.alive(): if type(target) == PlayerCharacter: #player character options (trade? duel? invite to party?) pass elif type(target) == NPCharacter: #invoke npc's menus for dialog, #changes depending on what the #npc is (foe, merchant, quest giver) return target.speak(self) else: print("%s can't speak to that.\n" % self.name) return False else: print("%s can't speak to %s.\n" % (self.name, target.name)) return False class MonsterCharacter(NPCharacter): def __init__(self, name, health, magic, attack_power, defense_power, agility, xp, gold, spell_list = []): super().__init__(name) self.max_hp = health self.hp = self.max_hp self.max_mp = magic self.mp = self.max_mp self.attack_power = attack_power self.defense_power = defense_power self.agility = agility self.xp = xp self.gold = gold for item in spell_list: self.spellbook[item] = Spell(item, spells[item][0], spells[item][1], spells[item][2]) def attack(self, target): if self.equipment["weapon"]: return self.equipment["weapon"].attack(self, target) else: if self.alive() and target.alive(): damage = random.randint(int((self.strength + self.attack_power)/3), self.strength + self.attack_power) print("%s attacks %s!\n" % (self.name, target.name)) if random.randint(0, 7) in [3, 5]: print("%s misses!\n" % self.name) damage = 0 else: print("%s deals %d damage.\n" % (self.name, damage)) target_defense = target.defend() if target.equipment["shield"]: target_defense += target.equipment["shield"].defend() if target.equipment["armor"]: target_defense += target.equipment["armor"].defend() resist = random.randint(int((target.resilience + target_defense)/3), target.resilience + target_defense) print("%s has a defense rating of %d.\n" % (target.name, target_defense)) print("%s resists %d damage.\n" % (target.name, resist)) damage -= resist if damage <= 0: damage = 0 print("%s blocks the attack!\n" % target.name) target.health(-damage) return True else: return False class Effect(): def __init__(self, name, power): self.name = name self.power = power class Potion(Effect): def __init__(self, name, attribute, power, quantity = 0): super().__init__(name, power) self.attribute = attribute self.quantity = quantity def pay(self, caster): if caster.inventory[self.name].quantity > 0: caster.inventory[self.name].quantity -= 1 return True else: print("%s has no %s left.\n" % (caster.name, self.name)) return False def drink(self, caster): if caster.alive() and self.pay(caster): print("%s drinks a %s.\n" % (caster.name, self.name)) if self.attribute == 'hp': caster.health(self.power) elif self.attribute == 'mp': caster.magic(self.power) return True else: return False class Spell(Effect): def __init__(self, name, cost, power, status = 'none'): super().__init__(name, power) self.cost = cost self.status = status def pay(self, caster): if caster.magic() > self.cost: caster.magic(-self.cost) return True else: return False def cast(self, target, caster): if caster.alive() and target.alive() and self.pay(caster): damage = random.randint(int((caster.intellect + self.power)/2), caster.intellect + self.power) print("%s deals %d damage.\n" % (self.name.capitalize(), damage)) if self.status in target.status: resist = random.randint(int((target.intellect + target.resilience)/2), target.intellect + target.resilience) else: resist = random.randint(0, int((target.intellect + target.resilience)/2)) if target.alive() and ((damage - resist) > 0) and not self.status == 'none' and self.status not in target.status: target.status.append(self.status) print("%s resists %d damage.\n" % (target.name, resist)) damage -= resist if damage <= 0: damage = 0 print("%s is ineffective!\n" % self.name.capitalize()) target.health(-damage) return True else: return False class Equipment(Effect): def __init__(self, name, power, slot): super().__init__(name, power) self.slot = slot def equip(self, caster): if caster.alive() and self.name in caster.inventory.keys(): if caster.equipment[self.slot]: caster.inventory.append(caster.equipment[self.slot]) caster.equipment[self.slot] = self caster.inventory.pop(self.name) print("%s equips the %s.\n" % (caster.name, self.name)) return True else: return False def defend(self): return self.power class Weapon(Equipment): def __init__(self, name, power): super().__init__(name, power, "weapon") def attack(self, caster, target): if caster.alive() and target.alive(): damage = random.randint(int((caster.strength + self.power)/3), caster.strength + self.power) print("%s attacks %s with %s.\n" % (caster.name, target.name, self.name)) if random.randint(0, 7) == 3: print("%s misses!\n" % caster.name) damage = 0 else: print("%s deals %d damage.\n" % (self.name, damage)) target_defense = 0 if target.equipment["shield"]: target_defense += target.equipment["shield"].defend() if target.equipment["armor"]: target_defense += target.equipment["armor"].defend() resist = random.randint(int((target.resilience + target_defense)/3), target.resilience + target_defense) print("%s has a defense rating of %d.\n" % (target.name, target_defense)) print("%s resists %d damage.\n" % (target.name, resist)) damage -= resist if damage <= 0: damage = 0 print("%s blocks the attack!\n" % target.name) target.health(-damage) return True else: return False weapons = { "Bamboo Pole": 2, #10 "Club": 4, #60 "Copper Sword": 10, #180 "Hand Axe": 15, #560 "Broad Sword": 20, #1500 "Flame Sword": 28, #9800 "Erdrick's Sword": 40 #0 } armor = { "Clothes": 2, #50 "Leather Armor": 4, #40 "Chain Mail": 12, #300 "Half Plate": 16, #1000 "Full Plate": 24, #3000 "Magic Armor": 24, #7700 "Erdrick's Armor": 28 #0 } shields = { "Leather Shield": 4, #90 "Iron Shield": 10, #800 "Silver Shield": 24 #14800 } spells = { "zap": (1, 2, 'none'), "fireball": (2, 4, 'burning'), "blizzard": (4, 8, 'freezing'), "lightning": (8, 12, 'shocked') } potions = { "red potion": (8, 'hp'), "blue potion": (8, 'mp') } monsters = { "slime": (3, 0, 5, 3, 2, 1, 2, []), "she-slime":(4, 0, 7, 3, 4, 2, 4, []), "dracky": (6, 0, 9, 6, 5, 3, 6, []), "ghost": (7, 0, 11, 8, 6, 4, 8, []), "prestidigitator": (12, 8, 8, 12, 6, 8, 16, ["zap"]), "drackolyte": (15, 8, 13, 13, 8, 12, 20, ["zap"]), "scorpion": (20, 0, 18, 35, 4, 16, 25, []), "skeleton": (30, 0, 28, 22, 17, 25, 42, []), "lunatick": (22, 0, 22, 18, 11, 14, 21, []), "fightgeist": (23, 10, 18, 20, 14, 15, 19,["fireball"]), "drohl drone": (35, 0, 24, 6, 9, 18, 30, []), "drackyma":(20, 10, 22, 26, 16, 20, 25, ["fireball"]), "legerdeman": (28, 10, 26, 24, 15, 28, 50, ["fireball"]), "bewarewolf": (34, 0, 40, 30, 21, 40, 60, []), "iron scorpion": (22, 0, 36, 60, 25, 31, 48, []), "skeleton scrapper": (36, 0, 44, 34, 23, 42, 62, []), "scarewolf": (38, 6, 50, 36, 23, 52, 80, ["zap"]), "gold golem": (99, 0, 48, 30, 26, 6, 650, []), "chimaera": (42, 0, 56, 48, 31, 64, 150, []), "spitegeist": (33, 14, 40, 38, 26, 47, 72, ["fireball"]), "raving lunatick": (35, 30, 41, 40, 28, 58, 95, ["blizzard"]), "drohl diabolist": (38, 10, 44, 16, 11, 58, 110, ["fireball"]), "skeleton soldier": (46, 12, 62, 46, 36, 72, 120, ["fireball"]), "death scorpion": (35, 0, 55, 90, 33, 70, 110, []), "knight errant": (55, 6, 70, 71, 45, 78, 150, ["zap"]), "dark skeleton": (43, 0, 79, 51, 40, 90, 148, []), "hocus chimaera": (50, 12, 68, 62, 44, 83, 135, ["fireball"]), "metal slime": (4, 6, 18, 255, 153, 775, 6, ["zap"]), "tearwolf": (60, 0, 80, 65, 45, 95, 155, []), "cosmic chimaera": (73, 15, 82, 65, 52, 105, 169, ["zap", "fireball"]), "dragon": (67, 18, 88, 72, 47, 135, 160, ["zap", "fireball"]), "green dragon": (166, 65, 88, 72, 47, 950, 250, ["zap", "fireball", "blizzard", "lightning"]), "vis mager": (70, 16, 71, 60, 49, 120, 185, ["zap", "fireball"]), "golem": (155, 0, 120, 60, 39, 2000, 10, []), "knight aberrant": (79, 4, 94, 92, 53, 130, 165, ["zap"]), "blue dragon": (98, 75, 98, 80, 52, 180, 150, ["zap", "fireball", "blizzard", "lightning"]), "stone golem": (160, 0, 100, 40, 40, 155, 148, []), "knight abhorrent": (98, 14, 105, 99, 57, 172, 152, ["zap", "fireball"]), "red dragon": (105, 85, 115, 104, 62, 350, 143, ["zap", "fireball", "blizzard", "lightning"]), "dragon mage": (240, 95, 107, 110, 55, 480, 500, ["zap", "fireball", "blizzard", "lightning"]), "dragon lord": (361, 120, 130, 150, 90, 1000, 2500, ["zap", "fireball", "blizzard", "lightning"]) } if __name__ == "__main__": pass #TODO: Implement escape action #Create a vendor from the NPC class that takes gold for weapons and armor
drunkfurball/dragonquest
dragonquest.py
dragonquest.py
py
15,882
python
en
code
0
github-code
6
