seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
42641515679
# -*- coding: utf-8 -*- # @Time : 2020/12/13 11:04 # @Author : Joker # @Site : # @File : draw.py # @Software: PyCharm import numpy as np import matplotlib.pyplot as plt m = 20 # 行 n = 2 # 列 c = 5 # 分类数量 test_point = [2, 6] # 测试点数据 if __name__ == '__main__': # 文件地址 path = "C:/Users/99259/source/repos/k-means/k-means/point.txt" # 文件对象 file = [] # 源点数组 data = np.zeros((m + c, n)) # 读取数组文件 for line in open(path, "r"): # 取出换行符 line = line.strip() file.append(line) # 将文件数据存储进数组中 for i in range(m + c): for j in range(n): data[i][j] = float(file[i].split(' ')[j]) # 同上面操作一样,不过处理的是分类数组 cate_path = "C:/Users/99259/source/repos/k-means/k-means/category.txt" cate_file = [] cate = np.zeros(m) for line in open(cate_path, 'r'): # 取出换行符 line = line.strip() cate_file.append(line) for i in range(m): cate[i] = int(cate_file[i]) # 解决中文乱码 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.title('数据点分布') # 存储颜色数组 color = ['red', 'blue', 'pink', 'yellow', 'green', 'purple'] # 绘制源数据点 # 不同类别的点放在不同数组中 x = [[] for i in range(c)] # x轴数据 y = [[] for i in range(c)] # y轴数据 for i in range(m): for j in range(c): if cate[i] == j: x[j].append(data[i][0]) y[j].append(data[i][1]) # 分别绘制不同类别的点 for i in range(c): plt.scatter(x[i], y[i], color=color[i], label=("类别%d" % (i + 1))) # 绘制中心点 point_x = [] point_y = [] for i in range(c): point_x.append([data[m + i][0]]) point_y.append([data[m + i][1]]) plt.scatter(point_x, point_y, color='black', marker='*', label="中心点") # 存储不同类的半径 radius = np.zeros(c) # 遍历类别 for i in range(c): # 记录x轴和y轴的最大值r # 如果是一个点属于一类 就令其半径为0.2 max_dis = 0.2 # 遍历点 for j in range(len(x[i])): dis_x = x[i][j] - point_x[i] dis_y = y[i][j] - point_y[i] # 计算欧式距离 dis = np.sqrt(pow(dis_x, 2) + pow(dis_y, 2)) # 更新最大半径 if dis > max_dis: max_dis = dis # 最大值最为该类的类半径 radius[i] = max_dis # 分别绘制不同类的类半径 for i in range(c): # 定义圆心和半径 x = point_x[i][0] y = point_y[i][0] r = radius[i] # 点的横坐标为a a = np.arange(x - r, x + r, 0.0001) # 点的纵坐标为b b = np.sqrt(pow(r, 2) - pow((a - x), 2)) # 绘制上半部分 plt.plot(a, y + b, color=color[i], linestyle='-') # 绘制下半部分 plt.plot(a, y - b, color=color[i], linestyle='-') # t暂时存储(2,6)的类别 # 可以在开头改变测试点的坐标 t = 0 # 设置一个很大的值 d = 100 # 遍历类别 for i in range(c): # 计算测试点到每个中心的距离 dis = np.sqrt(pow((test_point[0] - point_x[i][0]), 2) + pow((test_point[1] - point_y[i][0]), 2)) # 寻找最小的距离 if dis < d: d = dis t = i # 绘制测试点数据 plt.scatter(test_point[0], test_point[1], c=color[t], marker='x', label='(2,6)') plt.legend() # 保存图片 plt.savefig(r'C:/Users/99259/source/repos/k-means/k-means/show.png', dpi=300) plt.show()
Chimaeras/Data_Mining_ex
src/category_draw.py
category_draw.py
py
3,852
python
en
code
0
github-code
6
2856090188
import unittest from conans.test.tools import TestClient from conans.util.files import load import os import platform class ConanEnvTest(unittest.TestCase): def conan_env_deps_test(self): client = TestClient() conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello" version = "0.1" def package_info(self): self.env_info.var1="bad value" self.env_info.var2.append("value2") self.env_info.var3="Another value" self.env_info.path = "/dir" ''' files = {} files["conanfile.py"] = conanfile client.save(files) client.run("export lasote/stable") conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello2" version = "0.1" def config(self): self.requires("Hello/0.1@lasote/stable") def package_info(self): self.env_info.var1="good value" self.env_info.var2.append("value3") ''' files["conanfile.py"] = conanfile client.save(files, clean_first=True) client.run("export lasote/stable") client.run("install Hello2/0.1@lasote/stable --build -g virtualenv") ext = "bat" if platform.system() == "Windows" else "sh" self.assertTrue(os.path.exists(os.path.join(client.current_folder, "activate.%s" % ext))) self.assertTrue(os.path.exists(os.path.join(client.current_folder, "deactivate.%s" % ext))) activate_contents = load(os.path.join(client.current_folder, "activate.%s" % ext)) deactivate_contents = load(os.path.join(client.current_folder, "deactivate.%s" % ext)) self.assertNotIn("bad value", activate_contents) self.assertIn("var1=good value", activate_contents) if platform.system() == "Windows": self.assertIn("var2=value3;value2;%var2%", activate_contents) else: self.assertIn("var2=value3:value2:$var2", activate_contents) self.assertIn("Another value", activate_contents) self.assertIn("PATH=/dir", activate_contents) self.assertIn('var1=', deactivate_contents) self.assertIn('var2=', deactivate_contents)
AversivePlusPlus/AversivePlusPlus
tools/conan/conans/test/integration/conan_env_test.py
conan_env_test.py
py
2,180
python
en
code
31
github-code
6
40796544139
import pydantic from pydantic import validator import typing from uuid import UUID, uuid4 class SchemaCustomer(pydantic.BaseModel): id: str name: str last_name: str email: pydantic.EmailStr age: pydantic.PositiveInt @validator('id', pre=True, always=True) def convert_id_to_str(cls, v): return str(v) class SchemaCustomerCreation(pydantic.BaseModel): name: str last_name: str email: pydantic.EmailStr age: pydantic.PositiveInt class SchemaCustomerUpdate(pydantic.BaseModel): name: typing.Union[str, None] last_name: typing.Union[str, None] email: typing.Union[pydantic.EmailStr, None] age: typing.Union[pydantic.PositiveInt, None]
edmon1024/workshop-api-ejemplo-fastapi
app/schemas.py
schemas.py
py
708
python
en
code
0
github-code
6
26671808814
#Diccionario para los datos clientes={45471:["Luis Perez",45,"BJX", True], 8944411:["FernandaGarcia",25,"JAL", True], 5223:["Alejandra Ortiz",33,"JDL", True]} #se crean una funcion para agregar clientes def Agregar(): #Bucle para evitar errores con el input del INE while True: #Try y except para que el input solo sea int try: INE = int(input("INE del pasajero: ")) break except: print("Error con la INE ") # Se pide nombre name = input("Nombre del pasajero: ") #Bucle para evitar errores con el input de la edad while True: #Try y except para que el input solo sea int try: age = int(input("Edad del pasajero: ")) print("\n") break except: print("Error con la edad \n") print( "Destino | Código IATA \n", "Guanajuato | BJX \n", "Guadalajara | GDL \n", "Veracruz | JAL \n" ) #input del IATA iata = input("IATA del pasajero: ") iata = iata.upper() #Se abre If para que el input solo sea uno de los 3 codigos IATA if iata == "BJX": iata = "BJX" elif iata == "GDL": iata = "GDL" elif iata == "JAL" : iata = "JAL" else: print("Error con el IATA \n") #While para evitar errores con el input del cliente while True: prefer = input("Cliente preferente (Si/No): ") prefer = prefer.upper() #Se abre If para que el input solo sea 'SI' o 'NO' if prefer == "SI": preferential = True break elif prefer == "NO": preferential = False break else: print("Error con la preferencia \n") #Se agregan los datos al diccionarios la llave es la INE y lo demas los valores clientes [INE] = [name, age, iata, preferential] print("Pasajero agregado \n") #while para evitar errores while True: #Inputo para agregar otro cliente salir = input("Quiere agrecar otro cliente (Si/No): ") salir = salir.upper() if salir == "SI": #Se llama otra vez a la funcion para que sea un bucle print("\n") Agregar() elif salir == "NO": #termina la funcion print("\n") print("Volviendo al menu") print("\n") break else: print("Error con la eleccion \n") #Funcion para eliminar clientes def eliminar(): while True: #Input para preguntar si quiere elimnar do = input("Quiere eliminar un cliente (Si/No): ") do = do.upper() #If para que solo sean dos input "SI" y "NO" if do == "SI": #Input para saber cual cliente se eliminara del_Key = int(input("INE del pasajero que quiere eliminar: ")) #If para saber si el cliente esta en el diccionario if del_Key in clientes: #Se elimina del clientes[del_Key] print("Se ha eliminado al cliente \n") break else: print("No se ha encontrado al cliente \n") elif do == "NO": #Termina la funcion print("\n") break else: print("Error con la eleccion \n") #funcion para ver los clientes def Mostrar(): print(" Mostrar todos los clientes ('1') \n", "Mostar los cliente preferente ('2') \n", "Mostar los clientes normales ('3')") #input para la eleccion hacer = input(":") if hacer == "2": print("\n") #for para recorrer el diccionario for key in clientes: #for para recorrer la lista segun la llave for a in clientes[key]: # si el cliente es preferente se imprime if a == True: print(clientes[key]) print("\n") elif hacer == "3": print("\n") for key in clientes: for a in clientes[key]: # si el cliente no es preferente se imprime if a == False: print(clientes[key]) print("\n") elif hacer == "1": print("\n") for key in clientes: #Se imprimen todos los clientes print(clientes[key]) print("\n") else: print("Error con la eleccion \n") #funcion para ver los promedios de los clientes def edad(): edad_total = 0 print(" Edad promedio de todos los clientes ('1') \n", "Edad promedio delos cliente preferentes ('2') \n") #input para la eleccion do = input(": ") if do == "2": print("\n") cont = 0 for key in clientes: for a in clientes[key]: # si el cliente es preferente se suma su edad al total if a == True: edad_total += clientes[key][1] cont += 1 print("\n") #Se imprime el promedio print("Edad promedio de los clientes preferentes: ", edad_total/cont) elif do == "1": print("\n") for key in clientes: #Se suma la edad de los clientes al total edad_total += clientes[key][1] #Se imprime el promedio print("Edad promedio de todos los clientes: ", edad_total/(len(clientes))) print("\n") else: print("Error con la eleccion \n")
JoseCarlosLugo/Ejercicio-retadores-6-7-8
Ejercicio_8_func.py
Ejercicio_8_func.py
py
6,125
python
es
code
0
github-code
6
11670856973
# See subject at https://www.ilemaths.net/sujet-suite-864999.html """ La suite de Conway """ from itertools import groupby, islice def gen_conway(germe): """Génère la suite de Conway à partir du germe""" while True: yield germe germe = ''.join(f"{len(tuple(g))}{c}" for c, g in groupby(germe)) def main(): """Entrée principale du programme""" germe = input("Donner le premier terme de la suite de Conway : ") n = int(input("Combien de termes voulez-vous calculer ? ")) for i, terme in enumerate(islice(gen_conway(germe), n+1)): print(f"terme numéro {i}: \t{terme}") if __name__ == "__main__": main()
bdaene/ilemaths
suite-864999.py
suite-864999.py
py
667
python
fr
code
0
github-code
6
32094902662
''' 1251번 단어 나누기 문제 알파벳 소문자로 이루어진 단어 단어를 길이가 1 이상인 세 개의 더 작은 단어로 나누는 나눈 세 개의 작은 단어들을 앞뒤를 뒤집고, 이를 다시 원래의 순서대로 합친다. 단어 : arrested 세 단어로 나누기 : ar / rest / ed 각각 뒤집기 : ra / tser / de 합치기 : ratserde 단어가 주어지면, 이렇게 만들 수 있는 단어 중에서 사전순으로 가장 앞서는 단어를 출력하는 프로그램을 작성하시오. 입력 첫째 줄에 영어 소문자로 된 단어가 주어진다. 길이는 3 이상 50 이하이다. 출력 첫째 줄에 구하고자 하는 단어를 출력하면 된다.''' ''' <0203 오전 강사님 풀이> # 문자열을 두 번 나누는 모든 경우의 인덱스를 구한다. 인덱스 0 1 2 3 4 5 6 7 문자열[a r r e s t e d] N = 8 i : 처음 잘라내는 지점 i >> 최소길이 min = 1 # 인덱스[1] 앞에서 자름 최대길이 max = N-2 # 인덱스[N-1] 앞에서 자름 range(1, N-1) : 1 2 3 4 5 6 j : 두번째 잘라내는 지점 j >> 최소길이 min = i+1 # 인덱스[i+1] 앞에서 자름 최대길이 max = N-1 # 인덱스[N] 앞에서 자름 range(1, N-1) range(1, N-1) : 1 2 3 4 5 6 ''' """mobitel""" import sys sys.stdin = open("input.txt", "r") import heapq lst = [] word = str(input()) # mobitel N = len(word) # 나누는 위치의 인덱스 구하기 (총 2번 나눔) # 첫 번째 경우를 생각했을 때, i는 인덱스[1] 앞(=인덱스[0]뒤) ~ 맨 뒷자리의 문자 바로 앞에서 나눔 for i in range(1,N-1): # i = 1 for j in range(i+1,N): # j = range(2,N) w1 = word[0:i] # w1 = m w2 = word[i:j] # w2 = o w3 = word[j:N] # w3 = bitel # 구한 인덱스 위치로 두번 나누어 만는 3개의 문자열 덩어리 # 각각 인덱스로 뒤집은 뒤, heapq를 사용해 리스트에 정렬하여 넣는다. heapq.heappush(lst, f'{w1[::-1]+ w2[::-1]+ w3[::-1]}') print(lst[0]) # heapq를 사용해 순서를 정렬해 놨기 때문에 맨 처음 문자열을 출력 ''' from pprint import pprint import heapq for _ in word: heapq.heappush(lst, ord(_)) print(ord(_)) print(lst) for w in lst: print(chr(w), end = ' ') print() print() ''' ''' # 0 1 # 0 2 # 1 3 # 1 4 # 2 4 # 2 5 # 4 6 # 인접 행렬 # 7 * 7 # 정점간의 관계를 표현하고 있는 행렬 # 정접의 개수인 N에 의해 크기가 정해짐 N = 7 graph = [ [0] * N for _ in range (N)] pprint(graph) '''
doll2gom/TIL
KDT/week6/02.03/4_1251.py
4_1251.py
py
2,583
python
ko
code
2
github-code
6
74537456828
import numpy as np, cv2 def draw_histo(hist, shape=(200, 256)): hist_img = np.full(shape, 255, np.uint8) # 흰색이 배경이 되도록 초기화 cv2.normalize(hist, hist, 0, shape[0], cv2.NORM_MINMAX) # 최솟값이 0, 최대값이 그래프의 높이 값을 갖도록 빈도값을 조정 gap = hist_img.shape[1]/hist.shape[0] for i, h in enumerate(hist): x = int(round(i*gap)) w = int(round(gap)) cv2.rectangle(hist_img, (x, 0, w, int(h)), 0, cv2.FILLED) return cv2.flip(hist_img, 0)
binlee52/OpenCV-python
Common/histogram.py
histogram.py
py
539
python
en
code
1
github-code
6
10699282838
import tensorflow as tf import os from xdnlp.utils import default_logger as logging def load_data_from_directory(_path: str, batch_size, validation_split=0.1, seed=123, label_mode='categorical', train=True): """train_dir: the train data dir test_dir: the test data dir Just set the directory: ``` main_directory/ ...class_a/ ......a_text_1.txt ......a_text_2.txt ...class_b/ ......b_text_1.txt ......b_text_2.txt ``` """ train_ds = None val_ds = None class_names = None if train: train_ds = tf.keras.preprocessing.text_dataset_from_directory( os.path.join(_path, 'train'), batch_size=batch_size, validation_split=validation_split, subset='training', seed=seed, label_mode=label_mode) class_names = train_ds.class_names train_ds = train_ds.cache().prefetch(tf.data.AUTOTUNE) val_ds = tf.keras.preprocessing.text_dataset_from_directory( os.path.join(_path, 'train'), batch_size=batch_size, validation_split=validation_split, subset='validation', seed=seed, label_mode=label_mode) val_ds = val_ds.cache().prefetch(tf.data.AUTOTUNE) test_ds = tf.keras.preprocessing.text_dataset_from_directory( os.path.join(_path, 'test'), batch_size=batch_size, label_mode=label_mode) if class_names is None: class_names = test_ds.class_names test_ds = test_ds.cache().prefetch(tf.data.AUTOTUNE) logging.info(f"Load data from directory successfully, class_names: {class_names}") return train_ds, val_ds, test_ds, class_names def get_vectorize_layer(max_features, max_len, train_ds: tf.data.Dataset = None, vocabulary=None, output_mode='int', split='whitespace') -> tf.keras.layers.TextVectorization: vectorize_layer = tf.keras.layers.TextVectorization( max_tokens=max_features, split=split, output_mode=output_mode, output_sequence_length=max_len, pad_to_max_tokens=True) if train_ds is not None: text_ds = train_ds.map(lambda x, y: x) vectorize_layer.adapt(text_ds) else: assert (vocabulary is not None, "if train_ds is None, vocabulary can not be None") vectorize_layer.adapt(tf.data.Dataset.from_tensor_slices(["just for init weights"])) vectorize_layer.set_vocabulary(vocabulary) logging.info(f"Generate vectorize layer successfully, and adapt: {vectorize_layer.is_adapted}") return vectorize_layer def get_bert_tokenizer(vocab): lookup_table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer( keys=vocab, key_dtype=tf.string, values=tf.range(tf.size(vocab, out_type=tf.int64), dtype=tf.int64), value_dtype=tf.int64), num_oov_buckets=1, lookup_key_dtype=tf.string ) def train_format_data(filename): pass
mikuh/xdnlp
xdnlp/classify/utils.py
utils.py
py
2,972
python
en
code
1
github-code
6
71484039228
class Cube: def __init__(self, x, y, z, s): self.x, self.y, self.z = x, y, z self.s = s def is_in_cube(self, x, y, z): return self.x <= x <= self.x + self.s and self.y <= y <= self.y + self.s and self.z <= z <= self.z + self.s def intersect(self, C): dxyz = [(0, 0, 0), (C.s, 0, 0), (0, C.s, 0), (0, 0, C.s), (C.s, C.s, 0), (C.s, 0, C.s), (0, C.s, C.s), (C.s, C.s, C.s)] for dx1, dy1, dz1 in dxyz: nx1, ny1, nz1 = C.x + dx1, C.y + dy1, C.z + dz1 if self.is_in_cube(nx1, ny1, nz1): for dx2, dy2, dz2 in dxyz: nx2, ny2, nz2 = self.x + dx2, self.y + dy2, self.z + dz2 if C.is_in_cube(nx2, ny2, nz2): a, b, c = abs(nx1 - nx2), abs(ny1 - ny2), abs(nz1 - nz2) if a * b * c == 0: continue # print(a, b, c, end=':') return 2 * (a * b + b * c + c * a) return 0 edges = list() inters = dict() def calc_overlap(vs): ret = sum(inters.get((vs[i], vs[i + 1]), 0) for i in range(len(vs) - 1)) if len(vs) > 2: ret += inters.get((vs[-1], vs[0]), 0) return ret def dfs(v, par, vs, res): if res == 0: return calc_overlap(vs) ret = -1 for e in edges[v]: if e != par: vs.append(e) ret = max(ret, dfs(e, v, vs, res - 1)) vs.pop() return ret while True: N, K, S = map(int, input().split()) # print((N, K, S)) if not (N | K | S): break cubes = [] for _ in range(N): x, y, z = map(int, input().split()) cubes.append(Cube(x, y, z, S)) # cubes = [Cube(*map(int, input().split()), S) for _ in range(N)] edges = [[] for _ in range(N)] inters = dict() for i in range(N): for j in range(i + 1, N): sur = cubes[i].intersect(cubes[j]) if sur > 0: # print(i, j, cubes[i].intersect(cubes[j])) inters[i, j] = inters[j, i] = sur edges[i].append(j) edges[j].append(i) # print(edges, inters) ans = -1 for i in range(N): ans = max(ans, dfs(i, -1, [i], K - 1)) print(-1 if ans == -1 else S * S * 6 * K - ans)
knuu/competitive-programming
aoj/16/aoj1612.py
aoj1612.py
py
2,362
python
en
code
1
github-code
6
70416778427
from config import config import random import requests import chardet from db.db_select import sqlhelper import threading lock = threading.Lock() class Downloader(object): @staticmethod def download(url): try: r = requests.get(url=url, headers=config.get_header(), timeout=config.TIMEOUT) r.encoding = chardet.detect(r.content)['encoding'] if (not r.ok) or len(r.content) < 500: raise ConnectionError else: return r.text except: count = 0 # 重试次数 lock.acquire() proxylist = sqlhelper.select(10) lock.release() if not proxylist: return None while count < config.RETRY_TIME: try: proxy = random.choice(proxylist) ip = proxy[0] port = proxy[1] proxies = {"http": "http://{}:{}".format(ip, port), "https": "http://{}:{}".format(ip, port)} r = requests.get(url=url, headers=config.get_header(), timeout=config.TIMEOUT, proxies=proxies) r.encoding = chardet.detect(r.content)['encoding'] if (not r.ok) or len(r.content) < 500: raise ConnectionError else: return r.text except: count += 1 return None
queenswang/IpProxyPool
spider/HtmlDownloader.py
HtmlDownloader.py
py
1,469
python
en
code
0
github-code
6
6460673982
import logging from pprint import pprint # noqa from olefile import isOleFile, OleFileIO from ingestors.support.timestamp import TimestampSupport from ingestors.support.encoding import EncodingSupport log = logging.getLogger(__name__) class OLESupport(TimestampSupport, EncodingSupport): """Provides helpers for Microsoft OLE files.""" def decode_meta(self, meta, prop): try: value = getattr(meta, prop, None) if not isinstance(value, bytes): return encoding = "cp%s" % meta.codepage return self.decode_string(value, encoding) except Exception: log.warning("Could not read metadata: %s", prop) def extract_ole_metadata(self, file_path, entity): with open(file_path, "rb") as fh: if not isOleFile(fh): return fh.seek(0) try: ole = OleFileIO(fh) self.extract_olefileio_metadata(ole, entity) except (RuntimeError, IOError): # OLE reading can go fully recursive, at which point it's OK # to just eat this runtime error quietly. log.warning("Failed to read OLE data: %r", entity) except Exception: log.exception("Failed to read OLE data: %r", entity) def extract_olefileio_metadata(self, ole, entity): try: entity.add("authoredAt", self.parse_timestamp(ole.root.getctime())) except Exception: log.warning("Failed to parse OLE ctime.") try: entity.add("modifiedAt", self.parse_timestamp(ole.root.getmtime())) except Exception: log.warning("Failed to parse OLE mtime.") meta = ole.get_metadata() entity.add("title", self.decode_meta(meta, "title")) entity.add("author", self.decode_meta(meta, "author")) entity.add("author", self.decode_meta(meta, "last_saved_by")) entity.add("author", self.decode_meta(meta, "company")) entity.add("summary", self.decode_meta(meta, "notes")) entity.add("generator", self.decode_meta(meta, "creating_application")) entity.add("authoredAt", self.decode_meta(meta, "create_time")) entity.add("modifiedAt", self.decode_meta(meta, "last_saved_time")) entity.add("language", self.decode_meta(meta, "language"))
alephdata/ingest-file
ingestors/support/ole.py
ole.py
py
2,390
python
en
code
45
github-code
6
19993528742
""" This script crawls data about Malaysian stock indices and stores the output in a csv file. """ import requests from bs4 import BeautifulSoup import time #Website to get the indices base_url = 'https://www.investing.com/indices/malaysia-indices?' print('Scraping: ' + base_url) headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X ' '10_14_3) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/72.0.3626.109 Safari/537.36'} html_doc = requests.get(base_url, headers=headers).text # parse the HTML contents using BeautifulSoup parser soup = BeautifulSoup(html_doc, 'html.parser') #KLCI indiceKLCI = soup.select_one('#pair_29078 > td.bold.left.noWrap.elp.plusIconTd > a').text LastA = soup.select_one('#pair_29078 > td.pid-29078-last').text LastA = LastA.replace(",","") HighA = soup.select_one('#pair_29078 > td.pid-29078-high').text HighA = HighA.replace(",","") LowA = soup.select_one('#pair_29078 > td.pid-29078-low').text LowA = LowA.replace(",","") #Malaysia ACE indiceMalaysiaACE = soup.select_one('#pair_29075 > td.bold.left.noWrap.elp.plusIconTd > a').text LastB = soup.select_one('#pair_29075 > td.pid-29075-last').text LastB = LastB.replace(",","") HighB = soup.select_one('#pair_29075 > td.pid-29075-high').text HighB = HighB.replace(",","") LowB = soup.select_one('#pair_29075 > td.pid-29075-low').text LowB = LowB.replace(",","") #FTSE BM Mid 70 indiceFTSEBMMid70 = soup.select_one('#pair_29076 > td.bold.left.noWrap.elp.plusIconTd > a').text LastC = soup.select_one('#pair_29076 > td.pid-29076-last').text LastC = LastC.replace(",","") HighC = soup.select_one('#pair_29076 > td.pid-29076-high').text HighC = HighC.replace(",","") LowC = soup.select_one('#pair_29076 > td.pid-29076-low').text LowC = LowC.replace(",","") #Malaysia Top 100 indiceMalaysiaTop100 = soup.select_one('#pair_29077 > td.bold.left.noWrap.elp.plusIconTd > a').text LastD = soup.select_one('#pair_29077 > td.pid-29077-last').text LastD = LastD.replace(",","") HighD = soup.select_one('#pair_29077 > td.pid-29077-high').text HighD = HighD.replace(",","") LowD = soup.select_one('#pair_29077 > td.pid-29077-low').text LowD = LowD.replace(",","") indice_name = [indiceKLCI, indiceMalaysiaACE, indiceFTSEBMMid70, indiceMalaysiaTop100] Last = [LastA, LastB, LastC, LastD] High = [HighA, HighB, HighC, HighD] Low = [LowA, LowB, LowC, LowD] Time = [time.strftime('%H:%M'),time.strftime('%H:%M') , time.strftime('%H:%M'), time.strftime('%H:%M')] Date = [time.strftime('%d-%b-%Y'),time.strftime('%d-%b-%Y'), time.strftime('%d-%b-%Y'),time.strftime('%d-%b-%Y')] # save the scraped prices to a file whose name contains the # current datetime file_name = 'indices_' + time.strftime('%d-%b-%Y_%H-%M') + '.csv' with open(file_name, 'w') as f: for A, B, C, D, G, H in zip(indice_name, Last, High, Low, Date, Time): f.write(A + ',' + B + ',' + C + ',' + D + ',' + '[' + G + '|' + H + ']' + '\n')
ammar1y/Data-Mining-Assignment
Web crawlers/Malaysian stock indices crawler.py
Malaysian stock indices crawler.py
py
3,548
python
en
code
0
github-code
6
20972621530
import sys import random import math from tools.model import io import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from detection import box, anchors, display, evaluate, loss import argparse from detection.models import models from tools.image import cv def random_box(dim, num_classes): cx = random.uniform(0, dim[0]) cy = random.uniform(0, dim[1]) sx = random.uniform(0.1, 0.2) * dim[0] sy = random.uniform(0.1, 0.2) * dim[1] return (cx, cy, sx, sy) if __name__ == '__main__': random.seed(0) torch.manual_seed(0) parser = argparse.ArgumentParser(description='Test model') parser.add_argument('--model', action='append', default=[], help='model type and sub-parameters e.g. "unet --dropout 0.1"') args = parser.parse_args() print(args) num_classes = 2 model_args = {'num_classes':num_classes, 'input_channels':3} creation_params = io.parse_params(models, args.model) model, encoder = io.create(models, creation_params, model_args) print(model) batches = 1 dim = (512, 512) images = Variable(torch.FloatTensor(batches, 3, dim[1], dim[0]).uniform_(0, 1)) loc_preds, class_preds = model.cuda()(images.cuda()) def random_target(): num_boxes = random.randint(1, 50) boxes = torch.Tensor ([random_box(dim, num_classes) for b in range(0, num_boxes)]) boxes = box.point_form(boxes) label = torch.LongTensor(num_boxes).random_(0, num_classes) return (boxes, label) target_boxes = [random_target() for i in range(0, batches)] target = [encoder.encode(dim, boxes, label) for boxes, label in target_boxes] loc_target = Variable(torch.stack([loc for loc, _ in target]).cuda()) class_target = Variable(torch.stack([classes for _, classes in target]).cuda()) # print((loc_target, class_target), (loc_preds, class_preds)) print(loss.total_loss( (loc_target, class_target), (loc_preds, class_preds) )) detections = encoder.decode_batch(images.detach(), loc_preds.detach(), class_preds.detach()) classes = {} for i, (boxes, label, confs), (target_boxes, target_label) in zip(images.detach(), detections, target_boxes): score = evaluate.mAP(boxes, label, confs, target_boxes.type_as(boxes), target_label.type_as(label), threshold = 0.1) print(score) # noise = target_boxes.clone().uniform_(-20, 30) # score = evaluate.mAP(target_boxes + noise, target_label, torch.arange(target_label.size(0)), target_boxes, target_label, threshold=0.5) # print(score) # i = i.permute(1, 2, 0) # key = cv.display(display.overlay(i, boxes, label, confidence=confs)) # if(key == 27): # break #print(boxes) #loss = MultiBoxLoss(num_classes) #target = (Variable(boxes.cuda()), Variable(label.cuda())) #print(loss(out, target))
oliver-batchelor/detection
models/test.py
test.py
py
2,957
python
en
code
0
github-code
6
6905516706
""" Python Tutorial: https://docs.python.org/3/tutorial/errors.html Errors & Exceptions """ def myf(x, y): x/y try: # raise ZeroDivisionError("text of an exc...") myf(4, 0) # except BaseException as err: # print(f"Base! {err}") except ZeroDivisionError as err: print(f"zero! {err}") except TypeError as err: print(f"I won't reach this stage! {err}") else: print('all went fine') finally: print('\nCLEANING THIS MESS')
hqpiotr/learning-python
0. Python Tutorial - docs/exceptions.py
exceptions.py
py
454
python
en
code
0
github-code
6
1498361105
n = int(input("Enter an integer: ")) a = 0 b = 1 count = 0 sum1 = 0 lst = list() listfib = list() listeven = list() sum2 = 0 while count <= n: lst.append(sum1) count += 1 a = b b = sum1 sum1 = a + b for j in lst: if j <= n: listfib.append(j) for k in listfib: if k % 2 == 0: listeven.append(k) for l in listeven: sum2 += l print("The sum of even numbers of fibonacci sequence {} is: {}".format( listfib, sum2))
BRAVO68WEB/codetantra-py-labs
Lab4b.py
Lab4b.py
py
463
python
en
code
0
github-code
6
74471362747
from faculty import Faculty from student import Student class University: """A class representing a university. Attributes: faculties (list[Faculty]): A list of faculties in the university. """ def __init__( self, uni_dict_data: dict = None, ): """Initializes a new instance of the University class. Args: uni_dict_data (dict): The dictionary data of the university. """ self.faculties = [] self.students = [] if uni_dict_data: self.load_university(uni_dict_data) def __str__( self, ): """Returns a string representation of the University object.""" return f"Technical University of Moldova with {len(self.faculties)} faculties" def create_faculty( self, name: str, abbreviation: str, study_field: str, ) -> Faculty: """Creates a new faculty with the given name, abbreviation and study field and adds it to the list of faculties. Args: name (str): The name of the faculty. abbreviation (str): The abbreviation or short name of the faculty. study_field (str): The field of study or specialization of the faculty. Returns: Faculty: The newly created faculty. """ faculty = Faculty(name, abbreviation, study_field) self.faculties.append(faculty) return faculty def create_student( self, faculty_id: str, first_name: str, last_name: str, email: str, enrollment_date: str, graduation_status: bool, birth_date: str, ) -> Student: """Creates a new student with the given first name, last name, email, enrollment date, graduation status and birth date and adds it to the list of students. Args: faculty_id (str): The ID of the faculty to add the student to. first_name (str): The first name of the student. last_name (str): The last name of the student. email (str): The email address of the student. enrollment_date (str): The date when the student was enrolled. graduation_status (bool): The graduation status of the student. birth_date (str): The date of birth of the student. Returns: Student: The newly created student. """ student = Student(first_name, last_name, email, enrollment_date, graduation_status, birth_date) self.students.append(student) self.faculties[int(faculty_id)].students.append(student) return student def load_university( self, uni_dict_data: dict, ) -> None: """Loads university data from the given location. Args: uni_dict_data (dict): The dictionary data of the university. """ for index, faculty in enumerate(uni_dict_data["faculties"]): self.faculties.append(Faculty(faculty_dict_data=faculty)) self.students.extend(self.faculties[index].students) def to_dict( self, ) -> dict: """Returns the university as a dictionary. Returns: dict: The university as a dictionary. """ return { "faculties": [faculty.to_dict() for faculty in self.faculties], }
pyramixofficial/OOP
second_lab/university.py
university.py
py
3,390
python
en
code
0
github-code
6
37379394096
