seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
73816196028
import numpy as np import matplotlib.pyplot as plt import difuzija as di import sys sys.getdefaultencoding() def rho(x): if x >= 2.0 and x <= 5.0: return 5.5 else: return 0.0 j = [0, 100, 200, 300, 400] t = [0.5*J for J in j] P1 = [0.0, 20.0, 0.0, t[0]] #pocetni uvjeti P2 = [0.0, 20.0, 0.0, t[1]] P3 = [0.0, 20.0, 0.0, t[2]] P4 = [0.0, 20.0, 0.0, t[3]] P5 = [0.0, 20.0, 0.0, t[4]] N = 100 D1 = di.D_exp(rho, P1, N, j[0]) #vrijednosti funkcije difuzije D2 = di.D_exp(rho, P2, N, j[1]) D3 = di.D_exp(rho, P3, N, j[2]) D4 = di.D_exp(rho, P4, N, j[3]) D5 = di.D_exp(rho, P5, N, j[4]) X = [x/(20.0/N) for x in np.arange(0.0, 20.0 + 20.0/N, 20.0/N)] fig = plt.figure(figsize=(9,6), dpi=120) axes = fig.add_axes([0.15, 0.15, 0.75, 0.70]) plt.rcParams.update({'font.size': 8}) #type: ignore axes.plot(X, D1, label='t = {}$\u0394$x'.format(j[0]), lw=0.8, color='lightblue') #axes.plot(X, D2, label='t = {}$\u0394$x'.format(j[1]), lw=0.8, color='blue') #axes.plot(X, D3, label='t = {}$\u0394$x'.format(j[2]), lw=0.8, color='cyan') #axes.plot(X, D4, label='t = {}$\u0394$x'.format(j[3]), lw=0.8, color='green') #axes.plot(X, D5, label='t = {}$\u0394$x'.format(j[4]), lw=0.8, color='orange') axes.grid(lw=0.5) axes.set_xlabel('x / $\u0394$x') axes.set_ylabel('$\u03C1(x,t)$ / kgm$^{-1}$') axes.legend(loc='best') axes.set_title('Fazni dijagram matematičkog njihala') plt.show()
FabjanJozic/MMF3
Predavanje12_PDJ/Zadatak1.py
Zadatak1.py
py
1,404
python
en
code
0
github-code
6
74927169786
''' The photon Project ------------------- File: read_conf.py This file reads the configuration file @author: R. THOMAS @year: 2018 @place: ESO @License: GPL v3.0 - see LICENCE.txt ''' #### Python Libraries import configparser import os class Conf: """ This Class defines the arguments to be calle to use SPARTAN For the help, you can use 'SPARTAN -h' or 'SPARTAN --help' """ def __init__(self,conf): """ Class constructor, defines the attributes of the class and run the argument section """ if conf == None: ##if no configuration was passed, we take the default one dir_path = os.path.dirname(os.path.realpath(__file__)) default_file = os.path.join(dir_path, 'properties.conf') self.read_conf(default_file) else: self.read_conf(conf) def read_conf(self, fileconf): ''' Method that reads the configuration file passed to the code ''' config = configparser.ConfigParser() config.read(fileconf) ###background color self.BACK = config.get('background', 'back_color') ##AXIS properties AXIS = {'Color' : '', 'Label_color' : '', 'lw' : '', 'Labelsize' : '', 'Axis_label_font' : ''} AXIS['Color'] = config.get('AXIS', 'Color') AXIS['Label_color'] = config.get('AXIS', 'Label_Color') AXIS['lw'] = config.getfloat('AXIS', 'linewidth') AXIS['Labelsize'] = config.getfloat('AXIS', 'Labelsize') AXIS['Axis_label_font'] = config.get('AXIS', 'Axis_label_font') self.axis = AXIS ####Ticks properties TICKS = {'Minor' : '', 'placement' : '', 'Major_size' : '', 'Minor_size' : '', \ 'Major_width' : '', 'Minor_width' : '', 'Ticks_color' : '', 'Label_color' : '',\ 'Ticks_label_font' : '', } TICKS['Minor'] = config.get('TICKS', 'Minor') TICKS['placement'] = config.get('TICKS', 'placement') TICKS['Major_size'] = config.getfloat('TICKS', 'Major_size') TICKS['Minor_size'] = config.getfloat('TICKS', 'Minor_size') TICKS['Major_width'] = config.getfloat('TICKS', 'Major_width') TICKS['Minor_width'] = config.getfloat('TICKS', 'Minor_width') TICKS['Ticks_color'] = config.get('TICKS', 'Ticks_color') TICKS['Label_color'] = config.get('TICKS', 'Label_color') TICKS['Label_size'] = config.getfloat('TICKS', 'Label_size') TICKS['Ticks_label_font'] = config.get('TICKS', 'Ticks_label_font') self.ticks = TICKS ###legend LEGEND = {'Frame' : '', 'font_size' : '', 'Legend_font' : '',\ 'Label_font_color' : '', 'ncol' : '', 'location':''} LEGEND['Frame'] = config.get('LEGEND', 'Frame') LEGEND['font_size'] = config.getfloat('LEGEND', 'font_size') LEGEND['Legend_font'] = config.get('LEGEND', 'Legend_font') LEGEND['Label_font_color'] = config.get('LEGEND', 'Label_font_color') LEGEND['location'] = config.get('LEGEND', 'location') self.legend = LEGEND
astrom-tom/Photon
photon/read_conf.py
read_conf.py
py
3,134
python
en
code
3
github-code
6
29578754560
# -*- coding: utf-8 -*- """ https://note.nkmk.me/python-listdir-isfile-isdir/ Created on Wed Oct 31 11:45:21 2018 @author: Akitaka """ import os path = "./testdir" files = os.listdir(path) print(type(files)) # <class 'list'> print(files) # ['dir1', 'dir2', 'file1', 'file2.txt', 'file3.jpg'] #%% files = os.listdir(path) files_file = [f for f in files if os.path.isfile(os.path.join(path, f))] print(files_file) # ['file1', 'file2.txt', 'file3.jpg'] #%% files = os.listdir(path) files_dir = [f for f in files if os.path.isdir(os.path.join(path, f))] print(files_dir) # ['dir1', 'dir2']
nakanishi-akitaka/python2018_backup
1031/python_listdir_isfile_isdir.py
python_listdir_isfile_isdir.py
py
652
python
en
code
5
github-code
6
74182045309
"""feature for malware.""" import os.path from abc import ABC, abstractmethod import numpy as np import filebrowser import lief from capstone import * class Feature(ABC): """interface for all feature type.""" def __init__(self): super().__init__() self.dtype = np.float32 self.name = '' @abstractmethod def __call__(self): """call for feature extraction.""" def __repr__(self): return '{}({})'.format(self.name, self.dim) class BaseFeature(Feature, ABC): """interface & base impl for all base feature type.""" def __init__(self, dim): super(BaseFeature, self).__init__() self.dim = dim def empty(self): return np.zeros((self.dim,), dtype=np.float32) class RawBytesFeature(Feature): """raw bytes from whole exe.""" def __init__(self): super(RawBytesFeature, self).__init__() self.bytez = None def __call__(self, binary): builder = lief.PE.Builder(binary) builder.build() self.bytez = bytearray(builder.get_build()) return self.bytez def image(self, width=256): total_size = len(self.bytez) rem = total_size % width height = total_size // width arr = np.frombuffer(self.bytez, dtype=np.uint8) if rem != 0: height += 1 arr = np.pad(arr, (0, width-rem), 'constant') return arr.reshape((height, width)) class OpCodeFeature(Feature): """opcode sequence from binary.""" def __init__(self, only_text=False): super(OpCodeFeature, self).__init__() self.only_text = only_text def __call__(self, binary): opcode_seq = [] disasm_sections = [] for sec in binary.sections: if lief.PE.SECTION_CHARACTERISTICS.MEM_EXECUTE in sec.characteristics_lists: disasm_sections.append(sec.name) if self.only_text: disasm_sections = [".text"] for name in disasm_sections: section = binary.get_section(name) try: # some sections may contains no content bytes = section.content.tobytes() except: continue if binary.header.machine == lief.PE.MACHINE_TYPES.I386: md = Cs(CS_ARCH_X86, CS_MODE_32) else: md = Cs(CS_ARCH_X86, CS_MODE_64) for i in md.disasm(bytes, section.virtual_address): opcode_seq.append(i.mnemonic) return opcode_seq if __name__ == "__main__": fclient = filebrowser.FileBrowserClient().with_host( host="10.112.108.112", port="8081", username="admin", password="daxiahyh") download_list = [ "dagongren/DikeDataset-main/files/benign/0a8deb24eef193e13c691190758c349776eab1cd65fba7b5dae77c7ee9fcc906.exe", ] opcode_set = set() for file in download_list: save_path = os.path.join("../download", file.split("/")[-1]) print(save_path) fclient.download_auth_file( file, save_path) binary = lief.PE.parse(save_path) bytes = RawBytesFeature() print(hex(len(bytes(binary)))) print(bytes.image()) opcodes = OpCodeFeature() opcode_set.update(opcodes(binary)) print(len(opcode_set))
dagrons/try
feature/feature.py
feature.py
py
3,314
python
en
code
0
github-code
6
9380859967
import numpy as np import time, glob, cv2 from pymycobot import MyCobotSocket from pymycobot import PI_PORT, PI_BAUD from single_aruco_detection import marker_detecting from forward_kinematics import F_K from inverse_kinematics import I_K import matplotlib.pyplot as plt from scipy.linalg import orthogonal_procrustes def std_deviation(): # load the T_cam2ee T_cam2ee = np.load("scripts/Hand_eye_calibration/cam2gripper.npy") # load the T_marker2cam R_target2cam = np.load("scripts/Hand_eye_calibration/R_target2cam.npy") t_target2cam = np.load("scripts/Hand_eye_calibration/t_target2cam.npy") # number of images n = len(R_target2cam) T_mar2cam = [] for i in range(len(t_target2cam)): T_eye = np.eye(4) T_eye[0:3,0:3] = R_target2cam[i] T_eye[0:3,3] = np.reshape(t_target2cam[i], (3,)) T_mar2cam.append(T_eye) # load the T_ee2base T_ee2base_file = sorted(glob.glob("scripts/Hand_eye_calibration" + "/T_gripper2base/*.npy")) T_ee2base = [np.load(f) for f in T_ee2base_file] # T_marker2base T_mar2base = [] for i in range(len(T_ee2base)): T_mar2base.append(transform2base(T_mar2cam[i], T_cam2ee, T_ee2base[i])) np.save("scripts/Analysis/T_mar2base", T_mar2base) # print(np.shape(T_mar2base)) # create the chessboard corners # 9X6 chessboard, 0.016m for the edge of the square chessboard_corners = [] # for line (y) for i in range(0,6): # for coloum (x) for j in range(0,9): corner_coord = [0,0,0,1] corner_coord[0] = 0.016 * j corner_coord[1] = 0.016 * i chessboard_corners.append(corner_coord) chessboard_corners = np.reshape(chessboard_corners, (54,4)) # print(np.shape(chessboard_corners)[0]) # print(chessboard_corners) # transfer the chessboard corners to the base y = [] # loop the T_mar2base for i in range(0, np.shape(T_mar2base)[0]): # loop the chessboard corners y_i = [] for j in range(0,54): coord = T_mar2base[i] @ np.reshape(chessboard_corners[j], (4,1)) y_i.append(coord) y.append(y_i) # print(np.shape(y[0])) # sum the y_i sum = np.squeeze(y[0]) for i in range(1,n): sum = sum + np.squeeze(y[i]) # y bar y_bar = (sum)/n # y_i - y_bar error = [] for i in range(0, np.shape(y)[0]): error.append(np.squeeze(y[i])-y_bar) # print(np.shape(error[0])) # square each error, then sum, then divided by 6*9, finally square root # error_each_image in m # error of each corresponding corner in each image error_each_image = [] for i in range(0, n): error_each_image.append(np.sqrt(np.sum(np.square(error[i])))/(6*9)) # print(error_each_image) ##### draw the figure and save ##### # font1 = {'family':'times','size':14} # font2 = {'family':'times','size':12} # plt.figure(figsize=(12,5)) # plt.plot(np.arange(1,33), error_each_image) # plt.xticks(range(1,33)) # plt.xlabel("No.i pose", fontdict=font2) # plt.ylabel("Error / (m)", fontdict=font2) # plt.title("Average error at No.i pose", fontdict=font1) # plt.savefig("error.png",dpi=500) ### procrustes ### R, _ = orthogonal_procrustes(y_bar, chessboard_corners) np.save("scripts/Analysis/T_mar2base_procrustes", R) print("the estimated transformation is:") print(R) def transform2base(T_marker2cam, T_cam2gripper, T_gripper2base): """ chain rule to get the transformation from marker frame to the robot base frame """ T_marker2base = T_gripper2base @ T_cam2gripper @ T_marker2cam return T_marker2base if __name__ == "__main__": std_deviation()
zzZzzccHEnn/Visual_Tracking
evaluation.py
evaluation.py
py
3,833
python
en
code
0
github-code
6
19425798857
# Token types # # EOF (end-of-file) token is used to indicate that # there is no more input left for lexical analysis # RESERVED WORDS PROGRAM = 'PROGRAM' BEGIN = 'BEGIN' END = 'END' VAR = 'VAR' IO = 'IO' WAYPOINT = 'WAYPOINT' TRUE = 'TRUE' FALSE = 'FALSE' IF = 'IF' THEN = 'THEN' ELSE = 'ELSE' ENDIF = 'ENDIF' LOOP = 'LOOP' UNTIL = 'UNTIL' WAIT = 'WAIT' MOVETO = 'MOVETO' HOME = 'HOME' #VAR TYPES ID = 'ID' INTEGER = 'INTEGER' BOOL = 'BOOL' REAL = 'REAL' INTEGER_CONST = 'INTEGER_CONST' BOOL_CONST = 'BOOL_CONST' REAL_CONST = 'REAL_CONST' PININ = 'PININ' PINOUT = 'PINOUT' WAYPOINT = 'WAYPOINT' # OPERATORS PLUS = 'PLUS' MINUS = 'MINUS' MUL = 'MUL' INTEGER_DIV = 'INTEGER_DIV' FLOAT_DIV = 'FLOAT_DIV' LTE = 'LTE' LT = 'LT' GTE = 'GTE' GT = 'GT' LPAREN = 'LPAREN' RPAREN = 'RPAREN' ASSIGN = 'ASSIGN' EQUAL = 'EQUAL' NEQUAL = 'NEQUAL' # SYNTAX SYMBOLS SEMI = 'SEMI' DOT = 'DOT' COLON = 'COLON' COMMA = 'COMMA' EOF = 'EOF'
TimTrudeau/T3001
SRC/token_types.py
token_types.py
py
1,346
python
en
code
1
github-code
6
18262895650
from __future__ import print_function from __future__ import unicode_literals import sys import subprocess def str_chunk(input_str, width): """divide string to chunks with fixed width/size. """ return (input_str[0+i:width+i] for i in range(0, len(input_str), width)) def str_is_hex(input_str): """check if given string is hex digits. """ try: int(input_str, 16) return True except: return False class I2cDetectTool: """class to run i2cdetect and parse command output. """ _bus_num = None # i2c bus to be detected # "_probed_devices" contains the addresses of devices which are # successfully probed by "i2cdetect". _probed_devices = [] # "_skipped_devices" contains the addresses of devices which are # skipped by "i2cdetect" because the devices are in use by drivers. # Per "i2cdetect" manual page, this strongly suggests that there is # a chip/device at this address. _skipped_devices = [] def _parse_i2cdetect_output(self, cmd_output): """parse "i2cdetect" command output. """ cmd_output = cmd_output.decode('utf-8') lines = cmd_output.splitlines() lines.pop(0) # skip first line start_addr = 0 for line in lines: entries = list(str_chunk(line, 3)) entries.pop(0) # skip first column offset = 0 for entry in entries: entry = entry.strip() if entry == 'UU': self._skipped_devices.append(start_addr + offset) elif str_is_hex(entry): self._probed_devices.append(start_addr + offset) offset += 1 start_addr += 16 def __init__(self, bus_num, first_addr=None, last_addr=None): """Create an instance of I2cDetectTool. """ self._bus_num = bus_num cmd = 'i2cdetect -y ' + str(bus_num) f = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) info, err = f.communicate() if len(err) != 0: raise Exception(err) self._parse_i2cdetect_output(info) def list_probed_devices(self): """Returns the list (addresses) of found i2c devices. """ return self._probed_devices def list_skipped_devices(self): """Returns the list (addresses) of skipped i2c devices. """ return self._skipped_devices def is_device_present(self, i2c_addr): return (i2c_addr in self._probed_devices or i2c_addr in self._skipped_devices) if __name__ == "__main__": """unit test of classes/functions in the file. """ if len(sys.argv) != 3: print('Error: invalid command line arguments!') print('Usage: %s <i2c-bus-num> <dev-addr-hex>\n' % sys.argv[0]) sys.exit(1) bus_num = int(sys.argv[1]) dev_addr = int(sys.argv[2], 16) bus_info = I2cDetectTool(bus_num) # Dump probed devices if any probed = bus_info.list_probed_devices() if len(probed) == 0: print('no devices probed on i2c bus %d' % bus_num) else: print('%d devices probed on i2c bus %d:' % (len(probed), bus_num)) for item in probed: print(' - 0x%x' % item) # Dump skipped devices if any skipped = bus_info.list_skipped_devices() if len(skipped) == 0: print('no devices skipped on i2c bus %d' % bus_num) else: print('%d devices skipped on i2c bus %d:' % (len(skipped), bus_num)) for item in skipped: print(' - 0x%x' % item) # Test if device is present at given address if (bus_info.is_device_present(dev_addr)): print('i2c bus %d, address 0x%x: device detected' % (bus_num, dev_addr)) else: print('i2c bus %d, address 0x%x: no device present' % (bus_num, dev_addr))
WeilerWebServices/Facebook
openbmc/tests/common/i2cUtils.py
i2cUtils.py
py
4,008
python
en
code
3
github-code
6
31273368548
# Escreva um programa que recebe um numero e # printa o dobro, o triplo e a raiz desse número n1 = int(input('Insira aqui um número ')) dobro = n1*2 triplo = n1*3 raiz = n1**(1/2) print('O dobro é {} \n' 'O triplo é {} \n' 'A raiz é {} \n' .format(dobro, triplo, raiz))
fcoxico/Python-Projects
DobroTriploQuadruplo.py
DobroTriploQuadruplo.py
py
296
python
pt
code
0
github-code
6
36914067207
from django.urls import path from rest_framework import routers from user_accounts import views router = routers.DefaultRouter() # router.register('users', user_viewsets) urlpatterns = [ path('create_user/', views.create_user.as_view(), name='create_user'), path('login_user/', views.login_user.as_view(), name='login_user'), path('logout_user/<str:email_address>', views.logout_user.as_view(), name='logout_user'), path('GetUserInfoAPI/<str:email_address>', views.GetUserInfoAPI.as_view(), name='GetUserInfoAPI'), # path('get_principalesID/<str:email_address>', views.get_principalesID.as_view(), name='get_principalesID'), ]
AmbeyiBrian/ELECTRONIC-SCHOOL-MANAGER-KENYA
elimu_backend/user_accounts/urls.py
urls.py
py
649
python
en
code
0
github-code
6
18215167051
import BinarySearchTreeMap def create_chain_bst(n): chain_bst = BinarySearchTreeMap.BinarySearchTreeMap() for i in range(1,n+1): chain_bst.insert(i) return chain_bst def create_complete_bst(n): bst = BinarySearchTreeMap.BinarySearchTreeMap() add_items(bst, 1, n) return bst def add_items(bst, low, high): if low == high: bst.insert(low) else: subtree_root = low + (high - low) // 2 bst.insert(subtree_root) add_items(bst,low,subtree_root - 1) add_items(bst,subtree_root + 1,high)
andrew-qu2000/Schoolwork
cs1134/aq447_hw8/aq447_hw8_q2.py
aq447_hw8_q2.py
py
563
python
en
code
0
github-code
6
36406902723
#!/usr/bin/env python # -*- coding: utf-8 -* import os import csv import cloudpickle import numpy as np import pandas as pd from scipy.integrate import quad from scipy.stats import ( gaussian_kde, ks_2samp, t ) from sklearn.feature_selection import SelectorMixin from sklearn.base import TransformerMixin from sklearn.utils import resample from sklearn.metrics import ( f1_score, precision_score, recall_score, average_precision_score, ) from .logger import log CSV_WRITE_FORMAT = { 'index': False, 'quoting': csv.QUOTE_ALL, } CSV_READ_FORMAT = { 'keep_default_na': False, } class Sample: @staticmethod def full_sample(data, n): return data @staticmethod def random_sample(data, n, random_state=1): rng = np.random.default_rng(random_state) sample = rng.choice(data, n) return sample @staticmethod def percentile_sample(data, n, lower=0, upper=100): quantiles = np.linspace(lower, upper, n, endpoint=True) sample = np.percentile(data, quantiles, interpolation='lower') return sample @staticmethod def percentile_interpolation_sample(data, n, lower=0, upper=100): quantiles = np.linspace(lower, upper, n, endpoint=True) sample = np.percentile(data, quantiles, interpolation='linear') return sample Sample.MODES = { 'random': Sample.random_sample, 'percentile': Sample.percentile_sample, 'interpolate': Sample.percentile_interpolation_sample, 'full': Sample.full_sample, } class Stats: @staticmethod def compute_integral_boundaries(f, retsize): u = f.resample(retsize) a = u.mean() - 8 * u.std() b = u.mean() + 8 * u.std() return a, b @staticmethod def discrete_hellinger_integral(p, q, a, b, retsize): x, step = np.linspace(a, b, retsize, endpoint=True, retstep=True) i = np.dot(np.sqrt(p(x)), np.sqrt(q(x))) * step if i > 1: return 0 else: return i @classmethod def discrete_hellinger_distance(cls, p, q, retsize=100): a1, b1 = cls.compute_integral_boundaries(p, retsize) a2, b2 = cls.compute_integral_boundaries(q, retsize) a1, b1, a2, b2 = sorted([a1, b1, a2, b2]) i1 = cls.discrete_hellinger_integral(p, q, a1, b1, retsize) i2 = cls.discrete_hellinger_integral(p, q, b1, a2, retsize) i3 = cls.discrete_hellinger_integral(p, q, a2, b2, retsize) i = i1 + i2 + i3 if i > 1: # To prevent computing a negative root because of an approximation error during integration return 0 else: return np.sqrt(1 - i) @staticmethod def hellinger_integral(p, q, a=-np.inf, b=np.inf): value, error = quad( lambda x: np.sqrt(p(x)*q(x)), a, b ) return value, error @classmethod def hellinger_distance(cls, p, q, a=-np.inf, b=np.inf, split_integral=True, retsize=100): if split_integral: a1, b1 = cls.compute_integral_boundaries(p, retsize) a2, b2 = cls.compute_integral_boundaries(q, retsize) a1, b1, a2, b2 = sorted([a1, b1, a2, b2]) i1, _ = cls.hellinger_integral(p, q, a1, b1) i2, _ = cls.hellinger_integral(p, q, b1, a2) i3, _ = cls.hellinger_integral(p, q, a2, b2) value = i1 + i2 + i3 else: value, error = cls.hellinger_integral(p.pdf, q.pdf, a, b) if 1 <= value < 1.1: # To prevent computing a negative root because of an approximation error during integration return 1 elif 1.1 <= value: # If value > 1.1 the approximation failed too much and should not be rejected return 0 else: return np.sqrt(1 - value) @classmethod def hellinger_distance_1samp(cls, sample, pdf, **params): kde = gaussian_kde(sample, bw_method='silverman') return cls.hellinger_distance(kde, pdf, split_integral=False) @classmethod def hellinger_distance_2samp(cls, samp1, samp2): kde1 = gaussian_kde(samp1, bw_method='silverman') kde2 = gaussian_kde(samp2, bw_method='silverman') return cls.hellinger_distance(kde1, kde2) class Accessor: @staticmethod def get_entity_kde(entity): entityid, indexid = entity.split(':') kdepath = os.path.join(indexid, 'kde', entityid + '.kde') with open(kdepath, 'rb') as f: kde = cloudpickle.load(f) return kde @staticmethod def get_entity_data(entity): entityid, indexid = entity.split(':') datapath = os.path.join(indexid, 'entity', entityid + '.npy') data = np.load(datapath) return data @staticmethod def get_entity_metadata(entity): entityid, indexid = entity.split(':') path = os.path.join(indexid, 'terminology.csv') terminology = pd.read_csv(path, **CSV_READ_FORMAT, dtype=str) data = terminology[terminology.entityid == entityid].squeeze() return data @staticmethod def get_entity_aggregate(entity): columntypes = { "entityid": str, "size": int, "mean": float, "std": float, "var": float, "frequency": float } entityid, indexid = entity.split(':') path = os.path.join(indexid, 'aggregate.csv') terminology = pd.read_csv(path, **CSV_READ_FORMAT, dtype=columntypes) data = terminology[terminology.entityid == entityid].squeeze() return data @classmethod def hellinger_distance_2entity(cls, entity1, entity2, strategy='split_integral'): kde1 = cls.get_entity_kde(entity1) kde2 = cls.get_entity_kde(entity2) strategies = ('full', 'split_integral', 'discrete') if strategy not in strategies: strategy = 'split_integral' log.info(f"Hellinger distance strategy {strategy} must be in {strategies}, switching to 'split_integral'") if strategy == 'full': hd = Stats.hellinger_distance(kde1, kde2, split_integral=False) elif strategy == 'split_integral': hd = Stats.hellinger_distance(kde1, kde2, split_integral=True) elif strategy == 'discrete': hd = Stats.discrete_hellinger_distance(kde1, kde2) return hd @classmethod def ks_test_2entity(cls, entity1, entity2): data1 = cls.get_entity_data(entity1).flatten() data2 = cls.get_entity_data(entity2).flatten() return ks_2samp(data1, data2) @classmethod def kde_from_entity(cls, entity): entityid, indexid = entity.split(':') kdepath = os.path.join(indexid, 'kde', entityid + '.kde') os.makedirs(os.path.dirname(kdepath), exist_ok=True) data = cls.get_entity_data(entity) kde = gaussian_kde(data, bw_method='silverman') with open(kdepath, 'wb') as f: cloudpickle.dump(kde, f) return kde class CachedAccessor: KDECACHE = dict() @classmethod def get_entity_kde(cls, entity): if entity in cls.KDECACHE: kde = cls.KDECACHE.get(entity) else: kde = Accessor.get_entity_kde(entity) cls.KDECACHE[entity] = kde return kde DATACACHE = dict() @classmethod def get_entity_data(cls, entity): if entity in cls.DATACACHE: data = cls.DATACACHE.get(entity) else: data = Accessor.get_entity_data(entity) cls.DATACACHE[entity] = data return data METDATACACHE = dict() @classmethod def get_entity_metadata(cls, entity): if entity in cls.METDATACACHE: data = cls.METDATACACHE.get(entity) else: data = Accessor.get_entity_metadata(entity) cls.METDATACACHE[entity] = data return data class Score: @staticmethod def tm_rank(groupby, ret=5): return groupby.sort_values('y_proba', ascending=False).head(ret).Y.any() @staticmethod def tm_score(df, groupby_key, ret=5): res = df.groupby(groupby_key).apply(Score.tm_rank, ret=ret) n = len(df.index.get_level_values(groupby_key).unique()) return res.value_counts().get(True, 0) / n @staticmethod def tm_score_relaxed(df, groupby_key, ret=5): res = df.groupby(groupby_key).apply(Score.tm_rank, ret=ret) n = len(df[df.Y == True].index.get_level_values(groupby_key).unique()) return res.value_counts().get(True, 0) / n @staticmethod def compute_tm_score(model, df, groupby_key, ret=5): df = df.copy() df['y_proba'] = model.predict_proba(df.X)[:,1] res = df.groupby(groupby_key).apply(Score.tm_rank, ret=ret) n = len(df[df.Y == True].index.get_level_values(groupby_key).unique()) return res.value_counts().get(True, 0) / n class NamedFeatureSelector(SelectorMixin, TransformerMixin): _params_name = set(['columns', 'selected_columns']) def __init__(self, columns=None, selected_columns=None): self.columns = columns or [] self.selected_columns = set(selected_columns or []) def set_params(self, **params): if not params: # Simple optimization to gain speed (inspect is slow) return self valid_params = dict() for k, v in params.items(): if (k in self._params_name): valid_params[k] = v for k, v in valid_params.items(): setattr(self, k, v) return self def _get_support_mask(self): mask = np.array(list(map(lambda x: x in self.selected_columns, self.columns))) return mask def fit(self, X, y=None): return self class Bootstrap: @staticmethod def sample(df, rate=1): n = int(len(df.index) * rate) return resample(df, n_samples=n) @staticmethod def evaluate(model, data): X = data.drop('Y', axis=1) Y = data['Y'] Y_pred = model.predict(X) Y_proba = model.predict_proba(X)[:, 1] stats = ( f1_score(Y, Y_pred, zero_division=0), precision_score(Y, Y_pred, zero_division=0), recall_score(Y, Y_pred, zero_division=0), average_precision_score(Y, Y_proba) ) return stats @staticmethod def score(model, df, rep=1000, rate=1, verbose=False): statistics = [] for i in range(rep): if verbose and (i % 50 == 0): log.info(f"Bootstrap iteration {i} over {rep}") test = Bootstrap.sample(df, rate) stat = Bootstrap.evaluate(model, test) statistics.append(stat) statistics = np.array(statistics) results = dict() for name, stats in zip(['f1', 'precision', 'recall', 'PR-AUC'], statistics.T): mu = stats.mean() std = stats.std() alpha = 0.05 if std > 0: st = (mu - stats) / std q1 = mu - np.quantile(st, 1-0.5*alpha)*std q2 = mu - np.quantile(st, 0.5*alpha)*std else: q1 = q2 = mu results[name] = { 'mean': mu, 'std': std, 'CI': 1-alpha, 'lower': q1, 'upper': q2, } return results
mcrts/dmatch
dmatch/utils.py
utils.py
py
11,860
python
en
code
1
github-code
6
23595304281
import os import re import time from option import Option import pandas as pd import wget as wget from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait import download __author__ = 'Song Hui' # 作者名 def get_options_from_command_line(): import argparse # Initialize parser parser = argparse.ArgumentParser() # Adding optional argument parser.add_argument("-o", "--output_dir", help="to set directory of all output files") parser.add_argument("-r", "--result_file", help="to set result CSV file name") parser.add_argument("-l", "--limit", help="to set max file count") # Read arguments from command line args = parser.parse_args() if args: print("parsing arguments: {}".format(args)) return Option(args.output_dir, args.result_file, int(args.limit) if args.limit is not None else None) if __name__ == '__main__': # 获取命令行参数 option = get_options_from_command_line() if not os.path.exists(option.output_dir): os.mkdir(option.output_dir) # 设置从url中获取名字的正则表达式 exp_img = re.compile(r'v/.+?/(.*?)\?') exp_video = re.compile(r'v/.+?/(.*?)\?') web_options = webdriver.ChromeOptions() web_options.add_argument("--enable-javascript") # web_options.add_argument('--always-authorize-plugins=true') with webdriver.Chrome(options=web_options) as driver: # with webdriver.Chrome(chrome_options=options) as driver: wait = WebDriverWait(driver, 10) # 访问首页 driver.get( "https://www.facebook.com/ads/library/?active_status=active&ad_type=all&country=ALL&q=clothing&sort_data[direction]=desc&sort_data[mode]=relevancy_monthly_grouped&start_date[min]=2021-11-25&start_date[max]=2021-11-26&search_type=keyword_unordered&media_type=video") # 获取所有视频描述节点 results = [] while len(results) < option.limit: results = driver.find_elements(By.CSS_SELECTOR, "div._99s5") driver.execute_script("window.scrollTo(0,document.body.scrollHeight)") time.sleep(5) times = 0 # 准备数据表 columns = ['title', 'img_name', 'video_name', 'desc'] df = pd.DataFrame(columns=columns) for ele in results: ele_item = ele.find_element(By.CSS_SELECTOR, "div.iajz466s div._7jyg") # 获取标题节点 title_item = ele_item.find_element(By.CSS_SELECTOR, "div._8nsi a.aa8h9o0m>span.a53abz89") title = title_item.text print(title) # 获取描述节点 desc_item = ele_item.find_element(By.CSS_SELECTOR, "div._7jyr>span div._4ik4>div") desc = desc_item.text # 获取视频图片节点 video_item = ele_item.find_element(By.CSS_SELECTOR, "div._8o0a>video") img_url = video_item.get_attribute('poster') # print(img_url) img_name = re.search(exp_img, img_url).group(1) print(img_name) video_url = video_item.get_attribute('src') # print(video_url) video_name = re.search(exp_video, video_url).group(1) + 'mp4' # 网站给出的视频文件没有扩展名,这里随便加一个,应该就可以播放了 print(video_name) if os.path.exists(option.output_dir + video_name): # 如果目标路径中,对应的视频文件已经存在,那么跳过该记录 continue # 下载对应的图片和视频文件 try: wget.download(img_url, option.output_dir + img_name) except Exception as e: print('下载图片"{}"异常:{}'.format(img_url, e)) continue try: wget.download(video_url, option.output_dir + video_name) except Exception as e: print('下载视频"{}"异常:{}'.format(video_url, e)) continue # 新增1条数据记录 df = df.append({'title': title, 'img_name': img_name, 'video_name': video_name, 'desc': desc}, ignore_index=True) # 检查数据上限 times += 1 if times >= option.limit: break # # driver.get(ele.get_attribute('src')) time.sleep(0.5) # 保存数据文件 with open(option.output_result, 'a', encoding="utf-8", newline='') as f: # 如果文件存在,则添加数据 df.to_csv(f, header=f.tell() == 0)
songofhawk/simplerpa
test/test_selenium/facebook_download.py
facebook_download.py
py
4,871
python
en
code
15
github-code
6
41707501948
import tensorflow as tf from config import cfg def detect_loss(): def get_box_highest_percentage(arr): shape = tf.shape(arr) reshaped = tf.reshape(arr, (shape[0], tf.reduce_prod(shape[1:-1]), -1)) # returns array containing the index of the highest percentage of each batch # where 0 <= index <= height * width max_prob_ind = tf.argmax(reshaped[..., -1], axis=-1, output_type=tf.int32) # turn indices (batch, y * x) into (batch, y, x) # returns (3, batch) tensor unraveled = tf.unravel_index(max_prob_ind, shape[:-1]) # turn tensor into (batch, 3) and keep only (y, x) unraveled = tf.transpose(unraveled)[:, 1:] y, x = unraveled[..., 0], unraveled[..., 1] # stack indices and create (batch, 5) tensor which # contains height, width, offset_y, offset_x, percentage indices = tf.stack([tf.range(shape[0]), y, x], axis=-1) box = tf.gather_nd(arr, indices) y, x = tf.cast(y, tf.float32), tf.cast(x, tf.float32) # transform box to (y + offset_y, x + offset_x, GRID_SIZE * height, GRID_SIZE * width, obj) # output is (batch, 5) out = tf.stack([y + box[..., 2], x + box[..., 3], cfg.NN.GRID_SIZE * box[..., 0], cfg.NN.GRID_SIZE * box[..., 1], box[..., -1]], axis=-1) return out def loss(y_true, y_pred): # get the box with the highest percentage in each image true_box = get_box_highest_percentage(y_true) pred_box = get_box_highest_percentage(y_pred) # object loss obj_loss = tf.keras.losses.binary_crossentropy(y_true[..., 4:5], y_pred[..., 4:5]) # mse with the boxes that have the highest percentage box_loss = tf.reduce_sum(tf.math.squared_difference(true_box[..., :-1], pred_box[..., :-1])) return tf.reduce_sum(obj_loss) + box_loss return loss
burnpiro/tiny-face-detection-tensorflow2
model/loss.py
loss.py
py
1,942
python
en
code
27
github-code
6
10966555857
import json class Config(dict): def __init__(self, path=None, section='default', *args, **kwargs): super().__init__(*args, **kwargs) if path is not None: self.read(path, section) def read(self, path, section='default'): '''read config from config file. will clear config before read''' self.section = section self.dirty = False self.hasDefault = False self.path = path self.clear() with open(path) as f: self.conf = json.load(f) if self.section not in self.conf: raise KeyError('{} not a valid key'.format(self.section)) self.hasDefault = 'default' in self.conf if self.hasDefault: self.update(self.conf['default']) self.update(self.conf[self.section]) def save(self): '''save config.''' dconf = {} if self.hasDefault: dconf = self.conf['default'] sconf = self.conf[self.section] # delete keys for key in set(sconf): if key not in self: self.dirty = True del sconf[key] # add / change key for key in self: if key in dconf and self[key] == dconf[key]: continue else: self.dirtY sconf[key] = self[key] if self.dirty: with open(self.path, 'w') as f: json.dump(self.conf, f, sort_keys=True, ensure_ascii=False, indent=4, separators=(',', ': ')) self.dirty = False def write(self, path): '''write conf to file''' self.path = path self.dirty = True self.save()
lycsjm/acgnmanager
src/lib/config.py
config.py
py
1,751
python
en
code
0
github-code
6
13348518622
import argparse import datetime import pathlib import subprocess import sys import time import run_all_utils command = ''' python ../modules/S3segmenter/large/S3segmenter.py --imagePath "{}" --stackProbPath "{}" --outputPath "{}" --probMapChan {probMapChan} --area-max 50000 --expand-size {expand_size} --maxima-footprint-size {maxima_footprint_size} --mean-intensity-min {mean_intensity_min} --pixelSize {pixelSize} ''' MODULE_NAME = 's3seg' ORION_DEFAULTS = [ ('probMapChan', 1, 'int'), ('expand-size', 5, 'int'), ('maxima-footprint-size', 13, 'int'), ('mean-intensity-min', 128, 'float'), ('pixelSize', 0.325, 'float'), ] def main(argv=sys.argv): parser = argparse.ArgumentParser() parser.add_argument( '-c', metavar='config-csv', required=True ) parser.add_argument( '-m', metavar='module-params', required=False, default=None ) parsed_args = parser.parse_args(argv[1:]) CURR = pathlib.Path(__file__).resolve().parent file_config, module_params, log_path = run_all_utils.init_run( parsed_args, ORION_DEFAULTS, MODULE_NAME ) for config in file_config[:]: config = run_all_utils.set_config_defaults(config) name = config['name'] out_dir = config['out_dir'] print('Processing', name) nucleus_channel = module_params['probMapChan'] - 1 pmap_path = out_dir / name / 'unmicst2' / f'{name}_Probabilities_{nucleus_channel}.ome.tif' command_run = [ 'python', CURR.parent / 'modules/S3segmenter/large/S3segmenter.py', '--imagePath', config['path'], '--stackProbPath', pmap_path, '--outputPath', out_dir / name / 'segmentation', '--area-max', str(50000) ] for kk, vv in module_params.items(): command_run.extend([f"--{kk}", str(vv)]) start_time = int(time.perf_counter()) subprocess.run(command_run) end_time = int(time.perf_counter()) print('elapsed', datetime.timedelta(seconds=end_time-start_time)) print() run_all_utils.to_log( log_path, config['path'], end_time-start_time, module_params ) return 0 if __name__ == '__main__': sys.exit(main())
Yu-AnChen/orion-scripts
processing/command-s3seg.py
command-s3seg.py
py
2,454
python
en
code
0
github-code
6
18777503409
from flask import Flask from flask import render_template from pymongo import MongoClient import json from bson import json_util from bson.json_util import dumps import random import numpy as np import ast import pandas as pd from sklearn import preprocessing from sklearn.cluster import KMeans from sklearn.metrics.pairwise import pairwise_distances import matplotlib.pylab as plt from sklearn.preprocessing import StandardScaler from scipy.spatial.distance import cdist from scipy.spatial.distance import pdist,squareform import collections from collections import defaultdict from sklearn.decomposition import PCA from sklearn.manifold import MDS from sklearn.metrics.pairwise import pairwise_distances import math app = Flask(__name__) MONGODB_HOST = 'localhost' MONGODB_PORT = 27017 DBS_NAME = 'crime' COLLECTION_NAME = 'projects' FIELDS = {'crmrte': True, 'prbarr': True, 'prbconv': True, 'prbpris': True,'avgsen': True,'density': True,'wcon': True,'wtuc': True,'wtrd': True,'wfir': True,'wser': True,'wmfg': True,'taxpc': True,'pctmin': True,'wfed': True,'wsta': True,'wloc': True,'mix': True,'pctymle': True,'_id': False} @app.route("/") def index(): return render_template("index.html") @app.route("/crime/projects") def crime_projects(): connection = MongoClient(MONGODB_HOST, MONGODB_PORT) collection = connection[DBS_NAME][COLLECTION_NAME] projects = collection.find(projection=FIELDS) json_projects = [] for project in projects: json_projects.append(project) json_projects = json.dumps(json_projects, default=json_util.default) connection.close() return json_projects proj_details=crime_projects(); crime_data = pd.read_json(proj_details) # testarray = ast.literal_eval(proj_details) clusterObj= crime_data[['crmrte','prbarr','prbconv','prbpris','avgsen', 'density','wcon','wtuc','wtrd','wfir','wser','wmfg','taxpc','pctmin','wfed','wsta','wloc','mix','pctymle']] clustervar=clusterObj.copy() # clustervar['county']= preprocessing.scale(clustervar['county'].astype('float64')) # clustervar['year']= preprocessing.scale(clustervar['year'].astype('float64')) clustervar['crmrte']= preprocessing.scale(clustervar['crmrte'].astype('float64')) clustervar['prbarr']= preprocessing.scale(clustervar['prbarr'].astype('float64')) clustervar['prbconv']= preprocessing.scale(clustervar['prbconv'].astype('float64')) clustervar['prbpris']= preprocessing.scale(clustervar['prbpris'].astype('float64')) clustervar['avgsen']= preprocessing.scale(clustervar['avgsen'].astype('float64')) clustervar['density']= preprocessing.scale(clustervar['density'].astype('float64')) clustervar['wcon']= preprocessing.scale(clustervar['wcon'].astype('float64')) clustervar['wtuc']= preprocessing.scale(clustervar['wtuc'].astype('float64')) clustervar['wtrd']= preprocessing.scale(clustervar['wtrd'].astype('float64')) clustervar['wfir']= preprocessing.scale(clustervar['wfir'].astype('float64')) clustervar['wser']= preprocessing.scale(clustervar['wser'].astype('float64')) clustervar['wmfg']= preprocessing.scale(clustervar['wmfg'].astype('float64')) clustervar['taxpc']= preprocessing.scale(clustervar['taxpc'].astype('float64')) clustervar['pctmin']= preprocessing.scale(clustervar['pctmin'].astype('float64')) clustervar['wfed']= preprocessing.scale(clustervar['wfed'].astype('float64')) clustervar['wsta']= preprocessing.scale(clustervar['wsta'].astype('float64')) clustervar['wloc']= preprocessing.scale(clustervar['wloc'].astype('float64')) clustervar['mix']= preprocessing.scale(clustervar['mix'].astype('float64')) clustervar['pctymle']= preprocessing.scale(clustervar['pctymle'].astype('float64')) clus_train = clustervar def findSuitableK(): clusters=range(1,9) meandist=[] for k in clusters: model=KMeans(n_clusters=k) model.fit(clus_train) clusassign=model.predict(clus_train) meandist.append(sum(np.min(cdist(clus_train, model.cluster_centers_, 'euclidean'), axis=1)) / clus_train.shape[0]) plt.plot(clusters, meandist) plt.xlabel('Number of clusters') plt.ylabel('Average distance') plt.title('Selecting k with the Elbow Method') # pick the fewest number of clusters that reduces the average distance plt.show() findSuitableK() def createClusters(): model=KMeans(n_clusters=3) model.fit(clus_train) clusassign=model.predict(clus_train) lables = model.labels_ return lables lables=createClusters() def groupClusters(): my_dict = {} for (ind,elem) in enumerate(lables): if elem in my_dict: my_dict[elem].append(ind) else: my_dict.update({elem:[ind]}) return my_dict cluster_dict=groupClusters() def sampleClusters(): cluster_sample={} df = pd.DataFrame() # # df = pd.DataFrame(index=range(0,13),columns=['county','year','crmrte','prbarr','prbconv','prbpris','avgsen', # 'density','wcon','wfir','wser','wmfg'], dtype='float64') # df= pd.DataFrame([['county','year','crmrte','prbarr','prbconv','prbpris','avgsen', # 'density','wcon','wfir','wser','wmfg']]) for i in range(0,3): length = len(cluster_dict[i]) cluster_sample[i]=random.sample(cluster_dict[i],length//3) for k in cluster_sample[i]: df=df.append(clus_train.iloc[[k]],ignore_index=True) # df.iloc[[count]] = clus_train.iloc[[k]] return df def randomSample(): newClusterTrain= clustervar.sample(n=len(clus_train)//3) return newClusterTrain randomSampledClusterFrame=randomSample() sampled_dataFrame=sampleClusters() pca = PCA(n_components=19) pca.fit(sampled_dataFrame) loadings=pca.components_ def pcaRandomSample(): r_pca = PCA(n_components=19) r_pca.fit_transform(randomSampledClusterFrame) r_loadings=r_pca.components_ return r_pca,r_loadings random_pca,Random_loadings =pcaRandomSample() def screeplot(pca, standardised_values): y = pca.explained_variance_ x = np.arange(len(y)) + 1 plt.plot(x, y, "o-") plt.xticks(x, ["PC"+str(i) for i in x], rotation=60) plt.ylabel("Variance") plt.show() return np.array(y),np.array(x) y,x =screeplot(pca, sampled_dataFrame) y_random,x_random =screeplot(random_pca, Random_loadings) @app.route("/crime/screeplot") def showScreeplot(): return render_template("screeplot.html",y=y.tolist(),x=x.tolist()) @app.route("/crime/randomscreeplot") def showScreeplot_random(): return render_template("randomScreePlot.html",y=y_random.tolist(),x=x_random.tolist()) def squaredLoadings(): w, h = 3, 19; squaredLoadings = [0 for y in range(h)] for i in range(len(loadings)): sum=0 for j in range(3): sum = sum + loadings[j][i] **2 squaredLoadings[i]=sum return squaredLoadings sumSquareLoadings=squaredLoadings() @app.route("/crime/squaredLoadings") def showSqureloadingsPlot(): sortedSumSquareLoadings=sorted(sumSquareLoadings,reverse=True) length= len(sortedSumSquareLoadings) columns=[0 for y in range(length)] index=0 for i in sortedSumSquareLoadings: columns[index]=clus_train.columns.values[sumSquareLoadings.index(i)] index =index+1 return render_template("squaredloadings.html",y=sortedSumSquareLoadings,x=json.dumps(columns)) def randomSquaredLoadings(): w, h = 3, 21; squaredLoadings = [0 for y in range(h)] for i in range(len(Random_loadings)): sum=0 for j in range(3): sum = sum + loadings[j][i] **2 squaredLoadings[i]=sum return squaredLoadings randomsumSquareLoadings=randomSquaredLoadings() @app.route("/crime/randomsquaredLoadings") def showRandomSqureloadingsPlot(): sortedSumSquareLoadings=sorted(randomsumSquareLoadings,reverse=True) length= len(sortedSumSquareLoadings) columns=[0 for y in range(length)] index=0 for i in sortedSumSquareLoadings: columns[index]=clus_train.columns.values[randomsumSquareLoadings.index(i)] index =index+1 return render_template("randomSquaredloadings.html",y=sortedSumSquareLoadings,x=json.dumps(columns)) @app.route("/crime/scatterMatrix") def getColumnData(): sortedSumSquareLoadings=sorted(sumSquareLoadings,reverse=True) columns=[0 for y in range(3)] columnsVals={} index=0 for i in sortedSumSquareLoadings: columns[index]=clus_train.columns.values[sumSquareLoadings.index(i)] index =index+1 if index==3: break for i in range(3): columnsVals.update({columns[i]:sampled_dataFrame.loc[:,columns[i]].tolist()}) return render_template("scatterMatrix.html",dataVal=columnsVals,traits=columns) @app.route("/crime/randomScatterMatrix") def getRandomColumnData(): sortedSumSquareLoadings=sorted(randomsumSquareLoadings,reverse=True) columns=[0 for y in range(3)] # columnsVals=[0 for y in range(3)] columnsVals={} index=0 for i in sortedSumSquareLoadings: columns[index]=clus_train.columns.values[randomsumSquareLoadings.index(i)] index =index+1 if index==3: break for i in range(3): columnsVals.update({columns[i]:randomSampledClusterFrame.loc[:,columns[i]].tolist()}) return render_template("scatterMatrix.html",dataVal=columnsVals,traits=columns) def MDS_DimReduction(): mdsData = MDS(n_components=2,dissimilarity='euclidean') mdsData.fit(sampled_dataFrame) return mdsData.embedding_ def MDS_RandomDimReduction(): mdsData = MDS(n_components=2,dissimilarity='euclidean') mdsData.fit(randomSampledClusterFrame) return mdsData.embedding_ def PCA_TopComp(): pca = PCA(n_components=2) return pca.fit_transform(sampled_dataFrame) def PCA_RandomTopComp(): pca = PCA(n_components=2) return pca.fit_transform(randomSampledClusterFrame) top_PCAVal=PCA_TopComp() top_RandomPCAVal=PCA_RandomTopComp() @app.route("/crime/scatterPlot") def PCA_ScatterPlot(): return render_template("scatterPlot.html",dataVal=top_PCAVal.tolist()) @app.route("/crime/randomscatterPlot") def PCA_RandomScatterPlot(): return render_template("randomScatterPlot.html",dataVal=top_RandomPCAVal.tolist()) def MDS_DimReduction_Correlation(): mdsData = MDS(n_components=2,dissimilarity='precomputed',max_iter=10) precompute=pairwise_distances(sampled_dataFrame.values,metric='correlation') return mdsData.fit_transform(precompute) def MDS_Random_DimReduction_Correlation(): mdsData = MDS(n_components=2,dissimilarity='precomputed',max_iter=10) precompute=pairwise_distances(randomSampledClusterFrame.values,metric='correlation') return mdsData.fit_transform(precompute) @app.route("/crime/MDSscatterPlot") def MDS_ScatterPlot(): return render_template("ScatterPlotMDS.html",dataVal=mds_embeddings.tolist()) @app.route("/crime/MDSCorrelationscatterPlot") def MDS_ScatterPlot_Correlation(): return render_template("ScatterPlotMDS.html",dataVal=mds_embeddings_correlation.tolist()) @app.route("/crime/MDSRandomscatterPlot") def MDS_RandomScatterPlot(): return render_template("RandomScatterPlotMDS.html",dataVal=mds_RandomEmbeddings.tolist()) @app.route("/crime/MDSRandomCorrelationscatterPlot") def MDS_RandomScatterPlot_Correlation(): return render_template("RandomScatterPlotMDS.html",dataVal=mds_Random_embeddings_correlation.tolist()) mds_embeddings=MDS_DimReduction() mds_embeddings_correlation=MDS_DimReduction_Correlation() mds_RandomEmbeddings=MDS_RandomDimReduction() mds_Random_embeddings_correlation=MDS_Random_DimReduction_Correlation() if __name__ == "__main__": app.run(host='0.0.0.0',port=5005,debug=True)
rbadri91/N.C.-Crime-Data-Visualization
app.py
app.py
py
11,214
python
en
code
1
github-code
6
32749134758
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report def main(): # the goal is to predict if the borrower will pay back the money or not # reading loan_data.csv as a dataframe loans = pd.read_csv('loan_data.csv') # checking out the loans information print(loans.info()) print(loans.head()) print(loans.describe()) # histogram of two FICO distributions on top of each other, one for each credit.policy outcome plt.figure(figsize = (10, 6)) loans[loans['credit.policy'] == 1]['fico'].hist(alpha = 0.5, bins = 30, color = 'blue', label = 'Credit policy = 1') loans[loans['credit.policy'] == 0]['fico'].hist(alpha = 0.5, bins = 30, color = 'red', label = 'Credit policy = 0') plt.legend() plt.xlabel('FICO') # similar figure, except this time selected by the not.fully.paid column plt.figure(figsize = (10, 6)) loans[loans['not.fully.paid'] == 1]['fico'].hist(alpha = 0.5, bins = 30, label = 'Not fully paid = 1', color = 'blue') loans[loans['not.fully.paid'] == 0]['fico'].hist(alpha = 0.5, bins = 30, label = 'Not fully paid = 0', color = 'red') plt.legend() plt.xlabel('FICO') # countplot showing the counts of loans by purpose, with the color hue defined by not.fully.paid plt.figure(figsize = (15, 6)) sns.countplot(data = loans, hue = 'not.fully.paid', x = 'purpose') # trend between FICO score and interest rate sns.jointplot(data = loans, kind = 'scatter', x = 'fico', y = 'int.rate') # lmplots to see if the trend differs between not.fully.paid and credit.policy sns.lmplot(x = 'fico', y = 'int.rate', data = loans, hue = 'credit.policy', col = 'not.fully.paid') # purpose column is categorical; transforming them using dummy variables cat_feats = ['purpose'] final_data = pd.get_dummies(loans, columns = cat_feats, drop_first = True) print(final_data.info()) # splitting data into a training set and a testing set X = final_data.drop('not.fully.paid', axis = 1) y = final_data['not.fully.paid'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 101) # instance of DecisionTreeClassifier() and fitting it to the training data dtree = DecisionTreeClassifier() dtree.fit(X_train, y_train) # predictions from the test set and a classification report and a confusion matrix. predictions = dtree.predict(X_test) print(classification_report(y_test, predictions)) print(confusion_matrix(y_test, predictions)) # instance of the RandomForestClassifier class and fitting it to the training data rf = RandomForestClassifier(n_estimators = 600) rf.fit(X_train, y_train) # predicting the class of not.fully.paid for the X_test data rf_predictions = rf.predict(X_test) # classification report and confusion matrix from the results print(classification_report(y_test, rf_predictions)) print(confusion_matrix(y_test, rf_predictions)) plt.show() if __name__ == '__main__': main()