5085250146
from copy import deepcopy import json import re from flask import render_template from maf_api_mock_data import EGFR_BLCA_BRCA as FAKE_MAF_DATA from hotspots.seqpeek.tumor_types import tumor_types as ALL_TUMOR_TYPES from app_logging import get_logger log = get_logger() try: from hotspots.seqpeek.gene_list import gene_list as GENE_LIST except ImportError: log.error("Loading gene list failed, using static list.") GENE_LIST = ['EGFR', 'TP53', 'PTEN'] from hotspots.seqpeek.uniprot_data import get_uniprot_data from hotspots.seqpeek.interpro_data import get_protein_domain_data from hotspots.seqpeek.cluster_data import get_cluster_data as get_cluster_data_remote from hotspots.seqpeek.mutation_data import get_mutation_data as get_mutation_data_remote from hotspots.seqpeek.mutation_data import get_mutation_data_summary_for_gene SEQPEEK_VIEW_DEBUG_MODE = False SEQPEEK_VIEW_MUTATION_DEBUG = False SAMPLE_ID_FIELD_NAME = 'patient_barcode' TUMOR_TYPE_FIELD = "tumor" COORDINATE_FIELD_NAME = 'amino_acid_position' MUTATION_DATA_PROTEIN_FIELD = 'uniprot_id' PROTEIN_DOMAIN_DB = 'PFAM' ALPHA_FINDER = re.compile('[\W_]+', re.UNICODE) TEMPLATE_NAME = 'hotspots/seqpeek/view.html' def get_number_of_unique_samples(track): sample_ids = set() for mutation in track['mutations']: sample_ids.add(mutation[SAMPLE_ID_FIELD_NAME]) return len(sample_ids) # TODO remove if not needed def clean_track_mutations(mutations_array): retval = [] for mutation in mutations_array: cleaned = deepcopy(mutation) cleaned[COORDINATE_FIELD_NAME] = int(mutation[COORDINATE_FIELD_NAME]) retval.append(cleaned) return retval def sort_track_mutations(mutations_array): return sorted(mutations_array, key=lambda k: k[COORDINATE_FIELD_NAME]) def get_track_statistics(track): return { 'samples': { 'numberOf': get_number_of_unique_samples(track) } } def filter_protein_domains(match_array): return [m for m in match_array if m['dbname'] == PROTEIN_DOMAIN_DB] def get_table_row_id(tumor_type): return "seqpeek_row_{0}".format(tumor_type) def build_seqpeek_regions(protein_data): return [{ 'type': 'exon', 'start': 0, 'end': protein_data['length'] }] def build_summary_track(tracks, render_summary_only=False): all = [] for track in tracks: all.extend(track["mutations"]) return { 'mutations': all, 'label': 'COMBINED', 'tumor': 'none-combined', 'type': 'summary', 'do_variant_layout': True if render_summary_only is True else False } def get_track_label(track): return track[TUMOR_TYPE_FIELD] def process_raw_domain_data(data): result = [] for item in data: database = item['database'] # Filter for PFAM if not database.startswith('PF'): continue domain = { 'name': item['name'][:5] + '...', 'full_name': item['name'], 'locations': [{ 'start': item['start'], 'end': item['end'] }], 'dbname': 'PFAM', 'ipr': { 'type': 'Domain', 'id': item['interpro_id'], 'name': item['name'][:2] }, 'id': database } result.append(domain) log.debug("Found {total} domains, filtered down to {num}".format(total=len(data), num=len(result))) return result def get_protein_domains_remote(uniprot_id): uniprot_data = get_uniprot_data(uniprot_id) log.debug("UniProt entry: " + str(uniprot_data)) # Add protein domain data to the UniProt entry raw_domain_data = get_protein_domain_data(uniprot_id) domains = process_raw_domain_data(raw_domain_data) uniprot_data['matches'] = domains return uniprot_data def get_protein_domains(uniprot_id): return get_protein_domains_remote(uniprot_id) def get_maf_data_remote(gene, tumor_type_list): return get_mutation_data_remote(tumor_type_list, gene) def get_mutation_data(gene, tumor_type_list): if SEQPEEK_VIEW_MUTATION_DEBUG: return deepcopy(FAKE_MAF_DATA['items']) else: return get_mutation_data_remote(tumor_type_list, gene) def process_cluster_data_for_tumor(all_clusters, tumor_type): clusters = filter(lambda c: c['tumor_type'] == tumor_type, all_clusters) result = [] for index, cluster in enumerate(clusters): item = { 'name': '', 'type': 'cluster', 'id': 'cluster_' + str(index), 'locations': [{ 'start': cluster['start'], 'end': cluster['end'] }], 'mutation_stats': cluster['mutation_stats'], 'stats': cluster['stats'] } result.append(item) return result def build_track_data(tumor_type_list, all_tumor_mutations, all_clusters): tracks = [] for tumor_type in tumor_type_list: mutations = filter(lambda m: m['tumor_type'] == tumor_type, all_tumor_mutations); track_obj = { TUMOR_TYPE_FIELD: tumor_type, 'mutations': mutations, 'clusters': process_cluster_data_for_tumor(all_clusters, tumor_type), 'do_variant_layout': True } if len(mutations) > 0: track_obj['render_in_seqpeek'] = True else: track_obj['render_in_seqpeek'] = False tracks.append(track_obj) return tracks def find_uniprot_id(mutations): uniprot_id = None for m in mutations: if MUTATION_DATA_PROTEIN_FIELD in m: uniprot_id = m[MUTATION_DATA_PROTEIN_FIELD] break return uniprot_id def get_cluster_data(tumor_type_array, gene): clusters = get_cluster_data_remote(tumor_type_array, gene) return clusters def sanitize_gene_input(gene_parameter): return ALPHA_FINDER.sub('', gene_parameter) def sanitize_normalize_tumor_type(tumor_type_list): tumor_set = frozenset(ALL_TUMOR_TYPES) sanitized = [] for tumor_param in tumor_type_list: if tumor_param in tumor_set: sanitized.append(tumor_param) return sanitized def format_tumor_type_list(tumor_type_array, selected_types=[]): result = [] for tumor_type in tumor_type_array: result.append({ 'name': tumor_type, 'selected': tumor_type in selected_types }) return result def seqpeek(request_gene, request_tumor_list, summary_only=False): gene = None if request_gene is not None: # Remove non-alphanumeric characters from parameters and uppercase all gene = sanitize_gene_input(request_gene).upper() parsed_tumor_list = sanitize_normalize_tumor_type(request_tumor_list) log.debug("Valid tumors from request: {0}".format(str(parsed_tumor_list))) tumor_types_for_tpl = format_tumor_type_list(ALL_TUMOR_TYPES, parsed_tumor_list) context = { 'gene_select_widget': { 'action': '/seqpeek', 'tumor_type_select': True, 'all_tumor_types': tumor_types_for_tpl, 'button_label': 'Redraw' }, 'query_status': { 'no_mutations_found': False, 'uniprot_id_not_found': False, 'data_found': False, 'summary_only': False, 'insufficient_parameters': False, 'request_gene': request_gene }, 'gene_label': gene, 'is_gene_summary': summary_only, 'static_data': { 'gene_list': GENE_LIST, 'gene_label': gene, 'fill_in_gene': True }, 'all_tumor_types': tumor_types_for_tpl } if (len(parsed_tumor_list) == 0 and summary_only is False) or gene is None: context['query_status']['insufficient_parameters'] = True context['static_data']['fill_in_gene'] = False context.update({ 'static_data': json.dumps(context['static_data']) }) return render_template(TEMPLATE_NAME, **context) if summary_only is False: cluster_data = get_cluster_data(parsed_tumor_list, gene) maf_data = get_mutation_data(gene, parsed_tumor_list) else: maf_data = get_mutation_data_summary_for_gene(gene) if len(maf_data) == 0: context['query_status']['no_mutations_found'] = True context['static_data']['fill_in_gene'] = False context.update({ 'static_data': json.dumps(context['static_data']) }) return render_template(TEMPLATE_NAME, **context) uniprot_id = find_uniprot_id(maf_data) if uniprot_id is None: context['query_status']['uniprot_id_not_found'] = True context['static_data']['fill_in_gene'] = False context.update({ 'static_data': json.dumps(context['static_data']) }) return render_template(TEMPLATE_NAME, **context) log.debug("Found UniProt ID: " + repr(uniprot_id)) context['query_status']['data_found'] = True protein_data = get_protein_domains(uniprot_id) plot_data = { 'gene_label': gene, 'protein': protein_data } if summary_only is False: track_data = build_track_data(parsed_tumor_list, maf_data, cluster_data) plot_data['tracks'] = track_data # Pre-processing # - Sort mutations by chromosomal coordinate for track in plot_data['tracks']: track['mutations'] = sort_track_mutations(track['mutations']) # Annotations # - Add label, possibly human readable # - Add type that indicates whether the track is driven by data from search or # if the track is aggregate for track in plot_data['tracks']: track['type'] = 'tumor' track['label'] = get_track_label(track) plot_data['tracks'].append(build_summary_track(plot_data['tracks'], render_summary_only=False)) else: summary_track = { 'mutations': sort_track_mutations(maf_data) } plot_data['tracks'] = [build_summary_track([summary_track], render_summary_only=True)] for track in plot_data['tracks']: # Calculate statistics track['statistics'] = get_track_statistics(track) # Unique ID for each row track['render_info'] = { 'row_id': get_table_row_id(track[TUMOR_TYPE_FIELD]) } plot_data['regions'] = build_seqpeek_regions(plot_data['protein']) plot_data['protein']['matches'] = filter_protein_domains(plot_data['protein']['matches']) # Filter the tracks-array for Seqpeek. Only leave tracks with at least one mutation. seqpeek_data = {key: plot_data[key] for key in ['gene_label', 'protein', 'regions']} seqpeek_tracks = [] for track in plot_data['tracks']: if len(track['mutations']) > 0: # Gene has to be passed to the track object, so that it can be used # to construct the URI for the pathway association view track['gene'] = gene seqpeek_tracks.append(track) else: log.debug("{0}: 0 mutations, not rendering in SeqPeek.".format(track['label'])) seqpeek_data['tracks'] = seqpeek_tracks tumor_list = ','.join(parsed_tumor_list) context.update({ 'search': {}, 'plot_data': plot_data, 'data_bundle': json.dumps(seqpeek_data), 'gene': gene, 'tumor_list': tumor_list }) context.update({ 'static_data': json.dumps(context['static_data']) }) return render_template(TEMPLATE_NAME, **context)