try: import Image import ImageDraw except: from PIL import Image from PIL import ImageDraw import glob import numpy as np import os import sys def image_clip(img_path, size): # 转换为数组进行分割操作,计算能完整分割的行数、列数 imarray = np.array(Image.open(img_path)) imshape = imarray.shape image_col = int(imshape[1]/size[1]) image_row = int(imshape[0]/size[0]) img_name= img_path.split(".")[0].split("\\")[1] # 两个for循环分割能完整分割的图像,并保存图像、坐标转换文件 for row in range(image_row): for col in range(image_col): clipArray = imarray[row*size[0]:(row+1)*size[0],col*size[1]:(col+1)*size[1]] clipImg = Image.fromarray(clipArray) folder = os.path.exists("E:/wangyu_file/GID/Fine Land-cover Classification_15classes/image_RGB/clip") # 判断文件夹是否存在,不存在则新建国家文件 if not folder: # 判断是否存在文件夹如果不存在则创建为文件夹 os.makedirs("E:/wangyu_file/GID/Fine Land-cover Classification_15classes/image_RGB/clip") # makedirs 创建文件时如果路径不存在会创建这个路径 img_filepath = 'E:/wangyu_file/GID/Fine Land-cover Classification_15classes/image_RGB/clip/' + img_name + "_" +str(row) + "_" + str(col) + ".tif" clipImg.save(img_filepath) if __name__=='__main__': img_dir = 'E:/wangyu_file/GID/Fine Land-cover Classification_15classes/image_RGB/' # img_dir = 'E:/wangyu_file/GID/Fine Land-cover Classification_15classes/label_15classes/' imgs = glob.glob('{}*.tif'.format(img_dir)) for img in imgs: image_clip(img, [512, 512])
faye0078/RS-ImgShp2Dataset
train_example/model/Fast_NAS/data/slip_img.py
slip_img.py
py
1,752
python
zh
code
1
github-code
6
14896890650
"""empty message Revision ID: 97dd2d43d5f4 Revises: d5e28ae20d48 Create Date: 2018-05-30 00:51:39.536518 """ # revision identifiers, used by Alembic. revision = '97dd2d43d5f4' down_revision = 'd5e28ae20d48' from alembic import op import sqlalchemy as sa def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('exam', sa.Column('hidden', sa.Boolean(), server_default=sa.literal(False), nullable=False)) op.add_column('exam_version', sa.Column('hidden', sa.Boolean(), server_default=sa.literal(False), autoincrement=False, nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('exam_version', 'hidden') op.drop_column('exam', 'hidden') # ### end Alembic commands ###
duvholt/memorizer
migrations/versions/97dd2d43d5f4_.py
97dd2d43d5f4_.py
py
828
python
en
code
16
github-code
6
25069435045
from typing import List, Any, Tuple from ups_lib.av_request import AddressValidationRequest from purplship.core.utils import ( XP, DP, request as http, exec_parrallel, Serializable, Deserializable, Envelope, Pipeline, Job, ) from purplship.api.proxy import Proxy as BaseProxy from purplship.mappers.ups.settings import Settings class Proxy(BaseProxy): settings: Settings def _send_request(self, path: str, request: Serializable[Any]) -> str: return http( url=f"{self.settings.server_url}{path}", data=bytearray(request.serialize(), "utf-8"), headers={"Content-Type": "application/xml"}, method="POST", ) def validate_address( self, request: Serializable[AddressValidationRequest] ) -> Deserializable[str]: response = self._send_request("/webservices/AV", request) return Deserializable(response, XP.to_xml) def get_rates(self, request: Serializable[Envelope]) -> Deserializable[str]: response = self._send_request("/webservices/Rate", request) return Deserializable(response, XP.to_xml) def get_tracking( self, request: Serializable[List[str]] ) -> Deserializable[List[Tuple[str, dict]]]: """ get_tracking makes parallel requests for each tracking number """ def get_tracking(tracking_number: str): return tracking_number, http( url=f"{self.settings.server_url}/track/v1/details/{tracking_number}", headers={ "Accept": "application/json", "Content-Type": "application/json", "AccessLicenseNumber": self.settings.access_license_number, "Username": self.settings.username, "Password": self.settings.password, }, method="GET", ) responses: List[str] = exec_parrallel(get_tracking, request.serialize()) return Deserializable( responses, lambda res: [ (num, DP.to_dict(track)) for num, track in res if any(track.strip()) ], ) def create_shipment(self, request: Serializable[Envelope]) -> Deserializable[str]: response = self._send_request("/webservices/Ship", request) return Deserializable(response, XP.to_xml) def cancel_shipment(self, request: Serializable) -> Deserializable[str]: response = self._send_request("/webservices/Ship", request) return Deserializable(response, XP.to_xml) def schedule_pickup(self, request: Serializable[Pipeline]) -> Deserializable[str]: def process(job: Job): if job.data is None: return job.fallback return self._send_request("/webservices/Pickup", job.data) pipeline: Pipeline = request.serialize() response = pipeline.apply(process) return Deserializable(XP.bundle_xml(response), XP.to_xml) def modify_pickup(self, request: Serializable[Pipeline]) -> Deserializable[str]: def process(job: Job): if job.data is None: return job.fallback return self._send_request("/webservices/Pickup", job.data) pipeline: Pipeline = request.serialize() response = pipeline.apply(process) return Deserializable(XP.bundle_xml(response), XP.to_xml) def cancel_pickup(self, request: Serializable[Envelope]) -> Deserializable[str]: response = self._send_request("/webservices/Pickup", request) return Deserializable(response, XP.to_xml)
danh91/purplship
sdk/extensions/ups/purplship/mappers/ups/proxy.py
proxy.py
py
3,654
python
en
code
null
github-code
6
15512949000
#This is for the introduction and Asking user info #Asking user their name and checking if it is correct def name(): name_1=input("What is your name?") right_name=input("Your name is {}. Is this correct? press [y/n]".format(name_1)) if right_name == 'y': print("Hi {}. Welcome to my Car theft prevention app.".format(name_1)) else: right_name_2 = input("Please enter your correct name.") print("Hi {}. Welcome to my Car theft prevention app.".format(right_name_2)) name()
karthik-create/Car_theft-
intro.py
intro.py
py
513
python
en
code
0
github-code
6
70211001788
from django.conf.urls import patterns, include, url from django.conf import settings from cer_manager.views import * # Uncomment the next two lines to enable the admin: # from django.contrib import admin # admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'cer_manager.views.home', name='home'), # url(r'^cer_manager/', include('cer_manager.foo.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: # url(r'^admin/', include(admin.site.urls)), url(r'^index/$', cer_list), url(r'^canshu/(.+)/$',insert), url(r'^test/$',test), url(r'^insert/$',insert), url(r'^modify/(.+)/$',modify), url('^css/(?P<path>.*)$','django.views.static.serve',{'document_root':settings.STATIC_ROOT_CSS}), url('^js/(?P<path>.*)$','django.views.static.serve',{'document_root':settings.STATIC_ROOT_JS}), )
colive/cer_manager
urls.py
urls.py
py
1,030
python
en
code
0
github-code
6
19583758283
""" This file is used to perform a random hyperparameter search on the Coco dataset using the baseline image captioner. For more info on the ImageCaptionerBaseline class, please check out the docstrings in the image_captioning.py file. """ # Package loading import argparse import os import sys sys.path.append('..') # Depending on the platform/IDE used, the home directory might be the socraticmodels or the # socraticmodels/scripts directory. The following ensures that the current directory is the scripts folder. try: os.chdir('scripts') except FileNotFoundError: pass # Local imports from scripts.image_captioning import ImageCaptionerBaseline def parse_arguments(): """ Parses the arguments for the baseline COCO captioning hyperparameter tuning. :return: """ # init argparser parser = argparse.ArgumentParser(description='Baseline Image Captioning Hyperparameter tuning') # Additional variables parser.add_argument('--n-images', type=int, default=50, help='# images to include in the dataset') parser.add_argument('--set-type', type=str, default='train', help='train/valid/test set') parser.add_argument('--n-iterations', type=int, default=100, help='# of run iterations') parser.add_argument('--n-captions', type=int, default=10, help='# captions the LM should generate') parser.add_argument('--lm-max-length', type=int, default=40, help='max output length the LM should generate') parser.add_argument('--lm-do-sample', type=bool, default=True, help='whether to use sampling during generation') parser.add_argument('--lm-temp-min', type=float, default=0.5, help='minimum temperature param for the lm') parser.add_argument('--lm-temp-max', type=float, default=1, help='maximum temperature param for the lm') parser.add_argument('--n-objects-min', type=int, default=5, help='minimum number of objects in the LM prompt') parser.add_argument('--n-objects-max', type=int, default=15, help='maximum number of objects in the LM prompt') parser.add_argument('--n-places-min', type=int, default=1, help='minimum number of places in the LM prompt') parser.add_argument('--n-places-max', type=int, default=6, help='maximum number of places in the LM prompt') parser.add_argument('--caption-strategies', nargs="+", default=None) # parse args args = parser.parse_args() return args if __name__ == '__main__': # Parse the arguments. args = parse_arguments() # Instantiate the baseline image captioner class. image_captioner = ImageCaptionerBaseline(n_images=args.n_images, set_type=args.set_type) # Run the hyperparameter search image_captioner.random_parameter_search( n_iterations=args.n_iterations, n_captions=args.n_captions, lm_max_length=args.lm_max_length, lm_do_sample=args.lm_do_sample, lm_temp_min=args.lm_temp_min, lm_temp_max=args.lm_temp_max, n_objects_min=args.n_objects_min, n_objects_max=args.n_objects_max, n_places_min=args.n_places_min, n_places_max=args.n_places_max, caption_strategies=args.caption_strategies )
milenakapralova/socraticmodels
scripts/coco_caption_base_hp_tune.py
coco_caption_base_hp_tune.py
py
3,103
python
en
code
0
github-code
6
34131870149
import time import numpy as np def num_with_sqr_lt_n(n): while not np.sqrt(n).is_integer(): n-=1 return int(np.sqrt(n)) def process(n, state): num = state[0] sub = state[1] den = n - sub**2 if den%num==0: den = den/num sub = -1*sub num = np.sqrt(n)+sub #print('\n',den,sub,num,'\n') a = 0 while num/den > 1: a += 1 sub -= den num -= den #print('\n',den,sub,num,'\n') return (den,sub,a) def print_fn(n,state): print('\n '+str(int(state[0]))) print('-----------') print(u'\u221A'+str(n)+' + ('+str(int(state[1]))+')\n') if __name__ == '__main__': N = 13 odd_count = 0 stime = time.time() for n in range(2,N+1): print("\nN = %d "%(n)) a0 = num_with_sqr_lt_n(n) a = [a0] if a0 == np.sqrt(n): #print(a) continue states = [(1,-1*a0)] #print_fn(n,states[0]) currState = None while True: if currState == None: currState = states[-1] currState = process(n,currState) a.append(currState[-1]) currState = (currState[0],currState[1]) if currState in states: break states.append(currState) #print_fn(n,currState) if len(a)%2==0: odd_count+=1 print('['+str(a[0])+';('+','.join(list(map(str,a[1:])))+')]') print("\nNumber of Continues Fractions having Odd Period : %d"%odd_count) print("\nTotal Time Taken : %.3f seconds\n"%(time.time()-stime))
sadimanna/project_euler
p64.py
p64.py
py
1,386
python
en
code
0
github-code
6
10173968880
from configparser import ConfigParser # get the configparser object config_object = ConfigParser() # set config config_object["SERVERCONFIG_BROWSER"] = { "host": "127.0.0.1", "port": "8888", "web_directory": "www/" } config_object["SERVERCONFIG"] = { "host": "127.0.0.1", "port": "8080", } # Write the above sections to config.ini file with open('config.ini', 'w') as conf: config_object.write(conf)
kaumnen/diy-http-server
config/config.py
config.py
py
428
python
en
code
0
github-code
6
17287700821
import yaml import argparse from jinja2 import Environment, FileSystemLoader, Template def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--jobs', required=True) parser.add_argument('--job_config', required=True) return parser.parse_args() def get_commandline(args): config_data = yaml.load(open(args.job_config)) job_data = config_data[args.jobs] env = Environment(loader=FileSystemLoader('Templates'), trim_blocks=True, lstrip_blocks=True) template = env.get_template(args.jobs) return template.render(job_data) def main(): args = get_args() commandline = get_commandline(args) print(commandline) if __name__ == '__main__': main()
Chappers1992/Variability
run.py
run.py
py
759
python
en
code
0
github-code
6
13155871471
import serial import time # pass in upper and lower 8 bit values # returns the 16 bit value as an int # def PrintContcatBytes(valueOne, valueTwo): # print bin(valueOne)[2:].rjust(8,'0') class ReturnValue(object): def __init__(self, valid, pm10, pm25, pm100, num3, num5, num10, num25, num50, num100): self.valid = valid self.pm10 = pm10 self.pm25 = pm25 self.pm100 = pm100 self.num3 = num3 self.num5 = num5 self.num10 = num10 self.num25 = num25 self.num50 = num50 self.num100 = num100 def ConcatBytes(valueOne, valueTwo): return int(bin(valueOne)[2:].rjust(8, '0') + bin(valueTwo)[2:].rjust(8, '0'), 2) def readlineCRtest(port): for i in range(256): for j in range(256): if i * 256 + j != ConcatBytes(i, j): print (i, j, i * 256 + j, ConcatBytes(i, j)) print (i) def readlineCR(port): """ Output values are explained here: https://www.dfrobot.com/wiki/index.php/PM2.5_laser_dust_sensor_SKU:SEN0177#Communication_protocol :param port: :return: """ data = [] summation = 0 data.append(ord(port.read())) data.append(ord(port.read())) # data.append(22) data.append(17) print (int("42", 16), int("4d", 16)) print int(bin(32)[2:].rjust(8, '0'),2) print (data[0], data[1]) while (data[0] != int("42", 16) and data[1] != int("4d", 16)): print("failed - scooting over") data.pop(0) data.append(ord(port.read())) summation += data[0] + data[1] while len(data) < 17: upperVal = ord(port.read()) lowerVal = ord(port.read()) if len(data) < 16: summation += upperVal summation += lowerVal data.append(ConcatBytes(upperVal, lowerVal)) # for message in data: # print message print "Last num should be: ", summation if data[16] != summation: return ReturnValue("False", 0, 0, 0, 0, 0, 0, 0, 0, 0) # print (int(message[0], 16)) print (len(message), message) if (int(message[0], 16) != int("42", 16) or len(message) > 1 and int(message[1], 16) != int("4d", 16)): # print("character deleted to scoot over") message = message[1:] return ReturnValue("True", data[3], data[4], data[5], data[9], data[10], data[11], data[12], data[13], data[14]) # if ch == '\r' or ch == chr(66) or ch == '': # return rv port = serial.Serial("/dev/serial0", baudrate=9600, timeout=2) while True: boxOfStuff = readlineCR(port) port.write(b"I typed stuff") if boxOfStuff.valid: print(boxOfStuff.pm10, boxOfStuff.pm25, boxOfStuff.pm100, boxOfStuff.num3, boxOfStuff.num5, boxOfStuff.num10, boxOfStuff.num25, boxOfStuff.num50, boxOfStuff.num100) else: print("message failed")
learnlafayette/sensors
sensors/sensors/test/samples/pm_sample.py
pm_sample.py
py
2,794
python
en
code
0
github-code
6
32412548511
### Spine by Chris Alexander # Standard imports # Custom imports import DataFormat import Interface # Interface Input class class Input(Interface.I, DataFormat.Format): # The max number of bytes to receive from the socket maxBytesReceive = 2048 # Initialise the Input Interface def __init__(self, host = None, port = None): # Init the parent Interface super(Input, self).__init__(host, port) # Initialisation for the Input def initialise(self): # Initialise the parent interface super(Input, self).initialise() # Bind the socket self.socket.bind((self.host, self.port)) # Receive a single packet from the socket def receive(self, ignoreFormat = 0, ignoreTransform = 0): data, addr = self.socket.recvfrom(self.maxBytesReceive) if self.dataformat and not ignoreFormat: data = self.dataformat.inputConvert(data) if self.transform and not ignoreTransform: data = self.applyTransform(data) return data
arnie-robot/Spine
src/Interface/input.py
input.py
py
1,072
python
en
code
0
github-code
6
21340780197
import sqlite3 from recipe import Recipe, Quantity, stringsToQuantities class Database: def __init__(self,database): self.connection = sqlite3.connect(database) self.c = self.connection.cursor() # self.c.execute("""DROP TABLE IF EXISTS ingredients""") # self.c.execute("""DROP TABLE IF EXISTS recipes""") # self.c.execute("""DROP TABLE IF EXISTS instructions""") # self.c.execute("""DROP TABLE IF EXISTS recipeingredients""") # self.c.execute("""DROP TABLE IF EXISTS recipeinstructions""") #Create ingredients self.c.execute("""CREATE TABLE IF NOT EXISTS ingredients ( ingredientID INTEGER PRIMARY KEY, name TEXT, UNIQUE(name) ) """) self.c.execute("""CREATE TABLE IF NOT EXISTS recipes ( recipeID INTEGER PRIMARY KEY, name TEXT, UNIQUE(name) ) """) self.c.execute("""CREATE TABLE IF NOT EXISTS instructions ( instructionID INTEGER PRIMARY KEY, instruction TEXT, num INTEGER ) """) self.c.execute("""CREATE TABLE IF NOT EXISTS recipeingredients ( recipeID INTEGER NOT NULL, ingredientID INTEGER NOT NULL, quantity TEXT, FOREIGN KEY (recipeID) REFERENCES recipes(recipeID), FOREIGN KEY (ingredientID) REFERENCES ingredients(ingredientID) ) """) self.c.execute("""CREATE TABLE IF NOT EXISTS recipeinstructions ( recipeID INTEGER NOT NULL, instructionID INTEGER NOT NULL, FOREIGN KEY (recipeID) REFERENCES recipes(recipeID), FOREIGN KEY (instructionID) REFERENCES instructions(instructionID) ) """) def addRecipe(self,recipe): #self.c.execute("INSERT OR IGNORE INTO recipes (name) VALUES (?)",(recipe.name,)) hold = self.c.execute("SELECT recipeID FROM recipes WHERE recipes.name = ?",(recipe.name,)).fetchone() if hold is not None: return None self.c.execute("INSERT OR IGNORE INTO recipes (name) VALUES (?)",(recipe.name,)) recipeID = hold = self.c.execute("SELECT recipeID FROM recipes WHERE recipes.name = ?",(recipe.name,)).fetchone()[0] ingredientIDList = [] if type(recipe.ingredients) is not str: for ingredient in recipe.ingredients: self.c.execute("INSERT OR IGNORE INTO ingredients (name) VALUES (?)",(ingredient,)) hold2 = self.c.execute("SELECT ingredientID FROM ingredients WHERE ingredients.name = ?",(ingredient,)).fetchone() ingredientIDList.extend(hold2) else: self.c.execute("INSERT OR IGNORE INTO ingredients (name) VALUES (?)",(recipe.ingredients,)) hold2 = self.c.execute("SELECT ingredientID FROM ingredients WHERE ingredients.name = ?",(recipe.ingredients,)).fetchone() ingredientIDList.extend(hold2) instructionIDList = [] if type(recipe.instructions) is not str: for index, instruction in enumerate(recipe.instructions): self.c.execute("INSERT OR IGNORE INTO instructions (instruction,num) VALUES (?,?)",(instruction,index+1)) hold3 = self.c.execute("SELECT instructionID FROM instructions WHERE instructions.instruction = ?",(instruction,)).fetchone() instructionIDList.extend(hold3) else: self.c.execute("INSERT OR IGNORE INTO instructions (instruction,num) VALUES (?,?)",(recipe.instructions,1)) hold2 = self.c.execute("SELECT instructionID FROM instructions WHERE instructions.instruction = ?",(recipe.instructions,)).fetchone() instructionIDList.extend(hold2) for instructionID in instructionIDList: self.c.execute("INSERT OR IGNORE INTO recipeinstructions (recipeID,instructionID) VALUES (?,?)",(recipeID,instructionID)) for index, ingredientID in enumerate(ingredientIDList): self.c.execute("INSERT OR IGNORE INTO recipeingredients (recipeID,ingredientID,quantity) VALUES (?,?,?)",(recipeID,ingredientID,recipe.quantities[index].getStorageString())) return recipe def deleteRecipe(self,recipe_name): #returns None if not found check = self.c.execute("SELECT * FROM recipes WHERE recipes.name = ?",(recipe_name,)).fetchone() self.c.execute("DELETE FROM recipes WHERE recipes.name = ?",(recipe_name,)) return check def getRecipe(self,recipe_name): #return either list or single answer, if list then print options recipeID = self.c.execute("SELECT recipes.recipeID FROM recipes WHERE recipes.name = ?",(recipe_name,)).fetchone() if recipeID == None: return None elif len(recipeID) == 1: ingredientsQuantities = self.c.execute("SELECT ingredients.name, recipeingredients.quantity FROM ingredients INNER JOIN recipeingredients ON ingredients.ingredientID = recipeingredients.ingredientID AND recipeingredients.recipeID = ?",(recipeID[0],)).fetchall() instructions = self.c.execute("SELECT instructions.instruction, instructions.num FROM instructions INNER JOIN recipeinstructions ON recipeinstructions.instructionID = instructions.instructionID AND recipeinstructions.recipeID = ?",(recipeID[0],)).fetchall() ingredients, str_quantities = zip(*ingredientsQuantities) recipe = Recipe(recipe_name, instructions, ingredients, stringsToQuantities(str_quantities)) return [recipe] else: # == 0, return None return None def keyWordSearchRecipes(self, keyword): names = [name[0] for name in self.c.execute("SELECT recipes.name FROM recipes").fetchall()] includes_keyword = [] for name in names: if keyword in name: includes_keyword.append(name) if len(includes_keyword) == 0: return None return includes_keyword def keyWordSearchIngredients(self, keyword): test = self.c.execute("SELECT ingredients.name FROM ingredients").fetchall() ingredient_names = [] [ingredient_names.append(name[0]) for name in test if keyword in name[0] ] recipe_names = set([]) for ingredient_name in ingredient_names: ingredientID = self.c.execute("SELECT ingredients.ingredientID FROM ingredients WHERE ingredients.name = ?",(ingredient_name,)).fetchone() recipe_name_list = self.c.execute("SELECT recipes.name FROM recipes INNER JOIN recipeingredients ON recipeingredients.ingredientID = ? AND recipes.recipeID = recipeingredients.recipeID",(ingredientID[0],)).fetchall() [recipe_names.add(name[0]) for name in recipe_name_list] return list(recipe_names) def getRecipeList(self): return [name[0] for name in self.c.execute("SELECT recipes.name FROM recipes").fetchall()] def getAllRecipes(self): return [self.getRecipe(name[0])[0] for name in self.c.execute("SELECT recipes.name FROM recipes").fetchall()] def close(self): self.connection.commit() self.connection.close() # c.execute("INSERT OR IGNORE INTO recipes (name) VALUES ('dicks')") # c.execute("INSERT OR IGNORE INTO recipes (name) VALUES (2)") # c.execute("INSERT OR IGNORE INTO recipes (name) VALUES (3)") # c.execute("INSERT OR IGNORE INTO recipes (name) VALUES (1)") # test = c.execute("SELECT recipeID, * FROM recipes""") # for row in test: # print(row[0]) # addRecipe("lovely dicks",["dicks","penis","cock"],["2","3","4"],["cook the cokes","eat my ass"]) # print(getRecipeList()) # print(getRecipe("lovely dicks")) # print(getRecipe("lovely dick")) # connection.commit() # connection.close()
fcopp/RecipeApplication
backend/backend.py
backend.py
py
7,842
python
en
code
0
github-code
6
1480464469
from jinja2 import DebugUndefined from app.models import db, Order from datetime import datetime def seed_orders(): christian = Order( userId=1, gigId=2, gigImage='https://nerdrr.s3.amazonaws.com/fruits-basket.jpg', deliveryInstructions='Please mail directly to me.', placed=datetime(2022, 6, 5, 8, 10, 10, 10), due=datetime(2022, 6, 12, 8, 10, 10, 10) ) james = Order( userId=4, gigId=4, gigImage='https://nerdrr.s3.amazonaws.com/dnd-mini.jpg', deliveryInstructions='Please mail directly to me.', placed=datetime(2022, 5, 29, 8, 10, 10, 10), due=datetime(2022, 6, 8, 8, 10, 10, 10) ) sherman = Order( userId=2, gigId=1, gigImage='https://nerdrr.s3.amazonaws.com/indie-game.jpg', deliveryInstructions='Please mail directly to me.', placed=datetime(2022, 3, 11, 8, 10, 10, 10), due=datetime(2022, 4, 10, 8, 10, 10, 10) ) brian = Order( userId=3, gigId = 3, gigImage='https://nerdrr.s3.amazonaws.com/demon-slayer.jpg', deliveryInstructions='Please mail directly to me.', placed=datetime(2022, 6, 7, 8, 10, 10, 10), due=datetime(2022, 6, 10, 8, 10, 10, 10) ) db.session.add(christian) db.session.add(james) db.session.add(sherman) db.session.add(brian) db.session.commit() def undo_orders(): db.session.execute('TRUNCATE orders RESTART IDENTITY CASCADE;') db.session.commit()
Amlovern/nerdrr
app/seeds/orders.py
orders.py
py
1,402
python
en
code
0
github-code
6
41791316904
import pytessy as pt from PIL import ImageFilter, Image if __name__ == "__main__": # Create pytessy instance ocrReader = pt.PyTessy() files = ["cell_pic.jpg"] for file in files: # Load Image img = Image.open(file) # Scale up image w, h = img.size img = img.resize((2 * w, 2 * h)) # Sharpen image img = img.filter(ImageFilter.SHARPEN) # Convert to ctypes imgBytes = img.tobytes() bytesPerPixel = int(len(imgBytes) / (img.width * img.height)) # Use OCR on Image imageStr = ocrReader.read(img.tobytes(), img.width, img.height, bytesPerPixel, raw=True, resolution=600) print(file, imageStr)
TheNova22/OurVision
legacy1/testtessy.py
testtessy.py
py
628
python
en
code
null
github-code
6
24117960481
import gym import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical import numpy as np from skimage.transform import resize # hyper params gamma = 0.98 class Policy(nn.Module): def __init__(self): super(Policy, self).__init__() self.data = [] self.lr = 0.002 # define architecture/layer parameters self.input_channels = 3 self.conv_ch_l1 = 8 self.conv_ch_l2 = 12 self.height = 210 self.width = 160 self.kernel_size = 3 self.pool_size = 2 self.conv_out = 23256 self.fc1_size = 16 self.fc_out = 4 # deifne actual layer # define first convolutional layer self.conv1 = nn.Conv2d(in_channels = self.input_channels, out_channels = self.conv_ch_l1, kernel_size = self.kernel_size) # add batch normalization layer self.batch_norm1 = nn.BatchNorm2d(self.conv_ch_l1) # define max-pool layer self.pool = nn.MaxPool2d(self.pool_size, self.pool_size) # define second convolution layer self.conv2 = nn.Conv2d(in_channels = self.conv_ch_l1, out_channels = self.conv_ch_l2, kernel_size = self.kernel_size) # define batch normalization layer self.batch_norm2 = nn.BatchNorm2d(self.conv_ch_l2) # define fully connected layers self.fc1 = nn.Linear(self.conv_out, self.fc1_size) self.fc2 = nn.Linear(self.fc1_size, self.fc_out) # define optimizer self.optimizer = optim.Adam(self.parameters() , lr = self.lr) def forward(self, x): # pass input through conv layer out = self.pool(F.relu(self.conv1(x))) out = self.batch_norm1(out) out = self.pool(F.relu(self.conv2(out))) # print(out.size()) # exit() out = self.batch_norm2(out) # reshape the conv out before passing it to fully connected layer _,b,c,d = out.size() fc_shape = b*c*d # print("FC input size : ", fc_shape) out = out.view(-1, fc_shape) # pass input through fully connected layer out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) return out # save data for training def put_data(self, item): self.data.append(item) # once the episode is complete we train the episode def train_policy(self): R = 0 for r, log_prob in self.data[::-1]: R = r + gamma * R loss = -log_prob * R # clean the previous gradients self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.data = [] def main(): # create the environment env = gym.make('Breakout-v0') pi = Policy() score = 0.0 print_interval = 20 num_episodes = 100 for n_epi in range(num_episodes): state = env.reset() for t in range(100000): # state is an image with channel last. # pre-processing steps: # 1. make image grayscale # 2. resize image # 3. add first dimension for batch # 4. convert image to tensor #img = np.dot(state[:,:,:3], [0.2989, 0.5870, 0.1140]) #img = resize(img, (63, 48), anti_aliasing=True) # now image is converted to single channel, add dimension for channel #img = np.expand_dims(img, axis=0) img = np.rollaxis(state, 2, 0) prob = pi(torch.from_numpy(img).unsqueeze(0).float()) m = Categorical(prob) a = m.sample() state_prime, r, done, _ = env.step(a.item()) # print(prob.size()) # print(prob) # print(a) # print(a.size()) # exit() print("Output : ", prob) print("Action : ", a.item()) print("Reward : ", r) pi.put_data((r,torch.log(prob[0,a]))) state = state_prime score += r if done: print("Episode ended : ", n_epi+1) break # if the episode is completed, train policy on recorded observations pi.train_policy() if (n_epi+1)%print_interval == 0 and n_epi > 0 : print("Episode : {}, avg_score : {}".format(n_epi, score/print_interval) ) score = 0 env.close() if __name__ == '__main__': main()
sachinumrao/pytorch_tutorials
cnn_breakout_rl.py
cnn_breakout_rl.py
py
4,757
python
en
code
0
github-code
6
14150647036