AleksandarPav/Decision-Tree-and-Random-Forest
main.py
main.py
py
3,272
python
en
code
0
github-code
6
8632528934
from multiprocessing import cpu_count from deepsecrets.core.utils.fs import path_exists QUOTA_FILE = '/sys/fs/cgroup/cpu/cpu.cfs_quota_us' PERIOD_FILE = '/sys/fs/cgroup/cpu/cpu.cfs_period_us' CGROUP_2_MAX = '/sys/fs/cgroup/cpu.max' class CpuHelper: def get_limit(self) -> int: multiproc_limit = self._by_multiproc() cgroup = self._by_cgroup() final = cgroup if cgroup != -1 else multiproc_limit return final if final > 0 else 0 def _by_multiproc(self): return cpu_count() def _by_cgroup(self): quota = 1 period = -1 # cgroup 2: https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html if path_exists(CGROUP_2_MAX): try: quota, period = self.__cgroup2() return quota // period except Exception: pass # cgroup 1: https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/index.html if path_exists(QUOTA_FILE) and path_exists(PERIOD_FILE): try: quota, period = self.__cgroup1() return quota // period except Exception: pass return quota // period def __cgroup1(self): quota = 1 period = -1 with open(QUOTA_FILE) as f: quota = int(f.read()) with open(PERIOD_FILE) as f: period = int(f.read()) return quota, period def __cgroup2(self): quota = 1 period = -1 with open(CGROUP_2_MAX) as f: str_quota_period = f.read().split(' ') quota = int(str_quota_period[0]) period = int(str_quota_period[1]) return quota, period
avito-tech/deepsecrets
deepsecrets/core/utils/cpu.py
cpu.py
py
1,763
python
en
code
174
github-code
6
30357845811
import unittest from traits.api import Enum, HasTraits, Int, Str, Instance from traitsui.api import HGroup, Item, Group, VGroup, View from traitsui.menu import ToolBar, Action from traitsui.testing.api import Index, IsVisible, MouseClick, UITester from traitsui.tests._tools import ( create_ui, requires_toolkit, process_cascade_events, ToolkitName, ) class FooPanel(HasTraits): my_int = Int(2) my_str = Str("I am a panel/subpanel") toolbar = Instance(ToolBar) def default_traits_view(self): view = View( Item(name="my_int"), Item(name="my_str"), title="FooPanel", buttons=["OK", "Cancel"], toolbar=self.toolbar, ) return view def _toolbar_default(self): return ToolBar(Action(name="Open file")) class FooDialog(HasTraits): panel1 = Instance(FooPanel) panel2 = Instance(FooPanel) view = View( Group(Item("panel1"), Item("panel2"), layout="split", style="custom") ) def _panel1_default(self): return FooPanel() def _panel2_default(self): return FooPanel() class ScrollableGroupExample(HasTraits): my_int = Int(2) my_str = Str("The group is scrollable") scrollable_group_view = View( Group( Item(name="my_int"), Item(name="my_str"), scrollable=True, ), title="FooPanel", kind='subpanel', ) non_scrollable_group_view = View( Group( Item(name="my_int"), Item(name="my_str"), scrollable=False, ), title="FooPanel", kind='subpanel', ) scrollable_group_box_view = View( Group( Item(name="my_int"), Item(name="my_str"), scrollable=True, label="Scrollable View", show_border=True, ), title="FooPanel", kind='subpanel', ) scrollable_labelled_group_view = View( Group( Item(name="my_int"), Item(name="my_str"), scrollable=True, label="Scrollable View", ), title="FooPanel", kind='subpanel', ) class ScrollableGroupVisibleWhen(HasTraits): bar = Str("bar!") baz = Str("Baz?") enabled = Enum("Yes", "No") def default_traits_view(self): view = View( Item("enabled"), HGroup( VGroup( Item("bar"), scrollable=True, visible_when="enabled=='Yes'", id='bar_group', ), VGroup( Item("baz"), scrollable=True, visible_when="enabled=='No'", id='baz_group', ), ), ) return view @requires_toolkit([ToolkitName.qt]) class TestUIPanel(unittest.TestCase): def setup_qt_dock_window(self): from pyface.qt import QtGui # set up the dock window for qt main_window = QtGui.QMainWindow() self.addCleanup(process_cascade_events) self.addCleanup(main_window.close) dock = QtGui.QDockWidget("testing", main_window) dock.setWidget(QtGui.QMainWindow()) return main_window, dock def test_panel_has_toolbar_buttons_qt(self): from pyface.qt import QtGui _, dock = self.setup_qt_dock_window() # add panel panel = FooPanel() with create_ui(panel, dict(parent=dock.widget(), kind="panel")) as ui: dock.widget().setCentralWidget(ui.control) # There should be a toolbar for the panel self.assertIsNotNone(dock.findChild(QtGui.QToolBar)) # There should be buttons too # Not searching from dock because the dock panel has buttons for # popping up and closing the panel self.assertIsNotNone(ui.control.findChild(QtGui.QPushButton)) def test_subpanel_has_toolbar_no_buttons_qt(self): from pyface.qt import QtGui _, dock = self.setup_qt_dock_window() # add panel panel = FooPanel() parent = dock.widget() with create_ui(panel, dict(parent=parent, kind="subpanel")) as ui: dock.widget().setCentralWidget(ui.control) # There should be a toolbar for the subpanel self.assertIsNotNone(dock.findChild(QtGui.QToolBar)) # Buttons should not be shown for subpanel # Not searching from dock because the dock panel has buttons for # popping up and closing the panel self.assertIsNone(ui.control.findChild(QtGui.QPushButton)) def test_subpanel_no_toolbar_nor_button_in_widget(self): from pyface.qt import QtGui # FooDialog uses a QWidget to contain the panels # No attempt should be made for adding the toolbars foo_window = FooDialog() with create_ui(foo_window) as ui: # No toolbar for the dialog self.assertIsNone(ui.control.findChild(QtGui.QToolBar)) # No button self.assertIsNone(ui.control.findChild(QtGui.QPushButton)) # regression test for enthought/traitsui#1512 def test_scrollable_group_visible_when(self): from pyface.qt import QtGui obj = ScrollableGroupVisibleWhen() tester = UITester() with tester.create_ui(obj) as ui: bar_group = tester.find_by_id(ui, 'bar_group') baz_group = tester.find_by_id(ui, 'baz_group') # for a scrollable group the GroupEditors control should be a # QScrollArea not just the QWidget. We want the full area to be # not visible, not just the text box widget. self.assertIsInstance(bar_group._target.control, QtGui.QScrollArea) self.assertIsInstance(baz_group._target.control, QtGui.QScrollArea) self.assertTrue(bar_group.inspect(IsVisible())) self.assertFalse(baz_group.inspect(IsVisible())) enabled_box = tester.find_by_name(ui, 'enabled') baz_item = enabled_box.locate(Index(1)) baz_item.perform(MouseClick()) self.assertTrue(baz_group.inspect(IsVisible())) self.assertFalse(bar_group.inspect(IsVisible())) @requires_toolkit([ToolkitName.qt]) class TestPanelLayout(unittest.TestCase): def test_scrollable_group_typical(self): from pyface.qt import QtGui example = ScrollableGroupExample() ui = example.edit_traits(view=scrollable_group_view) try: mainwindow = ui.control.layout().itemAt(0).widget() scroll_area = mainwindow.centralWidget() self.assertIsInstance(scroll_area, QtGui.QScrollArea) content = scroll_area.widget() self.assertEqual(type(content), QtGui.QWidget) finally: ui.dispose() def test_scrollable_group_box(self): from pyface.qt import QtGui example = ScrollableGroupExample() ui = example.edit_traits(view=scrollable_group_box_view) try: mainwindow = ui.control.layout().itemAt(0).widget() scroll_area = mainwindow.centralWidget() self.assertIsInstance(scroll_area, QtGui.QScrollArea) group_box = scroll_area.widget() self.assertIsInstance(group_box, QtGui.QGroupBox) self.assertEqual(group_box.title(), "Scrollable View") finally: ui.dispose() def test_scrollable_labelled_group(self): from pyface.qt import QtGui example = ScrollableGroupExample() ui = example.edit_traits(view=scrollable_labelled_group_view) try: mainwindow = ui.control.layout().itemAt(0).widget() scroll_area = mainwindow.centralWidget() self.assertIsInstance(scroll_area, QtGui.QScrollArea) content = scroll_area.widget() self.assertEqual(type(content), QtGui.QWidget) finally: ui.dispose() def test_non_scrollable_group_typical(self): from pyface.qt import QtGui example = ScrollableGroupExample(my_str="The group is not scrollable") ui = example.edit_traits(view=non_scrollable_group_view) try: mainwindow = ui.control.layout().itemAt(0).widget() content = mainwindow.centralWidget() self.assertEqual(type(content), QtGui.QWidget) finally: ui.dispose()
enthought/traitsui
traitsui/qt/tests/test_ui_panel.py
test_ui_panel.py
py
8,436
python
en
code
290
github-code
6
40170866347
import os import numpy as np import cv2 import imutils import sys np.set_printoptions(threshold=sys.maxsize) corner_shapes_map = { 3: "triangle", 4: "rectangle", 5: "pentagon", 6: "hexagon" } model_prediction_map = { 0: "triangle", 1: "rectangle", 2: "circle" } def get_corners_in_canvas(canvas): detected_contours = cv2.findContours(canvas, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) final_contours = imutils.grab_contours(detected_contours) peri = cv2.arcLength(final_contours[0], True) approx = cv2.approxPolyDP(final_contours[0], 0.1 * peri, True) return len(approx) def get_shape_from_model(canvas): from keras.models import load_model model = load_model(os.path.join(os.getcwd(), "ML", "model.h5")) m_input = cv2.resize(canvas, (60, 60)) m_input = m_input.astype('float32') print(m_input.shape) # m_input /= 255 m_input = m_input.reshape(np.prod([60, 60])) pred_list = model.predict(m_input.reshape(1, np.prod([60, 60])))[0].tolist() print(pred_list) max_val = max(pred_list) return model_prediction_map[pred_list.index(max_val)] def get_shape(arr, use_ml=False): np_arr = np.array(arr, dtype=np.uint8) # Sort by timestamps np_arr = np_arr[np.argsort(np_arr[:, 0])] contours = np_arr[:, 1:] # Hardcoded: Offset x values by 50. contours[:, 0] += 50 # Create a canvas and fill it up for a thresh img # canvas = np.full((200, 200), 255, dtype=np.uint8) # cv2.fillPoly(canvas, pts=np.int32([contours]), color=0) canvas = np.full((200, 200), 0, dtype=np.uint8) cv2.fillPoly(canvas, pts=np.int32([contours]), color=255) if use_ml: return get_shape_from_model(canvas) else: n_corners = get_corners_in_canvas(canvas) if n_corners > 6: return "circle" if n_corners in corner_shapes_map: return corner_shapes_map[n_corners] return None # # if __name__ == "__main__": # inp = [(0, 9.4, 83.4), (1, 10.4, 83.2), (2, 8.8, 83.2), (3, 9, 84), (4, 4.6, 81.6), (5, 1.6, 79.4), (6, -7.8, 75.2), # (7, -12.6, 67.6), (8, -14.6, 59), (9, -10.6, 52.4), (10, -3.6, 49.6), (11, 12.4, 51.8), (12, 21.8, 56.4), # (13, 28.8, 64.4), (14, 30.4, 73.4), (15, 27.2, 78.6), (16, 19.4, 79.2), (17, 15.4, 82.2), (18, 10.8, 82.4), # (19, 10.4, 82), (20, 9.6, 81.6), (21, 10.2, 83.8)] # # print(get_shape(inp, True))
nirajsrimal/UWB_2FA
BackEnd/solver.py
solver.py
py
2,434
python
en
code
1
github-code
6
41648714624
import unittest from PIL import Image import numpy as np from texture.analysis import CoOccur class MyTestCase(unittest.TestCase): def test_offset_slices(self): slices = CoOccur._offset_slices(4, 225) self.assertEqual(slices, ([[None, -3], [3, None]], [[3, None], [None, -3]])) pixels = np.array([[1, 2, 3, 1, 0], [0, 7, 5, 8, 2], [5, 4, 0, 2, 5], [7, 1, 3, 4, 9]]) angle = 90 + 45 # ↖ slice_start, slice_end = CoOccur._offset_slices(1, angle) start = pixels[slice_start[0][0]:slice_start[0][1], slice_start[1][0]:slice_start[1][1]] end = pixels[slice_end[0][0]:slice_end[0][1], slice_end[1][0]:slice_end[1][1]] self.assertEqual(start.tolist(), [[7, 5, 8, 2], [4, 0, 2, 5], [1, 3, 4, 9]]) self.assertEqual(end.tolist(), [[1, 2, 3, 1], [0, 7, 5, 8], [5, 4, 0, 2]]) def test_co_occur(self): image = Image.open("textures/1.1.04.tiff") co_occur = CoOccur(image, distances=[1, 2, 4, 8, 16], angles=[0, 90, 180, 270], levels=8) self.assertEqual(co_occur.matrices.shape, (5, 4, 8, 8)) co_occur = CoOccur(image, distances=[1, 16], angles=[0, 120, 175.3, 240], levels=8) self.assertEqual(co_occur.matrices.shape, (2, 4, 8, 8)) def test_inertia(self): image = Image.open("textures/1.1.04.tiff") l_b = np.arange(8) l_a = l_b[:, np.newaxis] coefficients = ((l_a - l_b) ** 2).reshape(1, 1, 8, 8) co_occur = CoOccur(image, distances=[1, 4, 8, 16, 32], angles=[0, 120, 240]) self.assertAlmostEqual(np.sum(co_occur.matrices[2, 1] * coefficients).item(), co_occur.inertia[2, 1]) self.assertAlmostEqual(np.sum(co_occur.matrices[4, 2] * coefficients).item(), co_occur.inertia_of(32, 240)) def test_average(self): image = Image.open("textures/1.1.05.tiff") co_occur = CoOccur(image, distances=[1, 4, 8, 16, 32], angles=[0, 90, 240]) self.assertAlmostEqual(np.mean(co_occur.matrices[2, :, 1, 3]).item(), co_occur.average[2, 1, 3].item()) self.assertAlmostEqual(np.mean(co_occur.matrices[4, :, 2, 6]).item(), co_occur.average_of(32)[2, 6].item()) def test_spread(self): image = Image.open("textures/1.1.10.tiff") co_occur = CoOccur(image, distances=[2, 5, 14], angles=[0, 32, 128, 290]) spread_1 = np.max(co_occur.matrices[0, :, 7, 4]) - np.min(co_occur.matrices[0, :, 7, 4]) self.assertAlmostEqual(spread_1, co_occur.spread[0, 7, 4].item()) spread_2 = np.max(co_occur.matrices[2, :, 0, 5]) - np.min(co_occur.matrices[2, :, 0, 5]) self.assertAlmostEqual(spread_2, co_occur.spread_of(14)[0, 5].item()) if __name__ == '__main__': unittest.main()
MatteoZanella/siv-texture-analysis
tests/test_com.py
test_com.py
py
2,951
python
en
code
1
github-code
6
37682605519
""" Challenge 24: Create a function that will merge two arrays and return the result as a new array """ def mergeArray(array1, array2): """empty array to hold the new values""" new_array = [] for i in array1: new_array.append(i) for j in array2: new_array.append(j) return sorted(new_array) # Driver Method arr1 = [1, 4, 5, 7, 3, 8] arr2 = [34, 23, 344, 86] print(mergeArray(arr1, arr2))
mofirojean/50-Coding-Challenge
50 Coding Challenge Part I/Python/Challenge24.py
Challenge24.py
py
430
python
en
code
2
github-code
6
171133983
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from rp_ui_harness import RequestPolicyTestCase from marionette import SkipTest URLS = { 1: ["http://www.maindomain.test/"], 2: ["http://www.otherdomain.test/"], 3: ["http://www.thirddomain.test/"], "preferences": ["about:requestpolicy", "about:requestpolicy?basicprefs"], "preferences_1": ["about:requestpolicy"], "preferences_2": ["about:requestpolicy?basicprefs"], "policies": ["about:requestpolicy?yourpolicy"] } class TestSettingsButtons(RequestPolicyTestCase): TEST_URL = "http://www.maindomain.test/img_1.html" def setUp(self): super(TestSettingsButtons, self).setUp() self.tabbar = self.browser.tabbar def tearDown(self): try: self._close_all_tabs() finally: super(TestSettingsButtons, self).tearDown() @property def disabled(self): return not self.menu.is_working @property def skip_if_disabled(self): if self.disabled: raise SkipTest("menu is defunct") ################ # Test Methods # ################ def _test__should_open(self, url_id, settings_id): """Exactly one settings tab is open, which is at the same time the one to be opened.""" self._open_tabs([1, url_id, 3], 1) self._open_settings(settings_id) self._check_tabs([1, url_id, settings_id, 3], 2) def test_no_settings_tab_open(self): self.skip_if_disabled() """No settings tab is open.""" self._test__should_open(2, "preferences") self._test__should_open(2, "policies") def test_non_equivalent_settings_tab_open(self): self.skip_if_disabled() """A non-equivalent settings tab is open.""" self._test__should_open("policies", "preferences") self._test__should_open("preferences_1", "policies") self._test__should_open("preferences_2", "policies") def _test__basic(self, url_id, settings_id): """Exactly one settings tab is open, which is at the same time the one to be opened.""" # Already on the correct tab self._open_tabs([1, url_id, 3], 1) self._open_settings(settings_id) self._check_tabs([1, url_id, 3], 1) # Switch to the correct tab self._open_tabs([url_id, 2, 3], 1) self._open_settings(settings_id) self._check_tabs([url_id, 2, 3], 0) def test_preferences__basic(self): self.skip_if_disabled() self._test__basic("preferences_1", "preferences") self._test__basic("preferences_2", "preferences") def test_policies__basic(self): self.skip_if_disabled() self._test__basic("policies", "policies") def _test__multiple_equivalent_urls(self, url_id_1, url_id_2, settings_id): """Multiple settings tabs are open, but all are equivalent. However, the URLs still could be different; for example, "about:requestpolicy" and "about:requestpolicy?basicprefs" are equivalent. """ # Already on the correct tab self._open_tabs([url_id_1, url_id_2, 3], 1) self._open_settings(settings_id) self._check_tabs([url_id_1, url_id_2, 3], 1) # Switch to the correct tab. # The tab to the right of the current tab should be selected. self._open_tabs([url_id_1, 2, url_id_2], 1) self._open_settings(settings_id) self._check_tabs([url_id_1, 2, url_id_2], 2) def test_preferences__multiple(self): self.skip_if_disabled() self._test__multiple_equivalent_urls("preferences_1", "preferences_1", "preferences") self._test__multiple_equivalent_urls("preferences_1", "preferences_2", "preferences") self._test__multiple_equivalent_urls("preferences_2", "preferences_1", "preferences") def _test__multiple_non_equivalent_urls( self, url_id, non_equivalent_url_id, settings_id ): """Multiple settings tabs are open, but they are _not_ equivalent.""" # Already on the correct tab self._open_tabs([non_equivalent_url_id, url_id, 3], 1) self._open_settings(settings_id) self._check_tabs([non_equivalent_url_id, url_id, 3], 1) # Switch to the correct tab (to the left of the current tab). self._open_tabs([url_id, 2, non_equivalent_url_id], 1) self._open_settings(settings_id) self._check_tabs([url_id, 2, non_equivalent_url_id], 0) # Switch to the correct tab (to the left of the current tab). # The current tab is the non-equivalent tab. self._open_tabs([url_id, non_equivalent_url_id, 3], 1) self._open_settings(settings_id) self._check_tabs([url_id, non_equivalent_url_id, 3], 0) def test_preferences__with_other_settings_tabs(self): self.skip_if_disabled() self._test__multiple_non_equivalent_urls("preferences_1", "policies", "preferences") self._test__multiple_non_equivalent_urls("preferences_2", "policies", "preferences") ########################## # Private Helper Methods # ########################## def _open_tabs(self, tabs, select_index=1): self._close_all_tabs() first_tab = True for tab_id in tabs: if not first_tab: self.tabbar.open_tab().select() url = URLS[tab_id][0] with self.marionette.using_context("content"): self.marionette.navigate(url) if first_tab: first_tab = False self.tabbar.tabs[select_index].select() self._check_tabs(tabs, select_index) def _close_all_tabs(self): self.tabbar.close_all_tabs(exceptions=[self.tabbar.tabs[0]]) def _check_tabs(self, tabs, expected_selected_index): self.assertEqual(expected_selected_index, self.tabbar.selected_index) expected_tab_urls = [URLS[tab_id] for tab_id in tabs] tab_urls = [tab.location for tab in self.tabbar.tabs] self.assertEqual(len(expected_tab_urls), len(expected_tab_urls)) for idx in range(len(expected_tab_urls)): possible_tab_urls = expected_tab_urls[idx] tab_url = tab_urls[idx] self.assertIn(tab_url, possible_tab_urls) self.tabbar.tabs[expected_selected_index].select() self.assertEqual(expected_selected_index, self.tabbar.selected_index) def _open_settings(self, button): self.menu.open() with self.menu.in_iframe(): if button == "preferences": self.menu.preferences_button.click() elif button == "policies": self.menu.manage_policies_button.click() else: self.fail()
RequestPolicyContinued/requestpolicy
tests/marionette/tests/menu/test_settings_buttons.py
test_settings_buttons.py
py
7,155
python
en
code
253
github-code
6
22509106375
import numpy as np import logging from pathlib import Path #Output folder setup output = Path('./output/log').expanduser() output.mkdir(parents=True, exist_ok=True) en_log = logging.getLogger(__name__) en_log.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s:%(name)s:%(message)s') file_handler = logging.FileHandler('./output/log/energy.log',mode='w') file_handler.setFormatter(formatter) en_log.addHandler(file_handler) def energy_init(temp,m,n,dX): for i in range(1,m-1): for j in range (1,n-1): temp[j, i] = 1 - j*dX return(temp) def energy_bound(temp,m,n,iter): en_log.debug("Iteration No.: {}--------C".format(iter)) en_log.debug("Temperature at bouondary calculation entry: \n{}".format(temp)) for j in range(n): temp[0,j] = 1 temp[m-1,j] = 0 for i in range(m): temp[i,0] = (4/3)*( temp[i,1]- (temp[i, 2]/4) ) temp[i,n-1] = (4/3)*( temp[i,n-2] - (temp[i, n-3]/4) ) en_log.debug("Temperature at boundary calculation exit: \n{}".format(temp)) en_log.debug("____________________________________________________") return(temp) def energy_bound_ur(temp_o,temp_calc,m,n,r,iter): temp_n = np.copy(temp_calc) en_log.debug("Iteration No.: {}--------D".format(iter)) en_log.debug("Temperature at boundary UR calculation entry: \n{}".format(temp_calc)) for i in range(m): temp_n[i,0] = temp_o[i,0] + r*(temp_calc[i,0] - temp_o[i,0]) temp_n[i,n-1] = temp_o[i,n-1] + r*(temp_calc[i,n-1] - temp_o[i,n-1]) for j in range(n): temp_n[0,j] = temp_o[0,j] + r*(temp_calc[0,j] - temp_o[0,j]) temp_n[m-1,j] = temp_o[m-1,j] + r*(temp_calc[m-1,j] - temp_o[m-1,j]) en_log.debug("Temperature at boundary UR calculation exit: \n{}".format(temp_n)) en_log.debug("____________________________________________________") return(temp_n) def energy(temp_o,strm,m,n,dX,dY,div,iter): en_log.debug("Iteration No.: {}--------A".format(iter)) en_log.debug("Temperature at calculation entry: \n{}".format(temp_o)) temp_calc = np.copy(temp_o) mul = (-1/(4*dX*dY)) for i in range(1,m-1): for j in range (1,n-1): strm_i_diff = (strm[i+1,j]-strm[i-1,j]) strm_j_diff = (strm[i,j+1]-strm[i,j-1]) temp_i_diff = (temp_o[i+1,j]-temp_o[i-1,j]) temp_j_diff = (temp_o[i,j+1]-temp_o[i,j-1]) temp_i_sum = (temp_o[i+1,j]+temp_o[i-1,j])/(dX*dX) temp_j_sum = (temp_o[i,j+1]+temp_o[i,j-1])/(dY*dY) temp_calc[i,j] = ( (mul*((strm_j_diff*temp_i_diff)-(strm_i_diff*temp_j_diff))) + temp_i_sum + temp_j_sum )/div en_log.debug("Temperature at calculation exit: \n{}".format(temp_calc)) en_log.debug("____________________________________________________") return temp_calc def energy_ur(temp_o,temp_calc,m,n,r,iter): en_log.debug("Iteration No.: {}--------B".format(iter)) en_log.debug("Temperature at UR calculation entry: \n{}".format(temp_calc)) temp_n = np.copy(temp_calc) for i in range(1,m-1): for j in range (1,n-1): temp_n[i,j] = temp_o[i,j] + r*(temp_calc[i,j] - temp_o[i,j]) en_log.debug("Temperature at UR calculation exit: \n{}".format(temp_n)) en_log.debug("____________________________________________________") return(temp_n) def converge(temp_o,strm,m,n,dX,dY,div,iter): temp_residue = np.zeros((m,n)) mul = (-1/(4*dX*dY)) if iter<5: temp_max = 1 else: temp_max = int(np.amax(np.abs(temp_o))) en_log.debug("Temperature max value: \n{}".format(temp_max)) for i in range(1,m-1): for j in range (1,n-1): strm_i_diff = (strm[i+1,j]-strm[i-1,j]) strm_j_diff = (strm[i,j+1]-strm[i,j-1]) temp_i_diff = (temp_o[i+1,j]-temp_o[i-1,j]) temp_j_diff = (temp_o[i,j+1]-temp_o[i,j-1]) temp_i_sum = (temp_o[i+1,j]+temp_o[i-1,j])/(dX*dX) temp_j_sum = (temp_o[i,j+1]+temp_o[i,j-1])/(dY*dY) temp_residue[i,j] = (( ( (mul*((strm_j_diff*temp_i_diff)-(strm_i_diff*temp_j_diff))) + temp_i_sum + temp_j_sum )/div )- temp_o[i,j])/temp_max en_log.debug("Temperature residue domain: \n{}".format(temp_residue)) return np.std(temp_residue)
amuthankural/square_cavity_Natural_Convection
energy.py
energy.py
py
4,354
python
en
code
4
github-code
6
73016396668
# TODO save output in a set to remove duplicated warnings import sys import time import subprocess import linecache rules = { "false":[ "PyArg_ParseTuple" ], "NULL":[ "Py_BuildValue", "PyLong_FromLong", #"PyBytes_FromStringAndSize", #"PyBytes_AsString", #"PyFloat_FromDouble", #"PyObject_GetAttrString", #"PyDict_New", #"PyDict_GetItemString", #"PyDict_GetItem", #"PyList_GetItem", #"PyList_GET_ITEM", "PyList_New", "malloc" ], "-1":[ #"PyDict_SetItemString", #"PyType_Ready", #"PyLong_AsLong", #"PyFloat_AsDouble", # -1.0 #"PyModule_AddIntConstant", #"PyObject_SetAttrString", "PyDict_SetItem", #"PyList_Append", #"PyList_Insert", "PyList_SetItem", "PyList_SET_ITEM", "PyTuple_SET_ITEM" ] } append_rules = { "false":[], "NULL":[], "-1":[] } # string -> string list def exec_command(command): output = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True, encoding="UTF-8") return output.stdout.readlines() # string -> (string, int, string) def grep_parser(grep_line): pos_filename = grep_line.find(":") filename = grep_line[0:pos_filename] pos_lineno = grep_line[pos_filename + 1:].find(":") + pos_filename + 1 lineno = int(grep_line[pos_filename + 1:pos_lineno]) content = grep_line[pos_lineno + 1:-1] return (filename, lineno, content) # string, int -> string def next_program_line(filename, lineno): current_line = linecache.getline(filename, lineno).strip() lineno += 1 if (not current_line.endswith(";")): return next_program_line(filename, lineno) next_line = linecache.getline(filename, lineno).strip() if (next_line == "}" or next_line == ""): return linecache.getline(filename, lineno + 1).strip() else: return next_line # string -> string def assignment_parser(assignment): pos_left = assignment.find("=") left = assignment[0:pos_left].strip() if left.find(" ") != -1: # new declarations, remove type identifers variable = left.split(" ")[1] if variable.startswith("*"): # pointers return variable[1:] else: return variable else: return left # string, string, bool, string -> None def check(api, errval, append, path): command = "grep -rn \"" + api + "\" " + path for line in exec_command(command): (filename, lineno, content) = grep_parser(line) if not filename.endswith(".c") and not filename.endswith(".h"): continue if content.strip().startswith("return"): continue elif content.strip().startswith("if") or content.strip().startswith("else if"): continue elif content.strip().startswith("//") or content.strip().startswith("/*") or content.strip().startswith("*"): continue elif content.strip().startswith("#define"): if append == True: print(content.strip()) append_rules[errval].append(content.split(" ")[1]) continue else: continue else: next_content = next_program_line(filename, lineno) #print(next_content) variable = assignment_parser(content) #print(variable) if next_content.startswith("if") and next_content.find(variable) != -1: continue elif next_content.startswith("return") and next_content.find(variable) != -1: continue else: #print(filename) #print(lineno) #print(content) #print(next_content) print(line.strip()) if __name__ == "__main__": start_time = time.time() for (errval, apis) in rules.items(): for api in apis: #print("===== " + api + " =====") check(api, errval, True, sys.argv[1]) #print(append_rules) for (errval, apis) in append_rules.items(): for api in apis: #print("===== " + api + " =====") check(api, errval, False, sys.argv[1]) end_time = time.time() print("total time : {:.2f}s".format(end_time - start_time))
S4Plus/pyceac
checkers/2/checker.py
checker.py
py
4,376
python
en
code
3
github-code
6
5191593918
from utils import * forest = read_day(3) width = len(forest[0]) right = 3 down = 1 x = 0 y = 0 n_trees = 0 while y < len(forest): line = forest[y] cur = line[x%width] n_trees += cur == "#" x += right y += down print(n_trees) def count_slope_trees(forest, right, down): x = 0 y = 0 n_trees = 0 while y < len(forest): line = forest[y] cur = line[x%width] n_trees += cur == "#" x += right y += down return n_trees slopes = [(1, 1), (3, 1), (5, 1), (7, 1), (1, 2)] n_trees_slope = [count_slope_trees(forest, *s) for s in slopes] print(prod(n_trees_slope)) print("done")
nibrivia/aoc-2020
day-3.py
day-3.py
py
658
python
en
code
0
github-code
6
1539518044
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 27 09:55:08 2018 @author: kartini """ import numpy import io from itertools import permutations def read_dataset(fname): sentences = [] tags = [] with open(fname) as f: content = f.readlines() # you may also want to remove whitespace characters like `\n` at the end of each line content = [x.strip() for x in content] idx_line = 0 while idx_line < len(content): sent = [] tag = [] print('idx_line =') print(idx_line) while not content[idx_line].startswith('</kalimat'): if not content[idx_line].startswith('<kalimat'): content_part = content[idx_line].split('\t') sent.append(content_part[0]) tag.append(content_part[1]) idx_line = idx_line + 1 sentences.append(sent) tags.append(tag) idx_line = idx_line+2 return sentences, tags def features(sentence, index): """ sentence: [w1, w2, ...], index: the index of the word """ return { 'word': sentence[index], 'prefix-1': sentence[index][0], 'prefix-2': sentence[index][:2], 'prefix-3': sentence[index][:3], 'suffix-1': sentence[index][-1], 'suffix-2': sentence[index][-2:], 'suffix-3': sentence[index][-3:], 'prev_word': '' if index == 0 else sentence[index - 1], 'next_word': '' if index == len(sentence) - 1 else sentence[index + 1], } def transform_to_dataset(sentences, tags): X, y = [], [] for sentence_idx in range(len(sentences)): for index in range(len(sentences[sentence_idx])): X.append(features(sentences[sentence_idx], index)) y.append(tags[sentence_idx][index]) return X, y sentences,tags = read_dataset('dataset_postagger.txt') print(sentences[0]) print(tags[0]) def read_file_init_table(fname): tag_count = {} tag_count['<start>'] = 0 word_tag = {} tag_trans = {} with open(fname) as f: content = f.readlines() # you may also want to remove whitespace characters like `\n` at the end of each line content = [x.strip() for x in content] idx_line = 0 is_first_word = 0 while idx_line < len(content): prev_tag = '<start>' while not content[idx_line].startswith('</kalimat'): if not content[idx_line].startswith('<kalimat'): content_part = content[idx_line].split('\t') if content_part[1] in tag_count: tag_count[content_part[1]] += 1 else: tag_count[content_part[1]] = 1 current_word_tag = content_part[0]+','+content_part[1] if current_word_tag in word_tag: word_tag[current_word_tag] += 1 else: word_tag[current_word_tag] = 1 if is_first_word == 1: current_tag_trans = '<start>,'+content_part[1] is_first_word = 0 else: current_tag_trans = prev_tag+','+content_part[1] if current_tag_trans in tag_trans: tag_trans[current_tag_trans] += 1 else: tag_trans[current_tag_trans] = 1 prev_tag = content_part[1] else: tag_count['<start>'] += 1 is_first_word = 1 idx_line = idx_line + 1 idx_line = idx_line+1 return tag_count, word_tag, tag_trans tag_count, word_tag, tag_trans = read_file_init_table('dataset_postagger.txt') print(tag_count) print(word_tag) print(tag_trans) def create_trans_prob_table(tag_trans, tag_count): print(tag_trans) trans_prob = {} for tag1 in tag_count.keys(): for tag2 in tag_count.keys(): #print('tag1 = ') #print(tag1) trans_idx = tag1+','+tag2 #print('trans_idx = ') #print(trans_idx) if trans_idx in tag_trans: #print(trans_idx) trans_prob[trans_idx] = tag_trans[trans_idx]/tag_count[tag1] return trans_prob trans_prob = create_trans_prob_table(tag_trans, tag_count) print(trans_prob) def create_emission_prob_table(word_tag, tag_count): emission_prob = {} for word_tag_entry in word_tag.keys(): print('---') print(word_tag_entry) word_tag_split = word_tag_entry.split(',') current_word = word_tag_split[0] current_tag = word_tag_split[1] # print(current_word) emission_key = current_word+','+current_tag print(emission_key) print(len(emission_key)) if (emission_key == ','): emission_key = (word_tag_entry) current_word = ',' current_tag = 'Z' elif (len(word_tag_split) > 2): x = word_tag_split[:-1] current_word = ''.join(x) current_tag = word_tag_split[-1] print('ek:', emission_key) print('ct:', current_tag) print('cw: ',current_word) emission_prob[emission_key] = word_tag[word_tag_entry]/tag_count[current_tag] return emission_prob emission_prob = create_emission_prob_table(word_tag, tag_count) print(emission_prob) def viterbi(trans_prob, emission_prob, tag_count, sentence): #initialization viterbi_mat = {} tag_sequence = [] sentence_words = sentence.split() currentTag = '<start>' getScoreMax = 1 for i, currentWord in enumerate (sentence_words): viterbi_mat[currentWord] = getScoreMax allScore = [] if (i == len(sentence_words) - 1): break for j, nilaiEmission in enumerate(emission_prob.keys()): # print (currentTag) score = 0 next_word = nilaiEmission.split(',')[0] next_tag = nilaiEmission.split(',')[1] if (next_word == sentence_words[i+1]): print(currentWord, ' ', next_word, ' ', currentTag, ' ', next_tag) try: print('Transition Prob: ', trans_prob[currentTag + ',' + next_tag]) score = getScoreMax * emission_prob[nilaiEmission] * trans_prob[currentTag + ',' + next_tag] except: print('Transition Prob: ', 0) score = getScoreMax * emission_prob[nilaiEmission] * 0 allScore.append({'score':score, 'current_tag': currentTag, 'tag': next_tag}) getScore = [x['score'] for x in allScore] print(getScore) getIndexMax = getScore.index(max(getScore)) getScoreMax = max(getScore) currentTag = allScore[getIndexMax]['tag'] tag_sequence.append(currentTag) return viterbi_mat, tag_sequence senetence ="<start> kera untuk amankan" getViterbi = viterbi(trans_prob, emission_prob, tag_count, senetence) print(getViterbi) def baseline(word_tag, sentence): new_tag_word = [] wordsSplit = sentence.split() for i, word in enumerate(wordsSplit): tagWord = [] for j, current_word_tag in enumerate(word_tag.keys()): if (word == current_word_tag.split(',')[0].lower()): tagWord.append({'word': word, 'tag': current_word_tag.split(',')[1], 'count': word_tag[current_word_tag] }) print('tw', tagWord) getCount = [x['count'] for x in tagWord] try: getIndex = getCount.index(max(getCount)) getMaxCount = max(getCount) currentTag = tagWord[getIndex]['tag'] new_tag_word.append({'tag': currentTag, 'word': word, 'count': getMaxCount}) except: new_tag_word.append({'tag': 'NN', 'word': word, 'count': 0}) return new_tag_word sentence = "kera untuk amankan" base = baseline(word_tag, sentence) print(base) sentences,tags = read_dataset('data_uji_postagger.txt') print(sentences[0]) print(tags[0]) tag_count, word_tag, tag_trans = read_file_init_table('data_uji_postagger.txt') print(tag_count) print(word_tag) print(tag_trans) senetence ="<start> kera untuk amankan" getViterbi = viterbi(trans_prob, emission_prob, tag_count, senetence) print(getViterbi) sentence = "kera untuk amankan" base = baseline(word_tag, sentence) print(base)
kartininurfalah/NLP
1301154577_postagger.py
1301154577_postagger.py
py
8,547
python
en
code
0
github-code
6
4637946235
"""Connects to Fiscal DB and provides functions for database utility: Retrieving, updating values""" import os import mysql.connector import sys from src.vault_actions import FISCAL_VAULT fiscal_dict = FISCAL_VAULT.dict_all('secret') class MySQLConnectionError(Exception): """Custom exception for errors encountered during MySQL DB connection""" def __init__(self, message): self.message = message super().__init__(self.message) def __str__(self): return f"MySQL Connection Error: {self.message}" if os.environ.get('DOCKER_ENV') == 'true': database_host = fiscal_dict['AWS_DB_HOST'] database_user = fiscal_dict['AWS_DB_USER'] database_port = '3306' else: # database_host = 'localhost' # (Node IP) # database_user = 'root' # database_port = '30007' # (Node Port) database_host = fiscal_dict['AWS_DB_HOST'] database_user = fiscal_dict['AWS_DB_USER'] database_port = '3306' FISCALDB = mysql.connector.connect( host=database_host, port=database_port, user=database_user, password=fiscal_dict['DB_PASS'], database=fiscal_dict['DB_NAME'] ) def check_mysql_connection(connection): """Confirms database link on connection, displays any errors""" try: connection.ping(reconnect=True) print("MySQL connection successful") except MySQLConnectionError as error: print("Error connecting to MySQL database:", str(error)) def retrieve_database(connection: mysql.connector.MySQLConnection): """Gets database table values""" cursor = connection.cursor() query = 'SELECT * FROM pie_data' try: cursor.execute(query) result = cursor.fetchall() except mysql.connector.errors.ProgrammingError as error: result = ("Error retrieving data from MySQL database:", str(error)) return result def update_database(keys: list, values: list, connection: mysql.connector.MySQLConnection): """Updates database table with provided key/values""" try: cursor = connection.cursor() placeholders = ','.join(['%s'] * len(keys)) escaped_keys = [connection._cmysql.escape_string(key) for key in keys] clean_keys = [key.decode('utf-8') for key in escaped_keys] query = f"INSERT INTO pie_data ({','.join(clean_keys)}) VALUES ({placeholders})" cursor.execute(query, values) connection.commit() cursor.close() except ValueError as updatedb_error: print(f"Error: {updatedb_error}")
danlhennessy/fiscal-dash
src/database.py
database.py
py
2,555
python
en
code
0
github-code
6
571836273
from os import remove alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] first_ten = alphabet[0:9] vowel = ['a','e','i','o','u'] consonant = alphabet.remove(vowel) print(consonant) print(vowel) print(first_ten) last_ten = alphabet[-10:-1] print(last_ten)
olamide16/ATS_Training
week 1/last_alphabet.py
last_alphabet.py
py
329
python
en
code
0
github-code
6
22704968084
""" INSERT 1. The insert method takes a single argument, val, which is the value to be inserted into the binary search tree. 2. The method first checks whether the root node of the tree is None. If the root node is None, then the method creates a new node with the value val and sets it as the root of the tree. 3. If the root node is not None, then the method calls the _insert_helper method with the root node and the value to be inserted as its arguments. INSERT_HELPER 1. The _insert_helper method takes two arguments: node and val. node represents the current node being examined in the insertion process, and val is the value to be inserted into the binary search tree. 2. The method first checks whether val is less than the value of node. If val is less than the value of node, then the method checks whether the left child of node is None. 3. If the left child of node is None, then the method creates a new node with the value val and sets it as the left child of node. 4. If the left child of node is not None, then the method calls _insert_helper recursively with the left child of node and val as its arguments. 5. If val is greater than or equal to the value of node, then the method checks whether the right child of node is None. 6. If the right child of node is None, then the method creates a new node with the value val and sets it as the right child of node. 7. If the right child of node is not None, then the method calls _insert_helper recursively with the right child of node and val as its arguments. 8. Steps 5-10 are repeated until the value has been inserted into the tree. """ """ REMOVE 1. The remove method takes a single argument, val, which is the value to be removed from the binary search tree. 2. The method first checks whether the root node of the tree is None. If the root node is None, then the method returns None as the tree is empty and there is nothing to remove. 3. If the root node is not None, then the method calls the _remove_helper method with the root node and the value to be removed as its arguments. REMOVE_HELPER 1. The _remove_helper method takes two arguments: val and node. val represents the value to be removed from the binary search tree, and node represents the current node being examined in the removal process. 2. The method first checks whether node is None. If node is None, then the method returns None as the value to be removed was not found in the tree. 3. If val is less than the value of node, then the method calls _remove_helper recursively with val and the left child of node as its arguments. 4. If val is greater than the value of node, then the method calls _remove_helper recursively with val and the right child of node as its arguments. 5. If val is equal to the value of node, then the method checks whether node is a leaf node (i.e., it has no children). 6. If node is a leaf node, then the method simply removes it by returning None. 7. If node has only one child (either a left child or a right child), then the method returns that child as the replacement node for node. 8. If node has two children, then the method finds the successor of node, which is the smallest value in the right subtree of node. 9. The method replaces the value of node with the value of its successor. 10. The method calls _remove_helper recursively with the value of the successor and the right child of node as its arguments to remove the successor from the tree. 11. Steps 6-14 are repeated until the value has been removed from the tree. """ class Node: def __init__(self, val): self.val = val self.right = None self.left = None class BinarySearchTree: def __init__(self): self.root = None def insert_helper(self, val, node): if val < node.val: if node.left is None: node.left = Node(val) else: self.insert_helper(val, node.left) elif val > node.val: if node.right is None: node.right = Node(val) else: self.insert_helper(val, node.right) else: print("Node already exists") def insert(self, val): if self.root is None: self.root = Node(val) else: self.insert_helper(val, self.root) def remove_helper(self, val, node): if node is None: return node if val < node.val: node.left = self.remove_helper(val, node.left) elif val > node.val: node.right = self.remove_helper(val, node.right) else: if node.left is None: temp = node.right node = None return temp elif node.right is None: temp = node.right node = None return temp temp = self.get_min_value_node(node.right) node.val = temp.val node.right = self.remove_helper(temp, val, node.right) return node def remove(self, val): self.root = self.remove_helper(val, self.root) def get_min_value_node(self, node): current = node while current.left is not None: current = current.left return current
AvishekC-st/pythonDSA-basics
python algo examples/Trees-BST_insert_and_remove.py
Trees-BST_insert_and_remove.py
py
5,338
python
en
code
0
github-code
6
73503551228
from .space.space import Space from .vqspace.space import Space as VQSpace from .qrspace.space import Space as QRSpace # from .vqspace.space import Space as VQSpace __all__ = ['get_model'] def get_model(cfg): """ Also handles loading checkpoints, data parallel and so on :param cfg: :return: """ model = None if cfg.model == 'SPACE': model = Space(cfg.arch) elif cfg.model == 'VQSPACE': model = VQSpace(cfg.vqarch) elif cfg.model == 'QRSPACE': model = QRSpace(cfg.arch) print('+++++++++++++++++++++++++++++++') print(f'Using Model {model.__class__}.') return model
albertcity/OCARL
space/model/__init__.py
__init__.py
py
645
python
en
code
1
github-code
6
2962541494
# TomoPy recon on Cyclone: compare different algorithms import tomopy import dxchange import numpy as np import os import logging from time import time def touint8(data, quantiles=None): # scale data to uint8 # if quantiles is empty data is scaled based on its min and max values if quantiles == None: data_min = np.min(data) data_max = np.max(data) data_max = data_max - data_min data = 255 * ((data - data_min) / data_max) return np.uint8(data) else: [q0, q1] = np.quantile(np.ravel(data), quantiles) q1 = q1 - q0 data = 255 * ((data - q0) / q1) return np.uint8(data) def writemidplanesDxchange(data, filename_out): if data.ndim == 3: filename, ext = os.path.splitext(filename_out) dxchange.writer.write_tiff(touint8(data[int(data.shape[0] / 2), :, :]), fname=filename+'_XY.tiff', dtype='uint8') dxchange.writer.write_tiff(touint8(data[:, int(data.shape[1] / 2), :]), fname=filename + '_XZ.tiff', dtype='uint8') dxchange.writer.write_tiff(touint8(data[:, :, int(data.shape[2] / 2)]), fname=filename + '_YZ.tiff', dtype='uint8') h5file = "/tmp/tomoData/8671_8_B_01_/8671_8_B_01_.h5" path_recon = "/scratch/recon/algorithm_test/" # path_recon = "/nvme/h/jo21gi1/data_p029/test_00_/recon_phase/" logging.basicConfig(filename=path_recon+'recon_algorithm_test.log', level=logging.DEBUG) CPU_algorithms = ['gridrec', 'fbp', 'mlem', 'sirt', 'art'] # read projections, darks, flats and angles projs, flats, darks, theta = dxchange.read_aps_32id(h5file, exchange_rank=0) # If the angular information is not available from the raw data you need to set the data collection angles. # In this case, theta is set as equally spaced between 0-180 degrees. if theta is None: theta = tomopy.angles(projs.shape[0]) # flat-field correction logging.info("Flat-field correct.") projs = tomopy.normalize(projs, flats, darks) # - log transform logging.info("- log transform.") projs = tomopy.minus_log(projs) # COR was found with Vo method + manual inspection COR = 1303 for alg in CPU_algorithms: time_start = time() # CPU recon recon = tomopy.recon(projs, theta, center=COR, algorithm=alg, sinogram_order=False) time_end = time() execution_time = time_end - time_start logging.info("{} reconstructed in {} s".format(alg, str(execution_time))) # apply circular mask recon = tomopy.circ_mask(recon, axis=0, ratio=0.95) # rescale GV range to uint8 from MIN and MAX of 3D data recon_uint8Range = touint8(recon) # apply again circ mask recon_uint8Range = tomopy.circ_mask(recon_uint8Range, axis=0, ratio=0.95) # write output stack of TIFFs as uint8 fileout = path_recon+alg # dxchange.writer.write_tiff_stack(recon_uint8Range, fname=fileout, dtype='uint8', axis=0, digit=5, start=0, overwrite=True) writemidplanesDxchange(recon_uint8Range, fileout) del recon del recon_uint8Range
SESAME-Synchrotron/BEATS_recon
tests/Cyclone/tomopy_testCyclone_recon_algorithms_comparison.py
tomopy_testCyclone_recon_algorithms_comparison.py
py
2,975
python
en
code
0
github-code
6
24990905758