cancerregulome/multiscale-mutation-hotspots
hotspots/seqpeek/view.py
view.py
py
11,643
python
en
code
1
github-code
6
7642412610
from unittest import result from pip._vendor.distlib.compat import raw_input def start(): n1 = input("n1: ") control_input(n1) def control_input(x): try: val = int(x) print("Input is an integer number. Number = ", val) result = "int_number" except ValueError: try: val = float(x) print("Input is a float number. Number = ", val) result = "float_number" except ValueError: print(x + "is a string") result = "string" return result if __name__ == '__main__': start()
Ruxuge/TAU
lab7/main.py
main.py
py
648
python
en
code
0
github-code
6
26969758526
import os import time import numpy as np import torch from torchvision.utils import make_grid from torchvision.transforms import ToPILImage from base import BaseTrainer from evaluate import get_fid_score, get_i3d_activations, init_i3d_model, evaluate_video_error from utils.readers import save_frames_to_dir from model.loss import AdversarialLoss class Trainer(BaseTrainer): """ Trainer class Note: Inherited from BaseTrainer. """ def __init__( self, model, losses, metrics, optimizer_g, optimizer_d_s, optimizer_d_t, resume, config, data_loader, valid_data_loader=None, lr_scheduler=None, train_logger=None, learn_mask=True, test_data_loader=None, pretrained_path=None ): super().__init__( model, losses, metrics, optimizer_g, optimizer_d_s, optimizer_d_t, resume, config, train_logger, pretrained_path ) self.config = config self.data_loader = data_loader self.valid_data_loader = valid_data_loader self.test_data_loader = test_data_loader self.do_validation = self.valid_data_loader is not None self.lr_scheduler = lr_scheduler self.log_step = self.config['visualization']['log_step'] self.loss_gan_s_w = config['gan_losses']['loss_gan_spatial_weight'] self.loss_gan_t_w = config['gan_losses']['loss_gan_temporal_weight'] self.adv_loss_fn = AdversarialLoss() self.evaluate_score = config['trainer'].get('evaluate_score', True) self.store_gated_values = False self.printlog = False if self.test_data_loader is not None: self.toPILImage = ToPILImage() self.evaluate_test_warp_error = config.get('evaluate_test_warp_error', False) self.test_output_root_dir = os.path.join(self.checkpoint_dir, 'test_outputs') init_i3d_model() def _store_gated_values(self, out_dir): from model.blocks import GatedConv, GatedDeconv def save_target(child, out_subdir): if not os.path.exists(out_subdir): os.makedirs(out_subdir) if isinstance(child, GatedConv): target = child.gated_values[0] elif isinstance(child, GatedDeconv): target = child.conv.gated_values[0] else: raise ValueError('should be gated conv or gated deconv') target = target.transpose(0, 1) for t in range(target.shape[0]): for c in range(target.shape[1]): out_file = os.path.join(out_subdir, f'time{t:03d}_channel{c:04d}.png') self.toPILImage(target[t, c: c + 1]).save(out_file) for key, child in self.model.generator.coarse_net.upsample_module.named_children(): out_subdir = os.path.join(out_dir, f'upsample_{key}') save_target(child, out_subdir) for key, child in self.model.generator.coarse_net.downsample_module.named_children(): out_subdir = os.path.join(out_dir, f'downsample_{key}') save_target(child, out_subdir) def _evaluate_data_loader(self, epoch=None, output_root_dir=None, data_loader=None, name='test'): total_length = 0 total_warp_error = 0 if self.evaluate_test_warp_error else None total_error = 0 total_psnr = 0 total_ssim = 0 total_p_dist = 0 if output_root_dir is None: output_root_dir = self.test_output_root_dir if epoch is not None: output_root_dir = os.path.join(output_root_dir, f"epoch_{epoch}") output_root_dir = os.path.join(output_root_dir, name) output_i3d_activations = [] real_i3d_activations = [] with torch.no_grad(): for batch_idx, data in enumerate(data_loader): data_input, model_output = self._process_data(data) inputs, outputs, targets, masks = self._unpack_data(data_input, model_output) if self.store_gated_values: out_dir = os.path.join(output_root_dir, 'gated_values', f'input_{batch_idx:04}') self._store_gated_values(out_dir) outputs = outputs.clamp(0, 1) if self.evaluate_score: # get i3d activation output_i3d_activations.append(get_i3d_activations(outputs).cpu().numpy()) real_i3d_activations.append(get_i3d_activations(targets).cpu().numpy()) assert len(outputs) == 1 # Batch size = 1 for testing inputs = inputs[0] outputs = outputs[0].cpu() targets = targets[0].cpu() masks = masks[0].cpu() if epoch is not None and epoch == 0: # Save inputs to output_dir output_dir = os.path.join(output_root_dir, 'inputs', f"input_{batch_idx:04}") self.logger.debug(f"Saving batch {batch_idx} input to {output_dir}") save_frames_to_dir([self.toPILImage(t) for t in inputs.cpu()], output_dir) if epoch is not None and epoch % 5 == 0: # Save test results to output_dir output_dir = os.path.join(output_root_dir, f"result_{batch_idx:04}") self.logger.debug(f"Saving batch {batch_idx} to {output_dir}") save_frames_to_dir([self.toPILImage(t) for t in outputs], output_dir) if self.evaluate_score: # Evaluate scores warp_error, error, psnr_value, ssim_value, p_dist, length = \ self._evaluate_test_video(outputs, targets, masks) if self.evaluate_test_warp_error: total_warp_error += warp_error total_error += error total_ssim += ssim_value total_psnr += psnr_value total_p_dist += p_dist total_length += length if self.evaluate_score: output_i3d_activations = np.concatenate(output_i3d_activations, axis=0) real_i3d_activations = np.concatenate(real_i3d_activations, axis=0) fid_score = get_fid_score(real_i3d_activations, output_i3d_activations) else: fid_score = 0 total_p_dist = [0] total_length = 1 total_p_dist = total_p_dist[0] if epoch is not None: self.writer.set_step(epoch, name) self._write_images( inputs, outputs, targets, masks, model_output=model_output, data_input=data_input ) if self.evaluate_test_warp_error: self.writer.add_scalar('test_warp_error', total_warp_error / total_length) self.writer.add_scalar('test_mse', total_error / total_length) self.writer.add_scalar('test_ssim', total_ssim / total_length) self.writer.add_scalar('test_psnr', total_psnr / total_length) self.writer.add_scalar('test_p_dist', total_p_dist / total_length) self.writer.add_scalar('test_fid_score', fid_score) return total_warp_error, total_error, total_ssim, total_psnr, total_p_dist, total_length, fid_score def _write_images( self, inputs, outputs, targets, masks, output_edges=None, target_edges=None, model_output=None, data_input=None ): self.writer.add_image('input', make_grid(inputs.cpu(), nrow=3, normalize=False)) self.writer.add_image('loss_mask', make_grid(masks.cpu(), nrow=3, normalize=False)) self.writer.add_image( 'output', make_grid(outputs.clamp(0, 1).cpu(), nrow=3, normalize=False)) self.writer.add_image('gt', make_grid(targets.cpu(), nrow=3, normalize=False)) self.writer.add_image('diff', make_grid(targets.cpu() - outputs.cpu(), nrow=3, normalize=True)) self.writer.add_image('IO_diff', make_grid(inputs.cpu() - outputs.cpu(), nrow=3, normalize=True)) try: output_edges = self.losses['loss_edge'][0].current_output_edges target_edges = self.losses['loss_edge'][0].current_target_edges self.writer.add_image('output_edge', make_grid(output_edges[0].cpu(), nrow=3, normalize=True)) self.writer.add_image('target_edge', make_grid(target_edges[0].cpu(), nrow=3, normalize=True)) except Exception: pass try: guidances = data_input['guidances'] self.writer.add_image('guidances', make_grid(guidances[0].cpu(), nrow=3, normalize=True)) except Exception: pass if model_output is not None: if 'imcomplete_video' in model_output.keys(): self.writer.add_image('imcomplete_video', make_grid( model_output['imcomplete_video'][0].transpose(0, 1).cpu(), nrow=3, normalize=False)) def _evaluate_test_video(self, output, gt_frames, masks): gt_images = [self.toPILImage(gt) for gt in gt_frames] result_images = [self.toPILImage(result) for result in output] mask_images = [self.toPILImage(mask / 255) for mask in masks] return evaluate_video_error( result_images, gt_images, mask_images, flownet_checkpoint_path=None, evaluate_warping_error=self.evaluate_test_warp_error, printlog=self.printlog ) def _eval_metrics(self, output, target): acc_metrics = np.zeros(len(self.metrics)) for i, metric in enumerate(self.metrics): acc_metrics[i] += metric(output, target) self.writer.add_scalar(f'{metric.