import json import re from requests_toolbelt import MultipartEncoder from todayLoginService import TodayLoginService from liteTools import * class AutoSign: # 初始化签到类 def __init__(self, todayLoginService: TodayLoginService, userInfo): self.session = todayLoginService.session self.host = todayLoginService.host self.userInfo = userInfo self.taskInfo = None self.task = None self.form = {} self.fileName = None # 获取未签到的任务 def getUnSignTask(self): LL.log(1, '获取未签到的任务') headers = self.session.headers headers['Content-Type'] = 'application/json' # 第一次请求接口获取cookies(MOD_AUTH_CAS) url = f'{self.host}wec-counselor-sign-apps/stu/sign/getStuSignInfosInOneDay' self.session.post(url, headers=headers, data=json.dumps({}), verify=False) # 第二次请求接口,真正的拿到具体任务 res = self.session.post(url, headers=headers, data=json.dumps({}), verify=False) res = DT.resJsonEncode(res) signLevel = self.userInfo.get('signLevel', 1) if signLevel >= 0: taskList = res['datas']['unSignedTasks'] # 未签到任务 if signLevel >= 1: taskList += res['datas']['leaveTasks'] # 不需签到任务 if signLevel == 2: taskList += res['datas']['signedTasks'] # 已签到任务 # 查询是否没有未签到任务 LL.log(1, '获取到的签到任务列表', taskList) if len(taskList) < 1: LL.log(1, '签到任务列表为空') raise TaskError('签到任务列表为空') # 自动获取最后一个未签到任务(如果title==0) if self.userInfo['title'] == 0: latestTask = taskList[0] self.taskName = latestTask['taskName'] LL.log(1, '最后一个未签到的任务', latestTask['taskName']) self.taskInfo = {'signInstanceWid': latestTask['signInstanceWid'], 'signWid': latestTask['signWid'], 'taskName': latestTask['taskName']} return self.taskInfo # 获取匹配标题的任务 for righttask in taskList: if righttask['taskName'] == self.userInfo['title']: self.taskName = righttask['taskName'] LL.log(1, '匹配标题的任务', righttask['taskName']) self.taskInfo = {'signInstanceWid': righttask['signInstanceWid'], 'signWid': righttask['signWid'], 'taskName': righttask['taskName']} return self.taskInfo LL.log(1, '没有匹配标题的任务') raise TaskError('没有匹配标题的任务') # 获取历史签到任务详情 def getHistoryTaskInfo(self): '''获取历史签到任务详情''' headers = self.session.headers headers['Content-Type'] = 'application/json;charset=UTF-8' # 获取签到月历 url = f'{self.host}wec-counselor-sign-apps/stu/sign/getStuIntervalMonths' res = self.session.post(url, headers=headers, data=json.dumps({}), verify=False) res = DT.resJsonEncode(res) monthList = [i['id'] for i in res['datas']['rows']] monthList.sort(reverse=True) # 降序排序月份 # 按月遍历 for month in monthList: # 获取对应历史月签到情况 req = {"statisticYearMonth": month} url = f'{self.host}wec-counselor-sign-apps/stu/sign/getStuSignInfosByWeekMonth' res = self.session.post( url, headers=headers, data=json.dumps(req), verify=False) res = DT.resJsonEncode(res) monthSignList = list(res['datas']['rows']) # 遍历查找历史月中每日的签到情况 monthSignList.sort( key=lambda x: x['dayInMonth'], reverse=True) # 降序排序日信息 for daySignList in monthSignList: # 遍历寻找和当前任务匹配的历史已签到任务 for task in daySignList['signedTasks']: if task['signWid'] == self.taskInfo['signWid']: # 找到和当前任务匹配的历史已签到任务,开始更新表单 historyTaskId = { "wid": task['signInstanceWid'], "content": task['signWid']} # 更新cookie url = f'{self.host}wec-counselor-sign-apps/stu/sign/getUnSeenQuestion' self.session.post(url, headers=headers, data=json.dumps( historyTaskId), verify=False) # 获取历史任务详情 historyTaskId = { "signInstanceWid": task['signInstanceWid'], "signWid": task['signWid']} url = f'{self.host}wec-counselor-sign-apps/stu/sign/detailSignInstance' res = self.session.post( url, headers=headers, data=json.dumps(historyTaskId), verify=False) res = DT.resJsonEncode(res) # 其他模拟请求 url = f'{self.host}wec-counselor-sign-apps/stu/sign/queryNotice' self.session.post(url, headers=headers, data=json.dumps({}), verify=False) url = f'{self.host}wec-counselor-sign-apps/stu/sign/getQAconfigration' self.session.post(url, headers=headers, data=json.dumps({}), verify=False) # 一些数据处理 result = res['datas'] result['longitude'] = float(result['longitude']) result['latitude'] = float(result['latitude']) self.userInfo['lon'] = result['longitude'] self.userInfo['lat'] = result['latitude'] result['photograph'] = result['photograph'] if len( result['photograph']) != 0 else "" result['extraFieldItems'] = [{"extraFieldItemValue": i['extraFieldItem'], "extraFieldItemWid": i['extraFieldItemWid']} for i in result['signedStuInfo']['extraFieldItemVos']] # 返回结果 LL.log(1, '历史签到情况的详情', result) self.historyTaskInfo = result return result # 如果没有遍历找到结果 LL.log(2, "没有找到匹配的历史任务") return "没有找到匹配的历史任务" def getDetailTask(self): LL.log(1, '获取具体的签到任务详情') url = f'{self.host}wec-counselor-sign-apps/stu/sign/detailSignInstance' headers = self.session.headers headers['Content-Type'] = 'application/json;charset=UTF-8' res = self.session.post(url, headers=headers, data=json.dumps( self.taskInfo), verify=False) res = DT.resJsonEncode(res) LL.log(1, '签到任务的详情', res['datas']) self.task = res['datas'] # 上传图片到阿里云oss def uploadPicture(self): url = f'{self.host}wec-counselor-sign-apps/stu/oss/getUploadPolicy' res = self.session.post(url=url, headers={'content-type': 'application/json'}, data=json.dumps({'fileType': 1}), verify=False) datas = DT.resJsonEncode(res).get('datas') fileName = datas.get('fileName') policy = datas.get('policy') accessKeyId = datas.get('accessid') signature = datas.get('signature') policyHost = datas.get('host') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:50.0) Gecko/20100101 Firefox/50.0' } multipart_encoder = MultipartEncoder( fields={ # 这里根据需要进行参数格式设置 'key': fileName, 'policy': policy, 'OSSAccessKeyId': accessKeyId, 'success_action_status': '200', 'signature': signature, 'file': ('blob', open(RT.choicePhoto(self.userInfo['photo']), 'rb'), 'image/jpg') }) headers['Content-Type'] = multipart_encoder.content_type res = self.session.post(url=policyHost, headers=headers, data=multipart_encoder) self.fileName = fileName # 获取图片上传位置 def getPictureUrl(self): url = f'{self.host}wec-counselor-sign-apps/stu/sign/previewAttachment' params = {'ossKey': self.fileName} res = self.session.post(url=url, headers={'content-type': 'application/json'}, data=json.dumps(params), verify=False) photoUrl = DT.resJsonEncode(res).get('datas') return photoUrl # 填充表单 def fillForm(self): LL.log(1, '填充表单') if self.userInfo['getHistorySign']: self.getHistoryTaskInfo() hti = self.historyTaskInfo self.form['isNeedExtra'] = self.task['isNeedExtra'] self.form['signInstanceWid'] = self.task['signInstanceWid'] self.form['signPhotoUrl'] = hti['photograph'] # WARNING:存疑 self.form['extraFieldItems'] = hti['extraFieldItems'] self.form['longitude'], self.form['latitude'] = RT.locationOffset( hti['longitude'], hti['latitude'], self.userInfo['global_locationOffsetRange']) # 检查是否在签到范围内 self.form['isMalposition'] = 1 for place in self.task['signPlaceSelected']: if MT.geoDistance(self.form['longitude'], self.form['latitude'], place['longitude'], place['latitude']) < place['radius']: self.form['isMalposition'] = 0 break self.form['abnormalReason'] = hti.get( 'abnormalReason', '回家') # WARNING: 未在历史信息中找到这个 self.form['position'] = hti['signAddress'] self.form['uaIsCpadaily'] = True self.form['signVersion'] = '1.0.0' else: # 判断签到是否需要照片 if self.task['isPhoto'] == 1: self.uploadPicture() self.form['signPhotoUrl'] = self.getPictureUrl() else: self.form['signPhotoUrl'] = '' # 检查是否需要额外信息 self.form['isNeedExtra'] = self.task['isNeedExtra'] if self.task['isNeedExtra'] == 1: extraFields = self.task['extraField'] userItems = self.userInfo['forms'] extraFieldItemValues = [] for i in range(len(extraFields)): userItem = userItems[i]['form'] extraField = extraFields[i] if self.userInfo['checkTitle'] == 1: if userItem['title'] != extraField['title']: raise Exception( f'\r\n第{i + 1}个配置出错了\r\n您的标题为:{userItem["title"]}\r\n系统的标题为:{extraField["title"]}') extraFieldItems = extraField['extraFieldItems'] flag = False for extraFieldItem in extraFieldItems: if extraFieldItem['isSelected']: data = extraFieldItem['content'] if extraFieldItem['content'] == userItem['value']: flag = True extraFieldItemValue = {'extraFieldItemValue': userItem['value'], 'extraFieldItemWid': extraFieldItem['wid']} # 其他 额外的文本 if extraFieldItem['isOtherItems'] == 1: flag = True extraFieldItemValue = {'extraFieldItemValue': userItem['value'], 'extraFieldItemWid': extraFieldItem['wid']} extraFieldItemValues.append(extraFieldItemValue) if not flag: raise Exception( f'\r\n第{ i + 1 }个配置出错了\r\n表单未找到你设置的值:{userItem["value"]}\r\n,你上次系统选的值为:{ data }') self.form['extraFieldItems'] = extraFieldItemValues self.form['signInstanceWid'] = self.task['signInstanceWid'] self.form['longitude'] = self.userInfo['lon'] self.form['latitude'] = self.userInfo['lat'] # 检查是否在签到范围内 self.form['isMalposition'] = 1 for place in self.task['signPlaceSelected']: if MT.geoDistance(self.form['longitude'], self.form['latitude'], place['longitude'], place['latitude']) < place['radius']: self.form['isMalposition'] = 0 break self.form['abnormalReason'] = self.userInfo['abnormalReason'] self.form['position'] = self.userInfo['address'] self.form['uaIsCpadaily'] = True self.form['signVersion'] = '1.0.0' LL.log(1, "填充完毕的表单", self.form) def getSubmitExtension(self): '''生成各种额外参数''' extension = { "lon": self.userInfo['lon'], "lat": self.userInfo['lat'], "model": self.userInfo['model'], "appVersion": self.userInfo['appVersion'], "systemVersion": self.userInfo['systemVersion'], "userId": self.userInfo['username'], "systemName": self.userInfo['systemName'], "deviceId": self.userInfo['deviceId'] } self.cpdailyExtension = CpdailyTools.encrypt_CpdailyExtension( json.dumps(extension)) self.bodyString = CpdailyTools.encrypt_BodyString( json.dumps(self.form)) self.submitData = { "lon": self.userInfo['lon'], "version": self.userInfo['signVersion'], "calVersion": self.userInfo['calVersion'], "deviceId": self.userInfo['deviceId'], "userId": self.userInfo['username'], "systemName": self.userInfo['systemName'], "bodyString": self.bodyString, "lat": self.userInfo['lat'], "systemVersion": self.userInfo['systemVersion'], "appVersion": self.userInfo['appVersion'], "model": self.userInfo['model'], } self.submitData['sign'] = CpdailyTools.signAbstract(self.submitData) # 提交签到信息 def submitForm(self): LL.log(1, '提交签到信息') self.getSubmitExtension() headers = { 'User-Agent': self.session.headers['User-Agent'], 'CpdailyStandAlone': '0', 'extension': '1', 'Cpdaily-Extension': self.cpdailyExtension, 'Content-Type': 'application/json; charset=utf-8', 'Accept-Encoding': 'gzip', 'Host': re.findall('//(.*?)/', self.host)[0], 'Connection': 'Keep-Alive' } LL.log(1, '即将提交的信息', headers, self.submitData) res = self.session.post(f'{self.host}wec-counselor-sign-apps/stu/sign/submitSign', headers=headers, data=json.dumps(self.submitData), verify=False) res = DT.resJsonEncode(res) LL.log(1, '提交后返回的信息', res['message']) return '[%s]%s' % (res['message'], self.taskInfo['taskName'])
zuiqiangdexianyu/ruoli-sign-optimization
actions/autoSign.py
autoSign.py
py
16,038
python
en
code
null
github-code
6
9837240055
from urllib.parse import urljoin import requests import json from fake_useragent import UserAgent from lxml import html import re from pymongo import MongoClient ua = UserAgent() movie_records = [] first = True base_url = "https://www.imdb.com/" url = "https://www.imdb.com/search/title/?genres=drama&groups=top_250&sort=user_rating,desc&ref_=adv_prv" def scrape(url): global first resp = requests.get(url = url,headers={'User-Agent':ua.random}) tree = html.fromstring(resp.content) movie_data = tree.xpath("//div[@class = 'lister-item-content']") for movie in movie_data: p = { 'name':movie.xpath(".//h3/a/text()")[0], 'year' : re.findall('\d+',movie.xpath(".//h3/span[@class='lister-item-year text-muted unbold']/text()")[0])[0], 'duration' : re.findall('\d+',movie.xpath(".//p/span[@class='runtime']/text()")[0])[0], 'rating' : movie.xpath(".//div[@class='ratings-bar']/div[contains(@class,'inline-block ratings-imdb-rating')]/@data-value")[0] } movie_records.append(p) if first: next_page = tree.xpath("//div[@class = 'desc']/a/@href") first = False else: next_page = tree.xpath("//div[@class='desc']/a[2]/@href") if len(next_page) != 0: surl = urljoin(base = base_url,url=next_page[0]) print(surl) scrape(surl) def insert_to_db(list_records): client = MongoClient("mongodb://<user_name>:<pwd>@cluster0-shard-00-00.rsxac.mongodb.net:27017,cluster0-shard-00-01.rsxac.mongodb.net:27017,cluster0-shard-00-02.rsxac.mongodb.net:27017/myFirstDatabase?ssl=true&replicaSet=atlas-3xsr69-shard-0&authSource=admin&retryWrites=true&w=majority") db = client['imdb_movies'] collection = db['movies'] for m in movie_records: exists = collection.find_one({'name': m['name']}) if exists: if exists['year'] != m['year'] : collection.replace_one({'name': exists['name']}, m) print(f"Old item: {exists} New Item: {m}") else: collection.insert_one(m) client.close() scrape(url) insert_to_db(movie_records) print('number of movies ',len(movie_records))
shreyashettyk/DE
Imdb_data_extraction/imdb.py
imdb.py
py
2,184
python
en
code
0
github-code
6
1369504657
# -*- coding: utf-8 -*- import RPi.GPIO as GPIO import time, datetime from lcd import * from Email import * import server lcd_init () GPIO.setmode(GPIO.BOARD) print('System start/restart - ' + str(datetime.datetime.now())) #Switch for Bin 1 to be connected to pin 18 and 3.3v pin #Switch for Bin 2 to be connected to pin 16 and 3.3v pin GPIO.setup(16, GPIO.IN, pull_up_down = GPIO.PUD_DOWN) GPIO.setup(18, GPIO.IN, pull_up_down = GPIO.PUD_DOWN) lcd_string(" Dust-O-Matic ",LCD_LINE_1) #This function will run when the button is triggered def Notifier(channel): if channel==18: print('Bin 1 Full - '+ str(datetime.datetime.now())) lcd_string(' TRAILER #1 FULL ',LCD_LINE_2) SendEmail('TRAILER 1 FULL - PLEASE COLLECT', "") lcd_string(' TRAILER #2 Filling ',LCD_LINE_3) elif channel==16: print('Bin 2 Full - ' + str(datetime.datetime.now())) lcd_string(' TRAILER #2 FULL ',LCD_LINE_2) SendEmail('TRAILER 2 FULL - PLEASE COLLECT', "") lcd_string(' TRAILER #1 Filling ',LCD_LINE_3) GPIO.add_event_detect(18, GPIO.RISING) GPIO.add_event_detect(16, GPIO.RISING) while True: #print('Looping') lcd_string("LAN: " + get_ip_address('eth0'),LCD_LINE_4) #lcd_string("WLAN: " + get_ip_address('wlan0'),LCD_LINE_4) if GPIO.event_detected(18): time.sleep(0.005) # debounce for 5mSec # only show valid edges if GPIO.input(18)==1: #lcd_string('TRAILER #1 TRIGGERED',LCD_LINE_2) Notifier(18) if GPIO.event_detected(16): time.sleep(0.005) if GPIO.input(16)==1: Notifier(16) time.sleep(0.5) GPIO.cleanup()
CraigHissett/TM_Timber
BinSensor/BinSensor.py
BinSensor.py
py
1,875
python
en
code
0
github-code
6
11900486194
import dash from dash import html from matplotlib import container from navbar import create_navbar import dash_bootstrap_components as dbc from dash import Dash, html, dcc, Input, Output import plotly.express as px import pandas as pd f_sb2021 = pd.read_csv("f_sb2021.csv", on_bad_lines='skip', sep=';') f_sb2022 = pd.read_csv("f_sb2022.csv", on_bad_lines='skip', sep=';') C2021 = pd.read_csv("C2021.csv", on_bad_lines='skip', sep=',') C2022 = pd.read_csv("C2022.csv", on_bad_lines='skip', sep=',') Delitos_2010_2021 = pd.read_csv("Delitos_2010_2021.csv", on_bad_lines='skip', sep=',') Violencia_G_2015_2022 = pd.read_csv("Violencia_G_2015_2022.csv", on_bad_lines='skip', sep=',') app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) nav = create_navbar() nivel_sisben= f_sb2021['nivel_sisben'] grupo_sisben= f_sb2022["Grupo"] values = Delitos_2010_2021['GENERO'].value_counts() Genero = Delitos_2010_2021['GENERO'].unique() values2 = Delitos_2010_2021['DIA_SEMANA'].value_counts() armas = Delitos_2010_2021['DIA_SEMANA'].unique() delitos_ano_mes= pd.DataFrame({'count' : Delitos_2010_2021.groupby( [ "ANO", "MES"] ).size()}).reset_index() #gb21_sex = f_sb2021.groupby("sexo_persona")['sexo_persona'].count() #fig = px.histogram(f_sb2021, x=gb21_sex.index, y=gb21_sex, histfunc='sum') def generate_table(dataframe, max_rows=16): return html.Table([ html.Thead( html.Tr([html.Th(col) for col in dataframe.columns]) ), html.Tbody([ html.Tr([ html.Td(dataframe.iloc[i][col]) for col in dataframe.columns ]) for i in range(min(len(dataframe), max_rows)) ]) ]) app.layout=html.Div([ html.H1('Data Visualization',style={'textAlign':'center'}), html.Div([ html.P('Alcaldia de Bucaramanga',style={'textAlign':'center'}), ]), html.Div([ html.Table(style={'width':'90%'}, children=[ html.Tr(style={'width':'50%'}, children=[ html.Td( children=[ html.H1('Grupo de delitos por mes', style={'textAlign':'center'}), dcc.Graph(id='linegraph', figure = px.line(delitos_ano_mes, x="MES", y='count', color='ANO')) ] ),html.Td( children=[ html.H1('Delitos por Género', style={'textAlign':'center'}), dcc.Graph(id='piegraph', figure = px.pie(Delitos_2010_2021, values=values, names=Genero)) ] ) ] ), html.Tr(style={'width':'50%'}, children=[ html.Td(style={'width':'50%'}, children=[ html.H1('Nivel de Sisben Año 2021', style={'textAlign':'center'}), dcc.Graph(id='bargraph', figure = px.histogram(f_sb2021, x=nivel_sisben, color=nivel_sisben, barmode='group')) ] ),html.Td(style={'width':'50%'}, children=[ html.H1('Grupo de Sisben Año 2022', style={'textAlign':'center'}), dcc.Graph(id='bargraph2', figure = px.histogram(f_sb2022, x=grupo_sisben, color=grupo_sisben, barmode='group')) ] ) ] ), ] ), html.Table(style={'width':'90%'}, children=[html.Tr( children=[ html.Td(style={'width':'100%'}, children=[ html.H1('Días de la semana vs Delitos', style={'textAlign':'center'}), dcc.Graph(id='piegraph2', figure = px.pie(Delitos_2010_2021, values=values2, names=armas)) ] ) ] ),]), ]), # End of all content DIV ]) def create_page_home(): layout = html.Div([ nav, #header, app.layout ]) return layout
jeanpierec/ljpiere_projects
DataScience_projects/Proyecto5_DS4ABucaramanga/home.py
home.py
py
4,956
python
en
code
1
github-code
6
18100941624
""" 739. Daily Temperatures https://leetcode.com/problems/daily-temperatures/ """ from typing import List from unittest import TestCase, main class Solution: def dailyTemperatures(self, temperatures: List[int]) -> List[int]: stack: List[int] = [] # List of indexes, not temperatures answer = [0 for _ in range(len(temperatures))] # Pick up index and temperature from temperatures one by one for idx, temparature in enumerate(temperatures): # Loop while the stack has an item and the current temperature is # greater than the peak in the stack. while len(stack) != 0 and temperatures[stack[-1]] < temparature: peak_idx = stack.pop() # idx - peak_idx will be the num of days you have to wait to get a warmer temperature. answer[peak_idx] = idx - peak_idx # Now the stack is empty or the peak in the stack is less than or equal to the current one, # just push it to the stack stack.append(idx) return answer
hirotake111/leetcode_diary
leetcode/739/solution.py
solution.py
py
1,081
python
en
code
0
github-code
6
8271520226
##problem 16 import random rolls = 10 success = 0 failure = 0 for i in range(rolls): coinchoice = random.randint(1,3) if (coinchoice == 1): ##heads in both faces failure = failure+1 elif (coinchoice == 2): ##heads and tails success = success+1 elif (coinchoice == 3): ##tails on both faces failure = failure+1 probability = (success / failure) print("The probability is", probability * 100) ##problem 22 k = 5 m = 10 n = 5 for i in range(k): k = k-1 total = (m+n+1) probability = m / total print("The probability is" , probability)
jkiyak/CS355-Probability-and-Statistics-in-Computer-Science-
SP2019 CS 355_555-2E Probability/homework2.py
homework2.py
py
604
python
en
code
0
github-code
6
20893678055
# I don't understand the question, so this answer was not mine, it was from reddit. recipes = '084601' score = '37' elf1 = 0 elf2 = 1 while recipes not in score[-7:]: score += str(int(score[elf1]) + int(score[elf2])) elf1 = (elf1 + int(score[elf1]) + 1) % len(score) elf2 = (elf2 + int(score[elf2]) + 1) % len(score) print('Part 1:', score[int(recipes):int(recipes)+10]) print('Part 2:', score.index(recipes))
EricKim987/adventOfCode2018
day14/day14.py
day14.py
py
423
python
en
code
0
github-code
6
14175319666
import numpy as np __author__ = 'punki' class LinearRegresion: def __init__(self, reg_lambda, transofrmation): self.transofrmation = transofrmation self.reg_lambda = reg_lambda self.w = [] def fit(self, training_data_set): x = np.array([self.transofrmation(z[0],z[1]) for z in training_data_set.get_x()]) y = training_data_set.get_y() a1 = x.T.dot(x) a2 = self.reg_lambda * np.identity(len(a1)) a3 = a1 + a2 b1 = x.T.dot(y) self.w = np.linalg.inv(a3).dot(b1) def error(self, data_set): t_x = np.array([self.transofrmation(z[0],z[1]) for z in data_set.get_x()]) predicted = [1 if x>=0 else -1 for x in t_x.dot(self.w)] correct = data_set.get_y() return len(correct[correct != predicted])/float(len(correct))
tomasz-pankowski/LinearRegresion
common/LinearRegresion.py
LinearRegresion.py
py
835
python
en
code
0
github-code
6
72729319867
# External dependencies import openai import io import os import tempfile from datetime import datetime from flask import render_template, request, url_for, redirect, flash, Response, session, send_file, Markup from flask_login import login_user, login_required, logout_user, current_user from flask_mail import Message # Internal dependencies from models import User, Log from forms import SignupForm, LoginForm, RequestResetForm, ResetPasswordForm from app import app, db, bcrypt, mail, login_manager, limiter from prompt_template import prompt_template # Security measures for the Heroku production environment @app.before_request def enforce_https(): if request.headers.get('X-Forwarded-Proto') == 'http' and not app.debug: request_url = request.url.replace('http://', 'https://', 1) return redirect(request_url, code=301) @app.after_request def set_hsts_header(response): if request.url.startswith('https://'): response.headers['Strict-Transport-Security'] = 'max-age=31536000' # One year return response @login_manager.user_loader @limiter.limit("10/minute") def load_user(user_id): return User.query.get(int(user_id)) @app.route('/cleverletter/', methods=['GET', 'POST']) @limiter.limit("10/minute") def signup(): if current_user.is_authenticated: return redirect(url_for('generator')) form = SignupForm() if form.validate_on_submit(): hashed_password = bcrypt.generate_password_hash(form.password.data).decode('utf-8') user = User(email=form.email.data, password=hashed_password) db.session.add(user) db.session.commit() flash('Your account has been created! You are now able to log in', 'success') return redirect(url_for('login')) return render_template('signup.html', title='Sign Up', form=form) @app.route('/cleverletter/login', methods=['GET', 'POST']) @limiter.limit("10/minute") def login(): if current_user.is_authenticated: return redirect(url_for('generator')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and bcrypt.check_password_hash(user.password, form.password.data): login_user(user, remember=form.remember.data) return redirect(url_for('dashboard')) else: flash('Login Unsuccessful. Please make sure you used the correct credentials', 'warning') return render_template('login.html', form=form) @app.route('/cleverletter/logout') @login_required def logout(): logout_user() return redirect(url_for('login')) @app.route('/cleverletter/generator', methods=['GET', 'POST']) @limiter.limit("5/minute") def generator(): user_authenticated = current_user.is_authenticated response = "" job_title = "" job_description = "" employer_name = "" employer_description = "" additional_instructions = "" if not current_user.is_authenticated: flash(Markup('<a href="{}">Sign up</a> or <a href="{}">Login</a> to keep your CV and cover letter history'.format(url_for('signup'), url_for('login'))), 'warning') # Retrieve CV from session for unauthenticated users or from the database for authenticated users if current_user.is_authenticated and current_user.cv: cv = current_user.cv else: cv = session.get('cv', "Your CV goes here") if request.method == 'POST': job_title = request.form.get('job_title') job_description = request.form.get('job_description') employer_name = request.form.get('employer_name') employer_description = request.form.get('employer_description') additional_instructions = request.form.get('additional_instructions') session_cv = request.form.get('cv') # Assuming the CV is submitted as a form field # Update CV in session for unauthenticated users if not current_user.is_authenticated and session_cv: session['cv'] = session_cv cv = session_cv if 'generate' in request.form: if cv == "Your CV goes here": flash('Please set your CV before generating a cover letter.', 'warning') return render_template('dashboard.html', job_title=job_title, job_description=job_description, employer_name=employer_name, employer_description=employer_description, additional_instructions=additional_instructions) prompt = prompt_template.format(cv=cv, job_title=job_title, job_description=job_description, employer_name=employer_name, employer_description=employer_description, additional_instructions=additional_instructions) try: response = get_completion(prompt) except Exception as e: flash('Error generating cover letter: {}'.format(str(e)), 'error') return redirect(url_for('generator')) # Save the response in the user's session session['response'] = response # Create a log entry only for authenticated users if current_user.is_authenticated: log = Log(job_title=job_title, employer_name=employer_name, user_id=current_user.id) db.session.add(log) try: db.session.commit() except Exception as e: flash('Error saving log: {}'.format(str(e)), 'error') return redirect(url_for('generator')) # Save the response to a txt file in a temporary directory filename = '{} - {} - {}.txt'.format(employer_name, job_title, datetime.now().strftime('%d-%b-%Y')) temp_dir = tempfile.gettempdir() file_path = os.path.join(temp_dir, filename) with open(file_path, 'w') as f: f.write(response) # Save the filename in the session session['filename'] = file_path elif 'clear' in request.form: job_title = "" job_description = "" employer_name = "" employer_description = "" additional_instructions = "" session['response'] = "" elif 'download' in request.form: # Get the filename from the session file_path = session.get('filename') if file_path and os.path.exists(file_path): download_response = send_file(file_path, as_attachment=True) os.remove(file_path) # delete the file after sending it return download_response else: flash('No cover letter available for download.', 'warning') return redirect(url_for('generator')) return render_template('generator.html', response=response, job_title=job_title, job_description=job_description, employer_name=employer_name, employer_description=employer_description, additional_instructions=additional_instructions, cv=cv, user_authenticated=user_authenticated, user=current_user) @app.route('/cleverletter/dashboard', methods=['GET', 'POST']) @limiter.limit("5/minute") def dashboard(): # Initialize CV with a default value cv = "Your CV goes here" logs = None user_authenticated = current_user.is_authenticated if request.method == 'POST': # Handle CV form submission new_cv = request.form.get('cv') if new_cv: if current_user.is_authenticated: current_user.cv = new_cv db.session.commit() flash('CV updated successfully.', 'success') else: session['cv'] = new_cv flash('CV saved to session successfully.', 'success') # Fetch CV from the authenticated user or from the session if current_user.is_authenticated: cv = current_user.cv if current_user.cv else cv # Fetch the logs from the database page = request.args.get('page', 1, type=int) per_page = 10 logs = Log.query.filter_by(user_id=current_user.id).order_by(Log.timestamp.desc()).paginate(page=page, per_page=per_page) else: cv = session.get('cv', cv) # Use the session value if available, otherwise use the default return render_template('dashboard.html', user_authenticated=user_authenticated, user=current_user, cv=cv, logs=logs) @app.route('/cleverletter/reset_request', methods=['GET', 'POST']) @limiter.limit("5/minute") def reset_request(): form = RequestResetForm() message = None if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user: send_reset_email(user) message = 'An e-mail has been sent with instructions to reset your password.' return render_template('reset_request.html', form=form, message=message) def send_reset_email(user): token = user.get_reset_token() msg = Message('Password Reset Request', sender='[email protected]', recipients=[user.email]) msg.body = f'''To reset your password, visit the following link: {url_for('reset_token', token=token, _external=True)} If you did not make this request then simply ignore this email and no changes will be made. ''' mail.send(msg) @app.route('/cleverletter/reset_request/<token>', methods=['GET', 'POST']) @limiter.limit("5/minute") def reset_token(token): user = User.verify_reset_token(token) if not user: # If the token is invalid or expired, redirect the user to the `reset_request` route. return redirect(url_for('reset_request')) form = ResetPasswordForm() if form.validate_on_submit(): hashed_password = bcrypt.generate_password_hash(form.password.data) user.password = hashed_password db.session.commit() return redirect(url_for('login')) return render_template('reset_token.html', form=form) @app.route('/cleverletter/delete_account', methods=['POST']) @limiter.limit("5/minute") @login_required def delete_account(): user = User.query.get(current_user.id) db.session.delete(user) db.session.commit() flash('Your account has been deleted.', 'success') return redirect(url_for('signup')) def get_completion(prompt, model="gpt-3.5-turbo"): # Always use the development API key api_key = app.config['OPENAI_API_KEY_DEV'] # Set the API key for this request openai.api_key = api_key messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0.5, # this is the degree of randomness of the model's output ) return response.choices[0].message["content"]
joaomorossini/Clever-Letter-Generator
routes.py
routes.py
py
10,934
python
en
code
1
github-code
6
28800521491
"""Function to calculate the enrichment score for a given similarity matrix.""" import numpy as np import pandas as pd from typing import List, Union import scipy from cytominer_eval.utils.operation_utils import assign_replicates def enrichment( similarity_melted_df: pd.DataFrame, replicate_groups: List[str], percentile: Union[float, List[float]], ) -> pd.DataFrame: """Calculate the enrichment score. This score is based on the fisher exact odds score. Similar to the other functions, the closest connections are determined and checked with the replicates. This score effectively calculates how much better the distribution of correct connections is compared to random. Parameters ---------- similarity_melted_df : pandas.DataFrame An elongated symmetrical matrix indicating pairwise correlations between samples. Importantly, it must follow the exact structure as output from :py:func:`cytominer_eval.transform.transform.metric_melt`. replicate_groups : List a list of metadata column names in the original profile dataframe to use as replicate columns. percentile : List of floats Determines what percentage of top connections used for the enrichment calculation. Returns ------- dict percentile, threshold, odds ratio and p value """ result = [] replicate_truth_df = assign_replicates( similarity_melted_df=similarity_melted_df, replicate_groups=replicate_groups ) # loop over all percentiles if type(percentile) == float: percentile = [percentile] for p in percentile: # threshold based on percentile of top connections threshold = similarity_melted_df.similarity_metric.quantile(p) # calculate the individual components of the contingency tables v11 = len( replicate_truth_df.query( "group_replicate==True and similarity_metric>@threshold" ) ) v12 = len( replicate_truth_df.query( "group_replicate==False and similarity_metric>@threshold" ) ) v21 = len( replicate_truth_df.query( "group_replicate==True and similarity_metric<=@threshold" ) ) v22 = len( replicate_truth_df.query( "group_replicate==False and similarity_metric<=@threshold" ) ) v = np.asarray([[v11, v12], [v21, v22]]) r = scipy.stats.fisher_exact(v, alternative="greater") result.append( { "enrichment_percentile": p, "threshold": threshold, "ods_ratio": r[0], "p-value": r[1], } ) result_df = pd.DataFrame(result) return result_df
cytomining/cytominer-eval
cytominer_eval/operations/enrichment.py
enrichment.py
py
2,845
python
en
code
7
github-code
6
25571472390
import logging # fmt = "%(name)s----->%(message)s----->%(asctime)s" # logging.basicConfig(level="DEBUG",format=fmt) # logging.debug("这是debug信息") # logging.info('这是info信息') # logging.warning('这是警告信息') # logging.error('这是错误信息') # logging.critical('这是cri信息') logger = logging.getLogger('heihei') #默认的打印级别是WARNING,所以当跟控制台日志的打印级别不一样时,以打印级别最高的为准。 logger.setLevel('INFO') console_handler = logging.StreamHandler() #控制台的等级 console_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) console_handler.setLevel(level='INFO') logger.addHandler(console_handler) file_handler = logging.FileHandler('1.txt', encoding='utf-8', mode='a') file_handler.setLevel('INFO') logger.addHandler(file_handler) logging.debug("这是debug信息") logging.info('这是info信息') logging.warning('这是警告信息') logging.error('这是错误信息') logging.critical('这是cri信息') USER_AGENTS