from tkinter import * from PIL import ImageTk, Image import mysql.connector root = Tk() root.geometry("400x500") mydb = mysql.connector.connect( host = "localhost", user = "root", passwd = "password123", database = "codemy", ) # print(mydb) my_cursor = mydb.cursor() #creation de la base de données la première fois après on commente.... # my_cursor.execute("CREATE DATABASE codemy") # my_cursor.execute("SHOW DATABASES") # for db in my_cursor: # print(db) # my_cursor.execute("DROP TABLE customers") # my_cursor.execute("CREATE TABLE customers (first_name VARCHAR(255), last_name VARCHAR(255), zipcode INT(10), price_paid DECIMAL(10, 2), user_id INT AUTO_INCREMENT PRIMARY KEY) ") my_cursor.execute("CREATE TABLE IF NOT EXISTS customers (first_name VARCHAR(255), \ last_name VARCHAR(255), \ zipcode INT(10), \ price_paid DECIMAL(10, 2), \ user_id INT AUTO_INCREMENT PRIMARY KEY \ ) ") #alter table ''' my_cursor.execute("ALTER TABLE customers ADD (\ email VARCHAR(255),\ address_1 VARCHAR(255),\ address_2 VARCHAR(255),\ city VARCHAR(255),\ state VARCHAR(255),\ country VARCHAR(255),\ phone VARCHAR(255),\ payment_method VARCHAR(50),\ discount_code VARCHAR(255))") ''' # my_cursor.execute("SELECT * FROM customers") # print(my_cursor.description) # for thing in my_cursor.description: # print(thing) #fonctions def add_customer(): sql_command = "INSERT INTO customers (first_name,last_name,zipcode,price_paid,email,address_1,address_2,city,state,country,phone,payment_method,discount_code) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) " values = (first_name_box.get(),last_name_box.get(),zipcode_box.get(),price_paid_box.get(),email_box.get(),address1_box.get(),address2_box.get(),city_box.get(),state_box.get(),country_box.get(),phone_box.get(),payment_method_box.get(),discount_code_box.get()) my_cursor.execute(sql_command, values) #commit mydb.commit() #on efface ensuite les champs clear_fields() def clear_fields(): first_name_box.delete(0, END) last_name_box.delete(0, END) address1_box.delete(0, END) address2_box.delete(0, END) city_box.delete(0, END) state_box.delete(0, END) zipcode_box.delete(0, END) country_box.delete(0, END) phone_box.delete(0, END) email_box.delete(0, END) payment_method_box.delete(0, END) discount_code_box.delete(0, END) price_paid_box.delete(0, END) def list_customers(): list_customer_query = Tk() list_customer_query.title("liste des clients") list_customer_query.geometry("800x600") my_cursor.execute("SELECT * FROM customers") result = my_cursor.fetchall() # for x in result: # lookup_label = Label(list_customer_query, text="nom: " + x[0] + ' prenom : ' + x[1]) # lookup_label.pack() for index, x in enumerate(result): num = 0 for y in x: lookup_label = Label(list_customer_query, text=y) lookup_label.grid(row=index, column= num ) num +=1 #creation d'un label title_label = Label(root, text="Codemy Customers Database", font=("Helvetica",16)) title_label.grid(row=0, column=0, columnspan=2, pady="10") #main form first_name_label = Label(root, text="First name").grid(row=1, column=0, sticky=W, padx=10) last_name_label = Label(root, text="last name").grid(row=2, column=0, sticky=W, padx=10) address1_label = Label(root, text="Address 1").grid(row=3, column=0, sticky=W, padx=10) address2_label = Label(root, text="Address 2").grid(row=4, column=0, sticky=W, padx=10) city_label = Label(root, text="City").grid(row=5, column=0, sticky=W, padx=10) state_label = Label(root, text="State").grid(row=6, column=0, sticky=W, padx=10) zipcode_label = Label(root, text="Zipcode").grid(row=7, column=0, sticky=W, padx=10) country_label = Label(root, text="Country").grid(row=8, column=0, sticky=W, padx=10) phone_label = Label(root, text="Phone Number").grid(row=9, column=0, sticky=W, padx=10) email_label = Label(root, text="Email Address").grid(row=10, column=0, sticky=W, padx=10) # username_label = Label(root, text="Username").grid(row=11, column=0, sticky=W, padx=10) payment_method_label = Label(root, text="Payment Method").grid(row=11, column=0, sticky=W, padx=10) discount_code_label = Label(root, text="Discount Code").grid(row=12, column=0, sticky=W, padx=10) price_paid_label = Label(root, text="Price Paid").grid(row=13, column=0, sticky=W, padx=10) #box input first_name_box = Entry(root) first_name_box.grid(row=1, column=1) last_name_box = Entry(root) last_name_box.grid(row=2, column=1, pady=5) address1_box = Entry(root) address1_box.grid(row=3, column=1, pady=5) address2_box = Entry(root) address2_box.grid(row=4, column=1, pady=5) city_box = Entry(root) city_box.grid(row=5, column=1, pady=5) state_box = Entry(root) state_box.grid(row=6, column=1, pady=5) zipcode_box = Entry(root) zipcode_box.grid(row=7, column=1, pady=5) country_box = Entry(root) country_box.grid(row=8, column=1, pady=5) phone_box = Entry(root) phone_box.grid(row=9, column=1, pady=5) email_box = Entry(root) email_box.grid(row=10, column=1, pady=5) # username_box = Entry(root) # username_box.grid(row=11, column=1, pady=5) payment_method_box = Entry(root) payment_method_box.grid(row=11, column=1, pady=5) discount_code_box = Entry(root) discount_code_box.grid(row=12, column=1, pady=5) price_paid_box = Entry(root) price_paid_box.grid(row=13, column=1, pady=5) #boutons add_customer_button = Button(root, text="Ajout de Client", command=add_customer) add_customer_button.grid(row=14, column=0, padx=10, pady=10) clear_fields_button = Button(root, text="Clear Fields", command=clear_fields) clear_fields_button.grid(row=14, column=1) list_customers_button = Button(root, text="list customers", command=list_customers) list_customers_button.grid(row=15, column=0, sticky=W ,padx=10) my_cursor.execute("SELECT * FROM customers") result = my_cursor.fetchall() for x in result: print(x) root.mainloop()
miraceti/tkinter
gui_28tk_CRm_Db_tools.py
gui_28tk_CRm_Db_tools.py
py
6,059
python
en
code
2
github-code
6
18390234941
from django import template from photos.models import GalleryCustom register = template.Library() @register.filter def stripgallery(title): """ Remove gallery prefix from photo titles of the form gallery__mytitle. """ idx = title.find("__") if idx < 0: return title return title[idx+2:] @register.inclusion_tag('photologue/tags/galleries.html') def get_public_photo_galleries(): """ Return all public galleries as an HTML ul element. """ galleries = GalleryCustom.objects.filter(gallery__is_public=True) \ .order_by('gallery__date_added') return {'galleries': galleries, 'private_galleries_list': False} def get_private_photo_galleries_array(user): galleries_private = GalleryCustom.objects.filter(gallery__is_public=False) \ .order_by('gallery__date_added') if user.is_superuser: return galleries_private else: return [gal for gal in galleries_private if user in gal.allowed_users.all()] @register.simple_tag(takes_context=True) def get_private_photo_galleries_num(context): """ Return the number of private galleries accessible to the user. """ return len(get_private_photo_galleries_array(context['user'])) @register.inclusion_tag('photologue/tags/galleries.html', takes_context=True) def get_private_photo_galleries(context): """ Return all private galleries accessible to the user as an HTML ul element. """ return {'galleries': get_private_photo_galleries_array(context['user']), 'private_galleries_list': True, 'user': context['user']}
ria4/tln
photos/templatetags/photos_extras.py
photos_extras.py
py
1,682
python
en
code
3
github-code
6
25607545289
def palindrom(p, case_sensitive=True): """Tells if param is palindrome Parameters ---------- p : str or int or list input parameter case_sensitive : bool case sensitive or not Raises ------ TypeError if type is not str, int or list >>> palindrom(['ABC', 12, True, 12, 'abc']) False >>> palindrom(['ABC', 12, True, 12, 'abc'], case_sensitive=False) True >>> palindrom('Cojoc') False >>> palindrom('Cojoc', case_sensitive=False) True >>> palindrom(12345) False >>> palindrom(1234554321) False """ if type(p) is int: p = str(p) elif type(p) is str: if case_sensitive is False: p = p.lower() elif type(p) is list: p = list(p) if case_sensitive is False: for i in range(len(p)): if type(p[i]) is str: p[i] = p[i].lower() else: raise TypeError('Only int, str, list allowed') return p[::-1] == p if __name__ == '__main__': from doctest import testmod testmod() # print(palindrom('Cojoc')) # print(palindrom('Cojoc', case_sensitive=False)) # print(palindrom(12345)) # print(palindrom(1234554321))
ciprianstoica/python-samples
palindrome2.py
palindrome2.py
py
1,343
python
en
code
0
github-code
6
30755556995
class AlarmClock : def __init__(self) : self.current_time = 0 self.alarm_is_on = True self.alarm_time = 0 self.toggle_result = '' def set_current_time(self): self.current_time = input('What is the current time?') print(self.current_time) def set_alarm_on_or_off(self): #seguestion use not toggle = input('Toggle alarm on or off?') if toggle == 'on': self.alarm_is_on = True self.toggle_result = 'Alarm is ON' elif toggle == 'off': self.alarm_is_on = False self.toggle_result = 'Alarm is OFF' else: self.alarm_is_on = False self.toggle_result = 'on or off was not entered. Alarm is OFF' def set_alarm_time(self): self.alarm_time = input('What time would you like to set your alarm to?') print(self.alarm_time) # return self.alarm_time
StevenSisavath/ClassesAndObjects
alarm_clock.py
alarm_clock.py
py
935
python
en
code
0
github-code
6
16090817554
from django.urls import path from . import api_endpoints as views from .api_endpoints.Contacts.ContactsList.views import ContactListAPIView app_name = 'about' urlpatterns = [ path('addresses/', views.AddressListAPIView.as_view(), name='address_list'), path('company_stats/', views.CompanyStatListAPIView.as_view(), name='company_stat'), path('company_histories/', views.CompanyHistoryListAPIView.as_view(), name='company_history'), path('emails/', views.EmailListAPIView.as_view(), name='email_list'), path('phone_numbers/', views.PhoneNumberListView.as_view(), name='phone_number_list'), path('social_medias/', views.SocialMediaListAPIView.as_view(), name='social_media_list'), path('contacts/', ContactListAPIView.as_view(), name='contact_list'), path('showroom/', views.ShowroomListAPIView.as_view(), name='showroom_list') ]
bilolsolih/decormax
apps/about/urls.py
urls.py
py
863
python
en
code
0
github-code
6
39607752443
import logging import os from django.conf import settings from django.core.management.base import BaseCommand from core.management.commands import configure_logging from core.models import Batch, OcrDump configure_logging("dump_ocr_logging.config", "dump_ocr.log") _logger = logging.getLogger(__name__) class Command(BaseCommand): help = "looks for batches that need to have ocr dump files created" def handle(self, *args, **options): if not os.path.isdir(settings.OCR_DUMP_STORAGE): os.makedirs(settings.OCR_DUMP_STORAGE) for batch in Batch.objects.filter(ocr_dump__isnull=True): _logger.info("starting to dump ocr for %s", batch) try: if batch.ocr_dump: _logger.info("Ocr is already generated for %s", batch) continue except OcrDump.DoesNotExist: pass dump = OcrDump.new_from_batch(batch) _logger.info("created ocr dump %s for %s", dump, batch)
open-oni/open-oni
core/management/commands/dump_ocr.py
dump_ocr.py
py
1,024
python
en
code
43
github-code
6
15399778008
from BayCab4BEM.downSampler import DownSampler from Util.io import getFileDir, getFileName import numpy as np import os import csv simDataFile = './iwCabData/config_16/dataFromSim/raw/DEBUG_D_sim_org.csv' fieldDataFile = './iwCabData/config_16/dataFromSim/raw/DEBUG_D_field_org.csv' bins = 30; qualityThres = 0.90; outputPath = getFileDir(simDataFile, 2) + os.sep + 'down' + os.sep + 'b%d_t%d'%(bins, qualityThres * 100); try: os.makedirs(outputPath); except Exception as e: print (e) dirichlet_prior = 0.5; # Read file header d_sim_head = None; with open(simDataFile, 'r') as f: reader = csv.reader(f); d_sim_head = ','.join(next(reader)); d_field_head = None; with open(fieldDataFile, 'r') as f: reader = csv.reader(f); d_field_head = ','.join(next(reader)); # Read data from file d_sim = np.genfromtxt(simDataFile, delimiter = ',', skip_header = 1) d_field = np.genfromtxt(fieldDataFile, delimiter = ',', skip_header = 1) # Down sample downSampler_dSim = DownSampler(d_sim, bins = bins, dirichlet_prior = dirichlet_prior); (d_sim_down, d_sim_sp_hist) = downSampler_dSim.sample(stSampleSize = 50, increRatio = 1.05, qualityThres = qualityThres); downSampler_dField = DownSampler(d_field, bins = bins, dirichlet_prior = dirichlet_prior); (d_field_down, d_field_sp_hist) = downSampler_dField.sample(stSampleSize = 50, increRatio = 1.05, qualityThres = qualityThres); # Save down sampled data to file np.savetxt(outputPath + os.sep + getFileName(simDataFile, False) + '_down.csv', d_sim_down, delimiter=",", header = d_sim_head); np.savetxt(outputPath + os.sep + getFileName(fieldDataFile, False) + '_down.csv', d_field_down, delimiter=',', header = d_field_head);
zhangzhizza/BayCab4BEM
src/downSampleData.py
downSampleData.py
py
1,671
python
en
code
3
github-code
6
30793138915
from tkinter import * window = Tk() window.title("Entry in tkinter") window.minsize(width=500,height=300) # Label my_label = Label(text="Type below to change text", font=("Arial", 24, "bold")) # places the label on to the screen and automatically centers it my_label.pack() # Entry (basically just input) input = Entry(width=10) input.pack() input.get() # 'get()' method returns the input given by the user as a string # Button def button_clicked(): new_text = input.get() my_label["text"] = new_text button = Button(text="Change text", command=button_clicked) # 'command' takes the name of a function not calling of the function, so '()' are not required button.pack() # keeps the window on the screen window.mainloop()
shrijanlakhey/100-days-of-Python
027/entry_in_tkiner.py
entry_in_tkiner.py
py
747
python
en
code
0
github-code
6
17642557437
import os from flask import Flask, request, jsonify from flask_pymongo import PyMongo from bson import ObjectId import bcrypt import jwt import ssl import datetime from functools import wraps from dotenv import load_dotenv load_dotenv('.env') app = Flask(__name__) app.config['MONGO_URI'] = os.environ.get('MONGO_URI') app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY') mongo = PyMongo(app, ssl_cert_reqs=ssl.CERT_NONE) def token_required(f): @wraps(f) def decorated(*args, **kwargs): token = request.headers.get('Authorization') if not token: return jsonify({'message': 'Token is missing'}), 401 try: jwt.decode(token.split()[1], app.config['SECRET_KEY'], algorithms=['HS256']) except jwt.ExpiredSignatureError: return jsonify({'message': 'Token has expired'}), 401 except jwt.InvalidTokenError: return jsonify({'message': 'Token is invalid'}), 401 return f(*args, **kwargs) return decorated class HomePage: @staticmethod @app.route("/") def index(): return "Homepage<br> Use /register to register user <br> Use /login to login user<br> Use " \ "/template to get template<br> Use /template/<template_id> to do 'GET', 'PUT', 'DELETE' methods" class UserManagement: @staticmethod @app.route('/register', methods=['POST']) def register(): data = request.get_json() hashed_pw = bcrypt.hashpw(data['password'].encode('utf-8'), bcrypt.gensalt()) user = mongo.db.users.find_one({'email': data['email']}) if user: return jsonify({'message': 'User already registered'}), 409 user_id = str(mongo.db.users.insert_one({ 'first_name': data['first_name'], 'last_name': data['last_name'], 'email': data['email'], 'password': hashed_pw}).inserted_id) return jsonify({'message': 'User registered successfully!', 'user_id': user_id}), 201 @staticmethod @app.route('/login', methods=['POST']) def login(): auth = request.get_json() user = mongo.db.users.find_one({'email': auth['email']}) if user and bcrypt.checkpw(auth['password'].encode('utf-8'), user['password']): token = jwt.encode({ 'user_id': str(user['_id']), 'exp': datetime.datetime.utcnow() + datetime.timedelta(hours=1) }, app.config['SECRET_KEY'], algorithm='HS256') return jsonify({'token': token}) return jsonify({'message': 'Invalid credentials'}), 401 class TemplateManagement: @staticmethod @app.route('/template', methods=['POST']) @token_required def create_template(): user_id = jwt.decode(request.headers.get('Authorization').split()[1], app.config['SECRET_KEY'], algorithms=['HS256'])['user_id'] data = request.get_json() data['user_id'] = user_id inserted_template = mongo.db.templates.insert_one(data) inserted_id = str(inserted_template.inserted_id) return jsonify({'template_id': inserted_id, 'message': 'Template created successfully'}), 201 @staticmethod @app.route('/template', methods=['GET']) @token_required def get_all_templates(): user_id = \ jwt.decode(request.headers.get('Authorization').split()[1], app.config['SECRET_KEY'], algorithms=['HS256'])[ 'user_id'] templates = list(mongo.db.templates.find({'user_id': user_id}, {'_id': 1})) formatted_templates = [{'_id': str(template['_id'])} for template in templates] result = [] for template in formatted_templates: template_id = template['_id'] template_data = mongo.db.templates.find_one({'_id': ObjectId(template_id), 'user_id': user_id}, {'_id': 0}) if template_data: template_data['_id'] = template_id result.append(template_data) return jsonify(result), 200 @staticmethod @app.route('/template/<template_id>', methods=['GET']) @token_required def get_template(template_id): user_id = \ jwt.decode(request.headers.get('Authorization').split()[1], app.config['SECRET_KEY'], algorithms=['HS256'])[ 'user_id'] template = mongo.db.templates.find_one({'_id': ObjectId(template_id), 'user_id': user_id}, {'_id': 0}) if template: return jsonify({'template_id': template_id, "template": template}), 200 else: return jsonify({'template_id': template_id, 'message': 'Template not found'}), 404 @staticmethod @app.route('/template/<template_id>', methods=['PUT']) @token_required def update_template(template_id): user_id = \ jwt.decode(request.headers.get('Authorization').split()[1], app.config['SECRET_KEY'], algorithms=['HS256'])[ 'user_id'] data = request.get_json() result = mongo.db.templates.update_one({'_id': ObjectId(template_id), 'user_id': user_id}, {'$set': data}) print(result) if result.modified_count > 0: return jsonify({'template_id': template_id, 'message': 'Template updated successfully'}), 200 else: return jsonify({'template_id': template_id, 'message': 'Template not found'}), 404 @staticmethod @app.route('/template/<template_id>', methods=['DELETE']) @token_required def delete_template(template_id): user_id = \ jwt.decode(request.headers.get('Authorization').split()[1], app.config['SECRET_KEY'], algorithms=['HS256'])[ 'user_id'] result = mongo.db.templates.delete_one({'_id': ObjectId(template_id), 'user_id': user_id}) if result.deleted_count > 0: return jsonify({'template_id': template_id, 'message': 'Template deleted successfully'}), 200 else: return jsonify({'template_id': template_id, 'message': 'Template not found'}), 404 if __name__ == '__main__': user_manager = UserManagement() template_manager = TemplateManagement() app.add_url_rule('/register', methods=['POST'], view_func=user_manager.register) app.add_url_rule('/login', methods=['POST'], view_func=user_manager.login) app.add_url_rule('/template', methods=['POST'], view_func=template_manager.create_template) app.add_url_rule('/template', methods=['GET'], view_func=template_manager.get_all_templates) app.add_url_rule('/template/<template_id>', methods=['GET'], view_func=template_manager.get_template) app.add_url_rule('/template/<template_id>', methods=['PUT'], view_func=template_manager.update_template) app.add_url_rule('/template/<template_id>', methods=['DELETE'], view_func=template_manager.delete_template) app.run(debug=True)
abhi1083/simple_crud_ops
main.py
main.py
py
6,831
python
en
code
0
github-code
6
22555751097
from flask_app.config.mysqlconnection import connectToMySQL from flask import flash class Product: db = "my_solo" def __init__(self, data): self.id = data['id'] self.wood = data['wood'] self.thickness = data['thickness'] self.description = data['description'] self.created_at = data['created_at'] self.updated_at = data['updated_at'] self.customers_id = data['customers_id'] @classmethod def create(cls, data): query = "INSERT INTO products (wood, thickness, description, customers_id) VALUES (%(wood)s, %(thickness)s, %(description)s, %(customers_id)s)" results = connectToMySQL( cls.db).query_db(query, data) return results @classmethod def get_by_cust_id(cls, data): query = "SELECT * FROM products WHERE customers_id = %(id)s" results = connectToMySQL(cls.db).query_db(query, data) list = [] for row in results: list.append(cls(row)) return list @classmethod def get_one(cls, data): query = "SELECT * FROM products WHERE id = %(id)s;" results = connectToMySQL( cls.db).query_db(query, data) this_product = cls(results[0]) return this_product @classmethod def cancel(cls, data): query = "DELETE FROM products WHERE id=%(id)s" results = connectToMySQL(cls.db).query_db(query, data) return results @classmethod def update(cls, data): query = "UPDATE products SET wood= %(wood)s, thickness= %(thickness)s, description= %(description)s WHERE id = %(id)s" results = connectToMySQL(cls.db).query_db(query, data) return results @ staticmethod def validate_product(product): is_valid = True if len(product['wood']) < 1: flash("Please choose wood type!") is_valid = False if len(product['thickness']) < 1: flash("Thickness amount needed!") is_valid = False if len(product['description']) < 3: flash("Input at least 3 letters!") is_valid = False if len(product['description']) >= 4: flash("Input at only 3 letters!") is_valid = False return is_valid
tsu112/solo_project
flask_app/models/product.py
product.py
py
2,288
python
en
code
1
github-code
6
8519707697
import bs4 as bs import requests import regex as re import pandas as pd from src.config import * def get_page_body(url: str): try: response = requests.get(url, timeout=10) if response.status_code == 200: page = bs.BeautifulSoup(response.text) return page.body except requests.exceptions.HTTPError as errh: print("http error:", errh) except requests.exceptions.ConnectionError as errc: print("connection error:", errc) except requests.exceptions.Timeout as errt: print("timeout error:", errt) except requests.exceptions.RequestException as err: print("other error:", err) else: return None def clean_text(s: str): s = re.sub(r'[\n\t]', ' ', s) s = s.strip() s = ' '.join(s.split()) return s def get_separate_book_urls(url: str): page_body = get_page_body(url) urls = [] if page_body: urls = [URL_SOURCE + section['href'] for section in page_body.find_all("a", {"class": "bookTitle"})] return urls def get_category_books_urls( input_url: str = URL_START, book_categories=BOOK_CATEGORIES, top_n: int = NUMBER_OF_CATEGORY_PAGES_TO_SCRAPE) -> dict: category_urls = {} for category in book_categories: page_body = get_page_body(input_url + category) if not page_body: continue category_link = page_body.find("div", {"class": "listImgs"}).find("a")["href"] top_pages_links = [f"{URL_SOURCE}{category_link}?page={i}" for i in range(1, top_n + 1)] category_urls[category] = [book_url for page_url in top_pages_links for book_url in get_separate_book_urls(page_url)] return category_urls def get_text(x): return clean_text(getattr(x, "text", "")) def get_single_book_info(url: str, book_category: str): page_body = get_page_body(url) book_info = {} if page_body: book_info["category"] = book_category book_info["title"] = get_text(page_body.find("h1", id="bookTitle")) book_info["author"] = get_text(page_body.find("span", itemprop="name")) book_info["description"] = get_text(page_body.find("div", id="description")) book_info["rating"] = get_text(page_body.find("span", itemprop="ratingValue")) book_info["number_of_pages"] = get_text(page_body.find("span", itemprop="numberOfPages")) book_info["url"] = url return book_info def get_books_data(category_urls: dict): books_data = [] for category in category_urls.keys(): book_urls = category_urls[category] if not book_urls: continue for book_url in book_urls: book_info = get_single_book_info(book_url, category) if book_info: books_data += list(book_info) return books_data
bakalstats/py_project
src/scraping_utils.py
scraping_utils.py
py
2,826
python
en
code
0
github-code
6
15409655756
""" 一个网站域名,如"discuss.leetcode.com",包含了多个子域名。作为顶级域名,常用的有"com",下一级则有"leetcode.com",最低的一级为"discuss.leetcode.com"。当我们访问域名"discuss.leetcode.com"时,也同时访问了其父域名"leetcode.com"以及顶级域名 "com"。 给定一个带访问次数和域名的组合,要求分别计算每个域名被访问的次数。其格式为访问次数+空格+地址,例如:"9001 discuss.leetcode.com"。 接下来会给出一组访问次数和域名组合的列表cpdomains 。要求解析出所有域名的访问次数,输出格式和输入格式相同,不限定先后顺序。 示例 2 输入: ["900 google.mail.com", "50 yahoo.com", "1 intel.mail.com", "5 wiki.org"] 输出: ["901 mail.com","50 yahoo.com","900 google.mail.com","5 wiki.org","5 org","1 intel.mail.com","951 com"] 说明: 按照假设,会访问"google.mail.com" 900次,"yahoo.com" 50次,"intel.mail.com" 1次,"wiki.org" 5次。 而对于父域名,会访问"mail.com" 900+1 = 901次,"com" 900 + 50 + 1 = 951次,和 "org" 5 次。 """ import collections class Solution: def subdomainVisits(self, cpdomains): """ :type cpdomains: List[str] :rtype: List[str] """ ans = collections.Counter() for el in cpdomains: count = int(el.split(' ')[0]) domain = el.split(' ')[1] frags = domain.split('.') for i in range(len(frags)): ans[".".join(frags[i:])] += count return ["{} {}".format(ct, dom) for dom, ct in ans.items()] if __name__ == '__main__': A = ["900 google.mail.com", "50 yahoo.com", "1 intel.mail.com", "5 wiki.org"] S = Solution() res = S.subdomainVisits(A) print(res)
Octoberr/letcode
easy/811subdomainvisitcount.py
811subdomainvisitcount.py
py
1,796
python
zh
code
1
github-code
6
6448028292
import datetime import time import MySQLdb import cv2, os cascadePath = ("haarcascade_frontalface_default.xml") faceCascade = cv2.CascadeClassifier(cascadePath) recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read('dataTrain/train.yml') now = datetime.datetime.now() def getProfile(id): db = MySQLdb.connect("localhost", "root", "", "presensi") curs = db.cursor() cmd = "select *from facebase where npm="+str(id) curs.execute(cmd) profile = None rows = curs.fetchall() for row in rows: profile = row curs.close() return profile def getFace_info(): cam = cv2.VideoCapture(0) while (True): ret, img = cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale(gray, 1.2, 5) for (x, y, w, h) in faces: id, conf = recognizer.predict(gray[y:y + h, x:x + w]) profile = getProfile(id) print(str(id) + str(conf)) if (conf < 40): if (profile != None): cv2.imwrite("absensi/" + profile[1] + "/" + now.strftime("%Y-%m-%d %H-%M") + "[1]" + ".jpg", img) cv2.imwrite("absensi/" + profile[2] + "/" + now.strftime("%Y-%m-%d &H-&M") + "[2]" + ".jpg", img) time.sleep(3) return profile[1], profile[2] break else: cam.release() cv2.destroyAllWindows() cv2.imshow('img', img) if cv2.waitKey(10) & 0xff == ord('q'): break cam.release() cv2.destroyAllWindows()
Kuroboy/Presensi-Face
faceRec.py
faceRec.py
py
1,634
python
en
code
0
github-code
6
45333966266
from markdown import markdown from unittest import TestCase from markdown_vimwiki.extension import VimwikiExtension class TestExtension(TestCase): def test_default_config(self): source = """ Hello World =========== * [-] rejected * [ ] done0 * [.] done1 * [o] done2 * [O] done3 * [X] done4 :lorem:ipsum: """.strip() expected = """ <h1>Hello World</h1> <ul> <li class="rejected"> rejected</li> <li class="done0"> done0<ul> <li class="done1"> done1</li> <li class="done2"> done2</li> <li class="done3"> done3</li> <li class="done4"> done4</li> </ul> </li> </ul> <p><span class="tag">lorem</span> <span class="tag">ipsum</span></p> """.strip() html = markdown(source, extensions=[VimwikiExtension()]) self.assertEqual(html, expected) html = markdown(source, extensions=['markdown_vimwiki']) self.assertEqual(html, expected) def test_custom_config(self): source = """ Hello World =========== * [i] yip * [a] yap * [o] yop :lorem:ipsum: """.strip() expected = """ <h1>Hello World</h1> <ul> <li class="yip"> yip</li> <li class="yap"> yap</li> <li class="yop"> yop</li> </ul> <p><span class="bark">lorem</span> <span class="bark">ipsum</span></p> """.strip() html = markdown(source, extensions=[VimwikiExtension( list_levels='iao', list_classes=['yip', 'yap', 'yop'], tag_class='bark')]) self.assertEqual(html, expected)
makyo/markdown-vimwiki
markdown_vimwiki/tests/test_extension.py
test_extension.py
py
1,499
python
en
code
0
github-code
6
5896021463
import torch import torch.utils.data as data import numpy as np from collections import defaultdict from tqdm import tqdm from copy import deepcopy import config_data as conf import random infor_train_data_path = np.load('/content/drive/MyDrive/DASR-WGAN/data/dianping/version3/infor_train.npy', allow_pickle = True).tolist() eva_infor_test_data_path = np.load('/content/drive/MyDrive/DASR-WGAN/data/dianping/version3/infor_test.npy', allow_pickle = True).tolist() social_ratings = np.load('/content/drive/MyDrive/DASR-WGAN/data/dianping/version3/soc_ratings.npy', allow_pickle = True).tolist() social_links = np.load('/content/drive/MyDrive/DASR-WGAN/data/dianping/version3/social_links.npy', allow_pickle = True).tolist() soc_test = np.load('/content/drive/MyDrive/DASR-WGAN/data/dianping/version3/soc_test_1000.npy', allow_pickle = True).tolist() infor_fake = np.load('/content/drive/MyDrive/DASR-WGAN/src/dianping/Final_Model_augmentation_edge/data/edge_modification/infor_fake.npy', allow_pickle = True).tolist() social_fake = np.load('/content/drive/MyDrive/DASR-WGAN/src/dianping/Final_Model_augmentation_edge/data/edge_modification/fake_links_2.npy', allow_pickle = True).tolist() def load_all(): max_user, max_item, max_user_soc = 0, 0, 0 ################################################################## ''' information domain ''' ################################################################## infor_hash_data = set() infor_rating_train_data = [] infor_item_dict = defaultdict(set) infor_user_dict = infor_train_data_path all_user = set() infor_user = set() for user, items in tqdm(infor_train_data_path.items()): all_user.add(user) infor_user.add(user) for item in items: infor_hash_data.add((user, item)) infor_rating_train_data.append([user, item]) infor_item_dict[item].add(user) eva_infor_rating_test_data = [] for user, items in tqdm(eva_infor_test_data_path.items()): for item in items: eva_infor_rating_test_data.append([user, item]) eva_common_rating_test_data = [] common_rating_dict = defaultdict(set) for user, friends in social_links.items(): if user in eva_infor_test_data_path: for i in eva_infor_test_data_path[user]: eva_common_rating_test_data.append([user, i]) common_rating_dict[user].add(i) social_link_dict = social_links link_hash_data = set() link_train_data = [] soc_user = set() for user, friends in social_link_dict.items(): all_user.add(user) soc_user.add(user) for friend in friends: all_user.add(friend) soc_user.add(friend) link_hash_data.add((user, friend)) link_train_data.append([user, friend]) eva_social_rating_test_data = [] for user, friends in tqdm(social_ratings.items()): if user not in common_rating_dict: for i in social_ratings[user]: if i <= 8626: eva_social_rating_test_data.append([user, i]) # infor_fake_dict = infor_fake # social_fake_dict = social_fake # infor_fake_item_dict = defaultdict(set) # for user,items in infor_fake.items(): # for i in items: # infor_fake_item_dict[i].add(user) eva_soc_test = soc_test eva_soc_test_ground_truth = social_ratings print('all user count:', len(all_user)) print('max user id:', max(all_user)) print('infor user count:', len(infor_user)) print('max infor user id:', max(infor_user)) print('common user count:', len(common_rating_dict)) print('soc user count:', len(soc_user)) print('max soc user id:', max(soc_user)) #import sys;sys.exit(0) return infor_hash_data, infor_rating_train_data, eva_infor_rating_test_data,\ infor_user_dict, infor_item_dict, eva_common_rating_test_data, social_link_dict, eva_social_rating_test_data,\ link_train_data, link_hash_data, eva_soc_test, eva_soc_test_ground_truth, common_rating_dict ####################edge modification################ def load_corrupt_edge(): infor_train_data_path_cp = infor_train_data_path social_links_cp = social_links for _ in range(1000): u = random.randint(0, 10181) if len(infor_train_data_path_cp[u]) > 0: u_value = list(infor_train_data_path_cp[u]) u_value_len = len(u_value) i = random.randint(0,u_value_len-1) try: infor_train_data_path_cp[u].remove(u_value[i]) except: import pdb;pdb.set_trace() for _ in range(1000): u = random.randint(0, 10181) i = random.randint(0, 8626) if i not in infor_train_data_path_cp[u]: infor_train_data_path_cp[u].add(i) ########add edges in social domain for _ in range(500): u = random.randint(8486, 14174) if len(social_links_cp[u]) > 0: u_value = list(social_links_cp[u]) u_value_len = len(u_value) i = random.randint(0,u_value_len-1) try: social_links_cp[u].remove(u_value[i]) except: pdb.set_trace() for _ in range(500): u1 = random.randint(8486, 14174) u2 = random.randint(8486, 14174) if u2 not in social_links_cp[u1]: social_links_cp[u1].add(u2) infor_fake_item_dict_cp = defaultdict(set) for user,items in infor_train_data_path_cp.items(): for i in items: infor_fake_item_dict_cp[i].add(user) return infor_train_data_path_cp, social_links_cp, infor_fake_item_dict_cp ################node mask################ def load_corrupt_node_mask(): infor_train_data_path_cp = infor_train_data_path social_links_cp = social_links for _ in range(1000): u = random.randint(0, 10181) if len(infor_train_data_path_cp[u]) > 0: u_value = list(infor_train_data_path_cp[u]) u_value_len = len(u_value) i = random.randint(0,u_value_len-1) try: infor_train_data_path_cp[u].remove(u_value[i]) except: import pdb;pdb.set_trace() for _ in range(1000): u = random.randint(0, 10181) i = random.randint(0, 8626) if i not in infor_train_data_path_cp[u]: infor_train_data_path_cp[u].add(i) ########add edges in social domain for _ in range(300): u = random.randint(8486, 14174) if len(social_links_cp[u]) > 0: u_value = list(social_links_cp[u]) u_value_len = len(u_value) i = random.randint(0,u_value_len-1) try: social_links_cp[u].remove(u_value[i]) except: pdb.set_trace() for _ in range(300): u1 = random.randint(8486, 14174) u2 = random.randint(8486, 14174) if u2 not in social_links_cp[u1]: social_links_cp[u1].add(u2) infor_fake_item_dict_cp = defaultdict(set) for user,items in infor_train_data_path_cp.items(): for i in items: infor_fake_item_dict_cp[i].add(user) return infor_train_data_path_cp, social_links_cp, infor_fake_item_dict_cp # construct original local graph# def construct_infor_mat(soc_dict, user_dict, item_dict, is_user): if is_user == True: infor_index, infor_value = [], [] #common user #''' for user in soc_dict.keys(): friends_list = soc_dict[user] if user not in user_dict: for f in friends_list: fri_friend = soc_dict[f] infor_index.append([user, f]) #infor_value.append(1.0/(np.sqrt(len(friends_list)*len(fri_friend)))) infor_value.append(1.0/len(friends_list)) #''' for user in user_dict.keys(): item_list = user_dict[user] if user not in soc_dict: for i in item_list: user_list = item_dict[i] infor_index.append([user, i+conf.num_all_user_id]) #infor_value.append(1.0/(np.sqrt(len(item_list)*len(user_list)))) infor_value.append(1.0/len(item_list)) for user in user_dict.keys(): if user in soc_dict.keys(): friends_list = soc_dict[user] item_list = user_dict[user] #''' for f in friends_list: fri_friend = soc_dict[f] infor_index.append([user, f]) #infor_value.append(1.0/(np.sqrt(len(friends_list)*len(fri_friend)))) infor_value.append(1.0/(len(friends_list)+len(item_list))) for i in item_list: user_list = item_dict[i] infor_index.append([user, i+conf.num_all_user_id]) #infor_value.append(1.0/(np.sqrt(len(item_list)*len(user_list)))) infor_value.append(1.0/(len(item_list)+len(friends_list))) #''' for item in item_dict.keys(): user_list = item_dict[item] for u in user_list: item_list = user_dict[u] infor_index.append([item + conf.num_all_user_id, u]) #infor_value.append(1.0/(np.sqrt(len(user_list)*len(item_list)))) infor_value.append(1.0/len(user_list)) length = conf.num_all_user_id + conf.num_items user_agg_mat = torch.sparse.FloatTensor(torch.LongTensor(infor_index).t().cuda(), \ torch.FloatTensor(infor_value).cuda(), torch.Size([length, length]))#.to_dense() #import pdb;pdb.set_trace() return user_agg_mat ############construct corrupted local graph############### def construct_corrupted_graph(infor_fake_dict, infor_fake_item_dict, social_fake_dict): infor_index, infor_value = [], [] #common user #''' for user in infor_fake_dict.keys(): item_list = infor_fake_dict[user] for i in item_list: infor_index.append([user, i+conf.num_all_user_id]) #infor_value.append(1.0/(np.sqrt(len(item_list)*len(user_list)))) infor_value.append(1.0/len(item_list)) for item in infor_fake_item_dict.keys(): user_list = infor_fake_item_dict[item] for u in user_list: infor_index.append([item+conf.num_all_user_id, u]) infor_value.append(1.0/len(user_list)) for user in social_fake_dict.keys(): friend_list = social_fake_dict[user] for f in friend_list: infor_index.append([user, f]) infor_value.append(1.0/len(friend_list)) length = conf.num_all_user_id + conf.num_items fake_agg_mat = torch.sparse.FloatTensor(torch.LongTensor(infor_index).t().cuda(), \ torch.FloatTensor(infor_value).cuda(), torch.Size([length, length]))#.to_dense() #import pdb;pdb.set_trace() return fake_agg_mat ##############3construct global in social domian################ def construct_global_social(soc_dict): infor_index, infor_value = [], [] for user in soc_dict.keys(): friends_list = soc_dict[user] for f in friends_list: fri_friend = soc_dict[f] infor_index.append([user, f]) #infor_value.append(1.0/(np.sqrt(len(friends_list)*len(fri_friend)))) infor_value.append(1.0/len(friends_list)) length = conf.num_all_user_id + conf.num_items user_agg_mat = torch.sparse.FloatTensor(torch.LongTensor(infor_index).t().cuda(), \ torch.FloatTensor(infor_value).cuda(), torch.Size([length, length]))#.to_dense() #import pdb;pdb.set_trace() return user_agg_mat #construct global in information domain# def construct_global_infor(user_dict, item_dict): infor_index, infor_value = [], [] for user in user_dict.keys(): item_list = user_dict[user] for i in item_list: user_list = item_dict[i] infor_index.append([user, i+conf.num_all_user_id]) #infor_value.append(1.0/(np.sqrt(len(item_list)*len(user_list)))) infor_value.append(1.0/len(item_list)) for item in item_dict.keys(): user_list = item_dict[item] for u in user_list: item_list = user_dict[u] infor_index.append([item + conf.num_all_user_id, u]) #infor_value.append(1.0/(np.sqrt(len(user_list)*len(item_list)))) infor_value.append(1.0/len(user_list)) length = conf.num_all_user_id + conf.num_items user_agg_mat = torch.sparse.FloatTensor(torch.LongTensor(infor_index).t().cuda(), \ torch.FloatTensor(infor_value).cuda(), torch.Size([length, length]))#.to_dense() #import pdb;pdb.set_trace() return user_agg_mat # def construct_infor_fake_graph(infor_fake_dict, infor_fake_item_dict, soc_dict, is_true): infor_index, infor_value = [], [] #common user #''' for user in infor_fake_dict.keys(): item_list = infor_fake_dict[user] for i in item_list: infor_index.append([user, i+conf.num_all_user_id]) #infor_value.append(1.0/(np.sqrt(len(item_list)*len(user_list)))) infor_value.append(1.0/len(item_list)) for item in infor_fake_item_dict.keys(): user_list = infor_fake_item_dict[item] for u in user_list: infor_index.append([item+conf.num_all_user_id, u]) infor_value.append(1.0/len(user_list)) if is_true == True: for user in soc_dict.keys(): friend_list = soc_dict[user] for f in friend_list: infor_index.append([user, f]) infor_value.append(1.0/len(friend_list)) length = conf.num_all_user_id + conf.num_items fake_infor_agg_mat = torch.sparse.FloatTensor(torch.LongTensor(infor_index).t().cuda(), \ torch.FloatTensor(infor_value).cuda(), torch.Size([length, length]))#.to_dense() #import pdb;pdb.set_trace() return fake_infor_agg_mat ##########construct fake graph in social domain############# def construct_social_fake_graph(social_fake_dict, user_dict, item_dict, is_true): social_index,social_value = [],[] for user in social_fake_dict.keys(): friend_list = social_fake_dict[user] for f in friend_list: social_index.append([user, f]) social_value.append(1.0/len(friend_list)) if is_true == True: for user in user_dict.keys(): item_list = user_dict[user] for i in item_list: social_index.append([user, i+conf.num_all_user_id]) #infor_value.append(1.0/(np.sqrt(len(item_list)*len(user_list)))) social_value.append(1.0/len(item_list)) for item in item_dict.keys(): user_list = item_dict[item] for u in user_list: item_list = user_dict[u] social_index.append([item + conf.num_all_user_id, u]) #infor_value.append(1.0/(np.sqrt(len(user_list)*len(item_list)))) social_value.append(1.0/len(user_list)) length = conf.num_all_user_id + conf.num_items fake_social_agg_mat = torch.sparse.FloatTensor(torch.LongTensor(social_index).t().cuda(), \ torch.FloatTensor(social_value).cuda(), torch.Size([length, length]))#.to_dense() #import pdb;pdb.set_trace() return fake_social_agg_mat ###########construct infor h-g link ############## def construct_infor_link(soc_dict, user_dict, item_dict): infor_index, infor_value = [], [] for user in user_dict.keys(): if user in soc_dict.keys(): items = user_dict[user] for i in items: infor_index.append([user, i]) infor_value.append(1.0) length = conf.num_all_user_id + conf.num_items agg_mat = torch.sparse.FloatTensor(torch.LongTensor(infor_index).t().cuda(), \ torch.FloatTensor(infor_value).cuda(), torch.Size([length, length]))#.to_dense() #import pdb;pdb.set_trace() return agg_mat # TrainData is used to train the model class TrainData(): def __init__(self, infor_rating_train_data, infor_hash_data, social_link_dict, infor_user_dict, link_hash_data): self.features_ps = infor_rating_train_data self.train_mat = infor_hash_data self.social_link = social_link_dict self.infor_user = infor_user_dict self.social_hash = link_hash_data def ng_sample(self): features_fill = [] for x in self.features_ps: u, i = x[0], x[1] for t in range(conf.num_train_neg): j = np.random.randint(conf.num_items) while (u, j) in self.train_mat: j = np.random.randint(conf.num_items) features_fill.append([u, i, j]) self.features_fill = features_fill self.link_ng_sample() self.infor_bridge_sample() #''' def link_ng_sample(self): link_features_fill = [] for user,friends in self.social_link.items(): if user in self.infor_user: for f in friends: j = np.random.randint(conf.num_bri_user_start, conf.num_all_user_id) while (user,j) in self.social_hash: j = np.random.randint(conf.num_bri_user_start, conf.num_all_user_id) link_features_fill.append([user, f, j]) self.link_features_fill = link_features_fill #''' def infor_bridge_sample(self): infor_bridge_fill = [] for user,items in self.infor_user.items(): if user in self.social_link: for i in items: j = np.random.randint(conf.num_items) while (user, j) in self.train_mat: j = np.random.randint(conf.num_items) infor_bridge_fill.append([user, i, j]) self.infor_bridge_fill = infor_bridge_fill def __len__(self): return len(self.features_ps) * (conf.num_train_neg) def __getitem__(self, idx): features = self.features_fill user = features[idx][0] pos = features[idx][1] neg = features[idx][2] link_features_fill = self.link_features_fill idx = np.random.randint(len(link_features_fill)) s_bri = link_features_fill[idx][0] s_bri_pos = link_features_fill[idx][1] s_bri_neg = link_features_fill[idx][2] infor_bridge_fill = self.infor_bridge_fill idx_2 = np.random.randint(len(infor_bridge_fill)) i_bri = infor_bridge_fill[idx_2][0] i_bri_pos = infor_bridge_fill[idx_2][1] i_bri_neg = infor_bridge_fill[idx_2][2] return user, pos, neg, s_bri, s_bri_pos, s_bri_neg, i_bri, i_bri_pos, i_bri_neg class EvaData(): def __init__(self, eva_data): self.eva_data = eva_data self.length = len(eva_data.keys()) def get_batch(self, batch_idx_list): user_list, item_list = [], [] for idx in batch_idx_list: user_list.extend([self.eva_data[idx][0]]*(len(self.eva_data[idx])-1)) item_list.extend(self.eva_data[idx][1:]) return torch.LongTensor(user_list).cuda(), \ torch.LongTensor(item_list).cuda()
PeiJieSun/AAAI-submission
DataModule_domain_infor.py
DataModule_domain_infor.py
py
19,566
python
en
code
0
github-code
6
12215224198
# -*- coding: utf-8 -*- # vim: set ts=2 sw=2 sts=2 tw=80 et: # pylint: disable=missing-docstring import tensorflow as tf def mlp(inputs, mode="train", batch_norm=True, dropout=True, weight_decay=0.0, layer_sizes=None, activations=None, trainables=None, model_prefix=''): """ """ layer_sizes = layer_sizes if layer_sizes is not None else [] activations = activations if activations is not None else [] trainables = trainables if trainables is not None else [] is_training = bool(mode == 'train') he_initializer = tf.contrib.layers.variance_scaling_initializer( factor=2.0, mode='FAN_AVG', uniform=True) weights_regularizer = None if weight_decay != 0: weights_regularizer = tf.contrib.layers.l2_regularizer( weight_decay) this_layer = inputs for idx, next_layer_size in enumerate(layer_sizes): this_layer_trainable = trainables[idx] with tf.variable_scope("%s_mlp_%d" % (model_prefix, idx), reuse=tf.AUTO_REUSE) as scope: this_layer = tf.contrib.layers.fully_connected(this_layer, next_layer_size, activation_fn=None, trainable=this_layer_trainable, weights_initializer=he_initializer, weights_regularizer=weights_regularizer, scope=scope) if batch_norm: this_layer = tf.contrib.layers.batch_norm(this_layer, center=True, scale=True, is_training=is_training, trainable=this_layer_trainable, scope=scope) this_layer = activations[idx](this_layer) if dropout: if is_training: this_layer = tf.nn.dropout(this_layer, 0.9, name='dropout') else: pass return this_layer def network(inputs, embedding_size, activation="relu", mode="train", enable_dropout=True, weight_decay=0.0): """ Args: embedding_size: inner embedding dim size """ with tf.variable_scope("title"): layer_sizes = [8, 6, embedding_size] trainables = [True, True, True] if activation == "relu": activations = [tf.nn.relu, tf.nn.relu, tf.nn.relu] elif activation == "tanh": activations = [tf.nn.tanh, tf.nn.tanh, tf.nn.tanh] else: raise ValueError('unknown activation: %s' % activation) output = mlp(inputs, mode=mode, batch_norm=True, dropout=enable_dropout, weight_decay=weight_decay, layer_sizes=layer_sizes, activations=activations, trainables=trainables) return output
siwendy/interestGraph
models/mlp.py
mlp.py
py
3,215
python
en
code
0
github-code
6
29792580081
#!/usr/bin/env python3 import sys import rospy from demo_interface import DemoInterface from geometry_msgs.msg import Point DEBUG = True if __name__ == "__main__": d = DemoInterface() if sys.argv[0] == 'rosrun' and len(sys.argv) > 2: point_topics = sys.argv[3:] rospy.loginfo(f"Showing points for topics {point_topics}") elif len(sys.argv) > 1: point_topics = sys.argv[1:] rospy.loginfo(f"Showing points for topics {point_topics}") else: rospy.loginfo("No point topics specified. Defaulting to /cal_ee_position") point_topics = ['/cal_ee_position'] rospy.sleep(0.5) while not rospy.is_shutdown(): rospy.sleep(0.1) i = 0 points = [] for topic in point_topics: points.append(rospy.wait_for_message(topic, Point)) d.publish_object(f"show_point{i}", point, 0.015, primitive='sphere') i += 1
dwya222/end_effector_control
scripts/test_scripts/show_at_point.py
show_at_point.py
py
932
python
en
code
0
github-code
6
74992084668