__name__}', acc_metrics[i]) return acc_metrics def _get_gan_loss(self, outputs, target, masks, discriminator, w, guidances=None, is_disc=None): if w <= 0: return torch.Tensor([0]).to(self.device) scores = self.model.forward(outputs, masks, guidances, model=discriminator) gan_loss = self.adv_loss_fn(scores, target, is_disc) return gan_loss def _get_grad_mean_magnitude(self, output, optimizer): """ Get mean magitude (absolute value) of gradient of output w.r.t params in the optimizer. This function is used to get a simple understanding over the impact of a loss. :output: usually the loss you want to compute gradient w.r.t params :optimizer: the optimizer who contains the parameters you care Note: This function will reset the gradient stored in paramerter, so please use it before <your loss>.backward() Example: > grad_magnitude = self._get_grad_mean_magnitude( loss_recon * self.loss_recon_w, self.optimizer_g)) > print(grad_magnitude) """ optimizer.zero_grad() output.backward(retain_graph=True) all_grad = [] for group in optimizer.param_groups: for p in group['params']: all_grad.append(p.grad.view(-1)) value = torch.cat(all_grad).abs().mean().item() optimizer.zero_grad() return value def _get_edge_guidances(self, tensors): from utils.edge import get_edge guidances = [] for batch_idx in range(tensors.size(0)): batch_edges = [] for frame_idx in range(tensors.size(1)): edge = get_edge( tensors[batch_idx, frame_idx:frame_idx + 1] ) batch_edges.append(edge) guidances.append(torch.cat(batch_edges, dim=0)) guidances = torch.stack(guidances) return guidances def _process_data(self, data): inputs = data["input_tensors"].to(self.device) masks = data["mask_tensors"].to(self.device) targets = data["gt_tensors"].to(self.device) # guidances = self._get_edge_guidances(targets).to(self.device) if 'edge' in data['guidance'] else None guidances = data["guidances"].to(self.device) if len(data["guidances"]) > 0 else None data_input = { "inputs": inputs, "masks": masks, "targets": targets, "guidances": guidances } model_output = self.model(inputs, masks, guidances) return data_input, model_output def _unpack_data(self, data_input, model_output): # inputs, outputs, targets, masks = self._unpack_data(data_input, model_output) return ( data_input['inputs'], model_output['outputs'] if 'refined_outputs' not in model_output.keys() else model_output['refined_outputs'], data_input['targets'], data_input['masks'] ) def _get_non_gan_loss(self, data_input, model_output): # Compute and write all non-GAN losses to tensorboard by for loop losses = [] for loss_name, (loss_instance, loss_weight) in self.losses.items(): if loss_weight > 0.0: loss = loss_instance(data_input, model_output) self.writer.add_scalar(f'{loss_name}', loss.item()) loss *= loss_weight losses.append(loss) loss = sum(losses) return loss def _train_epoch(self, epoch): """ Training logic for an epoch :param epoch: Current training epoch. :return: A log that contains all information you want to save. Note: If you have additional information to record, for example: > additional_log = {"x": x, "y": y} merge it with log before return. i.e. > log = {**log, **additional_log} > return log The metrics in log must have the key 'metrics'. """ self.model.train() epoch_start_time = time.time() total_loss = 0 total_metrics = np.zeros(len(self.metrics)) for batch_idx, data in enumerate(self.data_loader): batch_start_time = time.time() # Set writer self.writer.set_step((epoch - 1) * len(self.data_loader) + batch_idx) data_input, model_output = self._process_data(data) inputs, outputs, targets, masks = self._unpack_data(data_input, model_output) # Train G non_gan_loss = self._get_non_gan_loss(data_input, model_output) loss_gan_s = self._get_gan_loss( outputs, 1, masks, discriminator='D_s', w=self.loss_gan_s_w, is_disc=False) loss_gan_t = self._get_gan_loss( outputs, 1, masks, discriminator='D_t', w=self.loss_gan_t_w, is_disc=False) loss_total = ( non_gan_loss + loss_gan_s * self.loss_gan_s_w + loss_gan_t * self.loss_gan_t_w ) self.optimizer_g.zero_grad() # Uncomment these lines to see the gradient # grad_recon = self._get_grad_mean_magnitude(loss_recon, self.optimizer_g) # grad_vgg = self._get_grad_mean_magnitude(loss_vgg, self.optimizer_g) # grad_gan_s = self._get_grad_mean_magnitude(loss_gan_s, self.optimizer_g) # grad_gan_t = self._get_grad_mean_magnitude(loss_gan_t, self.optimizer_g) # self.logger.info(f"Grad: recon {grad_recon} vgg {grad_vgg} gan_s {grad_gan_s} gan_t {grad_gan_t}") loss_total.backward() self.optimizer_g.step() # Train spatial and temporal discriminators for d in ['s', 't']: weight = getattr(self, f'loss_gan_{d}_w') optimizer = getattr(self, f'optimizer_d_{d}') if weight > 0: optimizer.zero_grad() loss_d = ( self._get_gan_loss( targets, 1, masks, discriminator=f'D_{d}', w=weight, is_disc=True) + self._get_gan_loss( outputs.detach(), 0, masks, discriminator=f'D_{d}', w=weight, is_disc=True) ) / 2 loss_d.backward() optimizer.step() self.writer.add_scalar(f'loss_d_{d}', loss_d.item()) self.writer.add_scalar('loss_total', loss_total.item()) self.writer.add_scalar('loss_gan_s', loss_gan_s.item()) self.writer.add_scalar('loss_gan_t', loss_gan_t.item()) with torch.no_grad(): total_loss += loss_total.item() total_metrics += self._eval_metrics(outputs, targets) if self.verbosity >= 2 and \ (batch_idx % self.log_step == 0 and epoch < 30) or \ batch_idx == 0: self.logger.info( f'Epoch: {epoch} [{batch_idx * self.data_loader.batch_size}/{self.data_loader.n_samples} ' f' ({100.0 * batch_idx / len(self.data_loader):.0f}%)] ' f'loss_total: {loss_total.item():.3f}, ' f'BT: {time.time() - batch_start_time:.2f}s' ) self._write_images(inputs[0], outputs[0], targets[0], masks[0], model_output=model_output, data_input=data_input) log = { 'epoch_time': time.time() - epoch_start_time, 'loss_total': total_loss / len(self.data_loader), 'metrics': (total_metrics / len(self.data_loader)).tolist() } if self.do_validation: val_log = self._valid_epoch(epoch) log = {**log, **val_log} if self.test_data_loader is not None: log = self.evaluate_test_set(epoch=epoch, log=log) if self.lr_scheduler is not None: self.lr_scheduler.step() return log def evaluate_test_set(self, output_root_dir=None, epoch=None, log=None): # Insert breakpoint when Nan self.model.eval() if isinstance(self.test_data_loader, list): test_data_loaders = self.test_data_loader else: test_data_loaders = [self.test_data_loader] try: for i, data_loader in enumerate(test_data_loaders): name = data_loader.name if data_loader.name is not None else f'test{i}' total_warp_error, total_error, total_ssim, total_psnr, total_p_dist, total_length, fid_score = \ self._evaluate_data_loader(data_loader=data_loader, name=name, output_root_dir=output_root_dir, epoch=epoch) if log is not None: log[f'{name}_p_dist'] = total_p_dist / total_length log[f'{name}_fid_score'] = fid_score if self.printlog: self.logger.info(f'test set name: {name}') if self.evaluate_test_warp_error: self.logger.info(f'test_warp_error: {total_warp_error / total_length}') self.logger.info(f'test_mse: {total_error / total_length}') self.logger.info(f'test_ssim: {total_ssim / total_length}') self.logger.info(f'test_psnr: {total_psnr / total_length}') self.logger.info(f'test_p_dist: {total_p_dist / total_length}') self.logger.info(f'test_fid_score: {fid_score}\n') except Exception as err: self.logger.error(err, exc_info=True) breakpoint() # NOQA return log def _valid_epoch(self, epoch): """ Validate after training an epoch :return: A log that contains information about validation Note: The validation metrics in log must have the key 'val_metrics'. """ self.model.eval() total_val_loss = 0 total_val_metrics = np.zeros(len(self.metrics)) self.logger.info(f"Doing {epoch} validation ..") with torch.no_grad(): for batch_idx, data in enumerate(self.valid_data_loader): if epoch == 1 and batch_idx > 5: continue self.writer.set_step((epoch - 1) * len(self.valid_data_loader) + batch_idx, 'valid') data_input, model_output = self._process_data(data) inputs, outputs, targets, masks = self._unpack_data(data_input, model_output) loss_total = self._get_non_gan_loss(data_input, model_output) self.writer.add_scalar('loss_total', loss_total.item()) total_val_loss += loss_total.item() total_val_metrics += self._eval_metrics(outputs, targets) if batch_idx % self.log_step == 0: self._write_images( inputs[0], outputs[0], targets[0], masks[0], model_output=model_output, data_input=data_input ) return { 'val_loss': total_val_loss / len(self.valid_data_loader), 'val_metrics': (total_val_metrics / len(self.valid_data_loader)).tolist(), }