lishuangbo0123/basic
history_study/test.py
test.py
py
1,059
python
zh
code
0
github-code
6
21490193625
# # PyBank # Ryan Eccleston-Murdock # 28 November 2020 # # Purpose: Analyze .csv financial data # # Sources: import os import csv in_path = 'Resources' in_file_name = 'budget_data.csv' in_csvpath = os.path.join(in_path, in_file_name) out_path = 'analysis' out_file_name = 'financial_summary.csv' out_csvpath = os.path.join(out_path, out_file_name) with open(in_csvpath, 'r') as inFile: # Create reader obj for budget data and skip header/field row budget_sheet = csv.reader(inFile, delimiter=',') header = next(budget_sheet) total_months = 0 net = 0 months = [] profits = [] changes = [] # Gets count of total number of months, net profit/loss and months/profit # pairs for month, profit in budget_sheet: total_months += 1 net += int(profit) months.append(month) profits.append(int(profit)) # Get month to month change for i in range(len(profits) - 1): change = profits[i + 1] - profits[i] changes.append(change) # Gets average change over period average_change = sum(changes) / len(changes) # Gets extrema great_increase = max(changes) great_increase_month = changes.index(great_increase) great_decrease = min(changes) great_decrease_month = changes.index(great_decrease) # Summary print('Financial Analysis') print('--------------------------') print('Total months: ', total_months) print('Total: $', net) print('Average Change: $', round(average_change, 2)) print('Greatest Increase in Profits: ', months[great_increase_month], '($', great_increase, ')') print('Greatest Decrease in Profits: ', months[great_decrease_month], '($', great_decrease, ')') print('--------------------------') with open(out_csvpath, 'w', newline='') as outFile: # Write analysis to .csv summary = csv.writer(outFile, delimiter=',') summary.writerow(['Financial Analysis']) summary.writerow(['--------------------------']) summary.writerow(['Total months', total_months]) summary.writerow(['Total', net]) summary.writerow(['Average Change', round(average_change, 2)]) summary.writerow(['Greatest Increase in Profits', months[great_increase_month], great_increase]) summary.writerow(['Greatest Decrease in Profits', months[great_decrease_month], great_decrease]) summary.writerow(['--------------------------'])
reccleston/python-challenge
PyBank/main.py
main.py
py
2,272
python
en
code
0
github-code
6
43371065244
from selenium import webdriver from selenium.webdriver.common.keys import Keys class Spider: try: page = webdriver.Chrome() url = "https://music.163.com/#/song?id=31654747" page.get(url) search = page.find_element_by_id("srch") search.send_keys("aaa") search.send_keys(Keys.ENTER) except Exception as e: print(e)
frebudd/python
autoinput.py
autoinput.py
py
382
python
en
code
2
github-code
6
25097408304
# -*- coding: utf-8 -*- """ Created on Fri Jul 15 09:34:07 2022 @author: maria """ import numpy as np import pandas as pd from numpy import zeros, newaxis import matplotlib.pyplot as plt import scipy as sp from scipy.signal import butter,filtfilt,medfilt import csv import re #getting the F traces which are classified as cells by Suite2P (manually curated ROIs should be automatically saved) def getcells(filePathF, filePathiscell): """ This function returns the ROIs that are classified as cells. Careful, only use this if you have manually curated the Suite2P data! Parameters ---------- filePathF : string The path of where the fluorescence traces from Suite2P are located. It will load the file as an array within the function. This should be an array of shape [x,y] where x is the number of ROIs and y the corresponding values of F intensity filePathiscell : string The path of where the iscell file from Suite2P is located. iscell should be an array of shape [x,y] where x is the number of ROIs and y is the classification confidence (values are boolean, 0 for not a cell, 1 for cell) cells is a 1D array [x] with the identify of the ROIs classified as cells in iscell Returns ------- F_cells : array of float32 array of shape [x,y] where x is the same as the one in cells and y contains the corresponding F intensities """ iscell = np.load(filePathiscell, allow_pickle=True) F = np.load(filePathF, allow_pickle=True) cells = np.where(iscell == 1)[0] F_cells = F[cells,:] return F_cells #%%Liad's functions slightly adapted #code from Liad, returns the metadata, remember to change the number of channels def GetNidaqChannels(niDaqFilePath, numChannels): """ Parameters ---------- niDaqFilePath : string the path of the nidaq file. numChannels : int, optional Number of channels in the file. The default is 7. Returns ------- niDaq : matrix the matrix of the niDaq signals [time X channels] """ niDaq = np.fromfile(niDaqFilePath, dtype= np.float64) niDaq = np.reshape(niDaq,(int(len(niDaq)/numChannels),numChannels)) return niDaq def AssignFrameTime(frameClock,th = 0.5,plot=False): """ The function assigns a time in ms to a frame time. Parameters: frameClock: the signal from the nidaq of the frame clock th : the threshold for the tick peaks, default : 3, which seems to work plot: plot to inspect, default = False returns frameTimes (ms) """ #Frame times # pkTimes,_ = sp.signal.find_peaks(-frameClock,threshold=th) # pkTimes = np.where(frameClock<th)[0] # fdif = np.diff(pkTimes) # longFrame = np.where(fdif==1)[0] # pkTimes = np.delete(pkTimes,longFrame) # recordingTimes = np.arange(0,len(frameClock),0.001) # frameTimes = recordingTimes[pkTimes] # threshold = 0.5 pkTimes = np.where(np.diff(frameClock > th, prepend=False))[0] # pkTimes = np.where(np.diff(np.array(frameClock > 0).astype(int),prepend=False)>0)[0] if (plot): f,ax = plt.subplots(1) ax.plot(frameClock) ax.plot(pkTimes,np.ones(len(pkTimes))*np.min(frameClock),'r*') ax.set_xlabel('time (ms)') ax.set_ylabel('Amplitude (V)') return pkTimes #function from Liad, detecting photodiode change def DetectPhotodiodeChanges_old(photodiode,plot=True,lowPass=30,kernel = 101,fs=1000, waitTime=10000): """ The function detects photodiode changes using a 'Schmitt Trigger', that is, by detecting the signal going up at an earlier point than the signal going down, the signal is filtered and smootehd to prevent nosiy bursts distorting the detection.W Parameters: photodiode: the signal from the nidaq of the photodiode lowPass: the low pass signal for the photodiode signal, default: 30, kernel: the kernel for median filtering, default = 101. fs: the frequency of acquisiton, default = 1000 plot: plot to inspect, default = False waitTime: the delay time until protocol start, default = 5000 returns: st,et (ms) (if acq is 1000 Hz) ***** WHAT DOES ST, ET STAND FOR???***** """ b,a = sp.signal.butter(1, lowPass, btype='low', fs=fs) # sigFilt = photodiode sigFilt = sp.signal.filtfilt(b,a,photodiode) sigFilt = sp.signal.medfilt(sigFilt,kernel) maxSig = np.max(sigFilt) minSig = np.min(sigFilt) thresholdU = (maxSig-minSig)*0.2 thresholdD = (maxSig-minSig)*0.4 threshold = (maxSig-minSig)*0.5 # find thesehold crossings crossingsU = np.where(np.diff(np.array(sigFilt > thresholdU).astype(int),prepend=False)>0)[0] crossingsD = np.where(np.diff(np.array(sigFilt > thresholdD).astype(int),prepend=False)<0)[0] # crossingsU = np.delete(crossingsU,np.where(crossingsU<waitTime)[0]) # crossingsD = np.delete(crossingsD,np.where(crossingsD<waitTime)[0]) crossings = np.sort(np.unique(np.hstack((crossingsU,crossingsD)))) if (plot): f,ax = plt.subplots(1,1,sharex=True) ax.plot(photodiode,label='photodiode raw') ax.plot(sigFilt,label = 'photodiode filtered') ax.plot(crossings,np.ones(len(crossings))*threshold,'g*') ax.hlines([thresholdU],0,len(photodiode),'k') ax.hlines([thresholdD],0,len(photodiode),'k') # ax.plot(st,np.ones(len(crossingsD))*threshold,'r*') ax.legend() ax.set_xlabel('time (ms)') ax.set_ylabel('Amplitude (V)') return crossings def DetectPhotodiodeChanges_new(photodiode,plot=False,kernel = 101,upThreshold = 0.2, downThreshold = 0.4,fs=1000, waitTime=5000): """ The function detects photodiode changes using a 'Schmitt Trigger', that is, by detecting the signal going up at an earlier point than the signal going down, the signal is filtered and smootehd to prevent nosiy bursts distorting the detection.W Parameters: photodiode: the signal from the nidaq of the photodiode lowPass: the low pass signal for the photodiode signal, default: 30, kernel: the kernel for median filtering, default = 101. fs: the frequency of acquisiton, default = 1000 plot: plot to inspect, default = False waitTime: the delay time until protocol start, default = 5000 returns: diode changes (s) up to the user to decide what on and off mean """ # b,a = sp.signal.butter(1, lowPass, btype='low', fs=fs) sigFilt = photodiode # sigFilt = sp.signal.filtfilt(b,a,photodiode) sigFilt = sp.signal.medfilt(sigFilt,kernel) maxSig = np.max(sigFilt) minSig = np.min(sigFilt) thresholdU = (maxSig-minSig)*upThreshold thresholdD = (maxSig-minSig)*downThreshold threshold = (maxSig-minSig)*0.5 # find thesehold crossings crossingsU = np.where(np.diff(np.array(sigFilt > thresholdU).astype(int),prepend=False)>0)[0] crossingsD = np.where(np.diff(np.array(sigFilt > thresholdD).astype(int),prepend=False)<0)[0] crossingsU = np.delete(crossingsU,np.where(crossingsU<waitTime)[0]) crossingsD = np.delete(crossingsD,np.where(crossingsD<waitTime)[0]) crossings = np.sort(np.unique(np.hstack((crossingsU,crossingsD)))) if (plot): f,ax = plt.subplots(1,1,sharex=True) ax.plot(photodiode,label='photodiode raw') ax.plot(sigFilt,label = 'photodiode filtered') ax.plot(crossings,np.ones(len(crossings))*threshold,'g*') ax.hlines([thresholdU],0,len(photodiode),'k') ax.hlines([thresholdD],0,len(photodiode),'k') # ax.plot(st,np.ones(len(crossingsD))*threshold,'r*') ax.legend() ax.set_xlabel('time (ms)') ax.set_ylabel('Amplitude (V)') return crossings def GetStimulusInfo(filePath,props): """ Parameters ---------- filePath : str the path of the log file. props : array-like the names of the properties to extract. Returns ------- StimProperties : list of dictionaries the list has all the extracted stimuli, each a dictionary with the props and their values. """ StimProperties = [] with open(filePath, newline='') as csvfile: reader = csv.reader(csvfile, delimiter=' ', quotechar='|') for row in reader: a = [] for p in range(len(props)): # m = re.findall(props[p]+'=(\d*)', row[np.min([len(row)-1,p])]) m = re.findall(props[p]+'=([a-zA-Z0-9_.-]*)', row[np.min([len(row)-1,p])]) if (len(m)>0): a.append(m[0]) if (len(a)>0): stimProps = {} for p in range(len(props)): stimProps[props[p]] = a[p] StimProperties.append(stimProps) return StimProperties def AlignStim(signal, time, eventTimes, window,timeUnit=1,timeLimit=1): aligned = []; t = []; dt = np.median(np.diff(time,axis=0)) if (timeUnit==1): w = np.rint(window / dt).astype(int) else: w = window.astype(int) maxDur = signal.shape[0] if (window.shape[0] == 1): # constant window mini = np.min(w[:,0]); maxi = np.max(w[:,1]); tmp = np.array(range(mini,maxi)); w = np.tile(w,((eventTimes.shape[0],1))) else: if (window.shape[0] != eventTimes.shape[0]): print('No. events and windows have to be the same!') return else: mini = np.min(w[:,0]); maxi = np.max(w[:,1]); tmp = range(mini,maxi); t = tmp * dt; aligned = np.zeros((t.shape[0],eventTimes.shape[0],signal.shape[1])) for ev in range(eventTimes.shape[0]): # evInd = find(time > eventTimes(ev), 1); wst = w[ev,0] wet = w[ev,1] evInd = np.where(time>=eventTimes[ev])[0] if (len(evInd)==0): continue else : # None # if dist is bigger than one second stop if (np.any((time[evInd[0]]-eventTimes[ev])>timeLimit)): continue st = evInd[0]+ wst #get start et = evInd[0] + wet #get end alignRange = np.array(range(np.where(tmp==wst)[0][0],np.where(tmp==wet-1)[0][0]+1)) sigRange = np.array(range(st,et)) valid = np.where((sigRange>=0) & (sigRange<maxDur))[0] aligned[alignRange[valid],ev,:] = signal[sigRange[valid],:]; return aligned, t #def DetectWheelMove(moveA,moveB,rev_res = 1024, total_track = 598.47,plot=True): """ The function detects the wheel movement. At the moment uses only moveA. Parameters: moveA,moveB: the first and second channel of the rotary encoder rev_res: the rotary encoder resoution, default =1024 total_track: the total length of the track, default = 598.47 (mm) kernel: the kernel for median filtering, default = 101. plot: plot to inspect, default = False returns: distance """ # make sure all is between 1 and 0 moveA /= np.max(moveA) moveA -= np.min(moveA) moveB /= np.max(moveB) moveB -= np.min(moveB) # detect A move ADiff = np.diff(moveA) Ast = np.where(ADiff >0.5)[0] Aet = np.where(ADiff <-0.5)[0] # detect B move BDiff = np.diff(moveB) Bst = np.where(BDiff >0.5)[0] Bet = np.where(BDiff <-0.5)[0] #Correct possible problems for end of recording if (len(Ast)>len(Aet)): Aet = np.hstack((Aet,[len(moveA)])) elif (len(Ast)<len(Aet)): Ast = np.hstack(([0],Ast)) dist_per_move = total_track/rev_res # Make into distance track = np.zeros(len(moveA)) track[Ast] = dist_per_move distance = np.cumsum(track) if (plot): f,ax = plt.subplots(3,1,sharex=True) ax[0].plot(moveA) # ax.plot(np.abs(ADiff)) ax[0].plot(Ast,np.ones(len(Ast)),'k*') ax[0].plot(Aet,np.ones(len(Aet)),'r*') ax[0].set_xlabel('time (ms)') ax[0].set_ylabel('Amplitude (V)') ax[1].plot(distance) ax[1].set_xlabel('time (ms)') ax[1].set_ylabel('distance (mm)') ax[2].plot(track) ax[2].set_xlabel('time (ms)') ax[2].set_ylabel('Move') # movFirst = Amoves>Bmoves return distance def running_info(filePath, th = 3, plot=False): with open(filePath) as file_name: csvChannels = np.loadtxt(file_name, delimiter=",") arduinoTime = csvChannels[:,-1] arduinoTimeDiff = np.diff(arduinoTime,prepend=True) normalTimeDiff = np.where(arduinoTimeDiff>-100)[0] csvChannels = csvChannels[normalTimeDiff,:] # convert time to second (always in ms) arduinoTime = csvChannels[:,-1]/1000 # Start arduino time at zero arduinoTime-=arduinoTime[0] csvChannels = csvChannels[:,:-1] numChannels = csvChannels.shape[1] if (plot): f,ax = plt.subplots(numChannels,sharex=True) for i in range(numChannels): ax[i].plot(arduinoTime,csvChannels[:,i]) return csvChannels,arduinoTime def DetectWheelMove(moveA,moveB,timestamps,rev_res = 1024, total_track = 59.847, plot=False): """ The function detects the wheel movement. At the moment uses only moveA. [[ALtered the minimum from 0 to 5 because of the data from 04/08/22 -M]] Parameters: moveA,moveB: the first and second channel of the rotary encoder rev_res: the rotary encoder resoution, default =1024 total_track: the total length of the track, default = 59.847 (cm) kernel: the kernel for median filtering, default = 101. plot: plot to inspect, default = False returns: velocity[cm/s], distance [cm] """ #introducing thresholoding in case the non movement values are not 0, 5 was the biggest number for now th_index = moveA<5 moveA[th_index] = 0 th_index = moveB<5 moveB[th_index] = 0 moveA = np.round(moveA).astype(bool) moveB = np.round(moveB).astype(bool) counterA = np.zeros(len(moveA)) counterB = np.zeros(len(moveB)) # detect A move risingEdgeA = np.where(np.diff(moveA>0,prepend=True))[0] risingEdgeA = risingEdgeA[moveA[risingEdgeA]==1] risingEdgeA_B = moveB[risingEdgeA] counterA[risingEdgeA[risingEdgeA_B==0]]=1 counterA[risingEdgeA[risingEdgeA_B==1]]=-1 # detect B move risingEdgeB = np.where(np.diff(moveB>0,prepend=True))[0]#np.diff(moveB) risingEdgeB = risingEdgeB[moveB[risingEdgeB]==1] risingEdgeB_A = moveB[risingEdgeB] counterA[risingEdgeB[risingEdgeB_A==0]]=-1 counterA[risingEdgeB[risingEdgeB_A==1]]=1 dist_per_move = total_track/rev_res instDist = counterA*dist_per_move distance = np.cumsum(instDist) averagingTime = int(np.round(1/np.median(np.diff(timestamps)))) sumKernel = np.ones(averagingTime) tsKernel = np.zeros(averagingTime) tsKernel[0]=1 tsKernel[-1]=-1 # take window sum and convert to cm distWindow = np.convolve(instDist,sumKernel,'same') # count time elapsed timeElapsed = np.convolve(timestamps,tsKernel,'same') velocity = distWindow/timeElapsed # if (plot): # f,ax = plt.subplots(3,1,sharex=True) # ax[0].plot(moveA) # # ax.plot(np.abs(ADiff)) # ax[0].plot(Ast,np.ones(len(Ast)),'k*') # ax[0].plot(Aet,np.ones(len(Aet)),'r*') # ax[0].set_xlabel('time (ms)') # ax[0].set_ylabel('Amplitude (V)') # ax[1].plot(distance) # ax[1].set_xlabel('time (ms)') # ax[1].set_ylabel('distance (mm)') # ax[2].plot(track) # ax[2].set_xlabel('time (ms)') # ax[2].set_ylabel('Move') # movFirst = Amoves>Bmoves return velocity, distance def Get_Stim_Identity(log, reps, protocol_type, types_of_stim): """ Parameters ---------- log : array contains the log of stimuli, assumes the order of the columns is "Ori", "SFreq", "TFreq", "Contrast". reps : integer how many times a stimulus was repeated. protocol_type : string DESCRIPTION. The options are : - "simple" which refers to the protocol which only shows 12 types of orietnations - "TFreq": protocol with different temp frequencies - "SFreq": protocol with different spatial frequencies = "Contrast": protocol with different contrasts. types_of_stim : integer DESCRIPTION. Refers to the different types of stimuli shown. Assumes that for "simple", types of stim is 12 becuase 12 different orientations are shown. For all the others, it is assumed to be 24 because there are 4 different orientartions and 6 different variations of parameters Returns ------- an array of shape (types_of_stim, reps) if protocol was "simple" an array of shape(4, reps, 6) for all other protocols (if 4 different orientations and 6 different other parameters). """ #the angles of the stim #in the case of 20 iterations, given that for simple gratings protocol 12 orientations are shown, the total stimuli shown is 240 if types_of_stim == 12: angles = np.array([30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360]) TFreq =np.array([2]) SFreq = np.array([0.08]) contrast = np.array([1]) #for other gratings protocols such as temp freq etc, this number should be double elif types_of_stim == 24: angles = np.array([0, 90, 180, 270]) TFreq = np.array([0.5, 1, 2, 4, 8, 16]) SFreq = np.array([0.01, 0.02, 0.04, 0.08, 0.16, 0.32]) contrast = np.array([0, 0.125, 0.25, 0.5, 0.75, 1]) #what each angle means # 0 degrees is vertical to the left, #90 is horizontal down, #180 is vertical to the right and #270 is horizontal up #with these 4 orientations can test orientation and direction selectivity #reps = how many repetitions of the same stim we have #getting a 3D array with shape(orientation, repeats, TFreq/SFreq) #all_TFreq = np.zeros((angles.shape[0], reps, TFreq.shape[0])).astype(int) #all_SFreq = np.zeros((angles.shape[0], reps, SFreq.shape[0])).astype(int) all_parameters = np.zeros((angles.shape[0], TFreq.shape[0], reps)).astype(int) #all_oris = np.zeros((angles.shape[0], reps)).astype(int) for angle in range(angles.shape[0]): if protocol_type == "TFreq": for freq in range(TFreq.shape[0]): specific_TF = np.where((log[:,0] == angles[angle]) & (log[:,2] == TFreq[freq]) & (log[:,3] == 1)) [0] all_parameters[angle, freq, :] = specific_TF if protocol_type == "SFreq": for freq in range(SFreq.shape[0]): specific_SF = np.where((log[:,0] == angles[angle]) & (log[:,1] == SFreq[freq]) & (log[:,3] == 1)) [0] all_parameters[angle, freq, :] = specific_SF if protocol_type == "Contrast": for freq in range(TFreq.shape[0]): specific_contrast = np.where((log[:,0] == angles[angle]) & (log[:,3] == contrast[freq])) [0] all_parameters[angle, freq, :] = specific_contrast # if protocol_type == "simple": # specific_P = np.where((log[:,0] == angles[angle])) [0] # all_oris[angle, :] = specific_P #return all_oris return all_parameters def behaviour_reps (log, types_of_stim,reps, protocol_type, speed, time, stim_on, stim_off): """ Takes the stim on values and the stim off values which tell you the exact time Then uses this to find the value in the running data which gives you a vector that contains all the values within that period Decides within the loop if 90% of the values are above a certain threshold then assign to each rep a 0 or 1 value Make separate arrays which contain the indices like in all_oris but split into running and rest arrays Then can use these values to plot separate parts of the traces (running vs not running) Parameters ---------- log : array contains the log of stimuli, assumes the order of the columns is "Ori", "SFreq", "TFreq", "Contrast". types_of_stim : integer DESCRIPTION: Refers to the different types of stimuli shown. Assumes that for "simple", types of stim is 12 becuase 12 different orientations are shown. For all the others, it is assumed to be 24 because there are 4 different orientartions and 6 different variations of parameters reps : integer how many times a stimulus was repeated. protocol_type : string The options are : - "simple" which refers to the protocol which only shows 12 types of orietnations - "TFreq": protocol with different temp frequencies - "SFreq": protocol with different spatial frequencies = "contrast": protocol with different contrasts. speed : 1D array the speed throughout the whole experiment. time : 1D array The corrected time at which the behaviour occured. Both of the above are outputs from Liad's function "DetectWheelMove" and duinoDelayCompensation stim_on : 1D array from photodiode, time at which stimulus appears. stim_off : 1D array same as above but when stim disappears. Returns ------- two arrays of shape (types_of_stim, reps) if protocol was "simple" two arrays of shape(4, reps, 6) for all other protocols (if 4 different orientations and 6 different other parameters) (one for running trials, one for rest trials) """ stim_on_round = np.around(stim_on, decimals = 2) stim_off_round = np.around(stim_off, decimals = 2) speed_time = np.stack((time, speed)).T for rep in range(stim_on.shape[0]-1): start = np.where(stim_on_round[rep] == speed_time[:,0])[0] stop = np.where(stim_off_round[rep] == speed_time[:,0])[0] interval = speed_time[start[0]:stop[0], 1] running_bool = np.argwhere(interval>1) plt.plot(interval) if running_bool.shape[0]/interval.shape[0]>0.9: a = 1 else: a = 0 if a ==1: #now appending the final column of the log with 1 if the above turns out true log[rep,4] = 1 if types_of_stim == 12: angles = np.array([30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360]) TFreq =np.array([2]) SFreq = np.array([0.08]) contrast = np.array([1]) #for other gratings protocols such as temp freq etc, this number should be double elif types_of_stim == 24: angles = np.array([0, 90, 180, 270]) TFreq = np.array([0.5, 1, 2, 4, 8, 16]) SFreq = np.array([0.01, 0.02, 0.04, 0.08, 0.16, 0.32]) contrast = np.array([0, 0.125, 0.25, 0.5, 0.75, 1]) """ for running """ #running = np.ones((4, 6, 30))*np.nan running = [] #creates a list of arrays by looking in the log file and sorting the indices based on the desired angles, freq #and if there is a 0 or a 1 in the final column for angle in range(angles.shape[0]): if protocol_type == "SFreq": for freq in range(TFreq.shape[0]): specific_SF_r = np.where((log[:,0] == angles[angle]) & (log[:,1] == SFreq[freq]) & (log[:,3] == 1) & (log[:,4] ==1)) [0] #running[angle, freq,:] = specific_SF_r running.append(specific_SF_r) if protocol_type == "TFreq": for freq in range(TFreq.shape[0]): specific_TF_r = np.where((log[:,0] == angles[angle]) & (log[:,2] == TFreq[freq]) & (log[:,3] == 1) & (log[:,4] ==1)) [0] running.append(specific_TF_r) #running[angle, freq,:] = specific_TF_r if protocol_type == "Contrast": for freq in range(TFreq.shape[0]): specific_contrast_r = np.where((log[:,0] == angles[angle]) & (log[:,2] == contrast[freq]) & (log[:,4] ==1)) [0] running.append(specific_contrast_r) #running[angle, freq, :] = specific_contrast_r elif protocol_type == "simple": specific_P_r = np.where((log[:,0] == angles[angle]) & (log[:,4] ==1)) [0] running.append(specific_P_r) """ for rest """ rest = [] for angle in range(angles.shape[0]): if protocol_type == "SFreq": for freq in range(TFreq.shape[0]): specific_SF_re = np.where((log[:,0] == angles[angle]) & (log[:,1] == SFreq[freq]) & (log[:,4] ==0)) [0] rest.append(specific_SF_re) if protocol_type == "TFreq": for freq in range(TFreq.shape[0]): specific_TF_re = np.where((log[:,0] == angles[angle]) & (log[:,2] == TFreq[freq]) & (log[:,4] ==0)) [0] rest.append(specific_TF_re) if protocol_type == "Contrast": for freq in range(TFreq.shape[0]): specific_contrast_re = np.where((log[:,0] == angles[angle]) & (log[:,3] == contrast[freq]) & (log[:,4] ==0)) [0] rest.append(specific_contrast_re) elif protocol_type == "simple": specific_P_re = np.where((log[:,0] == angles[angle]) & (log[:,4] ==0)) [0] rest.append(specific_P_re) return running, rest
mariacozan/Analysis_and_Processing
functions/functions2022_07_15.py
functions2022_07_15.py
py
26,567
python
en
code
0
github-code
6
19239185532
# stack ! 과제는 끝나지 않아! # 효율 고려 X, 하나 넣고 하나 빼기 import sys from collections import deque input = sys.stdin.readline N = int(input()) S = deque() # 과제 넣어두는 스택 tot = 0 # 총 점수 for _ in range(N): W = list(map(int, input().split())) if W[0]: # 새 과제가 있다면 if W[2] == 1: # 지금 바로 끝낼 수 있으면 점수 바로 더해주기 tot += W[1] else: # 아니라면 시간 1 빼서 S에 넣어주기 S.append([W[1], W[2]-1]) else: # 새 과제가 없다면 if S: # 남은 과제 있을 때 n_score, n_time = S.pop() if n_time == 1: # 지금 끝낼 수 있으면 점수 더하고 tot += n_score else: # 못 끝내면 시간만 1 빼주기 S.append([n_score, n_time-1]) print(tot)
sdh98429/dj2_alg_study
BAEKJOON/stack/b17952.py
b17952.py
py
878
python
ko
code
0
github-code
6
22933846621
from cryptopals.set1.common import recover_xor_key def test(hex_strings, expected): english_score = { score: text for key, score, text in [ recover_xor_key(hex_string.decode('hex')) for hex_string in hex_strings ] } best_score = min(english_score) return english_score[best_score]
ericnorris/cryptopals-solutions
cryptopals/set1/challenge_04.py
challenge_04.py
py
341
python
en
code
0
github-code
6
17441173344
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import streamlit as st import ptitprince as pt def scatter_plot(df,fig): hobbies = [] for col in df.columns: hobbies.append(col) print(col) st.title(" Scatter Plot") hobby = st.selectbox("X-axis: ", hobbies) # print the selected hobby st.write("You have selected X-axis: ", hobby) hobby1 = st.selectbox("Y-axis: ", hobbies) st.write("You have selected Y-axis: ", hobby1) if (st.button("scatter plot")): st.text("scatter plot") ax = sns.regplot(x=hobby, y=hobby1, data=df) st.pyplot(fig) def group_histogram(df,fig): st.title("Grouped Histogram") if (st.button("Grouped Histogram")): st.text("Grouped Histogram") for condition in df.TrialType.unique(): cond_data = df[(df.TrialType == condition)] ax = sns.distplot(cond_data.RT, kde=False) ax.set(xlabel='Response Time', ylabel='Frequency') st.pyplot(fig) def bar_plot(df,fig,hobbies): st.title("Bar Plot") hobby = st.selectbox("X-axis for barplot: ", hobbies) # print the selected hobby st.write("You have selected X-axis: ", hobby) hobby1 = st.selectbox("Y-axis for barplot: ", hobbies) st.write("You have selected Y-axis: ", hobby1) if (st.button("Bar plot")): st.text("Bar plot") sns.barplot(x=hobby, y=hobby1, data=df) st.pyplot(fig) def box_plot1(df,fig,hobbies): st.title("Box Plot") hobby = st.selectbox("X-axis for boxplot: ", hobbies) # print the selected hobby st.write("You have selected X-axis: ", hobby) hobby1 = st.selectbox("Y-axis for boxplot: ", hobbies) st.write("You have selected Y-axis: ", hobby1) if (st.button("Box plot")): st.text("Box plot") sns.boxplot(x=hobby, y=hobby,data=df) st.pyplot(fig) def heat_map(df,fig,hobbies): st.title("Heatmap Plot") col2 = st.multiselect( "Blah:", sorted(list(hobbies)), sorted(list(hobbies)) ) if (st.button("Heatmap plot")): st.text("Heatmap plot") ax = sns.heatmap(df[col2]) st.pyplot(fig) def violine_plot(df,fig,hobbies): st.title("Violin Plot") hobby = st.selectbox("X-axis for Violinplot: ", hobbies) # print the selected hobby st.write("X-axis for Violinplot: ", hobby) hobby1 = st.selectbox("Y-axis for Violinplot: ", hobbies) st.write("You have selected Y-axis: ", hobby1) if (st.button("Violin plot")): st.text("Violin plot") sns.violinplot(x=hobby, y=hobby1, data=df) st.pyplot(fig) def rain_cloudplot(df,fig,hobbies): st.title("Raincloud Plot") hobby = st.selectbox("X-axis for Raincloudplot: ", hobbies) # print the selected hobby st.write("You have selected X-axis: ", hobby) hobby1 = st.selectbox("Y-axis for Raincloudplot: ", hobbies) st.write("You have selected Y-axis: ", hobby1) if (st.button("Raincloud plot")): st.text("Raincloud plot") ax = pt.RainCloud(x=hobby, y=hobby1, data=df, width_viol=.8, width_box=.4, figsize=(12, 8), orient='h', move=.0) st.pyplot(fig) def app(): filename = st.text_input('Enter a file path:') try: df = pd.read_csv(filename) except: None uploaded_files = st.file_uploader("Upload CSV", type="csv", accept_multiple_files=True) if uploaded_files: for file in uploaded_files: file.seek(0) uploaded_data_read = [pd.read_csv(file) for file in uploaded_files] df = pd.concat(uploaded_data_read) hobbies=[] try: fig = plt.figure(figsize=(12, 8)) for col in df.columns: hobbies.append(col) print(col) fig = plt.figure(figsize=(12, 8)) st.dataframe(data=df, width=None, height=None) scatter_plot(df,fig) group_histogram(df, fig) bar_plot(df, fig, hobbies) heat_map(df, fig, hobbies) violine_plot(df, fig, hobbies) box_plot1(df, fig, hobbies) rain_cloudplot(df, fig, hobbies) except: None
imsanjoykb/Data-Analytics-Tool-Development
apps/graphs.py
graphs.py
py
4,249
python
en
code
3
github-code
6
10159507438
# 0 1 2 3 4 # 5 6 7 8 9 # 0 1 2 3 4 # 5 6 7 8 9 def rosy(): counter=0 for rows in range(1,3): for col in range(0, 5): print(counter,end=' ') counter += 1 print() rosy() rosy()
suchishree/django_assignment1
python/looping/assignment 3/no6.py
no6.py
py
228
python
en
code
0
github-code
6
32470859712
#숫자 카드 2 from bisect import bisect_left, bisect_right def binary(x): start = bisect_left(data_n, x) end = bisect_right(data_n, x) return end - start n = int(input()) data_n = sorted(list(map(int, input().split()))) m = int(input()) data_m = list(map(int, input().split())) for x in data_m: print(binary(x), end= ' ')