import cv2 import numpy as np import os import sys import json import math import time import argparse from enum import Enum import platform class Config: @classmethod def init(cls): if platform.system() == "Windows": cls.QUIT_KEY = ord("q") cls.CONTINUE_KEY = 2555904 #right arrow cls.BACK_KEY = 2424832 #left arrow cls.REWIND_KEY = ord("r") cls.PLAYPAUSE_KEY = 32 #spacebar else: cls.QUIT_KEY = ord("q") cls.CONTINUE_KEY = 65363 #right arrow cls.BACK_KEY = 65361 #left arrow cls.REWIND_KEY = ord("r") cls.PLAYPAUSE_KEY = 32 #spacebar if os.path.exists(os.path.join(os.getcwd(), "./manim-presentation.json")): json_config = json.load(open(os.path.join(os.getcwd(), "./manim-presentation.json"), "r")) for key, value in json_config.items(): setattr(cls, key, value) class State(Enum): PLAYING = 0 PAUSED = 1 WAIT = 2 END = 3 def __str__(self): if self.value == 0: return "Playing" if self.value == 1: return "Paused" if self.value == 2: return "Wait" if self.value == 3: return "End" return "..." def now(): return round(time.time() * 1000) def fix_time(x): return x if x > 0 else 1 class Presentation: def __init__(self, config, last_frame_next=False): self.last_frame_next = last_frame_next self.slides = config["slides"] self.files = config["files"] self.lastframe = [] self.caps = [None for _ in self.files] self.reset() self.add_last_slide() def add_last_slide(self): last_slide_end = self.slides[-1]["end_animation"] last_animation = len(self.files) self.slides.append(dict( start_animation = last_slide_end, end_animation = last_animation, type = "last", number = len(self.slides) + 1, terminated = False )) def reset(self): self.current_animation = 0 self.load_this_cap(0) self.current_slide_i = 0 self.slides[-1]["terminated"] = False def next(self): if self.current_slide["type"] == "last": self.current_slide["terminated"] = True else: self.current_slide_i = min(len(self.slides) - 1, self.current_slide_i + 1) self.rewind_slide() def prev(self): self.current_slide_i = max(0, self.current_slide_i - 1) self.rewind_slide() def rewind_slide(self): self.current_animation = self.current_slide["start_animation"] self.current_cap.set(cv2.CAP_PROP_POS_FRAMES, 0) def load_this_cap(self,cap_number): if self.caps[cap_number] == None: # unload other caps for i in range(len(self.caps)): if self.caps[i] != None: self.caps[i].release() self.caps[i] = None # load this cap self.caps[cap_number] = cv2.VideoCapture(self.files[cap_number]) @property def current_slide(self): return self.slides[self.current_slide_i] @property def current_cap(self): self.load_this_cap(self.current_animation) return self.caps[self.current_animation] @property def fps(self): return self.current_cap.get(cv2.CAP_PROP_FPS) # This function updates the state given the previous state. # It does this by reading the video information and checking if the state is still correct. # It returns the frame to show (lastframe) and the new state. def update_state(self, state): if state == State.PAUSED: if len(self.lastframe) == 0: _, self.lastframe = self.current_cap.read() return self.lastframe, state still_playing, frame = self.current_cap.read() if still_playing: self.lastframe = frame elif state in [state.WAIT, state.PAUSED]: return self.lastframe, state elif self.current_slide["type"] == "last" and self.current_slide["terminated"]: return self.lastframe, State.END if not still_playing: if self.current_slide["end_animation"] == self.current_animation + 1: if self.current_slide["type"] == "slide": # To fix "it always ends one frame before the animation", uncomment this. # But then clears on the next slide will clear the stationary after this slide. if self.last_frame_next: self.load_this_cap(self.next_cap) self.next_cap = self.caps[self.current_animation + 1] self.next_cap.set(cv2.CAP_PROP_POS_FRAMES, 0) _, self.lastframe = self.next_cap.read() state = State.WAIT elif self.current_slide["type"] == "loop": self.current_animation = self.current_slide["start_animation"] state = State.PLAYING self.rewind_slide() elif self.current_slide["type"] == "last": self.current_slide["terminated"] = True elif self.current_slide["type"] == "last" and self.current_slide["end_animation"] == self.current_animation: state = State.WAIT else: # Play next video! self.current_animation += 1 self.load_this_cap(self.current_animation) # Reset video to position zero if it has been played before self.current_cap.set(cv2.CAP_PROP_POS_FRAMES, 0) return self.lastframe, state class Display: def __init__(self, presentations, start_paused=False, fullscreen=False): self.presentations = presentations self.start_paused = start_paused self.state = State.PLAYING self.lastframe = None self.current_presentation_i = 0 self.lag = 0 self.last_time = now() if fullscreen: cv2.namedWindow("Video", cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty("Video", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) @property def current_presentation(self): return self.presentations[self.current_presentation_i] def run(self): while True: self.lastframe, self.state = self.current_presentation.update_state(self.state) if self.state == State.PLAYING or self.state == State.PAUSED: if self.start_paused: self.state = State.PAUSED self.start_paused = False if self.state == State.END: if self.current_presentation_i == len(self.presentations) - 1: self.quit() else: self.current_presentation_i += 1 self.state = State.PLAYING self.handle_key() self.show_video() self.show_info() def show_video(self): self.lag = now() - self.last_time self.last_time = now() cv2.imshow("Video", self.lastframe) def show_info(self): info = np.zeros((130, 420), np.uint8) font_args = (cv2.FONT_HERSHEY_SIMPLEX, 0.7, 255) grid_x = [30, 230] grid_y = [30, 70, 110] cv2.putText( info, f"Animation: {self.current_presentation.current_animation}", (grid_x[0], grid_y[0]), *font_args ) cv2.putText( info, f"State: {self.state}", (grid_x[1], grid_y[0]), *font_args ) cv2.putText( info, f"Slide {self.current_presentation.current_slide['number']}/{len(self.current_presentation.slides)}", (grid_x[0], grid_y[1]), *font_args ) cv2.putText( info, f"Slide Type: {self.current_presentation.current_slide['type']}", (grid_x[1], grid_y[1]), *font_args ) cv2.putText( info, f"Scene {self.current_presentation_i + 1}/{len(self.presentations)}", ((grid_x[0]+grid_x[1])//2, grid_y[2]), *font_args ) cv2.imshow("Info", info) def handle_key(self): sleep_time = math.ceil(1000/self.current_presentation.fps) key = cv2.waitKeyEx(fix_time(sleep_time - self.lag)) if key == Config.QUIT_KEY: self.quit() elif self.state == State.PLAYING and key == Config.PLAYPAUSE_KEY: self.state = State.PAUSED elif self.state == State.PAUSED and key == Config.PLAYPAUSE_KEY: self.state = State.PLAYING elif self.state == State.WAIT and (key == Config.CONTINUE_KEY or key == Config.PLAYPAUSE_KEY): self.current_presentation.next() self.state = State.PLAYING elif self.state == State.PLAYING and key == Config.CONTINUE_KEY: self.current_presentation.next() elif key == Config.BACK_KEY: if self.current_presentation.current_slide_i == 0: self.current_presentation_i = max(0, self.current_presentation_i - 1) self.current_presentation.reset() self.state = State.PLAYING else: self.current_presentation.prev() self.state = State.PLAYING elif key == Config.REWIND_KEY: self.current_presentation.rewind_slide() self.state = State.PLAYING def quit(self): cv2.destroyAllWindows() sys.exit() def main(): parser = argparse.ArgumentParser() parser.add_argument("scenes", metavar="scenes", type=str, nargs="+", help="Scenes to present") parser.add_argument("--folder", type=str, default="./presentation", help="Presentation files folder") parser.add_argument("--start-paused", action="store_true", help="Start paused") parser.add_argument("--fullscreen", action="store_true", help="Fullscreen") parser.add_argument("--last-frame-next", action="store_true", help="Show the next animation first frame as last frame (hack)") args = parser.parse_args() args.folder = os.path.normcase(args.folder) Config.init() presentations = list() for scene in args.scenes: config_file = os.path.join(args.folder, f"{scene}.json") if not os.path.exists(config_file): raise Exception(f"File {config_file} does not exist, check the scene name and make sure to use Slide as your scene base class") config = json.load(open(config_file)) presentations.append(Presentation(config, last_frame_next=args.last_frame_next)) display = Display(presentations, start_paused=args.start_paused, fullscreen=args.fullscreen) display.run() if __name__ == "__main__": main()
galatolofederico/manim-presentation
manim_presentation/present.py
present.py
py
11,126
python
en
code
153
github-code
6
74531208506
""" Solutions to exam tasks for modul 1 for exam 2021-10-25 """ import random import time import math # Task A1 def length_longest(lst): # Variant 1: Iteratively in the 'width' direction if type(lst) != list: return 0 result = len(lst) for x in lst: result = max(result, length_longest(x)) return result def length_longest(lst): # Variant 2: Recursively in both directions if type(lst) != list or lst==[]: return 0 else: return max(len(lst), length_longest(lst[0]), length_longest(lst[1:])) def bubbelsort(a): for i in range(len(a)-1): for j in range(len(a)-1): if a[j] > a[j+1]: a[j], a[j+1] = a[j+1], a[j] """ """ def random_list(n): res = [] for i in range(n): res.append(random.random()) return res def foo(n): result = 1 for k in range(3): for i in range(n*n): result += k*n return result def main(): print('Testing length_longest') print(length_longest(1), '\t Should be 0') l1 = [1,2,[[1,2,3,[1,2,3,4,5,6,7,8],5,6],2,3,4,5,6,7,8]] print(length_longest(l1), '\t Should be 8') l1 = [1,2,[[1,2,3,[1,2,3,4,5,6,7],5,6],2,3]] print(length_longest(l1), '\t Should be 7') print('\nTiming of bubbelsort') measured = [] for n in [1000, 2000, 4000, 8000]: rl = random_list(n) # rl = [x for x in range(n)] # Try this if you want to see that it is Theta(n^2) even in best case tstart = time.perf_counter() bubbelsort(rl) print(n, end =' \t') dt= time.perf_counter()-tstart measured.append(dt) print(f"{dt:5.1f}") print('\nTime growth when doubling input' ) for i in range(1,len(measured)): print(f'{measured[i]/measured[i-1]:5.1f}') print('\nTiming of foo') measured = [] for n in [1000, 2000, 4000, 8000]: tstart = time.perf_counter() print(n, end ='\t') foo(n) dt= time.perf_counter()-tstart measured.append(dt) print(f" {dt:5.1f}") print('\nTime growth when doubling input' ) for i in range(1,len(measured)): print(f'{measured[i]/measured[i-1]:5.1f}') print('\nEstimation of time for foo(1000000)') n = 10000 tstart = time.perf_counter() foo(n) dt= time.perf_counter()-tstart print(f"Time for {n}: {dt:5.1f}") if __name__ == "__main__": main() """ Solution to A2 (Time complexity for bubbelsort): Complexity Theta(n^2). For each of the n rounds in the outer loop the inner loop will also goes n rounds. It is practically demonstrated in the testrun where n is doubled thus expecting the time to be multiplied by 4 each step. Note that you want to see a n^2 behaviour you should at least have three measurements where you, at lerast, double n. Changing n with a factor 10 is also convenient in which case the time should increase with a factor 10^2 = 100. Several students claimed that the code the time was Theta(n) if the list was already sorted but that is not true. Even if the code doesn't do any swaps, n^2 comparisons will be done. Bubbelsort CAN be implemented to have a Theta(n) complexity but that was not in the given implementation. Solution to B1 (Time complexity for function foo): Complexity Theta(n^2) To compute foo(1000000) can be estimated to time for foo(10000) multiplied by 100^2 which is 20*10000 seconds 55 hours. """
bupa8694/programming2
Exams/2021-11-25/Exam_1TD722_20211025_solutions/Exam_1TD722_20211025_solutions/m1_sol.py
m1_sol.py
py
3,519
python
en
code
1
github-code
6
70075663868
#!/usr/bin/env python3 """ Funtion that lists all documents in a collection""" def list_all(mongo_collection): """ return an empty list if no documento in the collection """ documents = mongo_collection.find() documents_list = [doc for doc in documents] if documents_list.count == 0: return [] return documents_list
lemejiamo/holbertonschool-backend-storage
0x01-NoSQL/8-all.py
8-all.py
py
354
python
en
code
1
github-code
6
3453773218
fileName = "word.txt" f = open(fileName,'r') wordcount={} for str in f.read().split(): if str not in wordcount: wordcount[str] = 1 else: wordcount[str] += 1 print("Output written in file") print(wordcount, file=open("count.txt", "w"))
sravan9393/SummerSemester_Python
ICP2_Python/wordcount_file.py
wordcount_file.py
py
269
python
en
code
0
github-code
6
5005373290
from typing import Any, Iterable, MutableMapping from typing_extensions import TypeAlias from .. import etree from .._types import Unused, _AnyStr, _ElemClsLookupArg, _FileReadSource from ._element import HtmlElement _HtmlElemParser: TypeAlias = etree._parser._DefEtreeParsers[HtmlElement] # # Parser # # Stub version before March 2023 used to omit 'target' parameter, which # would nullify default HTML element lookup behavior, degenerating html # submodule parsers into etree ones. Since it is decided to not support # custom target parser for now, we just add back 'target' parameter for # coherence. Same for XHTMLParser below. class HTMLParser(etree.HTMLParser[HtmlElement]): """An HTML parser configured to return ``lxml.html`` Element objects. Notes ----- This subclass is not specialized, unlike the ``etree`` counterpart. They are designed to always handle ``HtmlElement``; for generating other kinds of ``_Elements``, one should use etree parsers with ``set_element_class_lookup()`` method instead. In that case, see ``_FeedParser.set_element_class_lookup()`` for more info. """ def __init__( self, *, encoding: _AnyStr | None = ..., remove_blank_text: bool = ..., remove_comments: bool = ..., remove_pis: bool = ..., strip_cdata: bool = ..., no_network: bool = ..., target: etree.ParserTarget[Any] | None = ..., schema: etree.XMLSchema | None = ..., recover: bool = ..., compact: bool = ..., default_doctype: bool = ..., collect_ids: bool = ..., huge_tree: bool = ..., ) -> None: ... @property def target(self) -> None: ... class XHTMLParser(etree.XMLParser[HtmlElement]): """An XML parser configured to return ``lxml.html`` Element objects. Notes ----- This subclass is not specialized, unlike the ``etree`` counterpart. They are designed to always handle ``HtmlElement``; for generating other kinds of ``_Elements``, one should use etree parsers with ``set_element_class_lookup()`` method instead. In that case, see ``_FeedParser.set_element_class_lookup()`` for more info. Original doc ------------ Note that this parser is not really XHTML aware unless you let it load a DTD that declares the HTML entities. To do this, make sure you have the XHTML DTDs installed in your catalogs, and create the parser like this:: >>> parser = XHTMLParser(load_dtd=True) If you additionally want to validate the document, use this:: >>> parser = XHTMLParser(dtd_validation=True) For catalog support, see http://www.xmlsoft.org/catalog.html. """ def __init__( self, *, encoding: _AnyStr | None = ..., attribute_defaults: bool = ..., dtd_validation: bool = ..., load_dtd: bool = ..., no_network: bool = ..., target: etree.ParserTarget[Any] | None = ..., ns_clean: bool = ..., recover: bool = ..., schema: etree.XMLSchema | None = ..., huge_tree: bool = ..., remove_blank_text: bool = ..., resolve_entities: bool = ..., remove_comments: bool = ..., remove_pis: bool = ..., strip_cdata: bool = ..., collect_ids: bool = ..., compact: bool = ..., ) -> None: ... @property def target(self) -> None: ... html_parser: HTMLParser xhtml_parser: XHTMLParser # # Parsing funcs # # Calls etree.fromstring(html, parser, **kw) which has signature # fromstring(text, parser, *, base_url) def document_fromstring( html: _AnyStr, parser: _HtmlElemParser | None = ..., ensure_head_body: bool = ..., *, base_url: str | None = ..., ) -> HtmlElement: ... def fragments_fromstring( html: _AnyStr, no_leading_text: bool = ..., base_url: str | None = ..., parser: _HtmlElemParser | None = ..., **kw: Unused, ) -> list[HtmlElement]: ... def fragment_fromstring( html: _AnyStr, create_parent: bool = ..., base_url: str | None = ..., parser: _HtmlElemParser | None = ..., **kw: Unused, ) -> HtmlElement: ... def fromstring( html: _AnyStr, base_url: str | None = ..., parser: _HtmlElemParser | None = ..., **kw: Unused, ) -> HtmlElement: ... def parse( filename_or_url: _FileReadSource, parser: _HtmlElemParser | None = ..., base_url: str | None = ..., **kw: Unused, ) -> etree._ElementTree[HtmlElement]: ... # # Element Lookup # class HtmlElementClassLookup(etree.CustomElementClassLookup): def __init__( self, # Should have been something like Mapping[str, type[HtmlElement]], # but unfortunately classes mapping is required to be mutable classes: MutableMapping[str, Any] | None = ..., # docstring says mixins is mapping, but implementation says otherwise mixins: Iterable[tuple[str, type[HtmlElement]]] = ..., ) -> None: ... def lookup( self, node_type: _ElemClsLookupArg | None, document: Unused, namespace: Unused, name: str, # type: ignore[override] ) -> type[HtmlElement] | None: ...
abelcheung/types-lxml
lxml-stubs/html/_parse.pyi
_parse.pyi
pyi
5,211
python
en
code
23
github-code
6
13350264318
#!/usr/bin/python3 """https://www.hackerrank.com/challenges/find-the-median/problem?isFullScreen=true""" def partition(arr, low, high): pivot = arr[high] i = low - 1 for j in range(low, high): if arr[j] <= pivot: i += 1 arr[i], arr[j] = arr[j], arr[i] arr[i + 1], arr[high] = arr[high], arr[i + 1] return i + 1 def quickSort(arr, low, high): if low < high: pivot = partition(arr, low, high) quickSort(arr, low, pivot - 1) quickSort(arr, pivot + 1, high) def findMedian(arr): low = 0 high = len(arr) - 1 quickSort(arr, low, high) print(arr) return arr[(low + high) // 2]
Velin-Todorov/HackerRank-Leetcode
Find_the_Median.py
Find_the_Median.py
py
747
python
en
code
0
github-code
6
21569825740
#!/usr/bin/env python from prl_tsid.commander import PathFollower import rospy rospy.init_node("TSID_example", anonymous=True) # Plan a trajectory using HPP from prl_hpp.ur5 import planner, robot, commander_left_arm, commander_right_arm pi = 3.1415926 planner.lock_grippers() planner.lock_right_arm() planner.set_velocity_limit(0.25) planner.set_acceleration_limit(0.25) pose_1 = [[-0.50, 0, 0.1], [pi, 0, 0]] pose_2 = [[-0.40, 0, 0.1], [pi, 0, 0]] path = planner.make_gripper_approach(robot.left_gripper_name, pose_1, approach_distance = 0.2) # Start the commanders commander_left_arm.start_fwd() commander_right_arm.start_fwd() # Exectute the trajectories using TSID pf = PathFollower(robot) pf.set_velocity_limit(0.5) pf.set_acceleration_limit(0.5) path.targetFrames.append("right_gripper_grasp_frame") input("Press enter to execute path") pf.execute_path(path, [commander_left_arm, commander_right_arm], 0.02, True)
inria-paris-robotic-lab/prl_hpp_tsid
prl_tsid/scripts/example_ur5_hpp.py
example_ur5_hpp.py
py
929
python
en
code
0
github-code
6
20426981888
""" All rights reserved. --Yang Song ([email protected]) --2021/1/7 """ import os import pickle import random from abc import abstractmethod from lifelines import CoxPHFitter, AalenAdditiveFitter from lifelines.utils.printer import Printer from lifelines import utils from SA.Utility import mylog from SA.DataContainer import DataContainer class BaseFitter(object): def __init__(self, fitter=None, name=None): self.fitter = fitter self.name = name def Fit(self, dc: DataContainer): self.fitter.fit(dc.df, duration_col=dc.duration_name, event_col=dc.event_name) def Save(self, store_folder): with open(os.path.join(store_folder, 'model.pkl'), 'wb') as f: pickle.dump(self.fitter, f) def Load(self, store_folder): with open(os.path.join(store_folder, 'model.pkl'), 'rb') as f: self.fitter = pickle.load(f) def Plot(self): self.fitter.plot() def Summary(self): import io from contextlib import redirect_stdout f = io.StringIO() with redirect_stdout(f): self.fitter.print_summary() out = f.getvalue() return out class CoxPH(BaseFitter): def __init__(self): random.seed(0) super(CoxPH, self).__init__(CoxPHFitter(), self.__class__.__name__) def Fit(self, dc: DataContainer): self.fitter.fit(dc.df, duration_col=dc.duration_name, event_col=dc.event_name) class AalenAdditive(BaseFitter): def __init__(self): super(AalenAdditive, self).__init__(AalenAdditiveFitter(), self.__class__.__name__) # # class Weibull(BaseFitter): # def __init__(self): # super(Weibull, self).__init__(WeibullAFTFitter(), self.__class__.__name__) if __name__ == '__main__': import numpy as np model = CoxPH() print(model.name) # model = AalenAdditive() # print(model.name) train_dc = DataContainer() train_dc.Load(r'..\..\Demo\train.csv', event_name='status', duration_name='time') model.Fit(train_dc) result = model.Summary() print(result) # model.Save(r'..\..\Demo') # # model_new = AalenAdditive() # model_new.Load(r'..\..\Demo') # model_new.Summary()
salan668/FAE
SA/Fitter.py
Fitter.py
py
2,221
python
en
code
121
github-code
6
25818064734
#!/usr/bin/env python3 # ============================================================================= # Author: Julen Bohoyo Bengoetxea # Email: [email protected] # ============================================================================= """ Description: A set of tools for semantic image segmentations """ # ============================================================================= import os import glob import cv2 import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.preprocessing.image import ImageDataGenerator from PIL import Image from patchify import patchify ########################################################## ######### GENERAL TOOLS ######### ########################################################## def get_class_weights(path, preprocess_function, img_size=256): """ Get the class weights of the masks generated from the .png images of the specified directory Parameters ---------- path : string Path to de directory. preprocess_function : function Function to preprocess data in oder to get weight in the correct order: def preprocess_data(img, mask): return(img, mask). img_size : int, optional image reading size. (default is 256). Returns ------- class_weights : list List containing the weights of each class. """ from sklearn.utils import class_weight #Capture mask/label info as a list masks = [] for directory_path in glob.glob(path): paths = sorted(glob.glob(os.path.join(directory_path, "*.png"))) for mask_path in paths: mask = cv2.imread(mask_path, 0) mask = cv2.resize(mask, (img_size, img_size), interpolation = cv2.INTER_NEAREST) #Otherwise ground truth changes due to interpolation masks.append(mask) # Convert list to array for machine learning processing imgs = np.zeros(shape=(1,1)) masks = np.array(masks) # Preprocess masks same way as in training in order to get the weight in the correct order imgs, masks = preprocess_function(imgs, masks) masks = np.argmax(masks, axis=3) # preprocess_function hot encodes the masks so must be reverted masks = masks.reshape(-1) # Masks must be array of shape (num_samples,) class_weights = class_weight.compute_class_weight('balanced', np.unique(masks), masks) return class_weights def drawProgressBar(percent, barLen = 20): """ Prints a progress bar Parameters ---------- percent : float Completed percentage (0-1). barLen : int, optional Size of the bar. (default is 20). Returns ------- None. """ import sys sys.stdout.write("\r") sys.stdout.write("[{:<{}}] {:.0f}%".format("=" * int(barLen * percent), barLen, percent * 100)) sys.stdout.flush() ########################################################## ######### PLOTTING TOOLS ######### ########################################################## def plot_legend(classes, cmap='viridis', size=2): """ Plots legend of the colors using matplotlib.pyplot Parameters ---------- classes : Dict Dict contaning the number and name of each class. cmap : string, optional Color map to use in masks. (default is viridis). size : int, optional Plotting size. (default is 2). Returns ------- None. """ x = [] my_xticks = [] for i in range(len(classes)): x.append(i) my_xticks.append(classes[i]) f = plt.figure(figsize = (size, size)) f.add_subplot(1,1,1) plt.yticks(x, my_xticks) plt.xticks([], []) x = np.reshape(x,(1,len(classes))).T plt.imshow(x, cmap=cmap) def plot_mask(images, masks, num_classes, num_plots=1, cmap='viridis', size=10): """ Plots images and masks from lists using matplotlib.pyplot Parameters ---------- images : list List with the original images (3 channel). masks : list List with the original masks (1 channel). num_classes : int Number of classes to plot num_plots : int, optional Ammount of images to plot. (default is 1). cmap : string, optional Color map to use in masks. (default is viridis). size : int, optional Plotting size. (default is 10). Returns ------- None. """ # Place all pixel values for colour coherence print('Masks modified for plotting', num_classes, 'classes') for i in range(num_plots): mask=masks[i] for j in range(num_classes): mask[0,j]=j masks[i]=mask for i in range(num_plots): f = plt.figure(figsize = (size, size)) f.add_subplot(1,3,1) plt.axis('off') plt. title('Original image') plt.imshow(images[i]) f.add_subplot(1,3,2) plt.axis('off') plt. title('Ground truth mask') plt.imshow(masks[i], cmap=cmap) plt.show(block=True) plt.show def plot_prediction(images, masks, predictions, num_classes, num_plots=1, cmap='viridis', size=10, alpha=0.7): """ Plots images, original masks, predicted masks and overlays from lists using matplotlib.pyplot Parameters ---------- images : list List with the original images (3 channel). masks : list List with the original masks (1 channel). predictions : list List with the predicted masks (1 channel). num_classes : int Number of classes to plot num_plots : int, optional Ammount of images to plot. (default is 1). cmap : string, optional Color map to use in masks. (default is viridis). size : int, optional Plotting size. (default is 10). alpha : float, optional Transparency for the prediction over image. (default is 0.7). Returns ------- None. """ # Place all pixel values for colour coherence print('Masks modified for plotting', num_classes, 'classes') for i in range(num_plots): mask=masks[i] prediction=predictions[i] for j in range(num_classes): mask[0,j]=j prediction[0,j]=j masks[i]=mask predictions[i]=prediction for i in range(num_plots): f = plt.figure(figsize = (size, size)) f.add_subplot(1,3,1) plt.axis('off') plt. title('Original image') plt.imshow(images[i]) f.add_subplot(1,3,2) plt.axis('off') plt. title('Ground truth mask') plt.imshow(masks[i], cmap=cmap) f.add_subplot(1,3,3) plt.axis('off') plt. title('Predicted mask') plt.imshow(predictions[i], cmap=cmap) f = plt.figure(figsize = (size, size)) f.add_subplot(1,1,1) plt.axis('off') plt. title('Predicted mask over image') plt.imshow(images[i]) no_background_predictions = np.ma.masked_where(predictions == 0, predictions) # remove background(0) from prediction plt.imshow(no_background_predictions[i], cmap=cmap, alpha=alpha) plt.show(block=True) plt.show ########################################################## ######### READING IMAGES TO LISTS ######### ########################################################## def get_image_list(path, size=256): """ Returns a list containing all the .jpg images of the specified directory resized to size*size. Parameters ---------- path : string Path to the directory containing the images. size : int, optional Size to load the images. (default is 256). Returns ------- image_list : list. A list containing the images as np.arrays. """ image_list = [] for directory_path in glob.glob(path): paths = sorted(glob.glob(os.path.join(directory_path, "*.jpg"))) for img_path in paths: img = cv2.imread(img_path, 1) #1 for readin 3 channel(rgb or bgr) img = cv2.resize(img, (size, size)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) image_list.append(img) #Convert list to array for machine learning processing image_list = np.array(image_list) return(image_list) def get_mask_list(path, size=256): """ Returns a list containing all the masks generated from the .png images of the specified directory resized to size*size. Parameters ---------- path : string Path to the directory containing the masks. size : int, optional Size to load the masks. (default is 256). Returns ------- mask_list : list. A list containing the masks as np.arrays. """ #Capture mask/label info as a list mask_list = [] for directory_path in glob.glob(path): paths = sorted(glob.glob(os.path.join(directory_path, "*.png"))) for mask_path in paths: mask = cv2.imread(mask_path, 0) #1 for readin 3 channel(greyscale) mask = cv2.resize(mask, (size, size), interpolation = cv2.INTER_NEAREST) #Otherwise ground truth changes due to interpolation mask_list.append(mask) #Convert list to array for machine learning processing mask_list = np.array(mask_list) #detect number of classes in the masks num_classes = len(np.unique(mask_list)) return(mask_list, num_classes) #NOT FINISHED, muest check augmentation and mode def get_generator_from_list(images, masks, mode, preprocess_function, augmentation=True, val_split=0.2, batch_size=32, seed=123): """ Returns a generator for both input images and masks preprocessed. Parameters ---------- images : list List containing the images(not preprocessed). masks : list List containing the masks (not preprocessed). mode : string Spicify whether is training or validation split. preprocess_function : function Function to preprocess data: def preprocess_data(img, mask): return(img, mask). augmentation : boolean, optional Poolean for performing data augmentation. (default is True). val_split : float, optional Perentage of the images for validation split. (default is 0.2). batch_size : int, optional Size of the loaded batches on each call to the generator. (default is 32). seed : int, optional seed fot the random transformations. (default is 123). Yields ------ img : Preprocessed image. mask : Preprocessed mask. """ if(augmentation): data_gen_args = dict(validation_split=val_split, horizontal_flip=True, vertical_flip=True, fill_mode='reflect', #'constant','nearest','reflect','wrap' ) else: data_gen_args = dict(validation_split=val_split, ) image_data_generator = ImageDataGenerator(**data_gen_args) image_data_generator.fit(images, augment=True, seed=seed) image_generator = image_data_generator.flow(images, seed=seed) mask_data_generator = ImageDataGenerator(**data_gen_args) mask_data_generator.fit(masks, augment=True, seed=seed) mask_generator = mask_data_generator.flow(masks, seed=seed) generator = zip(image_generator, mask_generator) for (img, mask) in generator: img, mask = preprocess_function(img, mask) yield (img, mask) ########################################################## ######### FLOW FROM DIRECTORY ######### ########################################################## def get_generator_from_directory(img_path, mask_path, size, mode, preprocess_function, augmentation=True, val_split=0.2, batch_size=32, seed=123): """ Returns a generator for both input images and masks(hot encoded). dataset must be structured in "images" and "masks" directories. Parameters ---------- img_path : string Path to the target dir containing images. mask_path : string Path to the target dir containing masks. size : int Image loading size. mode : string Spicify whether is training or validation split. preprocess_function : function Function to preprocess data: def preprocess_data(img, mask): return(img, mask). augmentation : boolean, optional Poolean for performing data augmentation. (default is True). val_split : float, optional Perentage of the images for validation split. (default is 0.2). batch_size : int, optional Size of the loaded batches on each call to the generator. (default is 32). seed : int, optional seed fot the random transformations. (default is 123). Yields ------ img : Preprocessed image. mask : Preprocessed mask. """ if(augmentation): data_gen_args = dict(validation_split=val_split, horizontal_flip=True, vertical_flip=True, fill_mode='reflect', #'constant','nearest','reflect','wrap' ) else: data_gen_args = dict(validation_split=val_split, ) # same arguments in order to transform images and masks equaly image_datagen = ImageDataGenerator(**data_gen_args) image_generator = image_datagen.flow_from_directory(img_path, target_size=(size, size), subset=mode, # train or validation batch_size=batch_size, shuffle=True, class_mode=None, seed=seed) mask_generator = image_datagen.flow_from_directory(mask_path, target_size=(size, size), subset=mode, # train or validation batch_size=batch_size, color_mode='grayscale', shuffle=True, class_mode=None, seed=seed) generator = zip(image_generator, mask_generator) for (img, mask) in generator: img, mask = preprocess_function(img, mask) yield (img, mask) ########################################################## ######### TILE GENERATING ######### ########################################################## def get_image_tiles(path, tile_size, step=None, print_resize=False, dest_path=None): """ Generates image tiles from the masks on a given directory. Parameters ---------- path : string Path to the original images dir. tile_size : int Size of the resulting tiles. step : int, optional Step pixel from tile to tile. (default is tile_size). print_resize : boolean, optional Option to print the cropped size of the image. (default is False). dest_path : string, optional Path to the destination dir for the tiles, not saved if None. (default is None). Returns ------- mask_array: Array of tiled masks """ print('Reading images:') if(not step): step=tile_size image_list = [] for directory_path in glob.glob(path): paths = sorted(glob.glob(os.path.join(directory_path, "*.jpg"))) for img_path in paths: #update progress var percentage = 1/(len(paths)/(paths.index(img_path)+1)) drawProgressBar(percentage, barLen = 50) img = cv2.imread(img_path, 1) #1 for reading image as BGR (3 channel) # Cut each image to a size divisible by tile_size original_width=img.shape[1] # useful for crop locations original_height=img.shape[0] # useful for crop locations width = (img.shape[1]//tile_size)*tile_size # get nearest width divisible by tile_size height = (img.shape[0]//tile_size)*tile_size # get nearest height divisible by tile_size img = Image.fromarray(img) #img = img.crop((0 ,0, width, height)) #Crop from top left corner ((left, top, right, bottom)) img = img.crop((original_width-width ,0, original_width, height)) #Crop from top right corner ((left, top, right, bottom)) img = np.array(img) if (print_resize): print('Cropped image size:', img.shape) # Extract patches from each image patches_img = patchify(img, (tile_size, tile_size, 3), step=step) #Step=256 for 256 patches means no overlap for i in range(patches_img.shape[0]): for j in range(patches_img.shape[1]): single_patch_img = patches_img[i,j,:,:] single_patch_img = single_patch_img[0] #Drop the extra unecessary dimension that patchify adds. image_list.append(single_patch_img) # Saving the image if dest_path is not None: filename = img_path.rsplit( ".", 1 )[ 0 ] #remove extension filename = filename.rsplit( "/")[ -1 ] #remove original path filename = filename+' '+str(i)+'-'+str(j)+'.jpg' # add tile indexes cv2.imwrite(dest_path+filename, single_patch_img) image_array = np.array(image_list) print('\nGot an image array of shape', image_array.shape, image_array.dtype) return(image_array) def get_mask_tiles(path, tile_size, step=None, print_resize=False, dest_path=None): """ Generates mask tiles from the masks on a given directory. Parameters ---------- path : string Path to the original masks dir. tile_size : int Size of the resulting tiles. step : int, optional Step pixel from tile to tile. (default is tile_size). print_resize : boolean, optional Option to print the cropped size of the mask. (default is False). dest_path : string, optional Path to the destination dir for the tiles, not saved if None. (default is None). Returns ------- mask_array: Array of tiled masks """ print('Reading masks:') if(not step): step=tile_size mask_list = [] for directory_path in glob.glob(path): paths = sorted(glob.glob(os.path.join(directory_path, "*.png"))) for mask_path in paths: #update progress var percentage = 1/(len(paths)/(paths.index(mask_path)+1)) drawProgressBar(percentage, barLen = 50) mask = cv2.imread(mask_path, 0) #0 for reading image as greyscale (1 channel) # Cut each image to a size divisible by tile_size original_width=mask.shape[1] # useful for crop locations original_height=mask.shape[0] # useful for crop locations width = (mask.shape[1]//tile_size)*tile_size # get nearest width divisible by tile_size height = (mask.shape[0]//tile_size)*tile_size # get nearest height divisible by tile_size mask = Image.fromarray(mask) #mask = mask.crop((0 ,0, width, height)) #Crop from top left corner ((left, top, right, bottom)) mask = mask.crop((original_width-width ,0, original_width, height)) #Crop from top right corner ((left, top, right, bottom)) mask = np.array(mask) if (print_resize): print('Cropped mask size:', mask.shape) # Extract patches from each mask patches_mask = patchify(mask, (tile_size, tile_size), step=step) #Step=256 for 256 patches means no overlap for i in range(patches_mask.shape[0]): for j in range(patches_mask.shape[1]): single_patch_mask = patches_mask[i,j,:,:] mask_list.append(single_patch_mask) # Saving the mask if dest_path is not None: filename = mask_path.rsplit( ".", 1 )[ 0 ] #remove extension filename = filename.rsplit( "/")[ -1 ] #remove original path filename = filename+' '+str(i)+'-'+str(j)+'.png' # add tile indexes cv2.imwrite(dest_path+filename, single_patch_mask) mask_array = np.array(mask_list) print('\nGot a mask array of shape', mask_array.shape, mask_array.dtype, 'with values', np.unique(mask_array)) return(mask_array) def get_useful_images(IMG_DIR, MASK_DIR, USEFUL_IMG_DIR, USEFUL_MASK_DIR, PERCENTAGE=0.05): """ Read the image tiles from a given directory an saves in the new directory only the ones with more than a percentage not labelled as 0(background). Parameters ---------- IMG_DIR : string Path of the original image tiles directory. MASK_DIR : string Path of the original mask tiles directory. USEFUL_IMG_DIR : string Destination path of the filtered image tiles directory. USEFUL_MASK_DIR : string Destination path of the filtered mask tiles directory. PERCENTAGE : float The minimum percentage to accept an image. (default is 0.05) Returns ------- None. """ # needs to be sorted as linux doesn't list sorted img_list = sorted(os.listdir(IMG_DIR)) msk_list = sorted(os.listdir(MASK_DIR)) useless=0 #Useless image counter for img in range(len(img_list)): percentage = 1/(len(img_list)/(img+1)) drawProgressBar(percentage, barLen = 50) img_name=img_list[img] mask_name = msk_list[img] #print("Now preparing image and masks number: ", img) temp_image=cv2.imread(IMG_DIR+img_list[img], 1) temp_mask=cv2.imread(MASK_DIR+msk_list[img], 0) val, counts = np.unique(temp_mask, return_counts=True) if (1 - (counts[0]/counts.sum())) > PERCENTAGE: #At least 5% useful area with labels that are not 0 cv2.imwrite(USEFUL_IMG_DIR+img_name, temp_image) cv2.imwrite(USEFUL_MASK_DIR+mask_name, temp_mask); #print("Save Me") else: useless +=1; #print("I am useless") print("\nTotal useful images are: ", len(img_list)-useless)
julenbhy/biomedical_segmentation
tools/segmentation_utils.py
segmentation_utils.py
py
23,075
python
en
code
0
github-code
6
30353773151
from mayavi.filters.filter_base import FilterBase from mayavi.components.common import convert_to_poly_data ###################################################################### # `PolyDataFilterBase` class. ###################################################################### class PolyDataFilterBase(FilterBase): """ Base class for a filter requiring polydata input. Converts the source to polydata. """ ###################################################################### # `Filter` interface. ###################################################################### def update_pipeline(self): # Do nothing if there is no input. inputs = self.inputs if len(inputs) == 0: return # By default we set the input to the first output of the first # input. fil = self.filter self.configure_input(fil, convert_to_poly_data(inputs[0].outputs[0])) fil.update() self._set_outputs([fil])
enthought/mayavi
mayavi/filters/poly_data_filter_base.py
poly_data_filter_base.py
py
1,003
python
de
code
1,177
github-code
6
40194290799
import tweepy import time print('Starting bot....') CONSUMER_KEY = "Cqw4pXPk4lz2EEUieSDKjKuQT" CONSUMER_SECRET = "AhQZvxkBNS2bmXdUOX8tu5SoZi9vYdNimwmTuzkE9ZJJuzTEk5" ACCES_KEY = "1323551878483865600-LVgJ1466OXyOnZqKNt4H3k0hBBQlmO" ACCES_SECRET = "yWdPUmakm5Cn4eMURajaZkNkbeaXgLhzvD7msCsB5Ipxw" auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCES_KEY, ACCES_SECRET) api = tweepy.API(auth) FILE_NAME = 'last_seen.txt' def retrieve_last_seen_id(file_name): f_read = open(file_name, 'r') last_seen = int(f_read.read().strip()) f_read.close() return last_seen def store_last_seen_id(last_seen, file_name): f_write = open(file_name, 'w') f_write.write(str(last_seen)) f_write.close() return def reply_back(): print('retrieving and reply to tweets....') last_seen = retrieve_last_seen_id(FILE_NAME) mentions = api.mentions_timeline(last_seen, tweet_mode = 'extended') for mention in reversed(mentions): print(str(mention.id) + '--' + mention.full_text) last_seen = mention.id store_last_seen_id(last_seen, FILE_NAME) if '#hello' in mention.full_text.lower(): print('found #hello!') print('Responding back...') api.update_status('@' + mention.user.screen_name + '#hello back to you!', mention.id) while True: reply_back() time.sleep(15)
byte-exe/bot-reply-back_tweets
twt_bot.py
twt_bot.py
py
1,355
python
en
code
0
github-code
6
39432945596
import sys import os.path current_dir = os.path.dirname(os.path.relpath(__file__)) analysis_dir = current_dir[0:-7] + "Analysis" sys.path.append(analysis_dir) import check def printSummary(data): print("Summary:") unique_list = check.findUnique(data) for i in unique_list: print(f"{i} (1)") for item in data: if item not in unique_list: print(f"{item} ({data.count(item)})") unique_list.append(item) if __name__ == "__main__": test_data = [2, 2, -1, -71, 0, 0, 2, 2, 0, 0, 345, 345, 678] printSummary(test_data)
svrohith9/100-days-python
Bonus/Ass4/Summary/dataOutput.py
dataOutput.py
py
581
python
en
code
0
github-code
6
30366690531
""" Example of how to use a DataView and bare renderers to create plots """ from numpy import linspace, sin, cos # Enthought library imports. from chaco.api import ( DataView, ArrayDataSource, ScatterPlot, LinePlot, LinearMapper, ) from chaco.tools.api import PanTool, ZoomTool from enable.api import Component, ComponentEditor from traits.api import HasTraits, Instance from traitsui.api import UItem, View class PlotExample(HasTraits): plot = Instance(Component) traits_view = View( UItem("plot", editor=ComponentEditor()), width=700, height=600, resizable=True, title="Dataview + renderer example", ) def _plot_default(self): x = linspace(-5, 10, 500) y = sin(x) y2 = 0.5 * cos(2 * x) view = DataView(border_visible=True) scatter = ScatterPlot( index=ArrayDataSource(x), value=ArrayDataSource(y), marker="square", color="red", outline_color="transparent", index_mapper=LinearMapper(range=view.index_range), value_mapper=LinearMapper(range=view.value_range), ) line = LinePlot( index=scatter.index, value=ArrayDataSource(y2), color="blue", index_mapper=LinearMapper(range=view.index_range), value_mapper=LinearMapper(range=view.value_range), ) # Add the plot's index and value datasources to the dataview's # ranges so that it can auto-scale and fit appropriately view.index_range.sources.append(scatter.index) view.value_range.sources.append(scatter.value) view.value_range.sources.append(line.value) # Add the renderers to the dataview. The z-order is determined # by the order in which renderers are added. view.add(scatter) view.add(line) view.tools.append(PanTool(view)) view.overlays.append(ZoomTool(view)) return view demo = PlotExample() if __name__ == "__main__": demo.configure_traits()
enthought/chaco
chaco/examples/demo/data_view.py
data_view.py
py
2,098
python
en
code
286
github-code
6
43078051498
import time from datadog import initialize from datadog import api as dogapi from datadog.dogstatsd.base import DogStatsd from datadog.dogstatsd.context import TimedContextManagerDecorator from flask import g, request class TimerWrapper(TimedContextManagerDecorator): def __init__(self, statsd, *args, **kwargs): super(TimerWrapper, self).__init__(statsd, *args, **kwargs) def start(self): self.__enter__() def stop(self): self.__exit__(None, None, None) class StatsD(object): def __init__(self, app=None, config=None): """ Constructor for `flask.ext.datadog.StatsD` >>> from flask.ext.datadog import StatsD >>> app = Flask(__name__) >>> statsd = StatsD(app=app) :param app: Flask app to configure this client for, if `app` is `None`, then do not configure yet (call `init_app` manually instead) :type app: flask.Flask or None :param config: Configuration for this client to use instead of `app.config` :type config: dict or None """ self.config = config self.statsd = None # If an app was provided, then call `init_app` for them if app is not None: self.init_app(app) else: self.app = None def init_app(self, app, config=None): """ Initialize Datadog DogStatsd client from Flask app >>> from flask.ext.datadog import StatsD >>> app = Flask(__name__) >>> statsd = StatsD() >>> statsd.init_app(app=app) Available DogStatsd config settings: STATSD_HOST - statsd host to send metrics to (default: 'localhost') STATSD_MAX_BUFFER_SIZE - max number of metrics to buffer before sending, only used when batching (default: 50) STATSD_NAMESPACE - metric name prefix to use, e.g. 'app_name' (default: None) STATSD_PORT - statsd port to send metrics to (default: 8125) STATSD_TAGS - list of tags to include by default, e.g. ['env:prod'] (default: None) STATSD_USEMS - whether or not to report timing in milliseconds (default: False) Available Flask-Datadog config settings: DATADOG_CONFIGURE_MIDDLEWARE - whether or not to setup response timing middleware (default: True) DATADOG_RESPONSE_METRIC_NAME - the name of the response time metric (default: 'flask.response.time') DATADOG_RESPONSE_SIZE_METRIC_NAME - the name of the response time metric (default: 'flask.response.size') DATADOG_RESPONSE_SAMPLE_RATE - the sample rate to use for response timing middleware (default: 1) DATADOG_RESPONSE_AUTO_TAG - whether to auto-add request/response tags to response metrics (default: True) DATADOG_RESPONSE_ENDPOINT_TAG_NAME - tag name to use for request endpoint tag name (default: 'endpoint') DATADOG_RESPONSE_METHOD_TAG_NAME - tag name to use for the request method tag name (default: 'method') :param app: Flask app to configure this client for :type app: flask.Flask :param config: optional, dictionary of config values (defaults to `app.config`) :type config: dict """ # Used passed in config if provided, otherwise use the config from `app` if config is not None: self.config = config elif self.config is None: self.config = app.config # Set default values for expected config properties self.config.setdefault('STATSD_HOST', 'localhost') self.config.setdefault('STATSD_MAX_BUFFER_SIZE', 50) self.config.setdefault('STATSD_NAMESPACE', None) self.config.setdefault('STATSD_PORT', 8125) self.config.setdefault('STATSD_TAGS', None) self.config.setdefault('STATSD_USEMS', False) self.app = app # Configure DogStatsd client # https://github.com/DataDog/datadogpy/blob/v0.11.0/datadog/dogstatsd/base.py self.statsd = DogStatsd(host=self.config['STATSD_HOST'], port=self.config['STATSD_PORT'], max_buffer_size=self.config['STATSD_MAX_BUFFER_SIZE'], namespace=self.config['STATSD_NAMESPACE'], constant_tags=self.config['STATSD_TAGS'], use_ms=self.config['STATSD_USEMS']) # Configure any of our middleware self.setup_middleware() def timer(self, *args, **kwargs): """Helper to get a `flask_datadog.TimerWrapper` for this `DogStatsd` client""" return TimerWrapper(self.statsd, *args, **kwargs) def incr(self, *args, **kwargs): """Helper to expose `self.statsd.increment` under a shorter name""" return self.statsd.increment(*args, **kwargs) def decr(self, *args, **kwargs): """Helper to expose `self.statsd.decrement` under a shorter name""" return self.statsd.decrement(*args, **kwargs) def setup_middleware(self): """Helper to configure/setup any Flask-Datadog middleware""" # Configure response time middleware (if desired) self.config.setdefault('DATADOG_CONFIGURE_MIDDLEWARE', True) self.config.setdefault('DATADOG_RESPONSE_SIZE_METRIC_NAME', 'flask.response.size') self.config.setdefault('DATADOG_RESPONSE_METRIC_NAME', 'flask.response.time') self.config.setdefault('DATADOG_RESPONSE_SAMPLE_RATE', 1) self.config.setdefault('DATADOG_RESPONSE_AUTO_TAG', True) self.config.setdefault('DATADOG_RESPONSE_ENDPOINT_TAG_NAME', 'endpoint') self.config.setdefault('DATADOG_RESPONSE_METHOD_TAG_NAME', 'method') if self.config['DATADOG_CONFIGURE_MIDDLEWARE']: self.app.before_request(self.before_request) self.app.after_request(self.after_request) def before_request(self): """ Flask-Datadog middleware handle for before each request """ # Set the request start time g.flask_datadog_start_time = time.time() g.flask_datadog_request_tags = [] # Add some default request tags if self.config['DATADOG_RESPONSE_AUTO_TAG']: self.add_request_tags([ # Endpoint tag '{tag_name}:{endpoint}'.format(tag_name=self.config['DATADOG_RESPONSE_ENDPOINT_TAG_NAME'], endpoint=str(request.endpoint).lower()), # Method tag '{tag_name}:{method}'.format(tag_name=self.config['DATADOG_RESPONSE_METHOD_TAG_NAME'], method=request.method.lower()), ]) def after_request(self, response): """ Flask-Datadog middleware handler for after each request :param response: the response to be sent to the client :type response: ``flask.Response`` :rtype: ``flask.Response`` """ # Return early if we don't have the start time if not hasattr(g, 'flask_datadog_start_time'): return response # Get the response time for this request elapsed = time.time() - g.flask_datadog_start_time # Convert the elapsed time to milliseconds if they want them if self.use_ms: elapsed = int(round(1000 * elapsed)) # Add some additional response tags if self.config['DATADOG_RESPONSE_AUTO_TAG']: self.add_request_tags(['status_code:%s' % (response.status_code, )]) tags = self.get_request_tags() sample_rate = self.config['DATADOG_RESPONSE_SAMPLE_RATE'] # Emit timing metric self.statsd.timing(self.config['DATADOG_RESPONSE_METRIC_NAME'], elapsed, tags, sample_rate) # Emit response size metric if 'content-length' in response.headers: size = int(response.headers['content-length']) self.statsd.histogram(self.config['DATADOG_RESPONSE_SIZE_METRIC_NAME'], size, tags, sample_rate) # We ALWAYS have to return the original response return response def get_request_tags(self): """ Get the current list of tags set for this request :rtype: list """ return getattr(g, 'flask_datadog_request_tags', []) def add_request_tags(self, tags): """ Add the provided list of tags to the tags stored for this request :param tags: tags to add to this requests tags :type tags: list :rtype: list """ # Get the current list of tags to append to # DEV: We use this method since ``self.get_request_tags`` will ensure that we get a list back current_tags = self.get_request_tags() # Append our new tags, and return the new full list of tags for this request g.flask_datadog_request_tags = current_tags + tags return g.flask_datadog_request_tags def __getattr__(self, name): """ Magic method for fetching any underlying attributes from `self.statsd` We utilize `__getattr__` to ensure that we are always compatible with the `DogStatsd` client. """ # If `self.statsd` has the attribute then return that attribute if self.statsd and hasattr(self.statsd, name): return getattr(self.statsd, name) raise AttributeError('\'StatsD\' has has attribute \'{name}\''.format(name=name)) def __enter__(self): """ Helper to expose the underlying `DogStatsd` client for context managing >>> statsd = StatsD(app=app) >>> # Batch any metrics within the `with` block >>> with statsd: >>> statsd.increment('metric') """ return self.statsd.__enter__() def __exit__(self, *args, **kwargs): """Helper to expose the underlying `DogStatsd` client for context managing""" return self.statsd.__exit__(*args, **kwargs) class API(object): def __init__(self, app=None, config=None): """ Constructor for `flask.ext.datadog.API` >>> from flask.ext.datadog import API >>> app = Flask(__name__) >>> dogapi = API(app=app) :param app: Flask app to configure this client for, if `app` is `None`, then do not configure yet (call `init_app` manually instead) :type app: flask.Flask or None :param config: Configuration for this client to use instead of `app.config` :type config: dict or None """ self.config = config # If an app was provided, then call `init_app` for them if app is not None: self.init_app(app) else: self.app = None def init_app(self, app, config=None): """ Initialize Datadog API client from Flask app >>> from flask.ext.datadog import API >>> app = Flask(__name__) >>> dogapi = API() >>> dogapi.init_app(app=app) Available config settings: DATADOG_API_KEY - Datadog API key from https://app.datadoghq.com/account/settings#api DATADOG_APP_KEY - Datadog APP key from https://app.datadoghq.com/account/settings#api :param app: Flask app to configure this client for :type app: flask.Flask :param config: optional, dictionary of config values (defaults to `app.config`) :type config: dict """ # Used passed in config if provided, otherwise use the config from `app` if config is not None: self.config = config elif self.config is None: self.config = app.config # Set default values for expected config properties self.config.setdefault('DATADOG_API_KEY', None) self.config.setdefault('DATADOG_APP_KEY', None) self.app = app # Initialize datadog client # DEV: Datadog client uses module level variables for storing API keys rather than initializing a # class to manage a connection/and keys # https://github.com/DataDog/datadogpy/blob/v0.11.0/datadog/__init__.py # https://github.com/DataDog/datadogpy/blob/v0.11.0/datadog/api/__init__.py#L4-L9 options = { 'api_key': self.config['DATADOG_API_KEY'], 'app_key': self.config['DATADOG_APP_KEY'], } initialize(**options) def __getattr__(self, name): """ Magic method for fetching attributes from `datadog.api` We utilize `__getattr__` to ensure that we are always compatible with the `datadog.api` module. """ # If `self.statsd` has the attribute then return that attribute if dogapi and hasattr(dogapi, name): return getattr(dogapi, name) raise AttributeError('\'API\' has has attribute \'{name}\''.format(name=name))