amjltc295/Free-Form-Video-Inpainting
src/trainer/trainer.py
trainer.py
py
21,228
python
en
code
323
github-code
6
5898092758
permission_list = [ ['fsdDecl', ['fLib', 'fsDecl', 'fsdLink', 'fvLib']], ['fLib', ['f']], ['fsDecl', ['fsDescr', 'fsConstraints', 'fDecl']], ['fvLib', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['fDecl', ['fDescr', 'vRange', 'vDefault']], ['fsConstraints', ['bicond', 'cond']], ['bicond', ['f', 'fs', 'iff']], ['cond', ['f', 'fs', 'then']], ['vDefault', ['binary', 'default', 'fs', 'if', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['if', ['binary', 'default', 'f', 'fs', 'numeric', 'string', 'symbol', 'then', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['vRange', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['fs', ['f']], ['f', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['vAlt', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['vColl', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vLabel']], ['vLabel', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['vMerge', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']], ['vNot', ['binary', 'default', 'fs', 'numeric', 'string', 'symbol', 'vAlt', 'vColl', 'vLabel', 'vMerge', 'vNot']] ] # empty elements do not need to be included prohibition_list = [] # not sure if needed? def allowed(test_predecessor, test_element, line_nr): permitted = False print(" checking: {} and {}".format(test_predecessor, test_element)) for rule in permission_list: if rule[0] == test_predecessor: #print("equal: ", rule, test_predecessor) for rule_succ in rule[1]: if rule_succ == test_element: #print("equal: ", rule_succ, test_element) permitted = True if permitted: print(" TEI Rules apply, moving on...") else: print("Line {}: {} is not allowed after {}".format(line_nr, test_element, test_predecessor)) raise SystemExit(0)
Darboven/TEI-Feature-Structures
TEI-Checker/tei_rules.py
tei_rules.py
py
2,287
python
en
code
0
github-code
6
17938250421
# from __future__ import absolute_import import base64 import re # import mimetypes from config import media_types, static_files, static_ext, save_content class ResponseParser(object): """docstring for ResponseParser""" def __init__(self, f): super(ResponseParser, self).__init__() self.flow = f # self.content_type = self.get_content_type() # self.extension = self.get_extension() # self.ispass = self.capture_pass() def parser_data(self): """parser the capture response & request""" result = dict() # result['content_type'] = self.content_type result['url'] = self.flow.request.url result['path'] = '/{}'.format('/'.join(self.flow.request.path_components)) # result['extension'] = self.get_extension() result['host'] = self.flow.request.host result['port'] = self.flow.request.port result['scheme'] = self.flow.request.scheme result['method'] = self.flow.request.method result['status_code'] = self.flow.response.status_code # result['date_start'] = self.flow.response.timestamp_start # result['date_end'] = self.flow.response.timestamp_end result['content_length'] = int(self.flow.response.headers.get('Content-Length', 0)) # result['static_resource'] = self.ispass # result['resp_header'] = self.parser_header(self.flow.response.headers) result['request_header'] = self.parser_header(self.flow.request.headers) # request resource is media file & static file, so pass # if self.ispass: # result['resp_content'] = None # result['request_content'] = None # return result # result['resp_content'] = self.flow.response.content if save_content else '' # result['request_content'] = self.get_request_content() if save_content else '' result['request_content'] = self.flow.request.content return result # def get_content_type(self): # if not self.flow.response.headers.get('Content-Type'): # return '' # return self.flow.response.headers.get('Content-Type').split(';')[:1][0] # def get_content_length(self): # if self.flow.response.headers.get('Content-Length'): # return int(self.flow.response.headers.get('Content-Length')) # else: # return 0 # def capture_pass(self): # """if content_type is media_types or static_files, then pass captrue""" # # if self.extension in static_ext: # return True # # # can't catch the content_type # if not self.content_type: # return False # # if self.content_type in static_files: # return True # # http_mime_type = self.content_type.split('/')[:1] # if http_mime_type: # return True if http_mime_type[0] in media_types else False # else: # return False # def get_request_content(self): # content = self.flow.request.content # if 'multipart/form-data' in self.parser_header(self.flow.request.headers).get('Content-Type', ''): # content = self.decode_response_text(content) # return self.parser_multipart(content) # else: # return content # def get_header(self): # return self.parser_header(self.flow.response.headers) # def get_content(self): # return self.flow.response.content # def get_request_header(self): # return self.parser_header(self.flow.request.headers) # def get_url(self): # return self.flow.request.url # def get_path(self): # return '/{}'.format('/'.join(self.flow.request.path_components)) # def get_scheme(self): # return self.flow.request.scheme # # def get_method(self): # return self.flow.request.method # def get_port(self): # return self.flow.request.port # # def get_host(self): # return self.flow.request.host # def get_status_code(self): # return self.flow.response.status_code # def get_extension(self): # if not self.flow.request.path_components: # return '' # else: # end_path = self.flow.request.path_components[-1:][0] # split_ext = end_path.split('.') # if not split_ext or len(split_ext) == 1: # return '' # else: # return split_ext[-1:][0][:32] @staticmethod def parser_multipart(content): if isinstance(content, str): res = re.findall(r'name=\"(\w+)\"\r\n\r\n(\w+)', content) if res: return "&".join([k + '=' + v for k, v in res]) else: return "" else: return "" @staticmethod def parser_header(header): headers = {} for key, value in header.items(): headers[key] = value return headers @staticmethod def decode_response_text(content): for _ in ['UTF-8', 'GB2312', 'GBK', 'iso-8859-1', 'big5']: try: return content.decode(_) except: continue return content
jjf012/PassiveScanner
utils/parser.py
parser.py
py
5,258
python
en
code
112
github-code
6
74021781309
from typing import List from collections import Counter from time import time import matplotlib.pyplot as plt import numpy as np # constants ENGLISH_ALPHABET_CHARS = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ' def get_string_size(string: str, format: str='utf8') -> int: '''Returns size of string in bytes''' return len(string.encode('utf-8')) def get_words_from_text(text: str, approved_chars=ENGLISH_ALPHABET_CHARS) -> List[str]: '''Returns list of filtered words from a text''' # filter unwanted characters from text text = ''.join(char for char in text if char in approved_chars) # split and format words into list words = [word.lower() for word in text.split(' ') if len(word) > 0] return words # read in file with open('input.txt', 'r') as input_file: # iterate through file entries and extract words words = [] for i, entry_text in enumerate(input_file): # get words from text and append entry_words = get_words_from_text(entry_text) words.extend(entry_words) # count and rank words word_count_rank = dict(Counter(words).most_common()) n_unique_words = len(word_count_rank) # plot fig, ax = plt.subplots() plot = ax.plot(range(n_unique_words), list(word_count_rank.values())) ax.set_xticks(np.arange(1, n_unique_words+1, 25)) n_labels = 6 for i, word in enumerate(list(word_count_rank)[:n_labels]): ax.text(i, word_count_rank[word], word, fontsize=8) plt.show()