JinDDung2/python-pratice
BOJ/binary/10816.py
10816.py
py
345
python
en
code
0
github-code
6
38701948852
#coding=utf8 import config import json import sys, time py3k = sys.version_info.major > 2 import os.path import urllib if py3k: from urllib import parse as urlparse else: import urlparse def get_one(): return config.dbconn().fetch_rows('http', condition={'checked': 0}, order="id asc", limit="1", fetchone=True) def check_key(key): ''' 是否需要保留这个key ''' blacklist = ['t', 'r', 'submit'] if key.lower() in blacklist: return False return True def check_value(value, vtype): ''' 是否需要保留这个value ''' if vtype == 'array': return False return True def get_type(key, value): if type(value) == type([]): return 'array' value = value[0] if value.isdigit(): return 'int' try: float(value) return 'float' except: pass # url check u = urlparse.urlparse(value) if u.scheme and u.netloc: return 'url' try: j = json.loads(value) if type(j) == type([]) or type(j) == type({}): return 'json' except: pass return 'str' while True: http = get_one() if not http: time.sleep(3) continue req = json.loads(http['req']) if req['rtype'] not in ['qs', 'rewrite']: config.dbconn().insert('requests', {'requestid': http['id'], 'method': req['method'], 'key': '', 'type': 'special|'+req['rtype']}) else: # support array like a[]=1&a[]=2 parsed = urlparse.urlparse(req['uri']) get_parts = urlparse.parse_qs(parsed.query) if get_parts: for k,v in get_parts.items(): v = v[0] if len(v) == 1 else v vtype = get_type(k, v) if check_key(k) and check_value(v, vtype): config.dbconn().insert('requests', {'requestid': http['id'], 'method': "GET", 'key': k, 'type': vtype}) if not parsed.query and not os.path.splitext(parsed.path)[1] and len(parsed.path.split('/')) > 3: path_parts = parsed.path.split('/') for i in range(3, len(path_parts)): vtype = 'rewrite|'+get_type('rewrite', path_parts[i]) config.dbconn().insert('requests', {'requestid': http['id'], 'method': "GET", 'key': str(i), 'type': vtype}) if req['method'] == "POST": post_parts = urlparse.parse_qs(urlparse.urlparse(req['body']).query) if post_parts: for k,v in post_parts.items(): v = v[0] if len(v) == 1 else v vtype = get_type(k, v) if check_key(k) and check_value(v, vtype): config.dbconn().insert('requests', {'requestid': http['id'], 'method': "POST", 'key': k, 'type': vtype}) config.dbconn().update('http', {'checked': 1}, {'id': http['id']})
5alt/ZeroExploit
parser.py
parser.py
py
2,452
python
en
code
4
github-code
6
26829773618
####################################### # This file computes several characteristics of the portage graph ####################################### import math import sys import core_data import hyportage_constraint_ast import hyportage_data import utils import graphs import host.scripts.utils from host.scripts import hyportage_db data = {} ###################################################################### # GENERIC STATISTICS EXTRACTION FUNCTION ###################################################################### def map_base_statistics(value_number, total_size, map_size): average = total_size / float(value_number) variance = 0 for key, value in map_size.iteritems(): tmp = average - key tmp = tmp * tmp * len(value) variance = variance + tmp variance = math.sqrt(variance / value_number) return average, variance def generics(input_iterator, extract_data, extract_key, filter_function=host.scripts.utils.filter_function_simple, store_data_map=False): value_number = 0 map_data = {} map_size = {} total_size = 0 max_size = 0 min_size = sys.maxint for element in input_iterator: if filter_function(element): value_number = value_number + 1 data = extract_data(element) key = extract_key(element) size = len(data) if store_data_map: if data in map_data: map_data[data].add(key) else: map_data[data] = {key} if size in map_size: map_size[size].add(key) else: map_size[size] = {key} total_size = total_size + size if size > max_size: max_size = size if size < min_size: min_size = size average, variance = map_base_statistics(value_number, total_size, map_size) return { 'number': value_number, 'map_data': map_data, 'map_size': map_size, 'total_size': total_size, 'average': average, 'variance': variance, 'max_size': max_size, 'min_size': min_size } def generic_map(input_map, extraction_function, filter_function=host.scripts.utils.filter_function_simple, store_data_map=False): return generics(input_map.iteritems(), lambda el: extraction_function(el[1]), lambda el: el[0], filter_function, store_data_map) def generic_list(input_list, extraction_function, filter_function=host.scripts.utils.filter_function_simple, store_data_map=False): return generics(input_list, extraction_function, lambda el: tuple(el), filter_function, store_data_map) ###################################################################### # FEATURES ###################################################################### def features(filter_function=host.scripts.utils.filter_function_simple): utils.phase_start("Computing the USE Flags Core Statistics.") required = sum([len(spl.required_iuses) for spl in hyportage_db.mspl.itervalues() if filter_function(spl)]) local = sum([len(spl.iuses_default) for spl in hyportage_db.mspl.itervalues() if filter_function(spl)]) global data data['features'] = generic_map(hyportage_db.mspl, hyportage_data.spl_get_iuses_full, filter_function) data['features']['average_required'] = required / float(data['features']['number']) data['features']['average_local'] = local / float(data['features']['number']) utils.phase_end("Computation Completed") def features_usage(filter_function=host.scripts.utils.filter_function_simple): utils.phase_start("Computing the USE Flags Core Statistics.") map_features = {} for key, value in hyportage_db.mspl.iteritems(): if filter_function(value): for feature in hyportage_data.spl_get_required_iuses(value): if feature in map_features: map_features[feature].add(key) else: map_features[feature] = {key} global data data['feature_usage'] = generic_map(map_features, core_data.identity, filter_function) data['feature_usage']['map_data'] = map_features utils.phase_end("Computation Completed") """ def statistics_features(filter_function=db.filter_function_simple): utils.phase_start("Computing the USE Flags Core Statistics.") features_number = 0 features_max = 0 features_min = 100 spl_min = [] spl_max = [] spl_number = 0 for spl in db.mspl.itervalues(): if filter_function(spl): spl_number = spl_number + 1 use_flag_size = len(hyportage_data.spl_get_required_iuses(spl)) if use_flag_size < features_min: features_min = use_flag_size spl_min = [spl.name] elif use_flag_size == features_min: spl_min.append(spl.name) if use_flag_size > features_max: features_max = use_flag_size spl_max = [spl.name] elif use_flag_size == features_max: spl_max.append(spl.name) features_number = features_number + use_flag_size res = { 'min': features_min, 'min_spl_list': sorted(spl_min), 'max': features_max, 'max_spl_list': sorted(spl_max), 'number': features_number, 'spl_number': spl_number, 'average': features_number / spl_number } global statistics statistics['features'] = res utils.phase_end("Computation Completed") """ ###################################################################### # DEPENDENCIES ###################################################################### class GETGuardedDependenciesVisitor(hyportage_constraint_ast.ASTVisitor): def __init__(self): super(hyportage_constraint_ast.ASTVisitor, self).__init__() self.res = {} self.guards = 0 def visitDependCONDITION(self, ctx): self.guards = self.guards + 1 map(self.visitDependEL, ctx['els']) self.guards = self.guards - 1 def visitDependSIMPLE(self, ctx): pattern = ctx['atom'] if pattern in self.res: if self.guards == 0: self.res[pattern]['guarded'] = False if "selection" in ctx: self.res[pattern]['selects'] = True else: self.res[pattern] = {'guarded': self.guards > 0, 'selects': "selection" in ctx} def visitSPL(self, spl): self.visitDepend(spl.fm_combined) res = self.res self.res = {} self.guards = 0 return res def dependencies(filter_function=host.scripts.utils.filter_function_simple): utils.phase_start("Computing the Dependencies Statistics.") visitor = GETGuardedDependenciesVisitor() local_map = {spl.name: visitor.visitSPL(spl) for spl in hyportage_db.mspl.itervalues()} def extraction_function_all(data): return data.keys() def extraction_function_guarded(data): return {pattern for pattern in data.iterkeys() if data[pattern]['guarded']} def extraction_function_selects(data): return {pattern for pattern in data.iterkeys() if data[pattern]['selects']} global data data['dependencies_all'] = generic_map(local_map, extraction_function_all, filter_function) data['dependencies_guarded'] = generic_map(local_map, extraction_function_guarded, filter_function) data['dependencies_selects'] = generic_map(local_map, extraction_function_selects, filter_function) utils.phase_end("Computation Completed") def lone_packages(filter_function=host.scripts.utils.filter_function_simple): referenced_spls = { spl for el in hyportage_db.flat_pattern_repository.itervalues() for spl in el.__generate_matched_spls(hyportage_db.mspl, hyportage_db.spl_groups) } spls = filter(filter_function, hyportage_db.mspl.itervalues()) spls = filter(lambda spl: len(spl.dependencies) == 0, spls) spls = filter(lambda spl: spl not in referenced_spls, spls) global data data['lone_packages'] = spls """ def statistics_dependencies(filter_function=db.filter_function_simple): utils.phase_start("Computing the Dependencies Core Statistics.") dependencies_number = 0 dependencies_max = 0 dependencies_min = 100 dependencies_guarded_number = 0 dependencies_guarded_max = 0 dependencies_guarded_min = 100 spl_number = 0 spl_max = [] spl_min = [] spl_guarded_number = 0 spl_guarded_max = [] spl_guarded_min = [] visitor = GETDependenciesVisitor() for spl in db.mspl.itervalues(): if filter_function(spl): spl_number = spl_number + 1 deps = visitor.visitSPL(spl) #print(" " + spl.name + ": " + str(deps)) dependencies_size = len(deps) if dependencies_size < dependencies_min: dependencies_min = dependencies_size spl_min = [spl.name] elif dependencies_size == dependencies_min: spl_min.append(spl.name) if dependencies_size > dependencies_max: dependencies_max = dependencies_size spl_max = [spl.name] elif dependencies_size == dependencies_max: spl_max.append(spl.name) dependencies_number = dependencies_number + dependencies_size deps_guarded = {k for k, v in deps.iteritems() if v} dependencies_guarded_size = len(deps_guarded) if dependencies_guarded_size < dependencies_guarded_min: dependencies_guarded_min = dependencies_guarded_size spl_guarded_min = [spl.name] elif dependencies_guarded_size == dependencies_guarded_min: spl_guarded_min.append(spl.name) if dependencies_guarded_size > dependencies_guarded_max: dependencies_max = dependencies_guarded_size dependencies_guarded_max = [spl.name] elif dependencies_guarded_size == dependencies_guarded_max: spl_guarded_max.append(spl.name) dependencies_guarded_number = dependencies_guarded_number + dependencies_guarded_size if dependencies_guarded_size > 0: spl_guarded_number = spl_guarded_number + 1 res = { 'min': dependencies_min, 'min_spl_list': sorted(spl_min), 'max': dependencies_max, 'max_spl_list': sorted(spl_max), 'number': dependencies_number, 'spl_number': spl_number, 'average': dependencies_number / spl_number, 'guarded_min': dependencies_guarded_min, 'guarded_min_spl_list': sorted(spl_guarded_min), 'guarded_max': dependencies_guarded_max, 'guarded_max_spl_list': sorted(spl_guarded_max), 'guarded_number': dependencies_guarded_number, 'guarded_spl_number': spl_guarded_number, 'guarded_average': dependencies_guarded_number / spl_guarded_number } global statistics statistics['dependencies'] = res utils.phase_end("Computation Completed") """ ###################################################################### # PATTERNS (ABSTRACT SPL) ###################################################################### def pattern_refinement(filter_function=host.scripts.utils.filter_function_simple): utils.phase_start("Computing the Pattern (refinement) Statistics.") def extraction_function(element): return element.matched_spls(hyportage_db.mspl, hyportage_db.spl_groups) global data data['pattern_refinement'] = generic_map(hyportage_db.flat_pattern_repository, extraction_function, filter_function) utils.phase_end("Computation Completed") def statistics_pattern(filter_function=host.scripts.utils.filter_function_simple): utils.phase_start("Computing the Pattern Core Statistics.") pattern_number = 0 pattern_usage = {} pattern_usage_max = 0 for pattern_element in hyportage_db.flat_pattern_repository.itervalues(): if filter_function(pattern_element): pattern_number = pattern_number + 1 size = len(pattern_element.containing_spl) if pattern_usage_max < size: pattern_usage_max = size if size in pattern_usage: pattern_usage[size].extend(pattern_element) else: pattern_usage[size] = [pattern_element] pattern_abstraction_number = 0 pattern_abstraction_max = [0, []] pattern_abstraction_min = [100, []] for pattern_element in hyportage_db.flat_pattern_repository.itervalues(): if filter_function(pattern_element): pattern_abstraction_size = len(pattern_element.matched_spls(hyportage_db.mspl, hyportage_db.spl_groups)) if pattern_abstraction_size < pattern_abstraction_min[0]: pattern_abstraction_min[0] = pattern_abstraction_size pattern_abstraction_min[1] = [pattern_element] elif pattern_abstraction_size == pattern_abstraction_min[0]: pattern_abstraction_min[1].append(pattern_element) if pattern_abstraction_size > pattern_abstraction_max[0]: pattern_abstraction_max[0] = pattern_abstraction_size pattern_abstraction_max[1] = [pattern_element] elif pattern_abstraction_size == pattern_abstraction_max[0]: pattern_abstraction_max[1].append(pattern_element) pattern_abstraction_number = pattern_abstraction_number + pattern_abstraction_size res = { 'number': pattern_number, 'usage': pattern_usage, 'usage_max': pattern_usage_max, 'usage_average': pattern_usage_max / pattern_number, 'total_abstraction_number': pattern_abstraction_number, 'abstraction_min': pattern_abstraction_min[0], 'abstraction_min_list': pattern_abstraction_min[1], 'abstraction_max': pattern_abstraction_max[0], 'abstraction_max_list': pattern_abstraction_max[1] } global data data['patterns'] = res utils.phase_end("Computation Completed") ###################################################################### # CYCLES ###################################################################### def graph(filter_function=host.scripts.utils.filter_function_simple): utils.phase_start("Computing the Graph Core Statistics.") graph_mspl, spl_nodes = graphs.mspl(filter_function, keep_self_loop=True) nodes_spl = {node: spl for spl, node in spl_nodes.iteritems()} visited = graph_mspl.getBooleanProperty("visited") for n in graph_mspl.getNodes(): visited.setNodeValue(n, False) shairplay_len = sys.maxint cycles = [] for n in graph_mspl.getNodes(): if not visited.getNodeValue(n): visited.setNodeValue(n, True) path = [n] branches = [graph_mspl.getOutNodes(n)] if "shairplay" in nodes_spl[n].name: shairplay_len = 1 while path: if len(path) >= shairplay_len: print(str([nodes_spl[node].name for node in path])) if branches[-1].hasNext(): succ = branches[-1].next() if len(path) >= shairplay_len: print(" found: " + nodes_spl[succ].name) if succ in path: if len(path) >= shairplay_len: print(" loop found: " + str([nodes_spl[node].name for node in path[path.index(succ):]])) cycles.append([nodes_spl[node].name for node in path[path.index(succ):]]) elif not visited.getNodeValue(succ): visited.setNodeValue(succ, True) path.append(succ) branches.append(graph_mspl.getOutNodes(succ)) if "shairplay" in nodes_spl[succ].name: shairplay_len = len(path) else: path.pop() branches.pop() if len(path) < shairplay_len: shairplay_len = sys.maxint res = generic_map({tuple(v): v for v in cycles}, core_data.identity, host.scripts.utils.filter_function_simple) res['cycles'] = cycles global data data['graph'] = res utils.phase_end("Computation Completed")
HyVar/gentoo_to_mspl
host/statistics/statistics.py
statistics.py
py
14,279
python
en
code
10
github-code
6
32646505991
#!/usr/bin/python class NodeVisitor(object): def visit(self, node): method = 'visit_' + node.__class__.__name__ visitor = getattr(self, method, self.generic_visit) return visitor(node) def generic_visit(self, node): # Called if no explicit visitor function exists for a node. print("(%d,%d): %s(%s)" %(node.lineno, node.lineno, node.type, node.value)) print("UNKNOWN STRUCTURE") error_found = 1 class TypeChecker(NodeVisitor): error_found = 0; returnedType = {'int' : {}, 'float' : {}, 'string' : {}} for i in returnedType.keys(): returnedType[i] = {} for j in returnedType.keys(): returnedType[i][j] = {} for k in ['+','-','/','*','%']: returnedType[i][j][k] = [] returnedType['int']['float']['+'] = 'float' returnedType['int']['int']['+'] = 'int' returnedType['float']['float']['+'] = 'float' returnedType['float']['int']['+'] = 'float' returnedType['string']['string']['+'] = 'string' returnedType['int']['float']['-'] = 'float' returnedType['int']['int']['-'] = 'int' returnedType['float']['float']['-'] = 'float' returnedType['float']['int']['-'] = 'float' returnedType['int']['float']['*'] = 'float' returnedType['int']['int']['*'] = 'int' returnedType['float']['float']['*'] = 'float' returnedType['float']['int']['*'] = 'float' returnedType['string']['int']['*'] = 'string' returnedType['int']['float']['/'] = 'float' returnedType['int']['int']['/'] = 'int' returnedType['float']['float']['/'] = 'float' returnedType['float']['int']['/'] = 'float' returnedType['int']['int']['%'] = 'int' returnedTypeRelative = {'int' : {}, 'float' : {}, 'string' : {}} for i in returnedTypeRelative.keys(): returnedTypeRelative[i] = {} for j in returnedTypeRelative.keys(): returnedTypeRelative[i][j] = 'err' returnedTypeRelative['int']['float'] = 'int' returnedTypeRelative['int']['int'] = 'int' returnedTypeRelative['float']['float'] = 'int' returnedTypeRelative['float']['int'] = 'int' returnedTypeRelative['string']['string'] = 'int' funs = {} where_declared = {} current_function = '*' scope_number = 0 loop_number = 0 comp = 0 tmp_dec = {} def visit_Program(self, node): self.visit(node.insts) return self.where_declared def visit_Instructions(self, node): for ins in node.instrs: self.visit(ins) def visit_Print(self, node): if self.visit(node.expr) not in ('int','float','string'): print("CANNOT PRINT", node.expr) self.error_found = 1 def visit_Assignment(self, node): if node.id in self.where_declared.keys(): if self.current_function in self.where_declared[node.id].keys(): type1 = self.where_declared[node.id][self.current_function] elif '*' in self.where_declared[node.id].keys(): type1 = self.where_declared[node.id]['*'] else: type1 = 'undeclared' # print("UNDECLARED VARIABLE",node.id) # self.error_found = 1 else: type1 = 'undeclared' # print("UNDECLARED VARIABLE",node.id) # self.error_found = 1 type2 = self.visit(node.expr) if type1 != 'undeclared' and type1 != type2: print("TYPE MISMATCH IN ASSIGNMENT\n") self.error_found = 1 def visit_Expressions(self, node): tmp = [] for expr in node.exprs: tmp.append(self.visit(expr)) return tmp def visit_Matrix_function(self, node): if self.visit(node.arg) != 'int': print("Matrix function takes not int") self.error_found = 1 def visit_Const(self, node): if type(node.value) == str: return 'string' if type(node.value) == int: return 'int' if type(node.value) == float: return 'float' def visit_While(self, node): self.visit(node.cond) self.loop_number += 1 self.visit(node.stmt) self.loop_number -= 1 def visit_For(self, node): self.visit(node.id) self.visit(node.range) self.loop_number += 1 self.visit(node.inst) self.loop_number -= 1 def visit_Range(self, node): from_type = self.visit(node.range_from) if from_type != 'undeclared' and from_type != 'int': print("Range from should evaluate to int") self.error_found = 1 to_type = self.visit(node.range_to) if to_type != 'undeclared' and to_type != 'int': print("Range to should evaluate to int") self.error_found = 1 def visit_Continue(self, node): if self.loop_number <= 0: print("Continue used outside loop") self.error_found = 1 def visit_Break(self, node): if self.loop_number <= 0: print("Break used outside loop") self.error_found = 1 def visit_Condition(self, node): if self.returnedTypeRelative[self.visit(node.left)][self.visit(node.right)] == 'err': print("TYPE MISMATCH IN CONDITION\n") self.error_found = 1 if self.returnedTypeRelative[self.visit(node.left)][self.visit(node.right)] != 'int': print("CONDITION MUST BE INT") self.error_found = 1 def visit_ComInstructions(self, node): # self.tmp_dec = self.where_declared # self.comp = 1 self.visit(node.instrs) # self.comp = 0 # self.where_declared = self.tmp_dec def visit_BinExpr(self, node): type1 = self.visit(node.left) type2 = self.visit(node.right) op = node.op; if self.returnedType[type1][type2][op] == 'err': print("TYPE MISMATCH IN BIN EXPR\n") self.error_found = 1; return self.returnedType[type1][type2][op] # def visit_Variable(self, node): # if node.ID in self.where_declared.keys(): # if self.current_function in self.where_declared[node.ID].keys(): # return self.where_declared[node.ID][self.current_function] # elif '*' in self.where_declared[node.ID].keys(): # return self.where_declared[node.ID]['*'] # else: # print("UNDECLARED VARIABLE IN THIS FUN") # self.error_found = 1 # else: # print("UNDECLARED VARIABLE", node.ID) # self.error_found = 1 # to jest do poprawy def visit_Variable(self, node): return 'int' def visit_Return(self, node): self.visit(node.ret)
Andrzej97/kompilatory
TypeChecker_v3.py
TypeChecker_v3.py
py
6,834
python
en
code
0
github-code
6
33680275570
import numpy as np from numpy import dtype, uint8 class lena(object): def __init__(self, pallete): self.pallete = pallete # Open the file for reading def read_file(self, my_file): stream = open(my_file, 'rb') img = np.fromfile(stream, dtype=(uint8, 3)) return img # Create a dither matrix def dither_matrix_row(self, row, mat): my_row = [] for i in range(128): for j in mat[row]: my_row.append(j) return my_row # Span the 4 X 4 dither matrix from the book in 512 X 512 def dither_matrix(self, first, second, third, fourth): dither = [] total_length = 0 all_rows = [first, second, third, fourth] for i in range(len(all_rows)): total_length += len(all_rows[i]) for i in range(128): dither.append(first) dither.append(second) dither.append(third) dither.append(fourth) dither = np.reshape(dither, (-1, 512)) return dither # Transform the image def quantize(self, img_array, dither_array): quantized_array = [] for i in range(512): for j in range(512): if img_array[i][j] > dither_array[i][j]: quantized_array.append(255) else: quantized_array.append(0) temp_array = np.zeros(len(quantized_array), dtype=(uint8)) for i in range(len(quantized_array)): temp_array[i] = quantized_array[i] return temp_array # Combine all three red, green and blue def combine_rgb(self, r, g, b): rgb = np.zeros(len(r), dtype=(uint8, 3)) for i in range(len(r)): rgb[i][0] = r[i] rgb[i][1] = g[i] rgb[i][2] = b[i] return rgb # Scale dither matrix from 0 to 255 (8 bit) red and green # Add 1 to the dither multiply by 16 and subtract 1 def scaled_dither(self, dither): dither = np.add(dither, 1) dither = np.dot(dither, 16) dither = np.add(dither, -1) return dither if __name__ == '__main__': # 4 X 4 dither matrix from the book pallete = np.array([ [0, 8, 2, 10], [12, 4, 14, 6], [3, 11, 1, 9], [15, 7, 13, 5]] ) # Instantiate lena with the pallete lena = lena(pallete) # File must be a .data extension file_to_open = raw_input('Enter a .data file: ') #img = lena.read_file('LennaRGB512.data') img = lena.read_file(file_to_open) # Initialize red, green, blue arrays with zeros red = np.zeros(len(img), dtype=(uint8)) green = np.zeros(len(img), dtype=(uint8)) blue = np.zeros(len(img), dtype=(uint8)) # Create the three channels for red, green and blue for i in range(len(img)): red[i] = img[i][0] # Red channel green[i] = img[i][1] # Green channel blue[i] = img[i][2] # Blue channel # Convert linear arrays to 512 X 512 red = np.reshape(red, (-1, 512)) green = np.reshape(green, (-1, 512)) blue = np.reshape(blue, (-1, 512)) # Populate pallete along rows first = lena.dither_matrix_row(0, pallete) second = lena.dither_matrix_row(1, pallete) third = lena.dither_matrix_row(2, pallete) fourth = lena.dither_matrix_row(3, pallete) # Populate entire matrix using rows my_dither = lena.dither_matrix(first, second, third, fourth) # Scale dither matrix from 0 to 255 (8 bit) my_scaled_dither = lena.scaled_dither(my_dither) # Quantize the arrays quantized_lena_red = lena.quantize(red, my_scaled_dither) quantized_lena_green = lena.quantize(green, my_scaled_dither) quantized_lena_blue = lena.quantize(blue, my_scaled_dither) # Combine three layers of red, green and blue quantized_lena_rgb = lena.combine_rgb( quantized_lena_red, quantized_lena_green, quantized_lena_blue ) # Save the new file quantized_lena_rgb.tofile(file_to_open + '_3bit.data')
ortizub41/lena
lena/lena.py
lena.py
py
4,071
python
en
code
1
github-code
6
33846054954
from jwst.stpipe import Step from jwst import datamodels from ..datamodels import TMTDarkModel from . import dark_sub from ..utils.subarray import get_subarray_model __all__ = ["DarkCurrentStep"] class DarkCurrentStep(Step): """ DarkCurrentStep: Performs dark current correction by subtracting dark current reference data from the input science data model. """ spec = """ dark_output = output_file(default = None) # Dark model subtracted """ reference_file_types = ["dark"] def process(self, input): # Open the input data model with datamodels.open(input) as input_model: # Get the name of the dark reference file to use self.dark_name = self.get_reference_file(input_model, "dark") self.log.info("Using DARK reference file %s", self.dark_name) # Check for a valid reference file if self.dark_name == "N/A": self.log.warning("No DARK reference file found") self.log.warning("Dark current step will be skipped") result = input_model.copy() result.meta.cal_step.dark = "SKIPPED" return result # Create name for the intermediate dark, if desired. dark_output = self.dark_output if dark_output is not None: dark_output = self.make_output_path( None, basepath=dark_output, ignore_use_model=True ) # Open the dark ref file data model - based on Instrument dark_model = TMTDarkModel(self.dark_name) dark_model = get_subarray_model(input_model, dark_model) # Do the dark correction result = dark_sub.do_correction(input_model, dark_model, dark_output) dark_model.close() return result
oirlab/iris_pipeline
iris_pipeline/dark_current/dark_current_step.py
dark_current_step.py
py
1,857
python
en
code
0
github-code
6
35116816269
# Import the libraries import cv2 import numpy as np import math as m from matplotlib import pyplot as plt #-- PRE-PROCESSING -- # Read the image nimg = 'image1' # Change 'image1' for the name of your image image = cv2.imread(nimg + '.jpg') # Extract the RGB layers of the image rgB = np.matrix(image[:,:,0]) # Blue rGb = np.matrix(image[:,:,1]) # Green Rgb = np.matrix(image[:,:,2]) # Red # Define the combination RGB II = cv2.absdiff(rGb,rgB) I = II*255 cv2.imshow('Images with layers extracted', I) cv2.waitKey(0) # Initial binarization of the image [fil, col] = I.shape for o in range(0,fil): for oo in range(0,col): if I[o, oo]<80: # Pixel less than 80 will be 0 I[o,oo]=0 for o in range(0,fil): for oo in range(0,col): if I[o, oo]>0: # Pixel more than 0 will be 1 I[o,oo]=1 # Morphological transformations # Create square streel: se for closing and se2 for dilation se = np.ones((50, 50), np.uint8) se2 = np.ones((10, 10), np.uint8) closing = cv2.morphologyEx(I,cv2.MORPH_CLOSE,se) # Closing dilation = cv2.dilate(closing,se2,1) # Dilation # Find the contours contours,hierarchy=cv2.findContours(dilation,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # Extract the contours cnt = contours[:] num = len(cnt) # print(num) # print(contours) # print(hierarchy) # Calculate the bigger contour box = np.zeros((num,4)) for j in range(0, num): box[j,:]=cv2.boundingRect(cnt[j]) L = np.zeros((num,4)) Max=[0,0] for j in range(0, num): L[j,:]=box[j] if L[j,2]>Max[1]: Max=[j,L[j,2]] BOX = box[Max[0],:] # Mask b = image[int(BOX[1]):int(BOX[1]+BOX[3]),int(BOX[0]):int(BOX[0]+BOX[2]),:] #-- SEGMENTATION -- [fil,col,cap] = b.shape # Extract the RGB layers of the image with the mask rgB = b[:,:,0] # Blue rGb = b[:,:,1] # Green Rgb = b[:,:,2] # Red # Normalizate the layers R = Rgb/255.0 G = rGb/255.0 B = rgB/255.0 # Build the color K space K = np.zeros((fil,col)) # Black layer for o in range(0,fil): for oo in range(0,col): MAX = max(R[o,oo],G[o,oo],B[o,oo]) # Calculate the maximum value R-G-B K[o,oo] = 1-MAX # Save the image in .bmp format cv2.imwrite('imgbmp_' + nimg + '.bmp', K) # Read the image k = cv2.imread('imgbmp_' + nimg + '.bmp') # Apply Canny BW1 = cv2.Laplacian(k, cv2.CV_8UC1) # Extract layers imgk = BW1[:,:,0]+BW1[:,:,1]+BW1[:,:,2] # Save the image cv2.imwrite('result_' + nimg + '.png', imgk*255)
selenebpradop/basic_exercises-computer_vision
contours_of_an_image_v2.py
contours_of_an_image_v2.py
py
2,461
python
en
code
0
github-code
6
34965304781
""" 递归动态规划 """ class Solution(object): def canJump(self,nums): if len(nums) == 1: return True for i in range(1,nums[0]+1): if i <= len(nums): if self.canJump(nums[i:]): return True else: return True return False """ 备忘录递归动态规划 """ class Solution(object): def canJump(self,nums): n = len(nums) if n == 1: return True a = [0] * n a[n-1] = 1 position = 0 return self.canJumps(nums,a,position) def canJumps(self,nums,a,position): print(nums[position]) if a[position] != 0: print(1) if a[position] == 1: return True else: return False print(position) furjump = min(nums[position]+position,len(nums)-1) for i in range(position+1,furjump+1): if i <= len(nums): if self.canJumps(nums,a,i): a[i] = 1 return True else: return True a[position]=-1 return False """ 自底向上动态规划 """ class Solution(object): def canJump(self, nums): """ :type nums: List[int] :rtype: bool """ n = len(nums) if n == 1: return True memo = [0] * n memo[n-1] = 1 m = n - 2 while m>= 0: furjump = min(m+nums[m],n) print(m,furjump) for j in range(m+1,furjump+1): if (memo[j] == 1): memo[m]= 1 break m = m -1 print(memo) return memo[0] == 1 """ 贪心算法 """ class Solution(object): def canJump(self, nums): """ :type nums: List[int] :rtype: bool """ n = len(nums) - 2 lasted = len(nums)- 1 while n >= 0: if (n + nums[n]>= lasted): lasted= n n = n - 1 return lasted== 0