sky107/python-lab-project-sky
pyprojectbackend/lib/python3.9/site-packages/flask_datadog.py
flask_datadog.py
py
13,019
python
en
code
0
github-code
6
21141343602
import asyncio import math import sys from collections import Counter, defaultdict from pprint import pprint import aiohttp import async_timeout import click import matplotlib.pyplot as plt import numpy as np import pandas as pd from pyecharts import Bar as Line from pyecharts import Overlap from lucky.commands import util URL = '/k/min_max_counter/{code}?resample={resample}&window_size={window_size}' async def process(resample='1w', window_size=7*52, min_timetomarket=None, test=False, where='ALL'): rsts = await util.fetch(URL, resample=resample, window_size=window_size, min_timetomarket=min_timetomarket, test=test, where=where) c = defaultdict(Counter) for rst in rsts: for key, value in rst['result'].items(): c[key].update(**value) df = None for key, value in c.items(): tmp = pd.DataFrame.from_dict(value, 'index', columns=[key]) if df is None: df = tmp else: df = pd.concat([df, tmp], axis=1, sort=True) df.index = pd.DatetimeIndex(df.index) df = df.sort_index() ds = pd.date_range(min(df.index), max(df.index), freq=resample) df = df.reindex(ds, copy=False, fill_value=0) # print(df) # x = df.plot() # plt.show() df = df.fillna(value=0) line1 = Line() line1.add('is_rolling_max', df.index, df['is_rolling_max']) line2 = Line() line2.add('is_rolling_min', df.index, df['is_rolling_min']) overlap = Overlap( ) overlap.add(line1) overlap.add(line2) # , yaxis_index=1, is_add_yaxis=True util.render(overlap, path="render.html",) line1 = Line() line1.add('ismax', df.index, df['ismax']) line2 = Line() line2.add('ismin', df.index, df['ismin']) overlap = Overlap( ) overlap.add(line1) overlap.add(line2) util.render(overlap, path="render2.html",) # overlap.render(path="render2.html",) for c in df.columns: df[c] = pd.to_numeric(df[c]) df = df.resample('1m').sum() market_size = await util.get_marketsize(where=where) market_size = pd.DataFrame.from_dict(market_size) market_size.index = pd.DatetimeIndex(market_size.index) df['marketsize'] = market_size df['ismin'] = df['ismin'] / df['marketsize'] df['ismax'] = df['ismax'] / df['marketsize'] line1 = Line() line1.add('ismax', df.index, df['ismax']) line2 = Line() line2.add('ismin', df.index, df['ismin']) overlap = Overlap( ) overlap.add(line1) overlap.add(line2) util.render(overlap, path="render3.html",) return df @click.command() @click.option('--resample', default='1d', help='用于减少结果集,类似于周线,月线') @click.option('--window_size', default=7*52, help='窗口') @click.option('--min_timetomarket', default=20180101, help='用于去除近期上市的股票') @click.option('--where', default='ALL', help='市场') @click.option('--test', default=False, help='是否启用test, 只处理少量code') def main(resample, window_size, min_timetomarket, where, test): """ 破新高和新低的股票数 """ print('='*50) print('破新高和新低的股票数') import time b = time.time() loop = asyncio.get_event_loop() loop.run_until_complete( process(resample, window_size, min_timetomarket, test=True, where=where) ) e = time.time() print(e-b) if __name__ == '__main__': main()
onecans/my
mystockservice/lucky/commands/min_max_counter.py
min_max_counter.py
py
3,486
python
en
code
2
github-code
6
35817144385
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Automatic electric field computation ------------------------------------ :download:`examples/auto_efield.py` demonstrates how drift can be added self-consistently by calculating the electric field generated from the concentration profile of charged species. :: $ python auto_efield.py --help .. exec:: echo "::\\n\\n" python examples/examples/auto_efield.py --help | sed "s/^/ /" Here is an example generated by: :: $ python auto_efield.py --plot --savefig auto_efield.png .. image:: ../_generated/auto_efield.png """ from __future__ import print_function, division, absolute_import from math import log, erf, exp import argh import numpy as np from chempy.einstein_smoluchowski import electrical_mobility_from_D from chemreac import ReactionDiffusion from chemreac.integrate import run from chemreac.util.plotting import save_and_or_show_plot def sigm(x, lim=150., n=8): # Algebraic sigmoid to avoid overflow/underflow of 'double exp(double)' return x/((x/lim)**n+1)**(1./n) sq2 = 2**0.5 pi = np.pi sqpi = pi**0.5 def _gaussian(x, mu, sigma, logy, logx, geom, use_log2=False): # Formula for normalization from derived in following mathematica code: # $Assumptions = {(sigma | mu) \[Element] Reals, sigma > 0} # 1/Integrate[E^(-1/2*((x - mu)/sigma)^2), {x, -Infinity, Infinity}] # 1/Integrate[2*pi*x*E^(-1/2*((x - mu)/sigma)^2), {x, 0, Infinity}] # 1/Integrate[4*pi*x^2*E^(-1/2*((x - mu)/sigma)^2), {x, 0, Infinity}] if geom == 'f': a = 1/sigma/(2*np.pi)**0.5 elif geom == 'c': a = 1/pi/sigma/(2*exp(-mu**2/2/sigma**2)*sigma + mu*sq2*sqpi*(1 + erf(mu/(sq2*sigma)))) elif geom == 's': a = 1/2/pi/sigma/(2*exp(-mu**2/2/sigma**2)*mu*sigma + sq2*sqpi*(mu**2 + sigma**2)*(1 + erf(mu/sq2/sigma))) else: raise NotImplementedError("Unkown geomtry: %s" % geom) b = -0.5*((x-mu)/sigma)**2 logb = (lambda arg: log(arg)/log(2)) if use_log2 else log if logy: return logb(a) + b*logb(np.e) else: return a*np.exp(b) def pair_of_gaussians(x, offsets, sigma, logy, logx, geom, use_log2=False): try: sigma0, sigma1 = sigma[0], sigma[1] except: sigma0 = sigma1 = sigma expb = (lambda arg: 2**arg) if use_log2 else np.exp x = expb(x) if logx else x xspan = (x[-1] - x[0]) xl = x[0] + offsets[0]*xspan # lower xu = x[0] + offsets[1]*xspan # upper return ( _gaussian(x, xl, sigma0, logy, logx, geom, use_log2), _gaussian(x, xu, sigma1, logy, logx, geom, use_log2) ) def integrate_rd(D=-3e-1, t0=0.0, tend=7., x0=0.1, xend=1.0, N=1024, base=0.5, offset=0.25, nt=25, geom='f', logt=False, logy=False, logx=False, random=False, nstencil=3, lrefl=False, rrefl=False, num_jacobian=False, method='bdf', plot=False, savefig='None', atol=1e-6, rtol=1e-6, random_seed=42, surf_chg=(0.0, 0.0), sigma_q=101, sigma_skew=0.5, verbose=False, eps_rel=80.10, use_log2=False): """ A negative D (diffusion coefficent) denotes: mobility := -D D := 0 A positive D calculates mobility from Einstein-Smoluchowski relation """ assert 0 <= base and base <= 1 assert 0 <= offset and offset <= 1 if random_seed: np.random.seed(random_seed) n = 2 if D < 0: mobility = -D D = 0 else: mobility = electrical_mobility_from_D(D, 1, 298.15) print(D, mobility) # Setup the grid logb = (lambda arg: log(arg)/log(2)) if use_log2 else log _x0 = logb(x0) if logx else x0 _xend = logb(xend) if logx else xend x = np.linspace(_x0, _xend, N+1) if random: x += (np.random.random(N+1)-0.5)*(_xend-_x0)/(N+2) # Setup the system stoich_active = [] stoich_prod = [] k = [] rd = ReactionDiffusion( n, stoich_active, stoich_prod, k, N, D=[D, D], z_chg=[1, -1], mobility=[mobility, -mobility], x=x, geom=geom, logy=logy, logt=logt, logx=logx, nstencil=nstencil, lrefl=lrefl, rrefl=rrefl, auto_efield=True, surf_chg=surf_chg, eps_rel=eps_rel, # water at 20 deg C faraday_const=1, vacuum_permittivity=1, use_log2=use_log2 ) # Initial conditions sigma = (xend-x0)/sigma_q sigma = [(1-sigma_skew)*sigma, sigma_skew*sigma] y0 = np.vstack(pair_of_gaussians( rd.xcenters, [base+offset, base-offset], sigma, logy, logx, geom, use_log2)).transpose() if logy: y0 = sigm(y0) if plot: # Plot initial E-field import matplotlib.pyplot as plt plt.figure(figsize=(6, 10)) rd.calc_efield((rd.expb(y0) if logy else y0).flatten()) plt.subplot(4, 1, 3) plt.plot(rd.xcenters, rd.efield, label="E at t=t0") plt.plot(rd.xcenters, rd.xcenters*0, label="0") # Run the integration tout = np.linspace(t0, tend, nt) integr = run(rd, y0, tout, atol=atol, rtol=rtol, sigm_damp=True, C0_is_log=logy, with_jacobian=(not num_jacobian), method=method) Cout = integr.Cout if verbose: print(integr.info) # Plot results if plot: def _plot(y, ttl=None, **kwargs): plt.plot(rd.xcenters, y, **kwargs) plt.xlabel((('log_%s({})' % ('2' if use_log2 else 'e')) if logx else '{}').format('x / m')) plt.ylabel('C / M') if ttl: plt.title(ttl) for i in range(nt): plt.subplot(4, 1, 1) c = 1-tout[i]/tend c = (1.0-c, .5-c/2, .5-c/2) _plot(Cout[i, :, 0], 'Simulation (N={})'.format(rd.N), c=c, label='$z_A=1$' if i == nt-1 else None) _plot(Cout[i, :, 1], c=c[::-1], label='$z_B=-1$' if i == nt-1 else None) plt.legend() plt.subplot(4, 1, 2) delta_y = Cout[i, :, 0] - Cout[i, :, 1] _plot(delta_y, 'Diff', c=[c[2], c[0], c[1]], label='A-B (positive excess)' if i == nt-1 else None) plt.legend(loc='best') plt.xlabel("$x~/~m$") plt.ylabel(r'Concentration / M') ylim = plt.gca().get_ylim() if N < 100: plt.vlines(rd.x, ylim[0], ylim[1], linewidth=1.0, alpha=0.2, colors='gray') plt.subplot(4, 1, 3) plt.plot(rd.xcenters, rd.efield, label="E at t=tend") plt.xlabel("$x~/~m$") plt.ylabel(r"$E~/~V\cdot m^{-1}$") plt.legend() for i in range(3): plt.subplot(4, 1, i+1) ylim = plt.gca().get_ylim() for d in (-1, 1): center_loc = [x0+(base+d*offset)*(xend-x0)]*2 plt.plot(rd.logb(center_loc) if logx else center_loc, ylim, '--k') plt.subplot(4, 1, 4) for i in range(n): amount = [rd.integrated_conc(Cout[j, :, i]) for j in range(nt)] plt.plot(tout, amount, c=c[::(1, -1)[i]], label=chr(ord('A')+i)) plt.xlabel('Time / s') plt.ylabel('Amount / mol') plt.legend(loc='best') plt.tight_layout() save_and_or_show_plot(savefig=savefig) return tout, Cout, integr.info, rd if __name__ == '__main__': argh.dispatch_command(integrate_rd, output_file=None)
chemreac/chemreac
examples/auto_efield.py
auto_efield.py
py
7,622
python
en
code
14
github-code
6
16930544030
from __future__ import absolute_import from .dataset_iter import default_collate, DatasetIter from .samplers import RandomSampler, SequentialSampler import torch import os import os.path import warnings import fnmatch import math import numpy as np try: import nibabel except: warnings.warn('Cant import nibabel.. Cant load brain images') try: from PIL import Image except: warnings.warn('Cant import PIL.. Cant load PIL images') IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.nii.gz', '.npy' ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def find_classes(dir): classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] classes.sort() class_to_idx = {classes[i]: i for i in range(len(classes))} return classes, class_to_idx def pil_loader(path): return Image.open(path).convert('RGB') def npy_loader(path): return torch.from_numpy(np.load(path).astype('float32')) def nifti_loader(path): return nibabel.load(path) def make_dataset(directory, class_mode, class_to_idx=None, input_regex=None, target_regex=None, ): """Map a dataset from a root folder""" if class_mode == 'image': if not input_regex and not target_regex: raise ValueError('must give input_regex and target_regex if'+ ' class_mode==image') inputs = [] targets = [] for subdir in sorted(os.listdir(directory)): d = os.path.join(directory, subdir) if not os.path.isdir(d): continue for root, _, fnames in sorted(os.walk(d)): for fname in fnames: if fnmatch.fnmatch(fname, input_regex): path = os.path.join(root, fname) inputs.append(path) if class_mode == 'label': targets.append(class_to_idx[subdir]) if class_mode == 'image' and fnmatch.fnmatch(fname, target_regex): path = os.path.join(root, fname) targets.append(path) if class_mode is None: return inputs else: return inputs, targets class Dataset(object): """An abstract class representing a Dataset. All other datasets should subclass it. All subclasses should override ``__len__``, that provides the size of the dataset, and ``__getitem__``, supporting integer indexing in range from 0 to len(self) exclusive. """ def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def one_epoch(self): """Return an iterator that will loop through all the samples one time""" return DatasetIter(self) def __iter__(self): """Return an iterator that will loop through all the samples one time""" return DatasetIter(self) def __next__(self): """Return the next batch in the data. If this batch is the last batch in the data, the iterator will be reset -- allowing you to loop through the data ad infinitum """ new_batch = next(self._iter) self.batches_seen += 1 if self.batches_seen % self.nb_batches == 0: #print('Last Batch of Current Epoch') self._iter = DatasetIter(self) return new_batch next = __next__ class FolderDataset(Dataset): def __init__(self, root, class_mode='label', input_regex='*', target_regex=None, transform=None, target_transform=None, co_transform=None, loader='npy', batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False): """Dataset class for loading out-of-memory data. Arguments --------- root : string path to main directory class_mode : string in `{'label', 'image'}` type of target sample to look for and return `label` = return class folder as target `image` = return another image as target as found by 'target_regex' NOTE: if class_mode == 'image', you must give an input and target regex and the input/target images should be in a folder together with no other images in that folder input_regex : string (default is any valid image file) regular expression to find input images e.g. if all your inputs have the word 'input', you'd enter something like input_regex='*input*' target_regex : string (default is Nothing) regular expression to find target images if class_mode == 'image' e.g. if all your targets have the word 'segment', you'd enter somthing like target_regex='*segment*' transform : torch transform transform to apply to input sample individually target_transform : torch transform transform to apply to target sample individually loader : string in `{'npy', 'pil', 'nifti'} or function defines how to load samples from file if a function is provided, it should take in a file path as input and return the loaded sample. Examples -------- For loading input images and target images (e.g. image and its segmentation): >>> data = FolderDataset(root=/path/to/main/dir, class_mode='image', input_regex='*input*', target_regex='*segment*', loader='pil') For loading input images with sub-directory as class label: >>> data = FolderDataset(root=/path/to/main/dir, class_mode='label', loader='pil') """ if loader == 'npy': loader = npy_loader elif loader == 'pil': loader = pil_loader elif loader == 'nifti': loader = nifti_loader root = os.path.expanduser(root) classes, class_to_idx = find_classes(root) inputs, targets = make_dataset(root, class_mode, class_to_idx, input_regex, target_regex) if len(inputs) == 0: raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.root = os.path.expanduser(root) self.inputs = inputs self.targets = targets self.classes = classes self.class_to_idx = class_to_idx self.transform = transform self.target_transform = target_transform self.co_transform = co_transform self.loader = loader self.class_mode = class_mode self.batch_size = batch_size self.num_workers = num_workers self.collate_fn = collate_fn self.pin_memory = pin_memory if sampler is not None: self.sampler = sampler elif shuffle: self.sampler = RandomSampler(nb_samples=len(self.inputs)) elif not shuffle: self.sampler = SequentialSampler(nb_samples=len(self.inputs)) if class_mode == 'image': print('Found %i input images and %i target images' % (len(self.inputs), len(self.targets))) elif class_mode == 'label': print('Found %i input images across %i classes' % (len(self.inputs), len(self.classes))) self.batches_seen = 0 self.nb_batches = int(math.ceil(len(self.sampler) / float(self.batch_size))) self._iter = DatasetIter(self) def __getitem__(self, index): # get paths input_sample = self.inputs[index] target_sample = self.targets[index] # load samples into memory input_sample = self.loader(os.path.join(self.root, input_sample)) if self.class_mode == 'image': target_sample = self.loader(os.path.join(self.root, target_sample)) # apply transforms if self.transform is not None: input_sample = self.transform(input_sample) if self.target_transform is not None: target_sample = self.target_transform(target_sample) if self.co_transform is not None: input_sample, target_sample = self.co_transform(input_sample, target_sample) return input_sample, target_sample def __len__(self): return len(self.inputs) class TensorDataset(Dataset): def __init__(self, input_tensor, target_tensor=None, transform=None, target_transform=None, co_transform=None, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False): """Dataset class for loading in-memory data. Arguments --------- input_tensor : torch tensor target_tensor : torch tensor transform : torch transform transform to apply to input sample individually target_transform : torch transform transform to apply to target sample individually loader : string in `{'npy', 'pil', 'nifti'} or function defines how to load samples from file if a function is provided, it should take in a file path as input and return the loaded sample. Examples -------- For loading input images and target images (e.g. image and its segmentation): >>> data = FolderDataset(root=/path/to/main/dir, class_mode='image', input_regex='*input*', target_regex='*segment*', loader='pil') For loading input images with sub-directory as class label: >>> data = FolderDataset(root=/path/to/main/dir, class_mode='label', loader='pil') """ self.inputs = input_tensor self.targets = target_tensor if target_tensor is None: self.has_target = False else: self.has_target = True self.transform = transform self.target_transform = target_transform self.co_transform = co_transform self.batch_size = batch_size self.num_workers = num_workers self.collate_fn = collate_fn self.pin_memory = pin_memory if sampler is not None: self.sampler = sampler else: if shuffle: self.sampler = RandomSampler(nb_samples=len(self.inputs)) elif not shuffle: self.sampler = SequentialSampler(nb_samples=len(self.inputs)) self.batches_seen = 0 self.nb_batches = int(math.ceil(len(self.sampler) / float(self.batch_size))) self._iter = DatasetIter(self) def __getitem__(self, index): """Return a (transformed) input and target sample from an integer index""" # get paths input_sample = self.inputs[index] if self.has_target: target_sample = self.targets[index] # apply transforms if self.transform is not None: input_sample = self.transform(input_sample) if self.has_target and self.target_transform is not None: target_sample = self.target_transform(target_sample) if self.has_target and self.co_transform is not None: input_sample, target_sample = self.co_transform(input_sample, target_sample) if self.has_target: return input_sample, target_sample else: return input_sample def __len__(self): """Number of samples""" return self.inputs.size(0)
huiyi1990/torchsample
torchsample/datasets.py
datasets.py
py
12,057
python
en
code
null
github-code
6
26552249009
#!/usr/bin/env python3 import fnmatch import os import re import ntpath import sys import argparse # handle x64 python clipboard, ref https://forums.autodesk.com/t5/maya-programming/ctypes-bug-cannot-copy-data-to-clipboard-via-python/m-p/9197068/highlight/true#M10992 import ctypes from ctypes import wintypes CF_UNICODETEXT = 13 user32 = ctypes.WinDLL('user32') kernel32 = ctypes.WinDLL('kernel32') OpenClipboard = user32.OpenClipboard OpenClipboard.argtypes = wintypes.HWND, OpenClipboard.restype = wintypes.BOOL CloseClipboard = user32.CloseClipboard CloseClipboard.restype = wintypes.BOOL EmptyClipboard = user32.EmptyClipboard EmptyClipboard.restype = wintypes.BOOL GetClipboardData = user32.GetClipboardData GetClipboardData.argtypes = wintypes.UINT, GetClipboardData.restype = wintypes.HANDLE SetClipboardData = user32.SetClipboardData SetClipboardData.argtypes = (wintypes.UINT, wintypes.HANDLE) SetClipboardData.restype = wintypes.HANDLE GlobalLock = kernel32.GlobalLock GlobalLock.argtypes = wintypes.HGLOBAL, GlobalLock.restype = wintypes.LPVOID GlobalUnlock = kernel32.GlobalUnlock GlobalUnlock.argtypes = wintypes.HGLOBAL, GlobalUnlock.restype = wintypes.BOOL GlobalAlloc = kernel32.GlobalAlloc GlobalAlloc.argtypes = (wintypes.UINT, ctypes.c_size_t) GlobalAlloc.restype = wintypes.HGLOBAL GlobalSize = kernel32.GlobalSize GlobalSize.argtypes = wintypes.HGLOBAL, GlobalSize.restype = ctypes.c_size_t GMEM_MOVEABLE = 0x0002 GMEM_ZEROINIT = 0x0040 def Paste( data ): data = data.encode('utf-16le') OpenClipboard(None) EmptyClipboard() handle = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT, len(data) + 2) pcontents = GlobalLock(handle) ctypes.memmove(pcontents, data, len(data)) GlobalUnlock(handle) SetClipboardData(CF_UNICODETEXT, handle) CloseClipboard() def getFunctions(filepath): selfmodule = (re.search(r'addons[\W]*([_a-zA-Z0-9]*)', filepath)).group(1) # print("Checking {0} from {1}".format(filepath,selfmodule)) if (selfmodule.startswith("compat")): return [] with open(filepath, 'r') as file: content = file.read() srch = re.compile(r'[^E]FUNC\(([_a-zA-Z0-9]*)\)') modfuncs = srch.findall(content) modfuncs = sorted(set(modfuncs)) srch = re.compile(r'EFUNC\(([_a-zA-Z0-9]*),([_a-zA-Z0-9]*)\)') exfuncs = srch.findall(content) exfuncs = sorted(set(exfuncs)) fileFuncs = [] for func in modfuncs: fileFuncs.append("ace_{0}_fnc_{1}".format(selfmodule,func)) for exModule,func in exfuncs: fileFuncs.append("ace_{0}_fnc_{1}".format(exModule, func)) return fileFuncs def getStrings(filepath): selfmodule = (re.search(r'addons[\W]*([_a-zA-Z0-9]*)', filepath)).group(1) # print("Checking {0} from {1}".format(filepath,selfmodule)) if (selfmodule.startswith("compat")): return [] with open(filepath, 'r') as file: content = file.read() srch = re.compile(r'[^E][CL]STRING\(([_a-zA-Z0-9]*)\)') modStrings = srch.findall(content) modStrings = sorted(set(modStrings)) srch = re.compile(r'E[CL]STRING\(([_a-zA-Z0-9]*),([_a-zA-Z0-9]*)\)') exStrings = srch.findall(content) exStrings = sorted(set(exStrings)) fileStrings = [] for localString in modStrings: fileStrings.append("STR_ACE_{0}_{1}".format(selfmodule, localString)) for (exModule, exString) in exStrings: fileStrings.append("STR_ACE_{0}_{1}".format(exModule, exString)) return fileStrings def main(): print("#########################") print("# All Functions #") print("#########################") sqf_list = [] allFunctions = [] allStrings = [] parser = argparse.ArgumentParser() parser.add_argument('-m','--module', help='only search specified module addon folder', required=False, default=".") args = parser.parse_args() addon_base_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) for root, dirnames, filenames in os.walk(addon_base_path +"/" + 'addons' + '/' + args.module): for filename in fnmatch.filter(filenames, '*.sqf'): sqf_list.append(os.path.join(root, filename)) for filename in fnmatch.filter(filenames, '*.cpp'): sqf_list.append(os.path.join(root, filename)) for filename in fnmatch.filter(filenames, '*.hpp'): sqf_list.append(os.path.join(root, filename)) for filename in sqf_list: allFunctions = allFunctions + getFunctions(filename) for filename in sqf_list: allStrings = allStrings + getStrings(filename) codeHeader = "diag_log text '*********** Scaning for nil functions [funcs {0} / strings {1}]';".format(len(set(allFunctions)), len(set(allStrings))) codeFuncCheck = "{ if (isNil _x) then {systemChat format ['%1 is nil', _x]; diag_log text format ['%1 is nil', _x];}} forEach allFunctions;" codeStringCheck = "{ if (!isLocalized _x) then {systemChat format ['%1 is not in stringtable', _x]; diag_log text format ['%1 is not in stringtable', _x];}} forEach allStrings;" outputCode = "{0} allFunctions = {1}; allStrings = {2}; {3} {4}".format(codeHeader, list(set(allFunctions)), list(set(allStrings)), codeFuncCheck, codeStringCheck) print(outputCode) Paste(outputCode) print ("") print ("Copied to clipboard, [funcs {0} / strings {1}]'".format(len(set(allFunctions)), len(set(allStrings)))) if __name__ == "__main__": main()
acemod/ACE3
tools/search_undefinedFunctions.py
search_undefinedFunctions.py
py
5,461
python
en
code
966
github-code
6
41310847925
import os from abc import ABC from keras import Model, layers from keras.layers import Conv2D, BatchNormalization, Add, MaxPool2D, GlobalAveragePooling2D, Flatten, Dense, Rescaling import tensorflow as tf class ResnetBlock(Model, ABC): """ A standard resnet block. """ def __init__(self, channels: int, down_sample=False): """ channels: same as number of convolution kernels """ super().__init__() self.__channels = channels self.__down_sample = down_sample self.__strides = [2, 1] if down_sample else [1, 1] KERNEL_SIZE = (3, 3) # use He initialization, instead of Xavier (a.k.a 'glorot_uniform' in Keras), as suggested in [2] INIT_SCHEME = "he_normal" self.conv_1 = Conv2D(self.__channels, strides=self.__strides[0], kernel_size=KERNEL_SIZE, padding="same", kernel_initializer=INIT_SCHEME) self.bn_1 = BatchNormalization() self.conv_2 = Conv2D(self.__channels, strides=self.__strides[1], kernel_size=KERNEL_SIZE, padding="same", kernel_initializer=INIT_SCHEME) self.bn_2 = BatchNormalization() self.merge = Add() if self.__down_sample: # perform down sampling using stride of 2, according to [1]. self.res_conv = Conv2D( self.__channels, strides=2, kernel_size=(1, 1), kernel_initializer=INIT_SCHEME, padding="same") self.res_bn = BatchNormalization() def call(self, inputs, training=None, mask=None): res = inputs x = self.conv_1(inputs) x = self.bn_1(x) x = tf.nn.relu(x) x = self.conv_2(x) x = self.bn_2(x) if self.__down_sample: res = self.res_conv(res) res = self.res_bn(res) # if not perform down sample, then add a shortcut directly x = self.merge([x, res]) out = tf.nn.relu(x) return out class ResNet18(Model): def __init__(self, num_classes, **kwargs): """ num_classes: number of classes in specific classification task. """ super().__init__(**kwargs) self.conv_1 = Conv2D(64, (7, 7), strides=2, padding="same", kernel_initializer="he_normal") self.init_bn = BatchNormalization() self.pool_2 = MaxPool2D(pool_size=(2, 2), strides=2, padding="same") self.res_1_1 = ResnetBlock(64) self.res_1_2 = ResnetBlock(64) self.res_2_1 = ResnetBlock(128, down_sample=True) self.res_2_2 = ResnetBlock(128) self.res_3_1 = ResnetBlock(256, down_sample=True) self.res_3_2 = ResnetBlock(256) self.res_4_1 = ResnetBlock(512, down_sample=True) self.res_4_2 = ResnetBlock(512) self.avg_pool = GlobalAveragePooling2D() self.flat = Flatten() self.fc = Dense(num_classes, activation="softmax") self.data_augmentation = tf.keras.Sequential( [ layers.RandomFlip("horizontal", input_shape=(int(os.getenv("img_height")), int(os.getenv("img_width")), 3)), layers.RandomRotation(0.1), layers.RandomZoom(0.1), ] ) def call(self, inputs, training=None, mask=None): out = self.data_augmentation(inputs) out = Rescaling(scale=1.0/255)(out) out = self.conv_1(out) out = self.init_bn(out) out = tf.nn.relu(out) out = self.pool_2(out) for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]: out = res_block(out) out = self.avg_pool(out) out = self.flat(out) out = self.fc(out) return out
beishangongzi/graduation_internship
utils/Resnet.py
Resnet.py
py
3,958
python
en
code
0
github-code
6
21202048829
from kivy.uix.label import Label from kivy.uix.textinput import TextInput from kivy.uix.gridlayout import GridLayout from kivy.uix.scrollview import ScrollView from app.main import ShowcaseScreen from app.widgets.heartfelt_hellos_button import HeartfeltHellosButton from app.widgets.heartfelt_hellos_step_progression_button import HeartfeltHellosStepProgressionButton from app.data.data_types.idea import Idea class IdeaCreationScreen(ShowcaseScreen): scroll_view = None grid_layout = None def __init__(self, **kwargs): super(IdeaCreationScreen, self).__init__(**kwargs) # NOTE: replace tags and ideas with global list so that it can be editted in this class self.tags=["books", "movies", "sports"] self.ideas=[] #self.progress_grid = GridLayout(spacing='10dp', padding='10dp', cols=5, size_hint_y=None) self.grid_layout = GridLayout(spacing='10dp', padding='10dp', cols=1, size_hint_y=None) self.grid_layout.bind(minimum_height=self.grid_layout.setter("height")) self.scroll_view = ScrollView(do_scroll_y=True) self.add_widget(self.scroll_view) self.scroll_view.add_widget(self.grid_layout) def on_pre_enter(self, *args): self.stepOne() def stepOne(self): self.grid_layout.clear_widgets() self.grid_layout.add_widget(Label(text="What is your conversation idea?", font_size=24, color=(255,255,255))) self.grid_layout.add_widget(Label()) # text box textinput = TextInput(hint_text="Are you still into sports?", font_size=24, size_hint_y=None, multiline=False) textinput.bind(text=lambda x, y: print("Hi")) self.grid_layout.add_widget(textinput) #self.name = textinput.text # next and back button rendering next_button = HeartfeltHellosStepProgressionButton(text="next",on_press=lambda x: self.stepTwo(textinput.text)) progress_grid=GridLayout(spacing='10dp', padding='10dp', cols=3, size_hint_y=None) progress_grid.add_widget(Label()) progress_grid.add_widget(Label()) progress_grid.add_widget(next_button) self.grid_layout.add_widget(progress_grid) def stepTwo(self, prompt): self.grid_layout.clear_widgets() self.prompt=prompt self.grid_layout.add_widget(Label(text="Search and select the tag(s)\nthat matches with your idea!", height=50, color=(255,255,255), size_hint_y=None)) # text box #NOTE TO SELF: add filtering for search bar textinput = TextInput(hint_text="Search Tag here", height=50, font_size=24, size_hint_y=None) #textinput.bind(on_text_validate=on_enter(textinput.text)) self.grid_layout.add_widget(textinput) # NOTE TO SELF: add scroll bar to tags section #tag_grid=GridLayout(spacing='10dp', padding='10dp', cols=1, size_hint_y=None) for tag in self.getTags(): tag_button = HeartfeltHellosButton(text=tag, height=50, on_press=lambda x: self.pressTag(x.text), size_hint_y=None) self.grid_layout.add_widget(tag_button) #self.grid_layout.add_widget(tag_grid) # next and back button rendering create_person_button = HeartfeltHellosStepProgressionButton(text="Create\nIdea", on_press=lambda x: self.createIdea()) back_button = HeartfeltHellosStepProgressionButton(text="back", on_press=lambda x: self.stepOne()) progress_grid=GridLayout(spacing='10dp', padding='10dp', cols=3, size_hint_y=None) progress_grid.add_widget(back_button) progress_grid.add_widget(Label()) progress_grid.add_widget(create_person_button) self.grid_layout.add_widget(progress_grid) def pressTag(self, name: str): print("pressed " + str) if name not in self.tags: self.tags.append(name) else: self.tags.remove(name) def createIdea(self): print("pressed create idea") # NOTE: return to idea screen + add self.idea to global list of ideas as input somehow self.ideas.append(Idea(self.prompt, self.tags)) #place holder (something like that maybe?) def on_leave(self, *args): self.grid_layout.clear_widgets() def getTags(self) -> list: return ["sports", "books", "movies"]
JelindoGames/HeartfeltHellos
app/data/screen_types/deprecated/idea_creation_screen.py
idea_creation_screen.py
py
4,316
python
en
code
0
github-code
6
72789313789
import numpy as np import time from scipy import ndimage from .toolkit import vectools from .toolkit.colors import Colors as _C import matplotlib.pyplot as plt import matplotlib import math import cv2 import sys import os __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) class Image: def __init__(self, fn, calibration, lock=None): """ Image processing class Parameters ---------- fn: string filename of the image to be processed """ # t0 = time.time() self.fn = fn self.fn_npy = self.fn.split('.')[0] + '.npy' self.id = int(self.fn.split('cpt')[-1].split('.')[0]) self.calibration = calibration # calibration_path = __location__ + '/../data/calibration.npy' # calibration = np.load(calibration_path) self.midpoint = calibration[self.id - 1][:-1] # self.midpoint = calibration[0][:-1] print(_C.YEL + 'Processing image ' + _C.BOLD + fn + _C.ENDC) if lock is not None: with lock: self.image = np.load(self.fn_npy) # self.image = cv2.imread(self.fn, cv2.IMREAD_GRAYSCALE) else: # self.image = cv2.imread(self.fn, cv2.IMREAD_GRAYSCALE) self.image = np.load(self.fn_npy) # self.image = np.rot90(self.image) # print('Image loaded in', str(round(time.time() - t0, 2)), 's') self.dimensions = np.shape(self.image) self.dimy, self.dimx = self.dimensions def transformRadial(self, env=None, midpoint=None, plot=False): """ Creates a transformed image where a sector is mapped to r/phi coordinates Parameters ---------- midpoint: 2-tuple of floats, optional Origin of the polar coordinate system. If None is given, the calibration data from the current class instantation is taken plot: bool, optional Plot the transformed image. Default is False Cannot be used if multiprocessing is active Returns ------- transformed: 2D array Coordinate transformed image angles: 1D array of floats angles between which the image is fully covered radii: 1D array of float distance scaling of rmax in the transformed image """ r = self.dimx if midpoint is None: midpoint = self.midpoint # t0 = time.time() dr = midpoint[0] - self.dimx rmax = r + dr hplus = midpoint[1] hminus = self.dimy - midpoint[1] thetaPlus = -math.asin(hplus / rmax) thetaMinus = math.asin(hminus / rmax) # thetaPlus, thetaMinus = -thetaMinus, -thetaPlus thetaPlus_idx = int((thetaPlus + np.pi) / (2 * np.pi) * self.dimy) thetaMinus_idx = int((thetaMinus + np.pi) / (2 * np.pi) * self.dimy) # c = tuple(midpoint) cx, cy = midpoint c = (cx, cy) transformed = cv2.linearPolar(self.image, c, rmax, cv2.WARP_FILL_OUTLIERS) # Destroy the image object to free memory del self.image angles = np.linspace(thetaPlus, thetaMinus, thetaMinus_idx - thetaPlus_idx, endpoint=True) radii = np.linspace(0, rmax, self.dimx) self.dimensions = np.shape(transformed) self.dimy, self.dimx = self.dimensions absoluteZero = (self.dimy / 2 - thetaPlus_idx) - 1 transformed = transformed[thetaPlus_idx:thetaMinus_idx] # Pad the transformed image with the boundary value """ start_idx = np.argmax(transformed > 0, axis=1) start_idx = np.ones((len(transformed)), np.uint8) * 1000 transformed[:, :999] = 0 for i in range(len(transformed)): transformed[i][transformed[i] == 0] = transformed[i, start_idx[i]]""" # Remove Calibration features calib_size_px = np.mean(np.array([x[2] for x in self.calibration])) calib_size_mm = env.calib_size_mm # Outer radius of calibration piece tolerance = 1.1 calib_width_mm = env.calib_width_mm * tolerance # Width of the calibration piece # pitch_mm = self.env.pitch_mm # Nominal electrode pitch scale = calib_size_mm / calib_size_px self.calibrationCutoff = (calib_size_mm - calib_width_mm) / scale * r / rmax # pitch = pitch_mm / scale transformed[:, int(self.calibrationCutoff):] = 0 for i in range(len(transformed)): transformed[i][transformed[i] == 0] = transformed[i, int(self.calibrationCutoff) - 1] # plot = True if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(transformed) ax.axhline(y=absoluteZero) ax.set_aspect('auto') fig.savefig(__location__ + '/../img/out/cv2transform.png', dpi=300) # print('Coordinate transformation completed in ', str(round(time.time() - t0, 2)), 's') return transformed, angles, radii def detectFeatures(self, matrix, thresh_std=.5, plot=False): """ Distinguish band from background in binary matrix Parameters ---------- matrix: 2D array 8Bit single channel source matrix to be processed plot: bool, optional Plot the transformed image. Default is False Cannot be used if multiprocessing is active Returns ------- proc: 2D array Processed binary image """ # t0 = time.time() start_range = 2000 # end_range = np.shape(matrix)[1] - start_range # Initializing Empty array in Memory proc = np.empty(np.shape(matrix)) start_search = np.empty(np.shape(matrix))[:, :start_range] end_search = np.empty(np.shape(matrix))[:, start_range:] matrix = matrix.astype(np.float64, copy=False) # print('Blurring') # Gaussian Blur to remove fast features cv2.GaussianBlur(src=matrix, ksize=(15, 3), dst=proc, sigmaX=1.5, sigmaY=5) # ndimage.maximum_filter(proc, size=(5, 5), output=proc) # cv2.GaussianBlur(src=matrix[:, :start_range], ksize=(3, 0), dst=start_search, sigmaX=0, sigmaY=3) # cv2.GaussianBlur(src=matrix[:, start_range:], ksize=(31, 11), dst=end_search, sigmaX=0, sigmaY=0.1) start_search = matrix[:, :start_range] end_search = matrix[:, start_range:int(self.calibrationCutoff)] # print('Convolving') # Convolving with Prewitt kernel in x-direction prewitt_kernel_x = np.tile([-1, 0, 1], (15, 1)) # prewitt_kernel_x = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]]) # print(prewitt_kernel_x) # prewitt_kernel_x = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]]) kernel_y_width = 15 prewitt_kernel_y = np.array([[1] * kernel_y_width, [0] * kernel_y_width, [-1] * kernel_y_width]) # prewitt_kernel_y_element = np.tile(np.ones(kernel_y_width), (15, 1)) # prewitt_kernel_y_end = np.concatenate((prewitt_kernel_y_element, np.zeros(15), -1 * prewitt_kernel_y_element)) # print(prewitt_kernel_y_end) # print(prewitt_kernel_y_end) cv2.threshold(src=start_search, dst=start_search, thresh=20, maxval=255, type=cv2.THRESH_TOZERO) cv2.GaussianBlur(src=start_search, ksize=(21, 21), dst=start_search, sigmaX=50, sigmaY=0) cv2.filter2D(src=start_search, kernel=prewitt_kernel_y, dst=start_search, ddepth=-1) np.abs(start_search, out=start_search) cv2.threshold(src=start_search, dst=start_search, thresh=80, maxval=1, type=cv2.THRESH_BINARY) start_search = start_search.astype(np.uint8, copy=False) n_labels, labels, l_stats, l_centroids = cv2.connectedComponentsWithStats(image=start_search, connectivity=4) sizes = [s[-1] for s in l_stats] sizes_original = sizes[:] sizes.remove(max(sizes)) if len(sizes) == 0: start_amp = 0 start_centroid = (0, 0) else: start_amp = max(sizes) start_centroid_idx = sizes_original.index(start_amp) start_centroid = (int(l_centroids[start_centroid_idx][1]), int(l_centroids[start_centroid_idx][0])) cv2.threshold(src=end_search, dst=end_search, thresh=20, maxval=255, type=cv2.THRESH_TOZERO) cv2.GaussianBlur(src=end_search, ksize=(21, 21), dst=end_search, sigmaX=50, sigmaY=0) cv2.filter2D(src=end_search, kernel=prewitt_kernel_y, dst=end_search, ddepth=-1) np.abs(end_search, out=end_search) cv2.threshold(src=end_search, dst=end_search, thresh=80, maxval=1, type=cv2.THRESH_BINARY) end_search = end_search.astype(np.uint8, copy=False) n_labels, labels, l_stats, l_centroids = cv2.connectedComponentsWithStats(image=end_search, connectivity=4) sizes = [s[-1] for s in l_stats] sizes_original = sizes[:] sizes.remove(max(sizes)) if len(sizes) == 0: end_amp = 0 end_centroid = (0, 0) else: end_amp = max(sizes) end_centroid_idx = sizes_original.index(end_amp) end_centroid = (int(l_centroids[end_centroid_idx][1]), int(l_centroids[end_centroid_idx][0]) + start_range) cv2.filter2D(src=proc, kernel=prewitt_kernel_x, dst=proc, ddepth=-1) # ndimage.maximum_filter(proc, size=(5, 5), output=proc) # cv2.GaussianBlur(src=proc, ksize=(11, 3), dst=proc, sigmaX=0, sigmaY=5) np.abs(proc, out=proc) #start_amp = start_search.max() #start_idx = np.unravel_index(start_search.argmax(), start_search.shape) start = (start_centroid, start_amp) # end_amp = end_search.max() # end_idx = np.unravel_index(end_search.argmax(), end_search.shape) #ex, ey = end_idx # if ey != 0: # ey += start_range #end_idx = (ex, ey) end = (end_centroid, end_amp) print(self.id) print(start) print(end) print() # del start_search del end_search # print('Thresholding') # proc_mean = np.mean(proc) # proc_std = np.std(proc) # thresh = proc_mean + thresh_std * proc_std thresh = 50.0 # thresh = proc_mean # thresh = 0.1 #proc = proc * 255 / np.max(proc) cv2.threshold(src=proc, dst=proc, thresh=thresh, maxval=1, type=cv2.THRESH_BINARY) # cv2.adaptiveThreshold(src=proc, # dst=proc, # maxValue=1, # thresholdType=cv2.THRESH_BINARY, # adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, # blockSize=1001, # C=0) proc = proc.astype(np.uint8, copy=False) Morphkernel = np.ones((11, 11), np.uint8) cv2.dilate(proc, Morphkernel, proc) cv2.erode(proc, Morphkernel, proc) # print('Connecting') # Label the complement regions of the binary image proc_inv = 1 - proc n_labels, labels, l_stats, l_centroids = cv2.connectedComponentsWithStats(image=proc_inv, connectivity=4) # The maximum number of pixels in a noise field # Everything larger is considered to be background fieldsize = 2e4 # Label background fields gaps = [] for i, stat in enumerate(l_stats): if stat[-1] > fieldsize: gaps.append(i) # Set background fields to zero for gap in gaps: labels[labels == gap] = 0 # Set all forground fields to one labels[labels != 0] = 1 labels = labels.astype(np.uint8, copy=False) # Combine foreground noise with with thresholded image cv2.bitwise_or(src1=proc, src2=labels, dst=proc) filtered = np.copy(proc) #Morphkernel = np.ones((11, 11), np.uint8) #cv2.dilate(proc, Morphkernel, proc) #cv2.erode(proc, Morphkernel, proc) # plot = True if plot: print('Plotting') fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(filtered) # ax.plot(filtered[0], lw=0.2) # ax.imshow(end_search) # ax.plot(filtered[0]) ax.set_aspect('auto') ax.set_xlabel('Radius [px]') ax.set_ylabel('Angle [idx]') fig.savefig(__location__ + '/../img/out/filter' + str(self.id) + '.png', dpi=300, interpolation='none') # print('Features detected in', str(round(time.time() - t0, 2)), 's') return proc, (start, end)
lspgl/csat
sectorImage/core/image.py
image.py
py
12,778
python
en
code
0
github-code
6
19239438392
# 문자열 내 마음대로 정렬하기 # 12915 def solution(strings, n): words = [] answer = [] strings.sort() for i in range(len(strings)): words.append((strings[i][n], i)) words.sort() for w in words: answer.append(strings[w[1]]) return answer # strings n return # ["sun", "bed", "car"] 1 ["car", "bed", "sun"] # ["abce", "abcd", "cdx"] 2 ["abcd", "abce", "cdx"]
sdh98429/dj2_alg_study
PROGRAMMERS/level1/문자열_내_마음대로_정렬하기.py
문자열_내_마음대로_정렬하기.py
py
415
python
en
code
0
github-code
6
15873196557