lucrae/zipf-score
side/score_old.py
score_old.py
py
1,510
python
en
code
0
github-code
6
16542777837
import contextlib from .Indentation import indented class SourceCodeCollector(object): def __init__(self): self.codes = [] def __call__(self, code): self.emit(code) def emit(self, code): for line in code.split("\n"): self.codes.append(line) def emitTo(self, emit, level): for code in self.codes: emit(indented(code, level)) self.codes = None @contextlib.contextmanager def withSubCollector(emit, context): context.pushCleanupScope() with context.variable_storage.withLocalStorage(): sub_emit = SourceCodeCollector() # To use the collector and put code in it and C declarations on the context. yield sub_emit local_declarations = context.variable_storage.makeCLocalDeclarations() if local_declarations: emit("{") for local_declaration in local_declarations: emit(indented(local_declaration)) sub_emit.emitTo(emit, level=1) emit("}") else: sub_emit.emitTo(emit, level=0) context.popCleanupScope()
Nuitka/Nuitka
nuitka/code_generation/Emission.py
Emission.py
py
1,132
python
en
code
10,019
github-code
6
18654748060
from typing import Dict, List, Type from src.domain.models.pets import Pets from src.domain.use_cases import FindPet as FindPetInterface from src.data.interfaces import PetRepositoryInterface class FindPet(FindPetInterface): """Use case for Find pet""" def __init__(self, pets_repository: Type[PetRepositoryInterface]): self.pets_repository = pets_repository def by_id(self, pet_id: int) -> Dict[bool, List[Pets]]: """Method By id""" response = None validate = isinstance(pet_id, int) if validate: response = self.pets_repository.select_pet(pet_id=pet_id) return {"Success": validate, "Data": response} def by_user_id(self, user_id: int) -> Dict[bool, List[Pets]]: """Get pet by name""" response = None validate = isinstance(user_id, int) if validate: response = self.pets_repository.select_pet(user_id=user_id) return {"Success": validate, "Data": response} def by_pet_id_and_user_id( self, pet_id: int, user_id: int ) -> Dict[bool, List[Pets]]: """Get pet by name""" response = None validate = isinstance(user_id, int) and isinstance(pet_id, int) if validate: response = self.pets_repository.select_pet(user_id=user_id, pet_id=pet_id) return {"Success": validate, "Data": response}
MatheusDev20/flask-application-clean-arch
src/data/find_pet/find.py
find.py
py
1,392
python
en
code
0
github-code
6
41058442656
class Poly: def __init__(self,*terms): # __str__ uses the name self.terms for the dictionary of terms # So __init__ should build this dictionary from terms self.terms = {} for numbers in terms: assert type(numbers[0]) is (int or float), "Poly.__init__: illegal powers in : (" + str(*terms) + ")" assert type(numbers[1]) is int and numbers[1] >= 0, "Poly.__init__: illegal powers in : (" + str(*terms) + ")" assert type(numbers[1]) not in self.terms, "Poly.__init__: illegal powers in : (" + str(*terms) + ")" if numbers[0] != 0: self.terms[numbers[1]] = numbers[0] # Fill in the rest of this method, using *terms to intialize self.terms # I have written str(...) because it is used in the bsc.txt file and # it is a bit subtle to get correct. Notice that it assumes that # every Poly object stores a dict whose keys are powers and whose # associated values are coefficients. This function does not depend # on any other method in this class being written correctly. def __str__(self): def term(c,p,var): return (str(c) if p == 0 or c != 1 else '') +\ ('' if p == 0 else var+('^'+str(p) if p != 1 else '')) if len(self.terms) == 0: return '0' else: return ' + '.join([term(c,p,'x') for p,c in sorted(self.terms.items(),reverse=True)]).replace('+ -','- ') def __repr__(self): answer = 'Poly(' for i in self.terms: answer += '(' + str(self.terms[i]) + ', ' + str(i) + '), ' if self.terms != {}: answer = answer[:-2] answer += ')' return answer def __len__(self): answer = 0 for i in self.terms: if i > answer: answer = i return answer def __call__(self,arg): answer = 0 for power in self.terms: answer += self.terms[power]**power return answer def __iter__(self): answer = list(self.terms.items()) answer.sort(reverse = True) return iter(answer) def __getitem__(self,index): if index < 0 or type(index) != int: raise TypeError("Sorry, " + str(index) + " must be an integer greater than 0.") else: if index not in self.terms: return 0 else: return self.terms[index] def __setitem__(self,index,value): if type(index) != int or index < 0: raise TypeError("Sorry, " + str(index) + " must be an integer greater than 0.") else: if value == 0: self.terms.__delitem__(value) else: self.__dict__[index] = value def __delitem__(self,index): if type(index) != int or index < 0: raise TypeError("Sorry, " + str(index) + " must be an integer greater than 0.") else: if index in self.terms: self.terms.__delitem__(index) def _add_term(self,c, p): if type(c) != (int or float): raise TypeError("Sorry, " + str(c) + " must be an int or float") if type(p) != int or p < 0: raise TypeError("Sorry, " + str(p) + " must be a non-negative int") if p not in self.terms: self.terms[p] = c else: self.terms[p] += c if self.terms[p] == 0: self.terms.__delitem__(p) def __add__(self,right): if type(self) != Poly: if type(self) is not (int or float): print(type(self)) raise TypeError("Sorry " + str(self) + " must be a Polynomial or int or float") if type(right) != Poly: if type(right) is not (int or float): raise TypeError("Sorry " + str(right) + " must be a Polynomial or int or float") if type(right) is (int or float) and type(self) == (int or float): raise TypeError("Sorry, one of the variables must be a polynomial") if type(self) is (int or float): self, right = right, self if type(right) is (int or float): answer = self.terms[0] answer += right return answer else: answer = {} answer2 = {} for i in self.terms: answer[self.terms[i]] = i for i in right.terms: answer2[right.terms[i]] = i for i in answer: if i in answer2: answer[i] += answer2[i] for i in answer2: if i not in answer: answer[i] = answer2[i] realanswer = {} for i in answer: realanswer[answer[i]] = i answer = Poly(answer) realanswer = Poly(realanswer) #return Poly(realanswer) def __radd__(self,left): if type(self) != Poly: if type(self) is not (int or float): print(type(self)) raise TypeError("Sorry " + str(self) + " must be a Polynomial or int or float") if type(left) != Poly: if type(left) is not (int or float): raise TypeError("Sorry " + str(left) + " must be a Polynomial or int or float") if type(left) is (int or float) and type(self) == (int or float): raise TypeError("Sorry, one of the variables must be a polynomial") def __mul__(self,right): if type(self) != Poly: if type(self) is not (int or float): print(type(self)) raise TypeError("Sorry " + str(self) + " must be a Polynomial or int or float") if type(right) != Poly: if type(right) is not (int or float): raise TypeError("Sorry " + str(right) + " must be a Polynomial or int or float") if type(right) is (int or float) and type(self) == (int or float): raise TypeError("Sorry, one of the variables must be a polynomial") def __rmul__(self,left): if type(self) != Poly: if type(self) is not (int or float): print(type(self)) raise TypeError("Sorry " + str(self) + " must be a Polynomial or int or float") if type(left) != Poly: if type(left) is not (int or float): raise TypeError("Sorry " + str(left) + " must be a Polynomial or int or float") if type(left) is (int or float) and type(self) == (int or float): raise TypeError("Sorry, one of the variables must be a polynomial") def __eq__(self,right): if type(self) != Poly: if type(self) is not (int or float): print(type(self)) raise TypeError("Sorry " + str(self) + " must be a Polynomial or int or float") if type(right) != Poly: if type(right) is not (int or float): raise TypeError("Sorry " + str(right) + " must be a Polynomial or int or float") if type(right) is (int or float) and type(self) == (int or float): raise TypeError("Sorry, one of the variables must be a polynomial") pass if __name__ == '__main__': # Some simple tests; you can comment them out and/or add your own before # the driver is called. print('Start simple tests') p = Poly((3,2),(-2,1), (4,0)) print(' For Polynomial: 3x^2 - 2x + 4') print(' str(p):',p) print(' repr(p):',repr(p)) print(' len(p):',len(p)) print(' p(2):',p(2)) print(' list collecting iterator results:',[t for t in p]) print(' p+p:',p+p) print(' p+2:',p+2) print(' p*p:',p*p) print(' p*2:',p*2) print('End simple tests\n') import driver #driver.default_show_exception=True #driver.default_show_exception_message=True #driver.default_show_traceback=True driver.driver()