qingyuannk/phoenix
dp/jumpgame.py
jumpgame.py
py
2,117
python
en
code
0
github-code
6
9200799444
from fastapi import status, HTTPException, Depends from fastapi.security import OAuth2PasswordBearer from jose import JWTError, jwt from datetime import datetime, timedelta from sqlalchemy.orm import Session from .schema import TokenData from app import database, models from .config import env SECRET_KEYS = env.SECRET_KEY ALGORITHM = env.ALGORITHM ACCESS_TOKEN_EXPIRE_MINUTES = env.ACCESS_TOKEN_EXPIRE_MINUTES oauth2_schema = OAuth2PasswordBearer(tokenUrl="users/login") def create_access_token(payload: dict): to_encode = payload.copy() expire = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) to_encode.update({"exp": expire}) token = jwt.encode(to_encode, SECRET_KEYS, algorithm=ALGORITHM) return token def verify_access_token(token: str, credentials_exception): try: payload = jwt.decode(token, SECRET_KEYS, algorithms=[ALGORITHM]) id: str = payload.get("user_id") if id is None: raise credentials_exception token_data = TokenData(id=id) except JWTError: raise credentials_exception return token_data def get_current_user( token: str = Depends(oauth2_schema), db: Session = Depends(database.get_db) ): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Auth": "Bearer"} ) token = verify_access_token(token, credentials_exception) user = db.query(models.User).filter(models.User.id == token.id).first() return user
Ichi-1/FastAPI-example-api
app/oauth2.py
oauth2.py
py
1,581
python
en
code
0
github-code
6
25575181895
from typing import List class Solution: def rotate(self, nums: List[int], k: int) -> None: new_array = [1]*len(nums) for i in range(len(nums)): new_p = (i - k)%len(nums) new_array[i] = nums[new_p] return new_array s = Solution() l = [1,2,3,4,5,6,7] x = s.rotate(l,3) print(x)
ThadeuFerreira/python_code_challengers
rotate_array.py
rotate_array.py
py
331
python
en
code
0
github-code
6
72332661307
#!/usr/bin/env python3 import os import configparser from mongoengine.connection import connect from .data_model import Post from .render_template import render from .mailgun_emailer import send_email def email_last_scraped_date(): ## mongodb params (using configparser) config = configparser.ConfigParser() config.read(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'settings.cfg')) mlab_uri = config.get('MongoDB', 'mlab_uri') # connect to db MONGO_URI = mlab_uri connect('sivji-sandbox', host=MONGO_URI) ## get the last date the webscraper was run for post in Post.objects().fields(date_str=1).order_by('-date_str').limit(1): day_to_pull = post.date_str ## pass in variables, render template, and send context = { 'day_to_pull': day_to_pull, 'Post': Post, } html = render("template.html", context) send_email(html)
alysivji/reddit-top-posts-scrapy
top_post_emailer/__init__.py
__init__.py
py
917
python
en
code
14
github-code
6
26239060381
#!/usr/bin/env python3 ''' This script will incement the major version number of the specified products. It is assumed that the version number in the label itself is correct, and the version just needs to be added on to the filename. Usage: versioning.py <label_file>... ''' import re import os import sys from bs4 import BeautifulSoup LABELFILE_PARSE_VERSIONED_REGEX = r'(.+)_(\d+)_(\d+)\.xml' LABELFILE_PARSE_UNVERSIONED_REGEX = r'(.+)\.xml' DATAFILE_PARSE_VERSIONED_REGEX = r'(.+)_(\d+)\.([a-z0-9]+)' DATAFILE_PARSE_UNVERSIONED_REGEX = r'(.+)\.([a-z0-9]+)' def main(argv=None): ''' Entry point into the script ''' if argv is None: argv = sys.argv filepaths = argv[1:] for filepath in filepaths: dirname, filename = os.path.split(filepath) increment_product(dirname, filename) def increment_product(path, labelfile): ''' Increments the version number of the specified product ''' label = read_label(path, labelfile) datafile = extract_datafile(label) new_labelfile = increment_labelfile(labelfile) if datafile: new_datafile = increment_datafile(datafile) contents = inject_datafile(label, datafile, new_datafile) with open(new_labelfile, "w") as outfile: outfile.write(contents) rename(path, datafile, new_datafile) else: rename(path, labelfile, new_labelfile) def read_label(path, labelfile): ''' Reads in a product label file as a string ''' with open(os.path.join(path, labelfile)) as infile: return infile.read() def extract_datafile(label): ''' Finds the data filename referenced in a product ''' soup = BeautifulSoup(label, 'lxml-xml') if soup.Product_Observational: return extract_observational_datafile(soup.Product_Observational) if soup.Product_Collection: return extract_collection_datafile(soup.Product_Collection) if soup.Product_Document: return extract_document_datafile(soup.Product_Document) return None def extract_collection_datafile(product): ''' Finds the inventory filename referenced in a collection product ''' file_area = product.File_Area_Inventory if product else None file_element = file_area.File if file_area else None file_name = file_element.file_name if file_element else None return file_name.string def extract_observational_datafile(product): ''' Finds the data filename referenced in a product ''' file_area = product.File_Area_Observational if product else None file_element = file_area.File if file_area else None file_name = file_element.file_name if file_element else None return file_name.string def extract_document_datafile(product): ''' Finds the document filename referenced in a document product. ''' document = product.Document if product else None document_edition = document.Document_Edition if document else None document_file = document_edition.Document_File if document_edition else None file_name = document_file.document_file if document_file else None return file_name.string def increment_labelfile(labelfile): ''' Creates the filename for a label file with a new version number ''' (filebase, major, _) = parse_labelfile_name(labelfile) newmajor, newminor = major + 1, 0 return "{}_{}_{}.xml".format(filebase, newmajor, newminor) def increment_datafile(datafile): ''' Creates the filename for a data file with the new version number ''' (filebase, major, extension) = parse_datafile_name(datafile) newmajor = major + 1 return "{}_{}.{}".format(filebase, newmajor, extension) def inject_datafile(label, datafile, new_datafile): ''' Replaces the filename reference in a label with the specified file ''' return label.replace(datafile, new_datafile) def rename(dirname, filename, newfilename): ''' Renames a file ''' src = os.path.join(dirname, filename) dst = os.path.join(dirname, newfilename) if os.path.exists(newfilename): print("File already exists: " + newfilename) else: os.rename(src, dst) def parse_datafile_name(name): ''' Extract the version number from a data file, if available ''' versioned_match = re.match(DATAFILE_PARSE_VERSIONED_REGEX, name) if versioned_match: (filebase, major, extension) = versioned_match.groups() return (filebase, int(major), extension) unversioned_match = re.match(DATAFILE_PARSE_UNVERSIONED_REGEX, name) (filebase, extension) = unversioned_match.groups() return (filebase, 1, extension) def parse_labelfile_name(name): ''' Extract the version number from a label file, if available ''' versioned_match = re.match(LABELFILE_PARSE_VERSIONED_REGEX, name) if versioned_match: (filebase, major, minor) = versioned_match.groups() return (filebase, int(major), int(minor)) unversioned_match = re.match(LABELFILE_PARSE_UNVERSIONED_REGEX, name) filebase = unversioned_match.groups()[0] return (filebase, 1, 0) def increment_major(major, _): ''' Returns the version number with the major version incremented, and the minor version reset to 1 ''' return (major + 1, 0) def increment_minor(major, minor): ''' Returns the version number with the minor version incremented ''' return (major, minor + 1) def attach_version_to_datafile(filebase, extension, major): ''' Creates a version of a filename that includes the version number ''' return '{filebase}_{major}.{extension}'.format( major=major, filebase=filebase, extension=extension ) def attach_version_to_labelfile(filebase, major, minor): ''' Creates a version of a label filename that includes the version number ''' return '{filebase}_{major}_{minor}.xml'.format( filebase=filebase, major=major, minor=minor ) if __name__ == '__main__': sys.exit(main())
sbn-psi/data-tools
orex/pds4-tools/versioning.py
versioning.py
py
5,949
python
en
code
0
github-code
6
35484692669
import os import string def file_check(filepath, mode): if os.path.exists(filepath): if os.path.isfile(filepath): f = open("%s" % filepath, "%s" % mode) return f else: return "Incorrect file" else: return "Incorrect file" print(file_check("kivy_test.py", "r")) def decorator(func_to_decorate): def f(): print(func_to_decorate.__name__) os.uname() return func_to_decorate() return f @decorator def adding(): return 5 + 9 print(adding()) def formatting(dir_path, exit_format): a = exit_format.replace(str(k for k in string.digits), "").split(".") if os.path.isdir(dir_path): arr = os.listdir(dir_path) for i in range(len(arr)): if arr[i].replace(str(k for k in string.digits), "").split(".") != \ exit_format.replace(str(k for k in string.digits), "").split("."): if 99 > len(arr) > 9: if i < 9: os.rename(arr[i], "%s" % a[0] + "0" + "%s" % (i + 1) + "." + "%s" % a[1]) else: os.rename(arr[i], "%s" % a[0] + "0" + "%s" % (i + 1) + "." + "%s" % a[1]) if 999 > len(arr) > 99: if i < 99: os.rename(arr[i], "%s" % a[0] + "00" + "%s" % (i + 1) + "." + "%s" % a[1]) else: os.rename(arr[i], "%s" % a[0] + "%s" % (i + 1) + "." + "%s" % a[1]) if len(arr) > 999: if i < 999: os.rename(arr[i], "%s" % a[0] + "000" + "%s" % (i + 1) + "." + "%s" % a[1]) else: os.rename(arr[i], "%s" % a[0] + "%s" % (i + 1) + "." + "%s" % a[1]) formatting("/home/sirius/fotos", "image000.jpg")
TaffetaEarth/homework_python
os_work.py
os_work.py
py
1,849
python
en
code
0
github-code
6
4143416632
'''A module for demo-ing exceptions''' import sys from math import log def convert_to_int(s): x = -1 try: return int(s) print("Conversion succeeded! x =", x) except (ValueError,TypeError) as e: print("Conversion error: {}".format(str(e)), file=sys.stderr) return -1 def string_log(s): v = convert_to_int(s) return log(v) def square_root(x): guess = x i = 0 while guess * guess != x and i < 20: guess = (guess + x / guess) / 2.0 i += 1 return guess def main(): print(square_root(9)) print(square_root(2)) print(square_root(64)) try: print(square_root(-1)) except ZeroDivisionError: print("Cannot compute the square_root of a negative numero") print("Program execution continues normally here") if __name__ == '__main__': main()
gitsana/Python_Tutorial
M6-Exception Handling/exceptional2.py
exceptional2.py
py
764
python
en
code
0
github-code
6
74750166267
from src.components import summarizer from celery import Celery from celery.utils.log import get_task_logger from EmailSender import send_email logger = get_task_logger(__name__) celery = Celery( __name__, backend="redis://127.0.0.1:6379", broker="redis://127.0.0.1:6379" ) @celery.task(name="summarizer") def GmailSummarizer(gmails, email_address): responses = [] for gmail in gmails: gmail_summary = summarizer.summarize(gmail) responses.append(gmail_summary) send_email(responses, email_address) return True """ run celery and also redis # celery -A flask_celery.celery worker -l info --pool=solo Compile Celery with --pool=solo argument. #IMP # celery -A flask_celery.celery worker -l info --pool=solo Example: celery -A your-application worker -l info --pool=solo """
SVijayB/Gist
scripts/flask_celery.py
flask_celery.py
py
816
python
en
code
4
github-code
6
21025178712
#!/usr/bin/env python3 import logging import sys from ev3dev2.motor import OUTPUT_A, OUTPUT_B, OUTPUT_C, MediumMotor from ev3dev2.control.rc_tank import RemoteControlledTank log = logging.getLogger(__name__) class TRACK3R(RemoteControlledTank): """ Base class for all TRACK3R variations. The only difference in the child classes are in how the medium motor is handled. To enable the medium motor toggle the beacon button on the EV3 remote. """ def __init__(self, medium_motor, left_motor, right_motor): RemoteControlledTank.__init__(self, left_motor, right_motor) self.medium_motor = MediumMotor(medium_motor) self.medium_motor.reset() class TRACK3RWithBallShooter(TRACK3R): def __init__(self, medium_motor=OUTPUT_A, left_motor=OUTPUT_B, right_motor=OUTPUT_C): TRACK3R.__init__(self, medium_motor, left_motor, right_motor) self.remote.on_channel1_beacon = self.fire_ball def fire_ball(self, state): if state: self.medium_motor.run_to_rel_pos(speed_sp=400, position_sp=3*360) else: self.medium_motor.stop() class TRACK3RWithSpinner(TRACK3R): def __init__(self, medium_motor=OUTPUT_A, left_motor=OUTPUT_B, right_motor=OUTPUT_C): TRACK3R.__init__(self, medium_motor, left_motor, right_motor) self.remote.on_channel1_beacon = self.spinner def spinner(self, state): if state: self.medium_motor.run_forever(speed_sp=50) else: self.medium_motor.stop() class TRACK3RWithClaw(TRACK3R): def __init__(self, medium_motor=OUTPUT_A, left_motor=OUTPUT_B, right_motor=OUTPUT_C): TRACK3R.__init__(self, medium_motor, left_motor, right_motor) self.remote.on_channel1_beacon = self.move_claw def move_claw(self, state): if state: self.medium_motor.run_to_rel_pos(speed_sp=200, position_sp=-75) else: self.medium_motor.run_to_rel_pos(speed_sp=200, position_sp=75)
ev3dev/ev3dev-lang-python-demo
robots/TRACK3R/TRACK3R.py
TRACK3R.py
py
2,002
python
en
code
59
github-code
6
25293805211
import unittest from task import fix_encoding expected_content = """Roses are räd. Violets aren't blüe. It's literally in the name. They're called violets. """ filename = "example.txt" output = "output.txt" class TestCase(unittest.TestCase): def setUp(self) -> None: with open(filename, "w") as f: f.write(expected_content) def test_fix_encoding(self): fix_encoding(filename, output) with open(filename, "r", encoding="utf-8") as file: actual_content = file.read() self.assertEqual(actual_content, expected_content, "wrong answer")
DoctorManhattan123/edotools-python-course
Strings, inputs and files/file encoding/tests/test_task.py
test_task.py
py
604
python
en
code
0
github-code
6
71344821309
#Inicio do While opcao = -1 #Variaveis do Saque, máximo do saque 500 por saque e até 3x por dia limiteSaque = 500 saqueDia = 3 valorSacado = 0 #Variaveis do Saldo saldo = float(0) #Variaveis Deposito deposito = float(0) while opcao != 0: opcao = int(input(" [1] Para sacar \n [2] Para depositar \n [3] Para ver saldo \n [0] Para sair \n :")) #Opção de Saque if opcao == 1 : saque = float(input("Digite o valor a ser sacado: ")) if saldo <= 0 : print ("Conta zerado, não é possivel realizar o saque") continue if saldo < saque: print("Não há fundos suficientes para realizar o saque!!!") continue if saque > 500: print ("Valor indisponivel para saque, somente saques abaixo de 500") continue if saque <= 0: print("Erro, valor impossivel de sacar") if saqueDia <= 0: print("Sem saques diarios restantes") continue else: saqueDia -= 1 saldo -= saque print("Valor sacado com sucesso.") #Opção de Deposito elif opcao == 2 : deposito = float(input("Digite o valor do deposito: ")) if deposito > 0: saldo += deposito print("Deposito realizado com sucesso.") else: print("Deposito falhou, valor invalido!!!") #Opção de Extrato elif opcao == 3 : print("Imprimindo extrato, só um momento:") print(saldo) else: print("Obrigado por usar nosso sistema, operação concluida")
Dnx0/trilha-python-dio
sistemaBancario.py
sistemaBancario.py
py
1,631
python
pt
code
1
github-code
6
30969861276
import matplotlib.pyplot as plt import time import numpy as np from PIL import Image class graphic_display(): def __init__(self): self.um_per_pixel = 0.5 self.cm_hot = plt.get_cmap('hot') self.cm_jet = plt.get_cmap('jet') self.cm_vir = plt.get_cmap('viridis') self.cm_mag = plt.get_cmap('magma') # self.cm_grn = plt.get_cmap('Greens') self.cm_raw = plt.get_cmap('gray') self.fps_counter = np.array([time.time(),time.time(),time.time()]) self.img_rs = None self.img_norm = None self.img_gamma = None self.img_p = None self.img_cm = None self.img_sb = None self.img_fin = None self.win = None self.cam = None return def update_win(self, win): self.win = win def update_cam(self, cam): self.cam = cam def update_image(self): print('update image function') self.img_rs = np.array(Image.fromarray(self.cam.img_raw).resize(size=(958, 638)),dtype = 'float64')/255 if self.win.zoom_factor > 1: r1 = self.img_rs.shape[0] c1 = self.img_rs.shape[1] r2 = int(np.round(r1/self.win.zoom_factor)) c2 = int(np.round(c1/self.win.zoom_factor)) self.img_rs = self.img_rs[int((r1-r2)/2):int((r1-r2)/2)+r2, int((c1-c2)/2):int((c1-c2)/2)+c2] # update and process the image for display from the camera self.update_image_gamma() self.normalise_img() self.update_colormap() self.display_saturated_pixels_purple() ### error self.burn_scalebar_into_image() # gui functions self.win.repaint_image() ### may zoom in twice for raw image, need double check self.win.update_hist() # self.win.image_histogram.update_histogram() # method in histogram_canvas class self.win.status_text_update_image() # fps counter self.fps_counter = np.append(self.fps_counter,time.time()) self.fps_counter = np.delete(self.fps_counter, 0) self.win.status_fps_number.setText(str(np.round(1/np.mean(np.diff(self.fps_counter)),5))) print('current saved value for fps is: ' + str(self.cam.fps) + ' current timer value is: ' + str(self.cam.timer_value)) return def update_image_gamma(self): if self.win.gamma == 1: self.img_gamma = self.img_rs else: self.img_gamma = self.img_rs**self.win.gamma return def normalise_img(self): print('normalise function') if self.win.cbox_normalise.isChecked(): imgnormmin = np.min(np.nonzero(self.img_gamma)) imgnormmax = np.max(self.img_gamma) self.img_norm = (self.img_gamma-imgnormmin)/(imgnormmax--imgnormmin) self.img_norm = self.img_norm else: self.img_norm = self.img_gamma return def update_colormap(self): print('update colormap function') # convert from gray to colormap magma selection if self.win.combobox_colourmap.currentIndex() == 0: self.img_cm = self.cm_mag(self.img_norm) # convert from gray to colormap green selection elif self.win.combobox_colourmap.currentIndex() == 1: self.img_cm = np.zeros(np.hstack([np.shape(self.img_norm),4])) self.img_cm[:,:,1] = self.img_norm self.img_cm[:,:,3] = 255 ## or use Greens colormap directly # self.img_cm = self.cm_grn(self.img_norm) # convert from gray to colormap viridis (3 channel) selection elif self.win.combobox_colourmap.currentIndex() == 2: self.img_cm = self.cm_vir(self.img_norm) # convert from gray to colormap jet selection elif self.win.combobox_colourmap.currentIndex() == 3: self.img_cm = self.cm_jet(self.img_norm) elif self.win.combobox_colourmap.currentIndex() == 4: # self.img_cm = np.zeros(np.hstack([np.shape(self.img_norm),4])) # self.img_cm[:,:,0] = self.img_norm # self.img_cm[:,:,1] = self.img_norm # self.img_cm[:,:,2] = self.img_norm # self.img_cm[:,:,3] = 1 # print(self.img_cm) # print(self.cam.img_raw) ## or use gray colormap directly self.img_cm = self.cm_raw(self.img_norm) return def display_saturated_pixels_purple(self): print('saturated pxls purple function') # saturated pixels show up purple if check box is selected # if self.win.combobox_colourmap.currentIndex() != 4: self.img_p = self.img_cm if self.win.cbox_saturated.isChecked(): ind = self.img_norm > 254 self.img_p[ind,0] = 255 self.img_p[ind,1] = 0 self.img_p[ind,2] = 255 return def burn_scalebar_into_image(self): print('burn scalebar function') self.img_sb = self.img_p if self.win.cbox_show_scalebar.isChecked(): s = self.img_sb.shape if self.win.combobox_colourmap.currentIndex() == 1: self.img_sb[int(s[0]*0.95):int(s[0]*0.955), int(s[1]*0.05):int(s[1]*0.05+100/self.um_per_pixel), 0] = 255 self.img_sb[int(s[0]*0.95):int(s[0]*0.955), int(s[1]*0.05):int(s[1]*0.05+100/self.um_per_pixel), 1] = 0 self.img_sb[int(s[0]*0.95):int(s[0]*0.955), int(s[1]*0.05):int(s[1]*0.05+100/self.um_per_pixel), 2] = 255 else: self.img_sb[int(s[0]*0.95):int(s[0]*0.955), int(s[1]*0.05):int(s[1]*0.05+100/self.um_per_pixel), 0] = 0 self.img_sb[int(s[0]*0.95):int(s[0]*0.955), int(s[1]*0.05):int(s[1]*0.05+100/self.um_per_pixel), 1] = 255 self.img_sb[int(s[0]*0.95):int(s[0]*0.955), int(s[1]*0.05):int(s[1]*0.05+100/self.um_per_pixel), 2] = 0 self.img_fin = self.img_sb self.img_fin = np.array(self.img_fin*255,dtype='uint8') return
peterlionelnewman/flow_lithographic_printer
Graphic_display.py
Graphic_display.py
py
6,222
python
en
code
1
github-code
6
33800125828
import sys sys.setrecursionlimit(10000) def dfs(d, v, visited): visited[v]= True for i in d[v]: if not visited[i]: dfs(d, i, visited) n,m = map(int, input().split()) d = [[] for _ in range(n+1)] visited = [False]*(n+1) result = 0 for _ in range(m): u,v = map(int, input().split()) d[u].append(v) d[v].append(u) for i in range(1,n+1): if not visited[i]: dfs(d,i,visited) result += 1 print(result)
devAon/Algorithm
BOJ-Python/boj-11724_연결요소의개수.py
boj-11724_연결요소의개수.py
py
459
python
en
code
0
github-code
6
14594327515
import tensorflow as tf import json from model_provider import get_model from utils.create_gan_tfrecords import TFRecordsGAN from utils.augment_images import augment_autoencoder import os import tensorflow.keras as K import datetime import string from losses import get_loss, gradient_penalty import argparse physical_devices = tf.config.experimental.list_physical_devices("GPU") for gpu in physical_devices: tf.config.experimental.set_memory_growth(gpu, True) mirrored_strategy = tf.distribute.MirroredStrategy() args = argparse.ArgumentParser(description="Train a network with specific settings") args.add_argument("-d", "--dataset", type=str, default="zebra2horse", help="Name a dataset from the tf_dataset collection", choices=["zebra2horse"]) args.add_argument("-opt", "--optimizer", type=str, default="Adam", help="Select optimizer", choices=["SGD", "RMSProp", "Adam"]) args.add_argument("-lrs", "--lr_scheduler", type=str, default="constant", help="Select learning rate scheduler", choices=["poly", "exp_decay", "constant"]) args.add_argument("-gm", "--gan_mode", type=str, default="constant", help="Select training mode for GAN", choices=["normal", "wgan_gp"]) args.add_argument("-e", "--epochs", type=int, default=1000, help="Number of epochs to train") args.add_argument("--lr", type=float, default=2e-4, help="Initial learning rate") args.add_argument("--momentum", type=float, default=0.9, help="Momentum") args.add_argument("-bs", "--batch_size", type=int, default=16, help="Size of mini-batch") args.add_argument("-si", "--save_interval", type=int, default=5, help="Save interval for model") args.add_argument("-m", "--model", type=str, default="cyclegan", help="Select model") args.add_argument("-logs", "--logdir", type=str, default="./logs", help="Directory to save tensorboard logdir") args.add_argument("-l_m", "--load_model", type=str, default=None, help="Load model from path") args.add_argument("-s", "--save_dir", type=str, default="./cyclegan_runs", help="Save directory for models and tensorboard") args.add_argument("-tfrecs", "--tf_record_path", type=str, default="/data/input/datasets/tf2_gan_tfrecords", help="Save directory that contains train and validation tfrecords") args.add_argument("-sb", "--shuffle_buffer", type=int, default=1024, help="Size of the shuffle buffer") args.add_argument("--width", type=int, default=286, help="Size of the shuffle buffer") args.add_argument("--height", type=int, default=286, help="Size of the shuffle buffer") args.add_argument("--c_width", type=int, default=256, help="Crop width") args.add_argument("--c_height", type=int, default=256, help="Crop height") args.add_argument("--random_seed", type=int, default=1, help="Set random seed to this if true") args = args.parse_args() tf_record_path = args.tf_record_path dataset = args.dataset BUFFER_SIZE = args.shuffle_buffer BATCH_SIZE = args.batch_size IMG_WIDTH = args.width IMG_HEIGHT = args.height CROP_HEIGHT = args.c_height if args.c_height < IMG_HEIGHT else IMG_HEIGHT CROP_WIDTH = args.c_width if args.c_width < IMG_WIDTH else IMG_WIDTH LAMBDA = 10 EPOCHS = args.epochs LEARNING_RATE = args.lr LEARNING_RATE_SCHEDULER = args.lr_scheduler save_interval = args.save_interval save_dir = args.save_dir load_model_path = args.load_model MODEL = args.model gan_mode = args.gan_mode time = str(datetime.datetime.now()) time = time.translate(str.maketrans('', '', string.punctuation)).replace(" ", "-")[:-8] logdir = "{}_{}_e{}_lr{}_{}x{}_{}".format(time, MODEL, EPOCHS, LEARNING_RATE, IMG_HEIGHT, IMG_WIDTH, gan_mode) train_A, train_B = \ TFRecordsGAN( tfrecord_path= "{}/{}_train.tfrecords".format(tf_record_path, dataset + "_a")).read_tfrecords(), \ TFRecordsGAN( tfrecord_path= "{}/{}_train.tfrecords".format(tf_record_path, dataset + "_b")).read_tfrecords() with open(f"{args.tf_record_path}/data_samples.json") as f: data = json.load(f) num_samples_ab = [data[dataset + "_a"], data[dataset + "_b"]] if num_samples_ab[0] > num_samples_ab[1]: total_samples = num_samples_ab[0] train_B = train_B.repeat() else: total_samples = num_samples_ab[1] train_A = train_A.repeat() augmentor = lambda batch: augment_autoencoder(batch, size=(IMG_HEIGHT, IMG_WIDTH), crop=(CROP_HEIGHT, CROP_WIDTH)) train_A = train_A.map( augmentor, num_parallel_calls=tf.data.AUTOTUNE).cache().shuffle( BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True) train_B = train_B.map( augmentor, num_parallel_calls=tf.data.AUTOTUNE).cache().shuffle( BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True) train_A = mirrored_strategy.experimental_distribute_dataset(train_A) train_B = mirrored_strategy.experimental_distribute_dataset(train_B) if gan_mode == "wgan_gp": gan_loss_obj = get_loss(name="Wasserstein") else: gan_loss_obj = get_loss(name="binary_crossentropy") cycle_loss_obj = get_loss(name="MAE") id_loss_obj = get_loss(name="MAE") def discriminator_loss(real, generated): if gan_mode == "wgan_gp": real_loss = gan_loss_obj(-tf.ones_like(real), real) generated_loss = gan_loss_obj(tf.ones_like(generated), generated) else: real_loss = gan_loss_obj(tf.ones_like(real), real) generated_loss = gan_loss_obj(tf.zeros_like(generated), generated) total_disc_loss = generated_loss + real_loss return tf.reduce_mean(total_disc_loss) * 0.5 def generator_loss(generated): return tf.reduce_mean( gan_loss_obj(-tf.ones_like(generated), generated)) if gan_mode == "wgan_gp" else tf.reduce_mean( gan_loss_obj(tf.ones_like(generated), generated)) def calc_cycle_loss(real_image, cycled_image): loss1 = cycle_loss_obj(real_image, cycled_image) return loss1 def identity_loss(real_image, same_image): loss = id_loss_obj(real_image, same_image) return LAMBDA * 0.5 * loss if LEARNING_RATE_SCHEDULER == "poly": lrs = K.optimizers.schedules.PolynomialDecay(LEARNING_RATE, decay_steps=EPOCHS, end_learning_rate=1e-8, power=0.8) elif LEARNING_RATE_SCHEDULER == "exp_decay": lrs = K.optimizers.schedules.ExponentialDecay(LEARNING_RATE, decay_steps=EPOCHS, decay_rate=0.5) else: lrs = LEARNING_RATE with mirrored_strategy.scope(): generator_g = get_model("{}_gen".format(MODEL), type="gan") generator_f = get_model("{}_gen".format(MODEL), type="gan") discriminator_x = get_model("{}_disc".format(MODEL), type="gan") discriminator_y = get_model("{}_disc".format(MODEL), type="gan") tmp = tf.cast(tf.random.uniform((1, CROP_HEIGHT, CROP_WIDTH, 3), dtype=tf.float32, minval=0, maxval=1), dtype=tf.float32) generator_g(tmp), generator_f(tmp), discriminator_x(tmp), discriminator_y(tmp) generator_g_optimizer = tf.keras.optimizers.Adam(lrs, beta_1=0.5) generator_f_optimizer = tf.keras.optimizers.Adam(lrs, beta_1=0.5) discriminator_x_optimizer = tf.keras.optimizers.Adam(lrs, beta_1=0.5) discriminator_y_optimizer = tf.keras.optimizers.Adam(lrs, beta_1=0.5) def load_models(models_parent_dir): assert os.path.exists(models_parent_dir), "The path {} is not valid".format(models_parent_dir) p_gen_g = K.models.load_model(os.path.join(models_parent_dir, "gen_g")) p_gen_f = K.models.load_model(os.path.join(models_parent_dir, "gen_f")) p_disc_x = K.models.load_model(os.path.join(models_parent_dir, "disc_x")) p_disc_y = K.models.load_model(os.path.join(models_parent_dir, "disc_y")) generator_g.set_weights(p_gen_g.get_weights()) print("Generator G loaded successfully") generator_f.set_weights(p_gen_f.get_weights()) print("Generator F loaded successfully") discriminator_x.set_weights(p_disc_x.get_weights()) print("Discriminator X loaded successfully") discriminator_y.set_weights(p_disc_y.get_weights()) print("Discriminator Y loaded successfully") if load_model_path is not None: load_models(load_model_path) START_EPOCH = int(load_model_path.split("/")[-1]) else: START_EPOCH = 0 def write_to_tensorboard(g_loss_g, g_loss_f, d_loss_x, d_loss_y, c_step, writer): with writer.as_default(): tf.summary.scalar("G_Loss_G", g_loss_g.numpy(), c_step) tf.summary.scalar("G_Loss_F", g_loss_f.numpy(), c_step) tf.summary.scalar("D_Loss_X", tf.reduce_mean(d_loss_x).numpy(), c_step) tf.summary.scalar("D_Loss_Y", tf.reduce_mean(d_loss_y).numpy(), c_step) if len(physical_devices) > 1: o_img_a = tf.cast(image_x.values[0], dtype=tf.float32) o_img_b = tf.cast(image_y.values[0], dtype=tf.float32) img_a, img_b = o_img_a, o_img_b else: img_a = image_x img_b = image_y # img_size_a, img_size_b = img_a.shape[1] * img_a.shape[2] * img_a.shape[3], img_b.shape[1] * img_b.shape[2] * \ # img_b.shape[3] # mean_a, mean_b = tf.reduce_mean(img_a, axis=[1, 2, 3], keepdims=True), tf.reduce_mean(img_b, axis=[1, 2, 3], # keepdims=True) # adjusted_std_a = tf.maximum(tf.math.reduce_std(img_a, axis=[1, 2, 3], keepdims=True), # 1 / tf.sqrt(img_size_a / 1.0)) # adjusted_std_b = tf.maximum(tf.math.reduce_std(img_b, axis=[1, 2, 3], keepdims=True), # 1 / tf.sqrt(img_size_b / 1.0)) f_image_y = generator_g(img_a, training=True) f_image_x = generator_f(img_b, training=True) confidence_a = discriminator_x(f_image_x, training=True) confidence_b = discriminator_y(f_image_y, training=True) tf.summary.image("img_a", tf.cast(127.5 * (img_a + 1), dtype=tf.uint8), step=c_step) tf.summary.image("img_b", tf.cast(127.5 * (img_b + 1), dtype=tf.uint8), step=c_step) tf.summary.image("fake_img_a", tf.cast((f_image_x + 1) * 127.5, dtype=tf.uint8), step=c_step) tf.summary.image("fake_img_b", tf.cast((f_image_y + 1) * 127.5, dtype=tf.uint8), step=c_step) tf.summary.image("confidence_a", confidence_a, step=c_step) tf.summary.image("confidence_b", confidence_b, step=c_step) @tf.function def train_step(real_x, real_y, n_critic=5): # real_x = tf.image.per_image_standardization(real_x) # real_y = tf.image.per_image_standardization(real_y) with tf.GradientTape(persistent=True) as tape: fake_y = generator_g(real_x, training=True) cycled_x = generator_f(fake_y, training=True) fake_x = generator_f(real_y, training=True) cycled_y = generator_g(fake_x, training=True) # same_x and same_y are used for identity loss. same_x = generator_f(real_x, training=True) same_y = generator_g(real_y, training=True) disc_real_x = discriminator_x(real_x, training=True) disc_real_y = discriminator_y(real_y, training=True) disc_fake_x = discriminator_x(fake_x, training=True) disc_fake_y = discriminator_y(fake_y, training=True) # calculate the loss gen_g_loss = generator_loss(disc_fake_y) gen_f_loss = generator_loss(disc_fake_x) total_cycle_loss = calc_cycle_loss(real_x, cycled_x) + calc_cycle_loss(real_y, cycled_y) # Total generator loss = adversarial loss + cycle loss total_gen_g_loss = LAMBDA * total_cycle_loss + identity_loss(real_y, same_y) + gen_g_loss total_gen_f_loss = LAMBDA * total_cycle_loss + identity_loss(real_x, same_x) + gen_f_loss if gan_mode != "wgan_gp": disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x) disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y) # ------------------- Disc Cycle -------------------- # if gan_mode == "wgan_gp": disc_x_loss, disc_y_loss = wgan_disc_apply(fake_x, fake_y, n_critic, real_x, real_y) # Calculate the gradients for generator and discriminator generator_g_gradients = tape.gradient(total_gen_g_loss, generator_g.trainable_variables) generator_f_gradients = tape.gradient(total_gen_f_loss, generator_f.trainable_variables) if gan_mode != "wgan_gp": discriminator_x_gradients = tape.gradient(disc_x_loss, discriminator_x.trainable_variables) discriminator_y_gradients = tape.gradient(disc_y_loss, discriminator_y.trainable_variables) # Apply the gradients to the optimizer generator_g_optimizer.apply_gradients(zip(generator_g_gradients, generator_g.trainable_variables)) generator_f_optimizer.apply_gradients(zip(generator_f_gradients, generator_f.trainable_variables)) if gan_mode != "wgan_gp": discriminator_x_optimizer.apply_gradients(zip(discriminator_x_gradients, discriminator_x.trainable_variables)) discriminator_y_optimizer.apply_gradients(zip(discriminator_y_gradients, discriminator_y.trainable_variables)) return total_gen_g_loss, total_gen_f_loss, disc_x_loss, disc_y_loss def wgan_disc_apply(fake_x, fake_y, n_critic, real_x, real_y): for _ in range(n_critic): with tf.GradientTape(persistent=True) as disc_tape: disc_real_x = discriminator_x(real_x, training=True) disc_real_y = discriminator_y(real_y, training=True) disc_fake_x = discriminator_x(fake_x, training=True) disc_fake_y = discriminator_y(fake_y, training=True) disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x) + 10 * gradient_penalty(real_x, fake_x, discriminator_x) disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y) + 10 * gradient_penalty(real_y, fake_y, discriminator_y) discriminator_x_gradients = disc_tape.gradient(disc_x_loss, discriminator_x.trainable_variables) discriminator_y_gradients = disc_tape.gradient(disc_y_loss, discriminator_y.trainable_variables) discriminator_x_optimizer.apply_gradients(zip(discriminator_x_gradients, discriminator_x.trainable_variables)) discriminator_y_optimizer.apply_gradients(zip(discriminator_y_gradients, discriminator_y.trainable_variables)) return disc_x_loss, disc_y_loss @tf.function def distributed_train_step(dist_inputs_a, dist_inputs_b): per_replica_gen_g_losses, per_replica_gen_f_losses, per_replica_disc_x_losses, per_replica_disc_y_losses = \ mirrored_strategy.run(train_step, args=(dist_inputs_a, dist_inputs_b)) reduced_gen_g_loss, reduced_gen_f_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_gen_g_losses, axis=None), mirrored_strategy.reduce( tf.distribute.ReduceOp.MEAN, per_replica_gen_f_losses, axis=None) reduced_disc_x_loss, reduced_disc_y_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_disc_x_losses, axis=None), mirrored_strategy.reduce( tf.distribute.ReduceOp.MEAN, per_replica_disc_y_losses, axis=None) return reduced_gen_g_loss, reduced_gen_f_loss, reduced_disc_x_loss, reduced_disc_y_loss train_writer = tf.summary.create_file_writer(os.path.join(args.logdir, logdir)) def save_models(): K.models.save_model(generator_g, os.path.join(save_dir, MODEL, str(epoch + 1), "gen_g")) K.models.save_model(generator_f, os.path.join(save_dir, MODEL, str(epoch + 1), "gen_f")) K.models.save_model(discriminator_x, os.path.join(save_dir, MODEL, str(epoch + 1), "disc_x")) K.models.save_model(discriminator_y, os.path.join(save_dir, MODEL, str(epoch + 1), "disc_y")) print("Model at Epoch {}, saved at {}".format(epoch, os.path.join(save_dir, MODEL, str(epoch)))) for epoch in range(START_EPOCH, EPOCHS): print("\n ----------- Epoch {} --------------\n".format(epoch + 1)) n = 0 with train_writer.as_default(): tf.summary.scalar("Learning Rate", lrs(epoch).numpy(), epoch) if LEARNING_RATE_SCHEDULER != "constant" else tf.summary.scalar("Learning Rate", lrs, epoch) for image_x, image_y in zip(train_A, train_B): gen_g_loss, gen_f_loss, disc_x_loss, disc_y_loss = distributed_train_step(image_x, image_y) print( "Epoch {} \t Gen_G_Loss: {}, Gen_F_Loss: {}, Disc_X_Loss: {}, Disc_Y_Loss: {}".format(epoch + 1, gen_g_loss, gen_f_loss, disc_x_loss, disc_y_loss)) n += 1 if n % 20 == 0: write_to_tensorboard(gen_g_loss, gen_f_loss, disc_x_loss, disc_y_loss, (epoch * total_samples // BATCH_SIZE) + n, train_writer) if (epoch + 1) % save_interval == 0: save_models()
AhmedBadar512/Badr_AI_Repo
cycle_gan_train.py
cycle_gan_train.py
py
18,298
python
en
code
2
github-code
6
43005467228
""" Utility functions """ import torch import matplotlib as mpl import numpy as np import math mpl.use('Agg') from matplotlib import pyplot as plt def sin_data(n_train, n_test, noise_std, sort=False): """Create 1D sine function regression dataset :n_train: Number of training samples. :n_test: Number of testing samples. :noise_srd: Standard deviation of observation noise. :returns: x_train, y_train, x_test, y_test """ def ground_truth(x): return torch.sin(math.pi * x) xn = torch.rand(n_train, 1) * 2 - 1 # Uniformly random in [-1, 1] yn = ground_truth(xn) + noise_std * torch.randn(n_train, 1) if sort: indices = torch.argsort(xn, axis=0) xn = xn[indices.squeeze()] yn = yn[indices.squeeze()] xt = torch.linspace(-1.1, 1.1, n_test).view(-1, 1) yt = ground_truth(xt) + noise_std * torch.randn(n_test, 1) return xn, yn, xt, yt def plot_lengthscale(xt, lengthscale, uncertainty, name=None): """ Visualize lengthscale function and its corresponding uncertainty. :lengthscale: Lengthscale mean. :uncertainty: Standard deviation of lengthscale prediction. """ lengthscale = lengthscale.numpy().ravel() uncertainty = uncertainty.numpy().ravel() lower = lengthscale - 2.0 * uncertainty upper = lengthscale + 2.0 * uncertainty xt = xt.numpy().ravel() fig, ax = plt.subplots() ax.plot(xt, lengthscale, 'b', lw=2, alpha=0.8, label='Lengthscale') ax.fill_between(xt, lower, upper, facecolor='b', alpha=0.3, label='95% CI') ax.set_xlim([xt.min(), xt.max()]) ax.legend(loc='lower left', bbox_to_anchor=(0, 1.02, 1, 0.2), ncol=3, borderaxespad=0, frameon=False) if name is not None: fig.savefig('../results/prediction/' + name + '.svg') def plot_pytorch(dataset, preds, name=None): dataset = [tensor.numpy().ravel() for tensor in dataset] xn, yn, xt, ft = dataset mean = preds.mean.cpu().numpy().ravel() lower, upper = preds.confidence_region() lower = lower.cpu().numpy().ravel() upper = upper.cpu().numpy().ravel() fig, ax = plt.subplots() ax.plot(xn, yn, 'k.', label='Training data') ax.plot(xt, ft, 'r--', lw=2, alpha=0.8, label='Function') ax.plot(xt, mean, 'b', lw=2, alpha=0.8, label='Prediction') ax.fill_between(xt, lower, upper, facecolor='b', alpha=0.3, label='95% CI') ax.set_xlim([xt.min(), xt.max()]) ax.legend(loc='lower left', bbox_to_anchor=(0, 1.02, 1, 0.2), ncol=3, borderaxespad=0, frameon=False) if name is not None: fig.savefig('../results/prediction/' + name + '.svg') def plot_1d_results(dataset, mean, std, title=None, name=None): """ Visualize training data, ground-truth function, and prediction. :dataset: A tuple containing (Xn, Yn, Xt, Ft) :mean: Mean of predictive Gaussian distribution. :std: Standard deviation of predictive Gaussian distribution. """ dataset = [tensor.cpu().numpy().ravel() for tensor in dataset] xn, yn, xt, ft = dataset mean, std = mean.cpu().numpy().ravel(), std.cpu().numpy().ravel() lower = mean - 2.0 * std upper = mean + 2.0 * std fig, ax = plt.subplots() ax.plot(xn, yn, 'k.', label='Training data') ax.plot(xt, ft, 'r.', lw=2, alpha=0.8, label='Test data') ax.plot(xt, mean, 'b', lw=2, alpha=0.8, label='Prediction') ax.fill_between(xt, lower, upper, facecolor='b', alpha=0.3, label='95% CI') ax.set_xlim([xt.min(), xt.max()]) ax.legend(loc='lower left', bbox_to_anchor=(0, 1.02, 1, 0.2), ncol=3, borderaxespad=0, frameon=False) if title is not None: ax.set_title(title, loc='center') if name is not None: fig.savefig(name + '.pdf') def train(model, optimizer, n_iter, verbose=True, name=None, Xn=None, yn=None, tol=None): """ Training helper function. """ n_train = Xn.size(0) if Xn is not None else model.Xn.size(0) losses = [] for i in range(n_iter): optimizer.zero_grad() if Xn is None and yn is None: loss = model.loss() else: loss = model.loss(Xn, yn) loss.backward() optimizer.step() losses.append(loss.item()) if tol is not None: # if the result is stable for over 50 iteration, then we consider it converges. n = 50 if len(losses) > n: last = losses[-n:] if max(last) - min(last) <= tol: if verbose: print("Converges at iteration: ", i) break if verbose: print('Iteration: {0:04d} Loss: {1: .6f}'.format(i, loss.item() / n_train)) if name is not None: plt.figure() plt.plot(losses, lw=2) plt.ylabel('Loss') plt.xlabel('Number of iteration') plt.savefig(name + '.svg')
weiyadi/dlm_sgp
conjugate/utils.py
utils.py
py
4,966
python
en
code
2
github-code
6
24603935810
with open("inputs/day14.txt", 'r') as fh: lines = fh.readlines() schedules = {} for line in lines: parts = line.split() name = parts[0] speed = int(parts[3]) duration = int(parts[6]) rest = int(parts[13]) schedule = [] while len(schedule) < 2503: schedule += [speed, ] * duration schedule += [0, ] * rest schedules[name] = schedule for reindeer in schedules: print("{} flew {} in 2503 seconds".format(reindeer, sum(schedules[reindeer][:2503]))) scores = {} for reindeer in schedules: scores.update({reindeer: {"dist": 0, "score": 0}}) for sec in range(2503): for reindeer in scores: scores[reindeer]["dist"] += schedules[reindeer][sec] furthest = 0 winning = [] for reindeer in scores: if scores[reindeer]["dist"] == furthest: winning.append(reindeer) elif scores[reindeer]["dist"] > furthest: furthest = scores[reindeer]["dist"] winning = [reindeer, ] for reindeer in winning: scores[reindeer]["score"] += 1 from pprint import pprint as pp pp(scores)
neilo40/adventofcode2015
day14.py
day14.py
py
1,111
python
en
code
0
github-code
6
20186345178
# Import pakages import torch import torch.nn as nn import gym import os import torch.nn.functional as F import torch.multiprocessing as mp import numpy as np # Import python files from utils import v_wrap, set_init, push_and_pull, record from shared_adam import SharedAdam os.environ["OMP_NUM_THREADS"] = "1" os.environ['KMP_DUPLICATE_LIB_OK']='True' # Setting hyperparameters UPDATE_GLOBAL_ITER = 10 # GAMMA = 0.99 MAX_EP = 500 hidden_dim_pi = 16 hidden_dim_v = 16 env = gym.make('CartPole-v0') N_S = env.observation_space.shape[0] N_A = env.action_space.n # Define basic neural network(It will be same for each worker) class Net(nn.Module): def __init__(self, s_dim, a_dim): super(Net, self).__init__() self.s_dim = s_dim # 4 self.a_dim = a_dim # 2 self.pi1 = nn.Linear(s_dim, hidden_dim_pi) # (N, 4) -> (N, hidden_dim_pi) self.pi2 = nn.Linear(hidden_dim_pi, a_dim) # (N, hidden_dim_pi) -> (N, 2) self.v1 = nn.Linear(s_dim, hidden_dim_v) # (N, 4) -> (N, hidden_dim_v) self.v2 = nn.Linear(hidden_dim_v, 1) # (N, hidden_dim_v) -> (N, 1) set_init([self.pi1, self.pi2, self.v1, self.v2]) self.distribution = torch.distributions.Categorical # It means that [a, b, c, ...] -> 0:a, 1:b, 2:c, ... # forward returns output of model # Return : softmax^(-1)(probability) and V(s) (Note. During using crossentropy loss in pytorch, network must not contain softmax layer) def forward(self, x): pi1 = torch.tanh(self.pi1(x)) logits = self.pi2(pi1) v1 = torch.tanh(self.v1(x)) values = self.v2(v1) return logits, values # choose_action returns action from state s # Return : action def choose_action(self, s): self.eval() logits, _ = self.forward(s) prob = F.softmax(logits, dim=1).data # We need to change to probability m = self.distribution(prob) # take actions by given probability return m.sample().numpy()[0] # evaluate loss function # v_t : r+gamma*v_(t+1) def loss_func(self, s, a, v_t): self.train() logits, values = self.forward(s) td = v_t - values c_loss = td.pow(2) probs = F.softmax(logits, dim=1) m = self.distribution(probs) exp_v = m.log_prob(a) * td.detach().squeeze() a_loss = -exp_v total_loss = (c_loss + a_loss).mean() return total_loss class Worker(mp.Process): def __init__(self, gnet, opt, global_ep, global_ep_r, res_queue, name): super(Worker, self).__init__() self.name = 'w%02i' % name self.g_ep, self.g_ep_r, self.res_queue = global_ep, global_ep_r, res_queue self.gnet, self.opt = gnet, opt self.lnet = Net(N_S, N_A) # local network self.env = gym.make('CartPole-v0').unwrapped def run(self): total_step = 1 while self.g_ep.value < MAX_EP: s = self.env.reset() buffer_s, buffer_a, buffer_r = [], [], [] ep_r = 0. while True: #현재 시점 t if self.name == 'w00': self.env.render() a = self.lnet.choose_action(v_wrap(s[None, :])) s_, r, done, _ = self.env.step(a) if done: r = -1 ep_r += r buffer_a.append(a) buffer_s.append(s) buffer_r.append(r) if total_step % UPDATE_GLOBAL_ITER == 0 or done: # update global and assign to local net # sync push_and_pull(self.opt, self.lnet, self.gnet, done, s_, buffer_s, buffer_a, buffer_r, GAMMA) buffer_s, buffer_a, buffer_r = [], [], [] if done: # done and print information ep_r = min(ep_r, 200) record(self.g_ep, self.g_ep_r, ep_r, self.res_queue, self.name) break s = s_ total_step += 1 self.res_queue.put(None) if __name__ == "__main__": gnet = Net(N_S, N_A) # global network gnet.share_memory() # share the global parameters in multiprocessing opt = SharedAdam(gnet.parameters(), lr=5e-4, betas=(0.92, 0.999)) # global optimizer global_ep, global_ep_r, res_queue = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue() # parallel training workers = [Worker(gnet, opt, global_ep, global_ep_r, res_queue, i) for i in range(mp.cpu_count())] [w.start() for w in workers] res = [] # record episode reward to plot while True: r = res_queue.get() if r is not None: res.append(r) else: break [w.join() for w in workers] import matplotlib.pyplot as plt res = np.array(res) np.save("discrete_result.npy", res) plt.plot(res) plt.ylabel('ep reward') plt.xlabel('Episode') plt.show()
smfelixchoi/MATH-DRL-study
6.A3C/discrete_A3C.py
discrete_A3C.py
py
4,973
python
en
code
1
github-code
6
3129533999
import numpy as np data = [[]] with open("data.txt","r") as fichier: for line in fichier.read().splitlines(): if line: data[-1].append(line) else: data.append([]) nb_stacks = int(data[0][-1][-2]) stacks = [[]] pile_max = len(data[0])-1 for i in range(nb_stacks): stacks.append([]) for j in range(pile_max): lettre = data[0][pile_max-j-1][4*i+1] if lettre!=" ": stacks[i].append([]) stacks[i][j] = lettre stacks.pop(-1) def deplacer(tas,nombre,pile1,pile2): taille1 = len(tas[pile1]) taille2 = len(tas[pile2]) for i in range(nombre): tas[pile2].append([]) tas[pile2][taille2+i] = tas[pile1][taille1-i-1] tas[pile1].pop(-1) return tas def deplacer2(tas,nombre,pile1,pile2): taille1 = len(tas[pile1]) taille2 = len(tas[pile2]) for i in range(nombre): tas[pile2].append([]) tas[pile2][taille2+i] = tas[pile1][taille1-nombre+i] for i in range(nombre): tas[pile1].pop(-1) return tas for ligne in data[1]: instruction = ligne.split(" ") deplacer2(stacks,int(instruction[1]),int(instruction[3])-1,int(instruction[5])-1) dessus = "" for ligne in stacks: dessus += ligne[-1] print(dessus)
Schtroumpfissime/AdventOfCode2022
5/main.py
main.py
py
1,276
python
en
code
0
github-code
6
42742926031
from models.models import VatsimPilot from data_reader import reader def main(): print("VATSIM LIB") json_data = reader.init() vgs = reader.get_vatsim_general(json_data) # print(vgs) pilots = reader.get_vatsim_pilots(json_data) print(f"number of pilots this update: {len(pilots)}") flight_plans = reader.get_flight_plans(pilots) print(f"number of flight plans this update: {len(flight_plans)}") if __name__ == "__main__": main()
ahuimanu/vatsimlib
run.py
run.py
py
472
python
en
code
1
github-code
6
2654980341
from Tkinter import * root = Tk() frame = Frame(root, bd=2, relief=SUNKEN) frame.grid_rowconfigure(0, weight=1) frame.grid_columnconfigure(0, weight=1) xscrollbar = Scrollbar(frame, orient=HORIZONTAL) xscrollbar.grid(row=1, column=0, sticky=E+W) yscrollbar = Scrollbar(frame) yscrollbar.grid(row=0, column=1, sticky=N+S) canvas = Canvas(frame, bd=0, xscrollcommand=xscrollbar.set, yscrollcommand=yscrollbar.set) canvas.grid(row=0, column=0, sticky=N+S+E+W) xscrollbar.config(command=canvas.xview) yscrollbar.config(command=canvas.yview) frame.pack() mainloop()
sbobovyc/DCS
legacy/DCS2_py/examples/canvas_scrollbox.py
canvas_scrollbox.py
py
600
python
en
code
1
github-code
6
71470012027
from lxml import etree from xml.etree import ElementTree def get_text_from_file(xml_file): tree = etree.parse(xml_file) root = tree.getroot() for element in root.iterfind('.//para'): for ele in element.findall('.//display'): parent = ele.getparent() parent.remove(ele) ElementTree.dump(element)
ayandeephazra/Natural_Language_Processing_Research
PaperDownload/papers/process_xml.py
process_xml.py
py
349
python
en
code
2
github-code
6
13461686812
""" Given an array of words and a length L, format the text such that each line has exactly L characters and is fully (left and right) justified. You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad extra spaces ' ' when necessary so that each line has exactly L characters. Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line do not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on the right. For the last line of text, it should be left justified and no extra space is inserted between words. For example, words: ["This", "is", "an", "example", "of", "text", "justification."] L: 16. Return the formatted lines as: [ "This is an", "example of text", "justification. " ] Note: Each word is guaranteed not to exceed L in length. click to show corner cases. Corner Cases: A line other than the last line might contain only one word. What should you do in this case? In this case, that line should be left-justified. """ class Solution(object): def fullJustify(self, words, maxWidth): """ :type words: List[str] :type maxWidth: int :rtype: List[str] """ if len(words) == 0: return [] if maxWidth == 0: return [v for v in words if len(v) == 0] pos = 0 ans = [] curr_words = [] while True: while sum(map(len, curr_words)) + len(curr_words) + len(words[pos]) <= maxWidth: curr_words.append(words[pos]) pos += 1 if pos >= len(words): last_line = ' '.join(curr_words) last_line += (maxWidth - len(last_line)) * " " ans.append(last_line) return ans words_length = sum(map(len, curr_words)) if len(curr_words) == 1: ans.append(curr_words[0] + (maxWidth - words_length) * " ") else: join_spaces = (maxWidth - words_length) // (len(curr_words) - 1) extra_spaces = (maxWidth - words_length) % (len(curr_words) - 1) for i in range(extra_spaces): curr_words[i] += " " ans.append((' ' * join_spaces).join(curr_words)) curr_words = [] # better way: ' '.join words, then chop off each group of words based on the indices of the spaces # for each chunk, split, do same thing as above to calculate the spaces to join with # append to ans, end when len(joined_string) <= 16 ans = Solution() print(ans.fullJustify([""], 16)) print(ans.fullJustify([""], 0)) print(ans.fullJustify(["this", "is"], 0)) print(ans.fullJustify(["This", "is", "an", "example", "of", "text", "justification."], 16)) print(ans.fullJustify(["This", "is", "an", "example", "of", "text", "justification.", "exhaustively"], 16))
szhongren/leetcode
68/main.py
main.py
py
3,017
python
en
code
0
github-code
6
23704854533
#!/usr/bin/env python3 import json import os import requests import datetime base_url="https://raw.githubusercontent.com/threatstop/crl-ocsp-whitelist/master/" uri_list=['crl-hostnames.txt','crl-ipv4.txt','crl-ipv6.txt','ocsp-hostnames.txt','ocsp-ipv4.txt','ocsp-ipv6.txt'] dict=dict() dict['list']=list() def source_read_and_add(input_file): output_list=list() for item in input_file: item=item.rstrip() output_list.append(item) return output_list for uri in uri_list: url = base_url + uri r=requests.get(url) dict['list'] += source_read_and_add(r.text) dict['type'] = "string" dict['matching_attributes']=["hostname","domain","ip-dst","ip-src","url", "domain|ip"] dict['name']="CRL Warninglist" dict['version']= int(datetime.date.today().strftime('%Y%m%d')) dict['description']="CRL Warninglist from threatstop (https://github.com/threatstop/crl-ocsp-whitelist/)" dict['list']=list(set(dict['list'])) print(json.dumps(dict))
007Alice/misp-warninglists
tools/generate-crl-ip-list.py
generate-crl-ip-list.py
py
943
python
en
code
null
github-code
6
16704497954
import pickle import numpy as np import scipy.io as sio from library.error_handler import Error_Handler class Data_Loader: def load_data_from_pkl(self, filepath_x, filepath_y, ordering="True"): with open(filepath_x, "rb") as file_x: x_data = pickle.load(file_x) with open(filepath_y, "rb") as file_y: y_data = pickle.load(file_y) x_data = np.asarray(x_data) y_data = np.asarray(y_data) if np.min(y_data) > 0: y_data = y_data - np.min(y_data) reordered_data = Data_Loader.__reorder(x_data, ordering) return reordered_data, y_data def load_data_from_npy(self, filepath_x, filepath_y, ordering="True"): x_data = np.load(filepath_x) y_data = np.load(filepath_y) x_data = np.asarray(x_data) y_data = np.asarray(y_data) if np.min(y_data) > 0: y_data = y_data - np.min(y_data) reordered_data = Data_Loader.__reorder(x_data, ordering) return reordered_data, y_data def load_data_from_mat(self, filepath, x_key, y_key, ordering): mat_dict = sio.loadmat(filepath) x_data = mat_dict[x_key] y_data = mat_dict[y_key] x_data = np.asarray(x_data) y_data = np.asarray(y_data) if np.min(y_data) > 0: y_data = y_data - np.min(y_data) reordered_data = Data_Loader.__reorder(x_data, ordering) return reordered_data, y_data def __reorder(x, ordering): if ordering == "SWHC": return x elif ordering == "CWHS": x = np.swapaxes(x, 3, 0) return x elif ordering == "WHCS": x = np.rollaxis(x, 2, 0) x = np.swapaxes(x, 0, 3) return x elif ordering == "WHSC": x = np.rollaxis(x, 3, 0) x = np.swapaxes(x, 0, 3) return x elif ordering == "SCWH": x = np.rollaxis(x, 1, 4) return x elif ordering == "CSWH": x = np.swapaxes(x, 0, 1) x = np.rollaxis(x, 1, 4) return x else: Error_Handler.error_in_data_ordering()
tzee/EKDAA-Release
library/data_loader.py
data_loader.py
py
2,380
python
en
code
2
github-code
6
70602414269
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 19 11:06:45 2020 @author: xchen """ ## required packages # system imports import os import sys from termcolor import colored from colorama import init # data manipulation and data clean from nltk.corpus import stopwords # sklearn from sklearn import preprocessing from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.naive_bayes import MultinomialNB # self-defined import pipeline # default data path DATA_PATH = '../data' GLOVE_PATH = '../glove.6B' # default parameters stop_words = stopwords.words('english') stop_words = stop_words + ['would','could','may','also', 'one', 'two', 'three', 'first', 'second' ,'third', 'someone', 'anyone', 'something', 'anything', 'subject', 'organization', 'lines', 'article', 'writes', 'wrote'] tokenize_regex1 = r"\w+|\$[\d\.]+" tokenize_regex2 = r"[a-zA-Z_]+" def main_test(path): dir_path = path or DATA_PATH TRAIN_DIR = os.path.join(dir_path, "train") TEST_DIR = os.path.join(dir_path, "test") # load data print (colored('Loading files into memory', 'green', attrs=['bold'])) train_path_list, ylabel_train = pipeline.parse_files(TRAIN_DIR) test_path_list, ylabel_test = pipeline.parse_files(TEST_DIR) train_documents = [pipeline.load_document(path = path, label = y) for \ path, y in zip(train_path_list, ylabel_train)] test_documents = [pipeline.load_document(path = path, label = y) for \ path, y in zip(test_path_list, ylabel_test)] # clean all documents print (colored('Cleaning all files', 'green', attrs=['bold'])) pipeline.clean_all_documents(train_documents, word_split_regex = tokenize_regex1, stop_words = stop_words, contraction_dict = 'default') pipeline.clean_all_documents(test_documents, word_split_regex = tokenize_regex1, stop_words = stop_words, contraction_dict = 'default') # encode labels print (colored('Encoding labels', 'green', attrs=['bold'])) y_train, y_test, category = pipeline.label_encoder(ylabel_train, ylabel_test, 'ordinal') ## *************************** machine learning *************************** # calculate the BOW representation print (colored('Calculating BOW', 'green', attrs=['bold'])) X_train_bow = pipeline.BagOfWord.fit_transform(train_documents) X_test_bow = pipeline.BagOfWord.transform(test_documents) print ("The shape of X after processing is: \ntrain: %s, test: %s"%(X_train_bow.shape, X_test_bow.shape)) # calculate the tf-idf representation print (colored('Calculating Tf-idf', 'green', attrs=['bold'])) X_train_tfidf = pipeline.Tfidf.fit_transform(train_documents) X_test_tfidf = pipeline.Tfidf.transform(test_documents) print ("The shape of X after processing is: \ntrain: %s, test: %s"%(X_train_tfidf.shape, X_test_tfidf.shape)) # scale scaler = preprocessing.Normalizer() X_train_scaled = scaler.fit_transform(X_train_bow) X_test_scaled = scaler.transform(X_test_bow) ## models # naive bayes clf_nb = MultinomialNB() # logistic regression clr_lr = LogisticRegression(penalty='l2', C=12, solver='lbfgs', max_iter=500, random_state=42) # svm clf_svm = SGDClassifier(penalty = 'l2',alpha = 5e-5, random_state=42) # model selection print (colored('Selecting model using 10-fold cross validation', 'magenta', attrs=['bold'])) clf_list = [clf_nb, clr_lr, clf_svm] clf_optimal, clf_f1 = pipeline.model_selection(X_train_tfidf, y_train, clf_list, cv=5, scoring='f1_macro') # test the optimal classifier with train-test-split print (colored('Testing the optimal classifier with train-test split', 'magenta', attrs=['bold'])) f1 = pipeline.test_classifier(X_train_tfidf, y_train, clf_optimal, test_size=0.2, y_names=category, confusion=True) print('Train score (macro f1):%.4f, test score (macro f1):%.4f'%(f1[1],f1[0])) # predict test set print (colored('Predicting test dataset', 'magenta', attrs=['bold'])) y_pred_ml = pipeline.model_prediction(clf_optimal, X_train_tfidf, y_train, X_test_tfidf) pipeline.model_report(y_test, y_pred_ml, y_names=category, confusion=True) def main(): init() # get the dataset print (colored("Where is the dataset?", 'cyan', attrs=['bold'])) print (colored('Press return with default path', 'yellow')) ans = sys.stdin.readline() # remove any newlines or spaces at the end of the input path = ans.strip('\n') if path.endswith(' '): path = path.rstrip(' ') print ('\n\n') # do the main test main_test(path) if __name__ == '__main__': main()
linnvel/text-classifier-master
ML.py
ML.py
py
5,072
python
en
code
0
github-code
6
21379925078
from bogos import ScrapeBogos import configparser import twitter def lambda_handler(event, context): config = configparser.ConfigParser() config.read('config.ini'); keywords = '' keywordMultiWord = False url = '' prefixText = '' postfixText = '' noBogoText = '' print('Config values:') if 'BOGO' not in config: print("No BOGO config found") return else: bogoConfig = config['BOGO'] if 'keywords' not in bogoConfig or 'url' not in bogoConfig: print("'keywords' or 'url' was provided in the config") return else: keywords = bogoConfig['keywords'].split(',') print('keywords: ' + str(keywords)) url = bogoConfig['url'] print('url: ' + url) if 'keywordMultiWord' in bogoConfig: keywordMultiWord = bogoConfig['keywordMultiWord'].lower() == 'true' print('keywordMultiWord: ' + str(keywordMultiWord)) if 'prefixText' in bogoConfig: prefixText = bogoConfig['prefixText'] print('prefixText: ' + prefixText) if 'postfixText' in bogoConfig: postfixText = bogoConfig['postfixText'] print('postfixText: ' + postfixText) if 'noBogoText' in bogoConfig: noBogoText = bogoConfig['noBogoText'] print('noBogoText: ' + noBogoText) consumer_key = '' consumer_secret = '' access_token_key = '' access_token_secret = '' if 'TwitterApi' in config: twitterConfig = config['TwitterApi'] consumer_key = twitterConfig['consumer_key'] consumer_secret = twitterConfig['consumer_secret'] access_token_key = twitterConfig['access_token_key'] access_token_secret = twitterConfig['access_token_secret'] print('End of config values') print('====================\n') bogos = ScrapeBogos(url, keywords, keywordMultiWord, prefixText, postfixText) bogos.initialize() tweetBogo(bogos.getItemsFound(), noBogoText, consumer_key, consumer_secret, access_token_key, access_token_secret) def tweetBogo(itemsFound, noBogoText, consumer_key, consumer_secret, access_token_key, access_token_secret): twitterApi = None if consumer_key and consumer_secret and access_token_key and access_token_secret: twitterApi = twitter.Api(consumer_key=consumer_key, consumer_secret=consumer_secret, access_token_key=access_token_key, access_token_secret=access_token_secret) if itemsFound: for item in itemsFound: print(item); if twitterApi: print('posting to twitter: ' + item) twitterApi.PostUpdate(item) elif noBogoText: print(noBogoText); if twitterApi: print('posting to twitter: ' + noBogoText) twitterApi.PostUpdate(noBogoText) else: print("nothing found");