from datetime import datetime def unix_to_dt(time): return datetime.utcfromtimestamp(time).strftime('%Y-%m-%d %H:%M:%S') class event(): def __init__(self, events): self.type = events['type'] self.empty = False if self.type == 'None': self.empty = True elif self.type == 'membership.nickname_changed': self.nickname_changed(events['data']) elif self.type == 'membership.announce.joined': self.user_joined(events['data']) elif self.type == 'membership.notifications.exited': self.user_exited(events['data']) elif self.type == 'membership.notifications.removed': self.user_removed(events['data']) elif self.type == 'membership.notifications.autokicked': self.user_autokicked(events['data']) elif self.type == 'group.avatar_change': self.group_avatar_change(events['data']) elif self.type == 'group.like_icon_set': self.like_icon_change(events['data']) elif self.type == 'group.name_change': self.group_name_change(events['data']) elif self.type == 'poll.created': self.poll_created(events['data']) elif self.type == 'poll.reminder': self.poll_reminder(events['data']) elif self.type == 'poll.finished': self.poll_finished(events['data']) elif self.type == 'message.deleted': self.message_deleted(events['data']) else: print('Unknown event type: ' + self.type) def nickname_changed(self, event_data): self.user = event_data['user'] self.new_name = event_data['name'] def user_joined(self, event_data): self.user = event_data['user'] def user_added(self, event_data): self.user = event_data['adder_user'] self.added_users = event_data['added_users'] def user_exited(self, event_data): self.placeholder = 'X' self.charmap = event_data['charmap'] def user_removed(self, event_data): self.user = event_data['remover_user'] self.removed_user = event_data['removed_user'] def user_autokicked(self, event_data): self.user = event_data['user'] def group_avatar_change(self, event_data): self.user = event_data['user'] self.url = event_data['avatar_url'] def like_icon_change(self, event_data): self.user = event_data['user'] self.like_icon = [event_data['pack_id'], event_data['icon_index']] # like_icon->type is ignored def group_name_change(self, event_data): self.user = event_data['user'] self.new_name = event_data['name'] '''POLL EVENTS''' def poll_created(self, event_data): self.user = event_data['user'] self.conversation = event_data['conversation'] self.poll = event_data['poll'] def poll_reminder(self, event_data): self.conversation = event_data['conversation'] self.poll = event_data['poll'] self.expiration = unix_to_dt(event_data['expiration']) def poll_finished(self, event_data): self.conversation = event_data['conversation'] self.raw_options = event_data['options'] self.options = [] for opt in self.raw_options: temp_option = { "id": None, "title": None, "votes": None, "voter_ids": None } temp_option["id"] = opt["id"] temp_option["title"] = opt["title"] try: temp_option["votes"] = opt["votes"] temp_option["voter_ids"] = opt["voter_ids"] except: temp_option["votes"] = 0 temp_option["voter_ids"] = [] self.options.append(temp_option) '''MISC EVENTS''' def message_deleted(self, event_data): self.message_id = event_data['message_id'] self.deleted_at = unix_to_dt(event_data['deleted_at']) self.deleted_at_ts = event_data['deleted_at'] self.deletion_actor = event_data['deletion_actor'] self.deleter_id = event_data['deleter_id']
theTrueEnder/GroupMe-Export-Parser
Python_Scripts/events.py
events.py
py
4,193
python
en
code
2
github-code
6
33626128629
import jsonlines import os from pathlib import Path from xml_handler import XmlHandler from google_cloud_storage_client import GoogleCloudStorageClient def main(event, context): # Retrieve file from GCS input_filename = event.get("name") input_bucket_name = event.get("bucket") output_bucket_name = os.environ.get("OUTPUT_BUCKET_NAME") gcs_client = GoogleCloudStorageClient() local_filename = gcs_client.download_file_from_gcs(bucket_name=input_bucket_name, source_blob=input_filename) # Read file and parse to List[dict] xml_content_dict = XmlHandler.read_xml_file(file_path=local_filename) parsed_row_list = XmlHandler.parse_harvest_xml_to_json(content_dict=xml_content_dict) # Write file to jsonlines output_filename = Path(input_filename).stem + '.jsonl' local_output_file = Path("/tmp") / output_filename with jsonlines.open(local_output_file, mode="w") as writer: writer.write_all(parsed_row_list) # Upload file to GCS gcs_client.upload_file_to_gcs(bucket_name=output_bucket_name, destination_blob=Path(output_filename).name, source_filename=local_output_file, remove_local_file=True)
MeneerBunt/MarjolandHarvestData
src/convert_xml_to_json/main.py
main.py
py
1,202
python
en
code
0
github-code
6
39627862945
""" Text formatting script. Alice in Wonderland, obtained from: https://www.gutenberg.org/ebooks/28885 """ import string def format_book(file_in, file_out): with open(file_in) as f: text = f.read() text = text.replace('\r', ' ').replace( '\n', ' ').replace('\t', ' ').replace('-', ' ') text = string.join(text.split()) ok_chars = [' ', '.', ','] text = string.join( [char for char in text if char.isalpha() or char in ok_chars], '') text = text.lower() text = text.replace(',', '').replace('.', '') with open(file_out, 'w') as f: f.write(text) if __name__ == 'main': format_book('alice_in_wonderland_RAW.txt', 'alice_in_wonderland_FORMATTED.txt')
jmmanso/deepseries
examples/text_analytics/format_text.py
format_text.py
py
737
python
en
code
4
github-code
6
30367024091
from bisect import bisect from math import ceil, floor, log10 from numpy import abs, argmin, array, isnan, linspace # Local imports from .formatters import BasicFormatter __all__ = [ "AbstractScale", "DefaultScale", "FixedScale", "Pow10Scale", "LogScale", "ScaleSystem", "heckbert_interval", "frange", ] def frange(min, max, delta): """ Floating point range. """ count = int(round((max - min) / delta)) + 1 return [min + i * delta for i in range(count)] class AbstractScale(object): """ Defines the general interface for scales. """ DEFAULT_NUM_TICKS = 8 def ticks(self, start, end, desired_ticks=None): """Returns the set of "nice" positions on this scale that enclose and fall inside the interval (*start*,*end*). Parameters ---------- start : number The beginning of the scale interval. end : number The end of the scale interval. desired_ticks : integer Number of ticks that the caller would like to get """ raise NotImplementedError def num_ticks(self, start, end, desired_ticks=None): """Returns an approximate number of ticks that this scale produces for the given interval. This method is used by the scale system to determine whether this is the appropriate scale to use for an interval; the returned number of ticks does not have to be exactly the same as what ticks() returns. Parameters ---------- start : number The beginning of the scale interval. end : number The end of the scale interval. desired_ticks : integer Number of ticks that the caller would like to get Returns ------- A float or an integer. """ raise NotImplementedError def labels(self, start, end, numlabels=None, char_width=None): """Returns a series of ticks and corresponding strings for labels that fall inside the interval (*start*,*end*). Parameters ---------- start : number The beginning of the scale interval. end : number The end of the scale interval. numlabels : number The ideal number of labels to generate on the interval. char_width : number The total character width available for labelling the interval. One of *numlabels* or *char_width* must be provided. If both are provided, then both are considered when picking label density and format. """ ticks = self.ticks(start, end, numlabels) labels = self.formatter.format(ticks, numlabels, char_width) return list(zip(ticks, labels)) def label_width(self, start, end, numlabels=None, char_width=None): """Returns an estimate of the total number of characters used by the the labels that this scale produces for the given set of inputs, as well as the number of labels. Parameters ---------- start : number The beginning of the scale interval. end : number The end of the scale interval. numlabels : number The ideal number of labels to generate on the interval. char_width : number The total character width available for labelling the interval. Returns ------- (numlabels, total label width) """ return self.formatter.estimate_width( start, end, numlabels, char_width, ticker=self ) class FixedScale(AbstractScale): """A scale with fixed resolution, and "nice" points that line up at multiples of the resolution. An optional zero value can be defined that offsets the "nice" points to (N*resolution+zero). """ def __init__(self, resolution, zero=0.0, formatter=None): self.resolution = resolution self.zero = zero if formatter is None: formatter = BasicFormatter() self.formatter = formatter def ticks(self, start, end, desired_ticks=None): """For FixedScale, *desired_ticks* is ignored. Overrides AbstractScale. """ if start == end or isnan(start) or isnan(end): return [] res = self.resolution start -= self.zero end -= self.zero start_tick = int(ceil(start / res)) end_tick = int(floor(end / res)) ticks = [i * res for i in range(start_tick, end_tick + 1)] return ticks def num_ticks(self, start, end, desired_ticks=None): """For FixedScale, *desired_ticks* is ignored. Overrides AbstractScale. """ if self.resolution is None or self.resolution == 0.0: return 0 else: return (end - start) / self.resolution def _nice(x, round=False): """Returns a bracketing interval around interval *x*, whose endpoints fall on "nice" values. If *round* is False, then it uses ceil(range) This function is adapted from the original in Graphics Gems; the boundaries have been changed to use (1, 2.5, 5, 10) as the nice values instead of (1, 2, 5, 10). """ if x <= 0: import warnings warnings.warn( "Invalid (negative) range passed to tick interval calculation" ) x = abs(x) expv = floor(log10(x)) f = x / pow(10, expv) if round: if f < 1.75: nf = 1.0 elif f < 3.75: nf = 2.5 elif f < 7.0: nf = 5.0 else: nf = 10.0 else: if f <= 1.0: nf = 1.0 elif f <= 2.5: nf = 2.5 elif f <= 5.0: nf = 5.0 else: nf = 10.0 return nf * pow(10, expv) def heckbert_interval( data_low, data_high, numticks=8, nicefunc=_nice, enclose=False ): """Returns a "nice" range and resolution for an interval and a preferred number of ticks, using Paul Heckbert's algorithm in Graphics Gems. If *enclose* is True, then the function returns a min and a max that fall inside *data_low* and *data_high*; if *enclose* is False, the nice interval can be larger than the input interval. """ if data_high == data_low: return data_high, data_low, 0 if numticks == 0: numticks = 1 range = nicefunc(data_high - data_low) if numticks > 1: numticks -= 1 d = nicefunc(range / numticks, round=True) if enclose: graphmin = ceil(data_low / d) * d graphmax = floor(data_high / d) * d else: graphmin = floor(data_low / d) * d graphmax = ceil(data_high / d) * d return graphmin, graphmax, d class DefaultScale(AbstractScale): """A dynamic scale that tries to place ticks at nice numbers (1, 2, 5, 10) so that ticks don't "pop" as the resolution changes. """ def __init__(self, formatter=None): if formatter is None: formatter = BasicFormatter() self.formatter = formatter def ticks(self, start, end, desired_ticks=8): """Returns the set of "nice" positions on this scale that enclose and fall inside the interval (*start*,*end*). Implements AbstractScale. """ if start == end or isnan(start) or isnan(end): return [start] min, max, delta = heckbert_interval( start, end, desired_ticks, enclose=True ) return frange(min, max, delta) def num_ticks(self, start, end, desired_ticks=8): """Returns an approximate number of ticks that this scale produces for the given interval. Implements AbstractScale. """ return len(self.ticks(start, end, desired_ticks)) class Pow10Scale(AbstractScale): """A dynamic scale that shows only whole multiples of powers of 10 (including powers < 1). """ def __init__(self, formatter=None): if formatter is None: formatter = BasicFormatter() self.formatter = formatter def ticks(self, start, end, desired_ticks=8): """Returns the set of "nice" positions on this scale that enclose and fall inside the interval (*start*,*end*). Implements AbstractScale. """ if start == end or isnan(start) or isnan(end): return [start] min, max, delta = heckbert_interval( start, end, desired_ticks, nicefunc=self._nice_pow10, enclose=True ) return frange(min, max, delta) def num_ticks(self, start, end, desired_ticks=8): """Returns an approximate number of ticks that this scale produces for the given interval. Implements AbstractScale. """ return len(self.ticks(start, end, desired_ticks)) def _nice_pow10(self, x, round=False): return pow(10, floor(log10(x))) class LogScale(AbstractScale): """A dynamic scale that only produces ticks and labels that work well when plotting data on a logarithmic scale. """ def __init__(self, formatter=None): if formatter is None: formatter = BasicFormatter() self.formatter = formatter # In the following utility functions, "irep" stands for "integer representation". # For a given base interval size i (i.e. "magic number"), there is a one-to-one # mapping between the nice tick values and the integers. def _irep_to_value(self, n, i): """For a given "magic number" i (i.e. spacing of the evenly spaced ticks in the decade [1,10]), compute the tick value of the given integer representation.""" if i == 1: j, k = divmod(n, 9) v = (k + 1) * 10 ** j return v else: j, k = divmod(n, int(10.0 / i)) if k == 0: v = 10 ** j else: v = i * k * 10 ** j return v def _power_and_interval(self, x, i): # j is the power of 10 of the decade in which x lies j = int(ceil(log10(x))) - 1 # b is the interval size of the evenly spaced ticks in the decade b = i * 10 ** j return (j, b) def _power_and_index_to_irep(self, j, k, i): if i == 1: n = j * 9 + (k - 1) else: n = j * int(10.0 / i) + k return n def _logtickceil_as_irep(self, x, i): """For a given "magic number" i (i.e. spacing of the evenly spaced ticks in the decade [1,10]), compute the integer representation of the smallest tick not less than x.""" j, b = self._power_and_interval(x, i) k = int(ceil(float(x) / b)) n = self._power_and_index_to_irep(j, k, i) return n def _logtickfloor_as_irep(self, x, i): """For a given "magic number" i (i.e. spacing of the evenly spaced ticks in the decade [1,10]), compute the integer representation of the largest tick not greater than x.""" j, b = self._power_and_interval(x, i) k = int(floor(float(x) / b)) n = self._power_and_index_to_irep(j, k, i) return n def ticks(self, start, end, desired_ticks=8): """ Compute a "nice" set of ticks for a log scale.""" if start > end: start, end = end, start if start == 0.0: # Whoever calls us with a value of 0.0 puts themselves at our mercy log_start = 1e-9 else: log_start = log10(start) if end == 0.0: log_end = 1e-9 else: log_end = log10(end) log_interval = log_end - log_start if log_interval < 1.0: # If the data is spaced by less than a factor of 10, then use # regular/linear ticking min, max, delta = heckbert_interval( start, end, desired_ticks, enclose=True ) return frange(min, max, delta) elif log_interval < desired_ticks: magic_numbers = [1, 2, 5] for interval in magic_numbers: n1 = self._logtickceil_as_irep(start, interval) n2 = self._logtickfloor_as_irep(end, interval) ticks = [ self._irep_to_value(n, interval) for n in range(n1, n2 + 1) ] if len(ticks) < desired_ticks * 1.5: return ticks return ticks else: # Put lines at every power of ten startlog = ceil(log_start) endlog = floor(log_end) expticks = linspace(startlog, endlog, endlog - startlog + 1) return 10 ** expticks def num_ticks(self, start, end, desired_ticks=8): """Returns an approximate number of ticks that this scale produces for the given interval. Implements AbstractScale. """ return len(self.ticks(start, end, desired_ticks)) ############################################################################## # # ScaleSystem # ############################################################################## class ScaleSystem(object): """Represents a collection of scales over some range of resolutions. This class has settings for a default scale that is used when ticking an interval that is smaller than the finest resolution scale or larger than the coarsest resolution scale. """ def __init__(self, *scales, **kw): """Creates a ScaleSystem Usage:: ScaleSystem(scale1, .., scaleN, default_scale = DefaultScale()) If *default_scale* is not specified, then an instance of DefaultScale() is created. If no *default_scale* is needed, then set it to None. """ self.scales = scales self.default_scale = kw.get("default_scale", DefaultScale()) # Heuristics for picking labels # The ratio of total label character count to the available character width self.fill_ratio = 0.3 self.default_numticks = 8 def ticks(self, start, end, numticks=None): """Computes nice locations for tick marks. Parameters ========== start, end : number The start and end values of the data. numticks : number The desired number of ticks to produce. scales : a list of tuples of (min_interval, Scale) Scales to use, in order from fine resolution to coarse. If the end-start interval is less than a particular scale's *min_interval*, then the previous scale is used. Returns ======= A list of positions where the ticks are to be placed. """ if numticks == 0: return [] elif start == end or isnan(start) or isnan(end): return [] elif numticks is None: numticks = self.default_numticks scale = self._get_scale(start, end, numticks) ticks = scale.ticks(start, end, numticks) return ticks def labels(self, start, end, numlabels=None, char_width=None): """Computes position and labels for an interval Parameters ---------- start : number The beginning of the scale interval. end : number The end of the scale interval. numlabels : number The ideal number of labels to generate on the interval. char_width : number The total character width available for labelling the interval. One of *numlabels* or *char_width* must be provided. If both are provided, then both are considered when picking label density and format. Returns ------- A list of (tick position, string) tuples. """ # Check for insufficient arguments. if numlabels is None and char_width is None: raise ValueError( "Either numlabels or char_width (or both) must be given." ) if numlabels == 0 or char_width == 0 or isnan(start) or isnan(end): return [] # There are three cases: # 1. we are given numlabels but not char_width # 2. we are given char_width and not numlabels # 3. we are given both # # Case 1: Use numlabels to find the closest scale purely on tick count. # Case 2: Query all scales for their approximate label_width, pick the # closest one to char_width * self.fill_ratio # Case 3: Use numlabels to find the closest scale based on tick count. if numlabels and not char_width: # numlabels was given, but not char_width. scale = self._get_scale(start, end, numlabels) labels = scale.labels(start, end, numlabels) else: # char_width was given. if numlabels: # Both numlabels and char_width were given. scale = self._get_scale(start, end, numlabels) try: ndx = list(self.scales).index(scale) low = max(0, ndx - 1) high = min(len(self.scales), ndx + 1) scales = self.scales[low:high] except ValueError: scales = [scale] else: # Only char_width was given. if len(self.scales) == 0: scales = [self.default_scale] else: scales = self.scales counts, widths = zip( *[ s.label_width(start, end, char_width=char_width) for s in scales ] ) widths = array(widths) closest = argmin(abs(widths - char_width * self.fill_ratio)) if numlabels is None: numlabels = scales[closest].num_ticks( start, end, counts[closest] ) labels = scales[closest].labels( start, end, numlabels, char_width=char_width ) return labels def _get_scale(self, start, end, numticks): if len(self.scales) == 0: closest_scale = self.default_scale else: closest_scale = self._get_scale_np(start, end, numticks) if self.default_scale is not None: # Handle the edge cases and see if there is a major discrepancy between # what the scales offer and the desired number of ticks; if so, revert # to using the default scale approx_ticks = closest_scale.num_ticks(start, end, numticks) if ( (approx_ticks == 0) or (numticks == 0) or (abs(approx_ticks - numticks) / numticks > 1.2) or (abs(numticks - approx_ticks) / approx_ticks > 1.2) ): closest_scale = self.default_scale return closest_scale def _get_scale_bisect(self, start, end, numticks): scale_intervals = [ s.num_ticks(start, end, numticks) for s in self.scales ] sorted_scales = sorted(zip(scale_intervals, self.scales)) ndx = bisect(sorted_scales, numticks, lo=0, hi=len(self.scales)) if ndx == len(self.scales): ndx -= 1 return sorted_scales[ndx][1] def _get_scale_np(self, start, end, numticks): # Extract the intervals from the scales we were given scale_intervals = array( [s.num_ticks(start, end, numticks) for s in self.scales] ) closest = argmin(abs(scale_intervals - numticks)) return self.scales[closest]
enthought/chaco
chaco/scales/scales.py
scales.py
py
19,821
python
en
code
286
github-code
6
3727746961
### This file is meant to run from pc, *not* from the server. It extracts the # data from the datafile, posts it to the database and finally runs the day # command to add the day to the data. import math import pandas as pd import requests day_of_month = 6 def upload_data(fname): data = extract_data(fname) data_dict_list = [] url = create_url() for _, row in data.iterrows(): aaa = row[5] if math.isnan(aaa): aaa = 'NULL' dict = {"SubmitDateTime": str(row[0]), "UserId": row[1]+1000, "ExerciseId": row[2], "LearningObjectiveId": 8025, "Correct": min(row[4], 1), "AbilityAfterAnswer": aaa} data_dict_list.append(dict) print(dict, ",") # r = requests.post(url=url + "insert/", json=data_dict_list[0], # auth=("Group2", "Group2-1234")) # print(r.status_code, r.reason, url + "insert/") r = requests.get(url + "add_days/start=2018-06-04&end=2018-06-0{}".format( str(day_of_month)), auth=("Group2", "Group2-1234")) print(r.status_code, r.reason, url + "add_days/start=2018-06-04&end=2018-06-0{}".format( day_of_month)) def extract_data(fname): data = pd.read_excel(fname) return data def create_url(): url = "http://applab.ai.ru.nl:5000/" return url if __name__ == "__main__": day_of_month = 6 upload_data("C:/Users/Rick " "Dijkstra/Documents/Study/Applab/SnappetDataAnoniem/" "resultaten-radboud_anoniem 4-6-18.xlsx")
simgeekiz/ApplabAPI
group2api/utils/UploadData.py
UploadData.py
py
1,592
python
en
code
0
github-code
6
72035219069
#!/usr/bin/env python3 from bcc import BPF from http.server import HTTPServer, BaseHTTPRequestHandler import sys import threading clone_ebpf = """ #include <uapi/linux/ptrace.h> #include <linux/sched.h> #include <linux/fs.h> #define ARGSIZE 128 BPF_PERF_OUTPUT(events); struct data_t { u32 pid; // PID as in the userspace term (i.e. task->tgid in kernel) u32 ppid; // Parent PID as in the userspace term (i.e task->real_parent->tgid in kernel) u32 uid; char comm[TASK_COMM_LEN]; }; int clone_ebpf(struct pt_regs *ctx) { struct data_t data = {}; struct task_struct *task; data.uid = bpf_get_current_uid_gid() & 0xffffffff; data.pid = bpf_get_current_pid_tgid() >> 32; task = (struct task_struct *)bpf_get_current_task(); data.ppid = task->real_parent->tgid; bpf_get_current_comm(&data.comm, sizeof(data.comm)); events.perf_submit(ctx, data, sizeof(struct data_t)); return 0; } """ pid = "" ppid = "" uid = "" command = "" def clone_ebpf_thread(): b = BPF(text=clone_ebpf) clone_fn_name = b.get_syscall_fnname("clone") b.attach_kprobe(event=clone_fn_name, fn_name="clone_ebpf") b["events"].open_perf_buffer(collect_events) while 1: try: b.perf_buffer_poll() except KeyboardInterrupt: exit() def collect_events(): event = b["events"].event(data) pid = event.pid ppid = event.ppid uid = event.uid command = event.comm class SimpleHTTPRequestHandler(BaseHTTPRequestHandler): def do_GET(self): print("received a get message", sys.stdout) self.send_response(200) self.end_headers() response = "pid: " + pid + " ppid: " + ppid + " uid: " + uid + " command: " + command self.wfile.write(response) x = threading.Thread(target=clone_ebpf_thread) x.start() httpd = HTTPServer(('0.0.0.0', 8000), SimpleHTTPRequestHandler) httpd.serve_forever()
madhusudanas/ebpf-mac-python
misc/hello_world1.py
hello_world1.py
py
1,927
python
en
code
0
github-code
6
39120803262
def busca_profundidade(grafo, inicio, destino, visitados=None): if visitados is None: visitados = [inicio] if inicio == destino: return visitados for proximo in grafo[inicio]: if proximo not in visitados and destino not in visitados: visitados = busca_profundidade(grafo, proximo, destino, visitados + [proximo]) return visitados
AlbertoFelix/AgentesDeBusca
buscaProfundidade.py
buscaProfundidade.py
py
387
python
pt
code
0
github-code
6
13395399902
from PIL import Image def brighten_Image(pixelList): pix_len = len(pixelList) for i in range(pix_len): #assigns each part of tuple to a variable current_pixel = pixelList[i] #then will brigthen each by 50 red = current_pixel[0] green = current_pixel[1] blue = current_pixel[2] #this is not the best way, ex : replace current_pixel #with pixList[i][0] ect newPixel = (red+50, green+50, blue+50) pixelList[i] = newPixel #replaces current pixel with one #whos R,G,B values are +50 return pixelList def main(): myFile = "/home/h702546919/Desktop/jimmy.jpg" my_img_obj = Image.open(myFile) #my_img_obj.show() #grabs each pixel's tuple pixelList = list(my_img_obj.getdata()) #sends list of tuples to be brightend, gives back newPic newPic = brighten_Image(pixelList) #pushes new brighter pixels my_img_obj.putdata(newPic) #displays new pic and old one #(learn how to make a canvas and print side by side ? ) my_img_obj.show() return #---# main()
tommulvey/CSC15_python
10_3/brightenImage.py
brightenImage.py
py
1,001
python
en
code
0
github-code
6
12789805626
from errno import EIO, ENOSPC, EROFS import sys import os import traceback import glob from decimal import Decimal, getcontext getcontext().prec = 6 assert sys.platform == 'linux', 'This script must be run only on Linux' assert sys.version_info.major >= 3 and sys.version_info.minor >= 5, 'This script requires Python 3.5+' assert os.geteuid() == 0, 'This script must be run as root' try: import sh import time import tempfile import re import logzero import numpy import threading import threading import hashlib import ctypes from collections import OrderedDict from io import StringIO from typing import Optional, List, Dict from fuse import FUSE, FuseOSError, Operations, LoggingMixIn from errno import ENOENT from stat import S_IFDIR, S_IFREG from pynput.keyboard import Key, Listener from utils import ( mute_system_sound, unmute_system_sound, enable_power_led, disable_power_led, init_simple_mixer_control, save_replace_file, file_read_bytes, file_write_bytes, file_read_bytes_direct ) except ImportError as xie: traceback.print_exc() sys.exit(1) APP_UNIXNAME = 'amiga_disk_devices' APP_VERSION = '0.1' TMP_PATH_PREFIX = os.path.join(tempfile.gettempdir(), APP_UNIXNAME) LOG_PATHNAME = os.path.join(TMP_PATH_PREFIX, 'amiga_disk_devices.log') ENABLE_LOGGER = False ENABLE_REINIT_HANDLE_AFTER_SECS = 0 ENABLE_FLOPPY_DRIVE_READ_A_HEAD = True ENABLE_SET_CACHE_PRESSURE = False ENABLE_ADF_CACHING = True DISABLE_SWAP = False DEFAULT_READ_A_HEAD_SECTORS = 24 # 256 system default, 44 seems ok, 24 seems best SYNC_DISKS_SECS = 60 * 3 AMIGA_DISK_DEVICE_TYPE_ADF = 1 AMIGA_DISK_DEVICE_TYPE_HDF_HDFRDB = 8 AMIGA_DISK_DEVICE_TYPE_HDF_DISKIMAGE = 2 AMIGA_DISK_DEVICE_TYPE_HDF = 5 AMIGA_DISK_DEVICE_TYPE_ISO = 10 FLOPPY_DEVICE_SIZE = 1474560 FLOPPY_ADF_SIZE = 901120 FLOPPY_DEVICE_LAST_SECTOR = 1474048 FLOPPY_ADF_EXTENSION = '.adf' HD_HDF_EXTENSION = '.hdf' CD_ISO_EXTENSION = '.iso' ADF_BOOTBLOCK = numpy.dtype([ ('DiskType', numpy.byte, (4, ) ), ('Chksum', numpy.uint32 ), ('Rootblock', numpy.uint32 ) ]) SYSTEM_INTERNAL_SD_CARD_NAME = 'mmcblk0' PHYSICAL_SECTOR_SIZE = 512 PHYSICAL_FLOPPY_SECTOR_READ_TIME_MS = 100 STATUS_FILE_NAME = 'status.log' CACHE_DATA_BETWEEN_SECS = 3 CACHED_ADFS_MAX_DIR_SIZE = 1073741824 # 1GB CACHED_ADFS_DIR = os.path.realpath('./cached_adfs') CACHED_ADF_SIGN = 'AMIPI400' CACHED_ADF_HEADER_TYPE = 'CachedADFHeader' CACHED_ADF_STR_ENCODING = 'ascii' SHA512_LENGTH = 128 MAIN_LOOP_MAX_COUNTER = 0 fs_instance = None key_cmd_pressed = False key_delete_pressed = False key_shift_pressed = False os_read_write_mutex = threading.Lock() devices_read_a_head_sectors = {} def os_read(handle, offset, size): with os_read_write_mutex: os.lseek(handle, offset, os.SEEK_SET) return os.read(handle, size) def os_write(handle, offset, data): with os_read_write_mutex: os.lseek(handle, offset, os.SEEK_SET) return os.write(handle, data) class CachedADFHeader(ctypes.Structure): _fields_ = [ ('sign', ctypes.c_char * 32), ('header_type', ctypes.c_char * 32), ('sha512', ctypes.c_char * 129), ('mtime', ctypes.c_int64) ] class AsyncFileOps(threading.Thread): def __init__(self): self._running = False self._pathname_direct_readings = [] self._pathname_writings = [] self._pathname_deferred_writings = {} threading.Thread.__init__(self) def _direct_readings_by_pathname(self): processed = 0 handles = {} while self._pathname_direct_readings: reading_data = self._pathname_direct_readings.pop(0) try: processed += 1 use_fd = None use_fo = None use_m = None if reading_data['pathname'] in handles: use_fd = handles[reading_data['pathname']][0] use_fo = handles[reading_data['pathname']][1] use_m = handles[reading_data['pathname']][2] handles[reading_data['pathname']] = file_read_bytes_direct( reading_data['pathname'], reading_data['offset'], reading_data['size'], 0, use_fd, use_fo, use_m ) if reading_data['read_handler_func']: read_handler_func = reading_data['read_handler_func'] read_handler_func( reading_data['pathname'], reading_data['offset'], reading_data['size'] ) except Exception as x: traceback.print_exc() print_log('_process_direct_readings_by_pathname', x) print_log() for pathname, handle_tuples in handles.items(): os.close(handle_tuples[0]) # handle_tuples[1].close() handle_tuples[2].close() return processed # def _direct_readings_by_pathname(self): # processed = 0 # while self._pathname_direct_readings: # reading_data = self._pathname_direct_readings.pop(0) # try: # processed += 1 # file_read_bytes_direct( # reading_data['pathname'], # reading_data['offset'], # reading_data['size'] # ) # if reading_data['read_handler_func']: # read_handler_func = reading_data['read_handler_func'] # read_handler_func( # reading_data['pathname'], # reading_data['offset'], # reading_data['size'] # ) # except Exception as x: # print_log('_process_direct_readings_by_pathname', x) # return processed def _writings_by_pathname(self): handles = {} processed = 0 while self._pathname_writings: disable_power_led() write_data = self._pathname_writings.pop(0) if write_data['pathname'] not in handles: handles[write_data['pathname']] = os.open(write_data['pathname'], os.O_WRONLY) fd = handles[write_data['pathname']] try: processed += 1 disable_power_led() file_write_bytes( write_data['pathname'], write_data['offset'], write_data['data'], use_fd=fd ) except Exception as x: print_log('_process_writings_by_pathname', x) disable_power_led() for pathname, fd in handles.items(): os.close(fd) return processed def _deferred_one_time_writings_by_pathname(self, idle_total_secs): handles = {} for pathname, write_data in self._pathname_deferred_writings.copy().items(): if not write_data: continue if write_data['idle_min_secs'] < idle_total_secs: continue # print('write_data', write_data) disable_power_led() if write_data['pathname'] not in handles: handles[write_data['pathname']] = os.open(write_data['pathname'], os.O_WRONLY) fd = handles[write_data['pathname']] try: disable_power_led() file_write_bytes( write_data['pathname'], write_data['offset'], write_data['data'], use_fd=fd ) except Exception as x: print_log('_process_writings_by_pathname', x) disable_power_led() if write_data['done_handler']: write_data['done_handler']( write_data, write_data['done_handler_args'] ) self._pathname_deferred_writings[pathname] = None for pathname, fd in handles.items(): os.close(fd) def run(self): idle_start_ts = 0 while self._running: processed = 0 processed += self._direct_readings_by_pathname() processed += self._writings_by_pathname() if not processed: # idle, process deferred one-time writings if not idle_start_ts: idle_start_ts = time.time() idle_total_secs = time.time() - idle_start_ts self._deferred_one_time_writings_by_pathname(idle_total_secs) else: idle_start_ts = 0 time.sleep(10 / 1000) time.sleep(0) def read_direct_by_pathname(self, pathname: str, offset, size, read_handler_func=None, max_at_a_time=None): if max_at_a_time is not None: if len(self._pathname_direct_readings) >= max_at_a_time: return self._pathname_direct_readings.append({ 'pathname': pathname, 'offset': offset, 'size': size, 'read_handler_func': read_handler_func }) def write_by_pathname(self, pathname: str, offset, data): self._pathname_writings.append({ 'pathname': pathname, 'offset': offset, 'data': data }) def deferred_one_time_write_by_pathname( self, pathname, offset, data, idle_min_secs, done_handler=None, done_handler_args=None ): self._pathname_deferred_writings[pathname] = { 'pathname': pathname, 'offset': offset, 'data': data, 'idle_min_secs': idle_min_secs, 'done_handler': done_handler, 'done_handler_args': done_handler_args } def start(self): self._running = True return super().start() def stop(self): self._running = False class AmigaDiskDevicesFS(LoggingMixIn, Operations): _handles: Dict[str, int] _access_times: Dict[str, float] _modification_times: Dict[str, float] def __init__(self, disk_devices: dict, async_file_ops: AsyncFileOps): self._instance_time = time.time() self._disk_devices = disk_devices self._static_files = { '/': dict( st_mode=(S_IFDIR | 0o444), st_ctime=self._instance_time, st_mtime=self._instance_time, st_atime=self._instance_time, st_nlink=2, st_size=4096 ), '/' + STATUS_FILE_NAME: dict( st_mode=(S_IFREG | 0o444), st_ctime=self._instance_time, st_mtime=self._instance_time, st_atime=self._instance_time, st_nlink=1 ) } self._handles = {} self._mutex = threading.Lock() self._access_times = {} self._modification_times = {} self._last_write_ts = 0 self._async_file_ops = async_file_ops self._status_log_content = None access = None flush = None getxattr = None listxattr = None open = None opendir = None release = None releasedir = None statfs = None def _add_defaults(self, ipart_data): if 'fully_cached' not in ipart_data: ipart_data['fully_cached'] = False if 'last_caching_ts' not in ipart_data: ipart_data['last_caching_ts'] = 0 if 'enable_spinning' not in ipart_data: ipart_data['enable_spinning'] = True if 'cached_adf_pathname' not in ipart_data: ipart_data['cached_adf_pathname'] = '' def set_disk_devices(self, disk_devices: dict): with self._mutex: for ipart_dev, ipart_data in disk_devices.items(): self._add_defaults(ipart_data) self._disk_devices = disk_devices self._status_log_content = None self._flush_handles() def _flush_handles(self): for device_pathname in list(self._handles.keys()): if device_pathname not in self._disk_devices: self._close_handle(device_pathname) def _close_handles(self): for device_pathname in list(self._handles.keys()): self._close_handle(device_pathname) def _close_handle(self, device_pathname: str): handle = None try: handle = self._handles[device_pathname] os.close(handle) except: pass try: del self._handles[device_pathname] except: pass try: del self._access_times[device_pathname] except: pass try: del self._modification_times[device_pathname] except: pass return handle def _open_handle(self, ipart_data: dict) -> Optional[int]: device_pathname = ipart_data['device'] if device_pathname in self._handles: return self._handles[device_pathname] self._set_fully_cached(ipart_data, False) is_readable = ipart_data['is_readable'] is_writable = ipart_data['is_writable'] mode = os.O_SYNC | os.O_RSYNC if is_readable and is_writable: mode |= os.O_RDWR else: mode |= os.O_RDONLY try: self._handles[device_pathname] = os.open(device_pathname, mode) except: return None return self._handles[device_pathname] def _find_file(self, public_name: str) -> Optional[dict]: for ipart_dev, ipart_data in self._disk_devices.items(): if ipart_data['public_name'] == public_name: return ipart_data return None def _save_file_access_time(self, device_pathname: str, _time: float = None) -> float: if _time is None: _time = time.time() self._access_times[device_pathname] = _time return _time def _save_file_modification_time(self, device_pathname: str) -> float: current_time = time.time() self._modification_times[device_pathname] = current_time self._last_write_ts = current_time return current_time def _get_file_access_time(self, device: str) -> float: try: return self._access_times[device] except: return self._save_file_access_time(device) def _get_file_modification_time(self, device: str) -> float: try: return self._modification_times[device] except: return self._save_file_modification_time(device) def _clear_pathname(self, pathname: str) -> str: if pathname.startswith(os.path.sep): pathname = pathname[1:] return pathname def _genrate_perm_int_mask(self, user_can_read: bool, user_can_write: bool, user_can_execute: bool, group_can_read: bool, group_can_write: bool, group_can_execute: bool, other_can_read: bool, other_can_write: bool, other_can_execute: bool ) -> int: bin_string = '' bin_string += str(int(user_can_read)) bin_string += str(int(user_can_write)) bin_string += str(int(user_can_execute)) bin_string += str(int(group_can_read)) bin_string += str(int(group_can_write)) bin_string += str(int(group_can_execute)) bin_string += str(int(other_can_read)) bin_string += str(int(other_can_write)) bin_string += str(int(other_can_execute)) return int(bin_string, 2) def getattr(self, path, fh=None): with self._mutex: self._flush_handles() if path in self._static_files: return self._static_files[path] name = self._clear_pathname(path) ipart_data = self._find_file(name) if not ipart_data: raise FuseOSError(ENOENT) access_time = self._get_file_access_time(ipart_data['device']) modification_time = self._get_file_modification_time(ipart_data['device']) is_readable = ipart_data['is_readable'] is_writable = ipart_data['is_writable'] perm_int_mask = self._genrate_perm_int_mask( is_readable, is_writable, False, is_readable, is_writable, False, is_readable, is_writable, False ) return dict(st_mode=(S_IFREG | perm_int_mask), st_nlink=1, st_size=ipart_data['size'], st_ctime=self._instance_time, st_atime=access_time, st_mtime=modification_time ) def _partial_read( self, handle, offset, size, max_read_size = None, min_total_read_time_ms = None, pre_read_callback = None, post_read_callback = None, callback_user_data = None ): ex = None to_read_size = size all_data = bytes() dynamic_offset = offset read_time_ms = 0 total_read_time_ms = 0 count_real_read_sectors = 0 total_len_data = 0 while True: try: if pre_read_callback: pre_read_callback( read_time_ms, total_read_time_ms, callback_user_data ) start_time = time.time() data = os_read(handle, dynamic_offset, PHYSICAL_SECTOR_SIZE) len_data = len(data) dynamic_offset += len_data total_len_data += len_data read_time_ms = int((time.time() - start_time) * 1000) total_read_time_ms += read_time_ms if post_read_callback: post_read_callback( read_time_ms, total_read_time_ms, callback_user_data ) if read_time_ms > PHYSICAL_FLOPPY_SECTOR_READ_TIME_MS: count_real_read_sectors += 1 all_data += data to_read_size -= len_data if len_data < PHYSICAL_SECTOR_SIZE: break if max_read_size is not None: if total_len_data >= max_read_size: break if to_read_size <= 0: if min_total_read_time_ms is not None: if total_read_time_ms < min_total_read_time_ms: continue break except Exception as x: print_log('_partial_read', x) ex = x break all_data = all_data[:size] return { 'all_data': all_data, 'ex': ex, 'total_read_time_ms': total_read_time_ms, 'count_real_read_sectors': count_real_read_sectors } def _set_fully_cached(self, ipart_data, fully_cached_status): if ipart_data['fully_cached'] != fully_cached_status: ipart_data['fully_cached'] = fully_cached_status self._status_log_content = None def _pre_read_callback(self, read_time_ms, total_read_time_ms, callback_user_data): ipart_data = callback_user_data if not ipart_data['fully_cached']: mute_system_sound(4) self._save_file_access_time(ipart_data['device']) def _floppy_read(self, handle, offset, size, ipart_data): current_time = time.time() if not ipart_data['last_caching_ts']: ipart_data['last_caching_ts'] = current_time if not ipart_data['fully_cached']: mute_system_sound(4) read_result = self._partial_read( handle, offset, size, None, None, self._pre_read_callback, None, ipart_data ) if read_result['total_read_time_ms'] > PHYSICAL_FLOPPY_SECTOR_READ_TIME_MS: self._set_fully_cached(ipart_data, False) # set_numlock_state(ipart_data['fully_cached']) if ipart_data['fully_cached']: if ipart_data['enable_spinning']: self._async_file_ops.read_direct_by_pathname( ipart_data['device'], offset, size, None, 1 ) if read_result['ex'] is not None: raise read_result['ex'] return read_result['all_data'] if read_result['total_read_time_ms'] < PHYSICAL_FLOPPY_SECTOR_READ_TIME_MS \ and not ipart_data['fully_cached']: if not ipart_data['fully_cached']: if current_time - ipart_data['last_caching_ts'] >= CACHE_DATA_BETWEEN_SECS: read_result2 = self._partial_read( handle, 0, PHYSICAL_SECTOR_SIZE, FLOPPY_ADF_SIZE, PHYSICAL_FLOPPY_SECTOR_READ_TIME_MS, self._pre_read_callback, None, ipart_data ) ipart_data['last_caching_ts'] = current_time if read_result2['total_read_time_ms'] < PHYSICAL_FLOPPY_SECTOR_READ_TIME_MS: self._set_fully_cached(ipart_data, True) self._floppy_cache_adf(handle, ipart_data) self._save_file_access_time(ipart_data['device']) if read_result['ex'] is not None: raise read_result['ex'] return read_result['all_data'] def _floppy_cache_adf(self, handle, ipart_data): # should be called only once when saving cached ADF # since read() and write() will not call # _floppy_read() if not ENABLE_ADF_CACHING: return # read whole ADF read_result3 = self._partial_read( handle, 0, FLOPPY_ADF_SIZE, FLOPPY_ADF_SIZE, PHYSICAL_FLOPPY_SECTOR_READ_TIME_MS, self._pre_read_callback, None, ipart_data ) if ipart_data['cached_adf_sha512']: # use existing sha512 ID sha512_id = ipart_data['cached_adf_sha512'] print_log('Using existing SHA512 ID={sha512_id} for {filename} '.format( filename=ipart_data['device'], sha512_id=sha512_id )) else: # calculate sha512 hash from readed ADF adf_hash = hashlib.sha512() adf_hash.update(read_result3['all_data']) sha512_id = adf_hash.hexdigest() print_log('Calculated SHA512 ID={sha512_id} for {filename} '.format( filename=ipart_data['device'], sha512_id=sha512_id )) # 123 cached_adf_pathname = os.path.join( CACHED_ADFS_DIR, build_cached_adf_filename( sha512_id, FLOPPY_ADF_EXTENSION ) ) if not os.path.exists(cached_adf_pathname) or os.path.getsize(cached_adf_pathname) != FLOPPY_ADF_SIZE: # save a copy of the ADF file in the cache dir # sha512 + '.adf' save_replace_file( cached_adf_pathname, read_result3['all_data'], CACHED_ADFS_MAX_DIR_SIZE ) os.sync() # next call to read() or write() will be redirected to # _floppy_read_cached() or _floppy_write_cached() ipart_data['cached_adf_pathname'] = cached_adf_pathname # # close the handle, it would not be needed anymore # self._close_handle(ipart_data['device']) print_log('{filename} saved cached ADF as {cached_adf_pathname}'.format( filename=ipart_data['device'], cached_adf_pathname=cached_adf_pathname )) header = build_CachedADFHeader(sha512_id, int(os.path.getmtime(cached_adf_pathname))) os_write(handle, FLOPPY_DEVICE_LAST_SECTOR, header) # close the handle, it would not be needed anymore self._close_handle(ipart_data['device']) def _generate_status_log(self): if self._status_log_content: return self._status_log_content content = '' for ipart_dev, ipart_data in self._disk_devices.items(): content += 'device:' + ipart_dev + ', ' content += 'public_name:' + ipart_data['public_name'] + ', ' content += 'fully_cached:' + str(int(ipart_data['fully_cached'])) content += '\n' self._status_log_content = content return content def _status_log_read(self, offset, size): content = self._generate_status_log() return bytes( content[offset : offset + size], 'utf-8' ) def _generic_read(self, handle, offset, size, ipart_data): self._save_file_access_time(ipart_data['device']) if ipart_data['is_disk_drive']: disable_power_led() return os_read(handle, offset, size) def _open_cached_adf_handle(self, ipart_data: dict) -> Optional[int]: pathname = ipart_data['cached_adf_pathname'] if pathname in self._handles: return self._handles[pathname] mode = os.O_SYNC | os.O_RSYNC | os.O_RDWR try: self._handles[pathname] = os.open(pathname, mode) except: return None return self._handles[pathname] def _floppy_read_cached(self, offset, size, ipart_data): self._save_file_access_time(ipart_data['device']) self._set_fully_cached(ipart_data, True) if ipart_data['enable_spinning']: self._async_file_ops.read_direct_by_pathname( ipart_data['device'], offset, size, None, 2 ) fd = self._open_cached_adf_handle(ipart_data) # TODO use use_fd return file_read_bytes( ipart_data['cached_adf_pathname'], offset, size, use_fd=fd ) def _floppy_write_cached(self, offset, data, ipart_data): self._save_file_modification_time(ipart_data['device']) self._set_fully_cached(ipart_data, True) self._async_file_ops.write_by_pathname( ipart_data['device'], offset, data ) # 456 def write_done_handler(write_data, done_handler_args): # return print(time.time(), 'data', locals()) fd = self._open_cached_adf_handle(ipart_data) # TODO use use_fd write_result = file_write_bytes( ipart_data['cached_adf_pathname'], offset, data, 0, use_fd=fd ) header = build_CachedADFHeader( ipart_data['cached_adf_sha512'], int(os.path.getmtime(ipart_data['cached_adf_pathname'])) ) self._async_file_ops.deferred_one_time_write_by_pathname( ipart_data['device'], FLOPPY_DEVICE_LAST_SECTOR, header, 1, done_handler=write_done_handler, done_handler_args=(ipart_data,) ) return write_result def read(self, path, size, offset, fh): with self._mutex: self._flush_handles() name = self._clear_pathname(path) if name == STATUS_FILE_NAME: return self._status_log_read(offset, size) ipart_data = self._find_file(name) if not ipart_data: raise FuseOSError(ENOENT) file_size = ipart_data['size'] if offset + size > file_size: size = file_size - offset if offset >= file_size or size <= 0: self._save_file_access_time(ipart_data['device']) return b'' if ENABLE_ADF_CACHING: if ipart_data['is_floppy_drive'] and ipart_data['cached_adf_pathname']: return self._floppy_read_cached(offset, size, ipart_data) handle = self._open_handle(ipart_data) if handle is None: self._save_file_access_time(ipart_data['device']) raise FuseOSError(EIO) if ipart_data['is_floppy_drive']: return self._floppy_read( handle, offset, size, ipart_data ) return self._generic_read( handle, offset, size, ipart_data ) def truncate(self, path, length, fh=None): # block devices cannot be truncated, so just return return def write(self, path, data, offset, fh): with self._mutex: self._flush_handles() name = self._clear_pathname(path) ipart_data = self._find_file(name) if not ipart_data: raise FuseOSError(ENOENT) if not ipart_data['is_writable']: raise FuseOSError(EROFS) self._set_fully_cached(ipart_data, False) self._save_file_modification_time(ipart_data['device']) max_file_size = ipart_data['size'] len_data = len(data) if offset + len_data > max_file_size or offset >= max_file_size: self._save_file_modification_time(ipart_data['device']) raise FuseOSError(ENOSPC) if len_data == 0: self._save_file_modification_time(ipart_data['device']) return b'' if ENABLE_ADF_CACHING: if ipart_data['is_floppy_drive'] and ipart_data['cached_adf_pathname']: return self._floppy_write_cached(offset, data, ipart_data) handle = self._open_handle(ipart_data) if handle is None: self._save_file_modification_time(ipart_data['device']) raise FuseOSError(EIO) if ipart_data['is_floppy_drive']: mute_system_sound(4) if ipart_data['is_disk_drive']: disable_power_led() ex = None try: result = os_write(handle, offset, data) self._save_file_modification_time(ipart_data['device']) if ipart_data['is_floppy_drive']: mute_system_sound(4) except Exception as x: print_log('write', x) ex = x self._save_file_modification_time(ipart_data['device']) if ex is not None: raise ex return result def readdir(self, path, fh): with self._mutex: self._flush_handles() entries = [ '.', '..', STATUS_FILE_NAME ] if path != '/': return entries for ipart_dev, ipart_data in self._disk_devices.items(): entries.append( ipart_data['public_name'] ) return entries def destroy(self, path): with self._mutex: self._close_handles() def print_log(*args): if ENABLE_LOGGER: if args: logzero.logger.info(*args) else: print(*args) def init_logger(): if not ENABLE_LOGGER: return print('Logging to ' + LOG_PATHNAME) logzero.logfile(LOG_PATHNAME, maxBytes=1e6, backupCount=3, disableStderrLogger=True) def print_app_version(): print('{name} v{version}'. format( name=APP_UNIXNAME.upper(), version=APP_VERSION )) def check_pre_requirements(): check_system_binaries() def configure_system(): print_log('Configuring system') disable_swap() set_cache_pressure() def disable_swap(): if not DISABLE_SWAP: return print_log('Disable swap') os.system('swapoff -a') def set_cache_pressure(): if not ENABLE_SET_CACHE_PRESSURE: return print_log('Set cache pressure') os.system('sysctl -q vm.vfs_cache_pressure=200') def check_system_binaries(): print_log('Checking system binaries') bins = [ 'lsblk', 'sysctl', 'swapoff', 'blockdev', 'umount', 'hwinfo' ] for ibin in bins: if not sh.which(ibin): print_log(ibin + ': command not found') sys.exit(1) def is_device_physical_floppy( device_pathname: str, device_data: dict, physical_floppy_drives: dict ) -> bool: return ( device_pathname in physical_floppy_drives ) and \ device_data['type'] == 'disk' and \ device_data['size'] == FLOPPY_DEVICE_SIZE def is_device_physical_cdrom( device_pathname: str, device_data: dict, physical_cdrom_drives: dict ) -> bool: return ( device_pathname in physical_cdrom_drives ) and device_data['type'] == 'rom' def is_device_physical_disk(device_data: dict) -> bool: return ( not device_data['is_floppy_drive'] and not device_data['is_cdrom_drive'] ) and device_data['type'] == 'disk' def get_partitions2(physical_cdrom_drives, physical_floppy_drives) -> 'OrderedDict[str, dict]': lsblk_buf = StringIO() pattern = r'NAME="(\w*)" SIZE="(\d*)" TYPE="(\w*)" MOUNTPOINT="(.