solomc1/python
ics 33/solutions/ile2 solutions/Lab 3/YeSiyuan/poly.py
poly.py
py
8,269
python
en
code
0
github-code
6
18131053441
diceTop = 0 diceLeft = 0 diceRight = 0 diceFront = 0 diceBack = 0 diceBottom = 0 mapList = [] n,m,y,x,k = map(int,input().split()) for i in range(0,n): mapList.append(input().split()) movingList = (input().split()) for i in range(0,len(movingList)): direction = int(movingList[i]) if direction == 1: if x+1 >= len(mapList[0]): continue x += 1 elif direction == 2: if x-1 < 0 : continue x -= 1 elif direction == 3: if y - 1 < 0: continue y -= 1 elif direction == 4: if y + 1 >= len(mapList): continue y += 1 temp = diceTop if direction == 1: diceTop = diceLeft diceLeft = diceBottom diceBottom = diceRight diceRight = temp elif direction == 2: diceTop = diceRight diceRight = diceBottom diceBottom = diceLeft diceLeft = temp elif direction == 3: diceTop = diceFront diceFront = diceBottom diceBottom = diceBack diceBack = temp elif direction == 4: diceTop = diceBack diceBack = diceBottom diceBottom = diceFront diceFront = temp if(mapList[y][x] == "0"): mapList[y][x] = str(diceBottom) else : diceBottom = int(mapList[y][x]) mapList[y][x] = "0" print(diceTop)
Hyeneung-Kwon/Baekjoon_Python
14499.py
14499.py
py
1,387
python
en
code
0
github-code
6
17759233501
from abc import ABC, abstractmethod class Book(ABC): def __init__(self, isbn, title, author, publisher, pages, price, copies): self.isbn = isbn self.title = title self.author = author self.publisher = publisher self.pages = pages self.price = price self.copies = copies @abstractmethod def get_details(self): pass @abstractmethod def in_stock(self): pass @abstractmethod def sell(self): pass class PhysicalBook(Book): def get_details(self): book_dict = { "isbn": self.isbn, "title": self.title, "author": self.author, "publisher": self.publisher, "pages": self.pages, "price": self.price, "copies": self.copies } return book_dict def in_stock(self): return True if self.copies > 0 else False def sell(self): if self.in_stock(): self.copies -= 1 else: print('The book is out of stock') book_list = [] while True: print("\nMenu:") print("1. Add Book") print("2. Display Book Details") print("3. Exit") choice = int(input("Enter your choice: ")) if choice == 1: isbn = input("Enter ISBN: ") title = input("Enter title: ") author = input("Enter author: ") publisher = input("Enter publisher: ") pages = int(input("Enter number of pages: ")) price = float(input("Enter price: ")) copies = int(input("Enter number of copies: ")) book = PhysicalBook(isbn, title, author, publisher, pages, price, copies) book_list.append(book) elif choice == 2: for book in book_list: print(book.get_details()) elif choice == 3: print(book.in_stock) elif choice == 4: break else: print("Invalid choice. Try again.")
APARNA01MOHANAN/pycharm-projects
book-bank/BOOK34.py
BOOK34.py
py
1,924
python
en
code
0
github-code
6
4783789916
# Adapted from pytorch examples from __future__ import print_function from torch import nn, optim from railrl.core import logger import numpy as np from railrl.pythonplusplus import identity from railrl.torch.core import PyTorchModule from railrl.torch.networks import Mlp import railrl.torch.pytorch_util as ptu class ReprojectionNetworkTrainer(): def __init__( self, train_dataset, test_dataset, model, batch_size=128, log_interval=0, lr=1e-3, **kwargs ): self.log_interval = log_interval self.batch_size = batch_size if ptu.gpu_enabled(): model.cuda() self.model = model self.representation_size = model.representation_size self.optimizer = optim.Adam(self.model.parameters(), lr=lr) self.train_dataset, self.test_dataset = train_dataset, test_dataset assert self.train_dataset['z'].dtype == np.float32 assert self.test_dataset['z'].dtype ==np.float32 assert self.train_dataset['z_proj'].dtype == np.float32 assert self.test_dataset['z_proj'].dtype == np.float32 self.mse = nn.MSELoss() def get_batch(self, train=True): dataset = self.train_dataset if train else self.test_dataset ind = np.random.randint(0, len(dataset['z']), self.batch_size) return { 'z': ptu.np_to_var(dataset['z'][ind, :]), 'z_proj': ptu.np_to_var(dataset['z_proj'][ind, :]), } def mse_loss(self, z_proj_hat, z_proj): return self.mse(z_proj_hat, z_proj) def train_epoch(self, epoch, batches=100): self.model.train() mses = [] losses = [] for batch_idx in range(batches): data = self.get_batch() z = data["z"] z_proj = data['z_proj'] self.optimizer.zero_grad() z_proj_hat = self.model(z) mse = self.mse_loss(z_proj_hat, z_proj) loss = mse loss.backward() mses.append(mse.data[0]) losses.append(loss.data[0]) self.optimizer.step() logger.record_tabular("train/epoch", epoch) logger.record_tabular("train/MSE", np.mean(mses)) logger.record_tabular("train/loss", np.mean(losses)) def test_epoch(self, epoch, save_network=True, batches=100): self.model.eval() mses = [] losses = [] for batch_idx in range(batches): data = self.get_batch(train=False) z = data["z"] z_proj = data['z_proj'] z_proj_hat = self.model(z) mse = self.mse_loss(z_proj_hat, z_proj) loss = mse mses.append(mse.data[0]) losses.append(loss.data[0]) logger.record_tabular("test/epoch", epoch) logger.record_tabular("test/MSE", np.mean(mses)) logger.record_tabular("test/loss", np.mean(losses)) logger.dump_tabular() if save_network: logger.save_itr_params(epoch, self.model, prefix='reproj', save_anyway=True) class ReprojectionNetwork(PyTorchModule): def __init__( self, vae, hidden_sizes=list([64, 128, 64]), init_w=1e-3, hidden_init=ptu.fanin_init, output_activation=identity, layer_norm=False, **kwargs ): self.save_init_params(locals()) super().__init__() self.vae = vae self.representation_size = self.vae.representation_size self.hidden_init = hidden_init self.output_activation = output_activation # self.dist_mu = np.zeros(self.representation_size) # self.dist_std = np.ones(self.representation_size) self.dist_mu = self.vae.dist_mu self.dist_std = self.vae.dist_std self.relu = nn.ReLU() self.init_w = init_w hidden_sizes = list(hidden_sizes) self.network=Mlp(hidden_sizes, self.representation_size, self.representation_size, layer_norm=layer_norm, hidden_init=hidden_init, output_activation=output_activation, init_w=init_w) def forward(self, z): z = z.view(-1, self.representation_size) return self.network(z) def __getstate__(self): d = super().__getstate__() # Add these explicitly in case they were modified d["_dist_mu"] = self.dist_mu d["_dist_std"] = self.dist_std return d def __setstate__(self, d): super().__setstate__(d) self.dist_mu = d["_dist_mu"] self.dist_std = d["_dist_std"]
snasiriany/leap
railrl/torch/vae/reprojection_network.py
reprojection_network.py
py
4,777
python
en
code
45
github-code
6
44426734106
from test_framework.test_framework import ComparisonTestFramework from test_framework.util import assert_equal from test_framework.comptool import TestManager, TestInstance, RejectResult from test_framework.blocktools import create_transaction, CScript, msg_tx, prepare_init_chain from test_framework.script import OP_CHECKMULTISIG, OP_TRUE # We create 100 high and 10 low sigops density transactions and make sure that low density transactions are mined too. class MempoolHighSigopsDensity(ComparisonTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.genesisactivationheight = 50 self.extra_args = [['-whitelist=127.0.0.1', '-genesisactivationheight=%d' % self.genesisactivationheight]] def run_test(self): self.test.run() def get_tests(self): # shorthand for functions block = self.chain.next_block node = self.nodes[0] self.chain.set_genesis_hash( int(node.getbestblockhash(), 16) ) block(0) yield self.accepted() test, out, _ = prepare_init_chain(self.chain, 300, 300) yield test # send 100 transactions with high sigops density txsMultisigs = [] twoGB = 2147483647 for i in range(100): txMultisig = create_transaction(out[i].tx, out[i].n, b'', 100000, CScript([twoGB, OP_CHECKMULTISIG])) self.test.connections[0].send_message(msg_tx(txMultisig)) txsMultisigs.append(txMultisig) # check that transactions are in mempool self.check_mempool(self.test.connections[0].rpc, txsMultisigs) # send 10 transactions with normal sigops density txsBasics = [] for j in range(10): txBasic = create_transaction(out[i+j+1].tx, out[i+j+1].n, b'', 100000, CScript([2, OP_CHECKMULTISIG])) self.test.connections[0].send_message(msg_tx(txBasic)) txsBasics.append(txBasic) # check that transactions are in mempool self.check_mempool(self.test.connections[0].rpc, txsBasics) mempool = node.getrawmempool() for tx in txsMultisigs: assert_equal(True, tx.hash in mempool) for tx in txsBasics: assert_equal(True, tx.hash in mempool) node.generate(1) blockTxs = node.getblock(node.getbestblockhash())['tx'] for tx in txsBasics: assert_equal(True, tx.hash in blockTxs) if __name__ == '__main__': MempoolHighSigopsDensity().main()