DFieldFL/publix-bogo-notification
BogoMain.py
BogoMain.py
py
2,732
python
en
code
2
github-code
6
41236509775
from django.urls import path from rest_framework.routers import DefaultRouter from . import views urlpatterns = [ ] router = DefaultRouter() router.register("porcelain", viewset=views.PorcelainView, basename="porcelain") router.register("dynasty", viewset=views.DynastyView, basename="dynasty") router.register("EmperorYear", viewset=views.EmperorYearView, basename="EmperorYear") urlpatterns += router.urls
beishangongzi/porcelain-backend
predict_model/urls.py
urls.py
py
412
python
en
code
0
github-code
6
36064906771
''' Created on 2017-1-13 @author: xuls ''' from PIL import Image import os PATH2=os.path.dirname(os.getcwd()) def classfiy_histogram(image1,image2,size = (256,256)): image1 = image1.resize(size).convert("RGB") g = image1.histogram() image2 = image2.resize(size).convert("RGB") s = image2.histogram() assert len(g) == len(s),"error" data = [] for index in range(0,len(g)): if g[index] != s[index]: data.append(1 - abs(g[index] - s[index])/max(g[index],s[index]) ) else: data.append(1) print(sum(data)/len(g)) def compare(image): image1 = Image.open(PATH2+"\\aw\\image\\expected\\"+image+".png") image2 = Image.open(PATH2+"\\aw\\image\\actual\\"+image+".png") print(image+"-differ:") classfiy_histogram(image1,image2,size = (256,256)) if __name__ == "__main__": '''Search''' compare("image01") compare("image02") compare("image03") compare("image04") compare("image05") compare("image06") compare("image07") compare("image08") # '''BusinessChance''' compare("image11") compare("image12") compare("image13") compare("image14") '''CarContrast''' compare("image21") compare("image22") '''FriendsToHelp''' compare("image31") compare("image32") compare("image33") compare("image34") compare("image35") compare("image36") compare("image37") compare("image38") compare("image39") compare("image3a") compare("image3b") compare("image3c") compare("image3d") compare("image3e") '''SendTopic''' compare("image41") compare("image42") compare("image43") compare("image44") compare("image45") compare("image46") compare("image47") compare("image48")
xulishuang/qichebaojiadaquan
src/script/sameas.py
sameas.py
py
1,917
python
en
code
0
github-code
6
162022841
import time from selenium import webdriver from django.contrib.staticfiles.testing import StaticLiveServerTestCase from .pages.login import LoginPage class ManageUserTestCase(StaticLiveServerTestCase): def setUp(self): self.browser = webdriver.Firefox() self.browser.implicitly_wait(20) self.browser.maximize_window() def tearDown(self): if self.browser: self.browser = None def test_user_interaction_on_manage_user_page(self): temp_page = LoginPage(self.browser) temp_page.first_visit('{}/account/login/'.format(self.live_server_url), 'email') temp_page = temp_page.login_user('[email protected]', 'admin') temp_page.first_visit(self.live_server_url) self.page = temp_page.visit_manage_user() self.assertIn('Manage Users', self.page.get_body_content()) user_info = self.page.add_new_user() self.page.wait_for_element_with_class_name('stickit_name') tbody = self.browser.find_element_by_id('tbody') tbody_text = tbody.text.lower() email = user_info.get('email').lower() name = user_info.get('name').lower() phone = user_info.get('phone').lower() department = user_info.get('department').lower() self.assertIn(email, tbody_text) self.assertIn(name, tbody_text) self.assertIn(phone, tbody_text) self.assertIn(department, tbody_text) edited_user_info = self.page.edit_user() self.page.wait_for_element_with_class_name('stickit_name') tbody = self.browser.find_element_by_id('tbody') tbody_text = tbody.text.lower() self.assertNotIn(name, tbody_text) self.assertNotIn(phone, tbody_text) self.assertNotIn(department, tbody_text) self.assertIn(edited_user_info.get('name').lower(), tbody_text) self.assertIn(edited_user_info.get('phone').lower(), tbody_text) self.assertIn(edited_user_info.get('department').lower(), tbody_text) self.page.delete_user() time.sleep(3) tbody = self.browser.find_element_by_id('tbody') tbody_text = tbody.text.lower() self.assertNotIn(edited_user_info.get('name').lower(), tbody_text) self.assertNotIn(edited_user_info.get('phone').lower(), tbody_text) self.assertNotIn(edited_user_info.get('department').lower(), tbody_text) self.assertNotIn(email, tbody_text)
pophils/TaskManagement
yasanaproject/tests/functional/test_manage_user.py
test_manage_user.py
py
2,447
python
en
code
1
github-code
6
34838799506
import csv import pandas as pd cerealFile = open('cereal.csv') cerealReader = csv.reader(cerealFile) cerealList = list(cerealReader) df = pd.read_csv('cereal.csv') for row in cerealList: print(row[0]) #print(df.info()) print(df['calories'].dtypes)
kamiltrzcinski/python
zad7.py
zad7.py
py
257
python
en
code
0
github-code
6
1175929683
#!/usr/bin/env python3 """ T9 Spelling problem for Google Code Jam Africa 2010 Qualification Link to problem description: http://code.google.com/codejam/contest/351101/dashboard#s=p2 author: Chris Nitsas (nitsas) language: Python 3.2.1 date: April, 2012 usage: $ python3 runme.py sample.in or $ runme.py sample.in (where sample.in is the input file and $ the prompt) """ import sys # non-standard modules: from helpful import read_int class T9Translator: """ Translates strings of lowercase characters a-z and space characters to T9 strings. """ def __init__(self, characters=None, t9_phrases=None): if characters is not None: self.characters = characters else: self.characters = "abcdefghijklmnopqrstuvwxyz " if t9_phrases is not None: self.t9_phrases = t9_phrases else: self.t9_phrases = ["2", "22", "222", "3", "33", "333", "4", "44", "444", "5", "55", "555", "6", "66", "666", "7", "77", "777", "7777", "8", "88", "888", "9", "99", "999", "9999", "0"] self.character_to_t9 = dict(zip(self.characters, self.t9_phrases)) def toT9(self, string): result = self.character_to_t9[string[0]] for letter in string[1:]: # check if we're going to have to press the same key again if result[-1] != self.character_to_t9[letter][0]: # add the new letter's t9 translation to result result += self.character_to_t9[letter] else: # we must pause (insert a space) before the next keypress result += " " + self.character_to_t9[letter] return result def main(filename=None): if filename is None: if len(sys.argv) == 2: filename = sys.argv[1] else: print("Usage: runme.py input_file") return 1 with open(filename, "r") as f: num_cases = read_int(f) translator = T9Translator() for i, line in enumerate(f, 1): print("Case #" + str(i) + ": " + translator.toT9(line.rstrip("\n"))) return 0 if __name__ == "__main__": status = main() sys.exit(status)
nitsas/codejamsolutions
T9 Spelling/runme.py
runme.py
py
2,291
python
en
code
1
github-code
6
20832937788
import re def open_fasta_file(file_address): file = open(file_address, 'r') text = file.read() file.close() return text def record_counter(file_address): txt = open_fasta_file(file_address) counter = txt.count('>') return counter def dna_dict_creator(file_address): txt = open_fasta_file(file_address) dna_list = re.split('>', txt) dna_list = list(filter(None, dna_list)) list_of_keys, new_dna_list = [], [] totall_dna_in_fasta = {} for item in dna_list: dna = (re.split('\n', (item))) dna = list(filter(None, dna)) list_of_keys.append(dna[0]) dna = dna[1:] dnastr = '' dnastr = ''.join(dna) new_dna_list.append(dnastr) for i in range(0, len(list_of_keys)): totall_dna_in_fasta[list_of_keys[i][:30]] = new_dna_list[i] return totall_dna_in_fasta def length_calculater(file_address): dna_dict = dna_dict_creator(file_address) dict_of_length = {} for item in dna_dict.keys(): dict_of_length[item] = len(dna_dict[item]) return dict_of_length def longest_shortest(file_address): dna_length_dict = length_calculater(file_address) sorted_dna_length = sorted(dna_length_dict.items(), key=lambda x: x[1]) longest = (sorted_dna_length[-1][0][:30], sorted_dna_length[-1][1]) shortest = (sorted_dna_length[0][0][:30], sorted_dna_length[0][1]) identical_shortest_len, identical_longest_len = [], [] for i in range(0, len(sorted_dna_length)): longest_len = sorted_dna_length[-1][1] if sorted_dna_length[-i][1] == longest_len: identical_longest_len.append(sorted_dna_length[-i][0][:25]) else: break for i in range(0, len(sorted_dna_length)): shortest_len = sorted_dna_length[0][1] if sorted_dna_length[i][1] == shortest_len: identical_shortest_len.append(sorted_dna_length[i][0][:25]) else: break return shortest, longest, identical_shortest_len, identical_longest_len def orf_finder(file_address, reading_frames): fasta_file = dna_dict_creator(file_address) dnas_keys = fasta_file.keys() dna_orf = {} for item in dnas_keys: dna = fasta_file[item] start_position = reading_frames - 1 mark = 0 start_index, stop_index, orf = [], [], [] for i in range(start_position, len(dna), 3): if dna[i:i + 3] == 'ATG': start_index.append(i) for i in range(start_position, len(dna), 3): if dna[i:i + 3] in ["TAA", "TGA", "TAG"]: stop_index.append(i) for i in range(0, len(start_index)): for j in range(0, len(stop_index)): if start_index[i] < stop_index[j] and start_index[i] > mark: orf.append(dna[start_index[i]:stop_index[j] + 3]) mark = stop_index[j] + 3 break dna_orf[item] = orf return dna_orf def longest_orf_length(file_address, reading_frames): all_orfs = orf_finder(file_address, reading_frames) orf_keys = all_orfs.keys() orf_lengths = {} for identifier in orf_keys: orf = all_orfs[identifier] length = [] for item in orf: length.append(len(item)) length.sort(reverse=True) if len(length) > 0: orf_lengths[identifier] = length[0] else: orf_lengths[identifier] = 0 return orf_lengths, max(orf_lengths.values()) def longest_orf_position(file_address, reading_frame): longest_orf_len = longest_orf_length(file_address, reading_frame) long_orfs = longest_orf_len[0] longest_orf_len = longest_orf_len[1] longest_orf_identifier = '' for item in long_orfs.keys(): if long_orfs[item] == longest_orf_len: longest_orf_identifier = item all_dna = dna_dict_creator(file_address) all_orfs = orf_finder(file_address, reading_frame) longest_orf_in_fasta = all_orfs[longest_orf_identifier][0] for i in range(0, len(all_orfs[longest_orf_identifier])): if (len(all_orfs[longest_orf_identifier][i]) > len(longest_orf_in_fasta)): longest_orf_in_fasta = all_orfs[longest_orf_identifier][i] dna = all_dna[longest_orf_identifier] start_pos = dna.rfind(longest_orf_in_fasta) # # start_positions = {} # # for item in all_dna.keys(): # dna = all_dna[item] # orfs = all_orfs[item] # longest = '' # for orf in orfs: # if len(orf) > len(longest): # longest = orf # start_positions[item] = dna.rfind(longest) # return start_positions return start_pos + 1 def all_repeats(file_address, length): fasta_file = dna_dict_creator(file_address) dnas_keys = fasta_file.keys() repeats_dict = {} for item in dnas_keys: repeats_list, fragments = [], [] dna = fasta_file[item] for i in range(0, len(dna)): fragments.append(dna[i:i + length]) for piece in fragments: if len(piece) == length and dna.count(piece) > 1: repeats_list.append(dna.count(piece)) repeats_dict[piece] = (dna.count(piece)) return repeats_dict def most_frequent_repeat(file_address, length): repeat_dict = all_repeats(file_address, length) keys = repeat_dict.keys() max_repeat = {} for key in keys: temp_list = [] max_rep = max(repeat_dict[key]) count = repeat_dict[key].count(max_rep) temp_list.append(max_rep) temp_list.append(count) max_repeat[key] = temp_list return max_repeat # print(longest_orf_length('dna2.fasta', 3)[1]) # print(longest_orf_position('dna2.fasta',3)) # print(len(dna_dict_creator('dna.example.fasta'))) # print(longest_orf_position('dna.example.fasta',0)) # print(longest_orf_position('dna.example.fasta',0)) # print(most_frequent_repeat('dna.example.fasta',6)) # print(all_repeats('dna.example.fasta',6)) # orf = 'gi|142022655|gb|EQ086233.1|16' # long_orfs = longest_orf_length('dna2.fasta',3)[0] # for item in long_orfs.keys(): # if orf in item: # print(long_orfs[item])
saeedrafieyan/bioinformatics
final.py
final.py
py
6,224
python
en
code
0
github-code
6
34608371364
import os.path import json import os def readDIPfile(parent_path): edges = {} index = 0 xmlfilepath = os.path.join(parent_path, r'data\Hsapi20170205CR.txt') f = open(xmlfilepath) lines = f.readlines() for line in lines: line_list = line.strip("\n").split("\t") if line_list[9] == "taxid:9606(Homo sapiens)" and line_list[10] == "taxid:9606(Homo sapiens)": source = line_list[0].split("|")[0] target = line_list[1].split("|")[0] if source != target: edges[index] = [source, target] index += 1 print(len(edges)) result_path = parent_path + r'\data\uploads\resultEdges.json' with open(result_path, 'w') as fw: json.dump(edges, fw) if __name__ == '__main__': ROOT_DIR = os.path.dirname(os.path.abspath('__file__')) parent_path = os.path.dirname(ROOT_DIR) readDIPfile(parent_path)
LittleBird120/DiseaseGenePredicition
DiseaseGenePredicition/Human_COVID_node2vec20210315/data_processing/readHumanProtein.py
readHumanProtein.py
py
919
python
en
code
0
github-code
6
1435864274
import math import numpy as np import cv2 from matplotlib import pyplot as plt def Euclidean_Distance(pointA, pointB): ans = ((pointA[0] - pointB[0])**2+(pointA[1] - pointB[1])**2)**0.5 return ans def Flat_Kernel(distance, bandwidth, point_number): inRange = [] weight = np.zeros((point_number, 1)) for i in range (distance.shape[0]): if distance[i] <= bandwidth: inRange.append(distance[i]) weight[i] = 1 inRange = np.array(inRange) return weight def Gaussian_Kernel(distance, bandwidth, point_number): left = 1.0/(bandwidth * math.sqrt(2*math.pi)) right = np.zeros((point_number, 1)) for i in range(point_number): right[i, 0] = (-0.5 * distance[i] * distance[i]) / (bandwidth * bandwidth) right[i, 0] = np.exp(right[i, 0]) return left * right def Get_Mono_Histogram(image_dir): img = cv2.imread(image_dir) hist = cv2.calcHist([img],[0],None,[256],[0,256]) plt.hist(img.ravel(), 256, [0, 256]) plt.show() def Get_RGB_Histogram(image_dir): img = cv2.imread(image_dir) color = ('b', 'g', 'r') for i, col in enumerate(color): histr = cv2.calcHist([img], [i], None, [256], [0, 256]) plt.plot(histr, color=col) plt.xlim([0, 256]) plt.show()
laitathei/algorithm_implemention
machine_learning/Mean_Shift/utils.py
utils.py
py
1,331
python
en
code
0
github-code
6
474990887
""" *Author : Revanth Sai Nandamuri *GitHUB : https://github.com/RevanthNandamuri1341b0 *Date of update : 25 August 2021 *Project name : Finding missing number *Domain : PYTHON *Description : You are given an array of positive numbers from 1 to n, such that all numbers from 1 to n are present except one number x. You have to find x.The input array is not sorted. Runtime Complexity: O(n) *File Name : amazon_interview_question1.py *File ID : 799173 *Modified by : #your name# """ def amazon_unique(n,arr): a_list = list(range(1, n+1)) print(a_list) for i in a_list: if i not in arr: print(i) n=int(input()) arr= list(map(int,input().strip().split())) #print(arr) amazon_unique(n,arr)
RevanthNandamuri1341b0/PYTHON-COMPY
amazon_interview_question1.py
amazon_interview_question1.py
py
791
python
en
code
0
github-code
6
73900222588
# coding: utf-8 import unittest import os from django.conf import settings from studitemps_storage.path import guarded_join from studitemps_storage.path import guarded_safe_join from studitemps_storage.path import guarded_join_or_create from studitemps_storage.path import FileSystemNotAvailable ABSPATH = os.path.abspath(".") TEST_DIR = os.path.join("studitemps_storage", "tests", "test_dir") """ Using unittest.TestCase because we don't need django-Database or Server """ class GuardedJoinTestCase(unittest.TestCase): def test_file_exists(self): """ it should act like os.path.join """ self.assertEqual( guarded_join(ABSPATH, 'studitemps_storage'), os.path.join(ABSPATH, 'studitemps_storage') ) self.assertEqual( guarded_join(ABSPATH, TEST_DIR, 'check.txt'), os.path.join(ABSPATH, TEST_DIR, 'check.txt') ) def test_file_not_exists(self): """ It should raise IOError for not existing file/folder """ self.assertRaises(IOError, guarded_join, ABSPATH, 'files-does-not-exists') def test_file_system_not_available(self): """ Manually activates GUARDED_JOIN_TEST to raise FileSystemNotAvailable """ settings.GUARDED_JOIN_TEST = True self.assertRaises(FileSystemNotAvailable, guarded_join, ABSPATH) settings.GUARDED_JOIN_TEST = False class GuardedSafeJoin(unittest.TestCase): def test_file_exists(self): """ It should act like os.path join with base-folder """ self.assertEqual( guarded_safe_join(TEST_DIR, 'check.txt'), os.path.join(ABSPATH, TEST_DIR, 'check.txt') ) def test_outside_project(self): """ It should raise exception if try to access files outside project """ self.assertRaises(ValueError, guarded_safe_join, "..", "..", "..") def test_not_exists(self): """ It should act like os.path join If file/folder doesn't exists returns joined-path """ self.assertEqual( guarded_safe_join(TEST_DIR, "file-does-not-exists"), os.path.join(ABSPATH, TEST_DIR, "file-does-not-exists") ) class GuardedJoinOrCreate(unittest.TestCase): def test_file_exists(self): """ It should return path and not create new folder """ self.assertEqual( guarded_join_or_create(ABSPATH, 'README.md'), os.path.join(ABSPATH, 'README.md') ) def test_create_dir(self): """ Dir does not exists - create new """ path = os.path.join(TEST_DIR, "new-dir") # The folder shouldn't exists self.assertFalse(os.path.exists(path)) # The folder should be created guarded_join_or_create(path) # The folder should be created successful self.assertTrue(os.path.exists(path)) # Remove os.rmdir(path) self.assertFalse(os.path.exists(path))
STUDITEMPS/studitools_storages
studitemps_storage/tests/suites/path.py
path.py
py
3,073
python
en
code
0
github-code
6
21114723474
import os from dotenv import load_dotenv, dotenv_values # FOR LOG import logging from logging.handlers import RotatingFileHandler import datetime import math import json # Load environmental variable config = dotenv_values(".env") # --------------------------------------------------- LOGGING --------------------------------------------------------- # Create new log folder if not exist LOG_FOLDER_NAME = config.get('LOG_FOLDER_NAME') LOG_FOLDER = os.path.join(os.getcwd(), LOG_FOLDER_NAME) LOG_FILE = os.path.join(LOG_FOLDER, 'log_{datetime}.log'.format(datetime=datetime.datetime.now().strftime('%Y-%m-%d'))) MAXBYTES = (config.get('MAXBYTES')) BACKUP_COUNT = config.get('BACKUP_COUNT') # Set up logging basic config try: handler_rfh = RotatingFileHandler(LOG_FILE, maxBytes=int(MAXBYTES), backupCount=int(BACKUP_COUNT)) handler_rfh.setFormatter(logging.Formatter('%(asctime)s %(message)s')) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', \ datefmt='%m/%d/%Y %I:%M:%S %p') logging.getLogger('CRAWL_TELEGRAM').addHandler(handler_rfh) except Exception as e: logging.exception(e) # ---------------------------------------------------------------------------------------------------------------------- from entities.Account import Account from entities.User import User from BatchProcessor import BatchProcessor if __name__ == "__main__": bpro = BatchProcessor() num_mem_per_acc = 4 list_members = [] for i in range(3): member = User(f'user_id_{i}', f'access_hash_{i}') list_members.append(member) list_accounts = [] for i in range(3): acc = Account(f'phone_no_{i}', f'api_id_{i}', f'api_hash_{i}', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) list_accounts.append(acc) logging.info(list_accounts) logging.info(list_members) list_use_accounts, dict_batch, is_lack_acc, max_mem_process = bpro.divide_into_batch(list_accounts, list_members, num_mem_per_acc) logging.info(', '.join([acc.phone_no for acc in list_use_accounts])) logging.info(is_lack_acc) logging.info(max_mem_process) for key in dict_batch: print(key) print('Account:' ,dict_batch[key][0]) print('List members:') print(*dict_batch[key][1], sep='\n')
Splroak/add_member_telegram
src/test_BatchProcessor.py
test_BatchProcessor.py
py
2,365
python
en
code
0
github-code
6
13489533801
import json import requests resource = requests.post('http://216.10.245.166/Library/DeleteBook.php', json = {"ID" : "ashish123227"}, headers={'Content-Type' : 'application/json' } ) assert resource.status_code == 200 , f'the api failed with an error messages as : {resource.text}' response_json = json.loads(resource.text) print(response_json) assert(response_json['msg']) == 'book is successfully deleted' , 'book is not deleted'
bhagatashish/APT_Testing
delete_book.py
delete_book.py
py
462
python
en
code
0
github-code
6
73795089468
import json import os from flask import current_app, redirect, request, Response from . import blueprint @blueprint.route("/routes") def routes(): data = { "name": current_app.config["name"], "version": current_app.config["version"], "routes": { "api": [ "/api/documentation", "/api/shutdown", "/api/version" ], "igv": [ "/igv/demo", "/igv/custom", "/igv/session" ] } } js = json.dumps(data, indent=4, sort_keys=True) resp = Response(js, status=200, mimetype="application/json") return resp @blueprint.route("/api/documentation") def documentation(): return redirect("https://github.com/igvteam/igv.js", code=302) @blueprint.route("/api/shutdown") def shutdown(): try: request.environ.get("werkzeug.server.shutdown")() except Exception: raise RuntimeError("Not running with the Werkzeug Server") return "Shutting down..." @blueprint.route("/api/version") def api_version(): data = { "tool_version": current_app.config["tool_version"], "igv_version": current_app.config["igv_version"] } js = json.dumps(data, indent=4, sort_keys=True) resp = Response(js, status=200, mimetype="application/json") return resp
cumbof/igv-flask
igv/routes/basics.py
basics.py
py
1,385
python
en
code
0
github-code
6
1066446639
""" This module defines the interface for communicating with the sound module. .. autoclass:: _Sound :members: :undoc-members: :show-inheritance: """ import glob import os import platform import subprocess from functools import partial from opsoro.console_msg import * from opsoro.sound.tts import TTS from opsoro.users import Users get_path = partial(os.path.join, os.path.abspath(os.path.dirname(__file__))) class _Sound(object): def __init__(self): """ Sound class, used to play sound and speak text. """ # List of search folders for sound files self.sound_folders = ["../data/sounds/"] self.playProcess = None self.jack = False self._platform = platform.system() def _play(self, filename): """ Play any local file, used internally by other methods :param string filename: full filename to play """ FNULL = open(os.devnull, "w") if self._platform == "Darwin": # OSX playback, used for development self.playProcess = subprocess.Popen( ["afplay", filename], stdout=FNULL, stderr=subprocess.STDOUT) elif not self.jack: self.playProcess = subprocess.Popen( ["aplay", filename], stdout=FNULL, stderr=subprocess.STDOUT) else: # self.playProcess = subprocess.Popen(["aplay", "-D", "hw:0,0", full_path], stdout=FNULL, stderr=subprocess.STDOUT) self.playProcess = subprocess.Popen( ["aplay", "-D", "hw:0,0", filename], stdout=FNULL, stderr=subprocess.STDOUT) def say_tts(self, text, generate_only=False): """ Converts a string to a soundfile using Text-to-Speech libraries :param string text: text to convert to speech :param bool generate_only: do not play the soundfile once it is created """ if text is None: return full_path = TTS.create(text) if generate_only: return # Send sound to virtual robots Users.broadcast_robot({'sound': 'tts', 'msg': text}) self.stop_sound() self._play(full_path) def play_file(self, filename): """ Plays an audio file according to the given filename. :param string filename: file to play :return: True if sound is playing. :rtype: bool """ self.stop_sound() path = None if os.path.splitext(filename)[1] == '': filename += '.*' for folder in self.sound_folders: f = os.path.join(get_path(folder), filename) files = glob.glob(f) if files: path = files[0] break if path is None: print_error("Could not find soundfile \"%s\"." % filename) return False # Send sound to virtual robots name, extension = os.path.splitext(os.path.basename(filename)) Users.broadcast_robot({'sound': 'file', 'msg': name}) self._play(path) return True def get_file(self, filename, tts=False): """ Returns audio file data according to the given filename. :param string filename: file to return the data from :return: Soundfile data. :rtype: var """ path = None data = None if tts: path = TTS.create(filename) else: if os.path.splitext(filename)[1] == '': filename += '.*' for folder in self.sound_folders: f = os.path.join(get_path(folder), filename) files = glob.glob(f) if files: path = files[0] break if path is None: print_error("Could not find soundfile \"%s\"." % filename) return data try: with open(get_path(path)) as f: data = f.read() except Exception as e: print_error(e) # Send sound to virtual robots return data def stop_sound(self): """ Stop the played sound. """ if self.playProcess == None: return self.playProcess.terminate() self.playProcess = None def wait_for_sound(self): """ Wait until the played sound is done. """ if self.playProcess == None: return self.playProcess.wait() self.playProcess = None # Global instance that can be accessed by apps and scripts Sound = _Sound()
OPSORO/OS
src/opsoro/sound/__init__.py
__init__.py
py
4,683
python
en
code
9
github-code
6
25754911493
import os from multiprocessing import freeze_support,set_start_method import multiprocessing from Optimization import Optimization from GA import RCGA from PSO import PSO if __name__=='__main__': from datetime import datetime start = datetime.now() print('start:', start.strftime("%m.%d.%H.%M")) multiprocessing.freeze_support() lower = [0.9, 0.9, 0.9,0.9,0.9,0.9] upper = [1.1,1.1,1.1,1.1,1.1,1.1] pso = PSO(func=Optimization, n_dim=6, pop=72, max_iter=30, w=0.8, lb=lower, ub=upper, c1=1.49, c2=1.49,verbose=True) #freeze_support() #set_start_method('forkserver') pso.record_mode=True pso.run(precision=1e-5) print('best_x',pso.pbest_x,'\n','best_y',pso.pbest_y) f =open('best_opt.txt','a+') f.write(str(pso.best_x)) f.close() f=open('updating_processing.txt','a+') f.write(str(pso.pbest_x)) f.write('\n') f.write(str(pso.pbest_y)) end=datetime.now() print('end',end.strftime("%m.%d.%H.%M")) os.system('MAC.py')
zhengjunhao11/model-updating-framework
program_framework/Input.py
Input.py
py
1,002
python
en
code
1
github-code
6
6830398340
#!/usr/bin/env python #!/usr/bin/python from tkinter import * root = Tk() # creates a blank window named root top_frame = Frame(root) top_frame.pack() bottom_frame = Frame(root) bottom_frame.pack(side=BOTTOM) # since the bottom frame is specified to be, at the bottom the top is at the top button1 = Button(top_frame, text='button 1', highlightbackground='red', fg='yellow') # creating a widget button instead of text button2 = Button(top_frame, text='button 2', bg='blue', fg='green') # button placement top_frame is the first parameter, what the text displays, the second, and color, fg=, the third button3 = Button(top_frame, text='button 3', fg='red') # fg foreground bg background # button4 = Button(bottom_frame, text='button 4', highlightcolor='purple') # at the bottom frame button4 = Button(bottom_frame, text="Press!", highlightbackground='blue', fg="green") # still the fg color option does not work button1.pack(side=LEFT) # this tells the program what and where to display button2.pack(side=LEFT) button3.pack(side=LEFT, fill=BOTH, expand=True) button4.pack(side=BOTTOM) # The parameters could be left blank since there are no other objects in the bottom frame root.mainloop() # mainloop keeps the root looping infinitely or until closed, so the window remains visible on the screen. '''bottomFrame = Frame(root).pack(side=BOTTOM) ? btn1 = Button(bottomFrame, text="okay", fg="red").pack()''' '''from Tkinter import * Label(None, text='label', fg='green', bg='black').pack() Button(None, text='button', fg='green', bg='black').pack() mainloop() # **************** With ttk: import tkinter as tk from tkinter import ttk root = tk.Tk() # background="..." doesn't work... ttk.Style().configure('green/black.TLabel', foreground='green', background='black') ttk.Style().configure('green/black.TButton', foreground='green', background='black') label = ttk.Label(root, text='I am a ttk.Label with text!', style='green/black.TLabel') label.pack() button = ttk.Button(root, text='Click Me!', style='green/black.TButton') button.pack() root.mainloop()'''
judas79/TKinter-git-theNewBoston
Tkinter - 02 - Organizing your Layout/Tkinter - 02 - Organizing your Layout.py
Tkinter - 02 - Organizing your Layout.py
py
2,170
python
en
code
0
github-code
6
73416700989
class Verity: def input_boolean(): print("X", "Y", "Z", "Rezult" ) print("*"*15) for X in range(2): for Y in range(2): for Z in range(2): rezult=not(X or Y or Z)== ((not X)and (not Y) and (not Z)) print(f"{X} {Y} {Z} - {rezult}") input_boolean() # examination_verity()
DenisBaicurov/PracticaPython
exercise2.py
exercise2.py
py
410
python
en
code
0
github-code
6
38938434821
#!/usr/bin/env python from sys import argv fin = open("include/hiponodes.h") fout0 = open("include/node_declaration.h","w") fout1 = open("src/node_assignment.cxx","w") fout1.write("//// File automatically produced by format_hiponodes.py do not make changes here!!\n") fout1.write('#include "TIdentificatorCLAS12.h"\n') fout1.write("int TIdentificatorCLAS12::InitNodes()\n") fout1.write("{\n") fout0.write("//// File automatically produced by format_hiponodes.py do not make changes here!!\n") for line in fin: if '=' not in line: continue linearray = line.split("=") fout0.write(linearray[0] + ";\n") fout1.write(" " + linearray[0].split("*")[1] + " = " + linearray[1]) fout1.write("}\n")
orsosa/Clas12Ana
format_hiponodes.py
format_hiponodes.py
py
707
python
en
code
0
github-code
6