*)" LABEL="(.*)" PATH="(.*)" FSTYPE="(.*)" PTTYPE="(.*)" RO="(.*)"' ret: OrderedDict[str, dict] = OrderedDict() try: # lsblk -P -o name,size,type,mountpoint,label,path,fstype,pttype,ro -n -b sh.lsblk('-P', '-o', 'name,size,type,mountpoint,label,path,fstype,pttype,ro', '-n', '-b', _out=lsblk_buf) except Exception as x: print_log('get_partitions2 lsblk', x) return None for line in lsblk_buf.getvalue().splitlines(): line = line.strip() if not line: continue search_result = re.search(pattern, line) if not search_result: continue found = search_result.groups() full_path = found[5] device_basename = os.path.basename(full_path) if device_basename.startswith(SYSTEM_INTERNAL_SD_CARD_NAME): continue device_data = { 'mountpoint': found[3], 'label': found[4], 'config': None, 'device': full_path, 'device_basename': device_basename, 'is_floppy_drive': False, 'is_cdrom_drive': False, 'is_disk_drive': False, 'size': int(found[1]) if found[1] else 0, 'type': found[2], 'fstype': found[6], 'pttype': found[7], 'is_readable': True, # in Linux device is reabable by default 'is_writable': bool(int(found[8])) == False } device_data['is_floppy_drive'] = is_device_physical_floppy( full_path, device_data, physical_floppy_drives ) device_data['is_cdrom_drive'] = is_device_physical_cdrom( full_path, device_data, physical_cdrom_drives ) device_data['is_disk_drive'] = is_device_physical_disk( device_data ) if device_data['is_cdrom_drive']: device_data['is_writable'] = False if is_unknown_disk(device_data): # do not add unknown cd/dvd continue ret[full_path] = device_data return ret def print_partitions(partitions: dict): if not partitions: return print_log('Known partitions:') for key, value in partitions.items(): print_log(key) print_log(' mountpoint: ' + str(value['mountpoint'])) print_log(' label: ' + str(value['label'])) print_log(' is_floppy_drive: ' + str(value['is_floppy_drive'])) print_log(' is_cdrom_drive: ' + str(value['is_cdrom_drive'])) print_log(' is_disk_drive: ' + str(value['is_disk_drive'])) print_log(' size: ' + str(value['size'])) print_log(' type: ' + str(value['type'])) print_log(' pttype: ' + str(value['pttype'])) print_log(' fstype: ' + str(value['fstype'])) print_log() def device_get_public_name(ipart_data: dict): pathname = ipart_data['device'].replace(os.path.sep, '__') if ipart_data['amiga_device_type'] == AMIGA_DISK_DEVICE_TYPE_ADF: pathname += FLOPPY_ADF_EXTENSION elif ipart_data['amiga_device_type'] == AMIGA_DISK_DEVICE_TYPE_HDF_DISKIMAGE or \ ipart_data['amiga_device_type'] == AMIGA_DISK_DEVICE_TYPE_HDF_HDFRDB: pathname += HD_HDF_EXTENSION if ipart_data['amiga_device_type'] == AMIGA_DISK_DEVICE_TYPE_ISO: pathname += CD_ISO_EXTENSION return pathname def get_hdf_type(pathname: str) -> int: # TODO test me file_stat = os.stat(pathname) data = file_read_bytes(pathname, 0, PHYSICAL_SECTOR_SIZE) if len(data) < 4: return None char_0 = chr(data[0]) char_1 = chr(data[1]) char_2 = chr(data[2]) char_3 = chr(data[3]) first_4_chars = ''.join([char_0, char_1, char_2, char_3]) if first_4_chars == 'RDSK': return AMIGA_DISK_DEVICE_TYPE_HDF_HDFRDB elif first_4_chars.startswith('DOS'): if file_stat.st_size < 4 * 1024 * 1024: return AMIGA_DISK_DEVICE_TYPE_HDF_DISKIMAGE else: return AMIGA_DISK_DEVICE_TYPE_HDF return None def hdf_type_to_str(hdf_type: int): if hdf_type == AMIGA_DISK_DEVICE_TYPE_HDF_HDFRDB: return 'RDSK' elif hdf_type == AMIGA_DISK_DEVICE_TYPE_HDF_DISKIMAGE: return 'DISKIMAGE' elif hdf_type == AMIGA_DISK_DEVICE_TYPE_HDF: return 'HDF' return None def remove_known_disk_devices(partitions: dict, disk_devices: dict): count_removed = 0 for device_pathname, device_data in disk_devices.copy().items(): if device_pathname not in partitions: continue ipart_data = partitions[device_pathname] remove = not is_unknown_disk(ipart_data) and \ not ipart_data['is_cdrom_drive'] and \ not device_data['force_add'] if remove: print_log(device_pathname, 'removing incorrectly added device') del disk_devices[device_pathname] count_removed += 1 return count_removed def cleanup_disk_devices(partitions: dict, disk_devices: dict): for ipart_dev in list(disk_devices.keys()): if ipart_dev not in partitions: del disk_devices[ipart_dev] print_log(ipart_dev, 'ejected') def add_adf_disk_device( ipart_dev: str, ipart_data: dict, disk_devices: dict, force_add: bool = False ): print_log('{filename} using as ADF'.format( filename=ipart_dev )) if ENABLE_FLOPPY_DRIVE_READ_A_HEAD: set_device_read_a_head_sectors(ipart_dev, DEFAULT_READ_A_HEAD_SECTORS) else: set_device_read_a_head_sectors(ipart_dev, 0) disk_devices[ipart_dev] = ipart_data.copy() disk_devices[ipart_dev]['amiga_device_type'] = AMIGA_DISK_DEVICE_TYPE_ADF disk_devices[ipart_dev]['public_name'] = device_get_public_name(disk_devices[ipart_dev]) disk_devices[ipart_dev]['size'] = FLOPPY_ADF_SIZE disk_devices[ipart_dev]['force_add'] = force_add disk_devices[ipart_dev]['cached_adf_pathname'] = '' disk_devices[ipart_dev]['cached_adf_sha512'] = '' update_cached_adf_data(ipart_dev, disk_devices[ipart_dev]) def build_CachedADFHeader(sha512_id, mtime): header = CachedADFHeader() header.sign = bytes(CACHED_ADF_SIGN, CACHED_ADF_STR_ENCODING) header.header_type = bytes(CACHED_ADF_HEADER_TYPE, CACHED_ADF_STR_ENCODING) header.sha512 = bytes(sha512_id, CACHED_ADF_STR_ENCODING) header.mtime = mtime return bytes(header) def build_cached_adf_filename(sha512_id, ext): return sha512_id + ext def update_cached_adf_data(ipart_dev: str, ipart_data: dict): if not ENABLE_ADF_CACHING: return last_sector_data = file_read_bytes(ipart_dev, FLOPPY_DEVICE_LAST_SECTOR, PHYSICAL_SECTOR_SIZE) adf_header = CachedADFHeader.from_buffer_copy(last_sector_data) decoded_sign = '' decoded_header_type = '' decoded_sha512 = '' try: decoded_sign = str(adf_header.sign, CACHED_ADF_STR_ENCODING) decoded_header_type = str(adf_header.header_type, CACHED_ADF_STR_ENCODING) decoded_sha512 = str(adf_header.sha512, CACHED_ADF_STR_ENCODING) except UnicodeDecodeError: pass if adf_header.mtime < 0: adf_header.mtime = 0 if decoded_sign != CACHED_ADF_SIGN or \ decoded_header_type != CACHED_ADF_HEADER_TYPE or \ not decoded_sha512 or \ len(decoded_sha512) < SHA512_LENGTH: # ADF not cached return ipart_data['cached_adf_sha512'] = decoded_sha512 cached_adf_pattern = os.path.join( CACHED_ADFS_DIR, build_cached_adf_filename( decoded_sha512, FLOPPY_ADF_EXTENSION ) ) print_log('{filename} looking for {cached_adf_pattern}'.format( filename=ipart_dev, cached_adf_pattern=cached_adf_pattern )) found_cached_adfs = list(glob.glob(cached_adf_pattern)) if not found_cached_adfs or \ not os.path.exists(found_cached_adfs[0]): print_log('{filename} is cached ADF (ID={sha512_id}, mtime={mtime}, cached file does not exists, existing ID will be used)'.format( filename=ipart_dev, sha512_id=decoded_sha512, mtime=adf_header.mtime )) return if os.path.getsize(found_cached_adfs[0]) != FLOPPY_ADF_SIZE: print_log('{filename} is cached ADF (ID={sha512_id}, mtime={mtime}, cached file has incorrect size, removing, existing ID will be used)'.format( filename=ipart_dev, sha512_id=decoded_sha512, mtime=adf_header.mtime )) os.remove(found_cached_adfs[0]) return # if Decimal(os.path.getmtime(found_cached_adfs[0])) < Decimal(adf_header.mtime): if int(os.path.getmtime(found_cached_adfs[0])) < adf_header.mtime: print_log('{filename} is cached ADF (ID={sha512_id}, mtime={mtime}, cached file has incorrect mtime, removing, existing ID will be used)'.format( filename=ipart_dev, sha512_id=decoded_sha512, mtime=adf_header.mtime )) os.remove(found_cached_adfs[0]) return ipart_data['cached_adf_pathname'] = found_cached_adfs[0] print_log('{filename} is cached ADF (ID={sha512_id}, as {cached_adf_pathname})'.format( filename=ipart_dev, sha512_id=decoded_sha512, cached_adf_pathname=found_cached_adfs[0] )) def add_hdf_disk_device( ipart_dev: str, ipart_data: dict, disk_devices: dict, _type: int, force_add: bool = False ): print_log('{filename} using as HDF'.format( filename=ipart_dev )) disk_devices[ipart_dev] = ipart_data.copy() disk_devices[ipart_dev]['amiga_device_type'] = _type disk_devices[ipart_dev]['public_name'] = device_get_public_name(disk_devices[ipart_dev]) disk_devices[ipart_dev]['force_add'] = force_add def add_bigger_disk_device( ipart_dev: str, ipart_data: dict, disk_devices: dict, force_add: bool = False ): hdf_type = get_hdf_type(ipart_dev) if not hdf_type: # could be iso print_log('{filename} cannot determine disk device type, using DISKIMAGE by default'.format( filename=ipart_dev )) hdf_type = AMIGA_DISK_DEVICE_TYPE_HDF_DISKIMAGE if hdf_type != AMIGA_DISK_DEVICE_TYPE_HDF_DISKIMAGE and \ hdf_type != AMIGA_DISK_DEVICE_TYPE_HDF_HDFRDB and \ hdf_type != AMIGA_DISK_DEVICE_TYPE_HDF: print_log('{filename} {_type} is not supported'.format( filename=ipart_dev, _type=hdf_type_to_str(hdf_type) )) return add_hdf_disk_device( ipart_dev, ipart_data, disk_devices, hdf_type, force_add ) def add_iso_disk_device(ipart_dev: str, ipart_data: dict, disk_devices: dict): print_log('{filename} using as ISO'.format( filename=ipart_dev )) disk_devices[ipart_dev] = ipart_data.copy() disk_devices[ipart_dev]['amiga_device_type'] = AMIGA_DISK_DEVICE_TYPE_ISO disk_devices[ipart_dev]['public_name'] = device_get_public_name(disk_devices[ipart_dev]) disk_devices[ipart_dev]['force_add'] = False def is_unknown_disk(ipart_data: dict) -> bool: return ipart_data['fstype'] == '' and ipart_data['pttype'] == '' def add_disk_devices2(partitions: dict, disk_devices: dict): force_add = is_cmd_shift_pressed() clear_pressed_keys() for ipart_dev, ipart_data in partitions.items(): if ipart_dev in disk_devices: continue unknown = is_unknown_disk(ipart_data) if ipart_data['is_floppy_drive']: if not unknown and not force_add: continue add_adf_disk_device( ipart_dev, ipart_data, disk_devices, force_add ) if not disk_devices[ipart_dev]['cached_adf_pathname']: # ADF is not cached, need to mute the system sound mute_system_sound(6) elif ipart_data['is_disk_drive']: if not unknown and not force_add: continue add_bigger_disk_device( ipart_dev, ipart_data, disk_devices, force_add ) elif ipart_data['is_cdrom_drive']: add_iso_disk_device( ipart_dev, ipart_data, disk_devices ) def is_adf_header(header: bytes) -> bool: # TODO provide better method to detect ADF header parsed_header = numpy.frombuffer(header, ADF_BOOTBLOCK, 1)[0] disk_type = parsed_header['DiskType'].tobytes().decode('ascii', 'ignore').rstrip('\0') if disk_type != 'DOS': return False disk_type_other_bits = clear_bits( parsed_header['DiskType'][3], [0, 1, 2] ) if disk_type_other_bits != 0: return False return True def clear_bits(i: int, bits: list) -> int: for ibit in bits: i = i & ~(1<<ibit) return i def update_disk_devices(partitions: dict, disk_devices: dict): cleanup_disk_devices(partitions, disk_devices) add_disk_devices2(partitions, disk_devices) def run_fuse(disk_devices: dict, async_file_ops: AsyncFileOps): global fs_instance fs_instance = AmigaDiskDevicesFS(disk_devices, async_file_ops) FUSE( fs_instance, TMP_PATH_PREFIX, foreground=True, allow_other=True, direct_io=True ) def init_fuse(disk_devices: dict, async_file_ops: AsyncFileOps): print_log('Init FUSE') fuse_instance_thread = threading.Thread(target=run_fuse, args=(disk_devices, async_file_ops,)) fuse_instance_thread.start() return fuse_instance_thread def unmount_fuse_mountpoint(): print_log('Unmounting FUSE mountpoint') os.system('umount {dir}'.format( dir=TMP_PATH_PREFIX )) def mkdir_fuse_mountpoint(): os.makedirs(TMP_PATH_PREFIX, exist_ok=True) def affect_fs_disk_devices(disk_devices: dict): global fs_instance if not fs_instance: return fs_instance.set_disk_devices(disk_devices.copy()) def set_device_read_a_head_sectors(device: str, sectors: int): global devices_read_a_head_sectors if device not in devices_read_a_head_sectors: devices_read_a_head_sectors[device] = None if devices_read_a_head_sectors[device] == sectors: return devices_read_a_head_sectors[device] = sectors os.system('blockdev --setra {sectors} {device}'.format( sectors=sectors, device=device )) def find_new_devices(partitions: dict, old_partitions: dict) -> List[str]: new_devices = [] for ipart_dev, ipart_data in partitions.items(): if not old_partitions or ipart_dev not in old_partitions: new_devices.append(ipart_dev) return new_devices def quick_format_single_device(device: str): blank_dos = bytearray(1024) blank_dos[0] = ord('D') blank_dos[1] = ord('O') blank_dos[2] = ord('S') try: file_write_bytes(device, 0, blank_dos, os.O_SYNC | os.O_CREAT) except OSError as ex: print_log(str(ex)) return False return True def rescan_device(device_basename: str): os.system('echo 1 > /sys/class/block/{device_basename}/device/rescan'.format( device_basename=device_basename )) def format_devices(partitions: dict, old_partitions: dict, loop_counter: int): if not is_cmd_delete_pressed(): return clear_pressed_keys() if not loop_counter: # do not format on first iteration return new_devices = find_new_devices(partitions, old_partitions) if not new_devices: return to_format = [] for ipart_dev in new_devices: ipart_data = partitions[ipart_dev] if ipart_data['type'] != 'disk': continue if not ipart_data['is_writable']: continue print_log(ipart_dev, 'new') print_log(ipart_dev, 'quick-formatting device') to_format.append(ipart_dev) # only one disk device at a time break if not to_format: return ipart_dev = to_format[0] if quick_format_single_device(ipart_dev): print_log(ipart_dev, 'scanning') rescan_device(ipart_data['device_basename']) del partitions[ipart_dev] def is_cmd_delete_pressed() -> bool: return key_cmd_pressed and key_delete_pressed def is_cmd_shift_pressed() -> bool: return key_cmd_pressed and key_shift_pressed def clear_pressed_keys(): global key_cmd_pressed global key_delete_pressed global key_shift_pressed key_cmd_pressed = False key_delete_pressed = False key_shift_pressed = False def on_key_press(key): global key_cmd_pressed global key_delete_pressed global key_shift_pressed if key == Key.cmd: key_cmd_pressed = True if key == Key.delete: key_delete_pressed = True if key == Key.shift: key_shift_pressed = True def on_key_release(key): global key_cmd_pressed global key_delete_pressed global key_shift_pressed if key == Key.cmd: key_cmd_pressed = False if key == Key.delete: key_delete_pressed = False if key == Key.shift: key_shift_pressed = False def init_keyboard_listener(): keyboard_listener = Listener( on_press=on_key_press, on_release=on_key_release ) keyboard_listener.start() def init_async_file_ops(): print_log('Init AsyncFileOps') async_file_ops = AsyncFileOps() async_file_ops.start() return async_file_ops def find_physical_cdrom_drives(): hwinfo_buf = StringIO() cdrom_data_started = False ret = [] # hwinfo --cdrom --short sh.hwinfo('--cdrom', '--short', _out=hwinfo_buf) for line in hwinfo_buf.getvalue().splitlines(): line = line.strip() if not line: continue if line == 'cdrom:': cdrom_data_started = True continue if not cdrom_data_started: continue if not line.startswith('/dev/'): continue parts = line.split(maxsplit=1) if len(parts) != 2: continue device = parts[0] if not os.path.exists(device) or not os.path.isfile(device): ret.append(device) return ret def update_physical_cdrom_drives(physical_cdrom_drives): print_log('Getting information about physical cd-rom drives') index = 0 for device in sorted(find_physical_cdrom_drives()): physical_cdrom_drives[device] = { 'index': index, 'device': device } index += 1 def print_physical_cdrom_drives(physical_cdrom_drives): print_log('Physical cd-rom drives:') for key, drive_data in physical_cdrom_drives.items(): print_log(key) print_log(' index: ' + str(drive_data['index'])) print_log(' device: ' + drive_data['device']) print_log() def find_physical_floppy_drives(): ufiformat_buf = StringIO() ret = [] # ufiformat --inquire --quiet sh.ufiformat('--inquire', '--quiet', _out=ufiformat_buf) for line in ufiformat_buf.getvalue().splitlines(): line = line.strip() if not line: continue parts = line.split() if len(parts) != 2: continue device = parts[0] if not os.path.exists(device) or not os.path.isfile(device): ret.append(device) return ret def update_physical_floppy_drives(physical_floppy_drives): print_log('Getting information about physical floppy drives') index = 0 for device in sorted(find_physical_floppy_drives()): physical_floppy_drives[device] = { 'index': index, 'device': device } index += 1 def print_physical_floppy_drives(physical_floppy_drives): print_log('Physical floppy drives:') for key, drive_data in physical_floppy_drives.items(): print_log(key) print_log(' index: ' + str(drive_data['index'])) print_log(' device: ' + drive_data['device']) print_log() def main(): partitions = None old_partitions = None disk_devices = {} loop_counter = 0 physical_floppy_drives = OrderedDict() physical_cdrom_drives = OrderedDict() print_app_version() check_pre_requirements() init_logger() unmount_fuse_mountpoint() mkdir_fuse_mountpoint() # # uncomment this to enable FUSE logging # logging.basicConfig(level=logging.DEBUG) configure_system() init_simple_mixer_control() async_file_ops = init_async_file_ops() init_fuse(disk_devices, async_file_ops) update_physical_floppy_drives(physical_floppy_drives) print_physical_floppy_drives(physical_floppy_drives) update_physical_cdrom_drives(physical_cdrom_drives) print_physical_cdrom_drives(physical_cdrom_drives) init_keyboard_listener() os.makedirs(CACHED_ADFS_DIR, exist_ok=True) try: while True: if not MAIN_LOOP_MAX_COUNTER or loop_counter < MAIN_LOOP_MAX_COUNTER: partitions = get_partitions2( physical_cdrom_drives, physical_floppy_drives ) if partitions is not None: if partitions != old_partitions: # something changed print_partitions(partitions) format_devices(partitions, old_partitions, loop_counter) update_disk_devices(partitions, disk_devices) affect_fs_disk_devices(disk_devices) if remove_known_disk_devices(partitions, disk_devices): affect_fs_disk_devices(disk_devices) old_partitions = partitions loop_counter += 1 unmute_system_sound() enable_power_led() time.sleep(100 / 1000) time.sleep(0) except KeyboardInterrupt as ex: print_log('KeyboardInterrupt') unmute_system_sound() enable_power_led() unmount_fuse_mountpoint() async_file_ops.stop() sys.exit() if __name__ == '__main__': main()
skazanyNaGlany/amipi400
amiga_disk_devices.py
amiga_disk_devices.py
py
56,855
python
en
code
0
github-code
6
24282938220
from application import app, db from flask import redirect, render_template, request, url_for, flash from application.child.models import Child from application.quotes.models import Quote from application.likes.models import Likes from application.child.forms import ChildForm, MakeSureForm from datetime import datetime, date from flask_login import login_required, current_user from datetime import date from wtforms import ValidationError @app.route("/child", methods=["GET"]) def child_index(): return render_template("child/listchild.html", quotes = Child.query.all()) # Käyttäjän omien lapsien haku kyselyllä @app.route("/child/userlist/", methods=["GET"]) @login_required def child_userchildren(): return render_template("child/ownchildren.html", find_users_children = Child.find_users_children()) @app.route("/child/newchild/") @login_required def child_form(): return render_template("child/newchild.html", form = ChildForm()) @app.route("/child/", methods=["GET","POST"]) @login_required def child_create(): form = ChildForm(request.form) if not form.validate(): return render_template("child/newchild.html", form = form) # Tarkastetaan, ettei käyttäjällä ole samannimistä lasta alreadyExistsChild = Child.query.filter_by(name=form.name.data, account_id=current_user.id).first() if alreadyExistsChild: form.name.errors.append("Sinulla on jo tämänniminen lapsi olemassa.") return render_template("child/newchild.html", form = form) c = Child(name = form.name.data, birthday = form.birthday.data) c.account_id = current_user.id db.session.add(c) db.session().commit() return redirect(url_for("child_userchildren")) @app.route("/child/modifychild/<child_id>/", methods=["GET", "POST"]) @login_required def child_modifychild(child_id): # Asetetaan lomakkeelle valmiiksi olemassaolevat tiedot form=ChildForm() child = Child.query.get(child_id) form.name.data = child.name form.birthday.data = child.birthday return render_template("child/modifyChild.html", form = form, child_id = child_id) @app.route("/child/<child_id>/", methods=["POST"]) @login_required def child_update(child_id): child = Child.query.get(child_id) form = ChildForm(request.form) if not form.validate(): return render_template("child/modifyChild.html", form = form, child_id=child_id) # Tarkastetaan, ettei käyttäjällä ole samannimistä lasta alreadyExistsChild = Child.query.filter_by(name=form.name.data, account_id=current_user.id).first() if alreadyExistsChild and child != alreadyExistsChild: form.name.errors.append("Sinulla on jo tämänniminen lapsi olemassa.") return render_template("child/modifyChild.html", form = form, child_id=child_id) child.name = form.name.data child.birthday =form.birthday.data db.session().commit() return redirect(url_for("child_userchildren")) @app.route("/child/<child_id>/delete", methods=["POST","GET"]) @login_required def child_delete(child_id): # Tarkastuslomake, jottei lasta tule poistettua liian helpolla form = MakeSureForm() return render_template("child/deletechild.html", form = form, child_id=child_id) @app.route("/child/<child_id>/del", methods=["POST"]) @login_required def child_deleteConfirm(child_id): form = MakeSureForm(request.form) ok = form.name.data # jos tarkastuslomakkeeseen on syötetty oikea tieto, jolla halutaan varmistaa poisto if ok == "x": c = Child.query.get(child_id) # Etsitään lapsen lapsen sanonnat ja poistataan sanonnat sekä sanonnan tykkäykset q = Quote.query.filter(Quote.child_id == child_id) for quote in q: likes = Likes.query.filter(Likes.quote_id==quote.id) for like in likes: db.session.delete(like) db.session().commit() db.session.delete(quote) db.session().commit() # Poistetaan lapsi db.session().delete(c) db.session().commit() flash("Lapsi poistettu onnistuneesti", category="success") return redirect(url_for("child_userchildren")) flash("Lasta ei poistettu", category="warning") return redirect(url_for("child_userchildren")) # Yhden lapsen tietojen näyttäminen @app.route("/child/showchild/<child_id>") @login_required def child_showOne(child_id): child = Child.query.get(child_id) return render_template("child/showchild.html", child_id=child_id, child=child)
millalin/Kids-Say-the-Darndest-Things
application/child/views.py
views.py
py
4,587
python
en
code
1
github-code
6
73814836346
class Solution(object): def longestCommonPrefix(self, strs): """ :type strs: List[str] :rtype: str """ if(len(strs) == 1): return strs[0] infoDict = dict() for words in strs: key = "" for letters in words: key += letters if(key in infoDict): infoDict[key] = infoDict[key] + 1 else: infoDict[key] = 0 key = "" maxVal = 0 maxLen = 0 result = "" for key,val in infoDict.items(): if(len(key) > maxLen and val >= maxVal and val != 0 and val == len(strs)-1): maxVal = val maxLen = len(key) result = key return result
davidyip50/WallBreakers
stringManipulation/longestCommonPrefix.py
longestCommonPrefix.py
py
846
python
en
code
0
github-code
6
33560481799
"""Function to get time of execution of a function.""" # import time # a = input("Ente a value:") # def multiply_by_2(a): # a = a * 2 # result = multiply_by_2(a) from time import process_time # importing time def main_function(decorator_function): # function to call decorator def sub_function(): start_time = process_time() print("before the function") deco = decorator_function() print("after running function") end_time = process_time() print("Time took for function: ", end_time-start_time) return deco return sub_function def sending_function(): # function calling inside the function print("on function") return "test_sucess" send_function = main_function(sending_function) start_time = process_time() print(send_function()) # calling the assigned main function end_time = process_time() print("Time took for function: ", end_time-start_time)
alenantony/Alokin-Task
Day4/decorator.py
decorator.py
py
933
python
en
code
0
github-code
6
4635541375
import numpy as np import tensorflow as tf import json from util import Dataset, load_data from random import randint import os eid = 'e100-b50-h512-adam' n_epochs = 100 batch_size = 50 show_steps = 1 input_dim = 784 latent_dim = 100 hidden_dim = 512 statistics = { 'architechture': '3 layers, {}-{}-{}/{}'.format(hidden_dim, hidden_dim, latent_dim, input_dim), 'reconstruction_loss': [], 'generator_loss': [], 'discriminator_loss': [], 'encoded_feature_vector': [], 'original_images': [], 'encoded_images': [], 'reconstruct_images': [], 'reconstruct_from_random': [], } statistics_file = 'statistics/'+eid print('id: ', eid) print('number of epochs = {:d}'.format(n_epochs)) print('batch_size = {:d}'.format(batch_size)) # Load data X_train = load_data('../data/data.npy') # (2000, 784) label_train = load_data('../data/label.npy') # (2000,) train_dataset = Dataset(X_train, label_train, batch_size) n_train_samples = X_train.shape[0] n_iters = int(n_epochs * n_train_samples / batch_size) print('number of iterations = {:d}'.format(n_iters)) def weight_variable(shape): initial = tf.random_normal(shape, stddev=0.01) return tf.Variable(initial) def bias_variable(shape): initial = tf.fill(shape, 0.1) return tf.Variable(initial) weight = { 'enc_1': weight_variable([input_dim, hidden_dim]), 'enc_2': weight_variable([hidden_dim, hidden_dim]), 'enc_3': weight_variable([hidden_dim, latent_dim]), 'dec_1': weight_variable([latent_dim, hidden_dim]), 'dec_2': weight_variable([hidden_dim, hidden_dim]), 'dec_3': weight_variable([hidden_dim, input_dim]), 'dis_1': weight_variable([latent_dim, hidden_dim]), 'dis_2': weight_variable([hidden_dim, hidden_dim]), 'dis_3': weight_variable([hidden_dim, 1]), } bias = { 'enc_1': bias_variable([hidden_dim]), 'enc_2': bias_variable([hidden_dim]), 'enc_3': bias_variable([latent_dim]), 'dec_1': bias_variable([hidden_dim]), 'dec_2': bias_variable([hidden_dim]), 'dec_3': bias_variable([input_dim]), 'dis_1': bias_variable([hidden_dim]), 'dis_2': bias_variable([hidden_dim]), 'dis_3': bias_variable([1]), } def dense(x, W, b, activation): out = tf.add(tf.matmul(x, W), b) out = tf.layers.batch_normalization(out) if activation == 'relu': out = tf.nn.relu(out) elif activation == 'lrelu': tf.maximum(out, 0.2*out) elif activation == 'sigmoid': out = tf.nn.sigmoid(out) return out def encoder(x): #input_layer = tf.nn.dropout(x, 0.8) h = dense(x, weight['enc_1'], bias['enc_1'], 'relu') h = dense(h, weight['enc_2'], bias['enc_2'], 'relu') h = dense(h, weight['enc_3'], bias['enc_3'], 'relu') return h def decoder(x): h = dense(x, weight['dec_1'], bias['dec_1'], 'relu') h = dense(h, weight['dec_2'], bias['dec_2'], 'relu') h = dense(h, weight['dec_3'], bias['dec_3'], 'sigmoid') return h def discriminator(x): h = dense(x, weight['dis_1'], bias['dis_1'], 'relu') h = dense(h, weight['dis_2'], bias['dis_2'], 'relu') h = dense(h, weight['dis_3'], bias['dis_3'], 'sigmoid') return h def draw_gaussian(dimension, n_samples): return np.random.standard_normal((n_samples, dimension)).astype('float32') def draw_multivariate_gaussian(dimension, n_samples): means = np.zeros(dimension) cov_matrix = np.identity(dimension) return np.random.multivariate_normal(means, cov_matrix, n_samples).astype('float32') # Network to train x = tf.placeholder('float', [None, 784]) prior_samples = tf.placeholder('float', [batch_size, latent_dim]) code = encoder(x) reconstruct = decoder(code) discrim_prior = discriminator(prior_samples) discrim_code = discriminator(code) loss_discriminator = tf.negative(tf.reduce_mean(tf.log(discrim_prior+1e-9)) + tf.reduce_mean(tf.log(1.0-discrim_code+1e-9))) loss_encoder = tf.reduce_mean(tf.log(1.0-discrim_code+1e-9)) loss_reconstruct = tf.reduce_sum(tf.abs(x - reconstruct)) decay_step = int(100 * n_train_samples / batch_size) discriminator_learning_rate = tf.train.piecewise_constant(0, [decay_step], [0.001, 0.0001]) generator_learning_rate = tf.train.piecewise_constant(0, [decay_step], [0.001, 0.0001]) reconstruct_learning_rate = tf.train.piecewise_constant(0, [decay_step], [0.001, 0.0001]) train_discriminator = tf.train.AdamOptimizer(0.001).minimize(loss_discriminator) train_generator = tf.train.AdamOptimizer(0.001).minimize(loss_encoder) train_reconstruct = tf.train.AdamOptimizer(0.001).minimize(loss_reconstruct) #train_generator_and_reconstruct = tf.train.AdamOptimizer(0.001).minimize(loss_encoder+loss_reconstruct) # Reconstruct from random distribution with trained weights specified_code = tf.placeholder('float', [None, 100]) reconstruct_specified_code = decoder(specified_code) def record_loss(sess, X): iterations = int(X.shape[0] / batch_size) reconstruction_loss, generator_loss, discriminator_loss = 0.0, 0.0, 0.0 p = 0 for i in range(iterations): reconstruction_loss += sess.run(loss_reconstruct, feed_dict={x: X[p:p+batch_size]}).tolist() generator_loss += sess.run(loss_encoder, feed_dict={x: X[p:p+batch_size]}).tolist() draw_prior_samples = draw_multivariate_gaussian(latent_dim, batch_size) discriminator_loss += sess.run(loss_discriminator, feed_dict={x: X[p:p+batch_size], prior_samples: draw_prior_samples}).tolist() p += batch_size # Average reconstruction_loss /= X.shape[0] generator_loss /= X.shape[0] discriminator_loss /= X.shape[0] # Record statistics['reconstruction_loss'].append(reconstruction_loss) statistics['generator_loss'].append(generator_loss) statistics['discriminator_loss'].append(discriminator_loss) print('Loss: reconstruction = {:.8f}, generator = {:.24f}, discriminator = {:.20f}'.format(reconstruction_loss, generator_loss, discriminator_loss)) def extract_encoded_data(sess): iterations = int(train_dataset.X.shape[0] / batch_size) p = 0 for i in range(iterations): if i == 0: encoded_feature_vector = sess.run(code, feed_dict={x: train_dataset.X[p:p+batch_size]}) print(encoded_feature_vector.shape) else: encoded_feature_vector = np.append(encoded_feature_vector, sess.run(code, feed_dict={x: train_dataset.X[p:p+batch_size]}), axis=0) print(encoded_feature_vector.shape) p += batch_size label = train_dataset.Y statistics['encoded_feature_vector'] = encoded_feature_vector def extract_image(sess): num_images = 10 ori_images = train_dataset.X[0:num_images+1] encoded_images = sess.run(code, feed_dict={x: ori_images}) reconstruct_images = sess.run(reconstruct, feed_dict={x: ori_images}) statistics['original_images'] = ori_images statistics['encoded_images'] = encoded_images statistics['reconstruct_images'] = reconstruct_images saver = tf.train.Saver() # Train the network with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) #saver.restore(sess, 'models/%s/%s.ckpt' % (eid, 533)) record_loss(sess, train_dataset.X) k = 1 new_iters = int(n_iters/k) for it in range(new_iters): # Shuffle data once for each epoch if it % int(new_iters/n_epochs) == 0: train_dataset.shuffle() # Train for i in range(k): next_x, _ = train_dataset.next_batch() draw_prior_samples = draw_multivariate_gaussian(latent_dim, batch_size) sess.run(train_discriminator, feed_dict={x: next_x, prior_samples: draw_prior_samples}) sess.run(train_generator, feed_dict={x: next_x}) sess.run(train_reconstruct, feed_dict={x: next_x}) # Show loss if it % show_steps == 0: print('Iterations %5d: ' %(it+1) , end='') record_loss(sess, train_dataset.X) extract_encoded_data(sess) extract_image(sess) # Save the model if not os.path.exists('models/'+eid): os.makedirs('models/'+eid) save_path = saver.save(sess, 'models/%s/%s.ckpt' % (eid, n_iters)) print('Model saved in file: %s' % save_path) # Reconstruct with the same weights with tf.Session() as sess: print('Model restore from: %s' % save_path) saver.restore(sess, save_path)#'models/%s/%s.ckpt' % (eid, 533)) draw_prior_samples = draw_multivariate_gaussian(latent_dim, batch_size) statistics['reconstruct_from_random'] = sess.run(reconstruct_specified_code, feed_dict={specified_code: draw_prior_samples}) np.savez(statistics_file, reconstruction_loss=statistics['reconstruction_loss'], generator_loss=statistics['generator_loss'], discriminator_loss=statistics['discriminator_loss'], original_images=statistics['original_images'], encoded_images=statistics['encoded_images'], reconstruct_images=statistics['reconstruct_images'], encoded_feature_vector=statistics['encoded_feature_vector'], label = train_dataset.Y, random_reconstruct_img=statistics['reconstruct_from_random'], architechture=statistics['architechture']) print('statistics file saved in: {}'.format(statistics_file))
ChiWeiHsiao/Deep-Learning-Assignment
6-AAE/aae.py
aae.py
py
9,201
python
en
code
3
github-code
6
14837490064
from django.urls import path from . import views urlpatterns = [ path('products/', views.product_list, name='product_list'), path('product/<int:product_pk>/', views.product_detail, name='product_detail'), path('basket/', views.product_basket, name='product_basket'), path('product/<int:product_pk>/add_to_basket', views.add_to_basket, name='add_to_basket'), path('product_delete/<int:product_pk>', views.remove_from_basket, name='remove_from_basket'), path('product_remove/<int:product_pk>', views.remove_all_products, name='remove_all_products'), path('delete_all/', views.delete_all, name='delete_all'), path('order/', views.order, name='order'), path('orders_history/', views.orders_history, name='orders_history'), path('add_to_favorites/<int:product_pk>', views.add_to_favorites, name='add_to_favorites') ]
meeeeeeeh/djangoblog
shop/urls.py
urls.py
py
855
python
en
code
0
github-code
6
24930679414
from datetime import datetime, timedelta from email import message from django.contrib.auth.models import User from django.contrib import messages from django.shortcuts import redirect, render from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect, JsonResponse from .models import * from .forms import questionForm from django.core import serializers # Create your views here. def main(request): # allQuestions = questions.objects.all() # order by vote if request.method == 'POST': title = request.POST['title'] squestion = questions.objects.filter(title__icontains=title) squestion = serializers.serialize('json', squestion) return JsonResponse({'questions':squestion}) # squestions = questions.objects.filter(time__gt = datetime.now() - timedelta(days=100))[0:30] # squestions = questions.objects.filter(answered=False)[0:30] squestions = questions.objects.all() context = {'questions':squestions} return render(request,'main.html',context) @login_required(login_url='login') def addQuestion(request,pk): if request.method == 'POST': questioner = User.objects.get(id=pk) if request.FILES: newquestion = questions.objects.create( questioner=questioner, title = request.POST['title'], question_image = request.FILES['question_image'] ) else: newquestion = questions.objects.create( questioner=questioner, title = request.POST['title'], ) messages.info(request,'Question Added Succesfully') return redirect('main') return render(request,'main.html') def loadQuestion(request,pk): question = questions.objects.get(id=pk) sanswers = answers.objects.filter(question=question) if request.method == 'POST': answerer = User.objects.get(id=request.POST['userid']) if request.FILES: newanswer = answers.objects.create( answerer = answerer, question=question, answer = request.POST['answer'], answer_image=request.FILES['answer_image'] ) else: newanswer = answers.objects.create( answerer = answerer, question=question, answer = request.POST['answer'] ) messages.info(request,'Answer Added Succesfully') return HttpResponseRedirect(request.path_info) context={'question':question,'answers':sanswers} print(request.path_info) return render(request,'answers/question.html',context) @login_required(login_url='login') def userQuestions(request): user = User.objects.get(id=request.user.id) userquestions = questions.objects.filter(questioner=user) context={'questions':userquestions} return render(request,'answers/userquestion.html',context) @login_required(login_url='login') def editQuestion(request,pk): question = questions.objects.get(id=pk) form = questionForm(instance=question) if request.method == 'POST': editedquestion = questionForm(request.POST,request.FILES,instance=question) if editedquestion.is_valid(): editedquestion.save() return redirect('userquestions') context={'form':form,'question':question} return render(request,'answers/editquestion.html',context) @login_required(login_url='login') def deleteQuestion(request,pk): question = questions.objects.get(id=pk) question.delete() messages.info(request,'Question deleted succesfully') return redirect('userquestions')
SachinBhattarai0/QueAns
answers/views.py
views.py
py
3,662
python
en
code
0
github-code
6
26140999116
arr = list(map(int, input().split())) found = [] for n in arr: flag = True for f in found: if n == f: flag = False if flag: found.append(n) print("Yes" if len(found) == 2 else "No")
tomon9086/atcoder
python/abc155/abc155_a/Main.py
Main.py
py
203
python
en
code
0
github-code
6
16208817026
#-*- coding: UTF-8 -*- ''' @author: chenwuji 读取原始文件 将脚本保存为按照天的文件 ''' import tools alldata = {} map_dict = {} global_count = 1 def read_data(filename): f = open(filename) for eachline in f: if(len(eachline.split('values (')) < 2): continue eachline = eachline.decode('GBK').encode('UTF-8') # print eachline basic_list1 = eachline.split('\n')[0].split('\t')[0].split('values (')[1].split('to_timestamp')[0].split(',') pass intersection_name = basic_list1[0].split('\'')[1] lane_num = basic_list1[1] if len(basic_list1[2].split('\'')) > 1: direction = basic_list1[2].split('\'')[1] else: direction = basic_list1[2] id = basic_list1[3].split('\'')[1] if id == '-': pass if map_dict.__contains__(id): id = map_dict[id] else: map_dict[id] = global_count id = global_count global global_count global_count = global_count + 1 vehicle_color = basic_list1[4].split('\'')[1] time = eachline.split('to_timestamp(\'')[1].split('.')[0] speed = int(eachline.split('HH24:MI:SS.ff\'),\'')[1].split('\'')[0]) tools.writeToFile('data_sort_by_date/' + time.split(' ')[0] + '.csv', str(id) + ',' + intersection_name + ',' +lane_num + ',' +direction + ',' +vehicle_color + ',' + time + ',' + str(speed)) if __name__ == '__main__': filename = 'data/20160301-10.sql' read_data(filename) filename = 'data/20160311-20.sql' read_data(filename) filename = 'data/20160320-31.sql' read_data(filename) tools.toFileWithPickle('mapping_dict', map_dict)
chenwuji91/vehicle
src_1_sql_to_day_data/data_process.py
data_process.py
py
1,769
python
en
code
0
github-code
6
41945752494
# usually big companies in Hollywood watermark their script with usually an actor's name. # So if that actor leaks the script well they'll know that that person has their name on the script and # they're the ones that leaked it. # so we are going to use this watermark throgh out all the pdf. import PyPDF2 template = PyPDF2.PdfFileReader(open('super.pdf', 'rb')) watermark = PyPDF2.PdfFileReader(open('wtr.pdf', 'rb')) output = PyPDF2.PdfFileWriter() for i in range(template.getNumPages()): page = template.getPage(i) page.mergePage(watermark.getPage(0)) output.addPage(page) with open('watermarked.pdf', 'wb') as file: output.write(file) print('watermark merged with pdf')
hyraja/python-starter
12.scripting python (projects)/pdf with python/03.pdf watermark.py
03.pdf watermark.py
py
702
python
en
code
0
github-code
6
3439984211
class Solution(object): def anagramMappings(self, A, B): """ :type A: List[int] :type B: List[int] :rtype: List[int] """ dic = {} for i, num in enumerate(B): if num in dic: dic[num].append(i) else: dic[num] = [i] res = [-1 for i in range(len(A))] for i, num in enumerate(A): res[i] = dic[num][-1] dic[num].pop() return res
cuiy0006/Algorithms
leetcode/760. Find Anagram Mappings.py
760. Find Anagram Mappings.py
py
487
python
en
code
0
github-code
6
70422466107
from linked_list import MyList, ListNode from myclass import Circle a=Circle(10,1,2) b=Circle(8,2,2) c=Circle(12,3,1) lst = MyList() lst.enqueue(a) lst.enqueue(b) lst.enqueue(c) print("obj is added") for i in lst: i.values() lst.dequeue() print("Dequeued") for i in lst: i.values()
meruert111/seminar3
main.py
main.py
py
290
python
en
code
0
github-code
6
5528516422
from datetime import datetime from finnhub import Client from settings.constants import FINHUB_API_KEY class FinhubFetcher: def __init__(self, symbol: str) -> None: self.symbol = symbol def _init_client(self) -> None: return Client(FINHUB_API_KEY) def _get_params(self, resolution: str) -> dict: now = datetime.now() _from = int(datetime(now.year, 1, 1, 0, 0, 0, 0).timestamp()) # 1 January of current year to = int(now.timestamp()) return { "symbol": f"BINANCE:{self.symbol}USDT", "resolution": resolution, "_from": _from, "to": to, } def get_crypto_candles(self, resolution: str = "D") -> dict: client = self._init_client() params = self._get_params(resolution) response = client.crypto_candles(**params) if response.get("s") == "no_data": return {} return response
VladisIove/darkstore
portfolio_manager/services/fetchers/finnhub.py
finnhub.py
py
949
python
en
code
0
github-code
6
1720170439
from wazirx_sapi_client.rest import Client from wazirx_sapi_client.websocket import WebsocketClient import time import websocket,json, pprint from websocket import create_connection from time import sleep import logging import pandas as pd import asyncio import socket, threading import json, sys, os, time, csv, requests from flask import Flask,request from flask import render_template from flask import current_app as app from os.path import exists file_exists = exists("config.py") if file_exists: import config api_key = config.API_KEY secret_key = config.SECRET_KEY client = Client(api_key=api_key, secret_key=secret_key) print(client.send("ping")) global wes wes = create_connection("wss://stream.wazirx.com/stream") print(wes) print("connection true") # api_key = config.API_KEY # secret_key = config.SECRET_KEY app = Flask(__name__) app.app_context().push() def sellTrail(price): return(client.send('create_order', {"symbol": "ethinr", "side": "sell", "type": "stoplimit", "price": (price-price*0.003), "stopPrice":price,"quantity": quan, "recvWindow": 5000, "timestamp": int(time.time()*1000)})) def updateTrail(tick,orderID,price,trail_tage,quan): try: print(client.send('cancel_order', {"symbol": tick, "orderId": orderID, "recvWindow": 5000, "timestamp": int(time.time()*1000)})) except: sleep(10) print(client.send('cancel_order', {"symbol": tick, "orderId": orderID, "recvWindow": 5000, "timestamp": int(time.time()*1000)})) sleep(5) try: return(client.send('create_order', {"symbol": tick, "side": "sell", "type": "stop_limit", "price": (price-price*trail_tage), "stopPrice":(price-price*(trail_tage-0.001)),"quantity": quan, "recvWindow": 5000, "timestamp": int(time.time()*1000)})) except: sleep(5) return(client.send('create_order', {"symbol": tick, "side": "sell", "type": "stop_limit", "price": (price-price*trail_tage), "stopPrice":(price-price*(trail_tage-0.001)),"quantity": quan, "recvWindow": 5000, "timestamp": int(time.time()*1000)})) def gen_sign(query): t=int(time.time()) echo = subprocess.Popen(['echo','-n',query], stdout=subprocess.PIPE, shell=False) hmac_key=subprocess.Popen(['openssl','dgst','-sha256','-hmac',API_SECRET],stdin=echo.stdout,stdout=subprocess.PIPE,shell=False) output = hmac_key.communicate()[0] output=str(output.strip()) output=output.replace("b'(stdin)= ",'') output=output.replace("'" ,'') print(output) def get_order(orderID): try: return(client.send('query_order', {"orderId": orderID, "recvWindow": 10000, "timestamp": int(time.time() * 1000)})) except: sleep(10) return(client.send('query_order', {"orderId": orderID, "recvWindow": 10000, "timestamp": int(time.time() * 1000)})) async def send_heartbeat( *args): while True: print(wes.send(json.dumps({'event': 'ping'}))) print("Beat sent") await asyncio.sleep(10*60) @app.route("/", methods=["GET"]) def home(): file_exists = exists("config.py") if file_exists: # api_key = config.API_KEY # secret_key = config.SECRET_KEY # global client # global wes # client = Client(api_key=api_key, secret_key=secret_key) # print(client.send("ping")) # wes = create_connection("wss://stream.wazirx.com/stream") # print(wes) open_ord=client.send('open_orders', {"recvWindow": 5000, "timestamp": int(time.time()*1000)}) # print("Ticker: ") # tick=input() # print("Quantity: ") # quan=float(input()) # print("Trail %: ") # trail_tage=float(input()) # print("orderId: ") # orderId=int(input()) # print("sellPrice: ") # sPrice=float(input()) sleep(5) wes.send(json.dumps({ "event": "subscribe", "streams": ["!ticker@arr"] })) print(file_exists) return render_template("dashboard.html",open_ord=open_ord,action="parameters") else: return render_template("login.html") # @app.route("/dashboard", methods=["GET"]) # def dashboardShow(): # return trail(tick,quan,trail_tage,orderId,sPrice,wes) @app.route("/dashboard", methods=["POST"]) def dashboard(): global tick global quan global trail_tage global orderId global sPrice tick=request.form['tick'] quan=float(request.form['quan']) trail_tage=float(request.form['trail_tage']) orderId=request.form['orderId'] sPrice=float(request.form['sPrice']) r=get_order(orderId) # render_template("dashboard.html",stat=r,action="display") trail(tick,quan,trail_tage,orderId,sPrice,wes) # render_template("dashboard.html",stat=r,action="display") @app.route("/login", methods=["POST"]) def login(): api_key=request.form['apiKey'] secret_key=request.form['secretKey'] save=request.form['save'] if save=='True': file = open("config.py", "w") file.write("API-KEY = '"+api_key+"'\n") file.write("SECRET_KEY = '"+secret_key+"'\n") file.close() # global client # global wes client = Client(api_key=api_key, secret_key=secret_key) print(client.send("ping")) wes = create_connection("wss://stream.wazirx.com/stream") print(wes) return render_template("dashboard.html",open_ord=open_ord,action="parameters") # _thread = threading.Thread(target=asyncio.run, args=(self.send_heartbeat(),)) # _thread.start() def trail(tick,quan,trail_tage,orderId,sPrice,wes): # connections = dict() # connections["websocket"] = wes _thread = threading.Thread(target=asyncio.run, args=(send_heartbeat(),)) _thread.start() result = wes.recv() res = json.loads(result) data={} recvd=False while not recvd: result = wes.recv() res = json.loads(result) stream=res['data'] for dc in stream: if isinstance(dc,dict): # print(dc['s']) # for keys in dc: # print(keys) if dc['s']==tick: data=dc recvd=True print("data",data['b']) col_heads=['Bought','MinSell','SoldP','Comp','BuyOrderID','BuyStatus','SellOrderID','SellStatus'] ob = [] prices=[] buy_order={} rows={} # print(data) bestSell=float(data['a']) bestBuy=float(data['b']) rows['serverTime']=data['E'] rows['bestBuy']=bestBuy rows['bestSell']=bestSell df=pd.DataFrame() row=pd.DataFrame() row = row.append(rows, ignore_index=True, sort=False) row['serverTime']= pd.to_datetime(row['serverTime'], unit='ms') df = df.append(row, ignore_index=True, sort=False) print(row.loc[0]) row_ls=row.values.tolist() # print(row_ls) prices.append(row_ls[0]) print('prices',prices) while True: recvd=False while not recvd: try: result = wes.recv() except: sleep(30) wes = create_connection("wss://stream.wazirx.com/stream") print(wes) sleep(5) wes.send(json.dumps({ "event": "subscribe", "streams": ["!ticker@arr"] })) # connections = dict() # connections["websocket"] = wes res = json.loads(result) # pprint.pprint(res) stream=res['data'] for dc in stream: if isinstance(dc,dict): if dc['s']==tick: data=dc recvd=True bestBuy=float(data['b']) bestSell=float(data['a']) times=data['E'] rows={} rows['serverTime']=data['E'] rows['bestBuy']=bestBuy rows['bestSell']=bestSell row=pd.DataFrame() row = row.append(rows, ignore_index=True, sort=False) row['serverTime']= pd.to_datetime(row['serverTime'], unit='ms') df = df.append(row, ignore_index=True, sort=False) print("Best sell price",bestSell) row_ls=row.values.tolist() prices.append(row_ls[0]) try: r=get_order(orderId) except: sleep(10) r=get_order(orderId) status=r[1] # print(status) if status['status']=="done": print("complete") # render_template("dashboard.html",action="complete") break elif bestSell>int(sPrice): r=updateTrail(tick,orderId,bestSell,trail_tage,quan) stat=r[1] orderId=stat['id'] sPrice=bestSell print(stat) # return render_template("dashboard.html",stat=stat,action="display") sleep(15) sleep(5) app.app_context().push() if __name__ == '__main__': app.run(host='localhost',port=8080, debug=True)