bitcoin-sv/bitcoin-sv
test/functional/bsv-highsigopsdensitymempool.py
bsv-highsigopsdensitymempool.py
py
2,529
python
en
code
597
github-code
6
71844063869
from django.urls import reverse from django.utils.translation import gettext_lazy as _ from simple_menu import MenuItem submenu_items = [ MenuItem( _("customers").capitalize(), reverse("packs:sales_customer_list"), weight=20, icon="bx-right-arrow-alt", ), MenuItem( _("invoices").capitalize(), reverse("packs:sales_invoice_list"), weight=20, icon="bx-right-arrow-alt", ), ] sales_item = MenuItem( _("sales").capitalize(), "#", icon="bxs-shopping-bag", children=submenu_items )
dbsiavichay/faclab
apps/accounts/menus/sales.py
sales.py
py
563
python
en
code
0
github-code
6
25995631588
from dataclasses import dataclass, field from .. import docker from .. import exceptions from .. import utils from ..runtime import register, RuntimePlugin @register @dataclass class Docker(RuntimePlugin): name: str = field(init=False, default="Docker") def init(self, graph, outputs): # Parse the users docker conf file # and record a list of logins we know about self.auths = set() self.cfg = None self.graph = graph self.image_pull_secrets = {} cfg = docker.parse_config() if cfg: self.auths |= set(cfg.get("auths").keys()) self.cfg = cfg def image_secrets_for(self, image): m = docker.parse_docker_tag(image) if not m or m["domain"] not in self.auths: return None r = utils.AttrAccess( auth=docker.auth_for(self.cfg, m["domain"]), key=f"{self.graph.name}-{m['domain']}", ) self.image_pull_secrets[r.key] = r return r
parlaylabs/model
model/runtimes/docker.py
docker.py
py
1,011
python
en
code
2
github-code
6
75385540986
from collections import defaultdict T = int(input()) for i in range(T): N = int(input()) c = list(map(int, input().split(' '))) g = defaultdict(list) for _ in range(N - 1): edge = list(map(int, input().split(' '))) g[edge[0]].append(edge[1]) g[edge[1]].append(edge[0]) def dfs(u, pere): maxi = 0 for v in g[u]: if v != pere: maxi = max(maxi, dfs(v, u)) return maxi + c[u - 1] L = [] for v in g[1]: L.append(dfs(v, 1)) L.sort() res = c[0] if len(L) > 0: res += L[-1] if len(L) > 1: res += L[-2] print(f"Case #{i + 1}: {res}")
fortierq/competitions
fb_hacker_cup/2021/qualification/c1_gold_mine.py
c1_gold_mine.py
py
686
python
en
code
0
github-code
6
6146581577
import datetime import pyttsx3 import speech_recognition as sr import wikipedia import webbrowser import pywhatkit import time import threading import newsapi import random maquina = pyttsx3.init() voz = maquina.getProperty('voices') maquina.setProperty('voice', voz[1].id) def executa_comando(): try: with sr.Microphone() as source: recognizer = sr.Recognizer() voz = recognizer.listen(source) comando = recognizer.recognize_google(voz, language='pt-BR') comando = comando.lower() return comando except sr.UnknownValueError: maquina.say('Não entendi o comando') maquina.runAndWait() except sr.RequestError as e: maquina.say('Desculpe, houve um erro ao processar o comando') maquina.runAndWait() return '' def comando_voz_usuario(): while True: comando = executa_comando() if 'horas' in comando: tempo = datetime.datetime.now().strftime('%H:%M') maquina.say('Agora são ' + tempo) maquina.runAndWait() elif 'procure por' in comando: procurar = comando.replace('procure por', '') wikipedia.set_lang('pt') resultado = wikipedia.summary(procurar, 2) maquina.say(resultado) maquina.runAndWait() elif 'abrir navegador' in comando: webbrowser.open('https://www.google.com.br/') elif 'pesquise por' in comando: pesquisar = comando.replace('pesquise por', '') webbrowser.open('https://www.google.com.br/search?q=' + pesquisar) elif 'toque' in comando: musica = comando.replace('toque', '') pywhatkit.playonyt(musica) maquina.say('Tocando Música ' + musica) maquina.runAndWait() elif 'clima' in comando: obter_clima() elif 'pare de escutar' in comando: maquina.say('Por quantos minutos você quer que eu pare de escutar?') maquina.runAndWait() resposta = executa_comando() try: tempo = int(resposta) maquina.say('Ok, vou parar de escutar por ' + str(tempo) + ' minutos') maquina.runAndWait() time.sleep(tempo * 60) maquina.say('Voltei! O que posso fazer por você?') maquina.runAndWait() except ValueError: maquina.say('Desculpe, não entendi o tempo que você informou') maquina.runAndWait() elif 'tchau' in comando: maquina.say('Tchau!, foi bom te ver') maquina.runAndWait() break elif 'definir alarme' in comando: partes = comando.split(' ') hora = partes[2] mensagem = ' '.join(partes[3:]) definir_alarme(hora, mensagem) maquina.say('Alarme definido para ' + hora + '.') maquina.runAndWait() elif 'definir lembrete' in comando: partes = comando.split(' ') tempo_espera = int(partes[2]) mensagem = ' '.join(partes[3:]) def alerta(): time.sleep(tempo_espera) maquina.say(mensagem) maquina.runAndWait() thread = threading.Thread(target=alerta) thread.start() maquina.say('Lembrete definido para daqui a ' + str(tempo_espera) + ' segundos.') maquina.runAndWait() elif 'notícias' in comando: obter_noticias() elif 'piada' in comando: contar_piada() elif 'ajuda' in comando: exibir_ajuda() else: maquina.say('Comando não reconhecido') maquina.runAndWait() def definir_alarme(hora, mensagem): agora = datetime.datetime.now() horario_alarme = datetime.datetime.strptime(hora, '%H:%M') diferenca = horario_alarme - agora segundos = diferenca.seconds def alerta(): time.sleep(segundos) maquina.say(mensagem) maquina.runAndWait() thread = threading.Thread(target=alerta) thread.start() def obter_clima(): maquina.say('Desculpe, ainda não posso fornecer informações sobre o clima.') maquina.runAndWait() def obter_noticias(): newsapi = NewsApiClient(api_key='YOUR_NEWS_API_KEY') top_headlines = newsapi.get_top_headlines(language='pt') articles = top_headlines['articles'] maquina.say('Aqui estão as principais notícias:') maquina.runAndWait() for article in articles: title = article['title'] maquina.say(title) maquina.runAndWait() def contar_piada(): piadas = [ "Por que a galinha atravessou a rua? Para chegar ao outro lado.", "O que o pato disse para a pata? 'Vem Quá!'", "Qual é o cúmulo da velocidade? Levantar a mão para pedir licença ao vento.", "Por que o livro de matemática cometeu suicídio? Porque tinha muitos problemas.", "Qual é o doce preferido do átomo? Pé de moléculas." ] piada = random.choice(piadas) maquina.say(piada) maquina.runAndWait() def exibir_ajuda(): ajuda = "Aqui estão alguns comandos que você pode usar:\n" \ "- Horas: para saber a hora atual.\n" \ "- Procure por [termo]: para pesquisar informações no Wikipedia.\n" \ "- Abrir navegador: para abrir o navegador padrão.\n" \ "- Pesquise por [termo]: para pesquisar no Google.\n" \ "- Toque [música]: para reproduzir uma música no YouTube.\n" \ "- Clima: para obter informações sobre o clima.\n" \ "- Pare de escutar: para pausar a escuta por um determinado tempo.\n" \ "- Tchau: para encerrar o programa.\n" \ "- Definir alarme [hora] [mensagem]: para definir um alarme.\n" \ "- Definir lembrete [tempo] [mensagem]: para definir um lembrete.\n" \ "- Notícias: para obter as principais notícias.\n" \ "- Piada: para ouvir uma piada.\n" \ "- Ajuda: para exibir esta mensagem de ajuda." maquina.say(ajuda) maquina.runAndWait() comando_voz_usuario()
lucasss45/Fryday-IA
alfredv2.6.py
alfredv2.6.py
py
6,390
python
pt
code
0
github-code
6
27884694892
from django.contrib import admin from .models import Division, Farm # Register your models here. class DivisionAdmin(admin.ModelAdmin): list_display = ( "division_name", "division_code", ) admin.site.register(Division, DivisionAdmin) admin.site.register(Farm)
Wageesha95/dbapp-live
farms/admin.py
admin.py
py
289
python
en
code
0
github-code
6