deysanjeeb/wazirX-trailstop
trail.py
trail.py
py
9,134
python
en
code
0
github-code
6
15799665340
#7,7 map --> https://etc.usf.edu/clipart/42600/42671/grid_42671_lg.gif class Map(object): def __init__(self, max_size=[6,6], monster_locations=[[2, 2],[4, 4]], players={}): self.size = {'X':[0,max_size[0]],'Y':[0,max_size[1]]} self.players = players self.monster_locations = monster_locations def generate_map(self): for cell_x in range(self.size['X'][0],self.size['X'][1]): #print('~~~~~~~~~~~~~~~~') for cell_y in range(self.size['Y'][0],self.size['Y'][1]): #print([cell_x,cell_y]) if [cell_x,cell_y] in self.monster_locations: face = '👾' elif [cell_x,cell_y] in self.player_locations(): index = self.player_locations().index([cell_x,cell_y]) face = self.players_icons()[index] else: face = '--' print(f' {face} ', end="") print('\n') def player_locations(self): return [self.players[n].location for n in self.players] def players_icons(self): return [self.players[n].icon for n in self.players] #for i in range(0,6): # print(' - ', end="") class Error(Exception): """Base class for other exceptions""" pass class PlayerAlreadyRegistered(Error): """A player with that name already exists. Can't add it""" pass class Player(object): def __init__(self,name,starting_location,armor,weapon,strenght, stamina,icon,map): self.name = name self.armor = armor self.weapon = weapon self.strenght = strenght self.level = stamina self.icon = icon self.location = starting_location self.map = map self.register_in_the_map(self.name) def register_in_the_map(self,name): if name not in self.map.players: self.map.players[name] = self else: raise PlayerAlreadyRegistered def get_name(self): return self.name def attack(self,player): self.weapon.attack(player) def get_location(self): return self.location def newpos(self,move): coord_change = {'N':(0,1), 'S':(0,-1), 'W':(-1,0), 'E':(1,0) } move = coord_change[move] self.location[0] = self.location[0] + move[0] self.location[1] = self.location[1] + move[1] return True def hit(self): pass #class NPC(Player): # pass # #class Humans(Player): # pass class Weapons(object): def __init__(self,weapon_name,weapon_strenght, weapon_use_level): self.name = weapon_name self.strenght = weapon_strenght self.level = weapon_level def attack(self,player): if self.level > 0: self.level = self.level -1 return self.strenght else: return 0 #More unicode icons: https://emojipedia.org/ m1 = ['Alien',[2,2],30,'Tentacules',10, 10,'👾'] m2 = {"name":'Shark',"starting_location":[4,4],"armor":5,"weapon":'mouth',"strenght":13, "stamina":10, 'icon': '🦈'} p1 = ['David',[0,0],30,'axe',10, 10,'🚂'] p2 = {"name":'Mark',"starting_location":[5,5],"armor":20,"weapon":'knife',"strenght":11, "stamina":10, 'icon':'🏎️'} p3 = ['Elliot',[0,5],10,'sword',30, 10,'🚎'] p4 = {"name":'Marco',"starting_location":[5,0],"armor":5,"weapon":'dagger',"strenght":13, "stamina":10, 'icon': '🚴'} p5 = ['Felicity',[3,3],40,'shield',14, 10,'🛩️'] l = [p1,p2,p3,p4,p5] map = Map() list_of_players = [] for player in l: if type(player) == type([]): list_of_players.append(Player(*player, map=map)) elif type(player) == type({}): list_of_players.append(Player(**player,map=map)) else: print('incorrect input for player') #print(list_of_players) #print(map.player_locations()) #print(map.players['David'].location) map.generate_map() map.players['David'].newpos('N') print(map.players['David'].location) map.generate_map() #print(map.players['David']) #print(map.player_locations().index([3,3]))
aragaod/yaDnD
main.py
main.py
py
4,206
python
en
code
0
github-code
6
8708126012
from __future__ import unicode_literals import datetime import logging import os import tweepy as tp from twiker.modules.tauth import Auth class Engine(object): """ The main engine class for the Twiker Bot.This class includes all the api methods Copyright (c) 2021 The Knight All rights reserved. """ def __init__(self, config, verbose=False): auth = Auth(config) # configure logging log_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "logs") if not os.path.exists(log_dir): os.makedirs(log_dir) # every log file will be named with the current date and would be name differently date = str(datetime.datetime.now().strftime("%Y-%m-%d")) time = str(datetime.datetime.now().strftime("%H-%M-%S")) log_file = os.path.join(log_dir, "twiker_bot_" + date + "_" + time + ".log") if auth.file_exists(log_file): log_file = os.path.join(log_dir, "twiker_bot_" + date + "_" + time + ".log") logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M', filename=log_file, filemode='w') self.logger = logging.getLogger() if verbose: self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.INFO) self.logger.info("Starting Twiker Bot") self.api = auth.access() # print all information about a user def user_info(self, username=None): """ Get User info by username :param username: username to get info on twitter :return: """ if username is None: username = self.api.me().screen_name try: info = self.api.get_user(screen_name=username) print("Name: " + str(info.name)) print("Screen Name: " + str(info.screen_name)) print("User ID: " + str(info.id)) print("Location: " + str(info.location)) print("Description: " + str(info.description)) print("URL: " + str(info.url)) print("Followers: " + str(info.followers_count)) print("Following: " + str(info.friends_count)) print("Tweets: " + str(info.statuses_count)) print("Favorites: " + str(info.favourites_count)) print("Created at: " + str(info.created_at)) print("Time zone: " + str(info.time_zone)) print("Geo enabled: " + str(info.geo_enabled)) print("Verified: " + str(info.verified)) print("Lang: " + str(info.lang)) try: print("Status: " + str(info.status.text)) except: print("Status: " + "None") print("Profile background color: " + str(info.profile_background_color)) print("Profile background image: " + str(info.profile_background_image_url)) print("Profile background image url: " + str(info.profile_background_image_url_https)) print("Profile background tile: " + str(info.profile_background_tile)) print("Profile link color: " + str(info.profile_link_color)) print("Profile sidebar border color: " + str(info.profile_sidebar_border_color)) print("Profile sidebar fill color: " + str(info.profile_sidebar_fill_color)) print("Profile text color: " + str(info.profile_text_color)) print("Profile use background image: " + str(info.profile_use_background_image)) print("Profile image: " + str(info.profile_image_url)) print("Profile image url: " + str(info.profile_image_url_https)) print("Profile image url: " + str(info.profile_background_image_url_https)) print("Profile image url: " + str(info.profile_background_image_url)) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # tweet a message def tweet(self, message, media=None): """ Tweet a message :param message: message to tweet :param media: media to tweet :return: """ self.logger.debug("Tweeting message: %s", message) self.logger.info("Tweeting message: %s", message) try: if media is None: self.api.update_status(status=message) else: self.api.update_with_media(media, status=message) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # get user timeline def get_timeline(self, username): """ Get user timeline :param username: username to get timeline :return: """ def retweet(self, tweet_id): """ Retweet a tweet by tweet.id :param tweet_id: tweet id to retweet a tweet :return: """ self.logger.debug("Retweeting tweet with id: %s", tweet_id) try: self.api.retweet(tweet_id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def reply(self, message, tweet_id): """ Reply to a tweet by tweet.id :param message: message to reply :param tweet_id: tweet id to reply :return: """ try: self.api.update_status(status=message, in_reply_to_status_id=tweet_id, auto_populate_reply_metadata=True) logging.debug("Replied to tweet with id: %s", tweet_id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def follow(self, username): """ Follow a user on twitter :param username: username to follow on twitter :return: """ try: self.api.create_friendship(screen_name=username) logging.debug("Followed user: %s", username) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def unfollow(self, username): """ Unfollow a user on twitter :param username: username to unfollow on twitter :return: """ try: self.api.destroy_friendship(screen_name=username) logging.debug("Unfollowed user: %s", username) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def block(self, username): """ Block a user on twitter :param username: username to block on twitter :return: """ try: self.api.create_block(screen_name=username) logging.debug("Blocked user: %s", username) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def unblock(self, username): """ Unblock a user on twitter :param username: username to unblock on twitter :return: """ try: self.api.destroy_block(screen_name=username) logging.debug("Unblocked user: %s", username) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def get_user_id(self, username): """ Get User id by username :param username: username to get id on twitter """ try: return self.api.get_user(screen_name=username).user_id except tp.TweepError as e: logging.error("Error: %s", e) print(e) # reply on a hashtag def reply_hashtag(self, message, hashtag): """ Reply to all tweet on a hashtag :param message: message to in reply with hashtag :param hashtag: hashtag on which method have to reply :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): self.reply(message, tweet_id.id) logging.debug("Replied to tweet on hashtag: %s tweet_id: %s", hashtag, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # retweet on a hashtag def retweet_hashtag(self, hashtag): """ Retweet all tweet on a hashtag :param hashtag: hashtag on which method have to retweet :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): self.retweet(tweet_id.id) logging.debug("Retweeted tweet on hashtag: %s tweet_id: %s", hashtag, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def unretweet_hashtag(self, hashtag): """ Unretweet all tweet on a hashtag :param hashtag: hashtag on which method have to unretweet :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): self.unretweet(tweet_id.id) logging.debug("Unretweeted tweet on hashtag: %s tweet_id: %s", hashtag, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # like all tweet on a hashtag def like_hashtag(self, hashtag): """ Like all tweet on a hashtag :param hashtag: hashtag on which method have to like :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): try: self.api.create_favorite(tweet_id.id) except Exception as e: logging.error("Error: %s", e) print(e) logging.debug("Liked tweet on hashtag: %s tweet_id: %s", hashtag, tweet_id.id) logging.info("Liked tweet on hashtag: %s tweet_id: %s", hashtag, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def unlike_hashtag(self, hashtag): """ Unlike all tweet on a hashtag :param hashtag: hashtag on which method have to unlike :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): self.api.destroy_favorite(tweet_id.id) logging.debug("Unliked tweet on hashtag: %s tweet_id: %s", hashtag, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # follow all user on a hashtag def follow_hashtag(self, hashtag): """ Follow all user on a hashtag :param hashtag: hashtag on which method have to follow :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): self.follow(tweet_id.user.screen_name) logging.debug("Followed user: %s", tweet_id.user.screen_name) logging.info("Followed user: %s", tweet_id.user.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def unfollow_hashtag(self, hashtag): """ Unfollow all user on a hashtag :param hashtag: hashtag on which method have to unfollow :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): self.unfollow(tweet_id.user.screen_name) logging.debug("Unfollowed user: %s", tweet_id.user.screen_name) logging.info("Unfollowed user: %s", tweet_id.user.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # like all tweet of a user def like_user(self, username): """ Like all tweet of a user :param username: username on which method have to like :return: """ try: for tweet_id in tp.Cursor(self.api.user_timeline, screen_name=username).items(): self.api.create_favorite(tweet_id.id) logging.debug("Liked tweet of user: %s tweet_id: %s", username, tweet_id.id) logging.info("Liked tweet of user: %s tweet_id: %s", username, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # unlike all tweet of a user def unlike_user(self, username): """ Unlike all tweet of a user :param username: username on which method have to unlike :return: """ try: for tweet_id in tp.Cursor(self.api.user_timeline, screen_name=username).items(): self.api.destroy_favorite(tweet_id.id) logging.debug("Unliked tweet of user: %s tweet_id: %s", username, tweet_id.id) logging.info("Unliked tweet of user: %s tweet_id: %s", username, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # retweet all tweet of a user def retweet_user(self, username): """ Retweet all tweet of a user :param username: username on which method have to retweet :return: """ try: for tweet_id in tp.Cursor(self.api.user_timeline, screen_name=username).items(): self.api.retweet(tweet_id.id) logging.debug("Retweeted tweet of user: %s tweet_id: %s", username, tweet_id.id) logging.info("Retweeted tweet of user: %s tweet_id: %s", username, tweet_id.id) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # dm to single user def dm(self, username, message, media=None): """ Direct message to single user :param username: username on which method have to dm :param message: message to dm :param media: media to dm :return: """ try: recipient = self.api.get_user(username) self.api.send_direct_message(recipient_id=recipient.id_str, text=message) logging.debug("Direct message to user sent: %s", recipient.screen_name) logging.info("Direct message to user sent: %s", recipient.screen_name) if media: self.api.media_upload(media) self.api.send_direct_message(recipient_id=recipient.id_str, text=message, attachment_type="media", attachment_media_id=self.api.media_upload(media).media_id) logging.debug("Direct message to user with media sent: %s", recipient.screen_name) logging.info("Direct message to user with media sent: %s", recipient.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # dm to multiple user def dm_multiple(self, usernames, message, media=None): """ Direct message to multiple user :param usernames: list(usernames) on which method have to dm ["username1", "username2", ...] :param message: message to dm :return: """ try: for user in usernames: recipient = self.api.get_user(user) try: self.api.send_direct_message(recipient_id=recipient.id, text=message) logging.debug("Direct message to user sent: %s", recipient.screen_name) logging.info("Direct message to user sent: %s", recipient.screen_name) except Exception as e: logging.error("Error: %s", e) print(e) if media: try: self.api.media_upload(media) self.api.send_direct_message(recipient_id=recipient.id_str, text=message, attachment_type="media", attachment_media_id=self.api.media_upload(media).media_id) except Exception as e: logging.error("Error: %s", e) print(e) logging.debug("Direct message to user with media sent: %s", recipient.screen_name) logging.info("Direct message to user with media sent: %s", recipient.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # dm all user of a hashtag def dm_hashtag(self, hashtag, message, media=None): """ Direct message to all user of a hashtag :param hashtag: hashtag on which method have to dm :param message: message to dm :return: """ try: for tweet_id in tp.Cursor(self.api.search, q=hashtag).items(): recipient = self.api.get_user(tweet_id.user.screen_name) # # check if user is protected or dm is disabled users = [] if not recipient.protected: users.append(recipient.id) for user in users: try: self.api.send_direct_message(recipient_id=user, text=message) except Exception as e: logging.error("Error: %s", e) print(e) logging.debug("Direct message to user sent: %s", recipient.screen_name) logging.info("Direct message to user sent: %s", recipient.screen_name) print(recipient.screen_name) if media: try: self.api.media_upload(media) self.api.send_direct_message(recipient_id=user, text=message, attachment_type="media", attachment_media_id=self.api.media_upload(media).media_id) except Exception as e: logging.error("Error: %s", e) print(e) logging.debug("Direct message to user with media sent: %s", recipient.screen_name) logging.info("Direct message to user with media sent: %s", recipient.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) def update_profile(self, *args): """ Update profile possible args: name, url, location, description, profile_link_color, include_entities, skip_status :param args: :return: """ try: self.api.update_profile(*args) logging.debug("Profile updated") logging.info("Profile updated") except tp.TweepError as e: logging.error("Error: %s", e) print(e) # follow all followers who have followed you def follow_followers(self): """ Follow all followers who have followed you :return: """ try: for follower in tp.Cursor(self.api.followers).items(): if not follower.following: follower.follow() logging.debug("Followed: %s", follower.screen_name) logging.info("Followed: %s", follower.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # unfollow all followers who have followed you def unfollow_followers(self): """ Unfollow all followers who have followed you :return: """ try: for follower in tp.Cursor(self.api.followers).items(): if follower.following: follower.unfollow() logging.debug("Unfollowed: %s", follower.screen_name) logging.info("Unfollowed: %s", follower.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # follow users with a keyword def follow_keyword(self, keyword, count=1): """ Follow users with a keyword :param keyword: keyword to search :param count: number of users to follow :return: """ try: for tweet in tp.Cursor(self.api.search, q=keyword).items(count): if not tweet.user.following: tweet.user.follow() logging.debug("Followed: %s", tweet.user.screen_name) logging.info("Followed: %s", tweet.user.screen_name) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # get latest tweets from twitter def get_tweets(self, count=1): """ Get latest tweets from twitter :param count: number of tweets to get :return: """ try: for tweet in tp.Cursor(self.api.home_timeline).items(count): print("Tweet: %s" % tweet.text) print("User: %s" % tweet.user.screen_name) print("User id: %s" % tweet.user.id) print("Date: %s" % tweet.created_at) logging.debug("Tweet: Feched") except tp.TweepError as e: logging.error("Error: %s", e) print(e) # get all followers of a user def get_followers(self, username=None): """ Get all followers of a user Note: twitter api only have limit of of fetching limited requests at a time :param username: username of user :param count: number of followers to get :return: """ if username is None: username = self.api.me().screen_name try: count = 1 for follower in tp.Cursor(self.api.followers, screen_name=username).items(): # get total followers print("Follower: %s" % follower.screen_name) print("Follower Count: %s" % count) print("Follower id: %s" % follower.id) print("Follower date: %s" % follower.created_at) count += 1 except tp.TweepError as e: logging.error("Error: %s", e) print(e) def get_following(self, username=None): """ Get all following of a user Note: twitter api only have limit of of fetching limited requests at a time :param username: username of user """ if username is None: username = self.api.me().screen_name try: count = 1 for follower in tp.Cursor(self.api.friends, screen_name=username).items(): # get total followers print("Following: %s" % follower.screen_name) print("Following Count: %s" % count) print("Following id: %s" % follower.id) print("Following date: %s" % follower.created_at) count += 1 except tp.TweepError as e: logging.error("Error: %s", e) print(e) def search_user(self, username): """ Search a user on twitter by username :param username: username to search :return: """ try: self.user_info(username=username) logging.debug("User searched: %s", username) logging.info("User searched: %s", username) except tp.TweepError as e: logging.error("Error: %s", e) print(e) # get random user and return username def get_random_user(self, *args, count=1): """ Get random user :param args: pssible args: keyword :param count: number of users to get :return: username """ try: # get random user for tweet in tp.Cursor(self.api.search, q=args).items(count): return tweet.user.screen_name except tp.TweepError as e: logging.error("Error: %s", e) print(e) def get_hashtag_tweets(self, hashtag): """ Get tweets by hashtag :param hashtag: hashtag to search :return: """ try: for tweet in tp.Cursor(self.api.search, q=hashtag).items(): print("Tweet: %s" % tweet.text) print("User: %s" % tweet.user.screen_name) print("User id: %s" % tweet.user.id) print("Date: %s" % tweet.created_at) logging.debug("Tweet: Feched") except tp.TweepError as e: logging.error("Error: %s", e) print(e) # get all direct messages def get_messages(self, count=1): """ Get all direct messages :param count: number of messages to get :return: """ try: message = self.api.list_direct_messages(count=count) for msg in reversed(message): sender = msg.message_create['sender_id'] recipient = msg.message_create['target']['recipient_id'] sender_name = self.api.get_user(sender).screen_name recipient_name = self.api.get_user(recipient).screen_name print("Sender: %s" % sender) print("Sender name: %s" % sender_name) print("Recipient: %s" % recipient) print("Recipient name: %s" % recipient_name) print("Message: %s" % msg.message_create['message_data']['text']) except tp.TweepError as e: logging.error("Error: %s", e) print(e) #
Twiker-Bot/twiker
twiker/modules/engine.py
engine.py
py
26,243
python
en
code
1
github-code
6
38504427534
import requests from scraper.get_strava_access_token import refreshed_access_token BASE_URL = 'https://www.strava.com' ACCESS_TOKEN = refreshed_access_token() def get_starred_segments(): print('Getting segement list') request_dataset_url = BASE_URL + '/api/v3/segments/starred' # check https://developers.strava.com/docs/reference/ for STRAVA API REQUESTS header = {'Authorization': 'Bearer ' + ACCESS_TOKEN} param = {'per_page': 200, 'page': 1} result_list = requests.get(request_dataset_url, headers=header, params=param).json() segments_id_list = [] for i in result_list: segments_id_list.append(i['id']) return segments_id_list def get_segment_details(): starred_segment_list = get_starred_segments() detailed_segment_list = [] for i in range(len(starred_segment_list)): request_dataset_url = BASE_URL + f'/api/v3/segments/{starred_segment_list[i]}' header = {'Authorization': 'Bearer ' + ACCESS_TOKEN} segment_details = requests.get(request_dataset_url, headers=header).json() detailed_segment_list.append(segment_details) print(f'Segment no. {starred_segment_list[i]} fetched') return detailed_segment_list if __name__ == '__main__': print(get_starred_segments()) print(get_segment_details())
ADV-111/Srodunia
scraper/request_dataset_through_api.py
request_dataset_through_api.py
py
1,312
python
en
code
0
github-code
6
1662811500
import csv import os import numpy as np import json from pyexcel_ods import get_data PATTERN_TYPE = '1' COURSE_TYPE = 'speed' DATA_DIR = os.path.join(PATTERN_TYPE, COURSE_TYPE) fieldnames = ['min_speed','max_speed','delay','spacing','min_angle','max_angle','num_rows','min_b_scale','max_b_scale','clear_threshold','hard_clear_threshold', 'burst_spacing', 'burst_spacing_dur', 'burst_spacing_ratio', 'bskip_hang'] # ods to csv book = get_data(os.path.join(DATA_DIR, 's5_data.ods')) data = list(book.values())[0] with open('tmp.csv','w') as f: writer = csv.writer(f) for row in data: writer.writerow(row) with open('tmp.csv','r') as f: reader = csv.DictReader(f) for s5row in reader: if 'X' in s5row.values(): break s5row['num_rows'] = int(s5row['num_rows']) for key in ['min_speed', 'max_speed', 'delay*speed']: s5row[key] = float(s5row[key]) l1_min_speed = s5row['min_speed']*.9 - 2.5 l1_max_speed = s5row['max_speed']*.9 - 2.5 l10_min_speed = s5row['min_speed']*1.1+1.5 l10_max_speed = s5row['max_speed']*1.1+1.5 min_speeds = list( np.append(np.linspace( l1_min_speed, s5row['min_speed'], num=4, endpoint=False ), np.linspace( s5row['min_speed'], l10_min_speed, num=6, endpoint=True )) ) max_speeds = list( np.append(np.linspace( l1_max_speed, s5row['max_speed'], num=4, endpoint=False ), np.linspace( s5row['max_speed'], l10_max_speed, num=6, endpoint=True )) ) out_dir = os.path.join(DATA_DIR, 'pattern' + s5row['pattern']) if not os.path.exists(out_dir): os.mkdir(out_dir) with open(os.path.join(out_dir, 'metadata.json'),'w') as f: json.dump({ 'title':'(%sS%s) Pattern %s' % ( PATTERN_TYPE , s5row['pattern'].zfill(2) , s5row['pattern'].zfill(2) ) , 'pattern type': PATTERN_TYPE , 'course type': COURSE_TYPE }, f) out_fn = os.path.join(out_dir, 'stages.txt') with open(out_fn, 'w') as outf: writer = csv.DictWriter(outf, fieldnames = fieldnames) writer.writeheader() for i in range(10): min_speed = min_speeds[i] max_speed = max_speeds[i] avg_speed = (min_speed + max_speed)/2 delay = s5row['delay*speed'] / avg_speed out_data = { 'min_speed': min_speed , 'max_speed': max_speed , 'delay': delay , 'clear_threshold': 2000 , 'hard_clear_threshold': 4000 } for fieldname in fieldnames: if fieldname not in out_data: out_data[fieldname] = s5row[fieldname] writer.writerow(out_data)
gebgebgeb/bdt
courses/write_speed_courses.py
write_speed_courses.py
py
3,180
python
en
code
0
github-code
6
38269743748
import socket import ssl # Server'ın IP adresi ve portu HOST = "127.0.0.1" PORT = 3131 # SSL sertifikalarının yolunu belirtin ssl_cert = "server.crt" # Soketi oluşturun client_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) ssl_context.load_verify_locations(ssl_cert) client_sock = ssl_context.wrap_socket(client_sock, server_hostname=HOST) # Server'a bağlanın client_sock.connect((HOST, PORT)) print("Server'a bağlandı") # Gelen mesajları okuyun ve gönderin while True: message = input("Mesajınızı girin: ") client_sock.send(message.encode()) data = client_sock.recv(1024) if not data: break print("Server'dan mesaj geldi:", data.decode()) # Bağlantıyı kapatın client_sock.close()
Varp0s/private_chat
client.py
client.py
py
798
python
tr
code
0
github-code
6
42663409589
import copy import math #needed for calculation of weight and bias initialization import numpy as np import pandas as pd from torch.utils.data import Dataset, DataLoader import torch, torch.nn as nn, torch.nn.functional as F import torchvision from torchvision import transforms, models, utils #Set seeds np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) torch.cuda.manual_seed_all(0) #Import components from . import components as cts from . import custom_models_diseasereps as cmdr class AxialNet_Mask(nn.Module): """Identical implementation to the one in custom_models_base.py except that it returns an intermediate calculation of the convolution step which will be used in calculating a mask-related loss. (1) ResNet18 [slices, 512, 14, 14] (2) conv_final to [slices, 16, 6, 6] (3) FC layer (implemented via conv) to [n_outputs, 1, 1] (4) Avg pooling over slices to get [n_outputs]""" def __init__(self, n_outputs, slices): super(AxialNet_Mask, self).__init__() self.slices = slices #equal to 15 for 9 projections self.n_outputs = n_outputs self.features = cts.resnet_features() self.conv2d = cts.final_conv() self.fc = nn.Conv2d(16, n_outputs, kernel_size = (6,6), stride=(6,6), padding=0) self.avgpool_1d = nn.AvgPool1d(kernel_size=self.slices) def forward(self, x): assert list(x.shape)==[1,self.slices,3,420,420] x1 = x.squeeze() #out shape [slices,3,420,420] x1 = self.features(x1) #out shape [slices,512,14,14] x1f = self.conv2d(x1) #out shape [slices, 16, 6, 6] x2 = self.fc(x1f) #out shape [slices,n_outputs,1,1] x2 = torch.squeeze(x2) #out shape [slices, n_outputs] x2_perslice_scores = x2.transpose(0,1).unsqueeze(0) #out shape [1, n_outputs, slices] x2 = self.avgpool_1d(x2_perslice_scores) #out shape [1, n_outputs, 1] x2f = torch.squeeze(x2, dim=2) #out shape [1, n_outputs] #Now calculate what the disease specific representation is in the #intermediate calculation of the fc layer. #First, make n_outputs copies of the slices x 16 x 6 x 6 representation: x1_repeated = x1f.repeat(self.n_outputs,1,1,1,1) #out shape [n_outputs, slices, 16, 6, 6] #Now select the fc_weights: fc_weights = self.fc.weight #shape [132, 16, 6, 6], where 132 is n_outputs fc_weights_unsq = fc_weights.unsqueeze(dim=1) #out shape [n_outputs, 1, 16, 6, 6] #Now multiply element wise. Broadcasting will occur. #we have [n_outputs, slices, 16, 6, 6] x [n_outputs, 1, 16, 6, 6] disease_reps = torch.mul(x1_repeated, fc_weights_unsq) #out shape [n_outputs, slices, 16, 6, 6] out = {'out':x2f, 'x_perslice_scores':x2_perslice_scores, 'disease_reps':disease_reps} return out class AxialNet_Mask_VanillaGradCAM(nn.Module): """Identical implementation to the one in custom_models_base.py except that it returns an intermediate calculation of the convolution step which will be used in calculating a mask-related loss; this intermediate calculation is based on vanilla Grad-CAM. (1) ResNet18 [slices, 512, 14, 14] (2) conv_final to [slices, 16, 6, 6] (3) FC layer (implemented via conv) to [n_outputs, 1, 1] (4) Avg pooling over slices to get [n_outputs]""" def __init__(self, n_outputs, slices): super(AxialNet_Mask_VanillaGradCAM, self).__init__() self.slices = slices #equal to 15 for 9 projections self.n_outputs = n_outputs self.features = cts.resnet_features() self.conv2d = cts.final_conv() self.fc = nn.Conv2d(16, n_outputs, kernel_size = (6,6), stride=(6,6), padding=0) self.avgpool_1d = nn.AvgPool1d(kernel_size=self.slices) def forward(self, x): assert list(x.shape)==[1,self.slices,3,420,420] x1 = x.squeeze() #out shape [slices,3,420,420] x1 = self.features(x1) #out shape [slices,512,14,14] x1f = self.conv2d(x1) #out shape [slices, 16, 6, 6] x2 = self.fc(x1f) #out shape [slices,n_outputs,1,1] x2 = torch.squeeze(x2) #out shape [slices, n_outputs] x2_perslice_scores = x2.transpose(0,1).unsqueeze(0) #out shape [1, n_outputs, slices] x2 = self.avgpool_1d(x2_perslice_scores) #out shape [1, n_outputs, 1] x2f = torch.squeeze(x2, dim=2) #out shape [1, n_outputs] #Now calculate what the disease specific representation is in the #intermediate calculation of the fc layer. #First, make n_outputs copies of the slices x 16 x 6 x 6 representation: x1_repeated = x1f.repeat(self.n_outputs,1,1,1,1) #out shape [n_outputs, slices, 16, 6, 6] #Now select the fc_weights. These weights are also the gradients leaving #the last layer. fc_weights = self.fc.weight #shape [80, 16, 6, 6], where 80 is n_outputs #To calculate the alpha_ks, we need to take the mean across the height #and width so that we get one alpha_k per feature per disease: #(confirmed that this is the mean across the 6x6 in the gradcam code) alpha_ks = torch.mean(fc_weights,dim=(2,3)) #out shape [n_outputs, 16] alpha_ks_unsq = alpha_ks.unsqueeze(dim=1).unsqueeze(dim=3).unsqueeze(dim=3) #out shape [n_outputs, 1, 16, 1, 1] #Now multiply element wise. Broadcasting will occur. #we have [n_outputs, slices, 16, 6, 6] x [n_outputs, 1, 16, 1, 1] disease_reps = torch.mul(x1_repeated, alpha_ks_unsq) #out shape [n_outputs, slices, 16, 6, 6] #the summing over the feature dimension takes place in the loss #calculation out = {'out':x2f, 'x_perslice_scores':x2_perslice_scores, 'disease_reps':disease_reps} return out class AxialNet_Mask_Final3DConv(nn.Module): """Identical implementation to the one in custom_models_base.py except that it returns an intermediate calculation of the convolution step which will be used in calculating a mask-related loss. (1) ResNet18 [slices, 512, 14, 14] (2) conv_final to [slices, 16, 6, 6] (3) Final FC layer implemented via 3D convolution to produce [n_outputs]""" def __init__(self, n_outputs, slices): super(AxialNet_Mask_Final3DConv, self).__init__() self.slices = slices #equal to 15 for 9 projections self.n_outputs = n_outputs self.features = cts.resnet_features() self.conv2d = cts.final_conv() #out shape [slices, 16, 6, 6] #Final step is 3D convolution! #Rep is first reshaped to [1, 16, slices, 6, 6] self.fc = nn.Conv3d(16, n_outputs, kernel_size=(self.slices,6,6), stride=(self.slices,6,6), padding=0) def forward(self, x): assert list(x.shape)==[1,self.slices,3,420,420] x1 = x.squeeze() #out shape [slices,3,420,420] x1 = self.features(x1) #out shape [slices,512,14,14] x1 = self.conv2d(x1) #out shape [slices, 16, 6, 6] #Reshape: x1f = x1.transpose(0,1).unsqueeze(0) #out shape [1, 16, slices, 6, 6] #Final classification x2 = self.fc(x1f) #out shape [1,n_outputs,1,1,1] x2f = x2.squeeze(dim=2).squeeze(dim=2).squeeze(dim=2) #out shape [1,n_outputs] #TODO TEST THIS (or at least make visualizations of disease_reps) #Now calculate what the disease specific representation is in the #intermediate calculation of the fc layer. #First, make n_outputs copies of the 16 x slices x 6 x 6 representation: x1_repeated = x1f.squeeze(dim=0).repeat(self.n_outputs,1,1,1,1) #out shape [n_outputs, 16, slices, 6, 6] #Now select the fc_weights: fc_weights = self.fc.weight #shape [n_outputs, 16, slices, 6, 6] assert x1_repeated.shape==fc_weights.shape #Now multiply element wise. Broadcasting will occur. #we have [n_outputs, 16, slices, 6, 6] x [n_outputs, 16, slices, 6, 6] disease_reps_orig = torch.mul(x1_repeated, fc_weights) #out shape [n_outputs, 16, slices, 6, 6] #But for the attention ground truth calculation we assume that the #disease_reps has shape [n_outputs, slices, 16, 6, 6], so transpose! disease_reps = disease_reps_orig.transpose(1,2) #out shape [n_outputs, slices, 16, 6, 6] out = {'out':x2f, 'disease_reps':disease_reps} return out class BodyLocationAttn3Mask(nn.Module): #7/2/2020, updated 7/7/2020, redone for mask 8/27/2020 """Modification on 8/27 involves the shape of the attention calculated. Old version calculated [1,1,1,6,6 attention]. This version calculates [1,slices,1,6,6] attention (i.e. fully 3d spatially.) There is also a special loss associated with this model which requires the model to match the organ attention to ground truth organ masks. OLD DOCUMENTATION from model that this model was based on, BodyLocationAttn3 in custom_models_diseasereps.py: See AxialNetDiseaseFeatureAttn for more documentation including code comments. Difference from AxialNetDiseaseFeatureAttn: uses spatial attention instead of feature attention. Specifically there is right lung, heart, and left lung spatial attention. Also, instead of being fixed weights every time, the weights are learned based on using the center slices (since the center slices are most indicative of where the right lung, heart, and left lung are located.) So this is trainable soft self-attention.""" def __init__(self, n_outputs_lung, n_outputs_heart): super(BodyLocationAttn3Mask, self).__init__() self.slices = 15 #9 projections self.n_outputs = (2*n_outputs_lung)+n_outputs_heart self.n_outputs_lung = n_outputs_lung self.n_outputs_heart = n_outputs_heart self.features = cts.resnet_features() self.conv2d = cts.final_conv() #Calculate the spatial attention based on ALL the slices in_size = self.slices*16*6*6 out_size = self.slices*6*6 self.heart_attn_fc = nn.Sequential(nn.Linear(in_size, out_size),nn.Sigmoid()) self.left_lung_attn_fc = nn.Sequential(nn.Linear(in_size, out_size),nn.Sigmoid()) self.right_lung_attn_fc = nn.Sequential(nn.Linear(in_size, out_size),nn.Sigmoid()) self.fclayers_weights, self.fclayers_biases = cmdr.init_stacked_fc_layers(total_independent_fc_layers = self.n_outputs, in_features = 16*6*6) self.avgpool_1d = nn.AvgPool1d(kernel_size=self.slices) def forward(self, x): x = cts.reshape_x(x, self.slices) x = self.features(x) #out shape [slices,512,14,14] x = self.conv2d(x) #out shape [slices, 16, 6, 6] #Calculate attention mask based on all slices #This attention mask is basically doing low-dimensional organ #segmentation. The nice thing about doing the segmentation this way #is that the model can still look at both lungs when predicting a #lung disease but it's forced to look MORE at the relevant lung. all_slices_flat = x.flatten().unsqueeze(dim=0) #out shape [1,8640] #The spatial maps must be able to be broadcast multiplied against #a Tensor of shape [slices, n_outputs_organ, 16, 6, 6] self.heart_spatial = self.heart_attn_fc(all_slices_flat).reshape(self.slices,1,1,6,6) #out shape [slices,1,1,6,6] self.left_lung_spatial = self.left_lung_attn_fc(all_slices_flat).reshape(self.slices,1,1,6,6) #out shape [slices,1,1,6,6] self.right_lung_spatial = self.right_lung_attn_fc(all_slices_flat).reshape(self.slices,1,1,6,6) #out shape [slices,1,1,6,6] #Repeat x x = x.repeat(self.n_outputs,1,1,1,1) #out shape [n_outputs, slices, 16, 6, 6] x = x.transpose(0,1) #out shape [slices, n_outputs, 16, 6, 6] #Apply the attention maps #Must follow ground truth label order, which is heart, left_lung, right_lung x_heart = torch.mul(x[:,0:self.n_outputs_heart,:,:,:],self.heart_spatial) x_left_lung = torch.mul(x[:,self.n_outputs_heart:self.n_outputs_heart+self.n_outputs_lung,:,:,:],self.left_lung_spatial) x_right_lung = torch.mul(x[:,-1*self.n_outputs_lung:,:,:,:],self.right_lung_spatial) x = torch.cat((x_heart,x_left_lung,x_right_lung),dim=1) #out shape [slices, n_outputs, 16, 6, 6] x = x.flatten(start_dim=2,end_dim=4) #out shape [slices, n_outputs, 16*6*6] = [slices, n_outputs, 576] slice_preds = cmdr.apply_disease_fc_layers(x, self.fclayers_weights, self.fclayers_biases) x = slice_preds.transpose(0,1).unsqueeze(0) #out shape [1, n_outputs, slices] x = self.avgpool_1d(x) #out shape [1, n_outputs, 1] x = torch.squeeze(x, dim=2) #out shape [1, n_outputs] out = {'out':x, 'heart_spatial':self.heart_spatial, 'left_lung_spatial':self.left_lung_spatial, 'right_lung_spatial':self.right_lung_spatial} return out class BodyDiseaseSpatialAttn4Mask(nn.Module): #7/7/2020 #TODO test this #Updated 8/27/2020 for mask """In this model a 3D attention mask of shape [slices,6,6] is calculated for each disease, before the classification step. Note that this model is identical to BodyDiseaseSpatialAttn4 except for its usage: (a) custom loss function: in the loss, the location information is used to determine what locations the disease-specific attention is allowed to look at. e.g. if there is atelectasis only in the left lung then the attention for atelectasis for that scan should be only in the place demarcated as left lung in the segmentation ground truth. Furthermore, if there is NO atelectasis present, then the attention for atelectasis should all be zero. In order to calculate this custom loss, this model has to return the attention maps in addition to the predictions. (b) custom labels: this model is different from everything else I have been doing because it assumes that we just want to predict lung diseases generically and so it only makes n_outputs_lung+n_outputs_heart predictions, rather than (2*n_outputs_lung+n_outputs_heart) predictions. OLD DOCUMENTATION from model that this model was based on, BodyDiseaseSpatialAttn4 in custom_models_diseasereps.py See AxialNetDiseaseFeatureAttn for more documentation including code comments. Difference from BodyLocationAttn3: while 4 also uses spatial attention (like 3), 4 does spatial attention per disease instead of per location.""" def __init__(self, n_outputs_lung, n_outputs_heart): super(BodyDiseaseSpatialAttn4Mask, self).__init__() self.slices = 15 #9 projections #NOTE that here, we have only n_outputs_lung overall! We are not doing #separate predictions for the right and left lungs! self.n_outputs = n_outputs_lung+n_outputs_heart self.n_outputs_lung = n_outputs_lung self.n_outputs_heart = n_outputs_heart self.features = cts.resnet_features() self.conv2d = cts.final_conv() #Calculate per-disease spatial attention based on ALL the slices #Repeated representation: [slices, n_outputs, 16, 6, 6] #Attention shape we want: [slices, n_outputs, 1, 6, 6] self.nonlinearity = nn.Sigmoid() #FC layers for calculating the disease-specific spatial attention #For each disease and each element of the 6x6 I learn a different FC layer: self.fcattns_weights, self.fcattns_biases = cmdr.init_stacked_fc_layers(total_independent_fc_layers = self.n_outputs*6*6, in_features = 16) #FC layers for calculating the final disease predictions self.fclayers_weights, self.fclayers_biases = cmdr.init_stacked_fc_layers(total_independent_fc_layers = self.n_outputs, in_features = 16*6*6) self.avgpool_1d = nn.AvgPool1d(kernel_size=self.slices) def forward(self, x): x = cts.reshape_x(x, self.slices) x = self.features(x) #out shape [slices,512,14,14] x = self.conv2d(x) #out shape [slices, 16, 6, 6] x = x.repeat(self.n_outputs,1,1,1,1) #out shape [n_outputs, slices, 16, 6, 6] x = x.transpose(0,1) #out shape [slices, n_outputs, 16, 6, 6] #Calculate the disease-specific spatial attention: attn_raw_list = [] for slice_num in range(self.slices): slice_data = x[slice_num,:,:,:,:] #out shape [n_outputs, 16, 6, 6] slice_data = slice_data.flatten(start_dim=2,end_dim=3).transpose(1,2) #out shape [n_outputs, 6*6, 16] slice_data = slice_data.flatten(start_dim=0,end_dim=1) #out shape [n_outputs*6*6, 16] temp1 = torch.mul(slice_data,self.fcattns_weights) #out shape [n_outputs*6*6, 16] temp2 = torch.sum(temp1,dim=1) #out shape [n_outputs*6*6] temp3 = (temp2+self.fcattns_biases).unsqueeze(0) #out shape [n_outputs*6*6] attn_raw_list.append(temp3) attn_raw = torch.cat(attn_raw_list,dim=0) #out shape [slices, n_outputs*6*6] attn_raw = torch.reshape(attn_raw,(self.slices,self.n_outputs,6*6)) #out shape [slices, n_outputs, 6*6] attn = self.nonlinearity(attn_raw) #out shape [slices, n_outputs, 6*6] attn = torch.reshape(attn,(self.slices,self.n_outputs,6,6)).unsqueeze(2) #out shape [slices, n_outputs, 1, 6, 6] #Apply the attention x_times_attn = torch.mul(x, attn) #out shape [slices, n_outputs, 16, 6, 6] #Disease predictions x = x.flatten(start_dim=2,end_dim=4) #out shape [slices, n_outputs, 16*6*6] = [slices, n_outputs, 576] slice_preds = cmdr.apply_disease_fc_layers(x, self.fclayers_weights, self.fclayers_biases) x = slice_preds.transpose(0,1).unsqueeze(0) #out shape [1, n_outputs, slices] x = self.avgpool_1d(x) #out shape [1, n_outputs, 1] x = torch.squeeze(x, dim=2) #out shape [1, n_outputs] out = {'out':x, 'attn':attn} #attn out shape [slices, n_outputs, 1, 6, 6] return out class BodyDiseaseSpatialAttn5Mask(nn.Module): #7/7/2020 #TODO test this #On the natural images dataset, this model had better performance #than model 4 """Exactly the same as the BodyDiseaseSpatialAttn5 model except that this returns the attn so that it can be trained with a loss function that acts on the attn as well. OLD DOCUMENTATION from model that this model was based on, BodyDiseaseSpatialAttn5 in custom_models_diseasereps.py: See AxialNetDiseaseFeatureAttn for more documentation including code comments. Difference from BodyDiseaseSpatialAttn4: whereas 4 learns a different mapping of 16 features -> 1 spatial attn value for each element of the 6x6 square, 5 uses a convolution layer such that the mapping of 16 -> 1 is the same for each element of the 6x6 square""" def __init__(self, n_outputs, nonlinearity): super(BodyDiseaseSpatialAttn5Mask, self).__init__() self.slices = 15 #9 projections self.n_outputs = n_outputs self.features = cts.resnet_features() self.conv2d = cts.final_conv() #Calculate the spatial attention based on center slices if nonlinearity == 'softmax': self.nonlinearity = nn.Softmax(dim=2) elif nonlinearity == 'sigmoid': self.nonlinearity = nn.Sigmoid() #Conv layer for calculating the disease-specific spatial attention #For each disease and each element of the 6x6 I learn a different FC layer: self.attn_conv = nn.Sequential( nn.Conv2d(16, self.n_outputs, kernel_size = (1,1), stride=(1,1), padding=0), self.nonlinearity) #FC layers for calculating the final disease predictions self.fclayers_weights, self.fclayers_biases = cmdr.init_stacked_fc_layers(total_independent_fc_layers = self.n_outputs, in_features = 16*6*6) self.avgpool_1d = nn.AvgPool1d(kernel_size=self.slices) def forward(self, x): x = cts.reshape_x(x, self.slices) x = self.features(x) #out shape [slices,512,14,14] x = self.conv2d(x) #out shape [slices, 16, 6, 6] #Calculate the disease-specific spatial attention: attn = self.attn_conv(x).unsqueeze(2) #out shape [slices, 83, 1, 6, 6] #Apply the attention x = x.repeat(self.n_outputs,1,1,1,1) #out shape [83, slices, 16, 6, 6] x = x.transpose(0,1) #out shape [slices, 83, 16, 6, 6] x_times_attn = torch.mul(x, attn) #out shape [slices, 83, 16, 6, 6] #Disease predictions x = x.flatten(start_dim=2,end_dim=4) #out shape [slices, 83, 16*6*6] = [slices, 83, 576] slice_preds = cmdr.apply_disease_fc_layers(x, self.fclayers_weights, self.fclayers_biases) x = slice_preds.transpose(0,1).unsqueeze(0) #out shape [1, 83, slices] x = self.avgpool_1d(x) #out shape [1, 83, 1] x = torch.squeeze(x, dim=2) #out shape [1, 83] out = {'out':x, 'attn':attn} #attn out shape [slices, n_outputs, 1, 6, 6] return out
rachellea/explainable-ct-ai
src/models/custom_models_mask.py
custom_models_mask.py
py
21,512
python
en
code
3
github-code
6
34839501596
import numpy as np import torch import torchvision import PIL import os def save_video(img,outdir, drange,fname="video0.mp4", normalize=True): _, C ,T ,H ,W = img.shape # print (f'Saving Video with {T} frames, img shape {H}, {W}') img = img.cpu().xdetach().numpy() if normalize: lo, hi = drange img = np.asarray(img, dtype=np.float32) img = (img - lo) * (255 / (hi - lo)) img = np.rint(img).clip(0, 255).astype(np.uint8) # gw, gh = grid_size # _N, C, T, H, W = img.shape # img = img.reshape(gh, gw, C, T, H, W) img = np.squeeze(img) img = img.transpose(1,2,3,0) # img = img.reshape(T, H, W, C) # assert C in [3] if C == 3: torchvision.io.write_video(os.path.join(outdir,fname), torch.from_numpy(img), fps=8) # imgs = [PIL.Image.fromarray(img, 'RGB') for i in range(len(img))] # imgs[0].save(fname, quality=95, save_all=True, append_images=imgs[1:], duration=100, loop=0)
interiit-Team10/HP_BO_DIGAN
src/scripts/__init__.py
__init__.py
py
979
python
en
code
0
github-code
6